AWR6843ABGABLRQ1 [TI]

AWR6843 Single-Chip 60- to 64-GHz mmWave Sensor;
AWR6843ABGABLRQ1
型号: AWR6843ABGABLRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

AWR6843 Single-Chip 60- to 64-GHz mmWave Sensor

文件: 总81页 (文件大小:2621K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AWR6843  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
AWR6843 Single-Chip 60- to 64-GHz mmWave Sensor  
Other interfaces available to user application  
– Up to 6 ADC channels (low sample rate  
monitoring)  
1 Features  
FMCW transceiver  
– Integrated PLL, transmitter, receiver, Baseband,  
and A2D  
– Up to 2 SPI ports  
– Up to 2 UARTs  
– 60- to 64-GHz coverage with 4-GHz continuous  
bandwidth  
– 2 CAN-FD interfaces  
– I2C  
– Four receive channels  
– Three transmit channels  
– Supports 6-bit phase shifter  
– Ultra-accurate chirp engine based on fractional-  
N PLL  
– GPIOs  
– 2 lane LVDS interface for raw ADC data and  
debug instrumentation  
Functional Safety-Compliant targeted  
– Developed for functional safety applications  
– Documentation will be available to aid ISO  
26262 functional safety system design  
– Hardware integrity up to ASIL-B targeted  
– Safety-related certification ISO 26262  
certification by TUV Sud planned  
Non-Functional safety variants  
AEC-Q100 qualified  
– TX power: 12 dBm  
– RX noise figure:  
12 dB  
– Phase noise at 1 MHz:  
–93 dBc/Hz  
Built-in calibration and self-test  
– ARM® Cortex®-R4F-based radio control system  
– Built-in firmware (ROM)  
Power management  
– Self-calibrating system across frequency and  
temperature  
– Embedded self-monitoring with no host  
processor involvement on Functional Safety-  
Compliant targeted devices  
C674x DSP for advanced signal processing  
Hardware accelerator for FFT, filtering, and CFAR  
processing  
Memory compression  
ARM-R4F microcontroller for object detection, and  
interface control  
– Supports autonomous mode (loading user  
application from QSPI flash memory)  
Internal memory with ECC  
– Built-in LDO network for enhanced PSRR  
– I/Os support dual voltage 3.3 V/1.8 V  
Clock source  
– 40.0 MHz crystal with internal oscillator  
– Supports external oscillator at 40 MHz  
– Supports externally driven clock (square/sine)  
at 40 MHz  
Easy hardware design  
– 0.65-mm pitch, 161-pin 10.4 mm × 10.4 mm flip  
chip BGA package for easy assembly and low-  
cost PCB design  
– Small solution size  
Supports automotive temperature operating range  
– 1.75 MB, divided into MSS program RAM (512  
KB), MSS data RAM (192 KB), DSP L1RAM  
(64KB) and L2 RAM (256 KB), and L3 radar  
data cube RAM (768 KB)  
Technical reference manual includes allowed  
size modifications  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
Gesture detection  
Driver vital sign monitoring  
Kick sensor/access sensor  
2 Applications  
Interior Cabin sensing  
Child presence detection  
Occupancy detection  
Seat belt reminder  
3 Description  
The AWR6843 is an integrated single chip mmWave sensor based on FMCW radar technology capable of  
operation in the 60-GHz to 64-GHz band. It is built with TI’s low power45-nm RFCMOS process and enables  
unprecedented levels of integration in an extremely small formfactor. The AWR6843 is an ideal solution for low  
power, self-monitored, ultra-accurate radar systems in the automotive space. Multiple automotive qualified  
variants are currently available including Functional Safety-Compliant targeted devices and non-functional safety  
devices.  
Device Information  
BODY SIZE  
PART NUMBER  
PACKAGE(1)  
FCBGA (161)  
FCBGA (161)  
FCBGA (161)  
FCBGA (161)  
TRAY / TAPE AND REEL  
AWR6843AQGABLRQ1  
AWR6843AQGABLQ1  
AWR6843ABGABLRQ1  
AWR6843ABGABLQ1  
10.4 mm × 10.4mm  
10.4 mm × 10.4mm  
10.4 mm × 10.4mm  
10.4 mm × 10.4mm  
Tape and Reel (Non-Functional Safety)  
Tray (Non-Functional Safety)  
Tape and Reel (Functional Safety-Compliant targeted, ASIL-B)  
Tray (Functional Safety-Compliant targeted, ASIL-B)  
(1) For more information, see Section 12 , Mechanical, Packaging, and Orderable information.  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: AWR6843  
 
 
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
4 Functional Block Diagram  
Figure 4-1 shows the functional block diagram of the device.  
Serial Flash Interface  
QSPI  
Cortex R4F  
@ 200MHz  
LNA  
LNA  
LNA  
LNA  
IF  
IF  
IF  
IF  
ADC  
ADC  
ADC  
ADC  
Optional External  
MCU Interface  
SPI  
(User Programmable)  
Digital  
Front-End  
PMIC Control  
SPI / I2C  
CAN-FD  
CAN-FD  
UARTs  
Prog RAM  
(512kB)  
Data RAM  
(192kB)  
Boot  
ROM  
(Decimation  
Filter Chain)  
Primary Communication  
Interfaces (Automotive)  
Radar Hardware Accelerator  
(FFT, Log Mag, And Others)  
DMA  
Master Sub-System  
(Customer Programmed)  
Test/  
Debug  
JTAG For Debug/  
Development  
ADC  
Buffer  
PA  
´Å  
´Å  
´Å  
Mailbox  
High-Speed ADC Output  
Interface (For Recording)  
LVDS  
HIL  
Synth  
(20 GHz)  
Ramp  
Generator  
PA  
x3  
High-Speed Input For  
Hardware-In-Loop Verification  
C674x DSP  
@ 600 MHz  
Radio (BIST)  
Processor  
PA  
GPADC  
Osc.  
6
(For RF Calibration  
& Self-Test œ TI  
Programmed)  
L1P  
(32kB)  
L1D  
(32kB)  
L2 (256kB)  
Prog RAM  
& ROM  
Data  
RAM  
Temp  
DMA  
CRC  
Radar Data Memory  
768 kB  
Radio Processor  
Sub-System  
(TI Programmed)  
DSP Sub-System  
(Customer Programmed)  
RF/Analog Sub-System  
Figure 4-1. Functional Block Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: AWR6843  
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................2  
3 Description.......................................................................2  
4 Functional Block Diagram.............................................. 3  
Revision History................................................................. 5  
5 Device Comparison.........................................................7  
5.1 Related Products........................................................ 8  
6 Terminal Configuration and Functions..........................9  
6.1 Pin Diagram................................................................ 9  
6.2 Pin Attributes.............................................................14  
6.3 Signal Descriptions................................................... 22  
7 Specifications................................................................ 27  
7.1 Absolute Maximum Ratings...................................... 27  
7.2 ESD Ratings............................................................. 27  
7.3 Power-On Hours (POH)............................................28  
7.4 Recommended Operating Conditions.......................29  
7.5 Power Supply Specifications.....................................29  
7.6 Power Consumption Summary................................. 30  
7.7 RF Specification........................................................31  
7.8 CPU Specifications................................................... 31  
7.9 Thermal Resistance Characteristics for FCBGA  
8 Detailed Description......................................................56  
8.1 Overview...................................................................56  
8.2 Functional Block Diagram.........................................56  
8.3 Subsystems.............................................................. 57  
8.4 Other Subsystems.................................................... 61  
9 Monitoring and Diagnostics......................................... 63  
9.1 Monitoring and Diagnostic Mechanisms................... 63  
10 Applications, Implementation, and Layout............... 68  
10.1 Application Information........................................... 68  
10.2 Reference Schematic..............................................68  
11 Device and Documentation Support..........................69  
11.1 Device Nomenclature..............................................69  
11.2 Tools and Software..................................................70  
11.3 Documentation Support.......................................... 70  
11.4 Support Resources................................................. 70  
11.5 Trademarks............................................................. 71  
11.6 Electrostatic Discharge Caution..............................71  
11.7 Glossary..................................................................71  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 72  
12.1 Packaging Information............................................ 72  
12.2 Tray Information for ABL, 10.4 × 10.4 mm..............76  
Package [ABL0161] ....................................................32  
7.10 Timing and Switching Characteristics..................... 33  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: AWR6843  
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
Revision History  
Changes from August 1, 2020 to September 30, 2020 (from Revision A (August 2020) to  
Revision B (September 2020))  
Page  
Global: Updated/Changed AWR6843 Functional Safety-Compliant targeted Product Status from "Advance  
Information (AI)" to "Production Data (PD)"........................................................................................................1  
Features: Added "Embedded self-monitoring with no host processor involvement on Functional Safety-  
compliant devices" .............................................................................................................................................1  
Applications: Changed / Updated link for Interior Cabin Sensing ......................................................................2  
Device Information: Added Functional Safety-Compliant targeted production parts AWR6843ABGABLR and  
AWR6843ABGABL. Removed XA6843ABGABL................................................................................................2  
Device Features Comparison: Changed/Updated ASIL-B variant product status to PD.................................... 7  
RF Specification: (RF Specification): Updated/Changed the "1-db Compression Point …" footnote...............31  
Section 7.9 (Thermal Resistance Characteristics for FCBGA Package [ABL0161]): Removed "A junction  
temperature of 105°C is assumed." from footnote............................................................................................32  
Section 9.1 (Monitoring and Diagnostic Mechanisms): Added Monitoring and Diagnostic Chapter.................63  
Section 12.2 (Tray Information for ABL, 10.4 × 10.4 mm): Added new section with tray information...............72  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: AWR6843  
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
Changes from April 30, 2020 to July 31, 2020 (from Revision * (April 2020) to Revision A (July  
2020))  
Page  
Global: Updated/Changed the numbering format for tables, figures, and cross-references throughout the  
document............................................................................................................................................................1  
Global: Added Non-functional safety variants ....................................................................................................1  
Features: Updated/Changed Phase Noise at 1 MHz from "–92 dBc/Hz" to "–93 dBc/Hz"................................. 1  
Features: Updated/Changed RX noise figure: from "14 dB " to "12 dB".............................................................1  
Features: Updated/Changed TX power: from "10 dBm" to "12 dBm".................................................................1  
Description: Updated description/paragragh...................................................................................................... 2  
Device Information: Added Non-Functional Safety production parts "AWR6843AQGABLRQ1" part number  
(PD), "AWR6843AQGABLQ1" part number (PD) and "TRAY / TAPE AND REEL" column................................2  
Figure 4-1: Updated block diagram.................................................................................................................... 3  
Device Features Comparison: Added 2nd column under AWR6843 for non-functional safety variant ..............7  
Signal Descriptions: Added Added NOTE about IO pins and GPIO state during power supply ramp. ............22  
Recommended Operating Conditions: Updated/Changed MAX value of NRESET SOP [2:0], VIL (1.8V Mode)  
from 0.2 to 0.45 and VIL (3.3V Mode) from 0.3 to 0.65.....................................................................................29  
Power Supply Specifications: Added " Ripple Specifications" table and the preceeding paragraph. Added  
table note for Power Supply Rails Characteristics............................................................................................29  
Power Consumption Summary: Updated Average Power Consumption at Power Terminals and added table  
notes.................................................................................................................................................................30  
RF Specification: Updated table Receiver parameters and values ................................................................. 31  
RF and Analog Subsystem: Updated/Changed section................................................................................... 57  
Transmit Subsystem: Removed "Tx Beam forming applications and interference mitigation" from paragraph ...  
59  
Processor Subsystem: Updated/Changed figure to include the 2nd CAN instance ........................................ 60  
Figure 11-1 Added "AWR = Production Automotive" under Prefix and "Q1 = AEC-Q100" under Qualification,  
updated/changed the "Features" field to "R = Antenna on Package (AoP)" ....................................................69  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: AWR6843  
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
5 Device Comparison  
Table 5-1. Device Features Comparison  
FUNCTION  
AWR6843  
AWR1843  
AWR1642  
AWR1443  
Antenna on Package (AOP)  
Number of receivers  
Number of transmitters  
RF frequency range  
On-chip memory  
4
4
4
4
4
3(1)  
3(1)  
3(1)  
2
76 to 81 GHz  
1.5MB  
B-Targeted  
3
60 to 64 GHz  
60 to 64 GHz  
76 to 81 GHz  
76 to 81 GHz  
1.75MB  
1.75MB  
2MB  
B-Targeted  
576KB  
ASIL  
B-Targeted  
Non-Functional Safety  
Max I/F (Intermediate Frequency) (MHz)  
Max real sampling rate (Msps)  
Max complex sampling rate (Msps)  
Processors  
10  
Yes  
10  
Yes  
5
10  
5
25  
25  
25  
12.5  
12.5  
6.25  
12.5  
12.5  
12.5  
6.25  
MCU (R4F)  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
DSP (C674x)  
Peripherals  
Serial Peripheral Interface (SPI) ports  
Quad Serial Peripheral Interface (QSPI)  
Inter-Integrated Circuit (I2C) interface  
Controller Area Network (DCAN) interface  
Controller Area Network (CAN-FD) interface  
Trace  
2
2
2
2
1
Yes  
1
Yes  
1
Yes  
1
Yes  
1
Yes  
1
1
1
1
2
2
1
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
PWM  
Hardware In Loop (HIL/DMM)  
GPADC  
Yes  
Yes  
LVDS/Debug  
CSI2  
Hardware accelerator  
1-V bypass mode  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
JTAG  
Product Preview (PP),  
Product  
Advance Information (AI),  
status  
PD(2)  
PD(2)  
PD(2)  
PD(2)  
PD(2)  
or Production Data (PD)  
(1) 3 Tx Simultaneous operation is supported only with 1-V LDO bypass and PA LDO disable mode. In this mode, the 1-V supply needs to  
be fed on the VOUT PA pin.  
(2) PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: AWR6843  
 
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
5.1 Related Products  
For information about other devices in this family of products or related products see the links that follow.  
mmWave sensors TI’s mmWave sensors rapidly and accurately sense range, angle and velocity with less  
power using the smallest footprint mmWave sensor portfolio for automotive applications.  
Automotive  
TI’s automotive mmWave sensor portfolio offers high-performance radar front end to  
mmWave sensors ultra-high resolution, small and low-power single-chip radar solutions. TI’s scalable  
sensor portfolio enables design and development of ADAS system solution for every  
performance, application and sensor configuration ranging from comfort functions to  
safety functions in all vehicles.  
Companion  
products for  
AWR6843  
Review products that are frequently purchased or used in conjunction with this product.  
Reference designs TI Designs Reference Design Library is a robust reference design library spanning  
for AWR6843  
analog, embedded processor and connectivity. Created by TI experts to help you jump-  
start your system design, all TI Designs include schematic or block diagrams, BOMs, and  
design files to speed your time to market. Search and download designs at ti.com/  
tidesigns.  
Vehicle occupant  
This reference design demonstrates the use of the AWR6843 60GHz single-chip  
detection reference mmWave sensor with integrated DSP, as a Vehicle Occupant Detection (VOD) and Child  
design  
Presence Detection (CPD) Sensor enabling the detection of life forms in a vehicle. This  
design provides a reference software processing chain which runs on the C674x DSP,  
enabling the generation of a heat map to detect occupants in a Field of View (FOV) of  
±60 degrees.  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: AWR6843  
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
6 Terminal Configuration and Functions  
6.1 Pin Diagram  
Figure 6-1 shows the pin locations for the 161-pin FCBGA package. Figure 6-2, Figure 6-3, Figure 6-4, and  
Figure 6-5 show the same pins, but split into four quadrants.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
VOUT  
_14APLL  
OSC  
_CLKOUT  
VSSA  
VSSA  
A
B
C
D
E
F
VSSA  
VOUT_PA  
VSSA  
VSSA  
VSSA  
VSSA  
VOUT_  
14SYNTH  
VIN  
_18CLK  
VIN  
_18VCO  
VSSA  
VSSA  
VOUT_PA  
VSSA  
VSSA  
TX1  
VSSA  
VSSA  
TX2  
VSSA  
VSSA  
TX3  
VSSA  
VSSA  
VBGAP  
VSSA  
VSSA  
CLKP  
CLKM  
VIN  
_13RF2  
VSSA  
VSSA  
VSSA  
GPADC5  
VIOIN_  
18DIFF  
VIN  
_13RF2  
SPIA_MOSI  
GPADC6  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
RX4  
VSSA  
VSSA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SPIA_CLK  
SPIA_MISO  
SPIB_CLK  
SPIB_MISO  
SPIA_CS_N  
SPIB_MOSI  
VIN_18BB  
VSS  
VSS  
VSS  
VIOIN  
VIN  
_13RF1  
G
H
J
VSSA  
RX3  
VSSA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SYNC_OUT  
GPIO_0  
GPIO_1  
GPIO_2  
VPP  
VIN_SRAM  
VIN  
_13RF1  
VSSA  
VSS  
SPIB_CS_N  
VDDIN  
VIN  
_13RF1  
VSSA  
RX2  
VSSA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
LVDS_TXP[0] LVDS_TXM[0]  
LVDS_TXP[1] LVDS_TXM[1]  
LVDS_CLKP LVDS_CLKM  
K
L
VSSA  
VIN_18BB  
VSS  
VSSA  
RX1  
VSSA  
VSS  
LVDS  
_FRCLKP  
LVDS  
_FRCLKM  
M
N
P
R
VSSA  
NERROR  
_OUT  
MCU  
_CLKOUT  
WARM  
_RESET  
VSSA  
GPADC1  
VSSA  
VSSA  
GPADC2  
GPADC4  
VSSA  
RS232_RX  
RS232_TX  
GPIO_32  
GPIO_33  
NERROR_IN  
GPIO_36  
TMS  
TCK  
VDDIN  
QSPI_CS_N  
TDI  
QSPI[1]  
QSPI[3]  
TDO  
DMM_SYNC  
GPIO_47  
VDDIN  
PMIC  
_CLKOUT  
SPI_HOST  
_INTR  
GPIO_34  
VDDIN  
GPADC3  
NRESET  
SYNC_IN  
GPIO_31  
GPIO_38  
GPIO_37  
VNWA  
GPIO_35  
VIOIN_18  
VIOIN  
QSPI_CLK  
QSPI[0]  
QSPI[2]  
VSS  
Not to scale  
Figure 6-1. Pin Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: AWR6843  
 
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
VSSA  
VOUT_PA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VOUT_PA  
VSSA  
VSSA  
TX1  
VSSA  
VSSA  
TX2  
VSSA  
VSSA  
TX3  
VIN  
_13RF2  
VSSA  
VSSA  
VSSA  
VIN  
_13RF2  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSS  
VSS  
VSS  
RX4  
VIN_18BB  
VIN  
_13RF1  
G
VSSA  
VSSA  
VSS  
VSS  
VSS  
Not to scale  
1
3
2
4
Figure 6-2. Top Left Quadrant  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: AWR6843  
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
9
10  
11  
12  
13  
14  
15  
VOUT  
OSC  
A
B
C
D
E
F
VSSA  
VSSA  
VSSA  
_14APLL  
_CLKOUT  
VIN  
_18CLK  
VIN  
VOUT  
VSSA  
VSSA  
VBGAP  
VSSA  
VSSA  
CLKP  
CLKM  
_18VCO  
_14SYNTH  
GPADC5  
SPIA_MOSI  
SPIA_CLK  
SPIB_MOSI  
SYNC_OUT  
VIOIN  
_18DIFF  
GPADC6  
SPIA_MISO  
SPIB_CLK  
SPIB_MISO  
SPIA_CS_N  
VSS  
VSS  
VSS  
VSS  
VIOIN  
VSS  
VIN_SRAM  
G
Not to scale  
1
3
2
4
Figure 6-3. Top Right Quadrant  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: AWR6843  
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
1
2
3
4
5
6
7
8
VIN  
_13RF1  
H
RX3  
VSSA  
VSS  
VIN  
_13RF1  
J
VSSA  
VSSA  
VSSA  
VSSA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
K
L
RX2  
VIN_18BB  
VSSA  
VSSA  
VSSA  
VSS  
VSS  
M
N
P
R
RX1  
VSSA  
NERROR  
_OUT  
MCU  
_CLKOUT  
VSSA  
GPADC1  
VSSA  
VSSA  
VSSA  
RS232_RX  
SYNC_IN  
GPIO_31  
RS232_TX  
GPIO_32  
GPIO_33  
NERROR_IN  
GPADC2  
GPADC4  
GPADC3  
NRESET  
GPIO_34  
GPIO_36  
GPIO_38  
VDDIN  
GPIO_35  
GPIO_37  
Not to scale  
1
3
2
4
Figure 6-4. Bottom Left Quadrant  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: AWR6843  
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
9
10  
11  
12  
13  
14  
15  
H
J
VSS  
VSS  
GPIO_0  
SPIB_CS_N  
VDDIN  
VSS  
VSS  
VSS  
GPIO_1  
GPIO_2  
VPP  
LVDS_TXP[0] LVDS_TXM[0]  
LVDS_TXP[1] LVDS_TXM[1]  
LVDS_CLKP LVDS_CLKM  
K
L
VSS  
VSS  
LVDS  
_FRCLKP  
LVDS  
_FRCLKM  
M
N
P
R
WARM  
_RESET  
GPIO_47  
VDDIN  
TMS  
TCK  
VDDIN  
QSPI_CS_N  
TDI  
QSPI[1]  
QSPI[3]  
QSPI_clk  
TDO  
DMM_SYNC  
PMIC  
_CLKOUT  
SPI_HOST_  
INTR_1  
VNWA  
VIOIN_18  
VIOIN  
QSPI[0]  
QSPI[2]  
VSS  
Not to scale  
1
3
2
4
Figure 6-5. Bottom Right Quadrant  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: AWR6843  
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
6.2 Pin Attributes  
Table 6-1. Pin Attributes (ABL0161 Package)  
PINCNTL  
BALL RESET  
STATE [7]  
PULL UP/DOWN  
TYPE [8]  
BALL NUMBER [1]  
BALL NAME [2]  
SIGNAL NAME [3]  
MODE [5]  
TYPE [6]  
ADDRESS [4]  
H13  
GPIO_0  
GPIO_13  
0xFFFFEA04  
0
IO  
IO  
O
O
O
O
IO  
IO  
O
O
I
Output Disabled  
Pull Down  
GPIO_0  
1
PMIC_CLKOUT  
ADC_VALID  
EPWM1B  
2
9
10  
11  
0
ePWM2A  
J13  
GPIO_1  
GPIO_16  
0xFFFFEA08  
Output Disabled  
Pull Down  
GPIO_1  
1
SYNC_OUT  
ADC_VALID  
DMM_MUX_IN  
SPIB_CS_N_1  
SPIB_CS_N_2  
EPWM1SYNCI  
GPIO_26  
2
7
12  
13  
14  
15  
0
IO  
IO  
I
K13  
GPIO_2  
0xFFFFEA64  
IO  
IO  
O
O
O
O
O
O
O
O
O
IO  
I
Output Disabled  
Pull Down  
GPIO_2  
1
OSC_CLKOUT  
MSS_UARTB_TX  
BSS_UART_TX  
SYNC_OUT  
PMIC_CLKOUT  
CHIRP_START  
CHIRP_END  
FRAME_START  
TRACE_DATA_0  
GPIO_31  
2
7
8
9
10  
11  
12  
13  
0
R4  
GPIO_31  
0xFFFFEA7C  
Output Disabled  
Pull Down  
1
DMM0  
2
MSS_UARTA_TX  
TRACE_DATA_1  
GPIO_32  
4
IO  
O
IO  
I
P5  
R5  
P6  
GPIO_32  
GPIO_33  
GPIO_34  
0xFFFFEA80  
0xFFFFEA84  
0xFFFFEA88  
0
Output Disabled  
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
Pull Down  
1
DMM1  
2
TRACE_DATA_2  
GPIO_33  
0
O
IO  
I
1
DMM2  
2
TRACE_DATA_3  
GPIO_34  
0
O
IO  
I
1
DMM3  
2
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: AWR6843  
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
Table 6-1. Pin Attributes (ABL0161 Package) (continued)  
PINCNTL  
BALL RESET  
STATE [7]  
PULL UP/DOWN  
TYPE [8]  
BALL NUMBER [1]  
BALL NAME [2]  
SIGNAL NAME [3]  
MODE [5]  
TYPE [6]  
ADDRESS [4]  
EPWM3SYNCO  
TRACE_DATA_4  
GPIO_35  
4
O
O
IO  
I
R7  
P7  
GPIO_35  
GPIO_36  
GPIO_37  
GPIO_38  
GPIO_47  
0xFFFFEA8C  
0
Output Disabled  
Output Disabled  
Output Disabled  
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
Pull Down  
Pull Down  
Pull Down  
1
DMM4  
2
EPWM2SYNCO  
TRACE_DATA_5  
GPIO_36  
4
O
O
IO  
I
0xFFFFEA90  
0xFFFFEA94  
0xFFFFEA98  
0xFFFFEABC  
0
1
DMM5  
2
MSS_UARTB_TX  
TRACE_DATA_6  
GPIO_37  
5
O
O
IO  
I
R8  
P8  
0
1
DMM6  
2
BSS_UART_TX  
TRACE_DATA_7  
GPIO_38  
5
O
O
IO  
I
0
1
DMM7  
2
DSS_UART_TX  
TRACE_CLK  
GPIO_47  
5
O
O
IO  
I
N15  
0
1
DMM_CLK  
2
N14  
N8  
DMM_SYNC  
TRACE_CTL  
DMM_SYNC  
GPIO_25  
0xFFFFEAC0  
0xFFFFEA60  
0
O
I
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
2
MCU_CLKOUT  
0
IO  
O
O
O
O
O
I
MCU_CLKOUT  
CHIRP_START  
CHIRP_END  
FRAME_START  
EPWM1A  
1
2
6
7
12  
N7  
N6  
P9  
NERROR_IN  
NERROR_IN  
NERROR_OUT  
SOP[2]  
0xFFFFEA44  
0xFFFFEA4C  
0xFFFFEA68  
0
Input  
NERROR_OUT  
PMIC_CLKOUT  
0
O
I
Hi-Z (Open Drain)  
Output Disabled  
During Power Up  
Pull Down  
GPIO_27  
0
IO  
O
O
O
O
O
O
PMIC_CLKOUT  
CHIRP_START  
CHIRP_END  
FRAME_START  
EPWM1B  
1
6
7
8
11  
12  
EPWM2A  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: AWR6843  
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
Table 6-1. Pin Attributes (ABL0161 Package) (continued)  
PINCNTL  
BALL RESET  
STATE [7]  
PULL UP/DOWN  
TYPE [8]  
BALL NUMBER [1]  
BALL NAME [2]  
SIGNAL NAME [3]  
MODE [5]  
TYPE [6]  
ADDRESS [4]  
R13  
N12  
QSPI[0]  
QSPI[1]  
GPIO_8  
0xFFFFEA2C  
0
IO  
IO  
IO  
IO  
I
Output Disabled  
Pull Down  
QSPI[0]  
1
SPIB_MISO  
GPIO_9  
2
0xFFFFEA30  
0
Output Disabled  
Pull Down  
QSPI[1]  
1
SPIB_MOSI  
SPIB_CS_N_2  
GPIO_10  
2
IO  
IO  
IO  
I
8
R14  
P12  
R12  
QSPI[2]  
0xFFFFEA34  
0xFFFFEA38  
0xFFFFEA3C  
0
Output Disabled  
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
Pull Down  
QSPI[2]  
1
CAN1_FD_TX  
GPIO_11  
8
O
IO  
I
QSPI[3]  
0
QSPI[3]  
1
CAN1_FD_RX  
GPIO_7  
8
I
QSPI_CLK  
0
IO  
O
IO  
O
IO  
O
IO  
IO  
I
QSPI_CLK  
SPIB_CLK  
DSS_UART_TX  
GPIO_6  
1
2
6
P11  
N4  
QSPI_CS_N  
RS232_RX  
0xFFFFEA40  
0xFFFFEA74  
0
Output Disabled  
Input Enabled  
Pull Up  
Pull Up  
QSPI_CS_N  
SPIB_CS_N  
GPIO_15  
1
2
0
RS232_RX  
MSS_UARTA_RX  
BSS_UART_TX  
MSS_UARTB_RX  
CAN1_FD_RX  
I2C_SCL  
1
2
I
6
IO  
IO  
I
7
8
9
IO  
O
O
O
IO  
O
IO  
IO  
IO  
O
IO  
O
O
EPWM2A  
10  
11  
12  
0
EPWM2B  
EPWM3A  
N5  
RS232_TX  
GPIO_14  
0xFFFFEA78  
Output Enabled  
RS232_TX  
MSS_UARTA_TX  
MSS_UARTB_TX  
BSS_UART_TX  
CAN1_FD_TX  
I2C_SDA  
1
5
6
7
10  
11  
12  
13  
EPWM1A  
EPWM1B  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: AWR6843  
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
Table 6-1. Pin Attributes (ABL0161 Package) (continued)  
PINCNTL  
BALL RESET  
STATE [7]  
PULL UP/DOWN  
TYPE [8]  
BALL NUMBER [1]  
BALL NAME [2]  
SIGNAL NAME [3]  
MODE [5]  
TYPE [6]  
ADDRESS [4]  
NDMM_EN  
14  
15  
0
1
6
7
0
1
6
0
1
2
0
1
2
8
0
1
2
6
7
8
0
1
2
6
7
8
9
0
1
2
6
0
1
2
0
1
I
EPWM2A  
O
IO  
IO  
I
E13  
SPIA_CLK  
GPIO_3  
0xFFFFEA14  
Output Disabled  
Pull Up  
SPIA_CLK  
CAN2_FD_RX  
DSS_UART_TX  
GPIO_30  
O
IO  
IO  
0
E15  
E14  
D13  
SPIA_CS_N  
SPIA_MISO  
SPIA_MOSI  
0xFFFFEA18  
0xFFFFEA10  
0xFFFFEA0C  
Output Disabled  
Output Disabled  
Output Disabled  
Pull Up  
Pull Up  
Pull Up  
SPIA_CS_N  
CAN2_FD_TX  
GPIO_20  
IO  
IO  
O
IO  
IO  
I
SPIA_MISO  
CAN1_FD_TX  
GPIO_19  
SPIA_MOSI  
CAN1_FD_RX  
DSS_UART_TX  
GPIO_5  
O
IO  
IO  
I
F14  
SPIB_CLK  
0xFFFFEA24  
Output Disabled  
Pull Up  
SPIB_CLK  
MSS_UARTA_RX  
MSS_UARTB_TX  
BSS_UART_TX  
CAN1_FD_RX  
GPIO_4  
O
O
I
H14  
SPIB_CS_N  
0xFFFFEA28  
IO  
IO  
O
O
IO  
I
Output Disabled  
Pull Up  
SPIB_CS_N  
MSS_UARTA_TX  
MSS_UARTB_TX  
BSS_UART_TX  
QSPI_CLK_EXT  
CAN1_FD_TX  
GPIO_22  
O
IO  
IO  
IO  
O
IO  
IO  
IO  
IO  
O
G14  
SPIB_MISO  
0xFFFFEA20  
Output Disabled  
Pull Up  
SPIB_MISO  
I2C_SCL  
DSS_UART_TX  
GPIO_21  
F13  
P13  
SPIB_MOSI  
0xFFFFEA1C  
0xFFFFEA00  
Output Disabled  
Output Disabled  
Pull Up  
SPIB_MOSI  
I2C_SDA  
SPI_HOST_INTR  
GPIO_12  
Pull Down  
SPI_HOST_INTR  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: AWR6843  
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
Table 6-1. Pin Attributes (ABL0161 Package) (continued)  
PINCNTL  
BALL RESET  
STATE [7]  
PULL UP/DOWN  
TYPE [8]  
BALL NUMBER [1]  
BALL NAME [2]  
SIGNAL NAME [3]  
MODE [5]  
TYPE [6]  
ADDRESS [4]  
ADC_VALID  
SPIB_CS_N_1  
GPIO_28  
2
O
IO  
IO  
I
6
P4  
SYNC_IN  
0xFFFFEA6C  
0
Output Disabled  
Pull Down  
SYNC_IN  
1
MSS_UARTB_RX  
DMM_MUX_IN  
SYNC_OUT  
SOP[1]  
6
IO  
I
7
9
O
I
G13  
SYNC_OUT  
0xFFFFEA70  
During Power Up  
Output Disabled  
Pull Down  
GPIO_29  
0
IO  
O
I
SYNC_OUT  
DMM_MUX_IN  
SPIB_CS_N_1  
SPIB_CS_N_2  
GPIO_17  
1
9
10  
IO  
IO  
IO  
I
11  
P10  
TCK  
0xFFFFEA50  
0
Input Enabled  
Pull Down  
Pull Up  
TCK  
1
MSS_UARTB_TX  
CAN1_FD_TX  
GPIO_23  
2
O
O
IO  
I
8
R11  
N13  
TDI  
0xFFFFEA58  
0xFFFFEA5C  
0
Input Enabled  
TDI  
1
MSS_UARTA_RX  
SOP[0]  
2
I
TDO  
During Power Up  
I
Output Enabled  
GPIO_24  
0
1
2
6
7
9
0
1
2
6
0
IO  
O
O
O
O
I
TDO  
MSS_UARTA_TX  
MSS_UARTB_TX  
BSS_UART_TX  
NDMM_EN  
GPIO_18  
N10  
N9  
TMS  
0xFFFFEA54  
0xFFFFEA48  
IO  
I
Input Enabled  
Pull Down  
TMS  
BSS_UART_TX  
CAN1_FD_RX  
WARM_RESET  
O
I
WARM_RESET  
IO  
Hi-Z Input (Open  
Drain)  
The following list describes the table column headers:  
1. BALL NUMBER: Ball numbers on the bottom side associated with each signal on the bottom.  
2. BALL NAME: Mechanical name from package device (name is taken from muxmode 0).  
3. SIGNAL NAME: Names of signals multiplexed on each ball (also notice that the name of the ball is the signal name in muxmode 0).  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: AWR6843  
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
4. PINCNTL ADDRESS: MSS Address for PinMux Control  
5. MODE: Multiplexing mode number: value written to PinMux Cntl register to select specific Signal name for this Ball number. Mode column has bit  
range value.  
6. TYPE: Signal type and direction:  
I = Input  
O = Output  
IO = Input or Output  
7. BALL RESET STATE: The state of the terminal after supplies are stable after power-on-reset (NRESET) is asserted  
8. PULL UP/DOWN TYPE: indicates the presence of an internal pullup or pulldown resistor. Pullup and pulldown resistors can be enabled or disabled  
via software.  
Pull Up: Internal pullup  
Pull Down: Internal pulldown  
An empty box means No pull.  
9. Pin Mux Control Value maps to lower 4 bits of register.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: AWR6843  
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
IO MUX registers are available in the MSS memory map and the respective mapping to device pins is as follows:  
Table 6-2. PAD IO Control Registers  
Default Pin/Ball Name  
SPI_HOST_INTR  
GPIO_0  
Package Ball /Pin (Address)  
Pin Mux Config Register  
0xFFFFEA00  
0xFFFFEA04  
0xFFFFEA08  
0xFFFFEA0C  
0xFFFFEA10  
0xFFFFEA14  
0xFFFFEA18  
0xFFFFEA1C  
0xFFFFEA20  
0xFFFFEA24  
0xFFFFEA28  
0xFFFFEA2C  
0xFFFFEA30  
0xFFFFEA34  
0xFFFFEA38  
0xFFFFEA3C  
0xFFFFEA40  
0xFFFFEA44  
0xFFFFEA48  
0xFFFFEA4C  
0xFFFFEA50  
0xFFFFEA54  
0xFFFFEA58  
0xFFFFEA5C  
0xFFFFEA60  
0xFFFFEA64  
0xFFFFEA68  
0xFFFFEA6C  
0xFFFFEA70  
0xFFFFEA74  
0xFFFFEA78  
P13  
H13  
J13  
D13  
E14  
E13  
E15  
F13  
G14  
F14  
H14  
R13  
N12  
R14  
P12  
R12  
P11  
N7  
GPIO_1  
SPIA_MOSI  
SPIA_MISO  
SPIA_CLK  
SPIA_CS_N  
SPIB_MOSI  
SPIB_MISO  
SPIB_CLK  
SPIB_CS_N  
QSPI[0]  
QSPI[1]  
QSPI[2]  
QSPI[3]  
QSPI_CLK  
QSPI_CS_N  
NERROR_IN  
WARM_RESET  
NERROR_OUT  
TCK  
N9  
N6  
P10  
N10  
R11  
N13  
N8  
TMS  
TDI  
TDO  
MCU_CLKOUT  
GPIO_2  
K13  
P9  
PMIC_CLKOUT  
SYNC_IN  
P4  
SYNC_OUT  
RS232_RX  
RS232_TX  
G13  
N4  
N5  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: AWR6843  
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
Table 6-2. PAD IO Control Registers (continued)  
Default Pin/Ball Name  
GPIO_31  
Package Ball /Pin (Address)  
Pin Mux Config Register  
0xFFFFEA7C  
0xFFFFEA80  
0xFFFFEA84  
0xFFFFEA88  
0xFFFFEA8C  
0xFFFFEA90  
0xFFFFEA94  
0xFFFFEA98  
0xFFFFEABC  
0xFFFFEAC0  
R4  
P5  
GPIO_32  
GPIO_33  
R5  
P6  
GPIO_34  
GPIO_35  
R7  
P7  
GPIO_36  
GPIO_37  
R8  
P8  
GPIO_38  
GPIO_47  
N15  
N14  
DMM_SYNC  
The register layout is as follows:  
Table 6-3. PAD IO Register Bit Descriptions  
RESET (POWER  
ON DEFAULT)  
BIT  
FIELD  
TYPE  
DESCRIPTION  
31-11 NU  
RW  
RW  
0
0
Reserved  
10  
9
SC  
IO slew rate control:  
0 = Higher slew rate  
1 = Lower slew rate  
PUPDSEL  
PI  
RW  
RW  
0
0
Pullup/PullDown Selection  
0 = Pull Down  
1 = Pull Up (This field is valid only if Pull Inhibit is set as '0')  
8
Pull Inhibit/Pull Disable  
0 = Enable  
1 = Disable  
7
6
OE_OVERRIDE  
RW  
RW  
1
1
Output Override  
OE_OVERRIDE_CTRL  
Output Override Control:  
(A '1' here overrides any o/p manipulation of this IO by any of the peripheral block hardware it is  
associated with for example a SPI Chip select)  
5
4
IE_OVERRIDE  
RW  
RW  
0
0
Input Override  
IE_OVERRIDE_CTRL  
Input Override Control:  
(A '1' here overrides any i/p value on this IO with a desired value)  
3-0  
FUNC_SEL  
RW  
1
Function select for Pin Multiplexing (Refer to the Pin Mux Sheet)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: AWR6843  
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
6.3 Signal Descriptions  
Note  
All IO pins of the device (except NERROR IN, NERROR_OUT, and WARM_RESET) are non-failsafe;  
hence, care needs to be taken that they are not driven externally without the VIO supply being present  
to the device.  
Note  
The GPIO state during the power supply ramp is not ensured. In case the GPIO is used in the  
application where the state of the GPIO is critical, even when NRESET is low , a tri-state buffer should  
be used to isolate the GPIO output from the radar device and a pull resister used to define the  
required state in the application. The NRESET signal to the radar device could be used to control the  
output enable (OE) of the tri-state buffer.  
6.3.1 Signal Descriptions - Digital  
SIGNAL NAME  
BSS_UART_TX  
PIN TYPE  
DESCRIPTION  
Debug UART Transmit [Radar Block]  
BALL NO.  
F14, H14, K13, N10, N13,  
N4, N5, R8  
O
CAN1_FD_RX  
CAN1_FD_TX  
CAN2_FD_RX  
CAN2_FD_TX  
DMM0  
I
O
I
CAN1 FD (MCAN) Receive Signal  
D13, F14, N10, N4, P12  
CAN1 FD (MCAN) Transmit Signal  
E14, H14, N5, P10, R14  
CAN2 FD (MCAN) Receive Signal  
E13  
E15  
R4  
P5  
IO  
I
CAN2 FD (MCAN) Transmit Signal  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Clock  
DMM1  
I
DMM2  
I
R5  
P6  
DMM3  
I
DMM4  
I
R7  
P7  
DMM5  
I
DMM6  
I
R8  
P8  
DMM7  
I
DMM_CLK  
I
N15  
Debug Interface (Hardware In Loop) Mux Select between DMM1 and  
DMM2 (Two Instances)  
DMM_MUX_IN  
I
G13, J13, P4  
DMM_SYNC  
DSS_UART_TX  
EPWM1A  
I
Debug Interface (Hardware In Loop) - Sync  
Debug UART Transmit [DSP]  
PWM Module 1 - Output A  
N14  
O
O
O
I
D13, E13, G14, P8, R12  
N5, N8  
EPWM1B  
PWM Module 1 - Output B  
H13, N5, P9  
EPWM1SYNCI  
EPWM2A  
J13  
O
O
O
O
O
IO  
IO  
IO  
IO  
IO  
IO  
PWM Module 2- Output A  
PWM Module 2 - Output B  
H13, N4, N5, P9  
EPWM2B  
N4  
R7  
EPWM2SYNCO  
EPWM3A  
PWM Module 3 - Output A  
N4  
EPWM3SYNCO  
GPIO_0  
P6  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
H13  
J13  
K13  
E13  
H14  
F14  
GPIO_1  
GPIO_2  
GPIO_3  
GPIO_4  
GPIO_5  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: AWR6843  
 
AWR6843  
www.ti.com  
SIGNAL NAME  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
PIN TYPE  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
DESCRIPTION  
BALL NO.  
P11  
R12  
R13  
N12  
R14  
P12  
P13  
H13  
N5  
GPIO_6  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
I2C Clock  
GPIO_7  
GPIO_8  
GPIO_9  
GPIO_10  
GPIO_11  
GPIO_12  
GPIO_13  
GPIO_14  
GPIO_15  
N4  
GPIO_16  
J13  
GPIO_17  
P10  
N10  
D13  
E14  
F13  
G14  
R11  
N13  
N8  
GPIO_18  
GPIO_19  
GPIO_20  
GPIO_21  
GPIO_22  
GPIO_23  
GPIO_24  
GPIO_25  
GPIO_26  
K13  
P9  
GPIO_27  
GPIO_28  
P4  
GPIO_29  
G13  
C13  
R4  
GPIO_30  
GPIO_31  
GPIO_32  
P5  
GPIO_33  
R5  
GPIO_34  
P6  
GPIO_35  
R7  
GPIO_36  
P7  
GPIO_37  
R8  
GPIO_38  
P8  
GPIO_47  
N15  
G14, N4  
F13, N5  
J14  
I2C_SCL  
I2C_SDA  
I2C Data  
LVDS_TXP[0]  
LVDS_TXM[0]  
LVDS_TXP[1]  
LVDS_TXM[1]  
LVDS_CLKP  
LVDS_CLKM  
LVDS_FRCLKP  
LVDS_FRCLKM  
MCU_CLKOUT  
MSS_UARTA_RX  
Differential data Out – Lane 0  
Differential data Out – Lane 1  
Differential clock Out  
O
J15  
O
K14  
K15  
L14  
L15  
M14  
M15  
O
O
O
O
Differential Frame Clock  
O
O
Programmable clock given out to external MCU or the processor  
Master Subsystem - UART A Receive  
N8  
I
F14, N4, R11  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: AWR6843  
AWR6843  
www.ti.com  
BALL NO.  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
SIGNAL NAME  
MSS_UARTA_TX  
MSS_UARTB_RX  
PIN TYPE  
DESCRIPTION  
Master Subsystem - UART A Transmit  
O
H14, N13, N5, R4  
N4, P4  
IO  
Master Subsystem - UART B Receive  
F14, H14, K13, N13, N5,  
P10, P7  
MSS_UARTB_TX  
NDMM_EN  
O
I
Master Subsystem - UART B Transmit  
Debug Interface (Hardware In Loop) Enable - Active Low Signal  
N13, N5  
Failsafe input to the device. Nerror output from any other device can  
be concentrated in the error signaling monitor module inside the  
device and appropriate action can be taken by Firmware  
NERROR_IN  
I
N7  
Open drain fail safe output signal. Connected to PMIC/  
Processor/MCU to indicate that some severe criticality fault has  
happened. Recovery would be through reset.  
NERROR_OUT  
O
N6  
PMIC_CLKOUT  
QSPI[0]  
O
IO  
I
Output Clock from AWR6843 device for PMIC  
QSPI Data Line #0 (Used with Serial Data Flash)  
QSPI Data Line #1 (Used with Serial Data Flash)  
QSPI Data Line #2 (Used with Serial Data Flash)  
QSPI Data Line #3 (Used with Serial Data Flash)  
QSPI Clock (Used with Serial Data Flash)  
QSPI Clock (Used with Serial Data Flash)  
QSPI Chip Select (Used with Serial Data Flash)  
Debug UART (Operates as Bus Master) - Receive Signal  
Debug UART (Operates as Bus Master) - Transmit Signal  
Sense On Power - Line#0  
H13, K13, P9  
R13  
QSPI[1]  
N12  
QSPI[2]  
I
R14  
QSPI[3]  
I
P12  
QSPI_CLK  
QSPI_CLK_EXT  
QSPI_CS_N  
RS232_RX  
RS232_TX  
SOP[0]  
O
I
R12  
H14  
O
I
P11  
N4  
O
I
N5  
N13  
SOP[1]  
I
Sense On Power - Line#1  
G13  
SOP[2]  
I
Sense On Power - Line#2  
P9  
SPIA_CLK  
SPIA_CS_N  
SPIA_MISO  
SPIA_MOSI  
SPIB_CLK  
SPIB_CS_N  
SPIB_CS_N_1  
SPIB_CS_N_2  
SPIB_MISO  
SPIB_MOSI  
SPI_HOST_INTR  
SYNC_IN  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
I
SPI Channel A - Clock  
E13  
SPI Channel A - Chip Select  
E15  
SPI Channel A - Master In Slave Out  
SPI Channel A - Master Out Slave In  
SPI Channel B - Clock  
E14  
D13  
F14, R12  
SPI Channel B Chip Select (Instance ID 0)  
SPI Channel B Chip Select (Instance ID 1)  
SPI Channel B Chip Select (Instance ID 2)  
SPI Channel B - Master In Slave Out  
SPI Channel B - Master Out Slave In  
Out of Band Interrupt to an external host communicating over SPI  
Low frequency Synchronization signal input  
Low Frequency Synchronization Signal output  
JTAG Test Clock  
H14, P11  
G13, J13, P13  
G13, J13, N12  
G14, R13  
F13, N12  
P13  
P4  
SYNC_OUT  
TCK  
O
I
G13, J13, K13, P4  
P10  
R11  
N13  
N10  
N15  
N14  
R4  
TDI  
I
JTAG Test Data Input  
TDO  
O
I
JTAG Test Data Output  
TMS  
JTAG Test Mode Signal  
TRACE_CLK  
TRACE_CTL  
TRACE_DATA_0  
TRACE_DATA_1  
TRACE_DATA_2  
TRACE_DATA_3  
TRACE_DATA_4  
O
O
O
O
O
O
O
Debug Trace Output - Clock  
Debug Trace Output - Control  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
P5  
Debug Trace Output - Data Line  
R5  
Debug Trace Output - Data Line  
P6  
Debug Trace Output - Data Line  
R7  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: AWR6843  
AWR6843  
www.ti.com  
SIGNAL NAME  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
PIN TYPE  
DESCRIPTION  
Debug Trace Output - Data Line  
BALL NO.  
P7  
TRACE_DATA_5  
TRACE_DATA_6  
TRACE_DATA_7  
FRAME_START  
CHIRP_START  
CHIRP_END  
O
O
O
O
O
O
O
Debug Trace Output - Data Line  
R8  
Debug Trace Output - Data Line  
P8  
Pulse signal indicating the start of each frame  
Pulse signal indicating the start of each chirp  
Pulse signal indicating the end of each chirp  
When high, indicating valid ADC samples  
N8, K13, P9  
N8, K13, P9  
N8, K13, P9  
P13, H13  
ADC_VALID  
Open drain fail safe warm reset signal. Can be driven from PMIC for  
diagnostic or can be used as status signal that the device is going  
through reset.  
WARM_RESET  
IO  
N9  
6.3.2 Signal Descriptions - Analog  
PIN  
TYPE  
INTERFACE  
SIGNAL NAME  
DESCRIPTION  
Single ended transmitter1 o/p  
BALL NO.  
TX1  
TX2  
TX3  
RX1  
RX2  
RX3  
RX4  
O
O
O
I
B4  
B6  
B8  
M2  
K2  
H2  
F2  
R3  
Transmitters  
Single ended transmitter2 o/p  
Single ended transmitter3 o/p  
Single ended receiver1 i/p  
Single ended receiver2 i/p  
Single ended receiver3 i/p  
Single ended receiver4 i/p  
Power on reset for chip. Active low  
I
Receivers  
Reset  
I
I
NRESET  
I
In XTAL mode: Differential port for reference crystal  
In External clock mode: Single ended input  
reference clock port  
CLKP  
I
I
B15  
Reference  
Oscillator  
In XTAL mode: Differential port for reference crystal  
In External clock mode: Connect this port to ground  
CLKM  
C15  
A14  
Reference clock output from clocking subsystem  
after cleanup PLL (1.4V output voltage swing).  
Reference clock  
Bandgap voltage  
OSC_CLKOUT  
O
O
VBGAP  
VDDIN  
Device's Band Gap Reference Output  
B10  
H15, N11, P15, R6  
G15  
Power 1.2V digital power supply  
VIN_SRAM  
VNWA  
Power 1.2V power rail for internal SRAM  
Power 1.2V power rail for SRAM array back bias  
P14  
I/O Supply (3.3V or 1.8V): All CMOS I/Os would  
operate on this supply  
VIOIN  
Power  
R10, F15  
Power supply  
VIOIN_18  
VIN_18CLK  
VIOIN_18DIFF  
VPP  
Power 1.8V supply for CMOS IO  
Power 1.8V supply for clock module  
Power 1.8V supply for LVDS port  
Power Voltage supply for fuse chain  
R9  
B11  
D15  
L13  
1.3V Analog and RF supply,VIN_13RF1 and  
Power  
VIN_13RF1  
G5, H5, J5  
VIN_13RF2 could be shorted on the board  
VIN_13RF2  
VIN_18BB  
VIN_18VCO  
Power 1.3V Analog and RF supply  
Power 1.8V Analog base band power supply  
Power 1.8V RF VCO supply  
C2,D2  
K5, F5  
B12  
Power supply  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: AWR6843  
AWR6843  
www.ti.com  
BALL NO.  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
PIN  
TYPE  
INTERFACE  
SIGNAL NAME  
DESCRIPTION  
L5, L6, L8, L10, K7,  
K8, K9, K10, K11,  
J6, J7, J8, J10, H7,  
H9, H11, G6, G7,  
G8, G10, F9, F11,  
E5, E6, E8, E10,  
E11, R15  
VSS  
Ground Digital ground  
A1, A3, A5, A7, A9,  
A13, A15, B1, B3,  
B5, B7, B9, B14,  
C1, C3, C4, C5, C6,  
C7, C8, C9, C14,  
E1, E2, E3, F3, G1,  
G2, G3, H3, J1, J2,  
J3, K3, L1, L2, L3,  
M3, N1, N2, N3, R1  
VSSA  
Ground Analog ground  
VOUT_14APLL  
O
Internal LDO output  
A10  
B13  
A2, B2  
P1  
Internal LDO output/  
inputs  
VOUT_14SYNTH  
O
Internal LDO output  
VOUT_PA  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
Internal LDO output  
Analog Test1 / GPADC1  
Analog Test2 / GPADC2  
Analog Test3 / GPADC3  
Analog Test4 / GPADC4  
ANAMUX / GPADC5  
VSENSE / GPADC6  
Analog IO dedicated for ADC service  
Analog IO dedicated for ADC service  
Analog IO dedicated for ADC service  
Analog IO dedicated for ADC service  
Analog IO dedicated for ADC service  
Analog IO dedicated for ADC service  
Test and Debug  
output for pre-  
production phase.  
Can be pinned out  
on production  
hardware for field  
debug  
P2  
P3  
R2  
C13  
D14  
Copyright © 2020 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: AWR6843  
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
7 Specifications  
7.1 Absolute Maximum Ratings  
PARAMETERS (1) (2)  
1.2 V digital power supply  
MIN  
–0.5  
–0.5  
–0.5  
MAX  
1.4  
UNIT  
VDDIN  
V
V
V
VIN_SRAM  
VNWA  
1.2 V power rail for internal SRAM  
1.4  
1.2 V power rail for SRAM array back bias  
1.4  
I/O supply (3.3 V or 1.8 V): All CMOS I/Os would operate on this  
supply.  
VIOIN  
–0.5  
3.8  
V
VIOIN_18  
1.8 V supply for CMOS IO  
1.8 V supply for clock module  
1.8 V supply for LVDS port  
–0.5  
–0.5  
–0.5  
2
2
2
V
V
V
VIN_18CLK  
VIOIN_18DIFF  
VIN_13RF1  
VIN_13RF2  
1.3 V Analog and RF supply, VIN_13RF1 and VIN_13RF2 could  
be shorted on the board.  
–0.5  
1.45  
V
VIN_13RF1  
(1-V Internal LDO  
bypass mode)  
Device supports mode where external Power Management  
block can supply 1 V on VIN_13RF1 and VIN_13RF2 rails. In  
this configuration, the internal LDO of the device would be kept  
bypassed.  
–0.5  
1.4  
V
VIN_13RF2  
(1-V Internal LDO  
bypass mode)  
VIN_18BB  
1.8-V Analog baseband power supply  
1.8-V RF VCO supply  
–0.5  
–0.5  
2
2
V
V
VIN_18VCO supply  
Dual-voltage LVCMOS inputs, 3.3 V or 1.8 V (Steady State)  
–0.3V  
VIOIN + 0.3  
Input and output  
voltage range  
V
Dual-voltage LVCMOS inputs, operated at 3.3 V/1.8 V  
(Transient Overshoot/Undershoot) or external oscillator input  
VIOIN + 20% up to  
20% of signal period  
CLKP, CLKM  
Clamp current  
Input ports for reference crystal  
–0.5  
2
V
Input or Output Voltages 0.3 V above or below their respective  
power rails. Limit clamp current that flows through the internal  
diode protection cells of the I/O.  
–20  
20  
mA  
TJ  
Operating junction temperature range  
–40  
–55  
125  
150  
°C  
°C  
TSTG  
Storage temperature range after soldered onto PC board  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011(2)  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(2) Corner pins are rated as ±750 V  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: AWR6843  
 
 
 
 
 
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
7.3 Power-On Hours (POH)  
OPERATING  
CONDITION  
JUNCTION TEMPERATURE (Tj) (1) (2)  
NOMINAL CVDD VOLTAGE (V)  
POWER-ON HOURS [POH] (HOURS)  
–40°C  
75°C  
600 (6%)  
2000 (20%)  
6500 (65%)  
900 (9%)  
100% duty cycle  
1.2  
95°C  
125°C  
(1) This information is provided solely for your convenience and does not extend or modify the warranty provided under TI's standard  
terms and conditions for TI semiconductor products.  
(2) The specified POH are applicable with max Tx output power settings using the default firmware gain tables. The specified POH would  
not be applicable, if the Tx gain table is overwritten using an API.  
Copyright © 2020 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: AWR6843  
 
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
7.4 Recommended Operating Conditions  
MIN  
1.14  
1.14  
1.14  
3.15  
1.71  
1.71  
1.71  
1.71  
NOM  
1.2  
1.2  
1.2  
3.3  
1.8  
1.8  
1.8  
1.8  
MAX  
1.32  
1.32  
1.32  
3.45  
1.89  
1.9  
UNIT  
VDDIN  
1.2 V digital power supply  
V
V
V
VIN_SRAM  
VNWA  
1.2 V power rail for internal SRAM  
1.2 V power rail for SRAM array back bias  
I/O supply (3.3 V or 1.8 V):  
All CMOS I/Os would operate on this supply.  
VIOIN  
V
VIOIN_18  
1.8 V supply for CMOS IO  
1.8 V supply for clock module  
1.8 V supply for LVDS port  
V
V
V
VIN_18CLK  
VIOIN_18DIFF  
VIN_13RF1  
VIN_13RF2  
1.9  
1.9  
1.3 V Analog and RF supply. VIN_13RF1 and VIN_13RF2  
could be shorted on the board  
1.23  
1.3  
1.36  
V
VIN_13RF1  
(1-V Internal LDO  
bypass mode)  
Device supports mode where external Power Management  
block can supply 1 V on VIN_13RF1 and VIN_13RF2 rails. In  
this configuration, the internal LDO of the device would be  
kept bypassed.  
0.95  
1
1.05  
V
VIN_13RF2  
(1-V Internal LDO  
bypass mode)  
VIN18BB  
1.8-V Analog baseband power supply  
1.8V RF VCO supply  
1.71  
1.71  
1.17  
2.25  
1.8  
1.8  
1.9  
1.9  
V
V
VIN_18VCO  
Voltage Input High (1.8 V mode)  
Voltage Input High (3.3 V mode)  
Voltage Input Low (1.8 V mode)  
Voltage Input Low (3.3 V mode)  
High-level output threshold (IOH = 6 mA)  
Low-level output threshold (IOL = 6 mA)  
VIL (1.8V Mode)  
VIH  
VIL  
V
V
0.3*VIOIN  
0.62  
VOH  
VOL  
VIOIN – 450  
mV  
mV  
450  
0.45  
VIH (1.8V Mode)  
0.96  
1.57  
NRESET  
SOP[2:0]  
V
VIL (3.3V Mode)  
0.65  
VIH (3.3V Mode)  
7.5 Power Supply Specifications  
Table 7-1 describes the four rails from an external power supply block of the AWR6843 device.  
Table 7-1. Power Supply Rails Characteristics  
SUPPLY  
DEVICE BLOCKS POWERED FROM THE SUPPLY  
RELEVANT IOS IN THE DEVICE  
Input: VIN_18VCO, VIN18CLK, VIN_18BB,  
VIOIN_18DIFF, VIOIN_18  
LDO Output: VOUT_14SYNTH, VOUT_14APLL  
Synthesizer and APLL VCOs, crystal oscillator, IF  
Amplifier stages, ADC, LVDS  
1.8 V  
1.3 V (or 1 V in internal  
LDO bypass mode)(1)  
Power Amplifier, Low Noise Amplifier, Mixers and LO  
Distribution  
Input: VIN_13RF2, VIN_13RF1  
LDO Output: VOUT_PA  
3.3 V (or 1.8 V for 1.8 V  
I/O mode)  
Digital I/Os  
Input VIOIN  
1.2 V  
Core Digital and SRAMs  
Input: VDDIN, VIN_SRAM  
(1) Three simultaneous transmitter operation is supported only in 1-V LDO bypass and PA LDO disable mode. In this mode 1V supply  
needs to be fed on the VOUT PA pin.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: AWR6843  
 
 
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
The 1.3-V (1.0 V) and 1.8-V power supply ripple specifications mentioned in Table 7-2 are defined to meet a  
target spur level of –105 dBc (RF Pin = –15 dBm) at the RX. The spur and ripple levels have a dB-to-dB  
relationship, for example, a 1-dB increase in supply ripple leads to a ~1 dB increase in spur level. Values quoted  
are rms levels for a sinusoidal input applied at the specified frequency.  
Table 7-2. Ripple Specifications  
RF RAIL  
VCO/IF RAIL  
FREQUENCY (kHz)  
1.0 V (INTERNAL LDO BYPASS)  
1.3 V (µVRMS  
)
1.8 V (µVRMS)  
(µVRMS  
)
137.5  
275  
7
5
648  
76  
22  
4
83  
21  
11  
6
550  
3
1100  
2200  
4400  
6600  
2
11  
13  
22  
82  
93  
117  
13  
19  
29  
7.6 Power Consumption Summary  
Table 7-3 and Table 7-4 summarize the power consumption at the power terminals.  
Table 7-3. Maximum Current Ratings at Power Terminals  
PARAMETER  
SUPPLY NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
Total current drawn by all  
nodes driven by 1.2V rail  
VDDIN, VIN_SRAM, VNWA  
1000  
Total current drawn by all  
nodes driven by 1.3V or  
1.0V rail (2TX, 4 RX  
simultaneously)(3)  
VIN_13RF1, VIN_13RF2  
2000  
850  
Current consumption(1)  
mA  
VIOIN_18, VIN_18CLK,  
VIOIN_18DIFF, VIN_18BB,  
VIN_18VCO  
Total current drawn by all  
nodes driven by 1.8V rail  
Total current drawn by all  
nodes driven by 3.3V  
rail(2)  
VIOIN  
50  
(1) The specified current values are at typical supply voltage level.  
(2) The exact VIOIN current depends on the peripherals used and their frequency of operation.  
(3) Simultaneous 3 Transmitter operation is supported only with 1-V LDO bypass and PA LDO disable mode. In this mode, the 1-V supply  
needs to be fed on the VOUT_PA pin. In this case, the peak 1-V supply current goes up to 2500 mA. To enable the LDO bypass mode,  
see the Interface Control document in the mmWave software development kit (SDK).  
Table 7-4. Average Power Consumption at Power Terminals  
PARAMETER  
CONDITION  
DESCRIPTION  
MIN  
TYP MAX UNIT  
1TX, 4RX  
Regular power ADC mode 6.4  
Msps complex transceiver,  
13.13-ms frame, 64 chirps, 256  
samples/chirp, 8.5-µs interchirp  
time, DSP + Hardware  
1.19  
24% duty cycle  
2TX, 4RX(1)  
1TX, 4RX  
1.25  
1.0-V internal  
LDO bypass  
mode  
accelerator active  
Average power  
consumption (1)  
W
Regular power ADC mode 6.4  
Msps complex transceiver,  
13.13-ms frame, 64 chirps, 256  
samples/chirp, 8.5-µs interchirp  
time, DSP + Hardware  
1.62  
48% duty cycle  
2TX, 4RX(1)  
1.75  
accelerator active  
(1) Two TX antennas are on simultaneously.  
Copyright © 2020 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: AWR6843  
 
 
 
 
 
 
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
7.7 RF Specification  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
12  
MAX UNIT  
dB  
Noise figure  
60 to 64 GHz  
1-dB compression point (Out Of Band )(1)  
–12  
48  
dBm  
Maximum gain  
dB  
Gain range  
18  
dB  
Gain step size  
2
dB  
Receiver  
IF bandwidth(2)  
10 MHz  
25 Msps  
12.5 Msps  
Bits  
A2D sampling rate (real)  
A2D sampling rate (complex 1x)  
A2D resolution  
12  
–90  
12  
Idle Channel Spurs  
Output power  
dBFS  
dBm  
Transmitter  
Power backoff range  
Frequency range  
26  
dB  
60  
64 GHz  
250 MHz/µs  
dBc/Hz  
Clock  
subsystem  
Ramp rate  
Phase noise at 1-MHz offset  
60 to 64 GHz  
–93  
(1) 1-dB Compression Point (Out Of Band) is measured by feed a Continuous wave Tone (10 kHz) well below the lowest HPF cut-off  
frequency.  
(2) The analog IF stages include high-pass filtering, with two independently configurable first-order high-pass corner frequencies. The set  
of available HPF corners is summarized as follows:  
Available HPF Corner Frequencies (kHz)  
HPF1  
HPF2  
175, 235, 350, 700  
350, 700, 1400, 2800  
The filtering performed by the digital baseband chain is targeted to provide:  
Less than ±0.5 dB pass-band ripple/droop, and  
Better than 60 dB anti-aliasing attenuation for any frequency that can alias back into the pass-band.  
7.8 CPU Specifications  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
600  
32  
MAX UNIT  
Clock Speed  
DSP  
MHz  
KB  
L1 Code Memory  
Subsystem  
(C674  
Family)  
L1 Data Memory  
32  
KB  
L2 Memory  
256  
200  
512  
192  
KB  
Master  
Clock Speed  
MHz  
KB  
Controller  
Subsystem  
(R4F Family)  
Tightly Coupled Memory - A (Program)  
Tightly Coupled Memory - B (Data)  
KB  
Shared  
Memory  
Shared L3 Memory  
768  
KB  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: AWR6843  
 
 
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
7.9 Thermal Resistance Characteristics for FCBGA Package [ABL0161]  
THERMAL METRICS(1)  
°C/W(2) (3)  
JC  
JB  
JA  
JMA  
PsiJT  
PsiJB  
Junction-to-case  
4.92  
6.57  
22.3  
N/A(4)  
4.92  
6.4  
Junction-to-board  
Junction-to-free air  
Junction-to-moving air  
Junction-to-package top  
Junction-to-board  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) °C/W = degrees Celsius per watt.  
(3) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(4) N/A = not applicable  
Copyright © 2020 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: AWR6843  
 
 
 
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
7.10 Timing and Switching Characteristics  
7.10.1 Power Supply Sequencing and Reset Timing  
The AWR6843 device expects all external voltage rails to be stable before reset is deasserted. Figure 7-1  
describes the device wake-up sequence.  
SOP  
Setup  
Time  
SOP  
Hold time to  
nRESET  
DC power  
Stable before  
nRESET  
MSS  
BOOT  
START  
nRESET  
ASSERT  
tPGDEL  
DC  
Power  
notOK  
DC  
Power  
OK  
QSPI  
READ  
release  
VDDIN,  
VIN_SRAM  
VNWA  
VIOIN_18  
VIN18_CLK  
VIOIN_18DIFF  
VIN18_BB  
VIN_13RF1  
VIN_13RF2  
VIOIN  
SOP IO  
Reuse  
SOP IO‘s can be used as functional IO‘s  
SOP[2.1.0]  
nRESET  
WARMRESET  
OUTPUT  
VBGAP  
OUTPUT  
CLKP, CLKM  
Using Crystal  
MCUCLK  
OUTPUT (1)  
QSPI_CS  
OUTPUT  
8 ms (XTAL Mode)  
850 µs (REFCLK Mode)  
A. MCU_CLK_OUT in autonomous mode, where AWR6843 application is booted from the serial flash, MCU_CLK_OUT is not enabled by  
default by the device bootloader.  
Figure 7-1. Device Wake-up Sequence  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: AWR6843  
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
7.10.2 Input Clocks and Oscillators  
7.10.2.1 Clock Specifications  
The AWR6843 requires external clock source (that is, a 40-MHz crystal or external oscillator to CLKP) for initial  
boot and as a reference for an internal APLL hosted in the device. An external crystal is connected to the device  
pins. Figure 7-2 shows the crystal implementation.  
Cf1  
XTALP  
Cp  
40 MHz  
XTALM  
Cf2  
Figure 7-2. Crystal Implementation  
Note  
The load capacitors, Cf1 and Cf2 in Figure 7-2, should be chosen such that Equation 1 is satisfied. CL  
in the equation is the load specified by the crystal manufacturer. All discrete components used to  
implement the oscillator circuit should be placed as close as possible to the associated oscillator  
CLKP and CLKM pins.  
C f2  
CL = C f1  
´
+CP  
C
f1 +C f2  
(1)  
Table 7-5 lists the electrical characteristics of the clock crystal.  
Table 7-5. Crystal Electrical Characteristics (Oscillator Mode)  
NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
MHz  
pF  
fP  
Parallel resonance crystal frequency  
40  
CL  
Crystal load capacitance  
Crystal ESR  
5
8
12  
50  
ESR  
Ω
Temperature range Expected temperature range of operation  
–40  
–50  
105  
°C  
Frequency  
Crystal frequency tolerance(1) (2) (3)  
tolerance  
50  
ppm  
µW  
Drive level  
50  
200  
(1) The crystal manufacturer's specification must satisfy this requirement.  
(2) Includes initial tolerance of the crystal, drift over temperature, aging and frequency pulling due to incorrect load capacitance.  
(3) Crystal tolerance affects radar sensor accuracy.  
In the case where an external clock is used as the clock resource, the signal is fed to the CLKP pin only; CLKM  
is grounded. The phase noise requirement is very important when a 40-MHz clock is fed externally. Table 7-6  
lists the electrical characteristics of the external clock signal.  
Copyright © 2020 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: AWR6843  
 
 
 
 
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
Table 7-6. External Clock Mode Specifications  
SPECIFICATION  
PARAMETER  
UNIT  
MIN  
TYP  
MAX  
Frequency  
40  
MHz  
mV (pp)  
V
AC-Amplitude  
700  
0.00  
1.6  
1200  
0.20  
1.95  
–132  
–143  
–152  
–153  
65  
DC-Vil  
DC-Vih  
V
Input Clock:  
External AC-coupled sine wave or DC-  
coupled square wave  
Phase Noise at 1 kHz  
Phase Noise at 10 kHz  
Phase Noise at 100 kHz  
Phase Noise at 1 MHz  
Duty Cycle  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
%
Phase Noise referred to 40 MHz  
35  
Freq Tolerance  
Freq Tolerance  
–50  
–50  
50  
ppm  
50  
ppm  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: AWR6843  
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
7.10.3 Multibuffered / Standard Serial Peripheral Interface (MibSPI)  
7.10.3.1 Peripheral Description  
The MibSPI/SPI is a high-speed synchronous serial input/output port that allows a serial bit stream of  
programmed length (2 to 16 bits) to be shifted into and out of the device at a programmed bit-transfer rate. The  
MibSPI/SPI is normally used for communication between the microcontroller and external peripherals or another  
microcontroller.  
Standard and MibSPI modules have the following features:  
16-bit shift register  
Receive buffer register  
8-bit baud clock generator  
SPICLK can be internally-generated (master mode) or received from an external clock source  
(slave mode)  
Each word transferred can have a unique format.  
SPI I/Os not used in the communication can be used as digital input/output signals  
7.10.3.2 MibSPI Transmit and Receive RAM Organization  
The Multibuffer RAM is comprised of 256 buffers. Each entry in the Multibuffer RAM consists of 4 parts: a 16-bit  
transmit field, a 16-bit receive field, a 16-bit control field and a 16-bit status field. The Multibuffer RAM can be  
partitioned into multiple transfer group with variable number of buffers each.  
Section 7.10.3.2.2 and Section 7.10.3.2.3 assume the operating conditions stated in Section 7.10.3.2.1.  
7.10.3.2.1 SPI Timing Conditions  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input rise time  
Input fall time  
1
1
3
3
ns  
ns  
Output Conditions  
CLOAD Output load capacitance  
2
15  
pF  
7.10.3.2.2 SPI Master Mode Switching Parameters (CLOCK PHASE = 0, SPICLK = output,  
SPISIMO = output, and SPISOMI = input)  
NO.(1) (2) (3)  
PARAMETER  
Cycle time, SPICLK(4)  
MIN  
25  
TYP  
MAX UNIT  
1
tc(SPC)M  
256tc(VCLK)  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
ns  
tw(SPCH)M  
tw(SPCL)M  
tw(SPCL)M  
tw(SPCH)M  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 3  
2(4)  
ns  
3(4)  
ns  
ns  
td(SPCH-  
Delay time, SPISIMO valid before SPICLK low, (clock  
polarity = 0)  
SIMO)M  
4(4)  
5(4)  
6(5)  
td(SPCL-  
Delay time, SPISIMO valid before SPICLK high, (clock  
polarity = 1)  
0.5tc(SPC)M – 3  
SIMO)M  
tv(SPCL-  
Valid time, SPISIMO data valid after SPICLK low, (clock 0.5tc(SPC)M – 10.5  
polarity = 0)  
SIMO)M  
ns  
ns  
tv(SPCH-  
Valid time, SPISIMO data valid after SPICLK high, (clock 0.5tc(SPC)M – 10.5  
polarity = 1)  
SIMO)M  
CSHOLD = 0  
(C2TDELAY  
+2)*tc(VCLK) – 7.5  
(C2TDELAY+2)  
* tc(VCLK) + 7  
Setup time CS active until SPICLK  
high  
(clock polarity = 0)  
tC2TDELAY  
CSHOLD = 1  
(C2TDELAY +3)  
* tc(VCLK) – 7.5  
(C2TDELAY+3)  
* tc(VCLK) + 7  
Copyright © 2020 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: AWR6843  
 
 
AWR6843  
www.ti.com  
NO.(1) (2) (3)  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
PARAMETER  
MIN  
TYP  
MAX UNIT  
(C2TDELAY+2)  
CSHOLD = 0  
CSHOLD = 1  
(C2TDELAY  
+2)*tc(VCLK) – 7.5  
Setup time CS active until SPICLK  
* tc(VCLK) + 7  
low  
(C2TDELAY +3)  
* tc(VCLK) – 7.5  
(C2TDELAY+3)  
* tc(VCLK) + 7  
(clock polarity = 1)  
Hold time, SPICLK low until CS inactive (clock polarity =  
0)  
0.5*tc(SPC)M  
(T2CDELAY + 1)  
*tc(VCLK) – 7  
+
0.5*tc(SPC)M  
(T2CDELAY +  
1) * tc(VCLK)  
7.5  
+
+
7(5)  
tT2CDELAY  
ns  
Hold time, SPICLK high until CS inactive (clock polarity =  
1)  
0.5*tc(SPC)M  
(T2CDELAY + 1)  
*tc(VCLK) – 7  
+
0.5*tc(SPC)M  
(T2CDELAY +  
1) * tc(VCLK)  
+
+
7.5  
tsu(SOMI-  
Setup time, SPISOMI before SPICLK low  
(clock polarity = 0)  
5
5
3
3
SPCL)M  
8(4)  
ns  
ns  
tsu(SOMI-  
Setup time, SPISOMI before SPICLK high  
(clock polarity = 1)  
SPCH)M  
th(SPCL-  
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity = 0)  
SOMI)M  
9(4)  
th(SPCH-  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity = 1)  
SOMI)M  
(1) The MASTER bit (SPIGCRx.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is cleared (where x= 0 or 1).  
(2) tc(MSS_VCLK) = master subsystem clock time = 1 / f(MSS_VCLK). For more details, see the Technical Reference Manual.  
(3) When the SPI is in Master mode, the following must be true: For PS values from 1 to 255: tc(SPC)M ≥ (PS +1)tc(MSS_VCLK) ≥ 25ns, where  
PS is the prescale value set in the SPIFMTx.[15:8] register bits. For PS values of 0: tc(SPC)M = 2tc(MSS_VCLK) ≥ 25ns.  
(4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
(5) C2TDELAY and T2CDELAY is programmed in the SPIDELAY register  
11  
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1  
4
5
Master Out Data Is Valid  
SPISIMO  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
Figure 7-3. SPI Master Mode External Timing (CLOCK PHASE = 0)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: AWR6843  
 
 
 
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
Write to buffer  
SPICLK  
(clock polarity=0)  
SPICLK  
(clock polarity=1)  
SPISIMO  
Master Out Data Is Valid  
6
7
SPICSn  
Figure 7-4. SPI Master Mode Chip Select Timing (CLOCK PHASE = 0)  
7.10.3.2.3 SPI Master Mode Switching Parameters (CLOCK PHASE = 1, SPICLK = output,  
SPISIMO = output, and SPISOMI = input)  
NO.(1) (2) (3)  
PARAMETER  
Cycle time, SPICLK(4)  
MIN  
25  
TYP  
MAX UNIT  
1
tc(SPC)M  
256tc(VCLK)  
ns  
tw(SPCH)M  
tw(SPCL)M  
tw(SPCL)M  
tw(SPCH)M  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
2(4)  
ns  
3(4)  
ns  
ns  
td(SPCH-  
Delay time, SPISIMO valid before SPICLK low, (clock polarity 0.5tc(SPC)M – 3  
= 0)  
SIMO)M  
4(4)  
td(SPCL-  
Delay time, SPISIMO valid before SPICLK high, (clock  
polarity = 1)  
0.5tc(SPC)M – 3  
SIMO)M  
tv(SPCL-  
Valid time, SPISIMO data valid after SPICLK low, (clock  
polarity = 0)  
0.5tc(SPC)M  
10.5  
SIMO)M  
5(4)  
ns  
tv(SPCH-  
Valid time, SPISIMO data valid after SPICLK high, (clock  
polarity = 1)  
0.5tc(SPC)M  
10.5  
SIMO)M  
tC2TDELAY  
Setup time CS active until SPICLK  
high  
(clock polarity = 0)  
CSHOLD = 0  
CSHOLD = 1  
CSHOLD = 0  
CSHOLD = 1  
0.5*tc(SPC)M  
+
(C2TDELAY +  
2)*tc(VCLK) – 7  
0.5*tc(SPC)M  
(C2TDELAY  
+2) * tc(VCLK)  
7.5  
+
+
0.5*tc(SPC)M  
(C2TDELAY +  
2)*tc(VCLK) – 7  
+
0.5*tc(SPC)M  
+
(C2TDELAY  
+2) * tc(VCLK)  
+
7.5  
6(5)  
ns  
0.5*tc(SPC)M  
(C2TDELAY  
+2)*tc(VCLK)  
0.5*tc(SPC)M  
+
0.5*tc(SPC)M  
+
(C2TDELAY  
7
+2) * tc(VCLK)  
+
Setup time CS active until SPICLK  
low  
(clock polarity = 1)  
7.5  
+
0.5*tc(SPC)M  
+
(C2TDELAY  
(C2TDELAY  
+3)*tc(VCLK)  
7
+3) * tc(VCLK) +  
7.5  
Hold time, SPICLK low until CS inactive (clock polarity = 0)  
Hold time, SPICLK high until CS inactive (clock polarity = 1)  
(T2CDELAY +  
1) *tc(VCLK)  
(T2CDELAY +  
1) *tc(VCLK) + 7  
7.5  
7(5)  
tT2CDELAY  
ns  
ns  
(T2CDELAY +  
(T2CDELAY +  
1) *tc(VCLK) + 7  
1) *tc(VCLK)  
7.5  
tsu(SOMI-  
Setup time, SPISOMI before SPICLK low  
(clock polarity = 0)  
8(4)  
5
SPCL)M  
Copyright © 2020 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: AWR6843  
 
AWR6843  
www.ti.com  
NO.(1) (2) (3)  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
PARAMETER  
MIN  
TYP  
MAX UNIT  
tsu(SOMI-  
Setup time, SPISOMI before SPICLK high  
(clock polarity = 1)  
5
SPCH)M  
th(SPCL-  
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity = 0)  
3
3
SOMI)M  
9(4)  
ns  
th(SPCH-  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity = 1)  
SOMI)M  
(1) The MASTER bit (SPIGCRx.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set ( where x = 0 or 1 ).  
(2) tc(MSS_VCLK) = master subsystem clock time = 1 / f(MSS_VCLK). For more details, see the Technical Reference Manual.  
(3) When the SPI is in Master mode, the following must be true: For PS values from 1 to 255: tc(SPC)M ≥ (PS +1)tc(MSS_VCLK) ≥ 25 ns,  
where PS is the prescale value set in the SPIFMTx.[15:8] register bits. For PS values of 0: tc(SPC)M = 2tc(MSS_VCLK) ≥ 25 ns.  
(4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
(5) C2TDELAY and T2CDELAY is programmed in the SPIDELAY register  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: AWR6843  
 
 
 
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
Master Out Data Is Valid  
Data Valid  
SPISIMO  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
Figure 7-5. SPI Master Mode External Timing (CLOCK PHASE = 1)  
Write to buffer  
SPICLK  
(clock polarity=0)  
SPICLK  
(clock polarity=1)  
SPISIMO  
SPICSn  
Master Out Data Is Valid  
6
7
Figure 7-6. SPI Master Mode Chip Select Timing (CLOCK PHASE = 1)  
Copyright © 2020 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: AWR6843  
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
7.10.3.3 SPI Slave Mode I/O Timings  
7.10.3.3.1 SPI Slave Mode Switching Parameters (SPICLK = input, SPISIMO = input,  
and SPISOMI = output) (1) (2) (3)  
NO.  
PARAMETER  
MIN  
25  
TYP  
MAX  
UNIT  
1
tc(SPC)S  
Cycle time, SPICLK(4)  
ns  
tw(SPCH)S  
tw(SPCL)S  
tw(SPCL)S  
tw(SPCH)S  
td(SPCH-SOMI)S  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
10  
2(5)  
ns  
ns  
10  
10  
3(5)  
10  
Delay time, SPISOMI valid after SPICLK high  
(clock polarity = 0)  
10  
10  
4(5)  
ns  
ns  
td(SPCL-SOMI)S  
th(SPCH-SOMI)S  
th(SPCL-SOMI)S  
td(SPCH-SOMI)S  
Delay time, SPISOMI valid after SPICLK low (clock  
polarity = 1)  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity = 0)  
2
2
5(5)  
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity = 1)  
Delay time, SPISOMI valid after SPICLK high  
(clock polarity = 0; clock phase = 0) OR (clock  
polarity = 1; clock phase = 1)  
10  
10  
4(5)  
5(5)  
6(5)  
7(5)  
ns  
ns  
ns  
ns  
td(SPCL-SOMI)S  
th(SPCH-SOMI)S  
th(SPCL-SOMI)S  
Delay time, SPISOMI valid after SPICLK low (clock  
polarity = 1; clock phase = 0) OR (clock polarity =  
0; clock phase = 1)  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity = 0; clock phase = 0) OR (clock  
polarity = 1; clock phase = 1)  
2
2
3
3
1
1
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity = 1; clock phase = 0) OR (clock  
polarity = 0; clock phase = 1)  
Setup time, SPISIMO before SPICLK low (clock  
polarity = 0; clock phase = 0) OR (clock polarity =  
1; clock phase = 1)  
tsu(SIMO-SPCL)S  
Setup time, SPISIMO before SPICLK high (clock  
tsu(SIMO-SPCH)S polarity = 1; clock phase = 0) OR (clock polarity =  
0; clock phase = 1)  
Hold time, SPISIMO data valid after SPICLK low  
(clock polarity = 0; clock phase = 0) OR (clock  
polarity = 1; clock phase = 1)  
th(SPCL-SIMO)S  
Hold time, SPISIMO data valid after SPICLK high  
(clock polarity = 1; clock phase = 0) OR (clock  
polarity = 0; clock phase = 1)  
th(SPCL-SIMO)S  
(1) The MASTER bit (SPIGCRx.0) is cleared ( where x = 0 or 1 ).  
(2) The CLOCK PHASE bit (SPIFMTx.16) is either cleared or set for CLOCK PHASE = 0 or CLOCK PHASE = 1 respectively.  
(3) tc(MSS_VCLK) = master subsystem clock time = 1 / f(MSS_VCLK). For more details, see the Technical Reference Manual.  
(4) When the SPI is in Slave mode, the following must be true: For PS values from 1 to 255: tc(SPC)S ≥ (PS +1)tc(MSS_VCLK) ≥ 25 ns, where  
PS is the prescale value set in the SPIFMTx.[15:8] register bits.For PS values of 0: tc(SPC)S = 2tc(MSS_VCLK) ≥ 25 ns.  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: AWR6843  
 
 
 
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
5
4
SPISOMI  
SPISOMI Data Is Valid  
6
7
SPISIMO Data  
Must Be Valid  
SPISIMO  
Figure 7-7. SPI Slave Mode External Timing (CLOCK PHASE = 0)  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISOMI  
SPISOMI Data Is Valid  
6
7
SPISIMO Data  
Must Be Valid  
SPISIMO  
Figure 7-8. SPI Slave Mode External Timing (CLOCK PHASE = 1)  
Copyright © 2020 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: AWR6843  
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
7.10.3.4 Typical Interface Protocol Diagram (Slave Mode)  
1. Host should ensure that there is a delay of two SPI clocks between CS going low and start of SPI clock.  
2. Host should ensure that CS is toggled for every 16 bits of transfer through SPI.  
Figure 7-9 shows the SPI communication timing of the typical interface protocol.  
2 SPI clocks  
CS  
CLK  
0x4321  
0x1234  
CRC  
0x5678  
0x8765  
MOSI  
MISO  
IRQ  
0xDCBA  
0xABCD  
CRC  
16 bytes  
Figure 7-9. SPI Communication  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: AWR6843  
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
7.10.4 LVDS Interface Configuration  
The supported AWR6843 LVDS lane configuration is two Data lanes (LVDS_TXP/M), one Bit Clock lane  
(LVDS_CLKP/M) and one Frame clock lane (LVDS_FRCLKP/M). The LVDS interface is used for debugging. The  
LVDS interface supports the following data rates:  
900 Mbps (450 MHz DDR Clock)  
600 Mbps (300 MHz DDR Clock)  
450 Mbps (225 MHz DDR Clock)  
400 Mbps (200 MHz DDR Clock)  
300 Mbps (150 MHz DDR Clock)  
225 Mbps (112.5 MHz DDR Clock)  
150 Mbps (75 MHz DDR Clock)  
Note that the bit clock is in DDR format and hence the numbers of toggles in the clock is equivalent to data.  
LVDS_TXP/M  
LVDS_FRCLKP/M  
Data bitwidth  
LVDS_CLKP/M  
Figure 7-10. LVDS Interface Lane Configuration And Relative Timings  
7.10.4.1 LVDS Interface Timings  
Table 7-7. LVDS Electrical Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Duty Cycle Requirements  
max 1 pF lumped capacitive load on  
LVDS lanes  
48%  
52%  
Output Differential Voltage  
peak-to-peak single-ended with 100 Ω  
resistive load between differential pairs  
250  
450  
mV  
Output Offset Voltage  
Trise and Tfall  
1125  
1275  
mV  
ps  
20%-80%, 900 Mbps  
900 Mbps  
330  
80  
Jitter (pk-pk)  
ps  
Copyright © 2020 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: AWR6843  
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
Trise  
LVDS_CLK  
Clock Jitter = 6sigma  
LVDS_TXP/M  
LVDS_FRCLKP/M  
1100 ps  
Figure 7-11. Timing Parameters  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: AWR6843  
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
7.10.5 General-Purpose Input/Output  
Section 7.10.5.1 lists the switching characteristics of output timing relative to load capacitance.  
7.10.5.1 Switching Characteristics for Output Timing versus Load Capacitance (CL) (1) (2)  
PARAMETER  
TEST CONDITIONS  
CL = 20 pF  
VIOIN = 1.8V  
VIOIN = 3.3V  
UNIT  
2.8  
6.4  
9.4  
2.8  
6.4  
9.4  
3.3  
6.7  
9.6  
3.1  
6.6  
9.6  
3.0  
6.9  
tr  
tf  
tr  
tf  
Max rise time  
CL = 50 pF  
ns  
CL = 75 pF  
10.2  
2.8  
Slew control = 0  
CL = 20 pF  
CL = 50 pF  
CL = 75 pF  
CL = 20 pF  
CL = 50 pF  
CL = 75 pF  
CL = 20 pF  
CL = 50 pF  
CL = 75 pF  
Max fall time  
Max rise time  
Max fall time  
6.6  
ns  
ns  
ns  
9.8  
3.3  
7.2  
10.5  
3.1  
Slew control = 1  
6.6  
9.6  
(1) Slew control, which is configured by PADxx_CFG_REG, changes behavior of the output driver (faster or slower output slew rate).  
(2) The rise/fall time is measured as the time taken by the signal to transition from 10% and 90% of VIOIN voltage.  
Copyright © 2020 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: AWR6843  
 
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
7.10.6 Controller Area Network - Flexible Data-rate (CAN-FD)  
The CAN-FD module supports both classic CAN and CAN FD (CAN with Flexible Data-Rate) specifications.  
CAN FD feature allows high throughput and increased payload per data frame. The classic CAN and CAN FD  
devices can coexist on the same network without any conflict.  
The CAN-FD has the following features:  
Conforms with CAN Protocol 2.0 A, B and ISO 11898-1  
Full CAN FD support (up to 64 data bytes per frame)  
AUTOSAR and SAE J1939 support  
Up to 32 dedicated Transmit Buffers  
Configurable Transmit FIFO, up to 32 elements  
Configurable Transmit Queue, up to 32 elements  
Configurable Transmit Event FIFO, up to 32 elements  
Up to 64 dedicated Receive Buffers  
Two configurable Receive FIFOs, up to 64 elements each  
Up to 128 11-bit filter elements  
Internal Loopback mode for self-test  
Mask-able interrupts, two interrupt lines  
Two clock domains (CAN clock / Host clock)  
Parity / ECC support - Message RAM single error correction and double error detection (SECDED)  
mechanism  
Full Message Memory capacity (4352 words).  
7.10.6.1 Dynamic Characteristics for the CANx TX and RX Pins  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
td(CAN_FD_tx)  
td(CAN_FD_rx)  
Delay time, transmit shift register to CAN_FD_tx  
pin(1)  
15  
ns  
Delay time, CAN_FD_rx pin to receive shift  
register(1)  
10  
ns  
(1) These values do not include rise/fall times of the output buffer.  
7.10.7 Serial Communication Interface (SCI)  
The SCI has the following features:  
Standard universal asynchronous receiver-transmitter (UART) communication  
Standard non-return to zero (NRZ) format  
Double-buffered receive and transmit functions  
Asynchronous or iso-synchronous communication modes with no CLK pin  
Capability to use Direct Memory Access (DMA) for transmit and receive data  
Two external pins: RS232_RX and RS232_TX  
7.10.7.1 SCI Timing Requirements  
MIN  
TYP  
921.6  
MAX  
UNIT  
f(baud)  
Supported baud rate at 20 pF  
kHz  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: AWR6843  
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
7.10.8 Inter-Integrated Circuit Interface (I2C)  
The inter-integrated circuit (I2C) module is a multimaster communication module providing an interface between  
devices compliant with Philips Semiconductor I2C-bus specification version 2.1 and connected by an I2C-bus™.  
This module will support any slave or master I2C compatible device.  
The I2C has the following features:  
Compliance to the Philips I2C bus specification, v2.1 (The I2C Specification, Philips document number 9398  
393 40011)  
– Bit/Byte format transfer  
– 7-bit and 10-bit device addressing modes  
– General call  
– START byte  
– Multi-master transmitter/ slave receiver mode  
– Multi-master receiver/ slave transmitter mode  
– Combined master transmit/receive and receive/transmit mode  
– Transfer rates of 100 kbps up to 400 kbps (Phillips fast-mode rate)  
Free data format  
Two DMA events (transmit and receive)  
DMA event enable/disable capability  
Module enable/disable capability  
The SDA and SCL are optionally configurable as general purpose I/O  
Slew rate control of the outputs  
Open drain control of the outputs  
Programmable pullup/pulldown capability on the inputs  
Supports Ignore NACK mode  
Note  
This I2C module does not support:  
High-speed (HS) mode  
C-bus compatibility mode  
The combined format in 10-bit address mode (the I2C sends the slave address second byte every  
time it sends the slave address first byte)  
Copyright © 2020 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: AWR6843  
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
7.10.8.1 I2C Timing Requirements  
(1)  
STANDARD MODE  
FAST MODE  
UNIT  
MIN  
10  
MAX  
MIN  
2.5  
MAX  
tc(SCL)  
Cycle time, SCL  
μs  
μs  
tsu(SCLH-SDAL)  
Setup time, SCL high before SDA low  
(for a repeated START condition)  
4.7  
0.6  
th(SCLL-SDAL)  
Hold time, SCL low after SDA low  
4
0.6  
μs  
(for a START and a repeated START condition)  
tw(SCLL)  
Pulse duration, SCL low  
4.7  
4
1.3  
0.6  
100  
0
μs  
μs  
μs  
μs  
μs  
tw(SCLH)  
Pulse duration, SCL high  
tsu(SDA-SCLH)  
th(SCLL-SDA)  
tw(SDAH)  
Setup time, SDA valid before SCL high  
Hold time, SDA valid after SCL low  
250  
0
3.45(1)  
0.9  
Pulse duration, SDA high between STOP and START  
conditions  
4.7  
1.3  
tsu(SCLH-SDAH)  
tw(SP)  
Setup time, SCL high before SDA high  
(for STOP condition)  
4
0.6  
0
μs  
Pulse duration, spike (must be suppressed)  
Capacitive load for each bus line  
50  
ns  
(2) (3)  
Cb  
400  
400  
pF  
(1) The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered  
down.  
(2) The maximum th(SDA-SCLL) for I2C bus devices has only to be met if the device does not stretch the low period (tw(SCLL)) of the  
SCL signal.  
(3) Cb = total capacitance of one bus line in pF. If mixed with fast-mode devices, faster fall-times are allowed.  
SDA  
tw(SDAH)  
tsu(SDA-SCLH)  
tw(SP)  
tw(SCLL)  
tr(SCL)  
tsu(SCLH-SDAH)  
tw(SCLH)  
SCL  
tc(SCL)  
th(SCLL-SDAL)  
tf(SCL)  
th(SCLL-SDAL)  
tsu(SCLH-SDAL)  
th(SDA-SCLL)  
Stop  
Start  
Repeated Start  
Stop  
Figure 7-12. I2C Timing Diagram  
Note  
A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the  
VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL.  
The maximum th(SDA-SCLL) has only to be met if the device does not stretch the LOW period  
(tw(SCLL)) of the SCL signal. E.A Fast-mode I2C-bus device can be used in a Standard-mode  
I2C-bus system, but the requirement tsu(SDA-SCLH) ≥ 250 ns must then be met. This will  
automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a  
device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA  
line tr max + tsu(SDA-SCLH)  
.
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: AWR6843  
 
 
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
7.10.9 Quad Serial Peripheral Interface (QSPI)  
The quad serial peripheral interface (QSPI) module is a kind of SPI module that allows single, dual, or quad read  
access to external SPI devices. This module has a memory mapped register interface, which provides a direct  
interface for accessing data from external SPI devices and thus simplifying software requirements. The QSPI  
works as a master only. The QSPI in the device is primarily intended for fast booting from quad-SPI flash  
memories.  
The QSPI supports the following features:  
Programmable clock divider  
Six-pin interface  
Programmable length (from 1 to 128 bits) of the words transferred  
Programmable number (from 1 to 4096) of the words transferred  
Support for 3-, 4-, or 6-pin SPI interface  
Optional interrupt generation on word or frame (number of words) completion  
Programmable delay between chip select activation and output data from 0 to 3 QSPI clock cycles  
Section 7.10.9.2 and Section 7.10.9.3 assume the operating conditions stated in Section 7.10.9.1.  
7.10.9.1 QSPI Timing Conditions  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input rise time  
Input fall time  
1
1
3
3
ns  
ns  
Output Conditions  
CLOAD  
Output load capacitance  
2
15  
pF  
7.10.9.2 Timing Requirements for QSPI Input (Read) Timings  
Clock Mode 0 (clk polarity = 0 ; clk phase = 0 ) is the mode of operation. (1)  
MIN  
7.3  
TYP  
MAX  
UNIT  
ns  
tsu(D-SCLK)  
th(SCLK-D)  
tsu(D-SCLK)  
th(SCLK-D)  
Setup time, d[3:0] valid before falling sclk edge  
Hold time, d[3:0] valid after falling sclk edge  
1.5  
ns  
Setup time, final d[3:0] bit valid before final falling sclk edge  
Hold time, final d[3:0] bit valid after final falling sclk edge  
7.3 – P(2)  
1.5 + P(2)  
ns  
ns  
(1) The Device captures data on the falling clock edge in Clock Mode 0, as opposed to the traditional rising clock edge. Although non-  
standard, the falling-edge-based setup and hold time timings have been designed to be compatible with standard SPI devices that  
launch data on the falling edge in Clock Mode 0.  
(2) P = SCLK period in ns.  
Copyright © 2020 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: AWR6843  
 
 
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
7.10.9.3 QSPI Switching Characteristics  
NO.  
Q1  
Q2  
Q3  
PARAMETER  
Cycle time, sclk  
MIN  
12.5  
TYP  
MAX  
UNIT  
ns  
tc(SCLK)  
tw(SCLKL)  
tw(SCLKH)  
td(CS-SCLK)  
Pulse duration, sclk low  
Y*P – 3(1) (2)  
Y*P – 3(1)  
ns  
Pulse duration, sclk high  
ns  
Delay time, sclk falling edge to cs active edge  
–M*P + 2.5(1)  
ns  
Q4  
Q5  
–M*P – 1(1) (3)  
N*P – 1(1) (3)  
(3)  
td(SCLK-CS)  
Delay time, sclk falling edge to cs inactive edge  
N*P + 2.5(1)  
ns  
(3)  
Q6  
Q7  
Q8  
td(SCLK-D1)  
tena(CS-D1LZ)  
tdis(CS-D1Z)  
td(SCLK-D1)  
Delay time, sclk falling edge to d[1] transition  
Enable time, cs active edge to d[1] driven (lo-z)  
Disable time, cs active edge to d[1] tri-stated (hi-z)  
–3.5  
–P – 4(3)  
–P – 4(3)  
7
–P +1(3)  
–P +1(3)  
ns  
ns  
ns  
ns  
Delay time, sclk first falling edge to first d[1] transition  
(for PHA = 0 only)  
Q9  
–3.5 – P(3)  
7 – P(3)  
Q12  
Q13  
tsu(D-SCLK)  
th(SCLK-D)  
tsu(D-SCLK)  
Setup time, d[3:0] valid before falling sclk edge  
Hold time, d[3:0] valid after falling sclk edge  
7.3  
1.5  
ns  
ns  
ns  
Setup time, final d[3:0] bit valid before final falling  
sclk edge  
Q14  
Q15  
7.3 — P(3)  
1.5 + P(3)  
th(SCLK-D)  
Hold time, final d[3:0] bit valid after final falling sclk  
edge  
ns  
(1) The Y parameter is defined as follows: If DCLK_DIV is 0 or ODD then, Y equals 0.5. If DCLK_DIV is EVEN then, Y equals (DCLK_DIV/  
2) / (DCLK_DIV+1). For best performance, it is recommended to use a DCLK_DIV of 0 or ODD to minimize the duty cycle distortion. All  
required details about clock division factor DCLK_DIV can be found in the device-specific Technical Reference Manual.  
(2) P = SCLK period in ns.  
(3) M = QSPI_SPI_DC_REG.DDx + 1, N = 2  
PHA=0  
cs  
Q5  
Q4  
Q1  
Q2  
Q3  
POL=0  
sclk  
Q12  
Q13  
Q12 Q13  
Read Data  
Bit 0  
Q6  
Q7  
Q9  
Command  
Bit n-1  
Command  
Bit n-2  
Read Data  
Bit 1  
d[0]  
Q12 Q13  
Read Data  
Bit 1  
Q12 Q13  
Read Data  
Bit 0  
d[3:1]  
SPRS85v_TIMING_OSPI1_02  
Figure 7-13. QSPI Read (Clock Mode 0)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: AWR6843  
 
 
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
PHA=0  
cs  
Q5  
Q4  
Q1  
Q2  
Q3  
POL=0  
sclk  
Q8  
Q6  
Q6  
Q7  
Q9  
Q6  
Command  
Bit n-1  
Command  
Bit n-2  
Write Data  
Bit 1  
Write Data  
Bit 0  
d[0]  
d[3:1]  
SPRS85v_TIMING_OSPI1_04  
Figure 7-14. QSPI Write (Clock Mode 0)  
Copyright © 2020 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: AWR6843  
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
7.10.10 ETM Trace Interface  
Section 7.10.10.2 and List item. assume the recommended operating conditions stated in Section 7.10.10.1.  
7.10.10.1 ETMTRACE Timing Conditions  
MIN  
TYP  
MAX  
UNIT  
Output Conditions  
CLOAD  
Output load capacitance  
2
20  
pF  
7.10.10.2 ETM TRACE Switching Characteristics  
NO.  
1
PARAMETER  
Cycle time, TRACECLK period  
Pulse Duration, TRACECLK High  
Pulse Duration, TRACECLK Low  
Clock and data rise time  
MIN  
TYP  
MAX  
UNIT  
ns  
tcyc(ETM)  
th(ETM)  
tl(ETM)  
20  
9
2
ns  
3
9
ns  
4
tr(ETM)  
tf(ETM)  
3.3  
3.3  
7
ns  
5
Clock and data fall time  
ns  
td(ETMTRACE Delay time, ETM trace clock high to ETM data valid  
1
1
ns  
6
7
CLKH-  
ETMDATAV)  
td(ETMTRACE Delay time, ETM trace clock low to ETM data valid  
7
ns  
CLKl-  
ETMDATAV)  
tl(ETM)  
th(ETM)  
tr(ETM)  
tf(ETM)  
tcyc(ETM)  
Figure 7-15. ETMTRACECLKOUT Timing  
Figure 7-16. ETMDATA Timing  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: AWR6843  
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
7.10.11 Data Modification Module (DMM)  
A Data Modification Module (DMM) gives the ability to write external data into the device memory.  
The DMM has the following features:  
Acts as a bus master, thus enabling direct writes to the 4GB address space without CPU intervention  
Writes to memory locations specified in the received packet (leverages packets defined by trace mode of the  
RAM trace port [RTP] module)  
Writes received data to consecutive addresses, which are specified by the DMM (leverages packets defined  
by direct data mode of RTP module)  
Configurable port width (1, 2, 4, 8 pins)  
Up to 100 Mbit/s pin data rate  
7.10.11.1 DMM Timing Requirements  
MIN  
10  
1
TYP  
MAX  
UNIT  
ns  
tcyc(DMM)  
tR  
Clock period  
Clock rise time  
3
3
ns  
tF  
Clock fall time  
1
ns  
th(DMM)  
tl(DMM)  
tssu(DMM)  
tsh(DMM)  
tdsu(DMM)  
tdh(DMM)  
High pulse width  
6
ns  
Low pulse width  
6
ns  
SYNC active to clk falling edge setup time  
DMM clk falling edge to SYNC deactive hold time  
DATA to DMM clk falling edge setup time  
DMM clk falling edge to DATA hold time  
2
ns  
3
ns  
2
ns  
3
ns  
tl(DMM)  
th(DMM)  
tf  
tr  
tcyc(DMM)  
Figure 7-17. DMMCLK Timing  
tssu(DMM)  
tsh(DMM)  
DMMSYNC  
DMMCLK  
DMMDATA  
tdsu(DMM)  
tdh(DMM)  
Figure 7-18. DMMDATA Timing  
Copyright © 2020 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: AWR6843  
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
7.10.12 JTAG Interface  
Section 7.10.12.2 and Section 7.10.12.3 assume the operating conditions stated in Section 7.10.12.1.  
7.10.12.1 JTAG Timing Conditions  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input rise time  
Input fall time  
1
1
3
3
ns  
ns  
Output Conditions  
CLOAD  
Output load capacitance  
2
15  
pF  
7.10.12.2 Timing Requirements for IEEE 1149.1 JTAG  
NO.  
MIN  
TYP  
MAX  
UNIT  
ns  
1
tc(TCK)  
Cycle time TCK  
66.66  
26.67  
26.67  
2.5  
1a  
1b  
tw(TCKH)  
Pulse duration TCK high (40% of tc)  
Pulse duration TCK low(40% of tc)  
Input setup time TDI valid to TCK high  
Input setup time TMS valid to TCK high  
Input hold time TDI valid from TCK high  
Input hold time TMS valid from TCK high  
ns  
tw(TCKL)  
ns  
tsu(TDI-TCK)  
tsu(TMS-TCK)  
th(TCK-TDI)  
th(TCK-TMS)  
ns  
3
4
2.5  
ns  
18  
ns  
18  
ns  
7.10.12.3 Switching Characteristics Over Recommended Operating Conditions for IEEE 1149.1 JTAG  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
2
td(TCKL-TDOV)  
Delay time, TCK low to TDO valid  
0
25  
ns  
1
1a  
1b  
TCK  
TDO  
2
3
4
TDI/TMS  
SPRS91v_JTAG_01  
Figure 7-19. JTAG Timing  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: AWR6843  
 
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
8 Detailed Description  
8.1 Overview  
The AWR6843 device includes the entire Millimeter Wave blocks and analog baseband signal chain for two  
transmitters and four receivers, as well as a customer-programmable MCU. This device is applicable as a radar-  
on-a-chip in use-cases with modest requirements for memory, processing capacity, and application code size.  
These could be cost-sensitive automotive applications that are evolving from 24-GHz narrowband  
implementation and some emerging simple ultra-short-range radar applications. Typical application examples for  
this device include: child presence detection, occupant detection, seat belt reminder, gesture detection, driver  
vital sign monitoring.  
In terms of scalability, the AWR6843 device could be paired with a low-end external MCU, to address more  
complex applications that might require additional memory for larger application software footprint and faster  
interfaces. Because the AWR6843 device also provides high speed data interfaces like Serial-LVDS, it is suitable  
for interfacing with more capable external processing blocks. Here system designers can choose the AWR6843  
to provide raw ADC data.  
8.2 Functional Block Diagram  
Serial Flash Interface  
QSPI  
Cortex R4F  
@ 200MHz  
LNA  
LNA  
LNA  
LNA  
IF  
IF  
IF  
IF  
ADC  
ADC  
ADC  
ADC  
Optional External  
MCU Interface  
SPI  
(User Programmable)  
Digital  
Front-End  
PMIC Control  
SPI / I2C  
CAN-FD  
CAN-FD  
UARTs  
Prog RAM  
(512kB)  
Data RAM  
(192kB)  
Boot  
ROM  
(Decimation  
Filter Chain)  
Primary Communication  
Interfaces (Automotive)  
Radar Hardware Accelerator  
(FFT, Log Mag, And Others)  
DMA  
Master Sub-System  
(Customer Programmed)  
Test/  
Debug  
JTAG For Debug/  
Development  
ADC  
Buffer  
PA  
´Å  
´Å  
´Å  
Mailbox  
High-Speed ADC Output  
Interface (For Recording)  
LVDS  
HIL  
Synth  
(20 GHz)  
Ramp  
Generator  
PA  
x3  
High-Speed Input For  
Hardware-In-Loop Verification  
C674x DSP  
@ 600 MHz  
Radio (BIST)  
Processor  
PA  
GPADC  
Osc.  
6
(For RF Calibration  
& Self-Test œ TI  
Programmed)  
L1P  
(32kB)  
L1D  
(32kB)  
L2 (256kB)  
Prog RAM  
& ROM  
Data  
RAM  
Temp  
DMA  
CRC  
Radar Data Memory  
768 kB  
Radio Processor  
Sub-System  
(TI Programmed)  
DSP Sub-System  
(Customer Programmed)  
RF/Analog Sub-System  
Figure 8-1. Functional Block Diagram  
Copyright © 2020 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: AWR6843  
 
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
8.3 Subsystems  
8.3.1 RF and Analog Subsystem  
The RF and analog subsystem includes the RF and analog circuitry – namely, the synthesizer, PA, LNA, mixer,  
IF, and ADC. This subsystem also includes the crystal oscillator and temperature sensors. The three transmit  
channels can be operated up to a maximum of two at a time (simultaneously) in 1.3-V mode. The three Transmit  
channels simultaneous operation is supported only with 1-V LDO bypass and PA LDO disabled mode for  
transmit beamforming purpose, as required. In this mode, the 1-V supply needs to be fed on the VIN_13RF1,  
VIN_13RF2, and VOUT PA pin; whereas, the four receive channels can all be operated simultaneously.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: AWR6843  
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
8.3.1.1 Clock Subsystem  
The AWR6843 clock subsystem generates 60 to 64 GHz from an input reference of 40-MHz crystal. It has a  
built-in oscillator circuit followed by a clean-up PLL and a RF synthesizer circuit. The output of the RF  
synthesizer is then processed by an X3 multiplier to create the required frequency in the 60 to 64 GHz spectrum.  
The RF synthesizer output is modulated by the timing engine block to create the required waveforms for effective  
sensor operation.  
The clean-up PLL also provides a reference clock for the host processor after system wakeup.  
The clock subsystem also has built-in mechanisms for detecting the presence of a crystal and monitoring the  
quality of the generated clock.  
Figure 8-2 describes the clock subsystem.  
Self Test  
SYNC_OUT  
RX LO  
Timing Engine  
x3 MULT  
SYNC_IN  
TX LO  
RFSYNTH  
Lock Detect  
Clean-Up  
PLL  
SoC  
Clock  
XO / Slicer  
CLK Detect  
OSC_CLKOUT  
40 MHz  
Figure 8-2. Clock Subsystem  
Copyright © 2020 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: AWR6843  
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
8.3.1.2 Transmit Subsystem  
The AWR6843 transmit subsystem consists of three parallel transmit chains, each with independent phase and  
amplitude control. The device supports 6-bit linear phase modulation for MIMO radar.  
The transmit chains also support programmable backoff for system optimization.  
Figure 8-3 describes the transmit subsystem.  
Loopback  
Path  
Self Test  
0 or 180°  
(from Timing Engine)  
PCB  
50 W  
DF  
LO  
6-bit Linear Phase  
Shifter  
Figure 8-3. Transmit Subsystem (Per Channel)  
8.3.1.3 Receive Subsystem  
The AWR6843 receive subsystem consists of four parallel channels. A single receive channel consists of an  
LNA, mixer, IF filtering, A2D conversion, and decimation. All four receive channels can be operational at the  
same time an individual power-down option is also available for system optimization.  
Unlike conventional real-only receivers, the AWR6843 device supports a complex baseband architecture, which  
uses quadrature mixer and dual IF and ADC chains to provide complex I and Q outputs for each receiver  
channel. The AWR6843 is targeted for fast chirp systems. The band-pass IF chain has configurable lower cutoff  
frequencies above 175 kHz and can support bandwidths up to 10 MHz.  
Figure 8-4 describes the receive subsystem.  
Self Test  
DAC  
Loopback  
Path  
DSM  
PCB  
I
RSSI  
50 W  
GSG  
LO  
Q
DSM  
DAC  
Figure 8-4. Receive Subsystem (Per Channel)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: AWR6843  
 
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
8.3.2 Processor Subsystem  
Unified  
128 KB x 2  
ROM  
L2  
Cache/  
RAM  
TCM A 512 KB  
TCM B 192 KB  
L1P  
32 KB  
32 KB  
EDMA  
Master  
R4F  
DSP  
HWA  
HIL  
JTAG  
CRC  
HIL  
L1d  
DSP/HWA Interconnect œ 128 bit @ 200 MHz  
Master Interconnect  
BSS Interconnect  
Data  
Handshake  
Memory  
CRC  
ADC Buffer  
Mail  
Box  
MSS  
DMA  
L3  
32 KB  
32 KB Ping-Pong  
(static sharing  
with R4F Space)  
Interconnect  
LVDS  
PWM,  
PMIC  
CLK  
I2C  
QSPI  
UART  
SPI  
CAN-FD  
Figure 8-5. Processor Subsystem  
Figure 8-5shows the block diagram for customer programmable processor subsystems in the AWR6843 device.  
At a high level there are two customer programmable subsystems, as shown separated by a dotted line in the  
diagram. Left hand side shows the DSP Subsystem which contains TI's high-performance C674x DSP, hardware  
accelerator, a high-bandwidth interconnect for high performance (128-bit, 200MHz), and associated peripherals  
– four DMAs for data transfer,  
LVDS interface for Measurement data output, L3 Radar data cube memory, ADC buffers, CRC engine, and data  
handshake memory (additional memory provided on interconnect).  
The right side of the diagram shows the Master subsystem. Master subsystem as name suggests is the master  
of the device and controls all the device peripherals and house-keeping activities of the device. Master  
subsystem contains Cortex-R4F (Master R4F) processor and associated peripherals and house-keeping  
components such as DMAs, CRC and Peripherals (I2C, UART, SPIs, CAN, PMIC clocking module, PWM, and  
others) connected to Master Interconnect through Peripheral Central Resource (PCR interconnect).  
Details of the DSP CPU core can be found at http://www.ti.com/product/TMS320C6748.  
HIL module is shown in both the subsystems and can be used to perform the radar operations feeding the  
captured data from outside into the device without involving the RF subsystem. HIL on master SS is for  
controlling the configuration and HIL on DSPSS for high speed ADC data input to the device. Both HIL modules  
uses the same IOs on the device, one additional IO (DMM_MUX_IN) allows selecting either of the two.  
8.3.3 Automotive Interface  
The AWR6843 communicates with the automotive network over the following main interfaces:  
2 CAN-FD modules  
Copyright © 2020 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: AWR6843  
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
8.3.4 Host Interface  
The host interface can be provided through a SPI, UART, or CAN-FD interface. In some cases the serial  
interface for automotive applications is transcoded to a different serial standard.  
This device communicates with the host radar processor over the following main interfaces:  
Reference Clock – Reference clock available for host processor after device wakeup  
Control – 4-port standard SPI (slave) for host control . All radio control commands (and response) flow  
through this interface.  
Reset – Active-low reset for device wakeup from host  
Host Interrupt - an indication that the mmwave sensor needs host interface  
Error – Used for notifying the host in case the radio controller detects a fault  
8.3.5 Master Subsystem Cortex-R4F  
The master system includes an ARM Cortex R4F processor, clock with a maximum operating frequency of 200  
MHz. User applications executing on this processor control the overall operation of the device, including radar  
control through well-defined API messages, radar signal processing (assisted by the radar hardware  
accelerator), and peripherals for external interfaces.  
See the Technical Reference Manual for a complete description and memory map.  
8.3.6 DSP Subsystem  
The DSP subsystem includes TI’s standard TMS320C674x megamodule and several blocks of internal memory  
(L1P, L1D, and L2). For complete information including memory map, please refer to Technical Reference  
Manual.  
8.3.7 Hardware Accelerator  
The Radar Hardware Accelerator (HWA) is an IP that enables off-loading the burden of certain frequently used  
computations in FMCW radar signal processing from the main processor. FMCW radar signal processing  
involves the use of FFT and Log-Magnitude computations to obtain a radar image across the range, velocity, and  
angle dimensions. Some of the frequently used functions in FMCW radar signal processing can be done within  
the radar hardware accelerator, while still retaining the flexibility of implementing other proprietary algorithms in  
the main processor. See the Radar Hardware Accelerator User's Guide for a functional description and features  
of this module and see the Technical Reference Manual for a complete list of register and memory map.  
8.4 Other Subsystems  
8.4.1 ADC Channels (Service) for User Application  
The AWR6843 device includes provision for an ADC service for user application, where the  
GPADC engine present inside the device can be used to measure up to six external voltages. The ADC1, ADC2,  
ADC3, ADC4, ADC5, and ADC6 pins are used for this purpose.  
ADC itself is controlled by TI firmware running inside the BIST subsystem and access to it for customer’s  
external voltage monitoring purpose is via ‘monitoring API’ calls routed to the BIST subsystem. This API  
could be linked with the user application running on the Master R4.  
BIST subsystem firmware will internally schedule these measurements along with other RF and Analog  
monitoring operations. The API allows configuring the settling time (number of ADC samples to skip) and  
number of consecutive samples to take. At the end of a frame, the minimum, maximum and average of the  
readings will be reported for each of the monitored voltages.  
GPADC Specifications:  
625 Ksps SAR ADC  
0 to 1.8V input range  
10-bit resolution  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: AWR6843  
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
For 5 out of the 6 inputs, an optional internal buffer (0.4-1.4V input range) is available. Without the buffer, the  
ADC has a switched capacitor input load modeled with 5pF of sampling capacitance and 12pF parasitic  
capacitance (GPADC channel 6, the internal buffer is not available).  
5
ANALOG TEST 1-4,  
GPADC  
ANAMUX  
5
VSENSE  
A. GPADC structures are used for measuring the output of internal temperature sensors. The accuracy of these measurements is ±7°C.  
Figure 8-6. ADC Path  
8.4.1.1 GP-ADC Parameter  
PARAMETER  
TYP  
1.8  
UNIT  
V
ADC supply  
ADC unbuffered input voltage range  
ADC buffered input voltage range(1)  
ADC resolution  
0 – 1.8  
0.4 – 1.3  
10  
V
V
bits  
LSB  
LSB  
LSB  
LSB  
Ksps  
ns  
ADC offset error  
±5  
ADC gain error  
±5  
ADC DNL  
–1/+2.5  
±2.5  
625  
400  
10  
ADC INL  
ADC sample rate(2)  
ADC sampling time(2)  
ADC internal cap  
pF  
ADC buffer input capacitance  
ADC input leakage current  
2
pF  
3
uA  
(1) Outside of given range, the buffer output will become nonlinear.  
(2) ADC itself is controlled by TI firmware running inside the BIST subsystem. For more details please refer to the API calls.  
Copyright © 2020 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: AWR6843  
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
9 Monitoring and Diagnostics  
9.1 Monitoring and Diagnostic Mechanisms  
Table 9-1 is a list of the main monitoring and diagnostic mechanisms available in the Functional Safety-  
Compliant targeted devices  
Table 9-1. Monitoring and Diagnostic Mechanisms for Functional Safety-Compliant Targeted Devices  
NO  
FEATURE  
DESCRIPTION  
Device architecture supports hardware logic BIST (LBIST) engine self-test Controller (STC).  
This logic is used to provide a very high diagnostic coverage (>90%) on the Master R4F  
CPU core and Vectored Interrupt Module (VIM) at a transistor level.  
LBIST for the CPU and VIM need to be triggered by application code before starting the  
functional safety application. CPU stays there in while loop and does not proceed further if a  
fault is identified.  
Boot time LBIST For Master  
R4F Core and associated  
VIM  
1
Master R4F has three Tightly coupled Memories (TCM) memories TCMA, TCMB0 and  
TCMB1. Device architecture supports a hardware programmable memory BIST (PBIST)  
engine. This logic is used to provide a very high diagnostic coverage (March-13n) on the  
implemented Master R4F TCMs at a transistor level.  
PBIST for TCM memories is triggered by Bootloader at the boot time before starting  
download of application from Flash or peripheral interface. CPU stays there in while loop  
and does not proceed further if a fault is identified.  
Boot time PBIST for Master  
R4F TCM Memories  
2
3
TCMs diagnostic is supported by Single error correction double error detection (SECDED)  
ECC diagnostic. An 8-bit code word is used to store the ECC data as calculated over the 64-  
bit data bus. ECC evaluation is done by the ECC control logic inside the CPU. This scheme  
provides end-to-end diagnostics on the transmissions between CPU and TCM. CPU can be  
configured to have predetermined response (Ignore or Abort generation) to single and  
double bit error conditions.  
End to End ECC for Master  
R4F TCM Memories  
Logical TCM word and its associated ECC code is split and stored in two physical SRAM  
banks. This scheme provides an inherent diagnostic mechanism for address decode failures  
in the physical SRAM banks. Faults in the bank addressing are detected by the CPU as an  
ECC fault.  
Further, bit multiplexing scheme implemented such that the bits accessed to generate a  
logical (CPU) word are not physically adjacent. This scheme helps to reduce the probability  
of physical multi-bit faults resulting in logical multi-bit faults; rather they manifest as multiple  
single bit faults. As the SECDED TCM ECC can correct a single bit fault in a logical word,  
this scheme improves the usefulness of the TCM ECC diagnostic.  
Master R4F TCM bit  
multiplexing  
4
Both these features are hardware features and cannot be enabled or disabled by application  
software.  
Device architecture supports Three Digital Clock Comparators (DCCs) and an internal  
RCOSC. Dual functionality is provided by these modules – Clock detection and Clock  
Monitoring.  
DCCint is used to check the availability/range of Reference clock at boot otherwise the  
device is moved into limp mode (Device still boots but on 10MHz RCOSC clock source. This  
provides debug capability). DCCint is only used by boot loader during boot time. It is  
disabled once the APLL is enabled and locked.  
DCC1 is dedicated for APLL lock detection monitoring, comparing the APLL output divided  
version with the Reference input clock of the device. Initially (before configuring APLL),  
DCC1 is used by bootloader to identify the precise frequency of reference input clock  
against the internal RCOSC clock source. Failure detection for DCC1 would cause the  
device to go into limp mode.  
5
Clock Monitor  
DCC2 module is one which is available for user software . From the list of clock options  
given in detailed spec, any two clocks can be compared. One example usage is to compare  
the CPU clock with the Reference or internal RCOSC clock source. Failure detection is  
indicated to the Master R4F CPU via Error Signaling Module (ESM).  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: AWR6843  
 
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
Table 9-1. Monitoring and Diagnostic Mechanisms for Functional Safety-Compliant Targeted Devices  
(continued)  
NO  
FEATURE  
DESCRIPTION  
Device architecture supports the use of an internal watchdog that is implemented in the real-  
time interrupt (RTI) module. The internal watchdog has two modes of operation: digital  
watchdog (DWD) and digital windowed watchdog (DWWD). The modes of operation are  
mutually exclusive; the designer can elect to use one mode or the other but not both at the  
same time.  
7
RTI/WD for Master R4F  
Watchdog can issue either an internal (warm) system reset or a CPU non-mask able  
interrupt upon detection of a failure.  
The Watchdog is enabled by the bootloader in DWD mode at boot time to track the boot  
process. Once the application code takes up the control, Watchdog can be configured again  
for mode and timings based on specific customer requirements.  
Cortex-R4F CPU includes an MPU. The MPU logic can be used to provide spatial  
separation of software tasks in the device memory. Cortex-R4F MPU supports 12 regions. It  
is expected that the operating system controls the MPU and changes the MPU settings  
based on the needs of each task. A violation of a configured memory protection policy  
results in a CPU abort.  
8
9
MPU for Master R4F  
Device architecture supports a hardware programmable memory BIST (PBIST) engine for  
Peripheral SRAMs as well.  
PBIST for peripheral SRAM memories can be triggered by the application. User can elect to  
PBIST for Peripheral interface run the PBIST on one SRAM or on groups of SRAMs based on the execution time, which  
SRAMs - SPIs, CANs  
can be allocated to the PBIST diagnostic. The PBIST tests are destructive to memory  
contents, and as such are typically run only at boot time. However, the user has the freedom  
to initiate the tests at any time if peripheral communication can be hindered.  
Any fault detected by the PBIST results in an error indicated in PBIST status registers.  
Peripheral interface SRAMs diagnostic is supported by Single error correction double error  
detection (SECDED) ECC diagnostic. When a single or double bit error is detected the  
ECC for Peripheral interface Master R4F is notified via ESM (Error Signaling Module). This feature is disabled after reset.  
10  
SRAMs – SPIs, CANs  
Software must configure and enable this feature in the peripheral and ESM module. ECC  
failure (both single bit corrected and double bit uncorrectable error conditions) is reported to  
the Master R4F as an interrupt via ESM module.  
All the Master SS peripherals (SPIs, CANs, I2C, DMAs, RTI/WD, DCCs, IOMUX etc.) are  
connected to interconnect via Peripheral Central resource (PCR). This provides two  
diagnostic mechanisms that can limit access to peripherals. Peripherals can be clock gated  
per peripheral chip select in the PCR. This can be utilized to disable unused features such  
that they cannot interfere. In addition, each peripheral chip select can be programmed to  
limit access based on privilege level of transaction. This feature can be used to limit access  
to entire peripherals to privileged operating system code only.  
Configuration registers  
protection for Master SS  
peripherals  
11  
These diagnostic mechanisms are disabled after reset. Software must configure and enable  
these mechanisms. Protection violation also generates an ‘aerror’ that result in abort to  
Master R4F or error response to other masters such as DMAs.  
Device architecture supports hardware CRC engine on Master SS implementing the below  
polynomials.  
CRC16 CCITT – 0x10  
CRC32 Ethernet – 0x04C11DB7  
CRC64  
CRC 32C – CASTAGNOLI – 0x1EDC6F4  
CRC32P4 – E2E Profile4 – 0xF4ACFB1  
CRC-8 – H2F Autosar – 0x2F  
CRC-8 – VDA CAN – 0x1D  
Cyclic Redundancy Check –  
Master SS  
12  
The read operation of the SRAM contents to the CRC can be done by CPU or by DMA. The  
comparison of results, indication of fault, and fault response are the responsibility of the  
software managing the test.  
Device architecture supports MPUs on Master SS DMAs. Failure detection by MPU is  
reported to the Master R4F CPU core as an interrupt via ESM.  
13  
MPU for DMAs  
DSPSS’s high performance EDMAs also includes MPUs on both read and writes master  
ports. EDMA MPUs supports 8 regions. Failure detection by MPU is reported to the DSP  
core as an interrupt via local ESM.  
Copyright © 2020 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: AWR6843  
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
Table 9-1. Monitoring and Diagnostic Mechanisms for Functional Safety-Compliant Targeted Devices  
(continued)  
NO  
FEATURE  
DESCRIPTION  
Device architecture supports hardware logic BIST (LBIST) even for BIST R4F core and  
associated VIM module. This logic provides very high diagnostic coverage (>90%) on the  
BIST R4F CPU core and VIM.  
This is triggered by Master R4F boot loader at boot time and it does not proceed further if  
the fault is detected.  
Boot time LBIST For BIST  
R4F Core and associated  
VIM  
14  
Device architecture supports a hardware programmable memory BIST (PBIST) engine for  
BIST R4F TCMs which provide a very high diagnostic coverage (March-13n) on the BIST  
R4F TCMs.  
PBIST is triggered by Master R4F Bootloader at the boot time and it does not proceed  
further if the fault is detected.  
Boot time PBIST for BIST  
R4F TCM Memories  
15  
16  
BIST R4F TCMs diagnostic is supported by Single error correction double error detection  
(SECDED) ECC diagnostic. Single bit error is communicated to the BIST R4FCPU while  
double bit error is communicated to Master R4F as an interrupt so that application code  
becomes aware of this and takes appropriate action.  
End to End ECC for BIST  
R4F TCM Memories  
Logical TCM word and its associated ECC code is split and stored in two physical SRAM  
banks. This scheme provides an inherent diagnostic mechanism for address decode failures  
in the physical SRAM banks and helps to reduce the probability of physical multi-bit faults  
resulting in logical multi-bit faults.  
BIST R4F TCM bit  
multiplexing  
17  
18  
Device architecture supports an internal watchdog for BIST R4F. Timeout condition is  
reported via an interrupt to Master R4F and rest is left to application code to either go for SW  
reset for BIST SS or warm reset for the device to come out of faulty condition.  
RTI/WD for BIST R4F  
Device architecture supports a hardware programmable memory BIST (PBIST) engine for  
DSPSS’s L1P, L1D, L2 and L3 memories which provide a very high diagnostic coverage  
(March-13n).  
PBIST is triggered by Master R4F Bootloader at the boot time and it does not proceed  
further if the fault is detected.  
Boot time PBIST for L1P,  
L1D, L2 and L3 Memories  
19  
20  
Device architecture supports Parity diagnostic on DSP’s L1P memory. Parity error is  
reported to the CPU as an interrupt.  
Note:- L1D memory is not covered by parity or ECC and need to be covered by application  
level diagnostics.  
Parity on L1P  
Device architecture supports both Parity Single error correction double error detection  
(SECDED) ECC diagnostic on DSP’s L2 memory. L2 Memory is a unified 256KB of memory  
used to store program and Data sections for the DSP. A 12-bit code word is used to store the  
ECC data as calculated over the 256-bit data bus (logical instruction fetch size). The ECC  
logic for the L2 access is located in the DSP and evaluation is done by the ECC control logic  
inside the DSP. This scheme provides end-to-end diagnostics on the transmissions between  
DSP and L2. Byte aligned Parity mechanism is also available on L2 to take care of data  
section.  
21  
ECC on DSP’s L2 Memory  
L3 memory is used as Radar data section in Device. Device architecture supports Single  
error correction double error detection (SECDED) ECC diagnostic on L3 memory. An 8-bit  
code word is used to store the ECC data as calculated over the 64-bit data bus.  
Failure detection by ECC logic is reported to the Master R4F CPU core as an interrupt via  
ESM.  
ECC on Radar Data Cube  
(L3) Memory  
22  
23  
Device architecture supports the use of an internal watchdog for BIST R4F that is  
implemented in the real-time interrupt (RTI) module – replication of same module as used in  
Master SS. This module supports same features as that of RTI/WD for Master/BIST R4F.  
This watchdog is enabled by customer application code and Timeout condition is reported  
via an interrupt to Master R4F and rest is left to application code in Master R4F to either go  
for SW reset for DSP SS or warm reset for the device to come out of faulty condition.  
RTI/WD for DSP Core  
Device architecture supports dedicated hardware CRC on DSPSS implementing the below  
polynomials.  
CRC16 CCITT - 0x10  
CRC32 Ethernet - 0x04C11DB7  
CRC64  
24  
CRC for DSP Sub-System  
The read of SRAM contents to the CRC can be done by DSP CPU or by DMA. The  
comparison of results, indication of fault, and fault response are the responsibility of the  
software managing the test.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: AWR6843  
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
Table 9-1. Monitoring and Diagnostic Mechanisms for Functional Safety-Compliant Targeted Devices  
(continued)  
NO  
FEATURE  
DESCRIPTION  
Device architecture supports MPUs for DSP memory accesses (L1D, L1P, and L2). L2  
memory supports 64 regions and 16 regions for L1P and L1D each. Failure detection by  
MPU is reported to the DSP core as an abort.  
25  
MPU for DSP  
Device architecture supports various temperature sensors all across the device (next to  
power hungry modules such as PAs, DSP etc) which is monitored during the inter-frame  
period.(1)  
26  
27  
Temperature Sensors  
Tx Power Monitors  
Device architecture supports power detectors at the Tx output.(2)  
When a diagnostic detects a fault, the error must be indicated. The device architecture  
provides aggregation of fault indication from internal monitoring/diagnostic mechanisms  
using a peripheral logic known as the Error Signaling Module (ESM). The ESM provides  
mechanisms to classify errors by severity and to provide programmable error response.  
ESM module is configured by customer application code and specific error signals can be  
enabled or masked to generate an interrupt (Low/High priority) for the Master R4F CPU.  
Device supports Nerror output signal (IO) which can be monitored externally to identify any  
kind of high severity faults in the design which could not be handled by the R4F.  
Error Signaling  
Error Output  
28  
Monitors Synthesizer’s frequency ramp by counting (divided-down) clock cycles and  
comparing to ideal frequency ramp. Excess frequency errors above a certain threshold, if  
any, are detected and reported.  
Synthesizer (Chirp) frequency  
monitor  
29  
30  
Device architecture supports a ball break detection mechanism based on Impedance  
measurement at the TX output(s) to detect and report any large deviations that can indicate  
a ball break.  
Monitoring is done by TIs code running on BIST R4F and failure is reported to the Master  
R4F via Mailbox.  
Ball break detection for TX  
ports (TX Ball break monitor)  
It is completely up to customer SW to decide on the appropriate action based on the  
message from BIST R4F.  
Built-in TX to RX loopback to enable detection of failures in the RX path(s), including Gain,  
inter-RX balance, etc.  
31  
32  
33  
34  
RX loopback test  
Built-in IF (square wave) test tone input to monitor IF filter’s frequency response and detect  
failure.  
IF loopback test  
Provision to detect ADC saturation due to excessive incoming signal level and/or  
interference.  
RX saturation detect  
Boot time LBIST for DSP core  
Device device supports boot time LBIST for the DSP Core. LBIST can be triggered by the  
Master R4F application code during boot time.  
(1) Monitoring is done by the TI's code running on BIST R4F. There are two modes in which it could be configured to report the  
temperature sensed via API by customer application.  
a. Report the temperature sensed after every N frames  
b. Report the condition once the temperature crosses programmed threshold.  
It is completely up to customer SW to decide on the appropriate action based on the message from BIST R4Fvia Mailbox.  
(2) Monitoring is done by the TI's code running on BIST R4F.  
There are two modes in which it could be configured to report the detected output power via API by customer application.  
a. Report the power detected after every N frames  
b. Report the condition once the output power degrades by more than configured threshold from the configured.  
It is completely up to customer SW to decide on the appropriate action based on the message from BIST R4F.  
Copyright © 2020 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: AWR6843  
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
9.1.1 Error Signaling Module  
When a diagnostic detects a fault, the error must be indicated. architecture provides aggregation of fault  
indication from internal diagnostic mechanisms using a peripheral logic known as the error signaling module  
(ESM). The ESM provides mechanisms to classify faults by severity and allows programmable error response.  
Below is the high level block diagram for ESM module.  
Low Priority  
Low Priority  
Interrupt  
Interrupy  
Handing  
Error Group 1  
Interrupt Enable  
High Priority  
Interrupt  
Handing  
High Priority  
Interrupy  
Interrupt Priority  
Error Group 2  
Error Group 3  
Nerror Enable  
Error Signal  
Handling  
Device Output  
Pin  
Figure 9-1. ESM Module Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: AWR6843  
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
10 Applications, Implementation, and Layout  
Note  
Information in the following Applications section is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI's customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
10.1 Application Information  
Application information can be found on AWR Application web page.  
10.2 Reference Schematic  
Please check the device product page for latest Hardware design information under Design Kits - typically, at  
Design & development.  
Listed for convenience are: Design Files, Schematics, Layouts, and Stack up for PCB.  
Altium XWR6843 EVM Design Files  
XWR6843 EVM Schematic Drawing, Assembly Drawing, and Bill of Materials  
Copyright © 2020 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: AWR6843  
 
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
11 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions follow.  
11.1 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
microprocessors (MPUs) and support tools. Each device has one of three prefixes: X, P, or null (no prefix) (for  
example, AWR6843). Texas Instruments recommends two of three possible prefix designators for its support  
tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering  
prototypes (TMDX) through fully qualified production devices and tools (TMDS).  
Device development evolutionary flow:  
XA Experimental device that is not necessarily representative of the final device's electrical specifications and  
may not use production assembly flow.  
P
Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical  
specifications.  
null Production version of the silicon die that is fully qualified.  
Support tool development evolutionary flow:  
TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing.  
TMDS Fully-qualified development-support product.  
XA and P devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
Production devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (XA or P) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type  
(for example, ABL0161), the temperature range (for example, blank is the default automotive temperature  
range). Figure 11-1 provides a legend for reading the complete device name for any AWR6843 device.  
For orderable part numbers of AWR6843 devices in the ABL0161 package types, see the Package Option  
Addendum of this document, the TI website ( www.ti.com ),or contact your TI sales representative.  
For additional description of the device nomenclature markings on the die, see the xWR6843 Device Errata.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: AWR6843  
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
6
8
43  
A
B
AWR  
G
ABL  
Qualification  
Prefix  
XA = Pre-production Automotive  
AWR = Production Automotive  
Blank = no special qual  
Q1 = AEC-Q100  
Generation  
1 = 77 GHz Band  
6 = 60 GHz Band  
Variant  
Tray or Tape & Reel  
R = Tape & Reel  
Blank = Tray  
2 = FE  
Package  
4 = FE + FFT + MCU  
6 = FE + MCU + DSP  
8 = FE + MCU + FFT + DSP  
ABL = BGA  
Security  
G = General  
S = Secure  
Num RX/TX Channels  
RX = 1,2,3,4  
TX = 1,2,3  
Silicon PG Revision  
blank = Rev1.0  
A = Rev 2.0  
Features  
blank = baseline  
R = Antenna on Package (AoP)  
Safety Level  
Q = Non-Functional Safety  
B = ASIL B  
Figure 11-1. Device Nomenclature  
11.2 Tools and Software  
Models  
xWR6843 BSDL model  
xWR6843 IBIS model  
Boundary scan database of testable input and output pins for IEEE 1149.1 of  
the specific device.  
IO buffer information model for the IO buffers of the device. For simulation on  
a circuit board, see IBIS Open Forum.  
xWR6843 checklist for  
schematic review, layout  
review,bringup/wakeup  
A set of steps in spreadsheet form to select system functions and pinmux  
options. Specific EVM schematic and layout notes to apply to customer  
engineering. A bring up checklist is suggested for customers.  
11.3 Documentation Support  
To receive notification of documentation updates—including silicon errata—go to the product folder for your  
device on ti.com ( AWR6843 ). In the upper right corner, click the "Alert me" button. This registers you to receive  
a weekly digest of product information that has changed (if any). For change details, check the revision history of  
any revised document.  
The current documentation that describes the DSP, related peripherals, and other technical collateral follows.  
Errata  
xWR6843 Device Errata Describes known advisories, limitations, and cautions on silicon and provides  
workarounds.  
11.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
Copyright © 2020 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: AWR6843  
 
 
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
ARM® and Cortex® are registered trademarks of ARM Limited.  
All other trademarks are the property of their respective owners.  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: AWR6843  
 
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
12 Mechanical, Packaging, and Orderable Information  
12.1 Packaging Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: AWR6843  
 
 
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
PACKAGE OUTLINE  
ABL0161B  
FCBGA - 1.17 mm max height  
SCALE 1.400  
PLASTIC BALL GRID ARRAY  
10.5  
10.3  
B
A
BALL A1 CORNER  
10.5  
10.3  
1.17 MAX  
C
SEATING PLANE  
0.1 C  
BALL TYP  
0.37  
0.27  
TYP  
9.1 TYP  
PKG  
(0.65) TYP  
(0.65) TYP  
R
P
N
M
L
K
J
PKG  
H
G
F
9.1  
TYP  
E
D
C
0.45  
161X  
0.35  
0.15  
0.08  
C A B  
C
B
A
0.65 TYP  
BALL A1 CORNER  
1
2
3
4
5
6
7
8
9 10 11  
12 13 14 15  
0.65 TYP  
4223365/A 10/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: AWR6843  
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
EXAMPLE BOARD LAYOUT  
ABL0161B  
FCBGA - 1.17 mm max height  
PLASTIC BALL GRID ARRAY  
(0.65) TYP  
161X ( 0.32)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
A
B
C
(0.65) TYP  
D
E
F
G
H
J
PKG  
K
L
M
N
P
R
PKG  
LAND PATTERN EXAMPLE  
SCALE:10X  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
( 0.32)  
METAL  
(
0.32)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4223365/A 10/2016  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).  
www.ti.com  
Copyright © 2020 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: AWR6843  
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
EXAMPLE STENCIL DESIGN  
ABL0161B  
FCBGA - 1.17 mm max height  
PLASTIC BALL GRID ARRAY  
(0.65) TYP  
161X ( 0.32)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
A
B
C
(0.65) TYP  
D
E
F
G
H
J
PKG  
K
L
M
N
P
R
PKG  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4223365/A 10/2016  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: AWR6843  
AWR6843  
www.ti.com  
SWRS248B – APRIL 2020 – REVISED SEPTEMBER 2020  
12.2 Tray Information for ABL, 10.4 × 10.4 mm  
Package  
Type  
Package  
Name  
Unit Array  
Matrix  
Max Temp.  
(°C)  
L
W
(mm)  
K0  
(mm)  
P1  
(mm)  
CL  
(mm)  
CW  
(mm)  
Device  
Pins  
SPQ  
(mm)  
AWR6843AQGABLQ1  
AWR6843ABGABLQ1  
FC/CSP  
FC/CSP  
ABL  
ABL  
161  
161  
176  
176  
8 × 22  
8 × 22  
150  
150  
315.0  
315.0  
135.9  
135.9  
7.62  
7.62  
13.40  
13.40  
16.80  
16.80  
17.20  
17.20  
Copyright © 2020 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: AWR6843  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Oct-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AWR6843ABGABLQ1  
ACTIVE  
FC/CSP  
FC/CSP  
FC/CSP  
FC/CSP  
FC/CSP  
FC/CSP  
FC/CSP  
ABL  
161  
161  
161  
161  
161  
161  
161  
176  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Call TI  
-40 to 125  
AWR6843  
BG  
678A  
678A ABL  
AWR6843ABGABLRQ1  
AWR6843ABSABLQ1  
AWR6843ABSABLRQ1  
AWR6843AQGABLQ1  
AWR6843AQGABLRQ1  
XA6843ABGABL  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ABL  
ABL  
ABL  
ABL  
ABL  
ABL  
1000  
176  
1000  
176  
1000  
1
Green (RoHS  
& no Sb/Br)  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
AWR6843  
BG  
678A  
678A ABL  
Green (RoHS  
& no Sb/Br)  
AWR6843  
BS  
678A  
678A ABL  
Green (RoHS  
& no Sb/Br)  
AWR6843  
BS  
678A  
678A ABL  
Green (RoHS  
& no Sb/Br)  
AWR6843  
QG  
678A  
678A ABL  
Green (RoHS  
& no Sb/Br)  
AWR6843  
QG  
678A  
678A ABL  
TBD  
XAWR6843  
BG  
678A ABL  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Oct-2020  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Oct-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
AWR6843ABGABLRQ1 FC/CSP  
AWR6843AQGABLRQ1 FC/CSP  
ABL  
ABL  
161  
161  
1000  
1000  
330.0  
330.0  
24.4  
24.4  
10.7  
10.7  
10.7  
10.7  
1.65  
1.65  
16.0  
16.0  
24.0  
24.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Oct-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
AWR6843ABGABLRQ1  
AWR6843AQGABLRQ1  
FC/CSP  
FC/CSP  
ABL  
ABL  
161  
161  
1000  
1000  
336.6  
336.6  
336.6  
336.6  
41.3  
41.3  
Pack Materials-Page 2  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

AWR6843ABSABLQ1

AWR6843 Single-Chip 60- to 64-GHz mmWave Sensor
TI

AWR6843ABSABLRQ1

AWR6843 Single-Chip 60- to 64-GHz mmWave Sensor
TI

AWR6843AOP

AWR6843AOP Single-Chip 60- to 64-GHz mmWave Sensor Antennas-On-Package (AOP)
TI

AWR6843AOP_V01

AWR6843AOP Single-Chip 60- to 64-GHz mmWave Sensor Antennas-On-Package (AOP)
TI

AWR6843AQGABLQ1

AWR6843 Single-Chip 60- to 64-GHz mmWave Sensor
TI

AWR6843AQGABLRQ1

AWR6843 Single-Chip 60- to 64-GHz mmWave Sensor
TI

AWR6843ARBGALPQ1

AWR6843AOP Single-Chip 60- to 64-GHz mmWave Sensor Antennas-On-Package (AOP)
TI

AWR6843ARBGALPRQ1

AWR6843AOP Single-Chip 60- to 64-GHz mmWave Sensor Antennas-On-Package (AOP)
TI

AWR6843ARBSALPQ1

AWR6843AOP Single-Chip 60- to 64-GHz mmWave Sensor Antennas-On-Package (AOP)
TI

AWR6843ARBSALPRQ1

AWR6843AOP Single-Chip 60- to 64-GHz mmWave Sensor Antennas-On-Package (AOP)
TI

AWR6843_V02

AWR6843 Single-Chip 60- to 64-GHz mmWave Sensor
TI

AWR8001

Downconverter
ETC