BQ24081-Q1 [TI]

单节 1A 单芯片锂离子和锂聚合物汽车充电器;
BQ24081-Q1
型号: BQ24081-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

单节 1A 单芯片锂离子和锂聚合物汽车充电器

文件: 总29页 (文件大小:2797K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
bq24080-Q1, bq24081-Q1  
ZHCSDP2B MAY 2015REVISED JUNE 2017  
bq2408x-Q1 1A 单芯片锂离子和锂聚合物汽车充电器  
1 特性  
3 说明  
1
集成功率 FET 和电流传感器,适用于高达 1A 的充  
bq24080-Q1 bq24081-Q1 是针对空间受限型充电  
电 应用 由交流适配器供电  
采用安全定时器实现预充电调节  
充电和电源正常状态输出  
器应用的高度集成且灵活的锂离子线性充电器件 。它  
们在单片器件中集成了功率 FET 和电流传感器、高精  
度电流和电压调节、充电状态以及充电终止功能。可通  
过一个外部电阻设置充电电流幅值。  
自动休眠模式,可降低功耗  
集成了充电电流监视器  
器件分三个阶段对电池进行充电:调节、恒流和恒压。  
当达到最低电流时将终止充电。内置的充电定时器针对  
充电终止提供了备用的安全性机制。如果电池电压低于  
内部阈值,器件将自动重新启动充电。移除交流适配器  
后,器件将自动进入休眠模式。  
固定 7 小时快速充电安全定时器  
非常适合空间受限型便携式应用中的单节锂离子电  
池或锂聚合物电池组的低压降充电器设计  
3mm x 3mm 小外形尺寸无引线 (SON) 封装  
2 应用  
器件信息(1)  
汽车用线性充电器  
器件型号  
bq24080-Q1(2)  
bq24081-Q1  
封装  
封装尺寸(标称值)  
紧急呼叫/备用呼叫电池  
车用信息娱乐系统  
汽车遥控钥匙  
VSON (10)  
3.00mm x 3.00mm  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
(2) 产品预览  
简化原理图  
AC  
Adapter  
PACK+  
Battery Pack  
+
VDC  
C1  
bq24080-Q1  
IN OUT 10  
C2  
0.1 mF  
1
0.1 µF  
GND  
System  
PACK–  
System  
Interface  
2
3
4
5
NC  
9
8
7
6
CE  
PG  
STAT1  
STAT2 VBSEL  
VSS ISET  
RSET  
1.13 kW  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains PRODUCTION  
DATA.  
English Data Sheet: SLUSCB6  
 
 
 
 
bq24080-Q1, bq24081-Q1  
ZHCSDP2B MAY 2015REVISED JUNE 2017  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements................................................ 6  
6.7 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 8  
7.1 Overview ................................................................... 8  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 11  
7.4 Device Functional Modes........................................ 14  
8
9
Application and Implementation ........................ 15  
8.1 Application Information............................................ 15  
8.2 Typical Application ................................................. 15  
Power Supply Recommendations...................... 17  
10 Layout................................................................... 18  
10.1 Layout Guidelines ................................................. 18  
10.2 Layout Example .................................................... 18  
10.3 Thermal Considerations........................................ 19  
11 器件和文档支持 ..................................................... 20  
11.1 器件支持................................................................ 20  
11.2 文档支持................................................................ 20  
11.3 相关链接................................................................ 20  
11.4 接收文档更新通知 ................................................. 20  
11.5 社区资源................................................................ 20  
11.6 ....................................................................... 20  
11.7 静电放电警告......................................................... 20  
11.8 Glossary................................................................ 20  
12 机械、封装和可订购信息....................................... 20  
7
4 修订历史记录  
Changes from Revision A (August 2016) to Revision B  
Page  
Changed the RθJC(top) value From: 5034 °C/W To: 50.4 °C/W in the Thermal Information table ........................................... 4  
Changes from Original (May 2016) to Revision A  
Page  
Recommended Operating Conditions, Changed The TJ MIN value From: 0 To: –40°C........................................................ 4  
Electrical Characteristics, Changed the conditions statement From: 0°C TJ 125°C To: –40°C TJ 125°C ................ 5  
2
Copyright © 2015–2017, Texas Instruments Incorporated  
 
bq24080-Q1, bq24081-Q1  
www.ti.com.cn  
ZHCSDP2B MAY 2015REVISED JUNE 2017  
5 Pin Configuration and Functions  
bq24080-Q1 DRC Package  
10 Pin VSON  
bq24081-Q1 DRC Package  
10 Pin VSON  
Top View  
Top View  
VSS STAT2 STAT1 GND  
IN  
1
VSS STAT2 STAT1 GND  
IN  
1
5
4
3
2
5
4
3
2
6
7
8
9
10  
6
7
8
9
10  
GND  
ISET  
OUT  
CE  
PG  
GND  
ISET  
OUT  
TS  
TE  
Pin Functions  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
bq24080-Q1  
bq24081-Q1  
CE  
9
2, 7  
1
2, 7  
1
I
I
Charge enable input (active-low)  
Ground  
GND  
IN  
Adapter dc voltage. Connect minimum 0.1-μF capacitor to VSS  
.
Charge current. External resistor to VSS sets precharge and fast-charge current, and also the  
termination current value. Can be used to monitor the charge current.  
ISET  
6
6
I
OUT  
PG  
10  
8
10  
O
O
O
O
I
Charge current output. Connect minimum 0.1-μF capacitor to VSS.  
Power-good status output (open-drain)  
STAT1  
STAT2  
TE  
3
3
Charge status outputs (open-drain)  
4
4
8
Timer-enable input (active-low)  
TS  
9
I/O Temperature sense; connect to NTC in battery pack.  
VSS  
5
5
Ground  
There is an internal electrical connection between the exposed thermal pad and the VSS pin of the  
device. The exposed thermal pad must be connected to the same potential as the VSS pin on the  
printed-circuit board. Do not use the thermal pad as the primary ground input for the device. The  
VSS pin must be connected to ground at all times.  
Thermal pad  
Copyright © 2015–2017, Texas Instruments Incorporated  
3
bq24080-Q1, bq24081-Q1  
ZHCSDP2B MAY 2015REVISED JUNE 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
bq24080-Q1, bq24081-Q1  
UNIT  
MIN  
MAX  
7
Input voltage(2)  
IN, CE, ISET, OUT, PG, STAT1, STAT2, TE, TS  
–0.3  
V
mA  
A
Output sink/source current  
Output current  
STAT1, STAT2, PG  
OUT  
15  
1.5  
Operating free-air temperature range, TA  
Junction temperature range, TJ  
Storage temperature, Tstg  
°C  
°C  
°C  
–40  
–65  
125  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to VSS  
.
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
MAX  
UNIT  
V
VCC  
TJ  
Supply voltage  
6.5  
Operating junction temperature range  
–40  
125  
°C  
6.4 Thermal Information  
bq24080-Q1,  
bq24081-Q1  
THERMAL METRIC(1)  
UNIT  
DRC (10 PINS)  
RθJA  
Junction-to-ambient thermal resistance  
44.3  
50.4  
19.7  
0.7  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
19.9  
4.5  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2015–2017, Texas Instruments Incorporated  
 
bq24080-Q1, bq24081-Q1  
www.ti.com.cn  
ZHCSDP2B MAY 2015REVISED JUNE 2017  
6.5 Electrical Characteristics  
over –40°C TJ 125°C and recommended supply voltage (unless otherwise noted)  
PARAMETER  
INPUT CURRENT  
ICC(VCC) VCC current  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VCC > VCC(min)  
1.2  
2
2
5
mA  
Sum of currents into OUT pin,  
VCC < V(SLP)  
ICC(SLP)  
Sleep current  
μA  
V
ICC(STBY)  
IIB(OUT)  
Standby current  
CE = High, 0°C TJ 85°C  
150  
5
Input current on OUT pin  
Charge DONE, VCC > VCC(MIN)  
1
VOLTAGE REGULATION VO(REG) + V(DOMAX) VCC, I(TERM) < IO(OUT) 1 A  
VO(REG)  
Output voltage  
4.2  
TA = 25°C  
0.35%  
1%  
0.35%  
1%  
Voltage regulation accuracy  
VO(OUT) = VO(REG), IO(OUT) = 1 A  
VO(REG) + V(DO)) VCC  
V(DO)  
Dropout voltage (V(IN) V(OUT)  
)
350  
500  
mV  
CURRENT REGULATION  
IO(OUT)  
Output current range(1)  
VI(OUT) > V(LOWV)  
,
VI(IN) VI(OUT) > V(DO)  
,
20  
1000  
mA  
V
VCC 4.5 V  
Voltage on ISET pin, VCC 4.5 V,  
VI 4.5 V, VI(OUT) > V(LOWV)  
VI VI(OUT) > V(DO)  
V(SET)  
Output current set voltage  
Output current set factor  
,
2.463  
2.5  
2.538  
50 mA IO(OUT) 1 A  
10 mA IO(OUT) < 50 mA  
1 mA IO(OUT) < 10 mA  
307  
296  
246  
322  
320  
320  
337  
346  
416  
K(SET)  
PRECHARGE AND SHORT-CIRCUIT CURRENT REGULATION  
Precharge to fast-charge transition  
threshold  
V(LOWV)  
Voltage on OUT pin  
2.8  
2
3
3.2  
V
IO(PRECHG) Precharge range(2)  
V(PRECHG) Precharge set voltage  
TERMINATION DETECTION  
0 V < VI(OUT) < V(LOWV), t < t(PRECHG)  
100  
mA  
Voltage on ISET pin,  
VO(REG) = 4.2 V,  
0 V < VI(OUT) > V(LOWV), t < t(PRECHG)  
240  
255  
270  
mV  
Charge termination detection  
I(TERM)  
VI(OUT) > V(RCH), t < t(TRMDET)  
2
100  
265  
mA  
mV  
range(3)  
Voltage on ISET pin,  
VO(REG) = 4.2 V,  
VI(OUT) > V(RCH), t < t(TRMDET)  
Charge termination detection set  
V(TERM)  
voltage  
235  
250  
BATTERY RECHARGE THRESHOLD  
VO(REG)  
– 0.115  
VO(REG)  
0.10  
VO(REG)  
0.085  
V(RCH)  
Recharge threshold  
V
V
STAT1, STAT2, and PG OUTPUTS  
VOL  
Low-level output saturation voltage  
IO = 5 mA  
0.25  
0.4  
CE and TE INPUTS  
VIL  
Low-level input voltage  
0
1.4  
–1  
V
VIH  
High-level input voltage  
Low-level input current  
High-level input current  
IIL  
μA  
IIH  
1
TIMERS  
I(FAULT)  
Timer fault recovery current  
200  
μA  
(1) See Equation 2.  
(2) See Equation 1.  
(3) See Equation 4.  
Copyright © 2015–2017, Texas Instruments Incorporated  
5
 
bq24080-Q1, bq24081-Q1  
ZHCSDP2B MAY 2015REVISED JUNE 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
over –40°C TJ 125°C and recommended supply voltage (unless otherwise noted)  
PARAMETER  
SLEEP COMPARATOR  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
CC VI(OUT)  
V(SLP)  
Sleep-mode entry threshold voltage  
+ 80 mV  
2.3 V VI(OUT) VO(REG)  
V
V
+ 190  
CC VI(OUT)  
V(SLPEXIT) Sleep-mode exit threshold voltage  
THERMAL SHUTDOWN THRESHOLDS  
T(SHTDWN) Thermal trip threshold  
Thermal hysteresis  
165  
15  
TJ increasing  
°C  
UNDERVOLTAGE LOCKOUT  
Undervoltage lockout  
Decreasing VCC  
2.4  
2.5  
27  
2.6  
V
UVLO  
Hysteresis  
mV  
TEMPERATURE SENSE COMPARATOR (bq24081-Q1)  
V(TS1)  
V(TS2)  
I(TS)  
High-voltage threshold  
Low-voltage threshold  
TS pin current source  
2.475  
0.485  
96  
2.5  
0.5  
2.525  
0.515  
108  
V
102  
μA  
6.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
PRECHARGE AND SHORT-CIRCUIT CURRENT REGULATION  
V
CC(MIN) 4.5 V, tFALL = 100 ns,  
Deglitch time for fast-charge to  
precharge transition  
10-mV overdrive,  
VI(OUT) decreasing below threshold  
250  
375  
375  
375  
500  
ms  
TERMINATION DETECTION  
V
CC(MIN) 4.5 V, tFALL = 100 ns  
Deglitch time for termination  
detection  
tTRMDET  
charging current decreasing below  
10-mV overdrive  
250  
250  
500  
500  
ms  
ms  
BATTERY RECHARGE THRESHOLD  
VCC(MIN) 4.5 V, tFALL = 100 ns  
t(DEGL)  
Deglitch time for recharge detect  
decreasing below or increasing  
above threshold, 10-mV overdrive  
TIMERS  
t(PRECHG)  
t(CHG)  
Precharge time  
Charge time  
1,584  
1,800  
2,016  
s
s
22,176  
25,200  
28,224  
SLEEP COMPARATOR  
V(IN) decreasing below threshold,  
tFALL = 100 ns, 10-mV overdrive  
Sleep-mode entry deglitch time  
250  
250  
375  
375  
500  
500  
ms  
ms  
TEMPERATURE SENSE COMPARATOR (bq24081-Q1)  
t(DEGL) Deglitch time for temperature fault  
6
Copyright © 2015–2017, Texas Instruments Incorporated  
bq24080-Q1, bq24081-Q1  
www.ti.com.cn  
ZHCSDP2B MAY 2015REVISED JUNE 2017  
6.7 Typical Characteristics  
450  
I
= 1000 mA  
O(OUT)  
400  
350  
I
I
I
= 750 mA  
= 500 mA  
= 250 mA  
O(OUT)  
O(OUT)  
O(OUT)  
300  
250  
200  
150  
100  
50  
0
0
50  
100  
150  
T
J
- Junction Temperature - o  
C
Figure 1. Dropout Voltage vs Junction Temperature  
Figure 2. VIN Hot-Plug Power-Up Sequence  
Figure 4. Battery Hot-Plug During Charging Phase  
Figure 3. Charge Enable Power-Up Sequence  
(CE = High-to-Low)  
No battery – In termination deglitch prior to STAT1 going high. VOUT (VBAT) cycling between charge and done prior to screen capture  
Stat1 goes high – In done state  
2-V battery is inserted during the charge done state.  
Charging is initiated – STAT1 goes low and charge current is applied.  
Battery is removed – VOUT goes into regulation, IOUT goes to zero, and termination deglitch timer starts running (same as state 1).  
Deglitch timer expires – charge done is declared.  
Figure 5. Battery Hot-Plug and Removal Power Sequence  
Copyright © 2015–2017, Texas Instruments Incorporated  
7
bq24080-Q1, bq24081-Q1  
ZHCSDP2B MAY 2015REVISED JUNE 2017  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The device supports a precision Li-Ion, Li-Pol charging system suitable for single cells. Figure 6 shows a typical  
charge profile, and Figure 7 shows an operational flow chart.  
Preconditioning  
Phase  
Current Regulation Phase  
Voltage Regulation and Charge Termination Phase  
Regulation  
Voltage  
Regulation  
Current  
Charge  
Voltage  
Minimum  
Charge  
Voltage  
Charge  
Complete  
Charge  
Current  
Pre-  
Conditioning  
and Term  
Detect  
Safety Timer  
M0066-01  
Figure 6. Typical Charging Profile  
8
Copyright © 2015–2017, Texas Instruments Incorporated  
 
bq24080-Q1, bq24081-Q1  
www.ti.com.cn  
ZHCSDP2B MAY 2015REVISED JUNE 2017  
Overview (continued)  
POR  
SLEEP MODE  
VCC > VI(OUT)  
No  
checked at all  
times?  
Indicate SLEEP  
MODE  
Yes  
Regulate  
IO(PRECHG)  
Reset and Start  
t(PRECHG) Timer  
VI(OUT)<V(LOWV)  
?
es  
Y
and  
Indicate Charge-  
In-Progress  
No  
Reset All Timers,  
Start t(CHG) Timer  
Regulate Current  
or Voltage  
and  
Indicate Charge-  
In-Progress  
No  
VI(OUT)<V(LOWV)  
?
Yes  
Yes  
t(PRECHG)  
Expired?  
t(CHG) Expired?  
No  
No  
Yes  
Yes  
Fault Condition  
Indicate Fault  
Yes  
VI(OUT)<V(LOWV)  
?
No  
Yes  
VI(OUT) >V(RCH)  
?
Iterm  
No  
Detection  
?
No  
Yes  
Enable I(FAULT)  
Current  
Turn Off Charge  
Indicate DONE  
VI(OUT) >V(RCH)  
?
No  
Yes  
VI(OUT) <V(RCH)  
?
No  
Disable I(FAULT)  
Current  
Yes  
F0018-01  
Figure 7. Operational Flow Chart  
Copyright © 2015–2017, Texas Instruments Incorporated  
9
 
bq24080-Q1, bq24081-Q1  
ZHCSDP2B MAY 2015REVISED JUNE 2017  
www.ti.com.cn  
7.2 Functional Block Diagram  
(3)  
IN  
OUT  
ISET  
V(PRECHG)  
VO(REG)  
V(SET)  
V(RCH)  
V(LOWV)  
(3)  
(3)  
(3)  
V(TERM)  
V(IN)  
ITS  
(3)  
VI(OUT) + V(SLP)  
V(TS1)  
TS(2)  
V(UVLO)  
(3)  
Charge  
Control,  
Timers,  
and  
Status  
V(TS2)  
STAT1  
CE(1)  
STAT2  
PG(1)  
TE(2)  
VSS  
Copyright © 2016, Texas Instruments Incorporated  
(1) bq24080-Q1 only  
(2) bq24081-Q1 only  
(3) Signal deglitched  
10  
Copyright © 2015–2017, Texas Instruments Incorporated  
bq24080-Q1, bq24081-Q1  
www.ti.com.cn  
ZHCSDP2B MAY 2015REVISED JUNE 2017  
7.3 Feature Description  
7.3.1 Battery Preconditioning  
During a charge cycle, if the battery voltage is below the V(LOWV) threshold, the device applies a precharge  
current, IO(PRECHG), to the battery. This feature revives deeply discharged cells. Resistor RSET, connected  
between the ISET and VSS, determines the precharge rate. The V(PRECHG) and K(SET) parameters are specified in  
the Electrical Characteristics table.  
K(SET) x V(PRECHG)  
IO(PRECHG)  
=
RSET  
(1)  
The device activates a safety timer, t(PRECHG), during the conditioning phase. If the V(LOWV) threshold is not  
reached within the timer period, the device turns off the charger and enunciates FAULT on the STATx pins. See  
the Timer Fault and Recovery section for additional details.  
7.3.2 Battery Fast-Charge Constant Current  
The device offers on-chip current regulation with programmable set point. Resistor RSET, connected between the  
ISET and VSS, determines the charge rate. The V(SET) and K(SET) parameters are specified in the specifications  
table.  
K(SET) x V(SET)  
I
=
O(OUT)  
RSET  
(2)  
7.3.3 Charge-Current Monitor  
When the charge function is enabled internal circuits generate a current proportional to the charge current at the  
ISET pin. This current, when applied to the external charge current programming resistor RISET generates an  
analog voltage that can be monitored by an external host to calculate the current sourced from the OUT pin.  
R
(ISET)  
V = I x  
(ISET) (OUT)  
K
(ISET)  
(3)  
7.3.4 Battery Fast-Charge Voltage Regulation  
The voltage regulation feedback is through the OUT pin. This input is tied directly to the positive side of the  
battery pack. The device monitors the battery-pack voltage between the OUT and VSS pins. When the battery  
voltage rises to the VO(REG) threshold, the voltage regulation phase begins and the charging current begins to  
taper down.  
As a safety backup, the device also monitors the charge time in the charge mode. If charge is not terminated  
within this time period, t(CHG), the charger is turned off and FAULT is set on the STATx pins. See the Timer Fault  
and Recovery section for additional details.  
7.3.5 Charge Termination Detection and Recharge  
The device monitors the charging current during the voltage regulation phase. Once the termination threshold,  
I(TERM), is detected, charge is terminated. The V(TERM) and K(SET) parameters are specified in the Electrical  
Characteristics table.  
K(SET) x V(TERM)  
IO(TERM)  
=
RSET  
(4)  
After charge termination, the device restarts the charge once the voltage on the OUT pin falls below the V(RCH)  
threshold. This feature keeps the battery at full capacity at all times.  
The device monitors the charging current during the voltage regulation phase. Once the termination threshold,  
I(TERM), is detected, the charge is terminated immediately.  
Resistor RSET, connected between the ISET and VSS, determines the current level at the termination threshold.  
Copyright © 2015–2017, Texas Instruments Incorporated  
11  
bq24080-Q1, bq24081-Q1  
ZHCSDP2B MAY 2015REVISED JUNE 2017  
www.ti.com.cn  
Feature Description (continued)  
7.3.6 Charge Status Outputs  
The open-drain STAT1 and STAT2 outputs indicate various charger operations as shown in Table 1. These  
status pins can be used to drive LEDs or communicate to the host processor. Note that OFF indicates the open-  
drain transistor is turned off.  
Table 1. Status Pin Summary  
CHANGE STATE  
Precharge in progress  
Fast charge in progress  
Charge done  
STAT1  
ON  
STAT2  
ON  
ON  
OFF  
ON  
OFF  
Charge suspend (temperature)  
Timer fault  
OFF  
OFF  
Sleep mode  
7.3.7 PG Output (bq24080-Q1)  
The open-drain power-good (PG) output pulls low when a valid input voltage is present. This output is turned off  
(high-impedance) in sleep mode. The PG pin can be used to drive an LED or communicate to the host  
processor.  
7.3.8 Charge-Enabled (CE) Input (bq24080-Q1)  
The CE digital input is used to disable or enable the charge process. A low-level signal on this pin enables the  
charge and a high-level signal disables the charge and places the device in a low-power mode. A high-to-low  
transition on this pin also resets all timers and timer fault conditions.  
7.3.9 Timer Enabled (TE) Input (bq24081-Q1)  
The TE digital input is used to disable or enable the fast-charge timer. A low-level signal on this pin enables the  
fast-charge timer, and a high-level signal disables this feature.  
7.3.10 Temperature Qualification (bq24081-Q1)  
The bq24081-Q1 continuously monitors battery temperature by measuring the voltage between the TS and VSS  
pins. An internal current source provides the bias for common 10-knegative-temperature-coefficient thermistors  
(NTC) (see the functional block diagram). The device compares the voltage on the TS pin with the internal V(TS1)  
and V(TS2) thresholds to determine if charging is allowed. If a temperature outside the V(TS1) and V(TS2) thresholds  
is detected, the device immediately suspends the charge by turning off the power FET and holding the timer  
value (i.e., timers are not reset). Charge is resumed when the temperature returns within the normal range.  
The allowed temperature range with a 103AT-type thermistor is 0°C to 45°C. However, the user may modify  
these thresholds by adding external resistors (see Figure 8 and Figure 9).  
12  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
bq24080-Q1, bq24081-Q1  
www.ti.com.cn  
ZHCSDP2B MAY 2015REVISED JUNE 2017  
bq24081-Q1  
ITS  
VHTF  
PACK+  
TS  
NTC  
VLTF  
PACK–  
Copyright © 2016, Texas Instruments Incorporated  
Figure 8. Default Temperature Thresholds  
bq24081-Q1  
ITS  
VHTF  
PACK+  
RT1  
TS  
NTC  
RT2  
VLTF  
PACK–  
Copyright © 2016, Texas Instruments Incorporated  
Figure 9. Temperature Thresholds Modified by External Resistors  
Copyright © 2015–2017, Texas Instruments Incorporated  
13  
bq24080-Q1, bq24081-Q1  
ZHCSDP2B MAY 2015REVISED JUNE 2017  
www.ti.com.cn  
7.3.11 Timer Fault and Recovery  
As shown in Figure 7, the device provides a recovery method to deal with timer fault conditions. The following  
summarizes this method:  
7.3.11.1 Condition Number 1  
OUT pin voltage is above the recharge threshold (V(RCH)), and a timeout fault occurs.  
Recovery method: the device waits for the OUT pin voltage to fall below the recharge threshold. This could  
happen as a result of a load on the battery, self-discharge, or battery removal. Once the OUT pin voltage falls  
below the recharge threshold, the device clears the fault and starts a new charge cycle. A POR, TE, or CE toggle  
also clears the fault.  
7.3.11.2 Condition Number 2  
OUT pin voltage is below the recharge threshold (V(RCH)), and a timeout fault occurs  
Recovery method: Under this scenario, the device applies the I(FAULT) current. This small current is used to detect  
a battery removal condition and remains on as long as the battery voltage stays below the recharge threshold. If  
the OUT pin voltage goes above the recharge threshold, then the device disables the I(FAULT) current and  
executes the recovery method described for condition number 1. Once the OUT pin voltage falls below the  
recharge threshold, the bq24080-Q1 clears the fault and starts a new charge cycle. A POR, TE, or CE toggle  
also clears the fault.  
7.4 Device Functional Modes  
7.4.1 Sleep Mode  
The device enters the low-power sleep mode if the input power (IN) is removed from the circuit. This feature  
prevents draining the battery during the absence of input supply.  
14  
Copyright © 2015–2017, Texas Instruments Incorporated  
bq24080-Q1, bq24081-Q1  
www.ti.com.cn  
ZHCSDP2B MAY 2015REVISED JUNE 2017  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The bq2408X-Q1 device is Lithium chemistry (Lithium Ion and Lithium Polymer) charger that is intended for  
automotive applications. The allows the designer to pick an automotive qualified charger for applications where  
the Li chemistry is needed. Such applications may involve E-Call (back up safety call) or infotainment systems  
within the automotive space. The device comes completely ready with an integrated charge current monitor and  
safety timers. The LDO based charger design allows for a cost optimized safe charging algorithm.  
8.2 Typical Application  
1.5 kW  
SOURCE  
bq24080-Q1  
INPUT  
PACK+  
VDC  
GND  
1
IN  
OUT 10  
C1  
C2  
+
0.1 mF  
0.1 mF  
1.5 kW  
PACK–  
9
CE  
2
GND  
1.5 kW  
3
4
5
STAT1  
STAT2  
VSS  
8
7
6
PG  
GND  
ISET  
Charge Current  
Translator Output  
1.13 kW  
RSET  
Copyright © 2016, Texas Instruments Incorporated  
Figure 10. Typical Application Circuit  
8.2.1 Design Requirements  
For this design example, use the parameters shown in Table 2.  
Table 2. Design Parameters  
PARAMETER  
Supply voltage  
VALUE  
5 V  
Fast-charge current  
750 mA  
Battery-Temperature sense (bq24081-Q1)  
–2°C to 44.5°C (default setting)  
Copyright © 2015–2017, Texas Instruments Incorporated  
15  
 
bq24080-Q1, bq24081-Q1  
ZHCSDP2B MAY 2015REVISED JUNE 2017  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 Calculations  
Program the charge current for 750 mA:  
RISET = [V(SET) × K(SET) / I(OUT)  
]
(5)  
(6)  
From Electrical Characteristics table, V(SET) = 2.5 V.  
From Electrical Characteristics table, K(SET) = 322.  
RISET = [2.5 V × 322 / 0.75 A] = 1.073 kΩ  
Selecting the closest standard value, use a 1.07-kresistor connected between ISET (pin 6) and ground.  
8.2.2.2 Battery Temperature Sense (bq24081-Q1):  
Use a Semitec 103AT-4 NTC thermistor connected between TS (pin 9) and ground.  
RTHERM-cold = [V(TS1) / I(TS) ] = 2.5V / 100 μA = 25 kΩ  
(7)  
(8)  
RTHERM-hot = [V(TS2) / I(TS) ] = 0.5V / 100 μA = 5 kΩ  
Look up the corresponding temperature value in the manufacturer's resistance-temperature table for the  
thermistor selected. For a 103AT-4 Semitec thermistor:  
5 k= 44.5°C  
25 k= 2°C  
8.2.2.3 STAT Pins (All Devices) and PG Pin (bq24080-Q1):  
Status pins Monitored by Processor:  
Select a pullup resistor that can source more than the input bias (leakage) current of both the processor and  
status pins and still provide a logic high.  
RPULLUP [V(cc-pullup) – V(logic hi-min) / (I(µP-monitor) + I(STAT-OpenDrain)) ] = (3.3 V – 1.9 V) / (1 μA + 1 μA) 700 k;  
(9)  
Connect a 100-kpullup between each status pin and the VCC of the processor. Connect each status pin to  
a μP monitor pin.  
Status viewed by LED:  
Select an LED with a current rating less than 10 mA and select a resistor to place in series with the LED to  
limit the current to the desired current value (brightness).  
RLED = [(V(IN) – V(LED-on)) / I(LED)] = (5 V – 2 V) / 1.5 mA = 2 k.  
(10)  
Place an LED and resistor in series between the input and each status pin.  
8.2.2.4 Selecting Input and Output Capacitors  
In most applications, all that is needed is a high-frequency decoupling capacitor on the input power pin. A 0.1-μF  
ceramic capacitor, placed in close proximity to the IN pin and GND pad works well. In some applications, it may  
be necessary to protect against a hot plug input voltage overshoot. This is done in three ways:  
1. The best way is to add an input zener, 6.2 V, between the IN pin and VSS  
.
2. A low-power zener is adequate for the single event transient. Increasing the input capacitance lowers the characteristic  
impedance which makes the input resistance move effective at damping the overshoot, but risks damaging the input  
contacts by the high inrush current.  
3. Placing a resistor in series with the input dampens the overshoot, but causes excess power dissipation.  
The device only requires a small capacitor for loop stability. A 0.1-μF ceramic capacitor placed between the OUT  
and GND pad is typically sufficient.  
16  
Copyright © 2015–2017, Texas Instruments Incorporated  
bq24080-Q1, bq24081-Q1  
www.ti.com.cn  
ZHCSDP2B MAY 2015REVISED JUNE 2017  
8.2.3 Application Curves  
No battery – In termination deglitch prior to STAT1 going high.  
VOUT (VBAT) cycling between charge and done prior to screen  
capture  
Stat1 goes high – In done state  
2-V battery is inserted during the charge done state.  
Charging is initiated – STAT1 goes low and charge current is  
applied.  
Battery is removed – VOUT goes into regulation, IOUT goes to  
zero, and termination deglitch timer starts running (same as  
state 1).  
Deglitch timer expires – charge done is declared.  
Figure 12. Battery Hot-Plug and Removal Power Sequence  
Figure 11. Charge Enable Power-Up Sequence  
(CE = High-to-Low)  
9 Power Supply Recommendations  
The devices are intended to operate withing the ranges shown in Recommended Operating Conditions. Because  
the input of the device on pin IN is subject to a power source that is external, care muse be taken to not exercise  
the pin above the Absolute Maximum Rating of the Pin shown in the Absolute Maximum Ratings table.  
Copyright © 2015–2017, Texas Instruments Incorporated  
17  
bq24080-Q1, bq24081-Q1  
ZHCSDP2B MAY 2015REVISED JUNE 2017  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
It is important to pay special attention to the PCB layout. The following provides some guidelines:  
To obtain optimal performance, the decoupling capacitor from VCC to V(IN) and the output filter capacitors from  
OUT to VSS should be placed as close as possible to the device, with short trace runs to both signal and VSS  
pins. The VSS pin should have short trace runs to the GND pin.  
All low-current VSS connections should be kept separate from the high-current charge or discharge paths from  
the battery. Use a single-point ground technique incorporating both the small-signal ground path and the  
power ground path.  
The high-current charge paths into IN and from the OUT pins must be sized appropriately for the maximum  
charge current in order to avoid voltage drops in these traces.  
The device is packaged in a thermally enhanced MLP package. The package includes a thermal pad to  
provide an effective thermal contact between the device and the printed circuit board (PCB). Full PCB design  
guidelines for this package are provided in the application report entitled, QFN/SON PCB Attachment  
(TI Literature Number SLUA271).  
10.2 Layout Example  
5evice Ü1 Db5 ꢀad  
Cor thermal improvement  
ꢀlace ëL! to Db5 plane if the plane is on a different layer  
[ow resistance path for  
current flow  
[ow resistance path for  
current flow  
5evice Ü1 ꢁq24080-ꢂ1, ꢁq24081-ꢂ1  
Lnput /apacitor /1  
/lose to Ü1 pin Lb  
ꢃutput /apacitor /2  
ꢄesistor ꢄ3 to set L{9Ç  
Figure 13. Board Layout  
18  
Copyright © 2015–2017, Texas Instruments Incorporated  
bq24080-Q1, bq24081-Q1  
www.ti.com.cn  
ZHCSDP2B MAY 2015REVISED JUNE 2017  
10.3 Thermal Considerations  
The bq24080-Q1 and bq24081-Q1 are packaged in a thermally enhanced MLP package. The package includes  
a thermal pad to provide an effective thermal contact between the device and the printed-circuit board (PCB).  
Full PCB design guidelines for this package are provided in the application report entitled, QFN/SON PCB  
Attachment (TI Literature Number SLUA271).  
The most common measure of package thermal performance is thermal impedance (RθJA) measured (or  
modeled) from the device junction to the air surrounding the package surface (ambient). The mathematical  
expression for RθJA is:  
TJ - TA  
=
RqJA  
P
(11)  
Where:  
TJ = device junction temperature  
TA = ambient temperature  
P = device power dissipation  
Factors that can greatly influence the measurement and calculation of RθJA include:  
Orientation of the device (horizontal or vertical)  
Volume of the ambient air surrounding the device under test and airflow  
Whether other surfaces are in close proximity to the device being tested  
Use multiple 10–13 mil vias in the PowerPAD™ to copper ground plane.  
Avoid cutting the ground plane with a signal trace near the power IC.  
The PCB must be sized to have adequate surface area for heat dissipation.  
FR4 (figerglass) thickness should be minimized.  
The device power dissipation, P, is a function of the charge rate and the voltage drop across the internal Power  
FET. It can be calculated from the following equation:  
P = (V(IN) - V(OUT)) x IO(OUT)  
(12)  
Due to the charge profile of Li-xx batteries, the maximum power dissipation is typically seen at the beginning of  
the charge cycle when the battery voltage is at its lowest. See Figure 6.  
版权 © 2015–2017, Texas Instruments Incorporated  
19  
bq24080-Q1, bq24081-Q1  
ZHCSDP2B MAY 2015REVISED JUNE 2017  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.2 文档支持  
QFN/SON PCB 连接》(文献编号:SLUA271)。  
11.3 相关链接  
下面的表格列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的  
快速链接。  
3. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具和软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
bq24080-Q1  
bq24081-Q1  
11.4 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册后,即可每周  
定期收到已更改的产品信息。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
11.5 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.6 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.7 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参见左侧的导航栏。  
20  
版权 © 2015–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ24081QDRCRQ1  
BQ24081QDRCTQ1  
ACTIVE  
VSON  
VSON  
DRC  
DRC  
10  
10  
3000 RoHS & Green  
250 TBD  
NIPDAU  
Level-3-260C-168 HR  
Call TI  
-40 to 125  
-40 to 125  
ZACQ  
PREVIEW  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
OTHER QUALIFIED VERSIONS OF BQ24081-Q1 :  
Catalog : BQ24081  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Aug-2017  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ24081QDRCRQ1  
VSON  
DRC  
10  
3000  
330.0  
12.4  
3.3  
3.3  
1.1  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Aug-2017  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VSON DRC 10  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 35.0  
BQ24081QDRCRQ1  
3000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DRC 10  
3 x 3, 0.5 mm pitch  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226193/A  
www.ti.com  
PACKAGE OUTLINE  
DRC0010J  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.65 0.1  
2X (0.5)  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
4X (0.25)  
5
6
2X  
2
11  
SYMM  
2.4 0.1  
10  
1
8X 0.5  
0.30  
0.18  
10X  
SYMM  
PIN 1 ID  
0.1  
C A B  
C
(OPTIONAL)  
0.05  
0.5  
0.3  
10X  
4218878/B 07/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
(0.5)  
10X (0.6)  
1
10  
10X (0.24)  
11  
(2.4)  
(3.4)  
SYMM  
(0.95)  
8X (0.5)  
6
5
(R0.05) TYP  
(
0.2) VIA  
TYP  
(0.25)  
(0.575)  
SYMM  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218878/B 07/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (1.5)  
(0.5)  
SYMM  
EXPOSED METAL  
TYP  
11  
10X (0.6)  
1
10  
(1.53)  
10X (0.24)  
2X  
(1.06)  
SYMM  
(0.63)  
8X (0.5)  
6
5
(R0.05) TYP  
4X (0.34)  
4X (0.25)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11:  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218878/B 07/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY