BQ24157SYFFT [TI]

具有 OTG 的 I2C 单节 1.25A 降压电池充电器 | YFF | 20 | -40 to 125;
BQ24157SYFFT
型号: BQ24157SYFFT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 OTG 的 I2C 单节 1.25A 降压电池充电器 | YFF | 20 | -40 to 125

电池
文件: 总43页 (文件大小:3102K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
bq24157S  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
bq24157S 1.55A 完全集成开关模式单节锂离子充电器  
具有完全 USB 兼容且支持 USB-OTG  
Not Recommended for New Designs  
1 特性  
输入电压范围(电池供电):  
3.2 4.5V  
1
集成功率场效应晶体管 (FET),以支持高达 1.55A  
的充电率  
针对 VBUS 的输出:5.05V350mA  
2.1 × 2.0mm 20 引脚 DSBGA 封装  
展频频率控制,以提高电磁干扰 (EMI) 性能  
高精度电压和电流调节  
bq24157 bq24158 引脚到引脚兼容  
输入电流调节精度:  
±5%100mA 500mA)  
2 应用范围  
手机和智能电话  
MP3 播放器  
手持设备  
充电电压调节精度:  
±0.5% (25°C)±1%0°C 125°C)  
充电电流调节精度:±5%  
在无电池情况下,针对 GSM 校准的厂家测试模式  
基于动态电源管理的输入电压 (VIN DPM)  
故障适配器检测和抑制  
3 说明  
bq24157S 是一款紧凑、灵活、高效的 USB 适用型开  
关模式充电管理器件,适用于各种便携式 应用中使用  
的单节锂离子和锂聚合物电池。可通过一个 I2C 接口对  
充电参数进行编程。IC 将同步 PWM 控制器,功率金  
属氧化物半导体场效应晶体管 (MOSFET),输入电流  
感测,高精度电流和电压调节以及充电终止功能集成到  
小型 DSBGA 封装中。  
用于最大充电电压和电流限制的安全限制寄存器  
用于单节锂离子和锂聚合物电池组的高效微型 USB  
/ 交流电池充电器  
20V 额定最大绝对输入电压  
6.5V 最大运行输入电压  
通过 I2C 兼容接口的可编程充电参数(高达  
3.4Mbps):  
IC 分三个阶段对电池进行充电:调节、恒定电流和恒  
定电压。输入电流被自动限制在主机设定的值上。  
输入电流限制  
VIN DPM 阈值  
器件信息(1)  
快速充电/终止电流  
充电稳压电压(3.5 4.44V)  
低充电电流模式启用/禁用  
终止使能/禁用  
器件型号  
bq24157S  
封装  
封装尺寸(标称值)  
DSBGA (20)  
2.10mm × 2.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
同步固定频率脉宽调制 (PWM) 控制器,运行在  
3MHz 上时,占空比 0% 99.5%  
典型应用电路  
LO 1 mH  
RSNS  
针对低功耗的自动高阻抗模式  
稳健耐用的保护  
VBAT  
VBUS  
VBUS  
PMID  
SW  
CO1  
CIN  
CO2  
33 mF  
U1  
bq24157S  
CBOOT  
33 nF  
1 mF  
22 mF  
BOOT  
PGND  
反向漏电保护防止电池亏电  
热调节和保护  
CIN  
PACK+  
4.7 mF  
CCSIN  
+
VAUX  
10 kW  
0.1 mF  
CSIN  
10 kW  
2
I
C BUS  
10 kW  
PACK–  
CSOUT  
SCL  
SCL  
输入/输出过压保护  
SDA  
SDA  
CCSOUT  
0.1 mF  
STAT  
STAT  
VREF  
针对充电和故障的状态输出  
支持 USB 的引导序列  
自动充电  
OTG  
OTG  
CD  
CVREF  
CD  
10 kW  
1 mF  
10 kW  
HOST  
A. 使用 RSNS = 68m来设定高达 1.25A 的充  
电电流,使用 RSNS = 55m来设定高达  
1.55A 充电电流。要获得详细操作指南,请  
参考 Detailed Design Procedure。  
无电池的加电系统  
针对 USB OTG 的升压模式操作:  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLUSB76  
 
 
 
 
 
 
 
 
Not Recommended for New Designs  
bq24157S  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 24  
8.5 Register Maps......................................................... 26  
Application and Implementation ........................ 29  
9.1 Application Information............................................ 29  
9.2 Typical Application .................................................. 29  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ..................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Typical Performance Characteristics ........................ 8  
Detailed Description ............................................ 11  
8.1 Overview ................................................................. 11  
8.2 Functional Block Diagrams ..................................... 12  
8.3 Feature Description................................................. 15  
9
10 Power Supply Recommendations ..................... 34  
10.1 System Load After Sensing Resistor .................... 34  
11 Layout................................................................... 36  
11.1 Layout Guidelines ................................................. 36  
11.2 Layout Example .................................................... 36  
12 器件和文档支持 ..................................................... 38  
12.1 器件支持................................................................ 38  
12.2 文档支持................................................................ 38  
12.3 ....................................................................... 38  
12.4 静电放电警告......................................................... 38  
12.5 Glossary................................................................ 38  
13 机械、封装和可订购信息....................................... 39  
13.1 封装概要................................................................ 39  
8
4 修订历史记录  
Changes from Revision A (June 2014) to Revision B  
Page  
特性删除了具有重置控制功能的安全计时器” ..................................................................................................................... 1  
已更改 封装特性:从 2.25 x 2.65mm 更改为 2.1 x 2.0mm .................................................................................................... 1  
已更改 器件信息 表中的封装尺寸值........................................................................................................................................ 1  
(2)  
Moved Tstg Storage Temperature From: ESD Ratings To: Absolute Maximum Ratings(1)  
............................................... 4  
Changed the title of Figure 3 From Battery Detection at Power Up To: Power Up in DEFAULT Mode ................................ 8  
Changed "32S Mode" To: "HOST Mode" and 15 Minute Mode To: DEFAULT Mode in Figure 5......................................... 8  
Changed 32-second mode To: HOST mode in the Overview section ................................................................................. 11  
Changed 15-minute operation To: default mode in the Overview section ........................................................................... 11  
Changed 100-ms power-up delay From: No To: Yes in Table 1.......................................................................................... 11  
Changed Figure 19 .............................................................................................................................................................. 14  
Changed text From: "During the normal charging process with HOST control..." To: "During the normal charging  
process with HOST control and termination enabled.." ....................................................................................................... 17  
Changed Title From: 15-Minute Safety Timer To: DEFAULT Mode ................................................................................... 17  
Changed 32-second mode To: HOST mode in USB Friendly Power Up ............................................................................ 17  
Changed 15-minute mode To: DEFAULT mode and 32-s mode To: HOST mode in Input Current Limiting at Power  
Up ........................................................................................................................................................................................ 17  
Added a NOTE to the Application and Implementation section ........................................................................................... 29  
Changed Figure 30 .............................................................................................................................................................. 33  
Changed Figure 31 .............................................................................................................................................................. 33  
Added Figure 30 .................................................................................................................................................................. 33  
Changes from Original (February 2013) to Revision A  
Page  
添加了处理额定值 表、详细的 说明 部分、特性 说明 部分、器件功能模式 部分、寄存器映射 部分、应用和实施 部  
分、电源推荐 部分、PCB 布局 部分、器件和文档支持 部分以及机械、封装和可订购信息 部分 .......................................... 1  
2
Copyright © 2013–2015, Texas Instruments Incorporated  
 
Not Recommended for New Designs  
bq24157S  
www.ti.com.cn  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
5 说明 (续)  
此器件根据电池电压和用户可选的最小电流水平来确定是否终止充电。正常运行期间,如果电池电压下降到低于一  
个内部阈值,IC 自动重新启动充电周期并在输入电源被移除后,自动进入睡眠模式或者高阻抗模式。充电状态可通  
I2C 接口报告给主机。充电过程中,IC 监视其结温 (TJ) 并且在 TJ 增加到大约 125°C 时减少充电电流。为了支  
USB OTG 器件,通过提升电池电压,bq24157S 能够提供 VBUS (5.05V)。此 IC 采用 20 引脚 DSBGA 封装。  
6 Pin Configuration and Functions  
20-Bump DSBGA Package  
(Top View)  
A1  
A2  
A3  
A4  
VBUS  
VBUS  
BOOT  
SCL  
B1  
B2  
B3  
B4  
PMID  
PMID  
PMID  
SDA  
C1  
SW  
C2  
SW  
C3  
SW  
C4  
STAT  
D1  
D2  
D3  
D4  
PGND  
PGND  
PGND  
OTG  
E1  
E2  
CD  
E3  
E4  
CSOUT  
CSIN  
VREF  
Pin Functions  
PIN  
NUMBER  
I/O  
DESCRIPTION  
NAME  
BOOT  
CD  
Bootstrap capacitor connection for the high-side FET gate driver. Connect a 33-nF ceramic capacitor (voltage rating 10 V)  
A3  
E2  
E1  
I/O  
from BOOT pin to SW pin.  
I
I
Charge disable control pin. CD = 0, charge is enabled. CD = 1, charge is disabled and VBUS pin is high impedance to GND.  
Charge current-sense input. Battery current is sensed across an external sense resistor. A 0.1-μF ceramic capacitor to PGND  
CSIN  
is required.  
Battery voltage and current sense input. Bypass it with a ceramic capacitor (minimum 0.1 μF) to PGND if there are long  
inductive leads to battery.  
CSOUT  
OTG  
E4  
D4  
I
I
Boost mode enable control or input current limiting selection pin. When OTG is in active status, the device is forced to  
operate in boost mode. It has higher priority over I2C control and can be disabled using the control register. At POR while in  
DEFAULT mode, the OTG pin is the default to be used as the input current limiting selection pin. The I2C register is ignored  
at startup. When OTG = High, IIN_LIMIT = 500 mA and when OTG = Low, IIN_LIMIT = 100 mA.  
PGND  
PMID  
D1, D2, D3  
B1, B2, B3  
Power ground  
Connection point between reverse blocking FET and high-side switching FET. Bypass it with a minimum of 3.3-μF capacitor  
from PMID to PGND.  
I/O  
I2C interface clock. Connect a 10-kpullup resistor to 1.8-V rail (VAUX= VCC_HOST  
I2C interface data. Connect a 10-kpullup resistor to 1.8-V rail (VAUX= VCC_HOST  
)
SCL  
SDA  
A4  
B4  
I
I/O  
)
Charge status pin. Pull low when charge in progress. Open drain for other conditions. During faults, a 128-μs pulse is sent  
out. STAT pin can be disabled by the EN_STAT bit in control register. STAT can be used to drive a LED or communicate with  
a host processor.  
STAT  
C4  
O
SW  
C1, C2, C3  
A1, A2  
O
Internal switch to output inductor connection  
Charger input voltage. Bypass it with a 1-μF ceramic capacitor from VBUS to PGND. It also provides power to the load during  
boost mode.  
VBUS  
I/O  
Internal bias regulator voltage. Connect a 1-µF ceramic capacitor from this output to PGND. TI does not recommend an  
external load on VREF.  
VREF  
E3  
O
Copyright © 2013–2015, Texas Instruments Incorporated  
3
Not Recommended for New Designs  
bq24157S  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings(1) (2)  
over operating free-air temperature (unless otherwise noted)  
MIN  
–2  
MAX UNIT  
Supply voltage (with respect to PGND(3)  
)
VBUS; VPMID VBUS – 0.3 V  
20  
7
V
V
V
V
V
V
V
V
V
Input voltage (with respect to PGND(3)  
)
SCL, SDA, OTG, SLRST, CSIN, CSOUT, CD  
–0.3  
–0.3  
-0.3  
–0.7  
PMID, STAT  
VREF  
20  
7
Output voltage (with respect to PGND(3)  
)
SW, BOOT  
20  
±7  
7
Voltage difference between CSIN and CSOUT inputs (V(CSIN) – V(CSOUT)  
Voltage difference between BOOT and SW inputs (V(BOOT) – V(SW)  
Voltage difference between VBUS and PMID inputs (V(VBUS) – V(PMID)  
Voltage difference between PMID and SW inputs (V(PMID) – V(SW)  
)
)
–0.3  
–7  
)
0.7  
20  
)
–0.7  
10  
Output sink  
STAT  
SW  
10 mA  
Output current (average)  
Operating free-air temperature range  
Storage temperature range  
Junction temperature  
1.55(2)  
A
TA  
–30  
–45  
–40  
85  
150  
125  
°C  
°C  
°C  
Tstg  
TJ  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage  
values are with respect to the network ground terminal unless otherwise noted.  
(2) Duty cycle for output current should be less than 50% for 10-year lifetime when output current is above 1.5 A.  
(3) All voltages are with respect to PGND if not specified. Currents are positive into, negative out of the specified terminal, if not specified.  
For thermal limitations and considerations of packages, see Thermal Information .  
7.2 ESD Ratings  
MIN  
0
MAX UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2)  
2000  
V
Electrostatic  
discharge  
V(ESD)  
0
500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
MIN  
4
NOM  
MAX  
6(1)  
UNIT  
V
VBUS  
TJ  
Supply voltage, bq24157S  
Operating junction temperature range  
–40  
125  
°C  
(1) The inherent switching noise voltage spikes should not exceed the absolute maximum rating on either the BOOST or SW pins. A tight  
layout minimizes switching noise.  
7.4 Thermal Information  
bq24157S  
THERMAL METRIC(1)  
UNIT  
YFF (20 PINS)  
RθJA  
Junction-to-ambient thermal resistance  
85  
25  
55  
4
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
50  
N/A  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2013–2015, Texas Instruments Incorporated  
 
Not Recommended for New Designs  
bq24157S  
www.ti.com.cn  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
7.5 Electrical Characteristics  
Circuit of Figure 28, VBUS = 5 V, HZ_MODE = 0, OPA_MODE = 0 (CD = 0), TJ = –40°C to 125°C, TJ = 25°C for typical  
values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT CURRENTS  
VBUS > VBUS(min), PWM switching  
VBUS > VBUS(min), PWM not switching  
0°C < TJ < 85°C, CD = 1 or HZ_MODE = 1  
10  
mA  
I(VBUS)  
VBUS supply current control  
5
15  
23  
μA  
μA  
0°C < TJ < 85°C, V(CSOUT) = 4.2 V, high impedance  
mode, VBUS = 0 V  
Ilgk  
Leakage current from battery to VBUS pin  
5
Battery discharge current in high impedance  
mode, (CSIN, CSOUT, SW pins)  
0°C < TJ < 85°C, V(CSOUT) = 4.2 V, high impedance  
mode, V = 0 V, SCL, SDA, OTG = 0 V or 1.8 V  
23  
μA  
VOLTAGE REGULATION  
V(OREG) Output regulation voltage programable range  
Operating in voltage regulation, programmable  
TA = 25°C  
3.5  
–0.5%  
–1%  
4.44  
0.5%  
1%  
V
Voltage regulation accuracy  
CURRENT REGULATION (FAST CHARGE)  
IO(CHARGE) Output charge current programmable range  
TA = -40°C to 125°C  
V(LOWV) V(CSOUT) < V(OREG),  
VBUS > V(SLP), R(SNS) = 68 m, LOW_CHG = 0,  
Programmable  
550  
1250  
mA  
mA  
V
LOWV VCSOUT < VOREG, VBUS > VSLP  
,
325  
550  
350  
569  
RSNS= 68 mΩ, LOW_CHG = 1, OTG = High  
Low charge current (default after POR in 15  
min mode)  
VLOWV VCSOUT < VOREG, VBUS > VSLP,  
RSNS= 68 mΩ, LOW_CHG = 0, OTG = High  
37.4 mV V(IREG)< 44.2 mV  
44.2 mV V(IREG)  
Regulation accuracy of the voltage across  
R(SNS) (for charge current regulation)  
V(IREG) = IO(CHARGE) × R(SNS)  
–3.5%  
–3%  
3.5%  
3%  
WEAK BATTERY DETECTION  
V(LOWV) Weak battery voltage threshold programmable  
Adjustable using I2C control  
3.4  
3.7  
5%  
V
(1)  
range2  
Weak battery voltage accuracy  
Hysteresis for V(LOWV)  
–5%  
Battery voltage falling  
100  
30  
mV  
ms  
Deglitch time for weak battery threshold  
Rising voltage, 2-mV overdrive, tRISE = 100 ns  
CD, OTG, AND SLRST PIN LOGIC LEVEL  
VIL  
Input low threshold level  
Input high threshold level  
Input bias current  
0.4  
1.0  
V
V
VIH  
1.3  
50  
I(bias)  
Voltage on control pin is 5 V  
µA  
CHARGE TERMINATION DETECTION  
Termination charge current programmable  
range  
V(CSOUT) > V(OREG) – V(RCH)  
,
I(TERM)  
400  
mA  
ms  
VBUS > V(SLP), R(SNS) = 68 m, programmable  
Deglitch time for charge termination  
Both rising and falling, 2-mV overdrive,  
tRISE, tFALL = 100 ns  
30  
3.4 mV V(IREG_TERM) 6.8 mV  
6.8 mV < V(IREG_TERM) 17 mV  
17 mV < V(IREG_TERM) 27.2 mV  
–15%  
–10%  
–5.5%  
15%  
10%  
5.5%  
Regulation accuracy for termination current  
across R(SNS)  
V(IREG_TERM) = IO(TERM) × R(SNS)  
BAD ADAPTOR DETECTION  
VIN(min)  
Input voltage lower limit  
Bad adaptor detection  
3.6  
3.8  
30  
4.0  
V
ms  
mV  
mA  
s
Deglitch time for VBUS rising above VIN(min)  
Hysteresis for VIN(min)  
Rising voltage, 2-mV overdrive, tRISE = 100 ns  
Input voltage rising  
100  
20  
200  
40  
ISHORT  
tINT  
Current source to GND  
During bad adaptor detection  
Input power source detection  
30  
2
Detection Interval  
INPUT BASED DYNAMIC POWER MANAGEMENT  
Input Voltage DPM threshold programmable  
VIN_DPM  
range  
4.2  
4.76  
1%  
V
VIN DPM threshold accuracy  
–3%  
(1) While in DEFAULT mode, if a battery that is charged to a voltage higher than this voltage is inserted, the charger enters Hi-Z mode and  
awaits I2C commands.  
Copyright © 2013–2015, Texas Instruments Incorporated  
5
Not Recommended for New Designs  
bq24157S  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
Circuit of Figure 28, VBUS = 5 V, HZ_MODE = 0, OPA_MODE = 0 (CD = 0), TJ = –40°C to 125°C, TJ = 25°C for typical  
values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT CURRENT LIMITING  
TJ = 0°C to 125°C  
TJ = –40°C to 125°C  
TJ = 0°C to 125°C  
TJ = –40°C to 125°C  
88  
86  
93  
93  
98  
98  
IIN = 100 mA  
IIN = 500 mA  
mA  
mA  
IIN_LIMIT  
Input current limiting threshold  
450  
440  
475  
475  
500  
500  
VREF BIAS REGULATOR  
VREF Internal bias regulator voltage  
VBUS > VIN(min) or V(CSOUT) > VBUS(min),  
I(VREF) = 1 mA, C(VREF) = 1 μF  
2
6.5  
V
VREF output short current limit  
BATTERY RECHARGE THRESHOLD  
30  
mA  
V(RCH)  
Recharge threshold voltage  
Deglitch time  
Below V(OREG)  
100  
120  
130  
150  
mV  
ms  
V(SCOUT) decreasing below threshold,  
tFALL = 100 ns, 10-mV overdrive  
STAT OUTPUTS  
Low-level output saturation voltage, STAT pin  
High-level leakage current for STAT  
I2C BUS LOGIC LEVELS AND TIMING CHARACTERISTICS  
IO = 10 mA, sink current  
0.55  
1
V
VOL(STAT)  
Voltage on STAT pin is 5 V  
μA  
VOL  
VIL  
Output low threshold level  
Input low threshold level  
Input high threshold level  
Input bias current  
IO = 10 mA, sink current  
0.4  
0.4  
V
V
V(pullup) = 1.8 V, SDA and SCL  
V(pullup) = 1.8 V, SDA and SCL  
V(pullup) = 1.8 V, SDA and SCL  
VIH  
1.2  
V
I(BIAS)  
f(SCL)  
1
μA  
MHz  
SCL clock frequency  
3.4  
BATTERY DETECTION  
Battery detection current before charge done  
Begins after termination detected,  
V(CSOUT) V(OREG)  
I(DETECT)  
–0.5  
262  
mA  
ms  
(2)  
(sink current)  
Battery detection time  
SLEEP COMPARATOR  
tDETECT  
Sleep-mode entry threshold,  
VBUS – VCSOUT  
V(SLP)  
2.3 V V(CSOUT) V(OREG), VBUS falling  
2.3 V V(CSOUT) V(OREG)  
0
40  
200  
30  
100  
260  
mV  
mV  
ms  
V(SLP_EXIT)  
Sleep-mode exit hysteresis  
140  
Deglitch time for VBUS rising above V(SLP)  
V(SLP_EXIT)  
+
Rising voltage, 2-mV overdrive, tRISE = 100 ns  
UNDERVOLTAGE LOCKOUT (UVLO)  
UVLO  
IC active threshold voltage  
IC active hysteresis  
Power up delay  
VBUS rising – exits UVLO  
3.05  
120  
3.3  
150  
140  
3.55  
V
UVLO(HYS)  
VBUS falling below UVLO – enters UVLO  
mV  
ms  
PWM  
Voltage from BOOT pin to SW pin  
During charge or boost operation  
6.5  
V
Internal top reverse blocking MOSFET on-  
resistance  
IIN(LIMIT) = 500 mA, measured from VBUS to PMID  
180  
120  
250  
Internal top N-channel switching MOSFET on-  
resistance  
Measured from PMID to SW,  
VBOOT – VSW= 4 V  
250  
210  
mΩ  
MHz  
Internal bottom N-channel MOSFET on-  
resistance  
Measured from SW to PGND  
110  
3.0  
f(OSC)  
Oscillator frequency  
Frequency accuracy  
Maximum duty cycle  
Minimum duty cycle  
–10%  
0
10%  
D(MAX)  
D(MIN)  
99.5%  
100  
Synchronous mode to non-synchronous mode  
transition current threshold(2)  
Low-side MOSFET cycle-by-cycle current sensing  
mA  
(2) Bottom N-channel FET always turns on for approximately 30 ns, and then turns off if current is too low.  
6
Copyright © 2013–2015, Texas Instruments Incorporated  
Not Recommended for New Designs  
bq24157S  
www.ti.com.cn  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
Electrical Characteristics (continued)  
Circuit of Figure 28, VBUS = 5 V, HZ_MODE = 0, OPA_MODE = 0 (CD = 0), TJ = –40°C to 125°C, TJ = 25°C for typical  
values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CHARGE MODE PROTECTION  
VOVP_IN_USB  
Input VBUS OVP threshold voltage  
Output OVP threshold voltage  
VBUS threshold to turn off converter during charge  
6.3  
6.5  
6.7  
V
V(CSOUT) threshold over V(OREG) to turn off charger  
during charge  
110  
117  
121  
VOVP  
%VOREG  
V(OVP) hysteresis  
Lower limit for V(CSOUT) falling from above V(OVP)  
Charge mode operation  
11  
2.4  
2.1  
100  
30  
ILIMIT  
Cycle-by-cycle current limit for charge  
Trickle to fast charge threshold  
VSHORT hysteresis  
1.8  
2.0  
3.0  
2.2  
A
V
V(CSOUT) rising  
VSHORT  
ISHORT  
V(CSOUT) falling below VSHORT  
mV  
mA  
Trickle charge charging current  
V(CSOUT) VSHORT)  
20  
40  
BOOST MODE OPERATION FOR VBUS (OPA_MODE = 1, HZ_MODE = 0)  
VBUS_B  
Boost output voltage (to VBUS pin)  
Boost output voltage accuracy  
2.5 V < V(CSOUT) < 4.5 V  
5.05  
V
Including line and load regulation  
–3%  
350  
3%  
VBUS_B = 5.05 V, 3.3 V < V(CSOUT) < 4.5 V,  
TJ= 0°C – 125°C  
IBO  
Maximum output current for boost  
Cycle by cycle current limit for boost  
mA  
A
IBLIMIT  
VBUS_B = 5.05 V, 2.5 V < V(CSOUT) < 4.5 V  
1.0  
6.0  
Overvoltage protection threshold for boost  
(VBUS pin)  
Threshold over VBUS to turn off converter during  
boost  
5.8  
6.2  
V
VBUSOVP  
VBUSOVP hysteresis  
VBUS falling from above VBUSOVP  
V(CSOUT) rising edge during boost  
162  
4.9  
mV  
V
Maximum battery voltage for boost  
(CSOUT pin)  
4.75  
5.05  
VBATMAX  
VBATMAX hysteresis  
V(CSOUT) falling from above VBATMAX  
During boosting  
200  
2.5  
2.9  
mV  
V
Minimum battery voltage for boost  
(CSOUT pin)  
VBATMIN  
Before boost starts  
3.05  
V
Boost output resistance at high-impedance  
mode (from VBUS to PGND)  
CD = 1 or HZ_MODE = 1  
217  
kΩ  
PROTECTION  
TSHTDWN)  
Thermal trip  
165  
10  
Thermal hysteresis  
Thermal regulation threshold  
°C  
TCF  
Charge current begins to reduce  
120  
Copyright © 2013–2015, Texas Instruments Incorporated  
7
Not Recommended for New Designs  
bq24157S  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
www.ti.com.cn  
7.6 Typical Performance Characteristics  
Using circuit shown in Figure 28, TA = 25°C, unless otherwise specified.  
VSW  
VSW  
VSW  
5 V/div  
VSW  
5 V/div  
IBAT  
I Inductor  
500 mA/div  
IND  
IBAT  
200 mA/div  
2 μs/div  
200 μs/div  
VBUS = 5 V  
VBAT = 3.5 V  
VIN = 5 V  
VBAT = 3.2 V  
ICHG = 950 mA  
Figure 1. Cycle by Cycle Current Limiting In Charge Mode  
Overload Operation  
Figure 2. Charge Current Ramp Up  
No Input Current Limit  
VBUS  
4 V/div  
VBUS  
2 V/div  
VBAT  
2 V/div  
VSW  
2 V/div  
VSW  
5 V/div  
IBUS  
20 mA/div  
IBUS  
100 mA/div  
100 ms/div  
10 ms/div  
VBUS = 5 V  
No Battery Connected  
Termination Disabled  
VBUS = 5 V at 8 mA  
ICHG = 550 mA  
VBAT = 3.2 V  
IIN_limit = 100 mA  
Figure 3. Power Up in DEFAULT Mode  
Figure 4. Poor Source Detection  
VBUS  
IBUS  
VBUS  
1 V/div  
OTG  
2 V/div  
OTG  
DEFAULT Mode  
HOST Mode  
IBAT  
200 mA/div  
IBAT  
IBUS  
200 mA/div  
Write Command  
1 s/div  
500 μs/div  
OTG Control, DEFAULT Mode: VBUS = 5 V, VBAT = 3.1 V,  
IIN_limit = 100 and 500 mA  
I2C Control, HOST Mode: IIN_limit = 100 mA  
VBUS = 5 V at 500 mA  
VIN_DPM = 4.52 V  
VBAT = 3.5 V  
ICHG = 1550 mA  
Figure 5. Input Current Control  
Figure 6. VIN Based DPM  
8
Copyright © 2013–2015, Texas Instruments Incorporated  
Not Recommended for New Designs  
bq24157S  
www.ti.com.cn  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
Typical Performance Characteristics (continued)  
Using circuit shown in Figure 28, TA = 25°C, unless otherwise specified.  
94  
VBUS  
VBAT  
VSW  
AC Coupled  
VBUS  
100 mV/div  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
AC Coupled  
VBAT  
100 mV/div  
AC Coupled  
VSW 2 V/div  
VBAT = 3.0 V  
VBAT = 3.6 V  
VBAT = 4.2 V  
I Inductor  
0.2 A/div  
IND  
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
Charge Current (A)  
5 μs/div  
VBUS = 5.05 V  
VBAT = 3.5 V  
IBUS = 42 mA  
Figure 8. Boost Waveform (PFM Mode)  
Figure 7. Charger Efficiency  
VBUS  
200 mV/div,  
5.05 V Offset  
VBUS  
VBUS  
5 V/div  
VPMID  
VPMID  
2 V/div  
VBAT  
200 mV/div,  
3.5 V Offset  
VSW  
VSW  
5 V/div  
VSW  
5 V/div  
IBUS  
IBUS  
0.5 A/div  
IBAT  
500 mV/div  
5 ms/div  
100 μs/div  
VBUS = 5.05 V  
VBAT = 3.5 V  
VBUS = 5.05 V  
VBAT = 3.5 V  
IBUS = 0 to 360 mA  
ILOAD (at VBUS) = 5 to 450 mA  
Figure 9. VBUS Overload Waveforms (Boost Mode)  
Figure 10. Load Step Up Response (Boost Mode)  
VBUS  
VBUS  
100 mV/div  
5.05 V Offset  
VBUS  
2 V/div  
VBAT  
0.2 V/div  
3.5 V Offset  
OTG  
OTG  
VSW  
5 V/div  
VSW  
5 V/div  
VSW  
5 V/div  
IBUS  
IBUS  
IBAT  
0.5 A/div  
0.1 A/div  
100 μs/div  
10 ms/div  
VBUS = 4.5 V (Charge Mode)  
VBUS = 5.1 V (Boost Mode)  
VBUS = 5.05 V  
VBAT = 3.5 V  
IBUS = 0 to 217 mA  
VBAT = 3.5 V, IIN_LIM = 500 mA, (HOST Mode)  
Figure 12. Boost to Charge Mode Transition (OTG Control)  
Figure 11. Load Step Up Response (Boost Mode)  
Copyright © 2013–2015, Texas Instruments Incorporated  
9
Not Recommended for New Designs  
bq24157S  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
www.ti.com.cn  
Typical Performance Characteristics (continued)  
Using circuit shown in Figure 28, TA = 25°C, unless otherwise specified.  
95  
90  
85  
80  
75  
70  
5.09  
5.08  
5.07  
5.06  
5.05  
5.04  
5.03  
5.02  
5.01  
IBUS = 50 mA  
VBAT = 2.7 V  
VBAT = 3.6 V  
VBAT = 4.2 V  
IBUS = 100 mA  
IBUS = 200 mA  
IBUS = 375 mA  
0
50  
100  
150  
200  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
4.0  
4.2  
Load Current at VBUS (mA)  
VBAT (V)  
Figure 13. Boost Efficiency  
Figure 14. Line Regulation For Boost  
5.09  
5.08  
5.07  
5.06  
5.05  
5.04  
5.03  
5.02  
5.01  
5
VOUT  
AC Coupled  
10 mV/div  
INDUCTOR  
AC Coupled  
50 mA/div  
VBAT = 2.7 V  
VBAT = 3.6 V  
VBAT = 4.2 V  
IBAT  
AC Coupled  
10 mA/div  
0
50  
100  
150  
200  
200 ns/div  
Load Current at VBUS (mA)  
ICHG = 1.2 A  
Figure 16. Output Ripple for Voltage and Current  
Figure 15. Load Regulation for Boost  
10  
Copyright © 2013–2015, Texas Instruments Incorporated  
Not Recommended for New Designs  
bq24157S  
www.ti.com.cn  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
8 Detailed Description  
8.1 Overview  
For a current-restricted power source, such as a USB host or hub, a high-efficiency converter is critical to fully  
use the input power capacity for quickly charging the battery. Due to the high efficiency for a wide range of input  
voltages and battery voltages, the switch mode charger is a good choice for high speed charging with less power  
loss and better thermal management than a linear charger.  
The bq24157S includes highly integrated synchronous switch-mode chargers, featuring integrated FETs and  
small external components, targeted at extremely space-limited portable applications powered by 1-cell Li-Ion or  
Li-polymer battery pack. Furthermore, the device has bidirectional operation to achieve boost function for USB-  
OTG support.  
The bq24157S has three operation modes: charge mode, boost mode, and high impedance mode. In charge  
mode, the IC supports a precision Li-ion or Li-polymer charging system for single-cell applications. In boost  
mode, the IC boosts the battery voltage to VBUS for powering attached OTG devices. In high impedance mode,  
the IC stops charging or boosting and operates in a mode with very-low current from VBUS or battery, to  
effectively reduce the power consumption when the portable device is in standby mode. Through I2C  
communication with a host (referred to as HOST mode), the IC achieves smooth transition among the different  
operation modes. During DEFAULT operation, the charger will still charge the battery but uses each register's  
default values.  
Table 1. Device Features  
Features  
bq24157S  
6.5  
VOVP (V)  
D4 pin definition  
OTG  
ICHARGE(MAX) at POR in DEFAULT mode with R(SNS) = 68 mand OTG = High  
ICHARGE(MAX) in HOST mode with R(SNS) = 68 mand safety limit register increased from default (A)  
Output regulation voltage at POR (V)  
550 mA  
1.5  
3.54  
Boost function  
Yes  
100 mA (OTG = Low);  
500 mA (OTG = High)  
Input current limit in DEFAULT mode  
Battery detection at power up  
I2C address  
No  
6AH  
1
PN1 (bit4 of 03H)  
PN0 (bit3 of 03H)  
0
Safety timer and WD timer  
100-ms power-up delay  
Spread Spectrum  
Disabled  
Yes  
Yes  
Yes  
Factory test mode  
Copyright © 2013–2015, Texas Instruments Incorporated  
11  
Not Recommended for New Designs  
bq24157S  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
www.ti.com.cn  
8.2 Functional Block Diagrams  
PMID  
PMID  
PMID  
bq24157S  
V
PMID  
NMOS  
NMOS  
VBUS  
VBUS  
SW  
V
BUS  
SW  
SW  
Q2  
CBC  
Q 3  
Q 1  
Current  
Limiting  
I
LIMIT  
NMOS  
PWM  
VREF  
1
OSC  
Charge  
Pump  
Controller  
V
OUT  
-
+
+
-
CSOUT  
CSIN  
-
IIN  
_ LIMIT  
V
OREG  
+
-
-
V CSIN  
+
V IN  
_ DPM  
-
I
OCHARGE  
TCF  
TJ  
+
-
VREF  
I
SHORT  
PWM _ CHG  
V
BUS  
+
-
VBUS UVLO  
V
UVLO  
_CHG  
VREF  
LINEAR  
V
BUS  
+
-
Poor Input  
Source  
VREF  
BOOT  
V
IN(MIN)  
REFERNCES  
and BIAS  
V
+
-
BUS  
VBUS OVP  
V
OVP_IN  
CHARGE CONTROL  
TIMER and DISPLAY  
LOGIC  
VREF 1  
T
J
V
+
-
Thermal  
Shutdown  
PMID  
T
SHTDWN  
VOUT  
V
OUT  
Battery OVP  
+
-
*
V
OVP  
STAT  
CD  
V
BAT  
+
Sleep  
*
V
-
BUS  
V
- V  
OREG  
RCH  
+
-
Recharge  
*
V
OTG (bq24153 /8)  
SLRST(bq24156)  
OUT  
V
OUT  
Termination  
-
+
-
PGND  
PGND  
PGND  
V
CSIN  
*
( I2 C Control )  
Decoder  
DAC  
I
SCL  
SDA  
TERM  
V
+
-
BAT  
PWM Charge  
Mode  
*
V
SHORT  
*
Signal Deglitched  
Figure 17. Function Block Diagram of bq24157S in Charge Mode  
12  
Copyright © 2013–2015, Texas Instruments Incorporated  
Not Recommended for New Designs  
bq24157S  
www.ti.com.cn  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
Functional Block Diagrams (continued)  
PMID  
bq24157S  
PMID  
VPMID  
PMID  
NMOS  
NMOS  
VBUS  
VBUS  
SW  
SW  
SW  
V
BUS  
CBC  
Current  
Limiting  
Q2  
Q1  
I
BLIMIT  
PWM  
Controller  
VREF  
1
Charge  
Pump  
OSC  
Q3  
NMOS  
PFM Mode  
-
75 mA  
+
-
+
V
+
-
BUS_B  
VREF  
VREF  
I
BO  
V
REFERNCES  
BOOT  
PWM _BOOST  
and BIAS  
BUS  
+
-
VBUS OVP  
VREF 1  
V
BUSOVP  
V
PMID  
CSIN  
T
J
+
-
Thermal  
Shutdown  
T
VOUT  
SHTDWN  
CSOUT  
STAT  
V
CHARGE CONTROL,  
TIMER and DISPLAY  
LOGIC  
Battery OVP  
Low Battery  
OUT  
+
-
*
V
BATMAX  
CD  
V
BAT  
+
-
*
OTG  
V
BATMIN  
PGND  
PGND  
PGND  
(I2C Control)  
Decoder  
DAC  
SCL  
SDA  
*
Signal Deglitched  
Figure 18. Function Block Diagram of bq24157S in Boost Mode  
Copyright © 2013–2015, Texas Instruments Incorporated  
13  
Not Recommended for New Designs  
bq24157S  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
www.ti.com.cn  
Functional Block Diagrams (continued)  
High Impedance Mode or Host  
Controlled Operation Mode  
Power Up  
V CSOUT < VLOWV  
No  
VBUS > VUVLO  
POR  
Load I2 C Registers  
with Default Value  
Yes  
Disable Charge  
/CE = LOW  
/CE = HIGH  
Any Charge State  
Charge Configure  
Mode  
Disable Charge  
Wait Mode  
Indicate Power  
not Good  
Delay T  
INT  
Yes  
No  
Enable ISHORT  
VCSOPUT <V SHORT  
?
Yes  
VBUS < VIN ( MIN  
?
No  
)
Indicate Short  
Circuit condition  
No  
Regulate  
Input Current, Charge  
Current or Voltage  
Indicate Charge-In -  
Progress  
Yes  
VBUS < VIN ( MIN ) ?  
Yes  
Turn Off Charge  
No  
Enable IDETECT for  
tDETECT  
No  
Battery Removed  
VCSOUT  
<
VOREG  
?
-
Wait Mode  
Delay TINT  
Yes  
Reset Charge  
Parameters  
VRCH  
Yes  
No  
VCSOUT < VSHORT ?  
Charge Complete  
Indicate DONE  
No  
No  
Yes  
Termination Enabled  
ITERM detected  
VCSOUT < V OREG  
VRCH  
-
and VCSOUT >V OREG -VRCH  
?
?
Yes  
Figure 19. Operational Flow Chart of bq24157S in Charge Mode  
14  
Copyright © 2013–2015, Texas Instruments Incorporated  
Not Recommended for New Designs  
bq24157S  
www.ti.com.cn  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
8.3 Feature Description  
8.3.1 Input Voltage Protection  
8.3.1.1 Input Overvoltage Protection  
The IC provides built-in input overvoltage protection to protect the device and other components against damage  
if the input voltage (voltage from VBUS to PGND) goes too high. When an input overvoltage condition is  
detected, the IC turns off the PWM converter, sets fault status bits, and sends out a fault pulse from the STAT  
pin. Once VBUS drops below the input overvoltage exit threshold, the fault is cleared and the charge process  
resumes.  
8.3.1.2 Bad Adaptor Detection/Rejection  
Although not shown in Figure 20, at power-on-reset (POR) of VBUS, the IC performs the bad adaptor detection  
by applying a current sink to VBUS. If the VBUS is higher than VIN(MIN) for 30 ms, the adaptor is good and the  
charge process begins. If the VBUS drops below VIN(MIN), a bad adaptor is detected. Then, the IC disables the  
current sink, sends a send fault pulse in FAULT pin, and sets the bad adaptor flag (B2 – B0 = 011 for register  
00H). After a delay of TINT, the IC repeats the adaptor detection process, as shown in Figure 20 and Figure 21.  
Adpator  
V
VBUS  
BUS  
I
SHORT  
(30 mA)  
Adaptor Detection Control  
V
IN_GOOD  
Deglitch  
30ms  
PGND  
START  
Delay  
GND  
V
IN  
T
V
INT  
IN(MIN)  
V
IN_POOR  
Figure 20. Bad Adaptor Detection Circuit  
Copyright © 2013–2015, Texas Instruments Incorporated  
15  
 
Not Recommended for New Designs  
bq24157S  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
www.ti.com.cn  
Feature Description (continued)  
Charge Command  
(Host Control or VBUS  
Ramps Up)  
Delay 10mS  
Enable Adaptor Detection  
Start 30ms Timer  
Enable Input Current Sink  
(30mA, to GND)  
No  
30ms Timer  
Expired?  
VBUS>VIN(MIN)  
?
Yes  
Yes  
No  
Good Adaptor Detected  
Bad Adaptor Detected  
Disable Adaptor Detection  
Charge Start  
Enable VIN Based DPM  
Pulsing STAT Pin  
Set Bad Adaptor Flag  
Delay TINT  
(2 Seconds)  
Figure 21. Bad Adaptor Detection Scheme Flow Chart  
8.3.1.3 Sleep Mode  
The IC enters the low-power sleep mode if the VBUS pin voltage falls below the sleep-mode entry threshold,  
VCSOUT + VSLP, and VBUS is higher than the bad adaptor detection threshold, VIN(MIN). This feature prevents  
draining the battery during the absence of VBUS. During sleep mode, both the reverse blocking switch Q1 and  
PWM are turned off.  
8.3.1.4 Input Voltage Based DPM (Special Charger Voltage Threshold)  
During the charging process, if the input power source is not able to support the programmed or default charging  
current, the VBUS voltage will decrease. After the VBUS drops to VIN_DPM (default 4.52 V), the charge current  
begins to taper down to prevent any further drop of VBUS. When the IC enters this mode, the charge current is  
lower than the set value and the special charger bit is set (B4 in register 05H). This feature makes the IC  
compatible with adapters having different current capabilities.  
8.3.2 Battery Protection  
8.3.2.1 Output Overvoltage Protection  
The IC provides a built-in overvoltage protection to protect the device and other components against damage if  
the battery voltage goes too high, as when the battery is suddenly removed. When an overvoltage condition is  
detected, the IC turns off the PWM converter, sets fault status bits, and sends out a fault pulse from the STAT  
pin. When V(CSOUT) drops to the battery overvoltage exit threshold, the fault is cleared and the charge process  
resumes.  
16  
Copyright © 2013–2015, Texas Instruments Incorporated  
Not Recommended for New Designs  
bq24157S  
www.ti.com.cn  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
Feature Description (continued)  
8.3.2.2 Battery Short Protection  
During the normal charging process, if the battery voltage is lower than the short-circuit threshold, VSHORT, the  
charger operates in short circuit mode with a lower charge rate of ISHORT  
.
8.3.2.3 Battery Detection in HOST Mode  
For applications with removable battery packs, the IC provides a battery absent detection scheme to reliably  
detect insertion or removal of battery packs.  
During the normal charging process with HOST control and termination enabled, when the voltage at the CSOUT  
pin is above the battery recharge threshold, VOREG – VRCH, and the termination charge current is detected, the IC  
turns off the PWM charge and enables a discharge current, IDETECT, for a period of tDETECT, (262-ms typical), then  
checks the battery voltage. If the battery voltage is still above the recharge threshold after tDETECT, the battery is  
present. On the other hand, if the battery voltage is below the battery recharge threshold, the battery is absent.  
Under this condition, the charge parameters (such as input current limit) are reset to the default values and  
charge resumes after a delay of tINT. This function ensures that the charge parameters are reset whenever the  
battery is replaced.  
8.3.3 DEFAULT Mode  
After the battery and input bus voltages are removed from the IC and replaced, the bq24157S enters DEFAULT  
mode until I2C communication begins.  
8.3.4 USB Friendly Power Up  
Prior to POR, if the host continues to write the TMR_RST bit to 1, to stay in HOST mode, then at POR, the  
charger enters normal charge mode (using the desired control bits). If not in HOST mode at POR, the charge will  
operate with default bit values, until the host updates the control registers.  
The default control bits set the charging current and regulation voltage low as a safety feature to avoid violating  
USB specifications and overcharging any of the Li-Ion chemistries, while the host has lost communication. The  
input current limiting is described in the following sections.  
8.3.5 Input Current Limiting at Power Up  
The input current sensing circuit and control loop are integrated into the IC. When operating in DEFAULT mode,  
the OTG pin logic level sets the input current limit to 100 mA for a logic low and 500 mA for a logic high. In  
HOST mode, the input current limit is set by the programmed control bits in register 01H.  
8.3.6 Factory Mode  
The factory mode can be enabled only when the battery is removed. This can be done through an I2C register 05  
bit 6 (see Table 9). The purpose of the mode is to operate the phone in a GSM phone call with no-battery  
connected and do a calibration of the system. Setting the factory mode bit enables the following changes:  
20X ICHG amp is disabled – that is, output current limit is disabled  
Cycle-by-cycle HS current limit threshold is doubled (current typical is 2.4 A, shifts to 4.8 A)  
CCM mode is always enabled (because the current could go from 0 to full GSM pulse)  
8.3.7 Spread Spectrum Mode  
The purpose of the spread spectrum clock modulation is to reduce EMI. In the spread spectrum mode, the  
switching frequency is not fixed to 3 MHz. It is instead shifted by ±10% from the fixed 3-MHz switching  
frequency. The shift is happening in eight steps, four steps in the upper range and four steps in the lower range  
every 170 µs. By modulating the clock frequency, the energy of the switching converter’s EMI is distributed over  
a wider range of frequencies thereby lowering the magnitude of EMI at 3 MHz ±10% as well as harmonic  
frequencies.  
Copyright © 2013–2015, Texas Instruments Incorporated  
17  
Not Recommended for New Designs  
bq24157S  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
www.ti.com.cn  
Feature Description (continued)  
8.3.8 PWM Controller in Charge Mode  
The IC provides an integrated, fixed 3-MHz frequency voltage-mode controller to regulate charge current or  
voltage. This type of controller is used to improve line transient response, thereby, simplifying the compensation  
network used for both continuous and discontinuous current conduction operation. The voltage and current loops  
are internally compensated using a Type-III compensation scheme that provides enough phase margin for stable  
operation, allowing the use of small ceramic capacitors with a low ESR. The device operates between 0% to  
99.5% duty cycles.  
The IC has back-to-back common-drain N-channel FETs at the high side and one N-channel FET at the low side.  
The input N-FET (Q1) prevents battery discharge when VBUS is lower than VCSOUT. The second high-side N-FET  
(Q2) is the switching control switch. A charge pump circuit is used to provide gate drive for Q1, while a bootstrap  
circuit with an external bootstrap capacitor is used to supply the gate drive voltage for Q2.  
Cycle-by-cycle current limit is sensed through the FETs Q2 and Q3. The threshold for Q2 is set to a nominal 2.4-  
A peak current. The low-side FET (Q3) also has a current limit that decides if the PWM controller will operate in  
synchronous or non-synchronous mode. This threshold is set to 100 mA and it turns off the low-side N-channel  
FET (Q3) before the current reverses, preventing the battery from discharging. Synchronous operation is used  
when the current of the low-side FET is greater than 100 mA to minimize power losses.  
8.3.9 Battery Charging Process  
At the beginning of precharge, while battery voltage is below the V(SHORT) threshold, the IC applies a short-circuit  
current, I(SHORT), to the battery. When the battery voltage is above VSHORT and below VOREG, the charge current  
ramps up to fast charge current, IOCHARGE, or a charge current that corresponds to the input current of IIN_LIMIT  
.
The slew rate for fast charge current is controlled to minimize the current and voltage overshoot during transient.  
Both the input current limit, IIN_LIMIT, and fast charge current, IOCHARGE, can be set by the host. When the battery  
voltage reaches the regulation voltage, VOREG, the charge current is tapered down, as shown in Figure 27. The  
voltage regulation feedback occurs by monitoring the battery-pack voltage between the CSOUT and PGND pins.  
In HOST mode, the regulation voltage is adjustable (3.5 to 4.44 V) and is programmed through I2C interface. In  
DEFAULT mode, the regulation voltage is fixed at 3.54 V.  
The IC monitors the charging current during the voltage regulation phase. If termination is enabled, during the  
normal charging process with HOST control, after the voltage at the CSOUT pin is above the battery recharge  
threshold, VOREG – VRCH for the 32-ms (typical) deglitch period, and the termination charge current ITERM is  
detected, the IC turns off the PWM charge and enables a discharge current, IDETECT, for a period of tDETECT (262-  
ms typical), then checks the battery voltage. If the battery voltage is still above the recharge threshold after  
tDETECT, the battery charging is complete. The battery detection routine is used to ensure termination did not  
occur because the battery was removed. After 40 ms (typical) for synchronization purposes of the EOC state and  
the counter, the status bit and pin are updated to indicate charging has completed. The termination current level  
is programmable. To disable the charge current termination, the host can set the charge termination bit (TE) of  
charge control register to 0, refer to I2C Update Sequence for details.  
A new charge cycle is initiated when one of the following conditions is detected:  
The battery voltage falls below the V(OREG) – V(RCH) threshold.  
VBUS POR, if battery voltage is below the V(LOWV) threshold.  
CE bit toggle or RESET bit is set (host controlled)  
8.3.10 Thermal Regulation and Protection  
To prevent overheating of the chip during the charging process, the IC monitors the junction temperature, TJ, of  
the die and begins to taper down the charge current after TJ reaches the thermal regulation threshold, TCF. The  
charge current is reduced to 0 when the junction temperature increases approximately 10°C above TCF. In any  
state, if TJ exceeds TSHTDWN, the IC suspends charging. In thermal shutdown mode, PWM is turned off and all  
timers are frozen. Charging resumes when TJ falls below TSHTDWN by approximately 10°C.  
18  
Copyright © 2013–2015, Texas Instruments Incorporated  
Not Recommended for New Designs  
bq24157S  
www.ti.com.cn  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
Feature Description (continued)  
8.3.11 Charge Status Output, STAT Pin  
The STAT pin is used to indicate operation conditions. STAT is pulled low during charging when EN_STAT bit in  
control register (00H) is set to 1. Under other conditions, STAT pin behaves as a high impedance (open-drain)  
output. Under fault conditions, a 128-µs pulse will be sent out to notify the host. The status of STAT pin at  
different operation conditions is summarized in Table 2. The STAT pin can be used to drive an LED or  
communicate to the host processor.  
Table 2. STAT Pin Summary  
Charge State  
Stat  
Charge in progress and EN_STAT = 1  
Other normal conditions  
Low  
Open-drain  
Charge mode faults: Timer fault, sleep mode, VBUS or battery overvoltage, poor input source, VBUS  
UVLO, no battery, thermal shutdown  
128-μs pulse, then open-drain  
Boost mode faults: Timer fault, over load, VBUS or battery overvoltage, low battery voltage, thermal  
shutdown  
128-μs pulse, then open-drain  
8.3.12 Control Bits in Charge Mode  
8.3.12.1 CE Bit (Charge Mode)  
The CE bit in the control register is used to disable or enable the charge process. A low logic level (0) on this bit  
enables the charge and a high logic level (1) disables the charge.  
8.3.12.2 RESET Bit  
The RESET bit in the Battery Termination/Fast Charge Current register is used to reset all the charge  
parameters. Writing 1 to the RESET bit will reset all the charge parameters to default values except the safety  
limit register, and RESET bit is automatically cleared to 0 when the charge parameters are reset. It is designed  
for charge parameter reset before charge starts and TI does not recommended to set the RESET bit while  
charging or boosting are in progress.  
8.3.12.3 OPA_MODE Bit  
OPA_MODE is the operation mode control bit. When OPA_MODE = 0, the IC operates as a charger; if  
HZ_MODE is set to 0, refer to Table 3 for details. When OPA_MODE = 1 and HZ_MODE = 0, the IC operates in  
boost mode.  
Table 3. Operation Mode Summary  
OPA_MODE  
HZ_MODE  
Operation Mode  
Charge (no fault)  
0
0
Charge configure (fault, Vbus > UVLO)  
High impedance (Vbus < UVLO)  
Boost (no faults)  
Any fault go to charge configure mode  
1
0
1
X
High impedance  
8.3.13 Control Pins in Charge Mode  
8.3.13.1 CD Pin (Charge Disable)  
The CD pin is used to disable the charging process. When the CD pin is low, charge is enabled. When the CD  
pin is high, charge is disabled and the charger enters high impedance (Hi-Z) mode.  
Copyright © 2013–2015, Texas Instruments Incorporated  
19  
 
 
Not Recommended for New Designs  
bq24157S  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
www.ti.com.cn  
8.3.14 Boost Mode Operation  
In HOST mode, when OTG pin is high (and OTG_EN bit is high thereby enabling OTG functionality) or the  
operation mode bit (OPA_MODE) is set to 1, the device operates in boost mode and delivers the power to VBUS  
from the battery. In normal boost mode, the device converts the battery voltage to VBUS-B (about 5.05 V) and  
delivers a current as much as IBO (about 375 mA for bq24157S) to support other USB OTG devices connected to  
the USB connector.  
8.3.14.1 PWM Controller in Boost Mode  
Similar to charge mode operation, in boost mode, the IC provides an integrated, fixed 3-MHz frequency voltage-  
mode controller to regulate output voltage at PMID pin (VPMID). The voltage control loop is internally  
compensated using a Type-III compensation scheme that provides enough phase margin for stable operation  
with a wide load range and battery voltage range.  
In boost mode, the input N-FET (Q1) prevents battery discharge when VBUS pin is over loaded. Cycle-by-cycle  
current limit is sensed through the internal sense FET for Q3. The cycle-by-cycle current limit threshold for Q3 is  
set to a nominal 1.0-A peak current. Synchronous operation is used in PWM mode to minimize power losses.  
8.3.14.2 Boost Start Up  
To prevent the inductor saturation and limit the inrush current, a soft-start control is applied during the boost start  
up.  
8.3.14.3 PFM Mode at Light Load  
In boost mode, under light load conditions, the IC operates in pulse skipping mode (PFM mode) to reduce the  
power loss and improve the converter efficiency. During boosting, the PWM converter is turned off when the  
inductor current is less than 75 mA, and the PWM is turned back on only when the voltage at PMID pin drops to  
about 99.5% of the rated output voltage. A unique pre-set circuit is used to make the smooth transition between  
PWM and PFM mode.  
8.3.14.4 Protection in Boost Mode  
8.3.14.4.1 Output Overvoltage Protection  
The IC provides built-in overvoltage protection to protect the device and other components against damage if the  
VBUS voltage goes too high. When an overvoltage condition is detected, the IC turns off the PWM converter,  
resets OPA_MODE bit to 0, sets fault status bits, and sends out a fault pulse from the STAT pin. When VBUS  
drops to the normal level, the boost starts after host sets OPA_MODE to 1 or OTG pin stays in active status.  
8.3.14.4.2 Output Overload Protection  
The IC provides built-in overload protection to prevent the device and battery from damage when VBUS is  
overloaded. After the overload condition is detected, Q1 operates in linear mode to limit the output current. If the  
overload condition lasts for more than 30 ms, the overload fault is detected. When an overload condition is  
detected, the IC turns off the PWM converter, resets OPA_MODE bit to 0, sets fault status bits, and sends out  
fault pulse in STAT pin. The boost will not start until the host clears the fault register.  
8.3.14.4.3 Battery Overvoltage Protection  
During boosting, when the battery voltage is above the battery overvoltage threshold, VBATMAX, or below the  
minimum battery voltage threshold, VBATMIN, the IC turns off the PWM converter, resets OPA_MODE bit to 0, sets  
fault status bits, and sends out fault pulse in STAT pin. After the battery voltage goes above VBATMIN, the boost  
will start after the host sets OPA_MODE to 1 or OTG pin stays in active status.  
8.3.14.5 STAT Pin in Boost Mode  
During normal boosting operation, the STAT pin behaves as a high impedance (open-drain) output. Under fault  
conditions, a 128-μs pulse is sent out to notify the host.  
20  
Copyright © 2013–2015, Texas Instruments Incorporated  
Not Recommended for New Designs  
bq24157S  
www.ti.com.cn  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
8.3.15 High Impedance (Hi-Z) Mode  
In Hi-Z mode, the charger stops charging and enters a low quiescent current state to conserve power. Taking the  
CD pin high causes the charger to enter Hi-Z mode. When in DEFAULT mode and the CD pin is low, the charger  
automatically enters Hi-Z mode if either:  
VBUS > UVLO and a battery with VBAT > VLOWV is inserted, or  
VBUS falls below UVLO.  
When in HOST mode and the CD is low, the charger can be placed into Hi-Z mode if the HZ-MODE control bit is  
set to 1 and OTG pin is not in active status.  
To exit Hi-Z mode, the CD pin must be low, VBUS must be higher than UVLO, and the HOST must write a 0 to  
the HZ-MODE control bit.  
8.3.16 Serial Interface Description  
I2C is a 2-wire serial interface developed by Philips Semiconductor (see I2C-Bus Specification, Version 2.1,  
January 2000). The bus consists of a data line (SDA) and a clock line (SCL) with pullup structures. When the bus  
is idle, both SDA and SCL lines are pulled high. All the I2C compatible devices connect to the I2C bus through  
open drain I/O pins, SDA and SCL. A master device, usually a microcontroller or a digital signal processor,  
controls the bus. The master is responsible for generating the SCL signal and device addresses. The master also  
generates specific conditions that indicate the START and STOP of data transfer. A slave device receives and/or  
transmits data on the bus under control of the master device.  
The IC works as a slave and is compatible with the following data transfer modes, as defined in the I2C-Bus  
Specification: standard mode (100 kbps), fast mode (400 kbps), and high-speed mode (up to 3.4 Mbps in write  
mode). The interface adds flexibility to the battery charge solution, enabling most functions to be programmed to  
new values depending on the instantaneous application requirements. Register contents remain intact as long as  
supply voltage remains above 2.2 V (typical). I2C is asynchronous, which means that it runs off of SCL. The  
device has no noise or glitch filtering on SCL, so SCL input needs to be clean. Therefore, TI recommends that  
SDA changes while SCL is low.  
The data transfer protocol for standard and fast modes is the same; therefore, they are referred to as F/S-mode  
in this document. The protocol for high-speed mode is different from the F/S-mode, and it is referred to as HS-  
mode. The bq24157S device supports 7-bit addressing only. The device 7-bit address is defined as 1101010  
(6AH).  
8.3.16.1 F/S Mode Protocol  
The master initiates data transfer by generating a start condition. The start condition is when a high-to-low  
transition occurs on the SDA line while SCL is high, as shown in Figure 22. All I2C-compatible devices should  
recognize a start condition.  
DATA  
CLK  
S
P
START Condition  
STOP Condition  
Figure 22. Start and Stop Condition  
The master then generates the SCL pulses, and transmits the 8-bit address and the Read or Write direction bit  
R/W on the SDA line. During all transmissions, the master ensures that data is valid. A valid data condition  
requires the SDA line to be stable during the entire high period of the clock pulse (see Figure 23). All devices  
recognize the address sent by the master and compare it to their internal fixed addresses. Only the slave device  
with a matching address generates an acknowledge (see Figure 23) by pulling the SDA line low during the entire  
high period of the ninth SCL cycle. Upon detecting this acknowledge, the master knows that communication link  
with a slave has been established.  
Copyright © 2013–2015, Texas Instruments Incorporated  
21  
 
Not Recommended for New Designs  
bq24157S  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
www.ti.com.cn  
DATA  
CLK  
Data Line  
Stable;  
Data Valid  
Change  
of Data  
Allowed  
Figure 23. Bit Transfer on the Serial Interface  
The master generates further SCL cycles to either transmit data to the slave (R/W bit 1) or receive data from the  
slave (R/W bit 0). In either case, the receiver needs to acknowledge the data sent by the transmitter. So an  
acknowledge signal can either be generated by the master or by the slave, depending on which one is the  
receiver. The 9-bit valid data sequences consisting of 8-bit data and 1-bit acknowledge can continue as long as  
necessary. To signal the end of the data transfer, the master generates a STOP condition by pulling the SDA line  
from low to high while the SCL line is high (see Figure 25). This releases the bus and stops the communication  
link with the addressed slave. All I2C compatible devices must recognize the stop condition. Upon the receipt of a  
stop condition, all devices know that the bus is released, and they wait for a start condition followed by a  
matching address. If a transaction is terminated prematurely, the master needs to send a STOP condition to  
prevent the slave I2C logic from getting stuck in a bad state. Attempting to read data from register addresses not  
listed in this section will result in FFh being read out.  
Data Output  
by Transmitter  
Not Acknowledge  
Data Output  
by Receiver  
Acknowledge  
SCL From  
Master  
9
8
1
2
Clock Pulse for  
Acknowledgement  
START  
Condition  
Figure 24. Acknowledge on the I2C Bus  
22  
Copyright © 2013–2015, Texas Instruments Incorporated  
Not Recommended for New Designs  
bq24157S  
www.ti.com.cn  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
Recognize START or  
REPEATED START  
Condition  
Recognize STOP or  
REPEATED START  
Condition  
Generate ACKNOWLEDGE  
Signal  
P
SDA  
Acknowledgement  
Signal From Slave  
MSB  
Sr  
Address  
R/W  
SCL  
Sr  
S
ACK  
ACK  
or  
P
or  
Sr  
Clock Line Held Low While  
Interrupts are Serviced  
Figure 25. Bus Protocol  
8.3.16.2 HS Mode Protocol  
When the bus is idle, both SDA and SCL lines are pulled high by the pullup devices.  
The master generates a START condition followed by a valid serial byte containing HS master code 00001XXX.  
This transmission is made in F/S-mode at no more than 400 Kbps. No device is allowed to acknowledge the HS  
master code, but all devices must recognize it and switch their internal setting to support 3.4-Mbps operation.  
The master then generates a repeated START condition (a repeated START condition has the same timing as  
the start condition). After this repeated START condition, the protocol is the same as F/S-mode, except that  
transmission speeds up to 3.4 Mbps are allowed. A STOP condition ends the HS-mode and switches all the  
internal settings of the slave devices to support the F/S-mode. Instead of using a STOP condition, repeated  
START conditions should be used to secure the bus in HS-mode. If a transaction is terminated prematurely, the  
master needs to send a STOP condition to prevent the slave I2C logic from getting stuck in a bad state.  
Attempting to read data from register addresses not listed in this section results in FFh being read out.  
8.3.16.3 I2C Update Sequence  
The IC requires a start condition, a valid I2C address, a register address byte, and a data byte for a single  
update. After the receipt of each byte, the IC acknowledges by pulling the SDA line low during the high period of  
a single clock pulse. A valid I2C address selects the IC. The IC performs an update on the falling edge of the  
acknowledge signal that follows the LSB byte.  
For the first update, the IC requires a START condition, a valid I2C address, a register address byte, and a data  
byte. For all consecutive updates, the IC needs a register address byte and a data byte. When a STOP condition  
is received, the IC releases the I2C bus and awaits new start conditions.  
Copyright © 2013–2015, Texas Instruments Incorporated  
23  
Not Recommended for New Designs  
bq24157S  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
www.ti.com.cn  
S
SLAVE ADDRESS  
R/W  
A
REGISTER ADDRESS  
Data Transferred  
A
DATA  
P
A/A  
‘0’ (Write)  
(n Bytes + Acknowledge)  
From master to IC  
A
A
= Acknowledge (SDA LOW)  
= Not acknowledge (SDA  
HIGH)  
From IC to master  
S
= START condition  
Sr = Repeated START condition  
= STOP condition  
P
(a) F/S-Mode  
F/S-Mode  
F/S-Mode  
HS-Mode  
S
HS-MASTER CODE  
Sr  
SLAVE ADDRESS  
R/W  
A
REGISTER ADDRESS  
A
DATA  
P
A
A/A  
Data Transferred  
HS-Mode  
‘0’ (write)  
(n Bytes + Acknowledge)  
Continues  
Sr  
Slave A.  
(b) HS-Mode  
Figure 26. Data Transfer Format In F/S Mode And HS Mode  
8.3.16.4 Slave Address Byte  
The slave address byte is the first byte received following the START condition from the master device.  
MSB  
LSB  
1
X
1
1
0
1
0
1
8.3.16.5 Register Address Byte  
Following the successful acknowledgment of the slave address, the bus master will send a byte to the IC, which  
contains the address of the register to be accessed. The IC contains five 8-bit registers accessible through a  
bidirectional I2C-bus interface. Among them, four internal registers have read and write access; and one has only  
read access.  
MSB  
0
LSB  
D0  
0
0
0
0
D2  
D1  
8.4 Device Functional Modes  
8.4.1 Charge Mode Operation  
8.4.1.1 Charge Profile  
When a good battery with voltage below the recharge threshold has been inserted and a good adapter is  
attached, the bq24157S enters charge mode. In charge mode, the IC has five control loops to regulate input  
voltage, input current, charge current, charge voltage, and device junction temperature. During the charging  
process, all five loops are enabled and the one that is dominant takes control. The IC supports a precision Li-ion  
or Li-polymer charging system for single-cell applications. Figure 27 (a) indicates a typical charge profile without  
input current regulation loop. It is the traditional CC/CV charge curve, while Figure 27 (b) shows a typical charge  
profile when input current limiting loop is dominant during the constant current mode. In this case, the charge  
current is higher than the input current, so the charge process is faster than the linear chargers. The input  
voltage threshold for DPM loop, input current limits, charge current, termination current, and charge voltage are  
all programmable using I2C interface.  
24  
Copyright © 2013–2015, Texas Instruments Incorporated  
Not Recommended for New Designs  
bq24157S  
www.ti.com.cn  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
Device Functional Modes (continued)  
Precharge  
Phase  
Current Regulation  
Phase  
Voltage Regulation  
Phase  
Regulation  
Voltage  
Regulation  
Current  
Charge Voltage  
VSHORT  
Charge Current  
Termination  
I SHORT  
Precharge  
(Linear Charge)  
Fast Charge  
(PWM Charge)  
(a)  
Precharge  
Phase  
Current Regulation  
Phase  
Voltage Regulation  
Phase  
Regulation  
voltage  
Charge Voltage  
VSHORT  
Charge Current  
Termination  
ISHORT  
Fast Charge  
Precharge  
(Linear Charge)  
(PWM Charge)  
(b)  
Figure 27. Typical Charging Profile:  
(a) Without Input Current Limit  
(b) With Input Current Limit  
Copyright © 2013–2015, Texas Instruments Incorporated  
25  
Not Recommended for New Designs  
bq24157S  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
www.ti.com.cn  
8.5 Register Maps  
Table 4. Status/Control Register (Read or Write)  
Memory Location: 00, Reset State: x1xx 0xxx  
BIT  
NAME  
Read or Write  
FUNCTION  
Write: TMR_RST function, write 1 to reset the safety timer (auto clear)  
Read: OTG pin status  
0 – OTG pin at low level  
B7 (MSB) TMR_RST/OTG Read or Write  
1 – OTG pin at high level  
0 – Disable STAT pin function  
1 – Enable STAT pin function (default 1)  
B6  
B5  
EN_STAT  
STAT2  
Read or Write  
Read only  
00 – Ready  
01 – Charge in progress  
10 – Charge done  
11 – Fault  
B4  
STAT1  
Read only  
B3  
B2  
B1  
BOOST  
FAULT_3  
FAULT_2  
Read only  
Read only  
Read only  
1 – Boost mode, 0 – Not in boost mode  
Charge mode:  
000 – Normal  
001 – VBUS OVP  
010 – Sleep mode  
011 – Bad Adaptor or VBUS < VUVLO  
100 – Output OVP  
101 – Thermal shutdown  
110 – Timer fault  
111 – No battery  
Boost mode:  
000 – Normal  
B0 (LSB)  
FAULT_1  
Read only  
001 – VBUS OVP  
010 – Overload  
011 – Battery voltage is too low  
100 – Battery OVP  
101 – Thermal shutdown  
110 – Timer fault  
111 – N/A  
Table 5. Control Register (Read or Write)  
Memory Location: 01, Reset State: 0011 0000  
BIT  
NAME  
Read or Write  
FUNCTION  
B7 (MSB)  
Iin_Limit_2  
Read or Write  
00 – USB host with 100-mA current limit  
01 – USB host with 500-mA current limit  
10 – USB host/charger with 800-mA current limit  
11 – No input current limit  
B6  
Iin_Limit_1  
Read or Write  
(1)  
B5  
B4  
V(LOWV_2)  
Read or Write  
Read or Write  
Weak battery voltage threshold: 200-mV step (default 1)  
Weak battery voltage threshold: 100-mV step (default 1)  
(1)  
V(LOWV_1)  
1 – Enable charge current termination  
0 – Disable charge current termination (default 0)  
B3  
B2  
TE  
CE  
Read or Write  
Read or Write  
Read or Write  
Read or Write  
1 – Charger is disabled  
0 – Charger enabled (default 0)  
1 – High impedance mode  
0 – Not high impedance mode (default 0)  
B1  
HZ_MODE  
1 – Boost mode  
0 – Charger mode (default 0)  
B0 (LSB)  
OPA_MODE  
(1) The range of the weak battery voltage threshold (V(LOWV)) is 3.4 to 3.7 V with an offset of 3.4 V and steps of 100 mV (default 3.7 V,  
using bits B4 to B5).  
26  
Copyright © 2013–2015, Texas Instruments Incorporated  
Not Recommended for New Designs  
bq24157S  
www.ti.com.cn  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
Table 6. Control/Battery Voltage Register (Read or Write)  
Memory Location: 02, Reset State: 0000 1010(1)  
BIT  
B7 (MSB)  
B6  
NAME  
Read or Write  
Read or Write  
Read or Write  
Read or Write  
Read or Write  
Read or Write  
Read or Write  
FUNCTION  
Battery Regulation Voltage: 640-mV step (default 0)  
Battery Regulation Voltage: 320-mV step (default 0)  
Battery Regulation Voltage: 160-mV step (default 0)  
Battery Regulation Voltage: 80-mV step (default 0)  
Battery Regulation Voltage: 40-mV step (default 1)  
Battery Regulation Voltage: 20-mV step (default 0)  
VO(REG5)  
VO(REG4)  
VO(REG3)  
VO(REG2)  
VO(REG1)  
VO(REG0)  
B5  
B4  
B3  
B2  
1 – OTG boost enable with high level  
B1  
OTG_PL  
OTG_EN  
Read or Write  
Read or Write  
0 – OTG boost enable with low level (default 1); not applicable to OTG pin control of  
current limit at POR in DEFAULT mode  
1 – Enable OTG Pin in HOST mode  
0 – Disable OTG pin in HOST mode (default 0), not applicable to OTG pin control of  
current limit at POR in DEFAULT mode  
B0 (LSB)  
(1) Charge voltage range is 3.5 to 4.44 V with the offset of 3.5 V and steps of 20 mV (default 3.54 V), using bits B2 to B7.  
Table 7. Vender/Part/Revision Register (Read only)  
Memory Location: 03, Reset State: 0101 000x  
BIT  
B7 (MSB)  
B6  
NAME  
Vender2  
Vender1  
Vender0  
PN1  
Read or Write  
Read only  
Read only  
Read only  
Read only  
FUNCTION  
Vender Code: bit 2 (default 0)  
Vender Code: bit 1 (default 1)  
Vender Code: bit 0 (default 0)  
B5  
B4  
For I2C Address 6AH:  
01–N/A  
10–bq24157S  
11–N/A  
B3  
PN0  
Read only  
B2  
B1  
Revision2  
Revision1  
Revision0  
Read only  
Read only  
Read only  
011: Revision 1.0;  
001: Revision 1.1;  
100 – 111: Future Revisions  
B0 (LSB)  
Table 8. Battery Termination/Fast Charge Current Register (Read or Write)  
Memory Location: 04, Reset State: 0000 0001(1)  
BIT  
NAME  
Read or Write  
FUNCTION  
Write:  
B7 (MSB)  
Reset  
Read or Write  
1 – Charger in reset modes  
0 – No effect, Read: always get 0  
(2)  
(2)  
(2)  
(2)  
(3)  
(3)  
(3)  
B6  
B5  
VI(CHRG3)  
VI(CHRG2)  
VI(CHRG1)  
VI(CHRG0)  
VI(TERM2)  
VI(TERM1)  
VI(TERM0)  
Read or Write  
Read or Write  
Read or Write  
Read or Write  
Read or Write  
Read or Write  
Read or Write  
Charge current sense voltage: 27.2-mV step  
Charge current sense voltage: 13.6-mV step  
Charge current sense voltage: 6.8-mV step  
N/A  
B4  
B3  
B2  
Termination current sense voltage: 13.6-mV step (default 0)  
Termination current sense voltage: 6.8-mV step (default 0)  
Termination current sense voltage: 3.4-mV step (default 1)  
B1  
B0 (LSB)  
(1) Charge current sense voltage offset is 37.4 mV and default charge current is 550 mA, if 68-mΩ sensing resistor is used and  
LOW_CHG = 0.  
(2) See Table 13  
(3) See Table 12  
Copyright © 2013–2015, Texas Instruments Incorporated  
27  
Not Recommended for New Designs  
bq24157S  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
www.ti.com.cn  
Table 9. Special Charger Voltage/Enable Pin Status Register  
Memory Location: 05, Reset state: 000X X100(1) (2)  
BIT  
NAME  
Read or Write  
FUNCTION  
B7 (MSB)  
NA  
Read or Write  
NA  
0 – Disables factory test mode  
1 – Enables the factory test mode  
B6  
B5  
B4  
B3  
FAC_MODE  
LOW_CHG  
Read or Write  
Read or Write  
Read only  
0 – Normal charge current sense voltage at 04H,  
1 – Low charge current sense voltage of 22.1 mV (default 0)  
0 – DPM mode is not active,  
1 – DPM mode is active  
DPM_STATUS  
CD_STATUS  
0 – CD pin at LOW level,  
1 – CD pin at HIGH level  
Read only  
B2  
B1  
VSREG2  
VSREG1  
VSREG0  
Read or Write  
Read or Write  
Read or Write  
Special charger voltage: 320mV step (default 1)  
Special charger voltage: 160mV step (default 0)  
Special charger voltage: 80mV step (default 0)  
B0 (LSB)  
(1) Special charger voltage offset is 4.2 V and default special charger voltage is 4.52 V.  
(2) Default charge current will be 550 mA, if 68-mΩ sensing resistor is used, since default LOW_CHG = 0.  
Table 10. Safety Limit Register (Read or Write, Write Only One Time After Reset)  
Memory Location: 06, Reset State: 01000000  
BIT  
B7 (MSB)  
B6  
NAME  
VMCHRG3  
VMCHRG2  
VMCHRG1  
VMCHRG0  
VMREG3  
Read or Write  
Read or Write  
Read or Write  
Read or Write  
Read or Write  
Read or Write  
Read or Write  
Read or Write  
Read or Write  
FUNCTION  
(1)  
(1)  
(1)  
(1)  
(2)  
Maximum charge current sense voltage: 54.4-mV step (default 0)  
Maximum charge current sense voltage: 27.2-mV step (default 1)  
Maximum charge current sense voltage: 13.6-mV step (default 0)  
Maximum charge current sense voltage: 6.8-mV step (default 0)  
Maximum battery regulation voltage: 160-mV step (default 0)  
Maximum battery regulation voltage: 80-mV step (default 0)  
Maximum battery regulation voltage: 40-mV step (default 0)  
Maximum battery regulation voltage: 20-mV step (default 0)  
B5  
B4  
B3  
B2  
VMREG2  
B1  
VMREG1  
B0 (LSB)  
VMREG0  
(1) Refer to Table 13  
SPACE  
Maximum charge current sense voltage offset is 37.4 mV (550 mA), default at 64.6 mV (950 mA) and the  
maximum charge current option is 1.55 A (105.4 mV), if 55-mΩ sensing resistor is used.  
Maximum battery regulation voltage offset is 4.2 V (default at 4.2 V) and maximum battery regulation voltage  
option is 4.44 V.  
Memory location 06H resets only when V(CSOUT) drops below either 1) V(SHORT) threshold (typical 2.05 V) if  
VBUS>V(UVLO) or 2) the digital reset threshold (typ 2.4V) if VBUS<V(UVLO). After reset, the maximum  
values for battery regulation voltage and charge current can be programmed until any writing to other register  
locks the safety limits. Programmed values exclude higher values from memory locations 02 (battery  
regulation voltage), and from memory location 04 (fast charge current).  
If host accesses (write command) to some other register before safety limit register, the safety default values  
are used.  
28  
Copyright © 2013–2015, Texas Instruments Incorporated  
Not Recommended for New Designs  
bq24157S  
www.ti.com.cn  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The bq24157S is a compact, flexible, high-efficiency, USB-friendly, switch-mode charge management solution for  
single-cell Li-ion and Li-polymer batteries used in a wide range of portable applications. The bq24157S integrates  
a synchronous PWM controller, power MOSFETs, input current sensing, high-accuracy current and voltage  
regulation, and charge termination, into a small DSBGA package. The charge parameters can be programmed  
through an I2C interface.  
9.2 Typical Application  
VBUS = 5 V, ICHARGE = 1250 mA, VBAT = 3.5 to 4.44 V (adjustable).  
L
1 mH  
RSNS  
O
VBAT  
VBUS  
VBUS  
SW  
CO1  
CIN  
CO2  
33 mF  
CBOOT  
33 nF  
U1  
1 mF  
22 mF  
bq24157S  
BOOT  
PGND  
PMID  
CIN  
PACK+  
4.7 mF  
CCSIN  
+
VAUX  
10 kW  
0.1 mF  
CSIN  
2
I C BUS  
10 kW  
10 kW  
10 kW  
PACK–  
CSOUT  
SCL  
SCL  
SDA  
STAT  
SDA  
CCSOUT  
0.1 mF  
STAT  
SLRST  
VREF  
SLRST  
CVREF  
CD  
10 kW  
CD  
1 mF  
10 kW  
HOST  
Figure 28. I2C Controlled 1-Cell USB Charger Application Circuit With USB-OTG Support  
9.2.1 Design Requirements  
Use the following typical application design procedure to select external components values for the bq24157S  
device.  
Specification  
Test Condition  
MIN  
4
TYP  
5
MAX  
6
UNIT  
V
Input DC voltage, VIN  
Input current  
Input voltage from AC adapter input  
Maximum input current from AC adapter input  
Battery charge current  
0.1  
0.325  
0
0.1 to 0.5  
0.7  
1.5  
A
Charge current  
1.55  
4.44  
125  
A
Output regulation voltage  
Voltage applied at VBAT  
3 to 4.2  
V
Operating junction temperature range, TJ  
0
°C  
Copyright © 2013–2015, Texas Instruments Incorporated  
29  
Not Recommended for New Designs  
bq24157S  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
Systems design specifications:  
VBUS = 5 V  
VBAT = 4.2 V (1 cell)  
I(charge) = 1.25 A  
Inductor ripple current = 30% of fast charge current  
SPACE  
1. Determine the inductor value (LOUT) for the specified charge current ripple:  
VBAT ´ (VBUS - VBAT)  
L
=
OUT  
VBUS ´ f ´ DI  
L
, the worst case is when battery voltage is as close as to half of the input  
voltage.  
2.5 ´ (5 - 2.5)  
L
=
OUT  
6
5 ´ (3 ´ 10 ) ´ 1.25 ´ 0.3  
(1)  
LOUT = 1.11 μH  
Select the output inductor to standard 1 μH. Calculate the total ripple current with using the 1-μH inductor:  
VBAT ´ (VBUS - VBAT)  
DI =  
L
VBUS ´ f ´ L  
OUT  
(2)  
(3)  
2.5 ´ (5 - 2.5)  
DI =  
L
6
-6  
5 ´ (3 ´ 10 ) ´ (1 ´ 10  
)
ΔIL = 0.42 A  
Calculate the maximum output current:  
DI  
L
I
= I +  
OUT  
LPK  
2
0.42  
2
(4)  
(5)  
I
= 1.25 +  
LPK  
ILPK = 1.46 A  
Select 2.5-mm by 2-mm, 1-μH, 1.5-A surface mount multi-layer inductor. The suggested inductor part  
numbers are shown in Table 11.  
Table 11. Inductor Part Numbers  
Part Number  
LQM2HPN1R0MJ0  
MIPS2520D1R0  
MDT2520-CN1R0M  
CP1008  
Inductance  
1 μH  
Size  
Manufacturer  
Murata  
2.5 × 2.0 mm  
2.5 × 2.0 mm  
2.5 × 2.0 mm  
2.5 × 2.0 mm  
1 μH  
FDK  
1 μH  
TOKO  
1 μH  
Inter-Technical  
2. Determine the output capacitor value (COUT) using 40 kHz as the resonant frequency:  
1
f
=
o
2p ´  
L
´ C  
OUT  
OUT  
(6)  
(7)  
1
C
=
OUT  
2
4p ´ f  
2
´ L  
0
OUT  
1
C
=
OUT  
2
3 2  
-6  
4p ´ (40 ´ 10 ) ´ (1 ´ 10 )  
(8)  
30  
Copyright © 2013–2015, Texas Instruments Incorporated  
 
 
Not Recommended for New Designs  
bq24157S  
www.ti.com.cn  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
COUT = 15.8 μF  
Select two 0603 X5R 6.3-V 10-μF ceramic capacitors in parallel, that is, Murata GRM188R60J106M.  
3. Determine the sense resistor using Equation 9:  
V
(RSNS)  
R
=
(SNS)  
I
(CHARGE)  
(9)  
The maximum sense voltage across the sense resistor is 85 mV. To get a better current regulation accuracy,  
V(RSNS) should equal 85 mV, and calculate the value for the sense resistor.  
85mV  
R
=
(SNS)  
1.25A  
(10)  
R(SNS) = 68 m  
This is a standard value. If it is not a standard value, then choose the next close value and calculate the real  
charge current. Calculate the power dissipation on the sense resistor:  
P(RSNS) = I(CHARGE) 2 × R(SNS)  
P(RSNS) = 1.252 × 0.068  
P(RSNS) = 0.106 W  
Select 0402 0.125-W 68-m2% sense resistor, that is, Panasonic ERJ2BWGR068.  
For 1.5A application, R(SNS)= 85mV/1.55A = 55 mΩ  
4. Measured efficiency and total power loss with different inductors are shown in Figure 29. SW node and  
inductor current waveform are shown in Figure 37.  
Battery Charge Efficiency  
Battery Charge Loss  
90  
89  
88  
87  
86  
85  
84  
83  
82  
800  
700  
600  
500  
400  
300  
200  
100  
TA = 25°C  
TA = 25°C  
VBUS = 5 V  
VBAT = 3 V  
VBUS = 5 V  
VBAT = 3 V  
FDK  
FDK  
TOKO  
TOKO  
Inter-Technical  
muRata  
Inter-Technical  
muRata  
500  
600  
700  
800  
900 1000 1100 1200 1300  
500  
600  
700  
800  
900 1000 1100 1200 1300  
Charge Current (mA)  
Charge Current (mA)  
Figure 29. Measured Efficiency and Power Loss  
Copyright © 2013–2015, Texas Instruments Incorporated  
31  
 
 
Not Recommended for New Designs  
bq24157S  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
www.ti.com.cn  
9.2.2.1 Charge Current Sensing Resistor Selection Guidelines  
Both the termination current range and charge current range depend on the sensing resistor (RSNS). The  
termination current step (IOTERM_STEP) can be calculated using Equation 11.  
V
I(TERM0)  
I
=
O(TERM_STEP)  
R
(SNS)  
(11)  
Table 12 shows the termination current settings for three sensing resistors.  
Table 12. Termination Current Settings for 55-m, 68-m, and 100-mSense Resistors  
I(TERM) (mA)  
R(SNS) = 55 m  
I(TERM) (mA)  
R(SNS) = 68 mΩ  
I(TERM) (mA)  
R(SNS) = 100 mΩ  
BIT  
VI(TERM) (mV)  
VI(TERM2)  
VI(TERM1)  
VI(TERM0)  
Offset  
13.6  
6.8  
247  
124  
62  
200  
100  
50  
136  
68  
3.4  
34  
3.4  
62  
50  
34  
For example, with a 68-mΩ sense resistor, V(ITERM2) = 1, V(ITERM1) = 0, and V(ITERM0) = 1, ITERM = [(13.6 mV × 1) +  
(6.8 mV × 0) + (3.4 mV × 1) + 3.4 mV] / 68 mΩ = 200 mA + 0 + 50 mA + 50 mA = 300 mA.  
The charge current step (IO(CHARGE_STEP)) is calculated using Equation 12.  
V
I(CHRG0)  
I
=
O(CHARGE_STEP)  
R
(SNS)  
(12)  
Table 13 shows the charge current settings for three sensing resistors.  
Table 13. Charge Current Settings for 55-m, 68-m, and 100-mSense Resistors  
IO(CHARGE) (mA)  
R(SNS) = 55 mΩ  
IO(CHARGE) (mA)  
R(SNS) = 68 mΩ  
IO(CHARGE) (mA)  
R(SNS) = 100 mΩ  
BIT  
VI(REG) (mV)  
VI(CHRG3)  
VI(CHRG2)  
VI(CHRG1)  
VI(CHRG0)  
Offset  
54.4  
27.2  
13.6  
6.8  
989  
495  
247  
124  
680  
800  
400  
200  
100  
550  
544  
272  
136  
68  
37.4  
374  
For example, with a 68-mΩ sense resistor, V(CHRG3) = 1, V(CHRG2) = 0, V(ICHRG1) = 0, and V(ICHRG0) = 1, ITERM  
=
[(54.4 mV × 1) + (27.2 mV × 0) + (13.6 mV × 0) + (6.8 mV × 1) + 37.4 mV] / 68 mΩ = 800 mA + 0 + 0 + 100 mA  
= 900 mA.  
9.2.2.2 Output Inductor and Capacitance Selection Guidelines  
The IC provides internal loop compensation. With the internal loop compensation, the highest stability occurs  
when the LC resonant frequency, ƒo, is approximately 40 kHz (20 to 80 kHz). Equation 13 can be used to  
calculate the value of the output inductor, LOUT, and output capacitor, COUT  
.
1
f
=
o
2p ´  
L
´ C  
OUT  
OUT  
(13)  
To reduce the output voltage ripple, TI recommends a ceramic capacitor with the capacitance between 4.7 to 47  
μF for COUT. See previous sections in the Detailed Design Procedure for components selection.  
32  
Copyright © 2013–2015, Texas Instruments Incorporated  
 
 
 
 
 
Not Recommended for New Designs  
bq24157S  
www.ti.com.cn  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
9.2.3 Application Curves  
V(VBUS)  
V(VBUS)  
V(VBUS)  
2 V/div  
V(VBUS)  
2 V/div  
V(BAT)  
V(BAT)  
V(BAT)  
V(BAT)  
V(SW)  
2 V/div  
2 V/div  
V(SW)  
V(SW)  
2 V/div  
V(SW)  
2 V/div  
I(BAT)  
I(BAT)  
I(BAT)  
500 mA/div  
I(BAT)  
500 mA/div  
100 ms/div  
1 s/div  
VBUS = 0 to 5 V  
VBAT = 3.5 V  
IIN_limit = 500 mA  
VBATREG = 4.2 V  
VBUS = 5 V  
VBAT = 3.5 V  
IIN_limit = 500 mA  
ICHG = 550 mA  
VBATREG = 4.2 V  
ICHG = 550 mA  
Termination Enabled  
Figure 30. Adapter Insertion (HOST Mode)  
Figure 31. Battery Insertion/Removal Termination Enabled  
(HOST Mode)  
VSW  
V(VBUS)  
2 V/div  
V(VBUS)  
VSW  
2 V/div  
V(BAT)  
V(SW)  
V(BAT)  
2 V/div  
V(SW)  
IND  
2 V/div  
I Inductor  
500 ms/div  
I(BAT)  
I(BAT)  
500 mA/div  
1 s/div  
200 ns/div  
VBUS = 5 V  
VBAT = 3.5 V  
IIN_limit = 500 mA  
VBUS = 5 V  
VBAT = 2.6 V  
VOREG = 4.2 V  
VBATREG = 4.2 V  
ICHG = 550 mA  
Termination  
Enabled  
ICHG = 950 mA  
Figure 33. PWM Charging Waveforms  
Figure 32. Battery Insertion/Removal Termination Disabled  
(HOST Mode)  
VBUS  
AC Coupled  
VBUS  
100 mV/div  
VBAT  
VBAT  
2 V/div  
VBAT  
AC Coupled  
VBAT  
100 mV/div  
IBAT  
VSW  
2 V/div  
VSW  
IBAT  
1 A/div  
I Inductor  
200 mA/div  
IND  
100 ns/div  
200 μs/div  
VBUS = 5.05 V  
VBAT = 3.5 V  
IBUS = 217 mA  
5.5-V input voltage  
Figure 34. Boost Waveform (PWM Mode)  
Figure 35. Step Load from 0 to 2 A During Factory Mode  
Copyright © 2013–2015, Texas Instruments Incorporated  
33  
Not Recommended for New Designs  
bq24157S  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
www.ti.com.cn  
10 Power Supply Recommendations  
10.1 System Load After Sensing Resistor  
One of the simpler high-efficiency topologies connects the system load directly across the battery pack, as  
shown in Figure 36. The input voltage has been converted to a usable system voltage with good efficiency from  
the input. When the input power is on, it supplies the system load and charges the battery pack at the same time.  
When the input power is off, the battery pack powers the system directly.  
SW  
VBUS  
Isns  
Isys  
Ichg  
L1  
Rsns  
VIN  
+
-
bq2415x  
System  
Load  
+
C3  
C4  
BAT  
C1  
PMID  
C2  
PGND  
Figure 36. System Load After Sensing Resistor  
The advantages:  
1. When the AC adapter is disconnected, the battery pack powers the system load with minimum power  
dissipation. Consequently, the time that the system runs on the battery pack can be maximized.  
2. It reduces the number of external path selection components and offers a low-cost solution.  
3. Dynamic power management (DPM) can be achieved. The total of the charge current and the system current  
can be limited to a desired value by setting the charge current value. When the system current increases, the  
charge current drops by the same amount. As a result, no potential overcurrent or overheating issues are  
caused by excessive system load demand.  
4. The total input current can be limited to a desired value by setting the input current limit value. USB  
specifications can be met easily.  
5. The supply voltage variation range for the system can be minimized.  
6. The input current soft-start can be achieved by the generic soft-start feature of the IC.  
Design considerations and potential issues:  
1. If the system always demands a high current (but lower than the regulation current), the battery charging  
never terminates. Thus, the battery is always charged, and its lifetime may be reduced.  
2. Because the total current regulation threshold is fixed and the system always demands some current, the  
battery may not be charged with a full-charge rate and thus may lead to a longer charge time.  
3. If the system load current is large after the charger has been terminated, the IR drop across the battery  
impedance may cause the battery voltage to drop below the refresh threshold and start a new charge cycle.  
The charger would then terminate due to low charge current. Therefore, the charger would cycle between  
charging and terminating. If the load is smaller, the battery has to discharge down to the refresh threshold,  
resulting in a much slower cycling.  
4. In a charger system, the charge current is typically limited to about 30 mA, if the sensed battery voltage is  
below the 2-V short circuit protection threshold. This results in low power availability at the system bus. If an  
external supply is connected and the battery is deeply discharged below the short circuit protection threshold,  
the charge current is clamped to the short circuit current limit. This then is the current available to the system  
during the power-up phase. Most systems cannot function with such limited supply current, and the battery  
supplements the additional power required by the system. Note that the battery pack is already at the  
depleted condition, and it discharges further until the battery protector opens, resulting in a system shutdown.  
5. If the battery is below the short circuit threshold and the system requires a bias current budget lower than the  
short circuit current limit, the end-equipment will be operational, but the charging process can be affected  
34  
Copyright © 2013–2015, Texas Instruments Incorporated  
 
Not Recommended for New Designs  
bq24157S  
www.ti.com.cn  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
System Load After Sensing Resistor (continued)  
depending on the current left to charge the battery pack. Under extreme conditions, the system current is  
close to the short circuit current levels and the battery may not reach the fast-charge region in a timely  
manner. As a result, the safety timers flag the battery pack as defective, terminating the charging process.  
Because the safety timer cannot be disabled, the inserted battery pack must not be depleted to make the  
application possible.  
6. If the battery pack voltage is too low, highly depleted, totally dead or even shorted, the system voltage is  
clamped by the battery and it cannot operate even if the input power is on.  
Copyright © 2013–2015, Texas Instruments Incorporated  
35  
Not Recommended for New Designs  
bq24157S  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Give special attention to the PCB layout. The following list provides guidelines:  
To obtain optimal performance, the power input capacitors, connected from input to PGND, should be placed  
as close as possible to the pin. The output inductor should be placed close to the IC and the output capacitor  
connected between the inductor and PGND of the IC. The intent is to minimize the current path loop area  
from the SW pin through the LC filter and back to the PGND pin. To prevent high frequency oscillation  
problems, proper layout to minimize high frequency current path loop is critical (see Figure 37). The sense  
resistor should be adjacent to the junction of the inductor and output capacitor. Route the sense leads  
connected across the RSNS back to the IC, close to each other (minimize loop area) or on top of each other  
on adjacent layers (do not route the sense leads through a high-current path, see Figure 38).  
Place all decoupling capacitors close to their respective IC pins and close to PGND (do not place components  
such that routing interrupts power stage currents). All small control signals should be routed away from the  
high current paths.  
The PCB should have a ground plane (return) connected directly to the return of all components through vias  
(two vias per capacitor for power-stage capacitors, two vias for the IC PGND, and one via per capacitor for  
small-signal components). A star ground design approach is typically used to keep circuit block currents  
isolated (high-power/low-power small-signal), which reduces noise-coupling and ground-bounce issues. A  
single ground plane for this design gives good results. With this small layout and a single ground plane, there  
is no ground-bounce issue, and having the components segregated minimizes coupling between signals.  
The high-current charge paths into VBUS, PMID, and from the SW pins must be sized appropriately for the  
maximum charge current in order to avoid voltage drops in these traces. The PGND pins should be  
connected to the ground plane to return current through the internal low-side FET.  
Place 4.7-μF input capacitor as close to PMID pin and PGND pin as possible to make the high frequency  
current loop area as small as possible. Place 1-μF input capacitor as close to VBUS pin and PGND pin as  
possible to make high frequency current loop area as small as possible (see Figure 39).  
11.2 Layout Example  
L1  
R1  
V
VBUS  
BAT  
SW  
High  
Frequency  
BAT  
V
IN  
Current  
Path  
PMID  
C2  
PGND  
C3  
C1  
Figure 37. High Frequency Current Path  
36  
版权 © 2013–2015, Texas Instruments Incorporated  
 
Not Recommended for New Designs  
bq24157S  
www.ti.com.cn  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
Layout Example (接下页)  
Charge Current Direction  
R
SNS  
To Inductor  
To Capacitor and battery  
Current Sensing Direction  
To CSIN and CSOUT pin  
Figure 38. Sensing Resistor PCB Layout  
VBUS  
PMID  
Vin+  
1µF  
SW  
Vin–  
4.7µF  
PGND  
Figure 39. Input Capacitor Position and PCB Layout Example  
版权 © 2013–2015, Texas Instruments Incorporated  
37  
Not Recommended for New Designs  
bq24157S  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
12.2 文档支持  
12.2.1 相关文档  
bq24157S 用户指南》(SLUU453)  
12.3 商标  
NanoFree is a trademark of Texas Instruments.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
38  
版权 © 2013–2015, Texas Instruments Incorporated  
Not Recommended for New Designs  
bq24157S  
www.ti.com.cn  
ZHCSCJ9B FEBRUARY 2013REVISED MAY 2015  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
13.1 封装概要  
DSBGA Package  
(Top View)  
Chip Scale Package  
(Top Side Symbol)  
A1  
B1  
C1  
A2  
B2  
A3  
B3  
C3  
A4  
B4  
TIYMLLLLS  
bq24157S  
C2  
C4  
D
D1  
E1  
D2  
E2  
D3  
E3  
D4  
E4  
E
0 引脚 A1 标记,TI-TI 字符,YM = 年月日日期代码,LLL = 批次追踪代码,S = 组装地点代码  
13.1.1 芯片尺寸级封装尺寸  
bq24157S 器件采用 20 焊锡凸块芯片尺寸封装 (DSBGANanoFree™)。  
封装尺寸为:  
D
E
最大值 = 2.17mm  
最小值 = 2.11mm  
最大值 = 2.03mm  
最小值 = 1.97mm  
版权 © 2013–2015, Texas Instruments Incorporated  
39  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Jul-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ24157SYFFR  
BQ24157SYFFT  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YFF  
YFF  
20  
20  
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
BQ24157S  
BQ24157S  
Samples  
Samples  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Jul-2022  
Addendum-Page 2  
D: Max = 2.172 mm, Min =2.112 mm  
E: Max = 2.03 mm, Min = 1.97 mm  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY