BQ25101HYFPT [TI]

具有 4.35V 充电电压和充电指示功能的独立式单节电池 250mA 线性电池充电器 | YFP | 6 | 0 to 125;
BQ25101HYFPT
型号: BQ25101HYFPT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 4.35V 充电电压和充电指示功能的独立式单节电池 250mA 线性电池充电器 | YFP | 6 | 0 to 125

电池
文件: 总34页 (文件大小:1411K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
bq25100, bq25101, bq25100A, bq25100H, bq25101H, bq25100L  
ZHCSDZ5C AUGUST 2014REVISED NOVEMBER 2014  
bq2510x 250mA 单节锂离子电池充电器,1mA 终止电流、75nA 电池泄漏  
电流  
1 特性  
bq2510x 具有一个可为电池充电的电源输出。 如果在  
10 小时的安全定时器期间内平均系统负载无法让电池  
充满电,则可以使系统负载与电池并联。  
1
充电  
1% 充电电压准确度  
10% 充电电流准确度  
电池充电经历以下三个阶段:调节,恒定电流和恒定电  
压。 在所有充电阶段,内部控制环路都会监控 IC 结  
温,当其超过内部温度阈值时,它会减少充电电流。  
支持充电电流超低(10mA 250mA)的应用  
支持最低 1mA 充电终止电流  
超低电池输出泄漏电流:75nA(最大值)  
可调节的终止和预充电阈值  
充电器功率级和充电电流感测功能均完全集成。 该充  
电器具有高精度电流和电压调节环路以及充电终止功  
能。 预充电电流和终止电流阈值可通过 bq2510x 上的  
一个外部电阻进行编程。 快速充电电流值也可通过一  
个外部电阻进行编程。  
高电压化学支持:bq25100H/01H 为  
4.35Vbq25100A 4.30V  
保护  
30V 额定输入电压;具有 6.5V 输入过压保护  
器件信息(1)  
输入电压动态电源管理  
125°C 热调节;150°C 热关断保护  
OUT 短路保护和 ISET 短路检测  
器件型号  
bq25100  
封装  
DSBGA (6)  
封装尺寸(标称值)  
1.60mm × 0.90mm  
1.60mm × 0.90mm  
1.60mm × 0.90mm  
1.60mm × 0.90mm  
1.60mm × 0.90mm  
1.60mm × 0.90mm  
通过电池负温度系数 (NTC) JEITA 范围内运  
冷故障时的快速充电电流折半,热故障时  
的电压为 4.06V (bq25100/01) 4.2V  
(bq25100H/01H)  
bq25101  
DSBGA (6)  
DSBGA (6)  
DSBGA (6)  
DSBGA (6)  
DSBGA (6)  
bq25100A  
bq25100H  
bq25101H  
bq25100L(2)  
固定 10 小时安全定时器  
系统  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
针对电池组缺失情况的自动终止和定时器禁用模  
(TTDM)  
(2) 产品预览。 欲了解器件的详细信息,请联系当地的德州仪器  
(TI) 代表。  
采用小型 1.60mm × 0.90mm 芯片尺寸球状引  
脚栅格阵列 (DSBGA) 封装  
SYSTEM  
USB Port or  
Adapter  
VBUS  
IN  
OUT  
TS  
D+  
D-  
1ÛF  
1ÛF  
VSS  
GND  
PACK+  
2 应用  
TEMP  
ISET  
HOST  
健身配件  
1.35kŸ  
PRETERM  
PACK-  
智能手表  
Bluetooth® 耳机  
6kŸ  
bq25100  
CE  
低功耗手持器件  
3 说明  
bq2510x 系列器件是面向空间受限类便携式应用的高  
度集成锂离子和锂聚合物线性充电器。 具有输入过压  
保护的高输入电压范围支持低成本、未稳压的适配器。  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains PRODUCTION  
DATA.  
English Data Sheet: SLUSBV8  
 
 
 
 
 
 
 
bq25100, bq25101, bq25100A, bq25100H, bq25101H, bq25100L  
ZHCSDZ5C AUGUST 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 18  
Application and Implementation ........................ 22  
9.1 Application Information............................................ 22  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings .................................... 4  
7.2 Handling Ratings....................................................... 4  
7.3 Recommended Operating Conditions ..................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics.......................................... 5  
7.6 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 12  
8.1 Overview ................................................................. 12  
8.2 Functional Block Diagram ....................................... 14  
8.3 Feature Description................................................. 15  
9
9.2 Typical Application - Charger Application Design  
Example ................................................................... 22  
10 Power Supply Recommendations ..................... 24  
10.1 Leakage Current Effects on Battery Capacity....... 24  
11 Layout................................................................... 24  
11.1 Layout Guidelines ................................................. 24  
11.2 Layout Example .................................................... 25  
11.3 Thermal Package.................................................. 25  
12 器件和文档支持 ..................................................... 26  
12.1 器件支持 ............................................................... 26  
12.2 相关链接................................................................ 26  
12.3 ....................................................................... 26  
12.4 静电放电警告......................................................... 26  
12.5 术语表 ................................................................... 26  
13 机械、封装和可订购信息....................................... 26  
8
4 修订历史记录  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision B (October 2014) to Revision C  
Page  
已更改 数据表标.................................................................................................................................................................. 1  
已删除 器件信息表中 bq25101H 的产品预览注释 .................................................................................................................. 1  
Deleted product preview note from bq25101H in Device Comparison Table ....................................................................... 3  
Changes from Revision A (September 2014) to Revision B  
Page  
已删除 器件信息表中 bq25101 bq25100H 的产品预览注释............................................................................................... 1  
Deleted product preview note from bq25101 and bq25100H in Device Comparison Table ................................................. 3  
Changes from Original (August 2014) to Revision A  
Page  
已发布为量产数................................................................................................................................................................... 1  
2
Copyright © 2014, Texas Instruments Incorporated  
 
bq25100, bq25101, bq25100A, bq25100H, bq25101H, bq25100L  
www.ti.com.cn  
ZHCSDZ5C AUGUST 2014REVISED NOVEMBER 2014  
5 Device Comparison Table  
PART NUMBER  
bq25100  
VO(REG)  
4.20 V  
4.20 V  
4.30 V  
4.35 V  
4.35 V  
4.06 V  
VOVP  
6.5 V  
6.5 V  
6.5 V  
6.5 V  
6.5 V  
6.5V  
PreTerm /CHG  
PreTerm  
CHG  
TS  
TS (JEITA)  
TS (JEITA)  
TS  
bq25101  
bq25100A  
bq25100H  
bq25101H  
bq25100L(1)  
PreTerm  
PreTerm  
CHG  
TS (JEITA)  
TS (JEITA)  
TS  
PreTerm  
(1) Product preview. Contact the local TI representative for device details.  
6 Pin Configuration and Functions  
SPACING  
6-Pin DSBGA  
YFP Package  
(Top View)  
6-Pin DSBGA  
YFP Package  
(Top View)  
1
2
1
2
A
B
C
OUT  
TS  
IN  
A
B
C
OUT  
TS  
IN  
ISET  
VSS  
ISET  
VSS  
PRE-  
TERM  
CHG  
bq25100/100A/100H/100L  
bq25101/101H  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
CHG  
NUMBER  
C1(1)  
Low (FET on) indicates charging and open drain (FET off) indicates no charging or the first charge  
cycle complete.  
Input power, connected to external DC supply (AC adapter or USB port). Expected range of bypass  
IN  
A2  
B2  
I
I
capacitors 1 μF to 10 μF, connect from IN to VSS  
.
Programs the fast-charge current setting. External resistor from ISET to VSS defines fast charge  
current value. Recommended range is 13.5 k(10 mA) to 0.54 k(250 mA).  
ISET  
Battery Connection. System Load may be connected. Expected range of bypass capacitors 1 μF to  
10 μF.  
OUT  
A1  
O
I
Programs the current termination threshold ( 1% to 50% of Iout, 1mA minimum). The pre-charge  
current is twice the termination current level.  
PRE-TERM  
C1(1)  
Expected range of programming resistor is 600 to 30 k(6k: Ichg/10 for term; Ichg/5 for  
precharge)  
Temperature sense pin connected to 10k at 25°C NTC thermistor, in the battery pack. Floating TS  
pin or pulling high puts part in TTDM “Charger” mode and disables TS monitoring, Timers and  
Termination. Pulling pin low disables the IC. If NTC sensing is not needed, connect this pin to VSS  
through an external 10-kresistor. A 250-kresistor from TS to ground will prevent IC entering  
TTDM mode when battery with thermistor is removed.  
TS  
B1  
C2  
I
VSS  
Ground pin  
(1) Spins have different pin definitions  
Copyright © 2014, Texas Instruments Incorporated  
3
bq25100, bq25101, bq25100A, bq25100H, bq25101H, bq25100L  
ZHCSDZ5C AUGUST 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.3  
–0.3  
MAX  
UNIT  
V
IN (with respect to VSS)  
30  
7
OUT (with respect to VSS)  
V
Input voltage  
PRE-TERM, ISET, TS, CHG  
(with respect to VSS)  
–0.3  
7
V
Input current  
IN  
300  
300  
15  
mA  
mA  
mA  
°C  
Output current (continuous) OUT  
Output sink current  
CHG  
TJ  
Junction temperature  
–40  
150  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage  
values are with respect to the network ground terminal unless otherwise noted.  
7.2 Handling Ratings  
MIN  
MAX  
UNIT  
ESD  
Electrostatic discharge  
(IEC61000-4-2)(1)  
IN, OUT, TS  
1 µF between IN and GND,  
1 µF between TS and GND,  
2 µF between OUT and GND,  
x5R Ceramic or equivalent  
8
kV  
contact  
15 Air  
TSTG  
Storage temperature  
–65  
150  
°C  
(1) The test was performed on IC pins that may potentially be exposed to the customer at the product level. The bq2510x IC requires a  
minimum of the listed capacitance, external to the IC, to pass the ESD test.  
(1)  
7.3 Recommended Operating Conditions  
MIN  
3.5  
NOM  
28  
UNIT  
V
IN voltage range  
VIN  
IN operating voltage range, Restricted by VDPM and VOVP  
Input current, IN pin  
4.45  
6.45  
250  
250  
125  
30  
V
IIN  
mA  
mA  
°C  
IOUT  
Current, OUT pin  
TJ  
Junction temperature  
0
0.6  
RPRE-TERM  
RISET  
RTS  
Programs precharge and termination current thresholds  
Fast-charge current programming resistor  
10k NTC thermistor range without entering BAT_EN or TTDM  
kΩ  
kΩ  
kΩ  
0.54  
1.66  
13.5  
258  
(1) Operation with VIN less than 4.5V or in drop-out may result in reduced performance.  
7.4 Thermal Information  
bq25100  
THERMAL METRIC(1)  
UNIT  
YFP (6 PINS)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
132.9  
1.3  
RθJCtop  
RθJB  
21.8  
5.6  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
21.8  
n/a  
RθJCbot  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2014, Texas Instruments Incorporated  
bq25100, bq25101, bq25100A, bq25100H, bq25101H, bq25100L  
www.ti.com.cn  
ZHCSDZ5C AUGUST 2014REVISED NOVEMBER 2014  
7.5 Electrical Characteristics  
Over junction temperature range 0°C TJ 125°C and recommended supply voltage (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
INPUT  
UVLO  
Undervoltage lock-out exit  
VIN: 0 V 4 V  
VIN: 4 V0 V;  
3.15  
3.3  
3.45  
130  
V
VHYS_UVLO  
Hysteresis on VUVLO_RISE falling  
250  
mV  
VUVLO_FALL = VUVLO_RISE – VHYS-UVLO  
Input power good detection  
threshold is VOUT + VIN-DT  
Input power good if VIN > VOUT + VIN-DT;  
VOUT = 3.6 V; VIN: 3.5 V 4 V  
VIN-DT  
15  
60  
31  
29  
mV  
mV  
ms  
VHYS-INDT  
tDGL(PG_PWR)  
tDGL(PG_NO-PWR)  
VOVP  
Hysteresis on VIN-DT falling  
VOUT = 3.6 V; VIN: 4 V 3.5 V  
Time measured from VIN: 0 V 5 V 1-μs rise-  
time to charge enables; VOUT = 3.6 V  
Deglitch time on exiting sleep  
Deglitch time on VHYS-INDT power Time measured from VIN: 5 V 3.2 V 1-μs fall-  
down. Same as entering sleep.  
29  
ms  
V
time to charge disables; VOUT = 3.6 V  
Input over-voltage protection  
threshold  
VIN: 5 V 12 V  
6.52  
4.25  
6.67  
6.82  
tDGL(OVP-SET)  
VHYS-OVP  
Input over-voltage blanking time  
Hysteresis on OVP  
VIN: 5 V 12 V  
VIN: 11 V 5 V  
113  
110  
μs  
mV  
Time measured from VIN: 12 V 5 V 1-μs fall-  
time to charge enables  
tDGL(OVP-REC)  
VIN-DPM  
Deglitch time exiting OVP  
450  
μs  
Low input voltage protection.  
Restricts lout at VIN-DPM  
Limit input source current to 50 mA;  
VOUT = 3.5 V; RISET = 1.35 kΩ  
4.31  
4.37  
450  
V
ISET SHORT CIRCUIT TEST  
Highest resistor value considered RISET: 540 Ω → 250 , Iout latches off;  
a fault (short). Cycle power to reset  
RISET_SHORT  
tDGL_SHORT  
IOUT_CL  
420  
1
Deglitch time transition from ISET Clear fault by disconnecting IN or cycling (high /  
short to Iout disable  
ms  
mA  
low) TS/BAT_EN  
Maximum OUT current limit  
regulation (Clamp)  
VIN = 5 V; VOUT = 3.6 V; RISET: 540 Ω → 250 ;  
IOUT latches off after tDGL-SHORT  
550  
600  
650  
BATTERY SHORT PROTECTION  
OUT pin short-circuit detection  
threshold/ precharge threshold  
VOUT(SC)  
VOUT:3 V 0.5 V; No deglitch  
0.75  
0.8  
77  
11  
0.85  
V
Recovery VOUT(SC) + VOUT(SC-HYS); Rising; No  
deglitch  
VOUT(SC-HYS)  
IOUT(SC)  
OUT pin Short hysteresis  
mV  
mA  
Source current to OUT pin during  
short-circuit detection  
9
13  
QUIESCENT CURRENT  
VIN = 0 V; 0°C to 125°C  
VIN = 0 V; 0°C to 85°C  
75  
50  
IOUT(PDWN)  
Battery current into OUT pin  
nA  
OUT pin current, charging  
terminated  
IOUT(DONE)  
IIN(STDBY)  
VIN = 6 V; VOUT > VOUT(REG)  
6
μA  
μA  
Standby current into IN pin  
TS = GND; VIN 6 V  
125  
TS = open, VIN = 6 V;  
ICC  
Active supply current, IN pin  
TTDM – no load on OUT pin; VOUT > VOUT(REG)  
;
0.75  
1
mA  
IC enabled  
BATTERY CHARGER FAST-CHARGE  
TJ = 0°C to 125°C; IOUT = 0 mA to 250 mA;  
