AWR1243FBIGABLRQ1 [TI]

76GHz 至 81GHz 高性能汽车类 MMIC | ABL | 161 | -40 to 125;
AWR1243FBIGABLRQ1
型号: AWR1243FBIGABLRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

76GHz 至 81GHz 高性能汽车类 MMIC | ABL | 161 | -40 to 125

文件: 总52页 (文件大小:2272K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AWR1243  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
AWR1243 单芯77GHz 79GHz FMCW 收发器  
符合功能安全标准  
1 特性  
– 专为功能安全应用开发  
– 文档有助于使ISO 26262 功能安全系统设计满  
ASIL-D 级要求  
– 硬件完整性高ASIL-B 级  
– 安全相关认证  
FMCW 收发器  
– 集PLL、发送器、接收器、基带ADC  
76GHz 81GHz 的覆盖范围4GHz 的可  
用带宽  
TUV SUD ISO 26262 认证达ASIL  
B 级  
• 符AEC-Q100 标准  
• 器件高级特性  
– 四个接收通道  
– 三个发送通道可以同时使用两个通道)  
– 基于分N PLL 的超精确线性调频脉冲引擎  
TX 功率12dBm  
RX 噪声系数:  
– 嵌入式自监控无需使用主机处理器  
– 复基带架构  
– 嵌入式干扰检测功能  
• 电源管理  
14dB76 77GHz)  
15dB77 81GHz)  
1MHz 时的相位噪声:  
– 内LDO 网络可增PSRR  
I/O 支持双电3.3V/1.8V  
• 时钟源  
• –95dBc/Hz76 77GHz)  
• –93dBc/Hz77 81GHz)  
• 内置校准和自检  
– 支持外部驱动、频率40MHz 的时钟方波/正  
弦波)  
– 支40MHz 晶体与负载电容器相连接  
• 轻松的硬件设计  
– 内置固(ROM)  
– 针对工艺和温度进行自校准的系统  
• 主机接口  
– 通SPI 与外部处理器进行控制连接  
– 通MIPI D-PHY CSI2 V1.1 与外部处理器进  
行数据连接  
0.65mm 间距、161 10.4mm × 10.4mm 覆  
BGA 封装可实现轻松组装和低成PCB  
设计  
– 用于故障报告的中断  
– 小尺寸解决方案  
• 运行条件  
– 结温范围40°C 125°C  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SWRS188  
 
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
自动紧急刹车  
自适应巡航控制  
2 应用  
用于测量距离、速度和角度的汽车传感器  
自动公路驾驶  
Crystal  
Power Management  
RX1  
RX2  
Antenna  
Structure  
SPI/I2C  
RX3  
External  
MCU  
Interface to  
External  
Peripherals  
RX4  
mmWave Sensor  
CSI2 (4 Lane Data + 1 Clock lane)  
TX1  
TX2  
Reset  
Error  
TX3  
MCU Clock  
2-1. 适用于汽车应用的自主雷达传感器  
3 说明  
AWR1243 器件是一款能够76 81GHz 频带内运行的集成式单芯FMCW 收发器。该器件在极小的封装中实  
现了出色的集成度。AWR1243 是适用于汽车领域中的低功耗、自监控、超精确雷达系统的理想解决方案。  
AWR1243 器件是一种自包FMCW 收发器单芯片解决方案能够简76 81GHz 频带中的汽车雷达传感器实  
施。它基于 TI 的低功耗 45nm RFCMOS 工艺构建从而实现了一个具有内置 PLL ADC 转换器的单片实施  
3TX4RX 系统。简单编程模型更改可支持各种传感器实施近距离、中距离和远距离),并且能够进行动态重  
新配置从而实现多模式传感器。此外该器件作为完整的平台解决方案进行提供其中包括 TI 参考设计、软件  
驱动程序、示例配置、API 指南以及用户文档。  
器件信息  
器件型号(2)  
AWR1243FBIGABLQ1  
AWR1243FBIGABLRQ1  
封装(1)  
托盘/卷带包装  
封装尺寸  
托盘  
FCBGA (161)  
10.4mm × 10.4mm  
卷带包装  
(1) 如需更多信息请参阅13 机械、封装和可订购信息。  
(2) 如需更多信息请参阅12.1器件命名规则。  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
 
 
 
 
 
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
4 Functional Block Diagram  
4-1 shows the functional block diagram of the device.  
LNA  
LNA  
LNA  
LNA  
IF  
IF  
IF  
IF  
ADC  
ADC  
ADC  
ADC  
Digital Front-end  
(Decimation filter  
chain)  
ADC output  
interface  
ADC Buffer  
CSI2  
16KB PING/PONG  
PA  
û-  
û-  
û-  
Phase  
Shifter  
Control (A)  
Synth  
(20 GHz)  
Ramp Generator  
PA  
PA  
x4  
Host control  
interface  
Synth Cycle  
Counter  
SPI/I2C  
RF Control / BIST  
Temp(B)  
GPADC  
Osc.  
VMON  
RF/Analog Subsystem  
Digital  
A. Phase Shift Control:  
0° / 180° BPM for AWR1243  
B. Internal temperature sensor accuracy is ± 7 °C.  
4-1. Functional Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
 
 
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
Table of Contents  
9.1 Overview...................................................................33  
9.2 Functional Block Diagram.........................................33  
9.3 Subsystems.............................................................. 34  
9.4 Other Subsystems.................................................... 37  
10 Monitoring and Diagnostics....................................... 39  
10.1 Monitoring and Diagnostic Mechanisms................. 39  
11 Applications, Implementation, and Layout............... 42  
11.1 Application Information............................................42  
11.2 Short-, Medium-, and Long-Range Radar ..............42  
11.3 Reference Schematic..............................................43  
12 Device and Documentation Support..........................44  
12.1 Device Nomenclature..............................................44  
12.2 Tools and Software................................................. 45  
12.3 Documentation Support.......................................... 45  
12.4 支持资源..................................................................45  
12.5 Trademarks.............................................................46  
12.6 Electrostatic Discharge Caution..............................46  
12.7 术语表..................................................................... 46  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 2  
3 说明................................................................................... 2  
4 Functional Block Diagram.............................................. 3  
5 Revision History.............................................................. 5  
6 Device Comparison.........................................................6  
6.1 Related Products........................................................ 7  
7 Terminal Configuration and Functions..........................8  
7.1 Pin Diagram................................................................ 8  
7.2 Signal Descriptions................................................... 12  
8 Specifications................................................................ 16  
8.1 Absolute Maximum Ratings...................................... 16  
8.2 ESD Ratings............................................................. 16  
8.3 Power-On Hours (POH)............................................17  
8.4 Recommended Operating Conditions.......................17  
8.5 Power Supply Specifications.....................................18  
8.6 Power Consumption Summary................................. 19  
8.7 RF Specification........................................................20  
8.8 Thermal Resistance Characteristics for FCBGA  
Information.................................................................... 47  
13.1 Packaging Information............................................ 47  
13.2 Tray Information for ................................................47  
Package [ABL0161].....................................................21  
8.9 Timing and Switching Characteristics....................... 21  
9 Detailed Description......................................................33  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
5 Revision History  
Changes from May 1, 2020 to December 8, 2021 (from Revision C (May 2020) to Revision D  
(December 2021))  
Page  
通篇进行了更新以反映功能安全合规性及相关认证资料.............................................................................. 1  
通篇将“A2D”替换为“ADC将“主子系统”和“R4F”更改为“主要子系统”和“主R4F在  
/从术语方面改用了更具包容性的措辞..............................................................................................................1  
特性提及了毫米波传感器的额定工作温度范围.........................................................................................1  
应用):修订了图示并更新了应用链接...........................................................................................................2  
器件信息):从表格中删除了可订购的预量产器件型(XA1243FPBGABL) 及其相关特性.......................... 2  
Updated/Changed Functional Block Diagram to remove XA1243FPBGABL OPN specific features................. 3  
(Device Comparison) : Removed a row on Functionaly-Safety compliance and instead added a table-note for  
this and LVDS Interface; modified the existing table-note on simultaneous TX operation; Additional  
information on Device security added.................................................................................................................6  
(Device Comparison) : Updated/Changed RF Specification Receiver from "Max real sampling rate (Msps)" to  
"Max real/complex 2x sampling rate (Msps)"; and "Max complex sampling rate (Msps)" to "Max complex 1x  
sampling rate (Msps)".........................................................................................................................................6  
(Signal Descriptions): Removed XA1243FPBGABL OPN specific pin functions; updated descriptions for  
CLKP and CLKM pins for Reference Oscillator................................................................................................12  
(Absolute Maximum Ratings): Added entries for externally supplied power on the RF inputs (TX and RX) and  
a table-note for the signal level applied on TX..................................................................................................16  
(Power Supply Specifications): Updated/Changed footnote in 8-1 ............................................................. 18  
(Maximum Current Rating at Power Terminals): Updated footnotes section to add estimation assumption for  
VIOIN rail.......................................................................................................................................................... 19  
(Average Power Consumption at Power Terminals): Removed 3TX, 4RX power numbers since only 2TX are  
operational simultaneously in the device..........................................................................................................19  
(RF Specification): Updated/Changed RF Specification Receiver from "A2D sampling rate (complex)" to "ADC  
sampling rate (complex 1x)"; and "A2D sampling rate (real)" to "ADC sampling rate (real/complex 2x)"........ 20  
(RF Specification): Updated/Changed the table to remove XA1243FPBGABL specific features.....................20  
(Synchronized Frame Triggering): Updated the maximum pulse width to 4ns................................................. 22  
(Clock Specifications): Updated/Changed 8-6 to reflect correct device operating temperature range........ 24  
(Table. External Clock Mode Specifications): Revised frequency tolerance specs from +/-50 to +/-100 ppm..24  
(Switching Characteristics for Output Timing versus Load Capacitance): Updated/Modified the table to  
remove Slew Rate = 1 condition; removed a footnote......................................................................................30  
9-1: Updated the figure to remove XA1243FPBGABL OPN specific features. ........................................... 33  
(Monitoring and Diagnostic Mechanisms): Added a new section..................................................................... 39  
(Reference Schematics) : Added weblinks to AWR1243 EVM documentation collateral ................................43  
(Device Nomenclature):Updated/changed Device Nomenclature ................................................................... 44  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
6 Device Comparison  
FUNCTION  
AWR1243(1)  
AWR1443  
AWR1642  
AWR1843  
Number of receivers  
Number of transmitters  
On-chip memory  
4
3
4
3
4
2
4
3
576KB  
5
1.5MB  
5
2MB  
10  
15  
Max I/F (Intermediate Frequency) (MHz)  
Max real/complex 2x sampling rate (Msps)  
Max complex 1x sampling rate (Msps)  
Device Security(2)  
37.5  
18.75  
12.5  
6.25  
12.5  
6.25  
Yes  
25  
12.5  
Yes  
Processor  
MCU (R4F)  
Yes  
Yes  
Yes  
Yes  
Yes  
DSP (C674x)  
Peripherals  
Serial Peripheral Interface (SPI) ports  
Quad Serial Peripheral Interface (QSPI)  
Inter-Integrated Circuit (I2C) interface  
Controller Area Network (DCAN) interface  
CAN-FD  
1
1
2
2
Yes  
1
Yes  
1
Yes  
1
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Trace  
PWM  
Hardware In Loop (HIL/DMM)  
GPADC  
Yes  
Yes  
LVDS/Debug(3)  
Yes  
Yes  
CSI2  
Hardware accelerator  
1-V bypass mode  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Cascade (20-GHz sync)  
JTAG  
2
Yes  
2
Yes  
2
Yes  
3(4)  
Yes  
Number of Tx that can be simultaneously used  
Per chirp configurable Tx phase shifter  
PRODUCT PREVIEW (PP),  
Product  
ADVANCE INFORMATION (AI),  
status(5)  
PD  
PD  
PD  
PD  
or PRODUCTION DATA (PD)  
(1) Developed for Functional Safety applications, the device supports hardware integrity upto ASIL-B. Refer to the related documentation  
for more details.  
(2) Device security features including Secure Boot and Customer Programmable Keys are available in select devices for only select part  
variants as indicated by the Device Type identifier in Section 3, Device Information table.  
(3) The LVDS interface is not a production interface and is only used for debug.  
(4) 3 Tx Simultaneous operation is supported only in AWR1843 with 1V LDO bypass and PA LDO disable mode. In this mode 1V supply  
needs to be fed on the VOUT PA pin. Rest of the other devices only support simultaneous operation of 2 Transmitters.  
(5) PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
 
 
 
 
 
 
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
6.1 Related Products  
For information about other devices in this family of products or related products see the links that follow.  
mmWave Sensors  
TIs mmWave sensors rapidly and accurately sense range, angle and velocity with  
less power using the smallest footprint mmWave sensor portfolio for automotive  
applications.  
Automotive  
mmWave Sensors  
TIs automotive mmWave sensor portfolio offers high-performance radar front end to  
ultra-high resolution, small and low-power single-chip radar solutions. TIs scalable  
sensor portfolio enables design and development of ADAS system solution for every  
performance, application and sensor configuration ranging from comfort functions to  
safety functions in all vehicles.  
Companion  
Products for  
AWR1243  
Review products that are frequently purchased or used in conjunction with this product.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
7 Terminal Configuration and Functions  
7.1 Pin Diagram  
7-1 shows the pin locations for the 161-pin FCBGA package. 7-2, 7-3, 7-4, and 7-5 show the  
same pins, but split into four quadrants.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
VOUT  
_14APLL  
VOUT  
_14SYNTH  
OSC  
_CLKOUT  
A
B
C
D
E
F
VSSA  
VOUT_PA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
FM_CW  
_SYNCIN1  
VIN  
_18CLK  
VIN  
_18VCO  
FM_CW  
_CLKOUT  
VOUT_PA  
VSSA  
VSSA  
TX1  
VSSA  
VSSA  
TX2  
VSSA  
VSSA  
TX3  
VSSA  
VSSA  
VBGAP  
VSSA  
VSSA  
VIN  
_13RF2  
ANAMUX  
VSENSE  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
FM_CW  
_SYNCOUT  
VIN  
_13RF2  
VIOIN  
_18DIFF  
FM_CW  
_SYNCIN2  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
RX4  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSSA  
VDDIN  
Reserved  
TDI  
CLKP  
CLKM  
VSSA  
VIN_18BB  
VSS  
VSS  
VSS  
VIN  
_13RF1  
CSI2  
_TXM[0]  
CSI2  
_TXP[0]  
G
H
J
VSSA  
RX3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VIN  
_13RF1  
CSI2  
_TXM[1]  
CSI2  
_TXP[1]  
VSS  
VIN  
_13RF1  
VSSA  
RX2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
TDO  
CSI2_CLKM  
CSI2_CLKP  
CSI2  
_TXM[2]  
CSI2  
_TXP[2]  
K
L
VIN_18BB  
VSS  
VIOIN_18  
CSI2  
_TXM[3]  
CSI2  
_TXP[3]  
VSSA  
RX1  
VSS  
VSS  
TMS  
HS_M  
_Debug1  
HS_P  
_Debug1  
M
N
P
R
TCK  
WARM  
_RESET  
HS_M  
_Debug2  
HS_P  
_Debug2  
VSSA  
GPIO[0]  
Reserved  
Reserved  
RS232_RX  
RS232_TX  
GPIO[1]  
NERROR_OUTMCU_CLK_OUT  
Sync_in  
QSPI[3]  
VDDIN  
Sync_out  
QSPI[0]  
GPIO[2]  
Analog Test 1 Analog Test 2 Analog Test 3  
MISO_1 SPI_HOST_INTR_NERROR_IN  
QSPI_CS  
MOSI_1  
QSPI[1]  
NRESET PMIC_CLK_OUT  
VNWA  
VDDIN  
Analog Test 4  
VSSA  
Reserved  
Reserved  
VDDIN  
SPI_CS_1  
SPI_CLK_1  
QSPI_CLK  
QSPI[2]  
VIOIN  
VIN_SRAM  
VSS  
Not to scale  
7-1. Pin Diagram  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
 
 
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
VSSA  
VOUT_PA  
VSSA  
VSSA  
VSSA  
FM_CW  
_SYNCIN1  
VOUT_PA  
VSSA  
VSSA  
TX1  
VSSA  
VSSA  
TX2  
VSSA  
VSSA  
TX3  
VIN  
_13RF2  
VSSA  
VSSA  
VSSA  
VSSA  
FM_CW  
_SYNCOUT  
VIN  
_13RF2  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSS  
VSS  
VSS  
RX4  
VIN_18BB  
VIN  
_13RF1  
G
VSSA  
VSSA  
VSS  
VSS  
VSS  
Not to scale  
1
2
4
3
7-2. Top Left Quadrant  
9
10  
11  
12  
13  
14  
15  
VOUT  
_14APLL  
VOUT  
_14SYNTH  
OSC  
_CLKOUT  
A
VSSA  
VSSA  
VIN  
_18CLK  
VIN  
_18VCO  
FM_CW  
_CLKOUT  
B
C
D
E
F
VSSA  
VSSA  
VBGAP  
VSSA  
VSSA  
ANAMUX  
VSENSE  
VSSA  
VIOIN  
_18DIFF  
FM_CW  
_SYNCIN2  
VSS  
VSS  
VSS  
VSSA  
VDDIN  
CLKP  
CLKM  
VSSA  
VSS  
CSI2  
_TXM[0]  
CSI2  
_TXP[0]  
G
VSS  
Reserved  
Not to scale  
1
3
2
4
7-3. Top Right Quadrant  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
 
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
1
2
3
4
5
6
7
8
VIN  
_13RF1  
H
RX3  
VSSA  
VSS  
VIN  
_13RF1  
J
VSSA  
VSSA  
RX2  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
K
L
VIN_18BB  
VSSA  
VSSA  
RX1  
VSS  
VSS  
M
N
P
R
VSSA  
VSSA  
GPIO[0]  
Reserved  
Reserved  
RS232_RX  
RS232_TX  
GPIO[1]  
NERROR_OUT  
Analog Test 1 Analog Test 2 Analog Test 3  
MISO_1 SPI_HOST_INTR_NERROR_IN  
QSPI_CS  
Analog Test 4  
VSSA  
Reserved  
Reserved  
VDDIN  
SPI_CS_1  
MOSI_1  
Not to scale  
1
3
2
4
7-4. Bottom Left Quadrant  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
9
10  
11  
12  
13  
14  
15  
CSI2  
_TXM[1]  
CSI2  
_TXP[1]  
H
J
VSS  
VSS  
TDI  
VSS  
VSS  
VSS  
TDO  
VIOIN_18  
TMS  
CSI2_CLKM  
CSI2_CLKP  
CSI2  
_TXM[2]  
CSI2  
_TXP[2]  
K
L
VSS  
VSS  
CSI2  
_TXM[3]  
CSI2  
_TXP[3]  
HS_M  
_Debug1  
HS_P  
_Debug1  
M
N
P
R
TCK  
WARM  
_RESET  
HS_M  
_Debug2  
HS_P  
_Debug2  
MCU_CLK_OUT  
Sync_in  
QSPI[3]  
VDDIN  
Sync_out  
QSPI[0]  
GPIO[2]  
QSPI[1]  
NRESET PMIC_CLK_OUT  
VNWA  
VDDIN  
SPI_CLK_1  
QSPI_CLK  
QSPI[2]  
VIOIN  
VIN_SRAM  
VSS  
Not to scale  
1
3
2
4
7-5. Bottom Right Quadrant  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
7.2 Signal Descriptions  
7.2.1 lists the pins by function and describes that function.  
备注  
All IO pins of the device (except NERROR IN, NERROR_OUT, and WARM_RESET) are non-failsafe;  
hence, care needs to be taken that they are not driven externally without the VIO supply being present  
to the device.  
7.2.1 Signal Descriptions  
PIN  
PIN  
DEFAULT PULL  
STATUS(1)  
FUNCTION  
SIGNAL NAME  
DESCRIPTION  
NUMBER TYPE  
TX1  
B4  
B6  
O
O
O
I
Single-ended transmitter1 o/p  
Single-ended transmitter2 o/p  
Single-ended transmitter3 o/p  
Single-ended receiver1 i/p  
Single-ended receiver2 i/p  
Single-ended receiver3 i/p  
Single-ended receiver4 i/p  
Transmitters  
TX2  
TX3  
B8  
RX1  
M2  
RX2  
K2  
I
Receivers  
RX3  
H2  
I
RX4  
F2  
I
CSI2_TXP[0]  
CSI2_TXM[0]  
CSI2_CLKP  
CSI2_CLKM  
CSI2_TXP[1]  
CSI2_TXM[1]  
CSI2_TXP[2]  
CSI2_TXM[2]  
CSI2_TXP[3]  
CSI2_TXM[3]  
HS_DEBUG1_P  
HS_DEBUG1_M  
HS_DEBUG2_P  
HS_DEBUG2_M  
FM_CW_CLKOUT  
FM_CW_SYNCOUT  
FM_CW_SYNCIN1  
FM_CW_SYNCIN2  
G15  
G14  
J15  
J14  
H15  
H14  
K15  
K14  
L15  
L14  
M15  
M14  
N15  
N14  
B15  
D1  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Differential data Out Lane 0 (for CSI and LVDS  
debug interface)  
Differential clock Out (for CSI and LVDS debug  
interface)  
Differential data Out Lane 1 (for CSI and LVDS  
debug interface)  
Differential data Out Lane 2 (for CSI and LVDS  
debug interface)  
CSI2 TX  
Differential data Out Lane 3 (for CSI and LVDS  
debug interface)  
Differential debug port 1 (for LVDS debug interface)  
Differential debug port 2 (for LVDS debug interface)  
Reserved Signal. Not applicable in AWR1243.  
Reserved Signal. Not applicable in AWR1243.  
O
I
Reserved  
Space  
B1  
D15  
Reference clock output from clocking subsystem  
after cleanup PLL. Can be used by peripheral chip in  
multichip cascading  
Reference clock OSC_CLKOUT  
SYNC_OUT  
A14  
P11  
N10  
O
O
I
Low-frequency frame synchronization signal output.  
Can be used by peripheral chip in multichip  
cascading  
Pull Down  
Pull Down  
System  
synchronization  
Low-frequency frame synchronization signal input.  
This signal could also be used as a hardware trigger  
for frame start  
SYNC_IN  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
 
 
AWR1243  
www.ti.com.cn  
FUNCTION  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
PIN  
PIN  
DEFAULT PULL  
STATUS(1)  
SIGNAL NAME  
DESCRIPTION  
NUMBER TYPE  
SPI_CS_1  
R7  
R9  
R8  
P5  
P6  
I
I
Pull Up  
Pull Down  
Pull Up  
SPI chip select  
SPI clock  
SPI control  
interface from  
external MCU  
(default  
peripheral  
mode)  
SPI_CLK_1  
MOSI_1  
I
SPI data input  
SPI data output  
SPI interrupt to host  
MISO_1  
O
O
Pull Up  
SPI_HOST_INTR_1  
Pull Down  
R3, R4, R5,  
P4  
RESERVED  
NRESET  
P12  
I
Power on reset for chip. Active low  
Open-drain fail-safe warm reset signal. Can be  
driven from PMIC for diagnostic or can be used as  
status signal that the device is going through reset.  
Reset  
WARM_RESET(2)  
N12  
IO  
Open Drain  
SOP2  
P13  
P11  
I
I
The SOP pins are driven externally (weak drive) and  
the AWR device senses the state of these pins  
during bootup to decide the bootup mode. After boot  
the same pins have other functionality.  
[SOP2 SOP1 SOP0] = [0 0 1] Functional SPI  
mode  
Sense on Power SOP1  
SOP0  
J13  
I
[SOP2 SOP1 SOP0] = [1 0 1] Flashing mode  
[SOP2 SOP1 SOP0] = [0 1 1] debug mode  
Open-drain fail-safe output signal. Connected to  
PMIC/Processor/MCU to indicate that some severe  
criticality fault has happened. Recovery would be  
through reset.  
NERROR_OUT  
N8  
P7  
O
I
Open Drain  
Open Drain  
Safety  
JTAG  
Fail-safe input to the device. Error output from any  
other device can be concentrated in the error  
signaling monitor module inside the device and  
appropriate action can be taken by firmware  
NERROR_IN  
TMS  
TCK  
TDI  
L13  
M13  
H13  
J13  
I
I
Pull Up  
Pull Down  
Pull Up  
JTAG port for TI internal development  
I
TDO  
O
In XTAL mode: Input for the reference crystal  
In External clock mode: Single ended input  
reference clock port  
CLKP  
E14  
I
Reference  
oscillator  
In XTAL mode: Feedback drive for the reference  
crystal  
In External clock mode: Connect this port to ground  
CLKM  
F14  
B10  
O
O
Band-gap  
voltage  
VBGAP  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
PIN  
PIN  
DEFAULT PULL  
STATUS(1)  
FUNCTION  
SIGNAL NAME  
DESCRIPTION  
NUMBER TYPE  
F13,N11,P15  
POW  
VDDIN  
1.2-V digital power supply  
,R6  
VIN_SRAM  
VNWA  
R14  
P14  
POW  
POW  
1.2-V power rail for internal SRAM  
1.2-V power rail for SRAM array back bias  
I/O supply (3.3-V or 1.8-V): All CMOS I/Os would  
operate on this supply.  
VIOIN  
R13  
POW  
VIOIN_18  
K13  
B11  
POW  
POW  
POW  
POW  
POW  
POW  
POW  
POW  
1.8-V supply for CMOS IO  
1.8-V supply for clock module  
1.8-V supply for CSI2 port  
No connect  
VIN_18CLK  
VIOIN_18DIFF  
Reserved  
D13  
G13  
VIN_13RF1  
VIN_13RF2  
VIN_18BB  
G5,J5,H5  
C2,D2  
K5,F5  
B12  
1.3-V Analog and RF supply,VIN_13RF1 and  
VIN_13RF2 could be shorted on the board  
1.8-V Analog baseband power supply  
1.8-V RF VCO supply  
VIN_18VCO  
E5,E6,E8,E1  
0,E11,F9,F1  
1,G6,G7,G8,  
G10,H7,H9,  
Power supply  
VSS  
H11,J6,J7,J8 GND  
,J10,K7,K8,K  
9,K10,K11,L  
5,L6,L8,L10,  
R15  
Digital ground  
A1,A3,A5,A7  
,A9,A15,B3,  
B5,B7,B9,B1  
3,B14,C1,C3  
,C4,C5,C6,C  
7,C8,C9,C15  
,E1,E2,E3,E GND  
13,E15,F3,G  
1,G2,G3,H3,  
J1,J2,J3,K3,  
L1,L2,L3,  
VSSA  
Analog ground  
M3,N1,N2,N  
3,R1  
VOUT_14APLL  
A10  
A13  
O
O
VOUT_14SYNTH  
When internal PA LDO is used this pin provides the  
output voltage of the LDO. When the internal PA  
LDO is bypassed and disabled 1V supply should be  
fed on this pin. This is mandatory in 3TX  
simultaneous use case.  
Internal LDO  
output/inputs  
VOUT_PA  
A2,B2  
IO  
PMIC_CLK_OUT  
MCU_CLK_OUT  
P13  
N9  
O
O
Dithered clock input to PMIC  
External clock  
out  
Programmable clock given out to external MCU or  
the processor  
GPIO[0]  
GPIO[1]  
GPIO[2]  
N4  
N7  
IO  
IO  
IO  
Pull Down  
Pull Down  
Pull Down  
General-purpose IO  
General-purpose IO  
General-purpose IO  
General-  
purpose I/Os  
N13  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
AWR1243  
www.ti.com.cn  
FUNCTION  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
PIN  
PIN  
DEFAULT PULL  
STATUS(1)  
SIGNAL NAME  
QSPI_CS  
DESCRIPTION  
NUMBER TYPE  
Chip-select output from the device. Device is a  
controller connected to serial flash peripheral.  
P8  
O
O
Pull Up  
Clock output from the device. Device is a controller  
connected to serial flash peripheral.  
QSPI_CLK  
R10  
Pull Down  
QSPI for Serial  
Flash  
QSPI[0]  
QSPI[1]  
QSPI[2]  
QSPI[3]  
RS232_TX  
R11  
P9  
IO  
IO  
IO  
IO  
O
Pull Down  
Pull Down  
Pull Up  
Data IN/OUT  
Data IN/OUT  
Data IN/OUT  
Data IN/OUT  
R12  
P10  
N6  
Pull Up  
Flash  
Pull Down  
programming  
and RS232  
UART  
UART pins for programming external flash  
RS232_RX  
N5  
I
Pull Up  
Analog Test1  
Analog Test2  
Analog Test3  
Analog Test4  
ANAMUX  
P1  
P2  
IO  
IO  
IO  
IO  
IO  
IO  
Internal test signal  
Internal test signal  
Internal test signal  
Internal test signal  
Internal test signal  
Internal test signal  
Test and Debug  
output for  
preproduction  
phase. Can be  
pinned out on  
production  
P3  
R2  
C13  
C14  
hardware for  
field debug  
VSENSE  
(1) Status of PULL structures associated with the IO after device POWER UP.  
(2) For the AWR1243 WARM_RESET can be used as an output only pin for status indication.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
 
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
PARAMETERS(1) (2)  
MIN  
0.5  
0.5  
0.5  
MAX  
UNIT  
VDDIN  
1.2 V digital power supply  
1.4  
1.4  
1.4  
V
V
V
VIN_SRAM  
VNWA  
1.2 V power rail for internal SRAM  
1.2 V power rail for SRAM array back bias  
I/O supply (3.3 V or 1.8 V): All CMOS I/Os would operate on this  
supply.  
VIOIN  
3.8  
V
0.5  
VIOIN_18  
1.8 V supply for CMOS IO  
1.8 V supply for clock module  
1.8 V supply for CSI2 port  
2
2
2
V
V
V
0.5  
0.5  
0.5  
VIN_18CLK  
VIOIN_18DIFF  
VIN_13RF1  
VIN_13RF2  
VIN_13RF1  
1.3 V Analog and RF supply, VIN_13RF1 and VIN_13RF2 could  
be shorted on the board.  
1.45  
V
0.5  
1-V Internal LDO bypass mode. Device supports mode where  
external Power Management block can supply 1 V on  
VIN_13RF1 and VIN_13RF2 rails. In this configuration, the  
internal LDO of the device would be kept bypassed.  
1.4  
V
0.5  
VIN_13RF2  
VIN_18BB  
VIN_18VCO supply  
RX1-4  
1.8-V Analog baseband power supply  
1.8-V RF VCO supply  
2
V
0.5  
0.5  
2
V
Externally applied power on RF inputs  
Externally applied power on RF outputs(3)  
Dual-voltage LVCMOS inputs, 3.3 V or 1.8 V (Steady State)  
10  
10  
dBm  
dBm  
TX1-3  
VIOIN + 0.3  
VIOIN + 20% up to  
0.3V  
Input and output  
voltage range  
V
Dual-voltage LVCMOS inputs, operated at 3.3 V/1.8 V  
(Transient Overshoot/Undershoot) or external oscillator input  
20% of signal period  
CLKP, CLKM  
Clamp current  
Input ports for reference crystal  
2
V
0.5  
Input or Output Voltages 0.3 V above or below their respective  
power rails. Limit clamp current that flows through the internal  
diode protection cells of the I/O.  
20  
mA  
20  
TJ  
Operating junction temperature range  
125  
150  
°C  
°C  
40  
55  
TSTG  
Storage temperature range after soldered onto PC board  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
(3) This value is for an externally applied signal level on the TX. Additionally, a reflection coefficient up to Gamma = 1 can be applied on  
the TX output.  
8.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
V(ESD)  
Electrostatic discharge  
All other pins  
Corner pins  
V
Charged-device model (CDM), per AEC  
Q100-011  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
 
 
 
 
 
 
 
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
8.3 Power-On Hours (POH)  
JUNCTION  
OPERATING  
TEMPERATURE (Tj)  
NOMINAL CVDD VOLTAGE (V)  
POWER-ON HOURS [POH] (HOURS)  
CONDITION  
(1) (2)  
600 (6%)  
2000 (20%)  
6500 (65%)  
900 (9%)  
40°C  
75°C  
100% duty cycle  
95°C  
1.2  
125°C  
(1) This information is provided solely for your convenience and does not extend or modify the warranty provided under TI's standard  
terms and conditions for TI semiconductor products.  
(2) The specified POH are applicable with max Tx output power settings using the default firmware gain tables. The specified POH would  
not be applicable, if the Tx gain table is overwritten using an API.  
8.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.14  
1.14  
1.14  
3.135  
1.71  
1.71  
1.71  
1.71  
NOM  
1.2  
1.2  
1.2  
3.3  
1.8  
1.8  
1.8  
1.8  
MAX  
1.32  
1.32  
1.32  
3.465  
1.89  
1.9  
UNIT  
VDDIN  
1.2 V digital power supply  
V
V
V
VIN_SRAM  
VNWA  
1.2 V power rail for internal SRAM  
1.2 V power rail for SRAM array back bias  
I/O supply (3.3 V or 1.8 V):  
All CMOS I/Os would operate on this supply.  
VIOIN  
V
VIOIN_18  
1.8 V supply for CMOS IO  
1.8 V supply for clock module  
1.8 V supply for CSI2 port  
V
V
V
VIN_18CLK  
VIOIN_18DIFF  
VIN_13RF1  
VIN_13RF2  
1.9  
1.9  
1.3 V Analog and RF supply. VIN_13RF1 and VIN_13RF2  
could be shorted on the board  
1.23  
1.3  
1.36  
V
VIN_13RF1  
(1-V Internal LDO  
bypass mode)  
0.95  
1
1.05  
V
VIN_13RF2  
(1-V Internal LDO  
bypass mode)  
VIN18BB  
1.8-V Analog baseband power supply  
1.8V RF VCO supply  
1.71  
1.71  
1.17  
2.25  
1.8  
1.8  
1.9  
1.9  
V
V
VIN_18VCO  
Voltage Input High (1.8 V mode)  
Voltage Input High (3.3 V mode)  
Voltage Input Low (1.8 V mode)  
Voltage Input Low (3.3 V mode)  
High-level output threshold (IOH = 6 mA)  
Low-level output threshold (IOL = 6 mA)  
VIL (1.8V Mode)  
VIH  
VIL  
V
V
0.3*VIOIN  
0.62  
VOH  
VOL  
mV  
mV  
VIOIN 450  
450  
0.2  
VIH (1.8V Mode)  
0.96  
1.57  
NRESET  
SOP[2:0]  
V
VIL (3.3V Mode)  
0.3  
VIH (3.3V Mode)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
 
 
 
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
8.5 Power Supply Specifications  
8-1 describes the four rails from an external power supply block of the AWR1243 device.  
8-1. Power Supply Rails Characteristics  
SUPPLY  
DEVICE BLOCKS POWERED FROM THE SUPPLY  
RELEVANT IOS IN THE DEVICE  
Input: VIN_18VCO, VIN18CLK, VIN_18BB,  
VIOIN_18DIFF, VIOIN_18IO  
LDO Output: VOUT_14SYNTH, VOUT_14APLL  
Synthesizer and APLL VCOs, crystal oscillator, IF  
Amplifier stages, ADC, CSI2  
1.8 V  
1.3 V (or 1 V in internal  
LDO bypass mode)(1)  
Power Amplifier, Low Noise Amplifier, Mixers and LO  
Distribution  
Input: VIN_13RF2, VIN_13RF1  
LDO Output: VOUT_PA  
3.3 V (or 1.8 V for 1.8 V  
I/O mode)  
Digital I/Os  
Input VIOIN  
1.2 V  
Core Digital and SRAMs  
Input: VDDIN, VIN_SRAM  
(1) The device only supports simultanoeus operation of 2 transmitters. In the 1-V LDO bypass mode, 1V supply needs to be fed on the  
VOUT PA pin.  
The 1.3-V (1.0 V) and 1.8-V power supply ripple specifications mentioned in 8-2 are defined to meet a target  
spur level of 105 dBc (RF Pin = 15 dBm) at the RX. The spur and ripple levels have a dB-to-dB relationship,  
for example, a 1-dB increase in supply ripple leads to a ~1 dB increase in spur level. Values quoted are rms  
levels for a sinusoidal input applied at the specified frequency.  
8-2. Ripple Specifications  
RF RAIL  
VCO/IF RAIL  
FREQUENCY (kHz)  
1.0 V (INTERNAL LDO BYPASS)  
1.3 V (µVRMS  
)
1.8 V (µVRMS)  
(µVRMS  
)
137.5  
275  
7
5
648  
76  
22  
4
83  
21  
11  
6
550  
3
1100  
2200  
4400  
6600  
2
11  
13  
22  
82  
93  
117  
13  
19  
29  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
 
 
 
 
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
8.6 Power Consumption Summary  
8-3 and 8-4 summarize the power consumption at the power terminals.  
8-3. Maximum Current Ratings at Power Terminals  
PARAMETER  
SUPPLY NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
Total current drawn by all  
nodes driven by 1.2V rail  
VDDIN, VIN_SRAM, VNWA  
500  
Total current drawn by all  
nodes driven by 1.3V (or  
1V in LDO Bypass mode)  
rail  
VIN_13RF1, VIN_13RF2  
2000  
850  
Current consumption(1)  
mA  
VIOIN_18, VIN_18CLK,  
VIOIN_18DIFF, VIN_18BB,  
VIN_18VCO  
Total current drawn by all  
nodes driven by 1.8V rail  
Total current drawn by all  
nodes driven by 3.3V  
rail(2)  
VIOIN  
50  
(1) The specified current values are at typical supply voltage level.  
(2) The exact VIOIN current depends on the peripherals used and their frequency of operation.  
8-4. Average Power Consumption at Power Terminals  
PARAMETER  
CONDITION  
DESCRIPTION  
MIN  
TYP  
MAX UNIT  
1.0-V internal  
LDO bypass  
mode  
1TX, 4RX  
2TX, 4RX  
1TX, 4RX  
2TX, 4RX  
1.62  
1.79  
1.80  
2.01  
Sampling: 16.66 MSps complex  
Transceiver, 40-ms frame time, 512  
chirps, 512 samples/chirp, 8.5-μs  
interchirp time (50% duty cycle)  
Data Port: MIPI-CSI-2  
Average power  
consumption  
W
1.3-V internal  
LDO enabled  
mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
 
 
 
 
 
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
8.7 RF Specification  
over recommended operating conditions and with run time calibrations enabled (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
14  
15  
8  
48  
24  
2
MAX UNIT  
76 to 77 GHz (VCO1)  
77 to 81 GHz (VCO2)  
Noise figure  
dB  
1-dB compression point (Out Of Band)(1)  
Maximum gain  
dBm  
dB  
Gain range  
dB  
Gain step size  
dB  
Image Rejection Ratio (IMRR)  
IF bandwidth(2)  
30  
dB  
15 MHz  
ADC sampling rate (real/complex 2x)  
ADC sampling rate (complex 1x)  
ADC resolution  
37.5 Msps  
18.75 Msps  
Receiver  
12  
<10  
±0.5  
±3  
Bits  
dB  
dB  
°
Return loss (S11)  
Gain mismatch variation (over temperature)  
Phase mismatch variation (over temperature)  
RX gain = 30dB  
IF = 1.5, 2 MHz at  
12 dBFS  
In-band IIP2  
16  
24  
dBm  
dBm  
RX gain = 24dB  
IF = 10 kHz at -10dBm,  
1.9 MHz at -30 dBm  
Out-of-band IIP2  
Idle Channel Spurs  
Output power  
dBFS  
dBm  
90  
12  
Transmitter  
Amplitude noise  
Frequency range  
Ramp rate  
dBc/Hz  
145  
76  
81 GHz  
100 MHz/µs  
Clock  
subsystem  
76 to 77 GHz (VCO1)  
77 to 81 GHz (VCO2)  
95  
93  
Phase noise at 1-MHz offset  
dBc/Hz  
(1) 1-dB Compression Point (Out Of Band) is measured by feed a Continuous wave Tone (10 kHz) well below the lowest HPF cut-off  
frequency.  
(2) The analog IF stages include high-pass filtering, with two independently configurable first-order high-pass corner frequencies. The set  
of available HPF corners is summarized as follows:  
Available HPF Corner Frequencies (kHz)  
HPF1  
HPF2  
175, 235, 350, 700  
350, 700, 1400, 2800  
The filtering performed by the digital baseband chain is targeted to provide:  
Less than ±0.5 dB pass-band ripple/droop, and  
Better than 60 dB anti-aliasing attenuation for any frequency that can alias back into the pass-band.  
8-1 shows variations of noise figure and in-band P1dB parameters with respect to receiver gain programmed.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
 
 
 
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
18  
16  
14  
12  
10  
8
-18  
NF (dB)  
In-band P1DB (dBm)  
-24  
-30  
-36  
-42  
-48  
30  
32  
34  
36  
38 40  
RX Gain (dB)  
42  
44  
46  
48  
8-1. Noise Figure, In-band P1dB vs Receiver Gain  
8.8 Thermal Resistance Characteristics for FCBGA Package [ABL0161]  
THERMAL METRICS(1)  
°C/W(2) (3)  
5
Junction-to-case  
RΘJC  
RΘJB  
RΘJA  
RΘJMA  
PsiJT  
5.9  
Junction-to-board  
21.6  
15.3 (4)  
0.69  
5.8  
Junction-to-free air  
Junction-to-moving air  
Junction-to-package top  
Junction-to-board  
PsiJB  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) °C/W = degrees Celsius per watt.  
(3) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(4) Air flow = 1 m/s  
8.9 Timing and Switching Characteristics  
8.9.1 Power Supply Sequencing and Reset Timing  
The AWR1243 device expects all external voltage rails and SOP lines to be stable before reset is deasserted. 图  
8-2 describes the device wake-up sequence.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
 
 
 
 
 
 
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
SOP  
Setup  
Time  
SOP  
Hold time to  
nRESET  
DC power  
MSS  
BOOT  
START  
nRESET  
ASSERT  
tPGDEL  
DC  
Power  
notOK  
Stable before  
nRESET  
release  
DC  
Power  
OK  
QSPI  
READ  
VDDIN,  
VIN_SRAM  
VNWA  
VIOIN_18  
VIN18_CLK  
VIOIN_18DIFF  
VIN18_BB  
VIN_13RF1  
VIN_13RF2  
VIOIN  
SOP[2.1.0]  
nRESET  
Warm reset  
delay for crystal  
or ext osc  
WARMRESET  
OUTPUT  
VBGAP  
OUTPUT  
CLKP, CLKM  
Using Crystal  
MCUCLK  
OUTPUT (1)  
QSPI_CS  
OUTPUT  
7ms (XTAL Mode)  
500 µs (REFCLK Mode)  
8-2. Device Wake-up Sequence  
8.9.2 Synchronized Frame Triggering  
The AWR1243 device supports a hardware based mechanism to trigger radar frames. An external host can  
pulse the SYNC_IN signal to start radar frames. The typical time difference between the rising edge of the  
external pulse and the frame transmission on air (Tlag) is about 160 ns. There is also an additional  
programmable delay that the user can set to control the frame start time.  
The periodicity of the external SYNC_IN pulse should be always greater than the programmed frame periodic in  
the frame configurations in all instances.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
 
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
Tactive_frame  
SYNC_IN  
(Hardware  
Trigger)  
Radar  
Frames  
Tpulse  
Tlag  
Frame-2  
Frame-1  
8-3. Sync In Hardware Trigger  
8-5. Frame Trigger Timing  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
Tactive_frame  
Tpulse  
Active frame duration  
User defined  
25  
ns  
4000  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
8.9.3 Input Clocks and Oscillators  
8.9.3.1 Clock Specifications  
An external crystal is connected to the device pins. 8-4 shows the crystal implementation.  
Cf1  
CLKP  
Cp  
40 MHz  
CLKM  
Cf2  
8-4. Crystal Implementation  
备注  
The load capacitors, Cf1 and Cf2 in 8-4, should be chosen such that 方程式 1 is satisfied. CL in the  
equation is the load specified by the crystal manufacturer. All discrete components used to implement  
the oscillator circuit should be placed as close as possible to the associated oscillator CLKP and  
CLKM pins.Note that Cf1 and Cf2 include the parasitic capacitances due to PCB routing.  
C f2  
CL = C f1  
´
+CP  
C
f1 +C f2  
(1)  
8-6 lists the electrical characteristics of the clock crystal.  
8-6. Crystal Electrical Characteristics (Oscillator Mode)  
NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
MHz  
pF  
fP  
Parallel resonance crystal frequency  
40  
CL  
Crystal load capacitance  
Crystal ESR  
5
8
12  
ESR  
50  
Ω
Temperature range Expected temperature range of operation  
125  
°C  
40  
Frequency  
Crystal frequency tolerance(1) (2)  
tolerance  
200  
200  
ppm  
µW  
200  
Drive level  
50  
(1) The crystal manufacturer's specification must satisfy this requirement.  
(2) Includes initial tolerance of the crystal, drift over temperature, aging and frequency pulling due to incorrect load capacitance.  
In the case where an external clock is used as the clock resource, the signal is fed to the CLKP pin only; CLKM  
is grounded. The phase noise requirement is very important when a 40-MHz clock is fed externally. 8-7 lists  
the electrical characteristics of the external clock signal.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
 
 
 
 
 
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
8-7. External Clock Mode Specifications  
SPECIFICATION  
PARAMETER  
UNIT  
MIN  
TYP  
MAX  
Frequency  
40  
MHz  
mV (pp)  
ns  
AC-Amplitude  
700  
1200  
10  
DC-trise/fall  
Phase Noise at 1 kHz  
Phase Noise at 10 kHz  
Phase Noise at 100 kHz  
Phase Noise at 1 MHz  
Duty Cycle  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
%
132  
143  
152  
153  
65  
Input Clock:  
External AC-coupled sine wave or DC-  
coupled square wave  
Phase Noise referred to 40 MHz  
35  
Freq Tolerance  
100  
ppm  
100  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
8.9.4 Multibuffered / Standard Serial Peripheral Interface (MibSPI)  
8.9.4.1 Peripheral Description  
The SPI uses a MibSPI Protocol by TI.  
The MibSPI/SPI is a high-speed synchronous serial input/output port that allows a serial bit stream to be shifted  
into and out of the device at a programmed bit-transfer rate. The MibSPI/SPI is normally used for communication  
between the microcontroller and external peripherals or another microcontroller.  
8.9.4.1.2 and 8.9.4.1.3 assume the operating conditions stated in 8.9.4.1.1. 8.9.4.1.2, 8.9.4.1.3,  
and 8-5 describe the timing and switching characteristics of the MibSPI.  
8.9.4.1.1 SPI Timing Conditions  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input rise time  
Input fall time  
1
1
3
3
ns  
ns  
Output Conditions  
CLOAD Output load capacitance  
2
15  
pF  
8.9.4.1.2 SPI Peripheral Mode Switching Parameters (SPICLK = input, SPISIMO = input,  
and SPISOMI = output)  
NO.  
1
PARAMETER  
Cycle time, SPICLK  
MIN  
25  
TYP  
MAX  
UNIT  
ns  
tc(SPC)S  
2
tw(SPCH)S  
Pulse duration, SPICLK high  
10  
ns  
3
tw(SPCL)S  
Pulse duration, SPICLK low  
10  
ns  
4
td(SPCL-SOMI)S  
th(SPCL-SOMI)S  
Delay time, SPISOMI valid after SPICLK low  
Hold time, SPISOMI data valid after SPICLK low  
10  
ns  
5
2
ns  
8.9.4.1.3 SPI Peripheral Mode Timing Requirements (SPICLK = input, SPISIMO = input,  
and SPISOMI = output)  
NO.  
MIN  
3
TYP  
MAX UNIT  
6
7
tsu(SIMO-SPCH)S  
th(SPCH-SIMO)S  
Setup time, SPISIMO before SPICLK high  
ns  
ns  
Hold time, SPISIMO data valid after SPICLK high  
1
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
 
 
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
8-5. SPI Peripheral Mode External Timing  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
8.9.4.2 Typical Interface Protocol Diagram (Peripheral Mode)  
1. Host should ensure that there is a delay of at least two SPI clocks between CS going low and start of SPI  
clock.  
2. Host should ensure that CS is toggled for every 16 bits of transfer through SPI.  
8-6 shows the SPI communication timing of the typical interface protocol.  
8-6. SPI Communication  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
8.9.5 LVDS Interface Configuration  
The AWR1243 supports seven differential LVDS IOs/Lanes to support debug where raw ADC data could be  
extracted. The lane configuration supported is four Data lanes (LVDS_TXP/M), one Bit Clock lane  
(LVDS_CLKP/M) one Frame clock lane (LVDS_FRCLKP/M). The LVDS interface supports the following data  
rates:  
900 Mbps (450 MHz DDR Clock)  
600 Mbps (300 MHz DDR Clock)  
450 Mbps (225 MHz DDR Clock)  
400 Mbps (200 MHz DDR Clock)  
300 Mbps (150 MHz DDR Clock)  
225 Mbps (112.5 MHz DDR Clock)  
150 Mbps (75 MHz DDR Clock)  
Note that the bit clock is in DDR format and hence the numbers of toggles in the clock is equivalent to data.  
LVDS_TXP/M  
LVDS_FRCLKP/M  
Data bitwidth  
LVDS_CLKP/M  
8-7. LVDS Interface Lane Configuration And Relative Timings  
8.9.5.1 LVDS Interface Timings  
8-8. LVDS Electrical Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Duty Cycle Requirements  
max 1 pF lumped capacitive load on  
LVDS lanes  
48%  
52%  
Output Differential Voltage  
peak-to-peak single-ended with 100 Ω  
resistive load between differential pairs  
250  
450  
mV  
Output Offset Voltage  
Trise and Tfall  
1125  
1275  
mV  
ps  
20%-80%, 900 Mbps  
900 Mbps  
330  
80  
Jitter (pk-pk)  
ps  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
Trise  
LVDS_CLK  
Clock Jitter = 6sigma  
LVDS_TXP/M  
LVDS_FRCLKP/M  
1100 ps  
8-8. Timing Parameters  
8.9.6 General-Purpose Input/Output  
8.9.6.1 lists the switching characteristics of output timing relative to load capacitance.  
8.9.6.1 Switching Characteristics for Output Timing versus Load Capacitance (CL)  
PARAMETER(1)  
TEST CONDITIONS  
CL = 20 pF  
VIOIN = 1.8V  
VIOIN = 3.3V  
UNIT  
2.8  
6.4  
9.4  
2.8  
6.4  
9.4  
3.0  
6.9  
tr  
Max rise time  
CL = 50 pF  
CL = 75 pF  
CL = 20 pF  
CL = 50 pF  
CL = 75 pF  
ns  
10.2  
2.8  
tf  
Max fall time  
6.6  
ns  
9.8  
(1) The rise/fall time is measured as the time taken by the signal to transition from 10% and 90% of VIOIN voltage.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
 
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
8.9.7 Camera Serial Interface (CSI)  
The CSI is a MIPI D-PHY compliant interface for connecting this device to a camera receiver module. This  
interface is made of four differential lanes; each lane is configurable for carrying data or clock. The polarity of  
each wire of a lane is also configurable. 8.9.7.1, 8-9, 8-10, and 8-11 describe the clock and data  
timing of the CSI.The clock is always ON once the CSI IP is enabled. Hence it remains in HS mode.  
8.9.7.1 CSI Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX UNIT  
HPTX  
HSTXDBR  
fCLK  
Data bit rate  
(1/2/4 data lane PHY)  
(1/2/4 data lane PHY)  
150  
75  
600 Mbps  
DDR clock frequency  
300  
50  
MHz  
mV  
UI  
Common-level variation  
ΔVCMTX(LF)  
tR and tF  
LPTX DRIVER  
tEOT  
50  
20% to 80% rise time and fall time  
0.3  
Time from start of THS-TRAIL period to start of LP-11 state  
105 +  
12*UI  
ns  
DATA-CLOCK Timing Specification  
UINOM  
Nominal Unit Interval  
1.67  
1.131  
13.33  
ns  
ns  
UIINST,MIN  
TSKEW[TX]  
Minimum instantaneous Unit Interval  
Data to clock skew measured at transmitter  
0.15 UIINST,  
MIN  
0.15  
CSI2 TIMING SPECIFICATION  
TCLK-PRE  
Time that the HS clock shall be driven by the transmitter before  
any associated data lane beginning the transition from LP to HS  
mode.  
8
38  
ns  
TCLK-PREPARE  
Time that the transmitter drives the clock lane LP-00 line state  
immediately before the HS-0 line state starting the HS  
transmission.  
95  
ns  
TCLK-PREPARE + TCLK-ZERO TCLK-PREPARE + time that the transmitter drives the HS-0 state  
before starting the clock.  
300  
ns  
ns  
ns  
TEOT  
Transmitted time interval from the start of THS-TRAIL or TCLKTRAIL  
,
105 ns  
+ 12*UI  
to the start of the LP-11 state following a HS burst.  
THS-PREPARE  
Time that the transmitter drives the data lane LP-00 line state  
immediately before the HS-0 line state starting the HS  
transmission  
40 + 4*UI  
85 +  
6*UI  
THS-PREPARE + THS-ZERO  
THS-PREPARE + time that the transmitter drives the HS-0 state prior  
to transmitting the Sync sequence.  
145 ns +  
10*UI  
ns  
THS-EXIT  
Time that the transmitter drives LP-11 following a HS burst.  
100  
ns  
ns  
THS-TRAIL  
Time that the transmitter drives the flipped differential state after  
last payload data bit of a HS transmission burst  
max(8*UI, 60  
ns + 4*UI)  
TLPX  
TXXXransmitted length of any low-power state period  
50  
ns  
CSI2_CLK(P/M)  
0.5UI + Tskew  
CSI2_TX(P/M)  
1 UI  
8-9. Clock and Data Timing in HS Transmission  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
 
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
Clock  
Lane  
Data Lane  
Dp/Dn  
TLPX  
THS-ZERO  
THS-SYNC  
Disconnect  
Terminator  
VOH  
THS-PREPARE  
VIH(min)  
VIL(max)  
VOL  
TREOT  
Capture  
1st Data Bit  
TD-TERM-EN  
THS-SKIP  
TEOT  
THS-TRAIL  
LP-11  
LP-11  
LP-01  
LP-00  
THS-SETTLE  
THS-EXIT  
LOW-POWER TO  
HIGH-SPEED  
TRANSITION  
START OF  
HS-ZERO TRANSMISSION  
SEQUENCE  
HIGH-SPEED TO  
HS-TRAIL LOW-POWER  
TRANSITION  
HIGH-SPEED DATA  
TRANSMISSION  
8-10. High-Speed Data Transmission Burst  
Disconnect  
Terminator  
Clock Lane  
Dp/Dn  
T
CLK-SETTLE  
VIH(min)  
VIL(max)  
T
LPX  
T
T
CLK-PRE  
CLK-ZERO  
T
CLK-PREPARE  
Data Lane  
Dp/Dn  
T
HS-PREPARE  
Disconnect  
Terminator  
T
LPX  
VIH(min)  
VIL(max)  
T
HS-SKIP  
T
HS-SETTLE  
A. The HS to LP transition of the CLK does not actually take place since the CLK is always ON in HS mode.  
8-11. Switching the Clock Lane Between Clock Transmission and Low-Power Mode  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
 
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
9 Detailed Description  
9.1 Overview  
The AWR1243 device is a single-chip highly integrated 77-GHz transceiver and front end that includes three  
transmit and four receive chains. The device can be used in long-range automotive radar applications such as  
automatic emergency braking and automatic adaptive cruise control. The AWR1243 has extremely small form  
factor and provides ultra-high resolution with very low power consumption. This device, when used with the  
TDA3X or TD2X, offers higher levels of performance and flexibility through a programmable digital signal  
processor (DSP); thus addressing the standard short-, mid-, and long-range automotive radar applications.  
9.2 Functional Block Diagram  
LNA  
LNA  
LNA  
LNA  
IF  
IF  
IF  
IF  
ADC  
ADC  
ADC  
ADC  
Digital Front-end  
(Decimation filter  
chain)  
ADC output  
interface  
ADC Buffer  
16KB PING/PONG  
CSI2  
PA  
û-  
û-  
û-  
Phase  
Shifter  
Control (A)  
Synth  
(20 GHz)  
Ramp Generator  
PA  
PA  
x4  
Host control  
interface  
Synth Cycle  
Counter  
SPI/I2C  
RF Control / BIST  
Temp(B)  
GPADC  
Osc.  
VMON  
RF/Analog Subsystem  
Digital  
A. Phase Shift Control:  
0° / 180° BPM for AWR1243  
B. Internal temperature sensor accuracy is ± 7 °C.  
9-1. Functional Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
 
 
 
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
9.3 Subsystems  
9.3.1 RF and Analog Subsystem  
The RF and analog subsystem includes the RF and analog circuitry namely, the synthesizer, PA, LNA, mixer,  
IF, and ADC. This subsystem also includes the crystal oscillator and temperature sensors. The three transmit  
channels can be operated simultaneously for transmit beamforming purpose as required; whereas the four  
receive channels can all be operated simultaneously.  
Please note that AWR1243 device supports simultaneous operation of 2 transmitters only.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
9.3.1.1 Clock Subsystem  
The AWR1243 clock subsystem generates 76 to 81 GHz from an input reference of 40-MHz crystal. It has a  
built-in oscillator circuit followed by a clean-up PLL and a RF synthesizer circuit. The output of the RF  
synthesizer is then processed by an X4 multiplier to create the required frequency in the 76 to 81 GHz spectrum.  
The RF synthesizer output is modulated by the timing engine block to create the required waveforms for effective  
sensor operation.  
The output of the RF synthesizer is available at the device pin boundary for multichip cascaded configuration.  
The clean-up PLL also provides a reference clock for the host processor after system wakeup.  
The clock subsystem also has built-in mechanisms for detecting the presence of a crystal and monitoring the  
quality of the generated clock.  
9-2 describes the clock subsystem.  
RX LO  
x4  
MULT  
TX LO  
SYNC_OUT  
SYNC_IN  
Timing  
Engine  
RFSYNTH  
Lock Detect  
SoC Clock  
Clean-Up  
PLL  
XO /  
Slicer  
CLK Detect  
40 MHz  
* These pins are 20GHz LO input pins. Connect LO to one pin while grounding the  
other pin.  
9-2. Clock Subsystem  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
9.3.1.2 Transmit Subsystem  
The AWR1243 transmit subsystem consists of three parallel transmit chains, each with independent phase and  
amplitude control. A maximum of two transmit chains can be operational at the same time, however all three  
chains can be operated together in a time-multiplexed fashion. The device supports binary phase modulation for  
MIMO radar and interference mitigation.  
Each transmit chain can deliver a maximum of 12 dBm at the antenna port on the PCB. The transmit chains also  
support programmable backoff for system optimization.  
9-3 describes the transmit subsystem.  
Loopback Path  
Fine Phase Shifter Control  
PCB  
6 bits  
12dBm  
@ 50 Ω  
û-  
LO  
0/180°  
(from Timing Engine)  
Self Test  
9-3. Transmit Subsystem (Per Channel)  
9.3.1.3 Receive Subsystem  
The AWR1243 receive subsystem consists of four parallel channels. A single receive channel consists of an  
LNA, mixer, IF filtering, ADC conversion, and decimation. All four receive channels can be operational at the  
same time an individual power-down option is also available for system optimization.  
Unlike conventional real-only receivers, the AWR1243 device supports a complex baseband architecture, which  
uses quadrature mixer and dual IF and ADC chains to provide complex I and Q outputs for each receiver  
channel. The AWR1243 is targeted for fast chirp systems. The band-pass IF chain has configurable lower cutoff  
frequencies above 175 kHz and can support bandwidths up to 15 MHz.  
9-4 describes the receive subsystem.  
Self Test  
DAC  
Loopback  
Path  
DSM  
PCB  
I
RSSI  
50 W  
GSG  
LO  
Q
DSM  
DAC  
9-4. Receive Subsystem (Per Channel)  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
 
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
9.3.2 Host Interface  
The AWR1243 device communicates with the host radar processor over the following main interfaces:  
Reference Clock Reference clock available for host processor after device wakeup  
Control 4-port standard SPI (peripheral) for host control along with HOST INTR pin for async events.. All  
radio control commands (and response) flow through this interface.  
Data High-speed serial port following the MIPI CSI2 format. Four data and one clock lane (all differential).  
Data from different receive channels can be multiplexed on a single data lane to optimize board routing. This  
is a unidirectional interface used for data transfer only.  
Reset Active-low reset for device wakeup from host  
Out-of-band interrupt  
Error Used for notifying the host in case the radio controller detects a fault  
9.4 Other Subsystems  
9.4.1 ADC Data Format Over CSI2 Interface  
The AWR1243 device uses MIPI D-PHY / CSI2-based format to transfer the raw ADC samples to the external  
MCU. This is shown in 9-5.  
Supports four data lanes  
CSI-2 data rate scalable from 150 Mbps to 600 Mbps per lane  
Virtual channel based  
CRC generation  
Normal Mode  
Frame Period  
Acquisition Period  
Frame  
Ramp/Chirp  
1
2
3
N
Data Ready  
F
L
H
L
L
H
L
L
H
L
L
H
L
F
S
S
S
E
S
S
E
S
S
E
S
S
E
E
Short  
Packet  
Short  
Packet  
Long  
Packet  
Short  
Packet  
ST SP ET  
LPS  
ST SP ET  
.5μs-.8μs  
ST PH  
DATA  
PF ET LPS  
ST SP ET  
LPS  
LPS  
Chirp 1 data  
Data rate/Lane should be such that "Chirp + Interchirp" period  
should be able to accommodate the data transfer  
Copyright © 2017, Texas Instruments Incorporated  
Frame Start CSi2 VSYNC Start Short PacketLine Start CSI2 HSYNC Start Short PacketLine End CSI2 HSYNC End Short  
PacketFrame End CSi2 VSYNC End Short Packet  
9-5. CSI-2 Transmission Format  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
 
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
The data payload is constructed with the following three types of information:  
Chirp profile information  
The actual chirp number  
ADC data corresponding to chirps of all four channels  
Interleaved fashion  
Chirp quality data (configurable)  
The payload is then split across the four physical data lanes and transmitted to the receiving D-PHY. The data  
packet packing format is shown in 9-6  
First  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
5
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
11  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CH Chirp  
Profile  
Channel  
Number  
NU  
NU  
NU  
NU  
Chirp Num  
5
1
11  
CH Chirp  
Profile  
Channel  
Number  
Chirp Num  
5
1
11  
CH Chirp  
Profile  
Channel  
Number  
Chirp Num  
5
1
11  
CH Chirp  
Profile  
Channel  
Number  
Chirp Num  
11  
Channel 0 Sample 0 i  
Channel 1 Sample 0 i  
Channel 2 Sample 0 i  
Channel 3 Sample 0 i  
Channel 0 Sample 1 i  
Channel 1 Sample 1 i  
Channel 2 Sample 1 i  
Channel 3 Sample 1 i  
CQ Data [11:0]  
Channel 0 Sample 0 q  
11  
Channel 1 Sample 0 q  
11  
Channel 2 Sample 0 q  
11  
Channel 3 Sample 0 q  
11  
Channel 0 Sample 1 q  
11  
Channel 1 Sample 1 q  
11  
Channel 2 Sample 1 q  
11  
Channel 3 Sample 1 q  
Continues till the  
last sample. Max 1023  
11  
CQ Data [23:12]  
11  
CQ Data [35:24]  
CQ Data [47:36]  
11  
CQ Data [59:48]  
NU  
CQ Data [63:60]  
Last  
9-6. Data Packet Packing Format for 12-Bit Complex Configuration  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
10 Monitoring and Diagnostics  
10.1 Monitoring and Diagnostic Mechanisms  
Below is the list given for the main monitoring and diagnostic mechanisms available in the AWR1243.  
MSS R4F is the processor used for running TI's Functional Firmware stored in the ROM that helps in the  
execution of the API calls issued by the host processor (It is not a customer programmable core).  
10-1. Monitoring and Diagnostic Mechanisms for AWR1243  
S No  
Feature  
Description  
AWR1243 architecture supports hardware logic BIST (LBIST) engine self-test Controller  
(STC). This logic is used to provide a very high diagnostic coverage (>90%) on the MSS  
R4F CPU core and Vectored Interrupt Module (VIM) at a transistor level.  
LBIST for the CPU and VIM are triggered by the bootloader.  
Boot time LBIST For MSS  
R4F Core and associated  
VIM  
1
MSS R4F has three Tightly coupled Memories (TCM) memories TCMA, TCMB0 and  
TCMB1. AWR1243 architecture supports a hardware programmable memory BIST (PBIST)  
engine. This logic is used to provide a very high diagnostic coverage (March-13n) on the  
implemented MSS R4F TCMs at a transistor level.  
PBIST for TCM memories is triggered by Bootloader at the boot time . CPU stays there in  
while loop and does not proceed further if a fault is identified.  
Boot time PBIST for MSS  
R4F TCM Memories  
2
3
TCMs diagnostic is supported by Single error correction double error detection (SECDED)  
ECC diagnostic. An 8-bit code word is used to store the ECC data as calculated over the 64-  
bit data bus. ECC evaluation is done by the ECC control logic inside the CPU. This scheme  
provides end-to-end diagnostics on the transmissions between CPU and TCM. CPU is  
configured to have predetermined response (Ignore or Abort generation) to single and  
double bit error conditions.  
End to End ECC for MSS  
R4F TCM Memories  
Logical TCM word and its associated ECC code is split and stored in two physical SRAM  
banks. This scheme provides an inherent diagnostic mechanism for address decode failures  
in the physical SRAM banks. Faults in the bank addressing are detected by the CPU as an  
ECC fault.Further, bit multiplexing scheme implemented such that the bits accessed to  
generate a logical (CPU) word are not physically adjacent. This scheme helps to reduce the  
probability of physical multi-bit faults resulting in logical multi-bit faults; rather they manifest  
as multiple single bit faults. As the SECDED TCM ECC can correct a single bit fault in a  
logical word, this scheme improves the usefulness of the TCM ECC diagnostic.  
MSS R4F TCM bit  
multiplexing  
4
AWR1243 architecture supports Three Digital Clock Comparators (DCCs) and an internal  
RCOSC. Dual functionality is provided by these modules Clock detection and Clock  
Monitoring.  
DCCint is used to check the availability/range of Reference clock at boot otherwise the  
device is moved into limp mode (Device still boots but on 10MHz RCOSC clock source. This  
provides debug capability). DCCint is only used by boot loader during boot time. It is  
disabled once the APLL is enabled and locked.  
5
Clock Monitor  
DCC1 is dedicated for APLL lock detection monitoring, comparing the APLL output divided  
version with the Reference input clock of the device. Initially (before configuring APLL),  
DCC1 is used by bootloader to identify the precise frequency of reference input clock  
against the internal RCOSC clock source. Failure detection for DCC1 would cause the  
device to go into limp mode.  
Clock Compare module (CCC) module is used to compare the APLL divided down  
frequency with reference clock (XTAL). Failure detection is indicated by the nERROR OUT  
signal.  
Internal watchdog is enabled by the bootloader in a windowed watchdog (DWWD) mode..  
Watchdog expiry issues an internal warm reset and nERROR OUT signal to the host.  
6
7
RTI/WD for MSS R4F  
MPU for MSS R4F  
Cortex-R4F CPU includes an MPU. The MPU logic can be used to provide spatial  
separation of software tasks in the device memory. Cortex-R4F MPU supports 12 regions. It  
is expected that the operating system controls the MPU and changes the MPU settings  
based on the needs of each task. A violation of a configured memory protection policy  
results in a CPU abort.  
AWR1243 architecture supports a hardware programmable memory BIST (PBIST) engine  
for Peripheral SRAMs as well.  
PBIST for Peripheral interface PBIST for peripheral SRAM memories is triggered by the bootloader. The PBIST tests are  
8
SRAMs - SPI, I2C  
destructive to memory contents, and as such are typically run only at boot time. .  
Any fault detected by the PBIST results in an error indicated in PBIST and boot status  
response message.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
 
 
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
10-1. Monitoring and Diagnostic Mechanisms for AWR1243 (continued)  
S No  
Feature  
Description  
Peripheral interface SRAMs diagnostic is supported by Single error correction double error  
detection (SECDED) ECC diagnostic. When a single or double bit error is detected the error  
is indicated by nERROR (double bit error) or via SPI message (single bit error).  
ECC for Peripheral interface  
SRAMs SPI, I2C  
9
Cyclic Redundancy Check (CRC) module is available for the Main SS. The firmware uses  
this feature for data transfer checks in mailbox and SPI communication.  
Cyclic Redundancy Check –  
Main SS  
10  
11  
AWR1243 architecture supports MPUs on Main SS DMAs. The firmware uses this for stack  
protection.  
MPU for DMAs  
AWR1243 architecture supports hardware logic BIST (LBIST) even for BIST R4F core and  
associated VIM module. This logic provides very high diagnostic coverage (>90%) on the  
BIST R4F CPU core and VIM.  
This is triggered by MSS R4F boot loader at boot time and it does not proceed further if the  
fault is detected.  
Boot time LBIST For BIST  
R4F Core and associated  
VIM  
12  
AWR1243 architecture supports a hardware programmable memory BIST (PBIST) engine  
for BIST R4F TCMs which provide a very high diagnostic coverage (March-13n) on the BIST  
R4F TCMs.  
Boot time PBIST for BIST  
R4F TCM Memories  
13  
14  
15  
PBIST is triggered at the power up of the BIST R4F.  
BIST R4F TCMs diagnostic is supported by Single error correction double error detection  
(SECDED) ECC diagnostic. Single bit error is communicated to the BIST R4FCPU while  
double bit error is communicated to MSS R4F as an interrupt which sends a async event to  
the host.  
End to End ECC for BIST  
R4F TCM Memories  
Logical TCM word and its associated ECC code is split and stored in two physical SRAM  
banks. This scheme provides an inherent diagnostic mechanism for address decode failures  
in the physical SRAM banks and helps to reduce the probability of physical multi-bit faults  
resulting in logical multi-bit faults.  
BIST R4F TCM bit  
multiplexing  
AWR1243 architecture supports various temperature sensors all across the device (next to  
power hungry modules such as PAs, DSP etc) which is monitored during the inter-frame  
period.(1)  
16  
17  
18  
Temperature Sensors  
Tx Power Monitors  
AWR1243 architecture supports power detectors at the Tx output.(2)  
When a diagnostic detects a fault, the error must be indicated. The AWR1243 architecture  
provides aggregation of fault indication from internal monitoring/diagnostic mechanisms  
using nERROR signaling or async event over SPI interface.  
Error Signaling  
Error Output  
Monitors Synthesizers frequency ramp by counting (divided-down) clock cycles and  
comparing to ideal frequency ramp. Excess frequency errors above a certain threshold, if  
any, are detected and reported.  
Synthesizer (Chirp) frequency  
monitor  
19  
20  
AWR1243 architecture supports a ball break detection mechanism based on Impedance  
measurement at the TX output(s) to detect and report any large deviations that can indicate  
a ball break.  
Ball break detection for TX  
ports (TX Ball break monitor) Monitoring is done by TIs code running on BIST R4F and failure is reported to the host.  
It is completely up to customer SW to decide on the appropriate action based on the  
message from BIST R4F.  
Built-in TX to RX loopback to enable detection of failures in the RX path(s), including Gain,  
inter-RX balance, etc.  
21  
22  
23  
RX loopback test  
Built-in IF (square wave) test tone input to monitor IF filters frequency response and detect  
IF loopback test  
failure.  
Provision to detect ADC saturation due to excessive incoming signal level and/or  
RX saturation detect  
interference.  
(1) Monitoring is done by the TI's code running on BIST R4F. There are two modes in which it could be configured to report the  
temperature sensed via API by customer application.  
a. Report the temperature sensed after every N frames  
b. Report the condition once the temperature crosses programmed threshold.  
It is completely up to customer SW to decide on the appropriate action based on the message from BIST R4Fvia Mailbox.  
(2) Monitoring is done by the TI's code running on BIST R4F.  
There are two modes in which it could be configured to report the detected output power via API by customer application.  
a. Report the power detected after every N frames  
b. Report the condition once the output power degrades by more than configured threshold from the configured.  
It is completely up to customer SW to decide on the appropriate action based on the message from BIST R4F.  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
 
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
备注  
Refer to the Device Safety Manual or other relevant collaterals for more details on applicability of all  
diagnostics mechanisms. For certification details, refer to the device product folder.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
11 Applications, Implementation, and Layout  
备注  
Information in the following Applications section is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI's customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
11.1 Application Information  
A typical application addresses the standard short-, mid-, long-range, and high-performance imaging radar  
applications with this radar front end and external programmable MCU. 11-1 shows a short-, medium-, or  
long-range radar application.  
11.2 Short-, Medium-, and Long-Range Radar  
Crystal  
Power Management  
Antenna  
Structure  
RX1  
RX2  
SPI  
External  
MCU  
(For Example  
TDA3x)  
RX3  
Automotive  
Interface PHY  
RX4  
AWR1243  
CSI2 (4 Lane Data + 1 Clock lane)  
TX1  
TX2  
Reset  
Error  
TX3  
MCU Clock  
Copyright © 2017, Texas Instruments Incorporated  
11-1. Short-, Medium-, and Long-Range Radar  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
 
 
 
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
11.3 Reference Schematic  
The reference schematic and power supply information can be found in the AWR1243 EVM Documentation.  
Listed for convenience are: Design Files, Schematics, Layouts, and Stack up for PCB.  
Altium AWR1243 EVM Design Files  
AWR1243 EVM Schematic Drawing, Assembly Drawing, and Bill of Materials  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
 
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
12 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions follow.  
12.1 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
microprocessors (MPUs) and support tools. Each device has one of three prefixes: X, P, or null (no prefix) (for  
example, AWR1243). Texas Instruments recommends two of three possible prefix designators for its support  
tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering  
prototypes (TMDX) through fully qualified production devices and tools (TMDS).  
Device development evolutionary flow:  
X
P
Experimental device that is not necessarily representative of the final device's electrical specifications and  
may not use production assembly flow.  
Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical  
specifications.  
null Production version of the silicon die that is fully qualified.  
Support tool development evolutionary flow:  
TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing.  
TMDS Fully-qualified development-support product.  
X and P devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
Production devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type  
(for example, ABL0161 ALB0161), the temperature range (for example, blank is the default commercial  
temperature range). 12-1 provides a legend for reading the complete device name for any AWR1243 device.  
For orderable part numbers of AWR1243 devices in the ABL0161 package types, see the Package Option  
Addendum of this document , the TI website (www.ti.com), or contact your TI sales representative.  
For additional description of the device nomenclature markings on the die, see the AWR1243 Device Errata .  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
 
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
1
2
43  
B
I
AWR  
G
ABL  
Q1  
Qualification  
Q1 = AEC-Q100  
Blank = no special Qual  
Prefix  
XA = Pre-Production  
AWR = Production  
Generation  
Tray or Tape & Reel  
R = Big Reel  
Blank = Tray  
1 = 76 œ 81 GHz  
Variant  
Package  
ABL = BGA  
2 = FE  
4 = FE + FFT + MCU  
6 = FE + MCU + DSP  
8 = FE + FFT + MCU + DSP  
Security  
Num RX/TX Channels  
G = General  
S = Secure  
D = Development Secure  
RX = 1,2,3,4  
TX = 1,2,3  
Silicon PG Revision  
Blank = Rev 1.0  
E = Rev 2.0  
Temperature (Tj)  
C = 0°C to 70°C  
K = œ40°C to 85°C  
A = œ40°C to 105°C  
I = œ40°C to 125°C  
F = Rev 3.0  
Features  
Blank = Baseline  
Safety  
B = Functional Safety Complaint, ASIL-B  
12-1. Device Nomenclature  
12.2 Tools and Software  
Development Tools  
AWR1243 cascade application note  
Describes TI's cascaded mmWave radar system.  
Models  
AWR1243 BSDL model  
AWR1x43 IBIS model  
Boundary scan database of testable input and output pins for IEEE 1149.1 of the  
specific device.  
IO buffer information model for the IO buffers of the device. For simulation on a  
circuit board, see IBIS Open Forum.  
AWR1243 checklist for  
schematic review, layout  
review, bringup/wakeup  
A set of steps in spreadsheet form to select system functions and pinmux options.  
Specific EVM schematic and layout notes to apply to customer engineering. A  
bringup checklist is suggested for customers.  
12.3 Documentation Support  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
The current documentation that describes the DSP, related peripherals, and other technical collateral follows.  
Errata  
AWR1243 device errata Describes known advisories, limitations, and cautions on silicon and provides  
workarounds.  
12.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
 
 
 
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
 
 
 
AWR1243  
www.ti.com.cn  
ZHCSHS1D MAY 2017 REVISED DECEMBER 2021  
13 Mechanical, Packaging, and Orderable Information  
13.1 Packaging Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
13.2 Tray Information for  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
AWR1243FBIGABLQ1  
AWR1243FBIGABLRQ1  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ACTIVE  
FCCSP  
FCCSP  
ABL  
161  
161  
176  
RoHS & Green  
Call TI  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
AWR1243  
Samples  
Samples  
IG  
964FC  
ACTIVE  
ABL  
1000 RoHS & Green  
Call TI  
-40 to 125  
AWR1243  
IG  
964FC  
ABL G1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Jun-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TRAY  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
AWR1243FBIGABLQ1  
ABL  
FCCSP  
161  
176  
8 x 22  
150  
315 135.9 7620 13.4  
16.8  
17.2  
Pack Materials-Page 1  
GENERIC PACKAGE VIEW  
ABL 161  
10.4 x 10.4, 0.65 mm pitch  
FCBGA - 1.17 mm max height  
PLASTIC BALL GRID ARRAY  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225978/A  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

AWR1443

集成 MCU 和硬件加速器的单芯片 76GHz 至 81GHz 汽车雷达传感器
TI

AWR1443FQIGABLQ1

集成 MCU 和硬件加速器的单芯片 76GHz 至 81GHz 汽车雷达传感器 | ABL | 161 | -40 to 125
TI

AWR1443FQIGABLRQ1

集成 MCU 和硬件加速器的单芯片 76GHz 至 81GHz 汽车雷达传感器 | ABL | 161 | -40 to 125
TI

AWR1642

集成 DSP 和 MCU 的单芯片 76GHz 至 81GHz 汽车雷达传感器
TI

AWR1642ABIGABLQ1

集成 DSP 和 MCU 的单芯片 76GHz 至 81GHz 汽车雷达传感器 | ABL | 161 | -40 to 125
TI

AWR1642ABIGABLRQ1

集成 DSP 和 MCU 的单芯片 76GHz 至 81GHz 汽车雷达传感器 | ABL | 161 | -40 to 125
TI

AWR1642ABISABLQ1

集成 DSP 和 MCU 的单芯片 76GHz 至 81GHz 汽车雷达传感器 | ABL | 161 | -40 to 125
TI

AWR1642ABISABLRQ1

集成 DSP 和 MCU 的单芯片 76GHz 至 81GHz 汽车雷达传感器 | ABL | 161 | -40 to 125
TI

AWR1843

集成 DSP、MCU 和雷达加速器的单芯片 76GHz 至 81GHz 汽车雷达传感器
TI

AWR1843ABGABLQ1

集成 DSP、MCU 和雷达加速器的单芯片 76GHz 至 81GHz 汽车雷达传感器 | ABL | 161 | -40 to 125
TI

AWR1843ABGABLRQ1

集成 DSP、MCU 和雷达加速器的单芯片 76GHz 至 81GHz 汽车雷达传感器 | ABL | 161 | -40 to 125
TI

AWR1843ABSABLQ1

集成 DSP、MCU 和雷达加速器的单芯片 76GHz 至 81GHz 汽车雷达传感器 | ABL | 161 | -40 to 125
TI