VIN = 5.0 V; VTS-45°CVTS VTS-0°C (bq25100/101)  
4.16  
4.26  
4.2  
4.3  
4.23  
4.33  
TJ = 0°C to 125°C; IOUT = 0 mA to 250 mA;  
VIN = 5.0 V; VTS-45°CVTS VTS-0°C (bq25100A)  
VOUT(REG)  
Output voltage  
V
TJ = 0°C to 125°C; IOUT = 0 mA to 250 mA;  
VIN = 5.0 V; VTS-45°CVTS VTS-0°C  
(bq25100H/101H)  
4.31  
4.35  
4.38  
TJ = -5°C to 55°C; IOUT = 10mA to 75 mA;  
VIN = 5.0 V; VTS-45°CVTS VTS-0°C (bq25100A)  
4.275  
4.02  
4.16  
10  
4.3  
4.06  
4.2  
4.325  
4.1  
VIN = 5.0 V; IOUT =10 mA to 250 mA;  
VTS-60°CVTS VTS-45°C (bq25100/101)  
VO_HT(REG)  
Battery hot regulation voltage  
V
VIN = 5.0 V; IOUT =10 mA to 250 mA;  
4.24  
250  
VTS-60°CVTS VTS-45°C (bq25100H/101H)  
Programmed output “fast charge” VOUT(REG) > VOUT > VLOWV; VIN = 5 V;  
current range RISET = 0.54 kto 13.5 kΩ  
IOUT(RANGE)  
mA  
Copyright © 2014, Texas Instruments Incorporated  
5
bq25100, bq25101, bq25100A, bq25100H, bq25101H, bq25100L  
ZHCSDZ5C AUGUST 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over junction temperature range 0°C TJ 125°C and recommended supply voltage (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Adjust VIN down until IOUT = 0.2 A; VOUT = 4.15 V;  
RISET = 680 ; TJ 100°C  
VDO(IN-OUT)  
IOUT  
Drop-Out, VIN – VOUT  
Output “fast charge” formula  
220  
400  
mV  
A
VOUT(REG) > VOUT > VLOWV; VIN = 5 V  
RISET = KISET /IOUT; 20 < IOUT < 250 mA  
RISET = KISET /IOUT; 5 < IOUT < 20 mA  
KISET/RISET  
135  
129  
125  
145  
145  
KISET  
Fast charge current factor  
AΩ  
135  
PRECHARGE – SET BY PRETERM PIN  
Pre-charge to fast-charge  
transition threshold  
VLOWV  
2.4  
2.5  
57  
32  
2.6  
V
Deglitch time on pre-charge to  
tDGL1(LOWV)  
μs  
ms  
fast-charge transition  
Deglitch time on fast-charge to  
tDGL2(LOWV)  
pre-charge transition  
IPRE-TERM  
Refer to the Termination Section  
Pre-charge current, default  
setting  
VOUT < VLOWV; RISET = 2.7 k; RPRE-TERM= High Z  
or for BQ25101/101H  
%IOUT-  
18  
20  
22  
320  
340  
11  
CC  
%
PRECHG  
Pre-charge current formula  
% Pre-charge Factor  
RPRE-TERM = KPRE-CHG (/%) × %PRE-CHG (%)  
RPRE-TERM/KPRE-CHG%  
VOUT < VLOWV; VIN = 5 V;  
RPRE-TERM = 6 kΩ to 30 k;  
RISET = 1.8 k;  
280  
300  
300  
10  
/%  
/%  
RPRE-TERM = KPRE-CHG × %IPRE-CHG  
,
where %IPRE-CHG is 20 to 100%  
KPRE-CHG  
VOUT < VLOWV; VIN = 5 V;  
RPRE-TERM = 3 kΩ to 6 k;  
RISET = 1.8 k;  
265  
RPRE-TERM = KPRE-CHG × %IPRE-CHG  
where %IPRE-CHG is 10% to 20%  
,
TERMINATION – SET BY PRE-TERM PIN  
Termination threshold current,  
VOUT > VRCH; RISET = 2.7 kΩ; RPRE-TERM = High Z  
or for BQ25101/101H  
%IOUT-  
9
default setting  
CC  
%
TERM  
Termination current threshold  
formula  
RPRE-TERM = KTERM (/%) × %TERM (%)  
RPRE-TERM/ KTERM  
VOUT > VRCH; VIN = 5 V;  
RPRE-TERM = 6 kΩ to 30 k;  
RISET = 1.8 k, RPRE-TERM=KTERM × %ITERM  
where %ITERM is 10 to 50%  
575  
600  
620  
680  
25  
640  
685  
1001  
27  
,
VOUT > VRCH; VIN = 5 V;  
RPRE-TERM = 3 kΩ to 6 k;  
RISET = 1.8 k, RPRE-TERM= KTERM × %ITERM  
where %ITERM is 5 to 10%  
KTERM  
% Term factor  
555  
352  
/%  
,
VOUT > VRCH; VIN = 5 V;  
RPRE-TERM = 750 to 3 k;  
RISET = 1.8 k, RPRE-TERM= KTERM × %ITERM  
where %ITERM is 1.25% to 5%  
,
Current for programming the  
term. and pre-chg with resistor,  
ITerm-Start is the initial PRE-TERM  
current  
IPRE-TERM  
RPRE-TERM = 6 kΩ; VOUT = 4.15 V  
23  
1
μA  
ITERM  
Termination current range  
Termination current formula  
Minimum absolute termination current  
mA  
%
%TERM  
RTERM/ KTERM  
29  
Deglitch time, termination  
detected  
tDGL(TERM)  
ms  
RECHARGE OR REFRESH  
VIN = 5 V; VTS = 0.5 V;  
Recharge detection threshold –  
normal temp  
VOUT: 4.25 V VRCH (bq25100)  
VOUT: 4.35 V VRCH (bq25100A)  
;
VO(REG) VO(REG)–0.0 VO(REG)–0.0  
V
;
–0.125  
95  
75  
VOUT: 4.40 V VRCH (bq25100H)  
VRCH  
VIN = 5 V; VTS = 0.2 V;  
VOUT: 4.15 V VRCH (bq25100)  
VOUT: 4.25 V VRCH (bq25100H)  
Recharge detection threshold –  
hot temp  
VO_HT(REG)  
–0.130  
VO_HT(REG)  
–0.105  
VO_HT(REG)  
–0.080  
;
V
VIN = 5 V; VTS = 0.5 V;  
VOUT: 4.25 V 3.5V in 1 μs;  
tDGL(RCH) is time to ISET ramp  
Deglitch time, recharge threshold  
detected  
tDGL1(RCH)  
29  
ms  
6
Copyright © 2014, Texas Instruments Incorporated  
bq25100, bq25101, bq25100A, bq25100H, bq25101H, bq25100L  
www.ti.com.cn  
ZHCSDZ5C AUGUST 2014REVISED NOVEMBER 2014  
Electrical Characteristics (continued)  
Over junction temperature range 0°C TJ 125°C and recommended supply voltage (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VIN = 5 V; VTS = 0.5 V;  
VOUT = 3.5 V inserted;  
tDGL(RCH) is time to ISET ramp  
Deglitch time, recharge threshold  
detected in OUT-Detect Mode  
tDGL2(RCH)  
29  
ms  
BATTERY DETECT ROUTINE – (NOTE: In Hot mode VO(REG) becomes VO_HT(REG)  
)
bq25100/101/bq25100H/101H;  
VO(REG)  
-
VO(REG)  
-
VO(REG)  
-
VIN = 5 V; VTS = 0.5 V, Battery absent  
0.450  
0.400  
0.350  
VOUT reduced regulation during  
battery detect  
VREG-BD  
V
bq25100A;  
VO(REG)  
-
VO(REG)  
-
VO(REG)  
-
VIN = 5 V; VTS = 0.5 V; Battery absent  
0.550  
0.500  
0.450  
IBD-SINK  
Sink current during VREG-BD  
VIN = 5 V; VTS = 0.5 V; Battery absent  
VIN = 5 V; VTS = 0.5 V; Battery absent  
2
mA  
ms  
Regulation time at VREG or VREG-  
tDGL(HI/LOW REG)  
25  
BD  
VO(REG)  
0.150  
-
VO(REG)  
0.100  
-
VO(REG)-  
0.050  
VBD-HI  
VBD-LO  
High battery detection threshold  
Low battery detection threshold  
VIN = 5 V; VTS = 0.5 V; Battery absent  
VIN = 5 V; VTS = 0.5 V; Battery absent  
V
V
VREG-BD  
+0.05  
VREG-BD  
+0.1  
VREG-BD  
+0.15  
BATTERY CHARGING TIMERS AND FAULT TIMERS  
Restarts when entering pre-charge;  
Always enabled when in pre-charge.  
tPRECHG  
tMAXCH  
Pre-charge safety timer value  
Charge safety timer value  
1700  
1940  
2250  
s
s
Clears fault or resets at UVLO, TS disable, OUT  
Short, exiting LOWV and Refresh  
34000  
38800  
45000  
BATTERY-PACK NTC MONITOR (see Note 1); TS pin: 10k NTC  
INTC-10k  
NTC bias current  
VTS = 0.3 V  
VTS = 0 V  
48.5  
27  
50.5  
30  
52.5  
33  
μA  
μA  
10k NTC bias current when  
charging is disabled  
INTC-DIS-10k  
INTC is reduced prior to entering  
TTDM to keep cold thermistor  
from entering TTDM  
INTC-FLDBK-10k  
VTS: Set to 1.525 V  
4
5
6.5  
μA  
Termination and timer disable  
mode Threshold – Enter  
VTTDM(TS)  
VTS: 0.5 V 1.7 V; Timer held in reset  
1550  
1600  
1650  
mV  
VHYS-TTDM(TS)  
VCLAMP(TS)  
Hysteresis exiting TTDM  
VTS: 1.7 V 0.5 V; Timer enabled  
100  
mV  
mV  
TS maximum voltage clamp  
VTS = Open (float)  
1900  
1950  
2000  
Deglitch exit TTDM between  
states  
57  
8
ms  
tDGL(TTDM)  
Deglitch enter TTDM between  
states  
μs  
TS voltage where INTC is reduce INTC adjustment (90 to 10%; 45 to 6.6 uA) takes  
VTS_I-FLDBK  
to keep thermistor from entering  
TTDM  
place near this spec threshold;  
VTS: 1.425 V 1.525 V  
1475  
mV  
CTS  
Optional capacitance – ESD  
0.22  
μF  
Low temp charging to pending;  
VTS: 1 V 1.5 V  
VTS-0°C  
Low temperature CHG pending  
1230  
775  
1255  
1280  
830  
mV  
At 0°C;  
VHYS-0°C  
VTS-10°C  
VHYS-10°C  
Hysteresis  
Charge pending to low temp charging;  
VTS: 1.5 V 1 V  
100  
800  
55  
mV  
mV  
mV  
Normal charging to low temp charging;  
VTS: 0.5 V 1 V  
Low temperature, half charge  
Hysteresis  
At 10°C;  
Low temp charging to normal CHG;  
VTS: 1 V 0.5 V  
At 4.1V (bq25100/101) or 4.2V (bq25100H/101H);  
Normal charging to high temp CHG;  
VTS: 0.5 V 0.2 V  
VTS-45°C  
VHYS-45°C  
VTS-60°C  
VHYS-60°C  
High temperature  
Hysteresis  
253  
160  
268  
20  
283  
180  
mV  
mV  
mV  
mV  
At 45°C;  
High temp charging to normal CHG;  
VTS: 0.2 V 0.5 V  
bq25100/01/100H/101H/100L;  
High temp charge to pending;  
VTS: 0.2 V 0.1 V  
High temperature disable  
Hysteresis  
170  
20  
At 60°C (bq25100/01/100H/101H/100L);  
Charge pending to high temp CHG;  
VTS: 0.1 V 0.2 V  
Copyright © 2014, Texas Instruments Incorporated  
7
bq25100, bq25101, bq25100A, bq25100H, bq25101H, bq25100L  
ZHCSDZ5C AUGUST 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over junction temperature range 0°C TJ 125°C and recommended supply voltage (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Normal to cold operation; VTS: 0.6 V 1 V  
Cold to normal operation; VTS: 1 V 0.6 V  
50  
tDGL(TS_10C)  
Deglitch for TS thresholds: 10C  
ms  
12  
Deglitch for TS thresholds:  
0/45/60C  
tDGL(TS)  
Battery charging  
30  
92  
12  
ms  
Charge enable threshold, (10k  
NTC)  
VTS-EN-10k  
VTS-DIS_HYS-10k  
VTS: 0 V 0.175 V  
VTS: 0.125 V 0 V  
84  
100  
mV  
mV  
HYS below VTS-EN-10k to disable,  
(10k NTC)  
THERMAL REGULATION  
TJ(REG)  
Temperature regulation limit  
125  
155  
20  
°C  
°C  
°C  
TJ(OFF)  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
TJ(OFF-HYS)  
LOGIC LEVELS ON /CHG  
VOL  
Output low voltage  
Leakage current into IC  
ISINK = 5 mA  
V CHG = 5 V  
0.4  
1
V
ILEAK  
μA  
7.6 Typical Characteristics  
Setup: Typical Applications Schematic; VIN = 5 V, VBAT = 3.6 V (unless otherwise noted)  
VIN  
VIN 2 V/div  
2 V/div  
VOUT 2 V/div  
VOUT  
2 V/div  
IOUT 60 mA/div  
IOUT 60 mA/div  
VISET 1 V/div  
t-time – 10 ms/div  
t-time – 20 ms/div  
No Battery, No Load  
Hot Plug  
3. Power Up Timing  
4. OVP 7-V Adaptor  
8
版权 © 2014, Texas Instruments Incorporated  
bq25100, bq25101, bq25100A, bq25100H, bq25101H, bq25100L  
www.ti.com.cn  
ZHCSDZ5C AUGUST 2014REVISED NOVEMBER 2014  
Typical Characteristics (接下页)  
Setup: Typical Applications Schematic; VIN = 5 V, VBAT = 3.6 V (unless otherwise noted)  
VIN 2 V/div  
VIN 2 V/div  
VTS 500 mV/div  
VOUT 2 V/div  
IOUT 60 mA/div  
IOUT 60 mA/div  
VISET 1 V/div  
VISET 1 V/div  
t-time – 50 ms/div  
t-time – 50 ms/div  
VIN 0 V -5 V-7 V-5 V  
5. OVP from Normal Power-Up Operation  
6. TS Enable and Disable  
VIN 1 V/div  
VIN 5 V/div  
IOUT 60 mA/div  
VOUT 2 V/div  
VOUT 2 V/div  
IOUT 100 mA/div  
VISET 1 V/div  
VISET 1 V/div  
t-time – 5 ms/div  
t-time – 20 ms/div  
VIN Regulated  
7. DPM-Adaptor Current Limits  
8. Hot Plug Source  
with No Battery - Battery Detection  
VIN 5 V/div  
VIN 5 V/div  
IOUT 100 mA/div  
VOUT 2 V/div  
VOUT 2 V/div  
VISET 1 V/div  
VISET 1 V/div  
IOUT 100 mA/div  
t-time – 20 ms/div  
t-time – 200 μs/div  
No Load  
9. Battery Removal  
10.  
ISET Shorted During Normal Operation  
版权 © 2014, Texas Instruments Incorporated  
9
bq25100, bq25101, bq25100A, bq25100H, bq25101H, bq25100L  
ZHCSDZ5C AUGUST 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Typical Characteristics (接下页)  
Setup: Typical Applications Schematic; VIN = 5 V, VBAT = 3.6 V (unless otherwise noted)  
VIN 5 V/div  
VIN 5 V/div  
VOUT 5 V/div  
VOUT 5 V/div  
IOUT 100 mA/div  
VISET 1 V/div  
IOUT 100 mA/div  
VISET 1 V/div  
t-time – 10 ms/div  
t-time – 10 ms/div  
20-Ω resistor at OUT, No input, VBAT = 3.7 V  
20-Ω resistor at OUT, No input, VBAT = 3.7 V  
12. Battery Removal  
11. Battery Plug In  
VIN 2 V/div  
VIN 2 V/div  
VISET 2 V/div  
VOUT 2 V/div  
ILOAD 70 mA/div  
IOUT 400 mA/div  
VISET 1 V/div  
IOUT 70 mA/div  
t-time – 10 ms/div  
t-time – 10 ms/div  
90-mA Load, 120-mA ICHG  
13. ISET Short Prior to Power Up  
14. Power Up  
4.21  
4.202  
4.201  
4.2  
VREG = 0qC  
4.208  
4.206  
4.204  
4.202  
4.2  
VREG = 25qC  
VREG = 85qC  
VREG = 125qC  
4.199  
4.198  
4.197  
4.196  
4.195  
4.194  
VREG = 0qC  
VREG = 25qC  
VREG = 85qC  
VREG = 125qC  
4.198  
4.196  
4.194  
4.192  
4.19  
1 mA 10 mA 50 mA 100 mA 150 mA 200 mA 250 mA  
Load Current (mA)  
4.5 V  
5 V  
5.5 V  
6 V  
6.5 V  
D001  
D002  
Input Voltage (V)  
15. Load Regulation Over Temperature  
16. Line Regulation Over Temperature  
10  
版权 © 2014, Texas Instruments Incorporated  
bq25100, bq25101, bq25100A, bq25100H, bq25101H, bq25100L  
www.ti.com.cn  
ZHCSDZ5C AUGUST 2014REVISED NOVEMBER 2014  
Typical Characteristics (接下页)  
Setup: Typical Applications Schematic; VIN = 5 V, VBAT = 3.6 V (unless otherwise noted)  
80  
6.4  
5.6  
4.8  
4
112  
IOUT (mA)  
VOUT (V)  
70  
111  
60  
110  
109  
108  
107  
106  
50  
40  
30  
20  
10  
0
3.2  
2.4  
1.6  
0.8  
0
IO = 0qC  
IO = 25qC  
IO = 85qC  
IO = 125qC  
2.5 V  
3 V  
3.5 V  
4 V  
4.1 V  
D004  
D003  
Output Voltage (V)  
bq25100 charge cycle, ICHG = 75 mA, VBAT_REG = 4.2 V  
17. Current Regulation Over Temperature  
18. Battery Voltage vs Charge Current  
版权 © 2014, Texas Instruments Incorporated  
11  
bq25100, bq25101, bq25100A, bq25100H, bq25101H, bq25100L  
ZHCSDZ5C AUGUST 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The bq2510x is a highly integrated family of single cell Li-Ion and Li-Pol chargers. The charger can be used to  
charge a battery, power a system or both. The charger has three phases of charging: pre-charge to recover a  
fully discharged battery, fast-charge constant current to supply the charge safely and voltage regulation to safely  
reach full capacity. The charger is very flexible, allowing programming of the fast-charge current and Pre-  
charge/Termination Current. This charger is designed to work with a USB connection (100-mA limit) or Adaptor  
(DC output). The charger also checks to see if a battery is present.  
The charger also comes with  
a
full set of safety features: JEITA Temperature Standard  
(bq25100/01/100H/101H), Over-Voltage Protection, DPM-IN, Safety Timers, and ISET short protection. All of  
these features and more are described in detail below.  
The charger is designed for a single power path from the input to the output to charge a single cell Li-Ion or  
Li-Pol battery pack. Upon application of a 5-V DC power source the ISET and OUT short checks are performed  
to assure a proper charge cycle.  
If the battery voltage is below the LOWV threshold, the battery is considered discharged and a preconditioning  
cycle begins. The amount of precharge current can be programmed using the PRE-TERM pin which programs a  
percent of fast charge current (10 to 100%) as the precharge current. This feature is useful when the system load  
is connected across the battery “stealing” the battery current. The precharge current can be set higher to account  
for the system loading while allowing the battery to be properly conditioned. The PRE-TERM pin is a dual  
function pin which sets the precharge current level and the termination threshold level. The termination "current  
threshold" is always half of the precharge programmed current level.  
Once the battery voltage has charged to the VLOWV threshold, fast charge is initiated and the fast charge  
current is applied. The fast charge constant current is programmed using the ISET pin. The constant current  
provides the bulk of the charge. Power dissipation in the IC is greatest in fast charge with a lower battery voltage.  
If the IC reaches 125°C, the IC enters thermal regulation, slows the timer clock by half, and reduces the charge  
current as needed to keep the temperature from rising any further. 19 shows the charging profile with thermal  
regulation. Typically under normal operating conditions, the IC’s junction temperature is less than 125°C and  
thermal regulation is not entered.  
Once the cell has charged to the regulation voltage the voltage loop takes control and holds the battery at the  
regulation voltage until the current tapers to the termination threshold. The termination can be disabled if desired.  
Further details are described in the Operating Modes section.  
12  
版权 © 2014, Texas Instruments Incorporated  
bq25100, bq25101, bq25100A, bq25100H, bq25101H, bq25100L  
www.ti.com.cn  
ZHCSDZ5C AUGUST 2014REVISED NOVEMBER 2014  
Overview (接下页)  
Thermal  
Regulation  
Phase  
Current  
Regulation  
Phase  
Voltage Regulation and  
Charge Termination  
Phase  
Pre-  
Conditioning  
Phase  
DONE  
V
O(REG)  
I
O(OUT)  
Battery Current,  
I
FAST-CHARGE  
CURRENT  
(OUT)  
Battery  
Voltage,  
V
(OUT)  
Charge  
Complete  
Status,  
Charger  
Off  
PRE-CHARGE  
CURRENT AND  
TERMINATION  
THRESHOLD  
V
O(LOWV)  
I
(TERM)  
I
O(PRECHG)  
T
(THREG)  
0A  
Temperature, Tj  
T
DONE  
(CHG)  
T
(PRECHG)  
19. Charging Profile With Thermal Regulation  
版权 © 2014, Texas Instruments Incorporated  
13  
bq25100, bq25101, bq25100A, bq25100H, bq25101H, bq25100L  
ZHCSDZ5C AUGUST 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
8.2 Functional Block Diagram  
Internal Charge  
Current Sense  
w/ Multiple Outputs  
IN  
OUT  
+
-
Input  
Power  
80 mV  
Detect  
IN  
OUT  
_
+
+
_
+
_
OUT  
IN-DPMREF  
OUTREGREF  
TJ  
Charge  
Pump  
_
+
FAST CHARGE  
PRE-CHARGE  
1.5V  
125ÛCREF  
ISET  
IN  
_
+
PRE-CHG Reference  
_
+
22mA Startup Current  
Limit  
Internal Current  
Sensing Resistor  
Term Reference  
TJ  
+
_
_
+
150ÛCREF  
Thermal Shutdown  
Charge  
Pump  
ꢀꢁPA  
PRE-TERM  
IN  
_
+
OVPREF  
+
_
OUT  
+
_
VTERM_EN  
CHARGE  
CONTROL  
VCOOL-10ÛC  
_
+
_
+
VWARM-45ÛC  
VCOLD-0ÛC  
_
+
_
+
VHOT-60ÛC  
LO=LDO MODE  
TS  
VLDO  
+
_
+
_
HI=CHIP DISABLE  
VDISABLE  
Cold Temperature Sink  
Current  
Disable Sink  
Current = 20PA  
= 45PA  
VCLAMP=1.4V  
+
_
+
_
5PA  
45PA  
14  
版权 © 2014, Texas Instruments Incorporated  
bq25100, bq25101, bq25100A, bq25100H, bq25101H, bq25100L  
www.ti.com.cn  
ZHCSDZ5C AUGUST 2014REVISED NOVEMBER 2014  
8.3 Feature Description  
8.3.1 Overvoltage-Protection (OVP) – Continuously Monitored  
If the input source applies an overvoltage, the pass FET, if previously on, turns off after a deglitch, tBLK(OVP). The  
timer stops counting. Once the overvoltage returns to a normal voltage, the timer and charge continues.  
8.3.2 CHG Pin Indication (bq25101, bq25101H)  
The charge pin has an internal open drain FET which is on (pulls down to VSS) during the first charge only  
(independent of TTDM) and is turned off once the battery reaches voltage regulation and the charge current  
tapers to the termination threshold set by the PRE-TERM resistor. The bq25101/01H terminates at 10% of the  
programmed charge current. The charge pin is high impedance in sleep mode and OVP and returns to its  
previous state once the condition is removed. Cycling input power, removing and replacing the battery, pulling  
the TS pin low and releasing or entering pre-charge mode causes the CHG pin to go reset (go low if power is  
good and a discharged battery is attached) and is considered the start of a first charge.  
8.3.3 CHG Pin LED Pull-up Source (bq25101, bq25101H)  
For host monitoring, a pull-up resistor is used between the CHG pin and the VCC of the host and for a visual  
indication a resistor in series with an LED is connected between the /CHG pin and a power source. If the CHG  
source is capable of exceeding 7 V, a 6.2-V zener should be used to clamp the voltage. If the source is the OUT  
pin, note that as the battery changes voltage, and the brightness of the LEDs vary.  
8.3.4 IN-DPM (VIN-DPM or IN-DPM)  
The IN-DPM feature is used to detect an input source voltage that is folding back (voltage dropping), reaching its  
current limit due to excessive load. When the input voltage drops to the VIN-DPM threshold the internal pass FET  
starts to reduce the current until there is no further drop in voltage at the input. This would prevent a source with  
voltage less than VIN-DPM to power the out pin. This is an added safety feature that helps protect the source from  
excessive loads. This feature is not applicable for bq25100A.  
8.3.5 OUT  
The Charger’s OUT pin provides current to the battery and to the system, if present. This IC can be used to  
charge the battery plus power the system, charge just the battery or just power the system (TTDM) assuming the  
loads do not exceed the available current. The OUT pin is a current limited source and is inherently protected  
against shorts. If the system load ever exceeds the output programmed current threshold, the output will be  
discharged unless there is sufficient capacitance or a charged battery present to supplement the excessive load.  
8.3.6 ISET  
An external resistor is used to Program the Output Current (10 to 250 mA) and can be used as a current monitor.  
RISET = KISET ÷ IOUT  
(1)  
Where:  
IOUT is the desired fast charge current;  
KISET is a gain factor found in the electrical specification  
For greater accuracy at lower currents, part of the sense FET is disabled to give better resolution. Going from  
higher currents to low currents, there is hysteresis and the transition occurs around 50 mA.  
The ISET resistor is short protected and will detect a resistance lower than 420 . The detection requires at  
least 50 mA of output current. If a “short” is detected, then the IC will latch off and can be reset by cycling the  
power or cycling TS pin. The OUT current is internally clamped to a maximum current of 600 mA typical and is  
independent of the ISET short detection circuitry.  
For charge current that is below 50 mA, an extra RC circuit is recommended on ISET to acheive more stable  
current signal. More detail is available in 9.1 Application Information.  
版权 © 2014, Texas Instruments Incorporated  
15  
bq25100, bq25101, bq25100A, bq25100H, bq25101H, bq25100L  
ZHCSDZ5C AUGUST 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Feature Description (接下页)  
60C 45C  
10C  
Programmed VBAT_REG  
0C  
No Operation  
During Cold Fault  
Reduced VBAT_REG  
Programmed ICHG  
(100%)  
50%  
Cold Fault  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
VCOLD  
1.4  
1.6  
1.8  
Termination  
Disable  
VHOT VWARM  
VCOOL  
TS Voltage-V  
20. Operation Over TS Bias Voltage - bq25100, bq25100H, bq25101, bq25101H  
16  
版权 © 2014, Texas Instruments Incorporated  
 
bq25100, bq25101, bq25100A, bq25100H, bq25101H, bq25100L  
www.ti.com.cn  
ZHCSDZ5C AUGUST 2014REVISED NOVEMBER 2014  
Feature Description (接下页)  
45C  
10C  
Programmed VBAT_REG  
0C  
No Operation  
During Cold Fault  
Hot Fault  
Charge Disable  
Programmed ICHG  
(100%)  
50%  
Cold Fault  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
VCOLD  
1.4  
1.6  
1.8  
Termination  
Disable  
VHOT VWARM  
VCOOL  
TS Voltage-V  
21. Operation Over TS Bias Voltage – bq25100A  
8.3.7 PRE_TERM – Pre-Charge and Termination Programmable Threshold  
Pre-Term is used to program both the pre-charge current and the termination current threshold. The pre-charge  
current level is a factor of two higher than the termination current level. The termination can be set between 5  
and 50% (recommended range) of the programmed output current level set by ISET. If left floating the  
termination and pre-charge are set internally at 10/20% respectively. The RPRE-TERM is ranged from 600 to 30  
kand the minimum termination current can be programmed to 1 mA. The pre-charge-to-fast-charge, Vlowv  
threshold is set to 2.5 V.  
RPRE-TERM = %Term × KTERM = %Pre-CHG × KPRE-CHG  
(2)  
Where:  
%Term is the percent of fast charge current where termination occurs;  
%Pre-CHG is the percent of fast charge current that is desired during precharge;  
KTERM and KPRE-CHG are gain factors found in the electrical specifications.  
8.3.8 TS  
The TS function for the bq2510x family is designed to follow the new JEITA temperature standard  
(bq25100/bq25100H/bq25101/bq25101H) for Li-Ion and Li-Pol batteries. There are now four thresholds, 60°C,  
45°C, 10°C, and 0°C. Normal operation occurs between 10°C and 45°C. If between 0°C and 10°C the charge  
current level is cut in half and if between 45°C and 60°C the regulation voltage is reduced to 4.1 V max for  
bq25100 and 4.2 V max for bq25100H, see 20. The TS function for the bq25100A cut the charge current level  
in half between 0°C and 10°C and disables charging when the NTC temperature is above 45°C.  
版权 © 2014, Texas Instruments Incorporated  
17  
bq25100, bq25101, bq25100A, bq25100H, bq25101H, bq25100L  
ZHCSDZ5C AUGUST 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Feature Description (接下页)  
The TS feature is implemented using an internal 50μA current source to bias the thermistor (designed for use  
with a 10-k NTC β = 3370 (SEMITEC 103AT-2 or Mitsubishi TH05-3H103F) connected from the TS pin to VSS. If  
this feature is not needed, a fixed 10-k can be placed between TS and VSS to allow normal operation. This may  
be done if the host is monitoring the thermistor and then the host would determine when to pull the TS pin low to  
disable charge.  
The TS pin has two additional features, when the TS pin is pulled low or floated/driven high. A low disables  
charge and a high puts the charger in TTDM.  
Above 60°C (45°C for bq25100A) or below 0°C the charge is disabled. Once the thermistor reaches –10°C the  
TS current folds back to keep a cold thermistor (between –10°C and –50°C) from placing the IC in the TTDM  
mode. If the TS pin is pulled low into disable mode, the current is reduce to 30 μA. Since the ITS curent is fixed  
along with the temperature thresholds, it is not possible to use thermistor values other than the 10-k NTC (at  
25°C).  
8.3.9 Timers  
The pre-charge timer is set to 30 minutes. The pre-charge current, can be programmed to off-set any system  
load, making sure that the 30 minutes is adequate.  
The fast charge timer is fixed at 10 hours and can be increased real time by going into thermal regulation or IN-  
DPM. The timer clock slows by a factor of 2, resulting in a clock than counts half as fast when in these modes. If  
either the 30 minute or ten hour timer times out, the charging is terminated and for bq25101/1H the CHG pin  
goes high impedance if not already in that state. The timer is reset by disabling the IC, cycling power or going  
into and out of TTDM.  
8.3.10 Termination  
Once the OUT pin goes above VRCH, (reaches voltage regulation) and the current tapers down to the  
termination threshold, a battery detect route is run to determine if the battery was removed or the battery is full. If  
the battery is present, the charge current will terminate. If the battery was removed along with the thermistor,  
then the TS pin is driven high and the charge enters TTDM. If the battery was removed and the TS pin is held in  
the active region, then the battery detect routine will continue until a battery is inserted. The termination current  
can be programmed down to 625 uA, however, the accuracy will reduce acoordingly when the termination  
current is below 1 mA.  
8.4 Device Functional Modes  
8.4.1 Power-Down or Undervoltage Lockout (UVLO)  
The bq2510x family is in power down mode if the IN pin voltage is less than UVLO. The part is considered  
“dead” and all the pins are high impedance. Once the IN voltage rises above the UVLO threshold the IC will  
enter Sleep Mode or Active mode depending on the OUT pin (battery) voltage.  
8.4.2 Power-up  
The IC is alive after the IN voltage ramps above UVLO (see sleep mode), resets all logic and timers, and starts  
to perform many of the continuous monitoring routines. Typically the input voltage quickly rises through the  
UVLO and sleep states where the IC declares power good, starts the qualification charge at 22 mA, sets the  
charge current base on the ISET pin, and starts the safety timer.  
8.4.3 Sleep Mode  
If the IN pin voltage is between VOUT+VDT and UVLO, the charge current is disabled, the safety timer counting  
stops (not reset). As the input voltage rises and the charger exits sleep mode, the safety timer continues to count  
and the charge is enabled. See 22.  
8.4.4 New Charge Cycle  
A new charge cycle is started when a good power source is applied, performing a chip disable/enable (TS pin),  
exiting Termination and Timer Disable Mode (TTDM), detecting a battery insertion or the OUT voltage dropping  
below the VRCH threshold.  
18  
版权 © 2014, Texas Instruments Incorporated  
bq25100, bq25101, bq25100A, bq25100H, bq25101H, bq25100L  
www.ti.com.cn  
ZHCSDZ5C AUGUST 2014REVISED NOVEMBER 2014  
Device Functional Modes (接下页)  
Apply Input  
Power  
Is power good?  
VBAT+VDT<VIN<VOVP  
&VUVLO<VIN  
No  
Yes  
No  
Is chip enabled?  
VTS>VEN  
Yes  
Set Input Current Limit to 22mA  
And Start Charge  
Perform ISET & OUT short tests  
Set charge current  
based on ISET setting  
Return to  
Charge  
22. bq2510x Power-Up Flow Diagram  
版权 © 2014, Texas Instruments Incorporated  
19  
bq25100, bq25101, bq25100A, bq25100H, bq25101H, bq25100L  
ZHCSDZ5C AUGUST 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Device Functional Modes (接下页)  
8.4.5 Termination and Timer Disable Mode (TTDM) - TS Pin High  
The battery charger is in TTDM when the TS pin goes high from removing the thermistor (removing battery  
pack/floating the TS pin) or by pulling the TS pin up to the TTDM threshold.  
When entering TTDM, the 10 hour safety timer is held in reset and termination is disabled. A battery detect  
routine is run to see if the battery was removed or not. For bq25101/1H, if the battery was removed then the  
CHG pin will go to its high impedance state if not already there. If a battery is detected the CHG pin does not  
change states until the current tapers to the termination threshold, where the CHG pin goes to its high  
impedance state if not already there (the regulated output will remain on).  
The charging profile does not change (still has pre-charge, fast-charge constant current and constant voltage  
modes). This implies the battery is still charged safely and the current is allowed to taper to zero.  
When coming out of TTDM, the battery detect routine is run and if a battery is detected, then a new charge cycle  
begins.  
If TTDM is not desired upon removing the battery with the thermistor, one can add a 237-kΩ resistor between TS  
and VSS to disable TTDM. This keeps the current source from driving the TS pin into TTDM. This creates 0.1°C  
error at hot and a 3°C error at cold.  
8.4.6 Battery Detect Routine  
The battery detect routine should check for a missing battery while keeping the OUT pin at a useable voltage.  
The battery detect routine is run when entering and exiting TTDM to verify if battery is present, or run all the time  
if battery is missing and not in TTDM. On power-up, if battery voltage is greater than VRCH thereshold, a battery  
detect routine is run to determine if a battery is present.  
The battery detect routine is disabled while the IC is in TTDM, or has a TS fault. See 23 for the Battery Detect  
Flow Diagram.  
8.4.7 Refresh Threshold  
After termination, if the OUT pin voltage drops to VRCH (100mV below regulation) then a new charge is initiated.  
8.4.8 Starting a Charge on a Full Battery  
The termination threshold is raised by 14% for the first minute of a charge cycle so if a full battery is removed  
and reinserted or a new charge cycle is initiated, that the new charge terminates (less than 1 minute). Batteries  
that have relaxed many hours may take several minutes to taper to the termination threshold and terminate  
charge.  
20  
版权 © 2014, Texas Instruments Incorporated  
bq25100, bq25101, bq25100A, bq25100H, bq25101H, bq25100L  
www.ti.com.cn  
ZHCSDZ5C AUGUST 2014REVISED NOVEMBER 2014  
Device Functional Modes (接下页)  
Start  
BATT_DETECT  
Start 25ms timer  
No  
Timer Expired?  
Yes  
Battery Present  
Turn off Sink Current  
Return to flow  
Yes  
Is VOUT<VREG-100mV?  
No  
Set OUT REG  
to VREG-400mV  
Enable sink current  
Reset & Start 25ms timer  
No  
Timer Expired?  
Yes  
Yes  
Battery Present  
Turn off Sink Current  
Return to flow  
Is VOUT>VREG-300mV?  
No  
Battery Absent  
Don’t Signal Charge  
Turn off Sink Current  
Return to Flow  
23. Battery Detect Routine  
版权 © 2014, Texas Instruments Incorporated  
21  
bq25100, bq25101, bq25100A, bq25100H, bq25101H, bq25100L  
ZHCSDZ5C AUGUST 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The bq2510x series of devices are highly integrated Li-Ion and Li-Pol linear chargers targeted at space-limited  
portable applications. The fast charge current can be programmed from 10 mA to 250 mA through an external  
resistor on ISET pin. The pre_charge and termination current can also be programmed through the resistor  
connected on PRETERM pin. The device has complete system-level protection such as input under-voltage  
lockout (UVLO), input over-voltage protection (OVP), sleep mode, thermal regulation, safety timers, and NTC  
monitoring input.  
9.2 Typical Application - Charger Application Design Example  
SYSTEM  
USB Port or  
Adapter  
VBUS  
IN  
OUT  
TS  
D+  
D-  
1ÛF  
1ÛF  
VSS  
PACK+  
GND  
TEMP  
HOST  
ISET  
2.7kŸ  
3.4kŸ  
Optional  
RC  
PRETERM  
PACK-  
10 nF  
6kŸ  
bq25100  
CE  
9.2.1 Design Requirements  
Supply voltage = 5 V  
Fast charge current: IOUT-FC = 40 mA;  
Termination Current Threshold: %IOUT-FC = 10% of Fast Charge or ~4 mA  
Pre-Charge Current by default is twice the termination Current or ~8 mA  
TS – Battery Temperature Sense = 10-k NTC (103AT)  
/CE is an open drain control pin  
9.2.2 Detailed Design Procedures  
The regulation voltage is set to 4.2 V, the input voltage is 5 V and the charge current is programmed to 40  
mA.  
For charge current that is below 50 mA, an extra RC circuit is recommended on ISET to acheive more stable  
current signal. For applications that need higher charge current, the RC circuit is not needed.  
For applications that use more than 200-mA current, there could be a very low level ~1% of charge current  
ringing in the output. The ringing can be removed by increasing the input capacitance.  
22  
版权 © 2014, Texas Instruments Incorporated  
bq25100, bq25101, bq25100A, bq25100H, bq25101H, bq25100L  
www.ti.com.cn  
ZHCSDZ5C AUGUST 2014REVISED NOVEMBER 2014  
Typical Application - Charger Application Design Example (接下页)  
9.2.2.1 Calculations  
9.2.2.1.1 Program the Fast Charge Current, ISET:  
RISET = [K(ISET) / I(OUT)  
]
from electrical characteristics table. . . K(SET) = 135 AΩ  
RISET = [135 A/0.04 A] = 3.4 kΩ  
Selecting the closest standard value, use a 3.4-kresistor between ISET and Vss.  
9.2.2.1.2 Program the Termination Current Threshold, ITERM:  
RPRE-TERM = K(TERM) × %IOUT-FC  
RPRE-TERM = 600 /% × 10% = 6 kΩ  
Selecting the closest standard value, use a 6-kresistor between PRETERM and Vss.  
One can arrive at the same value by using 20% for a pre-charge value (factor of 2 difference).  
RPRE-TERM = K(PRE-CHG) × %IOUT-FC  
RPRE-TERM = 300 /% × 20%= 6 kΩ  
9.2.2.1.3 TS Function  
Use a 10-k NTC thermistor in the battery pack (103AT).  
To Disable the temp sense function, use a fixed 10-kΩ resistor between the TS and VSS.  
9.2.2.1.4 Selecting IN and OUT Pin Capacitors  
In most applications, all that is needed is a high-frequency decoupling capacitor (ceramic) on the power pin, input  
and output pins. Using the values shown on the application diagram is recommended. After evaluation of these  
voltage signals with real system operational conditions, one can determine if capacitance values can be adjusted  
toward the minimum recommended values (DC load application) or higher values for fast, high amplitude, pulsed  
load applications. Note if designed for high input voltage sources (bad adaptors or wrong adaptors), the capacitor  
needs to be rated appropriately. Ceramic capacitors are tested to 2x their rated values so a 16-V capacitor may  
be adequate for a 30-V transient (verify tested rating with capacitor manufacturer).  
9.2.3 bq25100 Application Performance Plots  
VIN  
VIN 2 V/div  
2 V/div  
VOUT 2 V/div  
VOUT 2 V/div  
IOUT 60 mA/div  
IOUT 60 mA/div  
VISET 1 V/div  
VISET 1 V/div  
t-time – 20 ms/div  
t-time – 50 ms/div  
Hot Plug  
VIN 0 V -5 V-7 V-5 V  
24. OVP 7-V Adaptor  
25. OVP from Normal Power-Up Operation  
版权 © 2014, Texas Instruments Incorporated  
23  
bq25100, bq25101, bq25100A, bq25100H, bq25101H, bq25100L  
ZHCSDZ5C AUGUST 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Typical Application - Charger Application Design Example (接下页)  
VIN 2 V/div  
VIN 2 V/div  
VTS 500 mV/div  
VISET 2 V/div  
ILOAD 70 mA/div  
IOUT 60 mA/div  
VISET 1 V/div  
IOUT 70 mA/div  
t-time – 50 ms/div  
t-time – 10 ms/div  
90-mA Load, 120-mA IOUT  
26. TS Enable and Disable  
27. Power Up  
10 Power Supply Recommendations  
10.1 Leakage Current Effects on Battery Capacity  
To determine how fast a leakage current on the battery will discharge the battery is an easy calculation. The time  
from full to discharge can be calculated by dividing the Amp-Hour Capacity of the battery by the leakage current.  
For a 0.1-AHr battery and a 75-nA leakage current (100mAHr/75nA = 250000 Hours), it would take 1333k hours  
or 152 years to discharge. In reality the self discharge of the cell would be much faster so the 75-nA leakage  
would be considered negligible.  
11 Layout  
11.1 Layout Guidelines  
To obtain optimal performance, the decoupling capacitor from IN to GND and the output filter capacitors from  
OUT to GND should be placed as close as possible to the bq2510x, with short trace runs to both IN, OUT and  
GND.  
All low-current GND connections should be kept separate from the high-current charge or discharge paths  
from the battery. Use a single-point ground technique incorporating both the small signal ground path and the  
power ground path.  
The high current charge paths into IN pin and from the OUT pin must be sized appropriately for the maximum  
charge current in order to avoid voltage drops in these traces  
24  
版权 © 2014, Texas Instruments Incorporated  
bq25100, bq25101, bq25100A, bq25100H, bq25101H, bq25100L  
www.ti.com.cn  
ZHCSDZ5C AUGUST 2014REVISED NOVEMBER 2014  
11.2 Layout Example  
28. Board Layout  
11.3 Thermal Package  
The most common measure of package thermal performance is thermal impedance (θJA ) measured (or  
modeled) from the chip junction to the air surrounding the package surface (ambient). The mathematical  
expression for θJA is:  
θJA = (TJ – T) / P  
(3)  
Where:  
TJ = chip junction temperature  
T = ambient temperature  
P = device power dissipation  
Factors that can influence the measurement and calculation of θJA include:  
1. Whether or not the device is board mounted  
2. Trace size, composition, thickness, and geometry  
3. Orientation of the device (horizontal or vertical)  
4. Volume of the ambient air surrounding the device under test and airflow  
5. Whether other surfaces are in close proximity to the device being tested  
Due to the charge profile of Li-Ion and Li-Pol batteries the maximum power dissipation is typically seen at the  
beginning of the charge cycle when the battery voltage is at its lowest. Typically after fast charge begins the pack  
voltage increases to 3.4 V within the first 2 minutes. The thermal time constant of the assembly typically takes a  
few minutes to heat up so when doing maximum power dissipation calculations, 3.4 V is a good minimum voltage  
to use.  
The device power dissipation, P, is a function of the charge rate and the voltage drop across the internal  
PowerFET. It can be calculated from the following equation when a battery pack is being charged :  
P = [V(IN) – V(OUT)] × I(OUT)  
(4)  
版权 © 2014, Texas Instruments Incorporated  
25  
bq25100, bq25101, bq25100A, bq25100H, bq25101H, bq25100L  
ZHCSDZ5C AUGUST 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Thermal Package (接下页)  
The thermal loop feature reduces the charge current to limit excessive IC junction temperature. It is  
recommended that the design not run in thermal regulation for typical operating conditions (nominal input voltage  
and nominal ambient temperatures) and use the feature for non typical situations such as hot environments or  
higher than normal input source voltage. With that said, the IC will still perform as described, if the thermal loop  
is always active.  
12 器件和文档支持  
12.1 器件支持  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
12.2 相关链接  
以下表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买  
链接。  
1. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
bq25100  
bq25101  
bq25100A  
bq25100H  
bq25101H  
bq25100L  
12.3 商标  
Bluetooth is a registered trademark of Bluetooth SIG, Inc..  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
26  
版权 © 2014, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ25100AYFPR  
BQ25100AYFPT  
BQ25100HYFPR  
BQ25100HYFPT  
BQ25100YFPR  
BQ25100YFPT  
BQ25101HYFPR  
BQ25101HYFPT  
BQ25101YFPR  
BQ25101YFPT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
6
6
6
6
6
6
6
6
6
6
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
0 to 125  
0 to 125  
0 to 125  
0 to 125  
0 to 125  
0 to 125  
0 to 125  
0 to 125  
25100A  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
25100A  
25100H  
25100H  
25100  
25100  
25101H  
25101H  
25101  
25101  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ25100AYFPR  
BQ25100AYFPT  
BQ25100HYFPR  
BQ25100HYFPT  
BQ25100YFPR  
BQ25100YFPT  
BQ25101HYFPR  
BQ25101HYFPT  
BQ25101YFPR  
BQ25101YFPT  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
6
6
6
6
6
6
6
6
6
6
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
0.98  
0.98  
0.98  
0.98  
0.98  
0.98  
0.98  
0.98  
0.98  
0.98  
1.68  
1.68  
1.68  
1.68  
1.68  
1.68  
1.68  
1.68  
1.68  
1.68  
0.59  
0.59  
0.59  
0.59  
0.59  
0.59  
0.59  
0.59  
0.59  
0.59  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ25100AYFPR  
BQ25100AYFPT  
BQ25100HYFPR  
BQ25100HYFPT  
BQ25100YFPR  
BQ25100YFPT  
BQ25101HYFPR  
BQ25101HYFPT  
BQ25101YFPR  
BQ25101YFPT  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
6
6
6
6
6
6
6
6
6
6
3000  
250  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
YFP0006  
DSBGA - 0.5 mm max height  
S
C
A
L
E
1
0
.
0
0
0
DIE SIZE BALL GRID ARRAY  
B
E
A
BALL A1  
CORNER  
D
C
0.5 MAX  
SEATING PLANE  
0.05 C  
0.19  
0.13  
BALL TYP  
0.4  
TYP  
SYMM  
C
B
D: Max = 1.608 mm, Min =1.547 mm  
E: Max = 0.91 mm, Min = 0.85 mm  
0.8  
SYMM  
TYP  
0.4 TYP  
A
0.25  
0.21  
C A B  
6X  
0.015  
1
2
4223410/A 11/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YFP0006  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
6X ( 0.23)  
2
1
A
B
(0.4) TYP  
SYMM  
C
SYMM  
LAND PATTERN EXAMPLE  
SCALE:50X  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
(
0.23)  
METAL  
(
0.23)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4223410/A 11/2016  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFP0006  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
(R0.05) TYP  
6X ( 0.25)  
1
2
A
B
(0.4) TYP  
SYMM  
METAL  
TYP  
C
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:50X  
4223410/A 11/2016  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY