BQ25120AYFPR [TI]

具有电源路径、集成 LDO 和降压转换器 1.8V 默认输出的 300mA 线性电池充电器 | YFP | 25 | -40 to 85;
BQ25120AYFPR
型号: BQ25120AYFPR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有电源路径、集成 LDO 和降压转换器 1.8V 默认输出的 300mA 线性电池充电器 | YFP | 25 | -40 to 85

电池 转换器
文件: 总72页 (文件大小:2454K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
bq25120A 适用于可穿戴设备和物联网的低 IQ 高度集成式电池充电管理解  
决方案  
1 特性  
3 说明  
1
延长了系统在充电之后的运行时间  
bq25120A 是一款高度集成的电池充电管理 IC,集成  
了可穿戴设备的最常用功能:线性充电器、稳压输出、  
负载开关、通过计时器手动复位以及电池电压监测。该  
集成降压转换器是一款具有低 IQ 的高效率开关,其采  
DCS 控制技术,可进一步提升轻载效率,负载电流  
可低至 10µA。运行和关断期间的低静态电流有助于延  
长电池寿命。该器件支持 5mA 300mA 的充电电  
流。输入电流限制、充电电流、降压转换器输出电压、  
LDO 输出电压等参数均可通过 I2C 接口进行编程。  
可配置的 300mA 降压稳压器  
(默认电压为 1.8V)  
使能降压稳压器(无负载)时的 Iq 700nA  
(典型值)  
可配置的负载开关或 100mA 低压降 (LDO) 输  
出(默认采用负载开关)  
快速充电电流高达 300mA  
电池稳压精度为 0.5%(可配置电压范围为 3.6V  
4.65V,阶跃为 10mV)  
器件信息(1)  
可配置的终止电流低至  
500µA  
器件型号  
BQ25120A  
封装  
封装尺寸(标称值)  
DSBGA (25)  
2.50mm x 2.50mm  
基于电压的简单电池监视器  
采用小型封装的高度集成解决方案  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
2.5mm x 2.5mm WCSP 封装,采用 6 个外部组  
件以实现最小尺寸的解决方案  
简化原理图  
通过可调节计时器实现按钮唤醒和复位  
电源路径管理可用于系统供电和电池充电  
PG  
IN  
PMID  
Unregulated  
Load  
电源路径管理功能可实现低于 50nA 的运输模式  
电池静态电流,以最大程度延长货架存放期  
电池充电器的工作电压为 3.4V – 5.5 VIN5.5V  
过压保护 (OVP)/20V 耐压)  
VINLS  
BQ2512x  
GND  
SYS  
SW  
提供专用于输入电流限制、充电电流、终止电流  
和状态输出的引脚  
MCU /  
SYSTEM  
CD  
HOST  
SDA  
SCL  
INT  
I2C 通信控制  
LS / LDO  
BAT  
充电电压和电流  
<100mA  
Load  
终止阈值  
RESET  
LSCTRL  
输入电流限制  
VINDPM 阈值  
定时器选项  
MR  
IPRETERM  
ISET  
TS  
IN  
NTC  
ILIM  
负载开关控制  
控制故障中断和状态  
系统输出电压调节  
LDO 输出电压调节  
Copyright © 2016, Texas Instruments Incorporated  
2 应用  
智能手表及其他可穿戴设备  
健身配件  
健康状况监控医疗配件  
可再充电玩具  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLUSD08  
 
 
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
www.ti.com.cn  
目录  
9.2 Functional Block Diagram ....................................... 17  
9.3 Feature Description................................................. 18  
9.4 Device Functional Modes........................................ 31  
9.5 Programming .......................................................... 33  
9.6 Register Maps ........................................................ 36  
10 Application and Implementation........................ 47  
10.1 Application Information.......................................... 47  
10.2 Typical Application ............................................... 47  
11 Power Supply Recommendations ..................... 62  
12 Layout................................................................... 63  
12.1 Layout Guidelines ................................................. 63  
12.2 Layout Example .................................................... 63  
13 器件和文档支持 ..................................................... 64  
13.1 器件支持................................................................ 64  
13.2 ....................................................................... 64  
13.3 静电放电警告......................................................... 64  
13.4 Glossary................................................................ 64  
14 机械、封装和可订购信息....................................... 64  
1
2
3
4
5
6
7
8
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 3  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
8.1 Absolute Maximum Ratings ...................................... 6  
8.2 ESD Ratings.............................................................. 6  
8.3 Recommended Operating Conditions....................... 6  
8.4 Thermal Information.................................................. 7  
8.5 Electrical Characteristics........................................... 8  
8.6 Timing Requirements ............................................. 12  
8.7 Typical Characteristics............................................ 15  
Detailed Description ............................................ 17  
9.1 Overview ................................................................. 17  
9
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (May 2017) to Revision A  
Page  
已更改 expression terms in 公式 3 and 公式 4 for clarification. ........................................................................................... 26  
2
版权 © 2017–2018, Texas Instruments Incorporated  
 
bq25120A  
www.ti.com.cn  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
5 说明 (续)  
该器件采用标准锂离子充电曲线分三个阶段对电池进行充电:预充电、恒流和恒压该器件包含一个基于电压的  
JEITA 兼容电池组热敏电阻监视输入 (TS),可监视电池温度并自动更改充电参数,从而防止电池在超出其安全温度  
范围的温度下充电。该充电器针对 5V USB 输入进行了优化,可承受 20V 线路瞬态电压。降压转换器由输入或电  
池供电。当处于仅电池模式时,器件可由电压最高达 4.65V 的电池供电运行。  
利用可配置负载开关,器件可断开与不常用器件的连接,从而优化系统。通过定时器手动复位可实现多种优化唤醒  
和复位的不同配置选项。  
6 Device Comparison Table  
DEFAULT  
CHARGE  
CURRENT  
DEFAULT  
TERMINATION  
CURRENT  
DEFAULT SYS DEFAULT LDO  
DEFAULT  
VBERG  
DEFAULT SHIP  
MODE  
PART NUMBER  
VINDPM  
OUTPUT  
OUTPUT  
BQ25120A  
Enabled  
1.8 V  
Load Switch  
4.2 V  
10 mA  
2 mA  
Off  
Copyright © 2017–2018, Texas Instruments Incorporated  
3
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
www.ti.com.cn  
7 Pin Configuration and Functions  
YFP Package  
25-Pin DSBGA  
Top View  
1
2
3
4
5
A
IN  
GND  
PMID  
PMID  
SW  
VINLS  
VINLS  
/PG  
PGND  
SYS  
B
BAT  
BAT  
ILIM  
INT  
/CD  
C
LS/LDO  
GND  
ISET  
TS  
IPRETE  
D
RESET  
LSCTRL  
RM  
E
/MR  
SDA  
SCL  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
DC Input Power Supply. IN is connected to the external DC supply. Bypass IN to GND with  
at least 1 µF of capacitance using a ceramic capacitor.  
IN  
A2  
I
High Side Bypass Connection. Connect at least 3µF of ceramic capacitance with DC bias  
derating from PMID to GND as close to the PMID and GND pins as possible. When entering  
Ship Mode, PMID is discharged by a 20-kinternal discharge resistor.  
PMID  
A3, B3  
I/O  
GND  
A1, D5  
A5  
Ground connection. Connect to the ground plane of the circuit.  
Power ground connection. Connect to the ground plane of the circuit. Connect the output  
filter cap from the buck converter to this ground as shown in the layout example.  
PGND  
Chip Disable. Drive CD low to place the part in High-Z mode with battery only present, or  
enable charging when VIN is valid. Drive CD high for Active Battery mode when battery only  
is present, and disable charge when VIN is present. CD is pulled low internally with 900 kΩ.  
CD  
E2  
I
SDA  
SCL  
E4  
E5  
I/O  
I
I2C Interface Data. Connect SDA to the logic rail through a 10-kΩ resistor.  
I2C Interface Clock. Connect SCL to the logic rail through a 10-kΩ resistor.  
Adjustable Input Current Limit Programming. Connect a resistor from ILIM to GND to  
program the input current limit. The input current includes the system load and the battery  
charge current. Connect ILIM to GND to set the input current limit to the internal default  
threshold. ILIM can also be updated through I2C.  
ILIM  
C2  
E3  
I
I
Load Switch and LDO Control Input. Pull high to enable the LS/LDO output, pull low to  
disable the LS/LDO output.  
LSCTRL  
Fast-Charge Current Programming Input. Connect a resistor from ISET to GND to program  
the fast-charge current level. Connect a resistor from ISET to GND to set the charge current  
to the internal default. ISET can also be updated through I2C. While charging, the voltage at  
ISET reflects the actual charging current and can be used to monitor charge current if an  
ISET resistor is present and the device is not in host mode.  
ISET  
C1  
I
4
Copyright © 2017–2018, Texas Instruments Incorporated  
bq25120A  
www.ti.com.cn  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Termination current programming input. Connect a 0-to 10-kresistor from IPRETERM to  
GND to program the termination current between 5% and 20% of the charge current. The  
pre-charge current is the same as the termination current setting. Connect IPRETERM to  
GND to set the termination current to the internal default threshold. IPRETERM can also be  
updated through I2C.  
IPRETERM  
D1  
I
Status Output. INT is an open-drain output that signals charging status and fault interrupts.  
INT pulls low during charging. INT is high impedance when charging is complete, disabled,  
or the charger is in high impedance mode. When a fault occurs, a 128µs pulse is sent out as  
an interrupt for the host. INT charge indicator function is enabled/disabled using the EN_INT  
bit in the control register. Connect INT to a logic rail using an LED for visual indication of  
charge status or through a 100kΩ resistor to communicate with the host processor.  
INT  
PG  
D2  
D4  
O
O
Open-drain Power Good status indication output. PG pulls to GND when VIN is above V(BAT)  
+ VSLP and less that VOVP. PG is high-impedance when the input power is not within  
specified limits. Connect PG to the desired logic voltage rail using a 1kto 100kresistor,  
or use with an LED for visual indication. PG can also be configured as a push-button voltage  
shifted output (MRS) in the registers, where the output of the PG pin reflects the status of the  
MR input, but pulled up to the desired logic voltage rail using a 1kto 100kresistor.  
Reset Output. RESET is an open drain active low output that goes low when MR is held low  
for longer than tRESET, which is configurable by the MRRESET registers. RESET is  
deasserted after the tRESET_D, typically 400ms.  
RESET  
MR  
D3  
E1  
O
I
Manual Reset Input. MR is a push-button input that must be held low for greater than tRESET  
to assert the reset output. If MR is pressed for a shorter period, there are two programmable  
timer events, tWAKE1 and tWAKE2, that trigger an interrupt to the host. The MR input can also  
be used to bring the device out of Ship mode.  
SW  
A4  
B5  
O
I
Inductor Connection. Connect to the switched side of the external inductor.  
System Voltage Sense Connection. Connect SYS to the system output at the output bulk  
capacitors. Bypass SYS locally with at least 4.7 µF of effective ceramic capacitance.  
SYS  
Load Switch or LDO output. Connect 1 µF of effective ceramic capacitance to this pin to  
assure stability. Be sure to account for capacitance bias voltage derating when selecting the  
capacitor.  
LS/LDO  
C5  
O
Input to the Load Switch / LDO output. Connect 1 µF of effective ceramic capacitance from  
this pin to GND.  
VINLS  
BAT  
B4, C4  
B1, B2  
I
Battery Connection. Connect to the positive terminal of the battery. Bypass BAT to GND with  
at least 1 µF of ceramic capacitance.  
I/O  
Battery Pack NTC Monitor. Connect TS to the center tap of a resistor divider from VIN to  
GND. The NTC is connected from TS to GND. The TS function provides four thresholds for  
JEITA compatibility. TS faults are reported by the I2C interface during charge mode.  
TS  
C3  
I
Copyright © 2017–2018, Texas Instruments Incorporated  
5
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
www.ti.com.cn  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
MAX  
UNIT  
V
IN  
wrt GND  
wrt GND  
20  
PMID, VINLS  
7.7  
V
Input voltage  
CD, SDA, SCL, ILIM, ISET, IPRETERM, LSCTRL,  
INT, RESET, TS  
wrt GND  
–0.3  
5.5  
V
Output voltage  
SYS  
3.6  
400  
10  
V
Input current  
IN  
mA  
mA  
mA  
V
Sink current  
INT  
Sink/Source Current  
Output Voltage Continuos  
RESET  
SW  
10  
–0.7  
–40  
7.7  
400  
300  
150  
6.6  
125  
300  
SW  
mA  
mA  
mA  
V
Output Current Continuous  
SYS, BAT  
LS/LDO  
VBAT, MR,  
Current  
BAT Operating Voltage  
Junction Temperature  
Storage Temperature, Tstg  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
8.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.4  
NOM  
MAX  
20  
UNIT  
IN voltage range  
5
5
VIN  
V
IN operating voltage range, recommended  
V(BAT) operating voltage range  
VINLS voltage range for Load Switch  
VINLS voltage range for LDO  
Input Current, IN input  
3.4  
5.5  
V(BAT)  
V(VINLS)  
V(VINLS)  
IIN  
5.5(1)  
5.5(2)  
5.5  
V
0.8  
2.2  
V
V
400  
300  
300  
100  
300  
125  
mA  
mA  
mA  
mA  
mA  
°C  
I(SW)  
Output Current from SW, DC  
Output Current from PMID, DC  
Output Current from LS/LDO  
I(PMID)  
ILS/LDO  
I(BAT), I(SYS) Charging and discharging using internal battery FET  
TJ Operating junction temperature range  
(1) Any voltage greater than shown should be a transient event.  
(2) These inputs will support 6.6 V for less than 10% of the lifetime at V(BAT) or VIN, with a reduced current and/or performance.  
–40  
6
Copyright © 2017–2018, Texas Instruments Incorporated  
 
bq25120A  
www.ti.com.cn  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
8.4 Thermal Information  
bq25120A  
THERMAL METRIC(1)  
YFP (DSBGA)  
UNIT  
25 PINS  
60  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
0.3  
12.0  
1.2  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
12.0  
N/A  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2017–2018, Texas Instruments Incorporated  
7
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
www.ti.com.cn  
8.5 Electrical Characteristics  
Circuit of 1, V(UVLO) < VIN < V(OVP) and VIN > V(BAT) + V(SLP), TJ = –40°C to 85°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETERS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT CURRENTS  
V(UVLO) < VIN < V(OVP) and VIN > V(BAT) + V(SLP) PWM  
Switching, –40°C < TJ < 85°C  
1
mA  
Supply Current for  
Control  
IIN  
V(UVLO) < VIN < V(OVP) and VIN > V(BAT) + V(SLP) PWM NOT  
Switching  
3
1.5  
1.2  
mA  
mA  
µA  
0°C < TJ < 85°C, VIN = 5 V, Charge Disabled  
0°C < TJ < 60°C, VIN = 0 V, High-Z Mode, PWM Not  
Switching, V(BUVLO) < V(BAT) < 4.65 V  
0.7  
0.9  
0°C < TJ < 60°C, VIN = 0 V, High-Z Mode, PWM Not  
Switching, V(BUVLO) < V(BAT) < 6.6 V  
1.5  
3.5  
µA  
µA  
µA  
Battery discharge current  
in High Impedance Mode  
I(BAT_HIZ)  
0°C < TJ < 60°C, VIN = 0 V or floating, High-Z Mode, PWM  
Switching, No Load  
0.75  
1.35  
0°C < TJ < 85°C, VIN = 0 V, High-Z Mode, PWM Switching,  
LSLDO enabled  
4.25  
0°C < TJ < 85°C, VIN = 0 V, Active Battery Mode, PWM  
Switching, LSLDO enabled, I2C Enabled, V(BUVLO) < V(BAT)  
4.65 V  
<
6.8  
12  
µA  
Battery discharge current  
in Active Battery Mode  
I(BAT_ACTIVE)  
0°C < TJ < 85°C, 0 < VIN < VIN(UVLO), Active Battery Mode,  
PWM Switching, LSLDO disabled, I2C Enabled, CD = Low,  
V(BUVLO) < V(BAT) < 4.65 V  
6.2  
2
11  
µA  
nA  
Battery discharge current  
in Ship Mode  
I(BAT_SHIP)  
0°C < TJ < 85°C, VIN = 0 V, Ship Mode  
150  
POWER-PATH MANAGEMENT and INPUT CURRENT LIMIT  
VDO(IN-PMID)  
VIN – V(PMID)  
VIN = 5 V, IIN = 300 mA  
125  
120  
170  
160  
mV  
mV  
VDO(BAT-PMID)  
V(BAT) – V(PMID)  
VIN = 0 V, V(BAT) > 3 V, Iff = 400 mA  
V(PMID)  
<
V(BAT) – 25  
mV  
Enter supplement mode  
threshold  
V(BSUP1)  
V(BAT) > V(BUVLO)  
V
V
V(PMID)  
V(BAT)  
<
Exit supplement mode  
threshold  
V(BSUP2)  
V(BAT) > V(BUVLO)  
5mV  
Current Limit, Discharge  
Mode  
I(BAT_OCP)  
V(BAT) > V(BUVLO)  
0.85  
50  
1.15  
1.35  
400  
A
Input Current Limit  
Programmable Range, 50-mA steps  
mA  
Maximum Input Current  
using ILIM  
K(ILIM)  
R(ILIM)  
/
I(ILIM)  
50 mA to 100 mA  
–12%  
–5%  
175  
12%  
5%  
IILIM accuracy IILIM  
accuracy  
100 mA to 400 mA  
I(ILIM) = 50 mA to 100 mA  
I(ILIM) = 100 mA to 400 mA  
200  
200  
225  
210  
AΩ  
AΩ  
Maximum input current  
factor  
K(ILIM)  
190  
Input voltage threshold  
when input current is  
reduced  
Programmable Range using VIN(DPM) Registers. Can be  
disabled using VIN(DPM_ON)  
4.2  
4.9  
3%  
V
VIN(DPM)  
VIN_DPM threshold  
accuracy  
–3%  
BATTERY CHARGER  
PMID voltage threshold  
VD(PPM)  
when charge current is  
reduced  
Above V(BATREG)  
0.2  
V
Internal Battery Charger  
MOSFET on-resistance  
RON(BAT-PMID)  
Measured from BAT to PMID, V(BAT) = 4.35 V, High-Z mode  
300  
400  
mΩ  
Operating in voltage regulation, Programmable Range, 10-  
mV steps  
Charge Voltage  
3.6  
4.65  
V
V(BATREG)  
TJ = 25°C  
–0.5%  
–0.5%  
0.5%  
0.5%  
Voltage Regulation  
Accuracy  
TJ = 0°C to 85°C  
8
Copyright © 2017–2018, Texas Instruments Incorporated  
 
bq25120A  
www.ti.com.cn  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
Electrical Characteristics (continued)  
Circuit of 1, V(UVLO) < VIN < V(OVP) and VIN > V(BAT) + V(SLP), TJ = –40°C to 85°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETERS  
TEST CONDITIONS  
V(BATUVLO) < V(BAT) < V(BATREG)  
MIN  
TYP  
MAX  
UNIT  
Fast Charge Current  
Range  
5
300  
mA  
Fast Charge Current  
using ISET  
K(ISET)  
R(ISET)  
/
I(CHARGE)  
A
Fast Charge Current  
Accuracy  
–5%  
190  
0.5  
5%  
210  
37  
Fast Charge Current  
Factor  
K(ISET)  
5 mA > I(CHARGE) > 300 mA  
200  
AΩ  
Termination charge  
current  
Termination current programmable range over I2C  
mA  
I(CHARGE) < 300 mA, R(ITERM) = 15 kΩ  
I(CHARGE) < 300 mA, R(ITERM) = 4.99 kΩ  
I(CHARGE) < 300 mA, R(ITERM) = 1.65 kΩ  
I(CHARGE) < 300 mA, R(ITERM) = 549 Ω  
I(TERM) > 4 mA  
5
10  
15  
20  
% of ISET  
% of ISET  
% of ISET  
% of ISET  
I(TERM)  
Termination Current using  
IPRETERM  
Accuracy  
–10%  
0.5  
10%  
37  
tDGL(TERM)  
TERM deglitch time  
Pre-charge current  
Both rising and falling, 2-mV over-drive, tRISE, tFALL = 100 ns  
Pre-charge current programmable range over I2C  
64  
ms  
mA  
Pre-charge Current using  
IPRETERM  
I(PRE_CHARGE)  
I(TERM)  
A
Accuracy  
–10%  
100  
10%  
140  
Recharge threshold  
voltage  
V(RCH)  
Below V(BATREG)  
120  
32  
mV  
ms  
Recharge threshold  
deglitch time  
tDGL(RCHG)  
tFALL = 100 ns typ, V(RCH) falling  
SYS OUTPUT  
RDS(ON_HS)  
PMID = 3.6 V, I(SYS) = 150 mA  
PMID = 3.6 V, I(SYS) = 150 mA  
675  
300  
850  
475  
mΩ  
mΩ  
RDS(ON_LS)  
MOSFET on-resistance  
for SYS discharge  
RDS(CH_SYS)  
VIN = 3.6 V, IOUT = –10 mA into VOUT pin  
22  
40  
Ω
SW Current limit HS  
SW Current limit LS  
2.2 V < V(PMID) < 5.5 V  
2.2 V < V(PMID) < 5.5 V  
450  
450  
600  
700  
675  
850  
mA  
mA  
I(LIMF)  
PMOS switch current limit  
during softstart  
I(LIM_SS)  
Current limit is reduced during softstart  
Programmable range, 100 mV Steps  
80  
130  
200  
mA  
V
SYS Output Voltage  
Range  
1.1  
3.3  
Output Voltage Accuracy VIN = 5 V, PFM mode, IOUT = 10 mA, V(SYS) = 1.8 V  
–2.5%  
0
2.5%  
VSYS  
DC Output Voltage Load  
VOUT = 2 V, over load range  
Regulation in PWM mode  
0.01  
%/mA  
%/V  
DC Output Voltage Line  
VOUT = 2 V, IOUT = 100 mA, over VIN range  
Regulation in PWM mode  
0.01  
LS/LDO OUTPUT  
Input voltage range for  
Load Switch Mode  
LS/LDO  
0.8  
2.2  
6.6  
6.6  
V
V
VIN(LS)  
Input voltage range for  
LDO Mode  
LS/LDO  
TJ = 25°C  
DC output accuracy  
–2%  
–3%  
0.8  
±1%  
±2%  
2%  
3%  
3.3  
1%  
1%  
60  
VOUT  
Over VIN, IOUT, temperature  
VLDO  
Output range for LS/LDO Programmable Range, 0.1 V steps  
V
DC Line regulation  
DC Load regulation  
Load Transient  
FET Rdson  
VOUT(NOM) + 0.5 V < VIN < 6.6 V, IOUT = 5 mA  
0 mA < IOUT < 100 mA  
–1%  
–1%  
–120  
ΔVOUT / Δ VIN  
2 µA to 100 mA, VOUT = 1. 8 V  
V(VINLS) = 3.6 V  
mV  
RDS(ON_LDO)  
460  
20  
600  
mΩ  
MOSFET on-resistance  
for LS/LDO discharge  
R(DSCH_LSLDO)  
1.7 V < V(VINLS) < 6.6 V, ILOAD = –10 mA  
Ω
Copyright © 2017–2018, Texas Instruments Incorporated  
9
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
Circuit of 1, V(UVLO) < VIN < V(OVP) and VIN > V(BAT) + V(SLP), TJ = –40°C to 85°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETERS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Output Current Limit –  
LDO  
I(OCL_LDO)  
VLS/LDO  
=
275  
365  
475  
mA  
V(VINLS) = 3.6 V, VLSLDO = 3.3 V  
V(VINLS) = 3.3 V, VLSLDO = 0.8 V  
V(VINLS) = 2.2 V, VLSLDO = 0.8 V  
100  
100  
10  
mA  
mA  
mA  
I(LS/LDO)  
Output Current  
Quiescent current for  
VINLS in LDO mode  
0.9  
µA  
µA  
V
IIN(LDO)  
OFF-state supply current  
0.25  
High-level input voltage  
for LSCTRL  
0.75 x  
V(SYS)  
VIH(LSCTRL)  
VIL(LSCTRL)  
1.15 V > V(VINLS) > 6.6 V  
1.15 V > V(VINLS) > 6.6 V  
6.6  
Low-level input voltage  
for LSCTRL  
0.25 x  
V(SYS)  
V
PUSHBUTTON TIMER (MR)  
VIL  
Low-level input voltage  
VBAT > VBUVLO  
0.3  
V
RPU  
Internal pull-up resistance  
120  
kΩ  
VBAT MONITOR  
Battery Voltage Monitor  
Accuracy  
VBMON  
V(BAT) Falling - Including 2% increment  
–3.5  
3.5 %V(BATREG)  
BATTERY-PACK NTC MONITOR  
High temperature  
threshold  
VHOT  
VTS falling, 1% VIN Hysteresis  
VTS falling, 1% VIN Hysteresis  
VTS rising, 1% VIN Hysteresis  
14.5  
20.1  
35.4  
15  
20.5  
36  
15.2  
%VIN  
%VIN  
%VIN  
Warm temperature  
threshold  
VWARM  
20.8  
36.4  
Cool temperature  
threshold  
VCOOL  
Low temperature  
threshold  
VCOLD  
VTS rising, 1% VIN Hysteresis  
VTS rising, 2% VIN Hysteresis  
39.3  
55  
39.8  
40.2  
60  
%VIN  
%VIN  
TSOFF  
TS Disable threshold  
PROTECTION  
IC active threshold  
voltage  
V(UVLO)  
VIN rising  
3.4  
3.6  
3.8  
V
mV  
V
VUVLO(HYS)  
IC active hysteresis  
Battery Undervoltage  
VIN falling from above VUVLO  
150  
Programmable Range for V(BUVLO) VBAT falling, 150 mV  
2.2  
3.0  
Lockout threshold Range Hysteresis  
V(BUVLO)  
Default Battery  
Undervoltage Lockout  
Accuracy  
V(BAT) falling  
–2.5%  
2.5%  
Battery short circuit  
threshold  
V(BATSHORT)  
Battery voltage falling  
2
100  
V
V(BATSHORT_HYS) Hysteresis for V(BATSHORT)  
mV  
mA  
Battery short circuit  
I(BATSHORT)  
I(PRETERM)  
charge current  
Sleep entry threshold,  
VIN – V(BAT)  
V(SLP)  
2 V < VBAT < V(BATREG), VIN falling  
VIN rising above V(SLP)  
65  
65  
120  
100  
mV  
mV  
V
Sleep-mode exit  
V(SLP_HYS)  
40  
hysteresis  
Maximum Input Supply  
VOVP  
VIN rising, 100 mV hysteresis  
VIN falling below VOVP, 1V/us  
5.35  
5.55  
32  
5.75  
OVP threshold voltage  
Deglitch time, VIN OVP  
falling  
tDGL_OVP  
ms  
TSHTDWN  
THYS  
Thermal trip  
VIN > VUVLO  
VIN > VUVLO  
114  
11  
°C  
°C  
Thermal hysteresis  
Deglitch time, Thermal  
shutdown  
tDGL_SHTDWN  
TJ rising above TSHTDWN  
4
µs  
10  
Copyright © 2017–2018, Texas Instruments Incorporated  
bq25120A  
www.ti.com.cn  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
Electrical Characteristics (continued)  
Circuit of 1, V(UVLO) < VIN < V(OVP) and VIN > V(BAT) + V(SLP), TJ = –40°C to 85°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETERS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I2C INTERFACE  
I2C Bus Specification  
standard and fast mode  
frequency support  
100  
400  
kHz  
VIL  
Input low threshold level  
VPULLUP = 1.1 V, SDA and SCL  
0.275  
V
V
V
V
VIH  
VIH  
VOL  
Input high threshold level VPULLUP = 1.1 V, SDA and SCL  
Input high threshold level VPULLUP = 3.3 V, SDA and SCL  
Output low threshold level IL = 5 mA, sink current, VPULLUP = 1.1 V  
0.825  
2.475  
0.275  
1
High-Level leakage  
VPULLUP = 1.8 V, SDA and SCL  
current  
IBIAS  
µA  
INT, PG, and RESET OUTPUT (Open Drain)  
Low level output  
threshold  
0.25 x  
V(SYS)  
VOL  
Sinking current = 5 mA  
V
IIN  
Bias current into pin  
Pin is high impedance, IOUT = 0 mA; TJ = –40°C to 60°C  
12  
nA  
Input voltage above  
VBAT where PG sends  
two 128 µs pulses each  
minute to signal the host  
of the input voltage status  
VIN(BAT_DELTA)  
VUVLO < VIN < VOVP  
0.825  
1
1.15  
V
INPUT PIN (CD LSCTRL)  
0.25 *  
VSYS  
VIL(/CD_LSCTRL)  
VIH(/CD_LSCTRL)  
RPULLDOWN/CD  
R(LSCTRL)  
Input low threshold  
V(PULLUP) = VSYS = 3.3 V  
V(PULLUP) = VSYS = 3.3 V  
V
V
0.75 *  
VSYS  
Input high threshold  
Internal pull-down  
resistance  
900  
2
kΩ  
MΩ  
Internal pull-down  
resistance  
Copyright © 2017–2018, Texas Instruments Incorporated  
11  
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
www.ti.com.cn  
8.6 Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
POWER-PATH MANAGEMENT AND INPUT CURRENT LIMIT  
Deglitch Time, PMID or SW Short Circuit  
during Discharge Mode  
tDGL_SC  
250  
2
µs  
s
Recovery time, OUT Short Circuit during  
Discharge Mode  
tREC_SC  
BATTERY CHARGER  
Deglitch time transition from ISET short to  
I(CHARGE) disable  
tDGL_SHORT  
Clear fault by disconnecting VIN  
1
ms  
BATTERY CHARGING TIMERS  
tMAXCHG  
Charge safety timer  
Programmable range  
2
540  
min  
tPRECHG  
Precharge safety timer  
0.1 x tMAXCHG  
SYS OUTPUT  
tONMIN  
Minimum ON time  
Minimum OFF time  
VIN = 3.6 V, VOUT = 2 V, IOUT = 0 mA  
VIN = 4.2 V  
225  
50  
ns  
ns  
tOFFMIN  
VIN = 5 V, from write on EN_SW_OUT  
until output starts to rise  
tSTART_SW  
SW start up time  
5
25  
ms  
From insertion of BAT > V(BUVLO) or VIN  
> V(UVLO)  
tSTART_SYS  
SYS output time to start switching  
350  
400  
µs  
µs  
tSOFTSTART  
Softstart time with reduced current limit  
1200  
LS/LDO OUTPUT  
tON_LDO  
Turn ON time  
Turn OFF time  
100-mA load  
100-mA load  
500  
5
µs  
µs  
tOFF_LDO  
PUSHBUTTON TIMER  
tWAKE1  
tRESET  
tRESET_D  
tDD  
Push button timer wake 1  
0.08  
5
1
s
s
Programmable Range for reset  
function  
Push button timer reset  
Reset pulse duration  
15  
400  
6
ms  
µs  
Detection delay (from MR, input to  
RESET)  
For 0s condition  
BATTERY-PACK NTC MONITOR  
Applies to V(HOT), V(WARM), V(COOL), and  
V(COLD)  
tDGL(TS)  
Deglitch time on TS change  
50  
ms  
I2C INTERFACE  
tWATCHDOG  
I2C interface reset timer for host  
I2C interface inactive reset timer  
50  
s
tI2CRESET  
700  
ms  
Transition time required to enable the I2C  
interface from HiZ to Active BAT  
tHIZ_ACTIVEBAT  
1
1
ms  
INPUT PIN  
t/CD_DGL  
tQUIET  
Deglitch for CD  
CD rising/falling  
100  
µs  
Input quiet time for Ship Mode transition  
ms  
12  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25120A  
www.ti.com.cn  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
Typical Start-Up Timing and Operation  
Remove  
Battery  
Apply  
VIN  
Insert  
Battery  
BAT supplies SYS  
when VIN removed  
VIN  
PMID  
VIN > UVLO  
PG  
SW  
After delay of several ms,  
switching starts and SYS  
starts to rise  
SYS  
CD  
Charging  
enabled  
Charge  
Current  
Taper  
Charging  
disabled  
IBAT = ITERM  
No SYS Load  
0mA  
IBAT  
VBAT = VBATREG  
VBAT  
rises  
VBAT =  
VBATREG - VRCHG  
VBAT>VBUVLO  
IBAT=ICHRG  
SYS Load Applied  
VBAT  
INT  
Shows  
Charge  
Status  
<3uA max  
<4uA max  
VISET  
<5uA max  
<4uA max  
<3uA max  
nA of leakage with VIN present  
BAT IQ  
Conditions: PGB_MRS = 0, TE = 1, SW_LDO = 1, VINDPM_ON = 0, PG and INT pulled up to SYS, EN_INT = 1  
1. Typical Start-Up Timing and Operation  
版权 © 2017–2018, Texas Instruments Incorporated  
13  
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
www.ti.com.cn  
Insert Battery <  
VBATSHORT  
VBAT=VBUVLO  
VBAT  
VBAT=VBUVLO  
IBAT = IBATSHORT  
IBAT  
IBAT = ICHG  
VIN  
Device enters Active Battery  
Mode after valid /MR  
CD  
EN_SHIPMODE  
MR_WAKE1 time reached  
MR_WAKE2 time reached  
MRRESET time reached  
MR  
User depresses button  
tRESET  
RESET  
MR_WAKE1  
Interrupt  
MR_WAKE2  
Interrupt  
INT  
<1uA max  
<3uA max  
<1uA max  
<3uA max  
BAT IQ  
After delay of several ms,  
SYS starts to rise  
SYS is pulled down shortly  
after VBATUVLO is reached  
SYS  
Conditions: SW_LDO = 1, MRREC = 1, PG and INT pulled up to SYS, ISYS = 10 µA, EN_INT = 1  
2. Battery Operation and Sleep Mode  
14  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25120A  
www.ti.com.cn  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
8.7 Typical Characteristics  
12  
10  
8
2.0  
1.5  
1.0  
0.5  
0.0  
6
4
2
85èC  
60èC  
25èC  
0èC  
85èC  
60èC  
25èC  
0èC  
0
3
3.2  
3.4  
3.6  
3.8  
4
4.2  
4.4  
4.6  
3
3.2  
3.4  
3.6  
3.8  
4
4.2  
4.4  
4.6  
BAT (V)  
BAT (V)  
D016  
D017  
1.8 V System Enabled (No Load)  
3. Active BAT, IQ  
4. Hi-Z BAT, IQ  
700  
600  
500  
400  
300  
200  
100  
0
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
85èC  
60èC  
25èC  
0èC  
3
3.2  
3.4  
3.6  
3.8  
4
4.2  
4.4  
4.6  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
BAT (V)  
Temperature (èC)  
D018  
D024  
5. Ship Mode BAT, IQ  
6. Blocking FET RDS(ON) vs Temperature  
400  
350  
300  
250  
200  
150  
100  
50  
0.5%  
0.3%  
0.1%  
-0.1%  
-0.3%  
-0.5%  
4.35 V(BATREG)  
4.2 V(BATREG)  
4 V(BATREG)  
3.8 V(BATREG)  
3.6 V(BATREG)  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40  
-10  
20  
50  
80  
110 125  
Temperature (èC)  
Temperature (èC)  
D025  
D019  
7. Battery Discharge FET RDS(ON) vs Temperature  
8. V(BATREG) Accuracy vs Temperature  
版权 © 2017–2018, Texas Instruments Incorporated  
15  
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
5%  
4%  
3%  
2%  
1%  
0
5%  
3%  
-40èC  
0èC  
25èC  
85èC  
125èC  
1%  
-1%  
-2%  
-3%  
-4%  
-5%  
-1%  
-3%  
-5%  
-40èC  
0èC  
25èC  
85èC  
125èC  
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0
50  
100  
150  
200  
250  
300  
Input Current Limit (A)  
Charge Current (mA)  
D020  
D021  
9. ILIM Accuracy vs Input Current  
10. Charge Current Accuracy vs Charge Current  
10%  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
-40èC  
0èC  
25èC  
85èC  
125èC  
8%  
6%  
4%  
2%  
0
-2%  
-4%  
-6%  
-8%  
-10%  
0
5
10  
15  
20  
25  
30  
35  
40  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Pre-Charge Current (mA)  
Temperature (èC)  
D022  
D0264  
VIN = 5 V  
11. Pre-Charge Accuracy vs Pre-Charge Current  
12. RDS(ON) of High Side MOSFET vs Temperature  
400  
350  
300  
250  
200  
150  
100  
50  
160  
140  
120  
100  
80  
Noise Floor  
1 mA  
10 mA  
50 mA  
100 mA  
60  
40  
20  
0
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
10 20 50 100  
1000  
10000  
100000  
1000000  
Temperature (èC)  
Frequency (Hz)  
D027  
D028  
VIN = 5 V  
13. RDS(ON) of Low Side MOSFET vs Temperature  
14. LS/LDO PSRR vs Frequency  
16  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25120A  
www.ti.com.cn  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
9 Detailed Description  
9.1 Overview  
The following sections describe in detail the functions provided by the BQ25120A. These include linear charger,  
PWM output, configurable LS/LDO output, Push-button input, reset timer, functional modes, battery monitor, I2C  
configurability and functions, and safety features.  
9.2 Functional Block Diagram  
PMID  
Q1/Q2  
Q3  
IN  
SW  
D
S
G
GND  
IINLIM  
Q4  
PWM, LDO, and BAT FET  
Control  
SYS  
VSYSREG  
VIN_DPM  
VINLS  
LDO  
Control  
S
D
VBATREG  
IBATREG  
Thermal  
Shutdown  
G
LDO/ Load Switch  
Q5  
Control  
VSUPPLY  
Hi-Z  
Mode  
LS/LDO  
CD  
Termination  
Reference  
VIN  
Q7  
SDA  
SCL  
I2C  
Interface  
IBAT  
+
+
LDO/ Load Switch  
Host Control  
LSCTRL  
ILIM  
Disable  
Input Current Limit  
Charge Current  
TS COLD  
+
+
ISET  
1C/  
0.5C  
TS COOL  
TS WARM  
BAT  
Termination Current  
IPRETERM  
PG  
VBATREG  
œ 140mV  
+
VBAT(SC)  
+
+
Disable  
Device Control  
TS HOT  
VIN  
VOVP  
INT  
VINOVP  
VBAT  
VBATOVP  
BATOVP  
+
+
VBAT  
BATSHRT  
Recharge  
VBATSHRT  
+
VBATREG œ 0.12 V  
VBAT  
RESET  
Reset and  
Timer  
MR  
TS  
Copyright © 2016, Texas Instruments Incorporated  
版权 © 2017–2018, Texas Instruments Incorporated  
17  
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Ship Mode  
Ship Mode is the lowest quiescent current state for the device. Ship Mode latches off the device and BAT FET  
until VIN > VBAT + VSLP or the MR button is depressed for tWAKE1 and released. The following list shows the events  
that are active during Ship Mode:  
1. VIN_UV Comparator  
2. MR Input (No clock or delay in this mode for lowest power consumption)  
3. PMID active pull down  
9.3.1.1 Ship Mode Entry and Exit  
The device may only enter Ship Mode when there is not a valid VIN supply present (VIN < VUVLO). Once the IN  
supply is removed there are two ways for the device to enter Ship Mode: through I2C command using the  
EN_SHIPMODE bit and by doing a long button press when MRREC bit is set to 0. If the EN_SHIPMODE bit is  
set while the IN supply is present, the device will enter Ship Mode upon removal of the supply. The  
EN_SHIPMODE bit can be cleared using the I2C interface as well while the IN input is valid.  
In addition to VIN < VUVLO, CD and MR must be high. Once all of these conditions are met the device will begin  
the transition to Ship Mode. All three conditions must remain unchanged for a period of tQUIET to ensure proper  
operation. 15 and 16show the correct sequencing to ensure proper entry into the Ship Mode through I2C  
command and MR button press respectively.  
tQUIET  
CD  
MR  
VIN  
Shipmode  
2
I C  
Write  
15. CD, MR and VIN Sequencing for Ship Mode Entry Through I2C Command  
18  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
bq25120A  
www.ti.com.cn  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
Feature Description (接下页)  
tQUIET  
CD  
MR  
VIN  
t > tRESET  
Shipmode  
2
I C  
Write  
16. CD, MR and VIN Sequencing for Ship Mode Entry Through Long MR button press  
The end user can enable the device (exit Ship Mode) by connecting an adapter to IN (VIN > VBAT + VSLP) or by  
toggling the MR button. Note that in the case where an adapter is connected while the MR is still held low and  
immediately after the RESET timer has expired (MR low for tRESET), the device will not enter Ship Mode, but may  
enter it upon adapter removal (Same behavior as setting the EN_SHIPMODE bit when the adapter is present).  
This will not be the case if MR has gone high when the adapter is connected or MR continues to be held low for  
a period longer than tWAKE1 after the adapter is connected.  
To exit Ship Mode through and MR press the battery voltage must be above the maximum programmable  
BUVLO threshold when VIN is not present. Once MR goes low, the device will start to exit Ship Mode, powering  
PMID. The device will not complete the transition from Ship Mode until MR has been held low for at least tWAKE1  
.
Only after the transition is complete may the host start I2C communication if the device has not entered High  
Impedance Mode.  
9.3.2 High Impedance Mode  
High Impedance mode is the lowest quiescent current state while operating from the battery. During Hi-Z mode  
the SYS output is powered by BAT, the MR input is active, and the LSCTRL input is active. All other circuits are  
in a low power or sleep state. The LS/LDO output can be enabled in Hi-Z mode with the LSCTRL input. If the  
LS/LDO output has been enabled through I2C prior to entering Hi-Z mode, it will stay enabled. The CD pin is  
used to put the device in a high-impedance mode when battery is present and VIN < VUVLO. Drive CD high to  
enable the device and enter active battery operation when VIN is not valid. When the HZ_MODE bit is written by  
the host, the I2C interface is disabled if only battery is present. To resume I2C, the CD pin must be toggled. If the  
supply for the CD pull up glitches or experiences a brownout condition , it is recommended to toggle the /CD pin  
to resume I2C communication.. The functionality of the pin is shown in 1.  
1. CD, State Table  
CD, State  
VIN < VUVLO  
Hi-Z  
VIN > VUVLO  
L
Charge Enabled  
Charge Disabled  
H
Active Battery  
版权 © 2017–2018, Texas Instruments Incorporated  
19  
 
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
www.ti.com.cn  
9.3.3 Active Battery Only Connected  
When the battery above VBATUVLO is connected with no input source, the battery discharge FET is turned on.  
After the battery rises above VBATUVLO and the deglitch time is reached, the SYS output starts to rise. The current  
from PMID and SYS is not regulated, but is protected by a short circuit current limit. If the short circuit limit is  
reached for the deglitch time (tDGL_SC), the battery discharge FET is turned off for the recovery time (tREC_SC).  
After the recovery time, the battery FET is turned on to test if the short has been removed. If it has not, the FET  
turns off and the process repeats until the short is removed. This process protects the internal FET from over  
current. During this event PMID will likely droop and cause SYS to go out of regulation.  
To provide designers the most flexibility in optimizing their system, an adjustable BATUVLO is provided. When  
the voltage drops below the VBATUVLO threshold, the battery discharge FET is turned off. Deeper discharge of the  
battery enables longer times between charging, but may shorten the battery life. The BATUVLO is adjustable  
with a fixed 150-mV hysteresis.  
If a valid VIN is connected during active battery mode, VIN > VUVLO, the supplement and battery discharge FET is  
turned on when the battery voltage is above the minimum VBATUVLO  
.
Drive CD high or write the CE register to disable charge when VIN > VUVLO is present. CD is internally pulled  
down. When exiting this mode, charging resumes if VIN is present, CD is low and charging is enabled.  
All HOST interfaces (CD, SDA/SCL, INT, RESET and LSCTRL) are active no later than 5 ms after SYS reaches  
the programmed level.  
9.3.4 Voltage Based Battery Monitor  
The device implements a simple voltage battery monitor which can be used to determine the depth of discharge.  
Prior to entering High-Z mode, the device will initiate a VBMON reading. The host can read the latched value for  
the no-load battery voltage, or initiate a reading using VBMON_READ to see the battery voltage under a known  
load. The register will be updated and can be read 2ms after a read is initiated. The VBMON voltage threshold is  
readable with 2% increments with ±1.5% accuracy between 60% and 100% of VBATREG using the VBMON_TH  
registers. Reading the value during charge is possible, but for the most accurate battery voltage indication, it is  
recommended to disable charge, initiate a read, and then re-enable charge.  
A typical discharge profile for a Li-Ion battery is shown in 2. The specific battery to be used in the application  
should be fully characterized to determine the thresholds that will indicate the appropriate battery status to the  
user. Two typical examples are shown below, assuming the VBMON reading is taken with no load on the battery.  
This function enables a simple 5-bar status indicator with the following typical performance with different  
VBATREG settings:  
2. Discharge Profile for a Li-Ion Battery  
95% to 65%  
65% to 35%  
35% to 5%  
VBATREG  
BATTERY FULL  
BATTERY EMPTY  
REMAINING CAPACITY REMAINING CAPACITY REMAINING CAPACITY  
4.35 V  
4.2 V  
VBMON > 90%  
VBMON > 98%  
VBMON = 88%  
VBMON = 86%  
VBMON = 84%  
VBMON < 82%  
VBMON < 84%  
VBMON = 94% or 96%  
VBMON = 90% or 92%  
VBMON = 86% or 88%  
20  
版权 © 2017–2018, Texas Instruments Incorporated  
 
bq25120A  
www.ti.com.cn  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
VREF  
S0  
-2 % BAT TAP  
-4 % BAT TAP  
-6 % BAT TAP  
-8 % BAT TAP  
-10 % BAT TAP  
S1  
90 % VB  
D
E
80 % VB  
S2  
C
O
D
E
R
S3  
70 % VB  
60 % VB  
VB =0. 8 VBAT  
17. Voltage Battery Monitor  
9.3.5 Sleep Mode  
The device enters the low-power sleep mode if the voltage IN falls below the sleep-mode entry threshold and VIN  
is higher than the undervoltage lockout threshold. In sleep mode, the input is isolated from the connected battery.  
This feature prevents draining the battery during the absence of VIN. When VIN < V(BAT) + VSLP, the device turns  
the battery discharge FET on, sends a 128-µs pulse on the INT output, and the FAULT bits of the register are  
update over I2C. Once VIN > V(BAT) + VSLP, the device initiates a new charge cycle. The FAULT bits are not  
cleared until they are read over I2C and the sleep condition no longer exists. It is not recommended to do a  
battery connection or plug in when VUVLO< VIN < VBAT + VSLP as it may cause higher quiescent current to be  
drained form the battery.  
9.3.6 Input Voltage Based Dynamic Power Management (VIN(DPM)  
)
During the normal charging process, if the input power source is not able to support the programmed or default  
charging current and System load, the supply voltage decreases. Once the supply approaches VIN(DPM), the input  
DPM current and voltage loops will reduce the input current through the blocking FETs, to prevent the further  
drop of the supply. The VIN(DPM) threshold is programmable through the I2C register from 4.2 V to 4.9 V in 100-  
mV steps. It can be disabled completely as well. When the device enters this mode, the charge current may be  
lower than the set value and the VINDPM_STAT bit is set. If the 2X timer is set, the safety timer is extended  
while VIN(DPM) is active. Additionally, termination is disabled. Note that in a condition where the battery is  
connected while VUVLO<VIN < VIN(DPM), the VINDPM loop will prevent the battery from being charged and PMID  
will be powered from BAT.  
版权 © 2017–2018, Texas Instruments Incorporated  
21  
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
www.ti.com.cn  
9.3.7 Input Overvoltage Protection and Undervoltage Status Indication  
The input overvoltage protection protects the device and downstream components connected to PMID, SYS, and  
BAT against damage from overvoltage on the input supply. When VIN > VOVP an OVP fault is determined to exist.  
During the OVP fault, the device turns the battery discharge FET on, sends a single 128-µs pulse on INT, and  
the FAULT bits are updated over I2C. Once the OVP fault is removed, after the deglitch time, tDGL_OVP, STAT and  
FAULT bits are cleared and the device returns to normal operation. The FAULT bits are not cleared until they are  
read in from I2C after the OVP condition no longer exists. The OVP threshold for the device is set to operate from  
standard USB sources.  
The input under-voltage status indication is used to notify the host or other device when the input voltage falls  
below a desired threshold. When VIN < VUVLO, after the deglitch time tDGL_UVLO, a UVLO fault is determined to  
exist. During the VIN UVLO fault, the device sends a single 128-µs pulse on INT, and the STAT and FAULT bits  
are updated over I2C. The FAULT bits are not cleared until they are read in from I2C after the UVLO condition no  
longer exists.  
9.3.8 Battery Charging Process and Charge Profile  
When a valid input source is connected (VIN > VUVLO and V(BAT) + VSLP < VIN < VOVP and VIN > VIN(DPM)), the CE  
bit in the control register determines whether a charge cycle is initiated. When the CE bit is 1 and a valid input  
source is connected, the battery discharge FET is turned off, and the output at SYS is regulated depending on  
the output configuration. A charge cycle is initiated when the CE bit is written to a 0. Alternatively, the CD input  
can be used to enable and disable charge.  
The device supports multiple battery chemistries for single-cell applications. Charging is done through the  
internal battery MOSFET. There are several loops that influence the charge current: constant current loop (CC),  
constant voltage loop (CV), input current limit, VDPPM, and VIN(DPM). During the charging process, all loops are  
enabled and the one that is dominant takes control.  
The charge current is regulated to ICHARGE until the voltage between BAT and GND reaches the regulation  
voltage. The voltage between BAT and GND is regulated to VBATREG (CV Mode) while the charge current  
naturally tapers down. When termination is enabled, the device monitors the charging current during the CV  
mode, and once the charge current tapers down to the termination threshold, ITERM, and the battery voltage is  
above the recharge threshold, the device terminates charge, and turns off the battery charging FET. Termination  
is disabled when any loop is active other than CV.  
9.3.9 Dynamic Power Path Management Mode  
With a valid input source connected, the power-path management circuitry monitors the input voltage and current  
continuously. The current into IN is shared at PMID between charging the battery and powering the system load  
at PMID, SYS, and LS/LDO. If the sum of the charging and load currents exceeds the current that the VIN can  
support, the input DPM loop(VINDPM) reduces the current going into PMID through the input blocking FETs.  
This will cause a drop on the PMID voltage if the system demands more current. If PMID drops below the DPPM  
voltage threshold(VDPPM), the charging current is reduced by the DPPM loop through the BATFET in order to  
stabilize PMID. If PMID continues to drop after BATFET charging current is reduced to zero, the part enters  
supplement mode when PMID falls below the supplement mode threshold. Battery termination is disabled while  
in DPPM mode. In order to charge the battery, the voltage at PMID has to be greater than VBATREG + VDPPM  
threshold..  
9.3.10 Battery Supplement Mode  
While in DPPM mode, if the charging current falls to zero and the system load current increases beyond the  
programmed input current limit, the voltage at PMID reduces further. When the PMID voltage drops below the  
battery voltage by V(BSUP1), the battery supplements the system load. The battery stops supplementing the  
system load when the voltage on the PMID pin rises above the battery voltage by V(BSUP2). During supplement  
mode, the battery supplement current is not regulated, however, the short-circuit protection circuit is active.  
Battery termination is disabled while in supplement mode.  
22  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25120A  
www.ti.com.cn  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
9.3.11 Default Mode  
The default mode is used when there is no host, or I2C communication is not available. If the externally  
programmable pins, ILIM, ISET, and ITERM have resistors connected, that is considered the default mode. If any  
one of these resistors is tied to GND, the default register settings are used. The default mode can be entered by  
connecting a valid power source to VIN or the RESET bit is written. Default mode is exited by writing to the I2C  
interface.  
9.3.12 Termination and Pre-Charge Current Programming by External Components (IPRETERM)  
The termination current threshold is user programmable through an external resistor or through registers over  
I2C. Set the termination current using the IPRETERM pin by connecting a resistor from IPRETERM to GND. The  
termination can be set between 5% and 20% of the programmed output current set by ISET, using 3 for  
guidance:  
3. IPRETERM Resistor Settings  
RIPRETERM  
IPRE_CHARGE and ITERM  
KKIPRETERM  
TYP  
(STANDARD 1%  
VALUES)  
UNIT  
TYP  
(% of ISET)  
RECOMMENDED  
RIPRETERM  
MIN  
MAX  
MIN  
MAX  
5
180  
180  
180  
180  
200  
200  
200  
200  
220  
220  
220  
220  
15000  
4990  
1650  
549  
Ω
Ω
Ω
Ω
10  
15  
20  
Using the I2C register, the termination current can be programmed with a minimum of 500 µA and a maximum of  
37 mA.  
The pre-charge current is not independently programmable through the external resistor, and is set at the  
termination current. The pre-charge and termination currents are programmable using the IPRETERM registers.  
If no IPRETERM resistor is connected and the pin is tied to GND, the default values in the IPRETERM registers  
are used. The external value can be used in host mode by configuring the IPRETERM registers. If the external  
ICHG setting will be used after being in Host mode, the IPRETERM registers should be set to match the desired  
external threshold for the highest ICHG accuracy.  
Termination is disabled when any loop other than CV is active.  
版权 © 2017–2018, Texas Instruments Incorporated  
23  
 
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
www.ti.com.cn  
9.3.13 Input Current Limit Programming by External Components (ILIM)  
The input current limit threshold is user programmable through an external resistor or through registers over I2C.  
Set the input current limit using the ILIM pin by connecting a resistor from ILIM to GND using 4 for guidance. If  
no ILIM resistor is connected and the pin is tied to GND, the default ILIM register value is used. The external  
value is not valid once the device enters host mode.  
4. ILIM Resistor Settings  
ILIM  
TYP  
KILIM  
TYP  
RILIM  
(STANDARD 1%  
VALUES)  
UNIT  
MIN  
MAX  
MIN  
MAX  
0.048469388  
0.09047619  
0.146153846  
0.19  
0.051020408  
0.095238095  
0.153846154  
0.2  
0.053571429  
0.1  
190  
190  
190  
190  
190  
190  
200  
200  
200  
200  
200  
200  
210  
210  
210  
210  
210  
210  
3920  
2100  
1300  
1000  
665  
Ω
Ω
Ω
Ω
Ω
Ω
0.161538462  
0.21  
0.285714286  
0.380761523  
0.30075188  
0.400801603  
0.315789474  
0.420841683  
499  
The device has register programmable input current limits from 50 mA to 400 mA in 50-mA steps. The device is  
USB-IF compliant for inrush current testing, assuming that the input capacitance to the device is selected to be  
small enough to prevent a violation (<10 µF), as this current is not limited.  
9.3.14 Charge Current Programming by External Components (ISET)  
The fast charge current is user programmable through an external resistor or through registers over I2C. Set the  
fast charge current by connecting a resistor from ISET to GND. If no ISET resistor is connected and the pin is  
tied to GND, the default ISET register value is used. While charging, if the charge current is using the externally  
programmed value, the voltage at ISET reflects the actual charging current and can be used to monitor charge  
current. The current out of ISET is 1/100 (±10%) of the charge current. The charge current can be calculated by  
using 5 for guidance:  
5. ISET Resistor Settings  
ISET  
TYP  
KISET  
TYP  
RISET  
(STANDARD 1%  
VALUES)  
UNIT  
MIN  
MAX  
MIN  
MAX  
0.285714286  
0.19  
0.30075188  
0.2  
0.315789474  
0.21  
190  
190  
190  
190  
190  
190  
190  
190  
190  
190  
190  
190  
190  
190  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
210  
210  
210  
210  
210  
210  
210  
210  
210  
210  
210  
210  
210  
210  
665  
1000  
1500  
2000  
2940  
3920  
4990  
6040  
7320  
10000  
15000  
20000  
29400  
39200  
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
0.126666667  
0.095  
0.133333333  
0.1  
0.14  
0.105  
0.06462585  
0.048469388  
0.038076152  
0.031456954  
0.025956284  
0.019  
0.068027211  
0.051020408  
0.04008016  
0.033112583  
0.027322404  
0.02  
0.071428571  
0.053571429  
0.042084168  
0.034768212  
0.028688525  
0.021  
0.012666667  
0.0095  
0.013333333  
0.01  
0.014  
0.0105  
0.006462585  
0.004846939  
0.006802721  
0.005102041  
0.007142857  
0.005357143  
24  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
bq25120A  
www.ti.com.cn  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
9.3.15 Safety Timer and Watchdog Timer  
At the beginning of the charge cycle, the device starts the safety timer. If charging has not terminated before the  
programmed safety time, tMAXCHG, expires, the device enters idle mode and charging is disabled. The pre-charge  
safety time, tPRECHG, is 10% of tMAXCHG. When a safety timer fault occurs, a single 128 µs pulse is sent on the INT  
pin and the STAT and FAULT bits of the status registers are updated over I2C. The CD pin or power must be  
toggled in order to clear the safety timer fault. The safety timer duration is programmable using the TMR bits.  
When the safety timer is active, changing the safety timer duration resets the safety timer. The device also  
contains a 2X_TIMER bit that enables the 2X timer function to prevent premature safety timer expiration when  
the charge current is reduced by a load on PMID, SYS, LS/LDO or a NTC condition. When t2X_TIMER function is  
enabled, the timer is allowed to run at half speed when any loop is active other than CC or CV.  
In addition to the safety timer, the device contains a 50-second watchdog timer that monitors the host through  
the I2C interface. Only after an I2C transaction is performed on the I2C interface, will the watchdog timer start. In  
the case where the device is set to operate in High Impedance Mode, the watchdog timer is automatically  
disabled and can only be re-started after the device exits the High Impedance Mode and a subsequent I2C  
transaction is performed. The watchdog timer is reset by any transaction by the host using the I2C interface. If  
the watchdog timer expires without a reset from the I2C interface, all registers except MRRESET_VIN and  
MRREC are reset to the default values.  
9.3.16 External NTC Monitoring (TS)  
The I2C interface allows the user to easily implement the JEITA standard for systems where the battery pack  
thermistor is monitored by the host. Additionally, the device provides a flexible voltage based TS input for  
monitoring the battery pack NTC thermistor. The voltage at TS is monitored to determine that the battery is at a  
safe temperature during charging.  
To satisfy the JEITA requirements, four temperature thresholds are monitored: the cold battery threshold, the  
cool battery threshold, the warm battery threshold, and the hot battery threshold. These temperatures correspond  
to the V(COLD), V(COOL), V(WARM), and V(HOT) threshold in the Electrical Characteristics. Charging and timers are  
suspended when V(TS) < V(HOT) or > V(COLD). When V(COOL) < V(TS) < V(COLD), the charging current is reduced to  
half of the programmed charge current. When V(HOT) < V(TS) < V(WARM), the battery regulation voltage is reduced  
by 140 mV (minimum VBATREG under this condition is 3.6V).  
The TS function is voltage based for maximum flexibility. Connect a resistor divider from VIN to GND with TS  
connected to the center tap to set the threshold. The connections are shown in 18. The resistor values are  
calculated using 公式 1 and 公式 2. To disable the TS function, pull TS above TSOFF threshold.  
版权 © 2017–2018, Texas Instruments Incorporated  
25  
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
www.ti.com.cn  
VBATREG  
1 x Charge/  
0.5 x Charge  
VDRV  
– 140 mV  
DISABLE  
TS COLD  
+
TS COOL  
TS WARM  
+
+
VDRV  
TS HOT  
RHI  
+
TS  
PACK+  
TEMP  
bq2512x  
RLO  
PACK–  
Copyright © 2016, Texas Instruments Incorporated  
18. TS Circuit  
æ
ç
ç
è
ö
1
1
÷
V
x R  
(COLD)  
x R  
x
-
IN  
(HOT)  
÷
V
V
(HOT)  
(COLD)  
ø
R
=
(LO)  
æ
ç
ç
è
ö
æ
ç
ç
è
ö
V
V
IN  
IN  
V
(COLD)  
÷
÷
-1  
R
x
-1 - R  
x
(HOT)  
(COLD)  
÷
ø
÷
V
(HOT)  
ø
(1)  
(2)  
æ
ö
V
IN  
ç
ç
è
÷
- 1  
÷
V
(COLD)  
ø
R
=
(HI)  
æ
ç
ç
è
ö
÷
÷
ø
1
1
+
R
R
(LO)  
(COLD)  
Where  
R(HOT) = the NTC resistance at the hot temperature  
R(COLD) = the NTC resistance at the cold temperature  
The warm and cool thresholds are not independently programmable. The cool and warm NTC resistances for a  
selected resistor divider are calculated using 公式 3 and 公式 4.  
R
x R  
(HI)  
x VCOOL  
%
(LO)  
x VCOOL% - R  
R
=
(COOL)  
R
- R  
(LO)  
x VCOOL  
%
(LO)  
(HI)  
(3)  
(4)  
R
x R  
x V %  
WARM  
(LO)  
(HI)  
R
R
=
-
R
(
(LO)  
x V  
% - R  
(HI)  
x V %  
WARM  
)
(WARM)  
WARM  
(LO)  
26  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
 
 
bq25120A  
www.ti.com.cn  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
9.3.17 Thermal Protection  
During the charging process, to prevent overheating in the device, the junction temperature of the die, TJ, is  
monitored. When TJ reaches T(SHUTDOWN) the device stops charging, disables the PMID output, disables the SYS  
output, and disables the LS/LDO output. During the time that T(SHUTDOWN) is exceeded, the safety timer is reset  
and the watchdog timer continues to operate if in host mode. The charge cycle resumes when TJ falls below  
T(SHUTDOWN) by T(HYS)  
.
To avoid reaching thermal shutdown, ensure that the system power dissipation is under the limits of the device.  
The power dissipated by the device can be calculated using 公式 5.  
PDISS = P(BLOCK) + P(SYS) + P(LS/LDO) + P(BAT)  
(5)  
Where  
P(BLOCK) = (VIN – V(PMID)) x IIN  
P(SYS) = ISYS2 x RDS(ON_HS)  
P(LS/LDO) = (V(INLS) – V(LS/LDO)) x I(LS/LDO)  
P(BAT) = (V(PMID) – V(BAT)) x I(BAT)  
9.3.18 Typical Application Power Dissipation  
The die junction temperature, TJ, can be estimated based on the expected board performance using 公式 6.  
TJ = TA + θJA x PDISS  
(6)  
The θJA is largely driven by the board layout. For more information about traditional and new thermal metrics, see  
the IC Package Thermal Metrics application report SPRA953. Under typical conditions, the time spent in this  
state is short.  
9.3.19 Status Indicators (PG and INT)  
The device contains two open-drain outputs that signal its status and are valid only after the device has  
completed start-up into a valid state. If the part starts into a fault, interrupts will not be sent. The PG output  
signals when a valid input source is connected. PG pulls to GND when VIN > VUVLO, VIN> VBAT+VSLP and VIN  
<
VOVP. PG is high-impedance when the input power is not within specified limits. Connect PG to the desired logic  
voltage rail using a 1-kto 100-kresistor, or use with an LED for visual indication.  
The PG pin can be configured as a MR shifted (MRS) output when the PGB_MRS bit is set to 1. PG is high-  
impedance when the MR input is not low, and PG pulls to GND when the MR input is below VOL(TH_MRS). Connect  
PG to the desired logic voltage rail using a 1-kto 100-kresistor.  
The INT pin is pulled low during charging when the EN_INT bit is set to 1 and interrupts are pulled high. When  
EN_INT is set to 0, charging status is not indicated on the INT pin. When charge is complete or disabled, INT is  
high impedance. The charge status is valid whether it is the first charge or recharge. When a fault occurs, a 128  
µs pulse (interrupt) is sent on INT to notify the host.  
9.3.20 Chip Disable (CD)  
The device contains a CD input that is used to disable the device and place it into a high impedance mode when  
only battery is present. In this case, when CD is low, PMID and SYS remain active, and the battery discharge  
FET is turned on. If the LS/LDO output has been enabled prior to pulling CD low, it will stay on. The LSCTRL pin  
can also enable/disable the LS/LDO output when the CD pin is pulled low. The CD pin has an internal pull-down.  
If VIN is present and the CD input is pulled low, charge is enabled and all other functions remain active. If VIN is  
present and the CD input is pulled high, charge is disabled.  
版权 © 2017–2018, Texas Instruments Incorporated  
27  
 
 
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
www.ti.com.cn  
9.3.21 Buck (PWM) Output  
The device integrates a low quiescent current switching regulator with DCS control allowing high efficiency down  
to 10-µA load currents. DCS control combines the advantages of hysteretic and voltage mode control. The  
internally compensated regulation network achieves fast and stable operation with small external components  
and low ESR capacitors. During PWM mode, it operates in continuous conduction mode, with a frequency up to  
2 MHz. If the load current decreases, the converter enters a power save mode to maintain high efficiency down  
to light loads. In this mode, the device generates a single switching pulse to ramp up the inductor current and  
recharge the output capacitor, followed by a sleep period where most of the internal circuits are shut down to  
achieve a low quiescent current. The duration of the sleep period depends on the load current and the inductor  
peak current. For optimal operation and maximum power delivery allow VPMID > VSYS + 0.7V.  
The output voltage is programmable using the SYS_SEL and SYS_VOUT bits in the SYS VOUT control register.  
The SW output is enabled using the EN_SYS_OUT bit in the register. This bit is for testing and debug only and  
not intended to be used in the final system. When the device is enabled, the internal reference is powered up  
and the device enters softstart, starts switching, and ramps up the output voltage. When SW is disabled, the  
output is in shutdown mode in a low quiescent state. The device provides automatic output voltage discharge so  
the output voltage will ramp up from zero once the device in enabled again. Once SYS has been disabled, either  
VIN needs to be connected or the MR button must be held low for the tRESET duration to re-enable SYS.  
The output is optimized for operation with a 2.2-µH inductor and 10-µF output capacitor. 6 shows the  
recommended LC output filter combinations.  
6. Recommended Output Filter  
INDUCTOR VALUE (µH)  
OUTPUT CAPACITOR VALUE (µF)  
4.7  
10  
22  
2.2  
Possible  
Recommended  
Possible  
The inductor value affects the peak-to-peak ripple current, the PWM-to-PFM transition point where the part  
enters and exits Pulse Frequency Modulation to lower the power consumed at low loads, the output voltage  
ripple and the efficiency. The selected inductor must be selected for its DC resistance and saturation current. The  
inductor ripple current (ΔIL) can be estimated according to 公式 7.  
ΔIL = VSYS x (1-(VSYS/VPMID))/(L x f)  
(7)  
Use 公式 8 to calculate the maximum inductor current under static load conditions. The saturation current of the  
inductor should be rated higher than the maximum inductor current. As the size of the inductor decreases, the  
saturation “knee” must be carefully considered to ensure that the inductance does not decrease during higher  
load condition or transient. This is recommended because during a heavy load transient the inductor current rises  
above the calculated value. A more conservative way is to select the inductor saturation current above the high-  
side MOSFET switch current.  
IL(max) = ISYS(max) + ΔIL / 2  
(8)  
Where  
F = Switching Frequency  
L = Inductor Value  
ΔIL = Peak to Peak inductor ripple current  
IL(max) = Maximum Inductor current  
In DC/DC converter applications, the efficiency is affected by the inductor AC resistance and by the inductor  
DCR value.  
7 shows recommended inductor series from different suppliers.  
7. Inductor Series  
DIMENSIONS  
(1)  
INDUCTANCE (µH)  
DCR ()  
INDUCTOR TYPE  
SUPPLIER  
COMMENT  
(mm3)  
2.2  
2.2  
0.300  
0.170  
1.6 x 0.8 x 0.8  
1 .6 x 0.8 x 0.8  
MDT1608CH2R2N  
GLFR1608T2R2M  
TOKO  
TDK  
Smallest size, 75mA max  
Smallest size, 150mA max  
(1) See Third-party Products Disclaimer  
28  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
 
 
bq25120A  
www.ti.com.cn  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
7. Inductor Series (接下页)  
DIMENSIONS  
(1)  
INDUCTANCE (µH)  
DCR ()  
INDUCTOR TYPE  
SUPPLIER  
COMMENT  
(mm3)  
2.2  
2.2  
2.2  
2.2  
2.2  
0.245  
0.23  
2.0 x 1.2 x 1.0  
2.0 x 1.2 x 1.0  
2.0 x 1.6 x 1.0  
2.5 x 2.0 x 1.2  
3.3 x 3.3 x 1.4  
MDT2012CH2R2N  
MIPSZ2012 2R2  
74438343022  
MIPSA2520 2R2  
LPS3314  
TOKO  
TDK  
Small size, high efficiency  
0.225  
0.12  
Wurth  
TDK  
0.145  
Coicraft  
The PWM allows the use of small ceramic capacitors. Ceramic capacitors with low ESR values have the lowest  
output voltage ripple and are recommended. The output capacitor requires either an X7R or X5R dielectric. At  
light load currents, the converter operates in Power Save Mode and the output voltage ripple is dependent on the  
output capacitor value and the PFM peak inductor current. Because the PWM converter has a pulsating input  
current, a low ESR input capacitor is required on PMID for the best voltage filtering to ensure proper function of  
the device and to minimize input voltage spikes. For most applications a 10-µF capacitor value is sufficient. The  
PMID capacitor can be increased to 22 µF for better input voltage filtering.  
8 shows the recommended input/output capacitors.  
8. Capacitors  
CAPACITANCE (µF)  
SIZE  
0603  
0402  
CAPACITOR TYPE  
GRM188R60J106ME84  
CL05A106MP5NUNC  
SUPPLIER(1)  
Murata  
COMMENT  
Recommended  
Smallest size  
10  
10  
Samsung EMA  
(1) See Third-party Products Disclaimer  
9.3.22 Load Switch / LDO Output and Control  
The device integrates a low Iq load switch which can also be used as a regulated output. The LSCTRL pin can  
be used to turn the load on or off. Activating LSCTRL continuously holds the switch in the on state so long as  
there is not a fault. The signal is active HI and has a low threshold making it capable of interfacing with low  
voltage signals. To limit voltage drop or voltage transients, a small ceramic capacitor must be placed close to  
VINLS. Due to the body diode of the PMOS switch, it is recommended to have the capacitor on VINLS ten times  
larger than the output capacitor on LS/LDO.  
The output voltage is programmable using the LS_LDO bits in the register. The LS/LDO voltage is calculated  
using 公式 9.  
LS/LDO = 0.8 V + LS_LDOCODE x 100 mV  
(9)  
If a value greater than 3.3 V is written, the setting goes to pass-through mode where LS/LDO = VINLS -  
V(DROPOUT). 9 summarizes the control of the LS/LDO output based on the I2C or LSCTRL pin setting:  
9. LS/LDO Output Control  
I2C LS_LDO_EN  
PIN LSCTRL  
I2C VLDO > 3.3  
LS/LDO Output  
Pulldown  
Pulldown  
VLDO  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
LSW  
VLDO  
LSW  
VLDO  
LSW  
版权 © 2017–2018, Texas Instruments Incorporated  
29  
 
 
 
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
www.ti.com.cn  
If the output of the LDO is less than the programmed V(SYS) voltage, connect VINLS to SYS. If the output of the  
LDO is greater than the programmed VSYS voltage, connect VINLS to PMID.  
The current capability of the LDO depends on the VINLS input voltage and the programmed output voltage. The  
full 100-mA output current for 0.8-V output voltage can be achieved when V(VINLS) > 3.25 V. The full 100-mA  
output current for 3.3-V output voltage can be achieved when V(VINLS) > 3.6 V.  
When the LSLDO output is disabled with LSCTRL or through the register, an internal pull-down discharges the  
output.  
9.3.23 Manual Reset Timer and Reset Output (MR and RESET)  
The MR input has an internal pull-up to BAT, and MR is functional only when BAT is present or when VIN is  
valid, stable, and charge is enabled. If MR input is asserted during a transient condition while VIN ramps up the  
IC may incorrectly turn off the SYS buck output, therefore MR should not be asserted during this condition in  
order to avoid unwanted shutdown of SYS output rail.The input conditions can be adjusted by using MRWAKE  
bits for the wake conditions and MRRESET bits for the reset conditions. When a wake condition is met, a 128-µs  
pulse is sent on INT to notify the host, and the WAKE1 and/or WAKE2 bits are updated on I2C. The MR_WAKE  
bits and RESET FAULT bits are not cleared until the Push-button Control Register is read from I2C.  
When a MR reset condition is met, a 128us pulse is sent on INT to notify the host and a RESET signal is  
asserted. A reset pulse occurs with duration of tRESET_D only one time after each valid MRRESET condition. The  
MR pin must be released (go high) and then driven low for the MRWAKE period before RESET asserts again.  
After RESET is asserted with battery only present, the device enters either Ship mode or Hi-Z mode depending  
on MRREC register settings. For details on how to properly enter Ship Mode through MR, see Ship Mode Entry  
and Exit .After RESET is asserted with a valid VIN present, the device resumes operation prior to the MR button  
press. If SYS was disabled prior to RESET, the SYS output is re-enabled if recovering into Hi-Z or Active  
Battery.  
The MRRESET_VIN register can be configured to have RESET asserted by a button press only, or by a button  
press and VIN present (VUVLO + VSLP < VIN < VOVP).  
30  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25120A  
www.ti.com.cn  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
9.4 Device Functional Modes  
10. Modes and Functions  
READY (PRIOR  
HOST MODE  
ACTIVE  
BATTERY  
FUNCTION  
TO I2C) AND  
READY (AFTER  
CHARGE  
SHIP MODE  
HIGH_Z  
AFTER RESET  
I2C)  
VOVP  
VUVLO  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
VBATUVLO  
Default or  
registers  
Default or  
registers  
VINDPM  
SYS  
If enabled  
If enabled  
If enabled  
No  
No  
No  
No  
No  
Default or  
registers  
Default or  
registers  
If enabled  
If enabled  
If enabled  
If enabled  
Default or  
registers  
Default or  
registers  
LS/LDO  
BATFET  
TS  
Yes  
Yes  
Yes  
Yes  
No  
No  
Yes  
No  
Yes  
No  
Yes (VIN Valid)  
Yes (VIN Valid)  
Default, registers, Default, registers,  
or external or external  
IPRETERM  
ISET  
External  
External  
External  
No  
No  
No  
No  
No  
No  
No  
No  
No  
Default, registers, Default, registers,  
or external or external  
Default, registers, Default, registers,  
ILIM  
or external  
or external  
MR input  
LSCTRL input  
RESET output  
INT output  
I2C interface  
CD input  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
PG output  
Yes  
Yes  
If enabled  
Yes  
VBMON  
Yes  
No  
No  
11. Fault and Status Condition Responses  
CHARGER  
BEHAVIOR  
LS/LDO  
BEHAVIOR  
FAULT or STATUS  
ACTIONS  
SYS BEHAVIOR  
TS BEHAVIOR  
Update VIN_OV status, Update  
STAT to fault, interrupt on INT,  
PG shown not good  
Enabled through  
BAT  
Enabled through  
BAT  
VIN_OV  
Disabled  
Disabled  
Update VIN_UV status, Update  
STAT to fault, interrupt on INT,  
PG shown not good  
Enabled through  
BAT  
Enabled through  
BAT  
VIN_UV  
Disabled  
Disabled  
Update charge in progress  
status, interrupt on INT, input  
current is limited  
Enabled, input  
current limited  
Enabled (if  
enabled)  
Enabled (if  
enabled)  
VIN_ILIM  
OVER_TEMP  
BAT_UVLO  
Enabled  
Disabled  
Disabled  
Disabled  
Disabled  
Update BAT_UVLO status,  
Update STAT to fault, interrupt  
on INT  
Enabled (if  
enabled) and VIN  
Valid  
Enabled (if  
enabled) and VIN  
Valid  
Enabled if VIN  
Valid  
Pre-charge  
Enabled (if  
enabled)  
SW_SYS_SHORT  
LS_LDO_OCP  
TIMER fault  
Enabled  
Enabled  
Disabled  
Current Limit  
Enabled  
Enabled  
Disabled  
Enabled (if  
enabled)  
Current Limit  
Update TIMER, Update STAT  
to fault, interrupt on INT  
Enabled (if  
enabled)  
Enabled (if  
enabled)  
版权 © 2017–2018, Texas Instruments Incorporated  
31  
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
www.ti.com.cn  
11. Fault and Status Condition Responses (接下页)  
CHARGER  
BEHAVIOR  
LS/LDO  
BEHAVIOR  
FAULT or STATUS  
ACTIONS  
SYS BEHAVIOR  
TS BEHAVIOR  
Update VINDPM_STAT,  
Update STAT to fault, interrupt  
on INT  
Enabled, input  
current reduced  
Enabled (if  
enabled)  
Enabled (if  
enabled)  
VINDPM  
Enabled  
Update TS_FAULT to COLD  
OR HOT, Update STAT to  
fault, interrupt on INT  
TS_FAULT COLD  
or HOT  
Enabled (if  
enabled)  
Enabled (if  
enabled)  
Disabled  
Enabled  
Enabled  
Enabled  
Enabled  
Update TS_FAULT to COOL,  
TS_FAULT COOL Update STAT to fault, interrupt Reduce ICHG to ½  
on INT  
Enabled (if  
enabled)  
Enabled (if  
enabled)  
Update TS_FAULT to WARM,  
TS_FAULT WARM Update STAT to fault, interrupt  
Reduce VBATREG  
Enabled (if  
enabled)  
Enabled (if  
enabled)  
by 140 mV  
on INT  
Disabled, monitor  
for VBAT falling  
below VRCHG  
Update STAT to Charge Done,  
Enabled (if  
enabled)  
Enabled (if  
enabled)  
Charge Done  
interrupt on INT  
yVBAT>VBAT_UVLO  
yVIN<VBAT+VSLP  
yCD9  
/CE  
RESET  
HZ_MODE  
yVIN_OV  
yVIN_UV  
yOVER_TEMP  
yBAT_SHORT  
yBAT_OVP  
yCD;|VIN>VUVLO  
HIGH_Z  
FAULT  
READY STATE  
After Reset, all default OTP settings  
are used in this state.  
Lowest quiescent current state. SYS  
is powered by BAT, MR input is active,  
and the LSCTRL input is active.  
A failure occurred. The fault event  
must be cleared before going to the  
previous state.  
!FAULT|/CE  
yTIMER  
yVIN_OV  
yOVER_TEMP  
yTS_FAULT (HOT OR COLD)  
HZ_MODE  
yCD9  
yCD;|VIN<VUVLO  
yBAT_OVP  
yVIN_OV  
yTS_FAULT (HOT OR COLD)  
yVBAT>VBAT_UVLO  
yVIN<VBAT+VSLP  
!/CE  
!FAULT|  
!/CE & DONE  
/CE  
!FAULT|!/CE  
ACTIVE BATTERY  
The device is powered from BAT, all  
outputs and interfaces are active.  
yCHARGING DONE|TE  
CHARGING  
The system charges the battery using  
the programmed register settings,  
default OTP settings, or the externally  
programmed settings. Watchdog and  
safety timers are active in this state,  
unless disabled in OTP or register  
settings.  
DONE  
The termination requirements have  
been met. VBAT is monitored and  
Charging resumes when conditions  
are met.  
yVIN>VUVLO  
yVIN>VBAT+VSLP  
yVBAT;  
!TE  
Comments about naming convention:  
^//9^ ^HZ_ah59^ -> Register name: event caused by user / configuration  
^!^ -> Not  
^y^ -> Event caused by external influence  
^Event|condition^ -> describes the event with a specific condition  
19. State Diagram  
32  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25120A  
www.ti.com.cn  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
ILIM  
VINDPM  
TS_FAULT  
PRE_CHARGE  
2X TIMER MODE  
VALID CHARGE INPUTS  
RESET  
CC MODE  
CV MODE  
DEFAULT MODE CHARGE  
ICHRG+ISW+ILDO>ILIM  
ICHRG+ISW+ILDO<ILIM  
No HOST or I2C is not available, ILIM,  
ISET, and ITERM have resistors  
populated .  
Default OTP charge settings are used if  
no resistors are populated  
Register settings used if changed in  
I2C  
ICHG0  
PMID<VBAT-VBSUP1  
DYNAMIC POWER PATH MODE  
BAT SUPPLEMENT MODE  
BAT supplements the load at  
SW/OUT and LSLDO  
Charging current is reduced to supply  
the load to SW/OUT and LSLDO  
Battery Termination is disabled  
ICHG>0  
PMID<VBAT-VBSUP2  
TS_FAULT (COOL)  
!TS_FAULT  
VBAT>VBATSHORT VBAT<VBATUVLO  
VBAT>VBATUVLO + 150mV  
VBAT<VBATSHORT  
PRE-CHARGE MODE  
TS_FAULT (WARM)  
!TS_FAULT  
½ CHARGE MODE  
Charging current is reduced to half the  
programmed or default current  
Charge current is reduced  
to the Pre-charge current  
level to slowly bring up the  
VBAT voltage  
VIN>VIN_DPM  
VIN VIN_DPM  
BAT-SHORT MODE  
Charge current is reduced to  
the Bat-Short current level to  
slowly bring up the VBAT  
voltage  
VBATREG œ 140mV MODE  
VBATREG is reduced by 140mV from  
the programmed or default VBATREG  
VINDPM MODE  
Charge current is reduced , 2X TIMER  
mode is active (if enabled) and  
termination is disabled  
Comments about naming convention:  
^//9^ ^HZ_ah59^ -> Register name: event caused by user/ configuration  
^!^ -> Not  
^y^ -> Event caused by external influence  
^Event|condition^ -> describes the event with a specific condition  
20. Change State Diagram  
9.5 Programming  
9.5.1 Serial Interface Description  
The device uses an I2C compatible interface to program and read many parameters. I2C is a 2-wire serial  
interface developed by NXP. The bus consists of a data line (SDA) and a clock line (SCL) with pull-up structures.  
When the bus is idle, both SDA and SCL lines are pulled high. All the I2C compatible devices connect to the I2C  
bus through open drain I/O terminals, SDA and SCL. A master device, usually a microcontroller or digital signal  
processor, controls the bus. The master is responsible for generating the SCL signal and device addresses. The  
master also generates specific conditions that indicate the START and STOP of data transfer. A slave device  
receives and/or transmits data on the bus under control of the master device.  
The device works as a slave and supports the following data transfer modes, as defined in the I2C BUS  
Specification: standard mode (100 kbps) and fast mode (400kbps). The interface adds flexibility to the battery  
management solution, enabling most functions to be programmed to new values depending on the instantaneous  
application requirements. The I2C circuitry is powered from the battery in active battery mode. The battery  
voltage must stay above V(BATUVLO) when no VIN is present to maintain proper operation. The host must also wait  
for SYS to come up before starting communication with the part.  
The data transfer protocol for standard and fast modes is exactly the same; therefore, they are referred to as the  
F/S-mode in this document. The device only supports 7-bit addressing. The device 7-bit address is 6A (8-bit  
shifted address is D4).  
版权 © 2017–2018, Texas Instruments Incorporated  
33  
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
www.ti.com.cn  
Programming (接下页)  
To avoid I2C hang-ups, a timer (tI2CRESET) runs during I2C transactions. If the SDA line is held low longer than  
tI2CRESET, any additional commands are ignored and the I2C engine is reset. The timeout is reset with START and  
repeated START conditions and stops when a valid STOP condition is sent.  
9.5.2 F/S Mode Protocol  
The master initiates data transfer by generating a start condition. The start condition is when a high-to-low  
transition occurs on the SDA line while SCL is high, as shown in 21. All I2C-compatible devices should  
recognize a start condition.  
DATA  
CLK  
S
P
START Condition  
STOP Condition  
21. Start Stop Condition  
The master then generates the SCL pulses, and transmits the address and the read/write direction bit R/W on  
the SDA line. During all transmissions, the master ensures that data is valid. A valid data condition requires the  
SDA line to be stable during the entire high period of the clock pulse (see 22). All devices recognize the  
address sent by the master and compare it to their internal fixed addresses. Only the slave device with a  
matching address generates and acknowledge (see 23) by pulling the SDA line low during the entire high  
period of the ninth SCL cycle. Upon detecting the acknowledge, the master knows that communication link with a  
slave has been established.  
DATA  
CLK  
Data Line  
Stable;  
Data Valid  
Change  
of Data  
Allowed  
22. Bit Transfer on the Serial Interface  
34  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
bq25120A  
www.ti.com.cn  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
Programming (接下页)  
Data Output  
by Transmitter  
Not Acknowledge  
Acknowledge  
Data Output  
by Receiver  
SCL From  
Master  
9
8
1
2
Clock Pulse for  
Acknowledgement  
START  
Condition  
23. Acknowledge on the I2C Bus  
The master generates further SCL cycles to either transmit data to the slave (R/W bit 0) or receive data from the  
slave (R/W bit 1). In either case, the receiver needs to acknowledge the data sent by the transmitter. An  
acknowledge signal can either be generated by the master or by the slave, depending on which on is the  
receiver. The 9-bit valid data sequences consisting of 8-bit data and 1-bit acknowledge can continue as long as  
necessary. To signal the end of the data transfer, the master generates a stop condition by pulling the SDA line  
from low to high while the SCL line is high (see 24). This releases the bus and stops the communication link  
with the addressed slave. All I2C compatible devices must recognize the STOP condition. Upon the receipt of a  
STOP condition, all devices know that the bus is released, and wait for a START condition followed by a  
matching address. If a transaction is terminated prematurely, the master needs to send a STOP condition to  
prevent the slave I2C logic from remaining in an incorrect state. Attempting to read data from register addresses  
not listed in this section results in 0xFFh being read out.  
Recognize START or  
REPEATED START  
Condition  
Recognize STOP or  
REPEATED START  
Condition  
Generate ACKNOWLEDGE  
Signal  
P
SDA  
Acknowledgement  
Signal From Slave  
MSB  
Sr  
Address  
R/W  
SCL  
S
or  
Sr  
or  
P
ACK  
ACK  
Sr  
24. Bus Protocol  
版权 © 2017–2018, Texas Instruments Incorporated  
35  
 
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
www.ti.com.cn  
9.6 Register Maps  
9.6.1 Status and Ship Mode Control Register  
Memory location 0x00h, Reset State: xx0x xxx1 (BQ25120A)  
25. Status and Ship Mode Control Register  
7 (MSB)  
6
x
5
0
4
x
3
x
2
x
1
x
0 (LSB)  
x
1
R
R
Write Only  
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
12. Status and Ship Mode Control Register  
Bit  
Field  
Type  
R
Reset  
Description  
B7 (MSB) STAT_1  
x
x
00 - Ready  
01 - Charge in Progress  
10 - Charge done  
11 - Fault  
B6  
STAT_0  
R
Status is current status only.  
B5  
B4  
B3  
B2  
B1  
EN_SHIPMODE  
RESET_FAULT  
TIMER  
Write  
Only  
0
x
x
x
x
x
0 – Normal Operation  
1 – Ship Mode Enabled  
R
R
R
R
R
1 – RESET fault. Indicates when the device meets the RESET  
conditions, and is cleared after I2C read.  
1 – Safety timer fault. Continues to show fault after an I2C read  
unless the CD pin or power have been toggled.  
VINDPM_STAT  
CD_STAT  
0 – VIN_DPM is not active  
1 – VIN_DPM is active  
0 – CD low, IC enabled  
1 – CD high, IC disabled  
B0 (LSB) SYS_EN_STAT  
1 – SW enabled  
0 – SW disabled  
36  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25120A  
www.ti.com.cn  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
9.6.2 Faults and Faults Mask Register  
Memory location 0x01h, Reset State: xxxx 0000 (BQ25120A)  
26. Faults and Faults Mask Register  
7 (MSB)  
6
x
5
x
4
x
3
0
2
0
1
0
0 (LSB)  
0
x
R
R
R
R
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
13. Faults and Faults Mask Register  
Bit  
Field  
Type  
Reset  
Description  
B7 (MSB) VIN_OV  
R
x
1 - VIN overvoltage fault. VIN_OV continues to show fault after  
an I2C read as long as OV exists  
B6  
B5  
VIN_UV  
R
R
x
x
1 - VIN undervoltage fault. VIN_UV is set when the input falls  
below VSLP. VIN_UV fault shows only one time. Once read,  
VIN_UV clears until the the UVLO event occurs.  
BAT_UVLO  
1 – BAT_UVLO fault. BAT_UVLO continues to show fault after  
an I2C read as long as BAT_UVLO conditions exist.  
B4  
B3  
B2  
B1  
BAT_OCP  
R
x
0
0
0
0
1 – BAT_OCP fault. BAT_OCP is cleared after I2C read.  
VIN_OV_M  
VIN_UV_M  
BAT_UVLO_M  
R/W  
R/W  
R/W  
R/W  
1 – Mask VIN overvoltage fault  
1 – Mask VIN undervoltage fault  
1 – Mask BAT UVLO fault  
B0 (LSB) BAT_OCP_M  
1 – Mask BAT_OCP fault  
版权 © 2017–2018, Texas Instruments Incorporated  
37  
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
www.ti.com.cn  
9.6.3 TS Control and Faults Masks Register  
Memory location 0x02h, Reset State: 1xxx 1000 (BQ25120A)  
27. TS Control and Faults Masks Register (02)  
7 (MSB)  
1
6
x
5
x
4
x
3
1
2
0
1
0
0 (LSB)  
0
R/W  
R
R
R
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
14. TS Control and Faults Masks Register, Memory Location 0010  
Bit  
Field  
Type  
Reset  
Description  
B7 (MSB) TS_EN  
R/W  
1
0 – TS function disabled  
1 – TS function enabled  
B6  
B5  
TS_FAULT1  
R
R
x
x
TS Fault mode:  
00 – Normal, No TS fault  
01 – TS temp < TCOLD or TS temp > THOT (Charging suspended)  
TS_FAULT0  
10 – TCOOL > TS temp > TCOLD (Charging current reduced by  
half)  
11 – TWARM < TS temp < THOT (Charging voltage reduced by  
140 mV)  
B4  
B3  
Reserved  
EN_INT  
R
x
Reserved  
R/W  
1
0 – Disable INT function (INT only shows faults and does not  
show charge status)  
1 – Enable INT function (INT shows faults and charge status)  
B2  
B1  
WAKE_M  
RESET_M  
R/W  
R/W  
0
0
1 – Mask interrupt from Wake Condition from MR  
1 – Mask RESET interrupt from MR . The RESET output is not  
masked by this bit.  
B0 (LSB) TIMER_M  
R/W  
0
1 – Mask Timer fault interrupt (safety)  
38  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25120A  
www.ti.com.cn  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
9.6.4 Fast Charge Control Register  
Memory location 0x03h, Reset State: 0001 0100 (BQ25120A)  
28. Fast Charge Control Register  
7 (MSB)  
0
6
0
5
0
4
1
3
0
2
1
1
0
0 (LSB)  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
15. Fast Charge Control Register  
Bit  
Field  
Type  
Reset  
Description  
B7 (MSB) ICHRG_RANGE  
R/W  
0
0 – to select charge range from 5 mA to 35 mA, ICHRG bits are  
1-mA steps  
1 – to select charge range from 40 mA to 300 mA, ICHRG bits  
are 10-mA steps  
B6  
B5  
B4  
B3  
B2  
B1  
ICHRG_4  
ICHRG_3  
ICHRG_2  
ICHRG_1  
ICHRG_0  
CE  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
1
0
1
0
Charge current 16 mA or 160 mA  
Charge current 8 mA or 80 mA  
Charge current 4 mA or 40 mA  
Charge current 2 mA or 20 mA  
Charge current 1 mA or 10 mA  
0 – Charger enabled  
1 – Charger is disabled  
B0 (LSB) HZ_MODE  
R/W  
0
0 – Not high impedance mode  
1 – High impedance mode  
ICHRG_RANGE and ICHRG bits are used to set the charge current. The ICHRG is calculated using the following equation: If  
ICHRG_RANGE is 0, then ICHRG = 5 mA + ICHRGCODE x 1 mA. If ICHRG_RANGE is 1, then ICHRG = 40 mA + ICHRGCODE x 10 mA. If a  
value greater than 35 mA (ICHRG_RANGE = 0) or 300 mA (ICHRG_RANGE = 1) is written, the setting goes to 35 mA or 300 mA  
respectively except if the ICHRG bits are all 1 (that is, 11111), then the externally programmed value is used. The PRETERM bits must also  
be set prior to writing all 1s to ensure the external ISET current is used as well as the proper termination and pre-charge values are used.  
For IPRETERM = 5%, set the IPRETERM bits to 000001, for IPRETERM = 10%, set the IPRETERM bits to 000010, for IPRETERM = 15%,  
set the IPRETERM bits to 000100, and for IPRETERM = 20%, set the iPRETERM bits to 001000. The default may be overridden by the  
external resistor on ISET.  
版权 © 2017–2018, Texas Instruments Incorporated  
39  
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
www.ti.com.cn  
9.6.5 Termination/Pre-Charge and I2C Address Register  
Memory location 0x04h, Reset State: 0000 1110 (BQ25120A)  
29. Termination/Pre-Charge and I2C Address Register  
7 (MSB)  
0
6
0
5
0
4
0
3
1
2
1
1
1
0 (LSB)  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
16. Termination/Pre-Charge and I2C Address Register  
Bit  
Field  
Type  
Reset  
Description  
B7 (MSB) IPRETERM_RANGE  
R/W  
0
0 – to select termination range from 500 µA to 5 mA,  
IPRETERM bits are 500-µA steps  
1 – to select charge range from 6 mA to 37 mA, IPRETERM bits  
are 1-mA steps  
B6  
B5  
B4  
B3  
B2  
B1  
IPRETERM_4  
IPRETERM_3  
IPRETERM_2  
IPRETERM_1  
IPRETERM_0  
TE  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
1
1
1
Termination current 8 mA or 16 mA  
Termination current 4 mA or 8 mA  
Termination current 2 mA or 4 mA  
Termination current 1 mA or 2 mA  
Termination current 500 µA or 1 mA  
0 – Disable charge current termination  
1 – Enable charge current termination  
B0 (LSB)  
R/W  
0
IPRETERM_RANGE and IPRETERM bits are used to set the termination and pre-charge current. The ITERM is calculated using the  
following equation: If IPRETERM_RANGE is 0, then ITERM = 500 µA + ITERMCODE x 500 µA. If IPRETERM_RANGE is 1, then ITERM = 6  
mA + ITERMCODE x 1 mA. If a value greater than 5 mA (IPRETERM_RANGE = 0) is written, the setting goes to 5 mA. Termination is  
disabled if any loop other than CC or DV in control, such as VINDPM, and TS/Cool. The default may be overridden by the external resistor  
on IPRETERM.  
9.6.6 Battery Voltage Control Register  
Memory location 0x05h, Reset State: 0111 1000 (BQ25120A)  
30. Battery Voltage Control Register  
7 (MSB)  
0
6
1
5
1
4
1
3
1
2
0
1
0
0 (LSB)  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
17. Battery Voltage Control Register  
Bit  
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
B7 (MSB) VBREG_6  
0
1
1
1
1
0
0
0
Battery Regulation Voltage: 640 mV  
Battery Regulation Voltage: 320 mV  
Battery Regulation Voltage: 160 mV  
Battery Regulation Voltage: 80 mV  
Battery Regulation Voltage: 40 mV  
Battery Regulation Voltage: 20 mV  
Battery Regulation Voltage: 10 mV  
B6  
B5  
VBREG_5  
VBREG_4  
VBREG_3  
VBREG_2  
VBREG_1  
VBREG_0  
B4  
B3  
B2  
B1  
B0 (LSB)  
VBREG Bits: Use VBREG bits to set the battery regulation threshold. The VBATREG is calculated using the following equation: VBATREG = 3.6  
V + VBREGCODE x 10 mV. The charge voltage range is from 3.6 V to 4.65 V. If a value greater than 4.65 V is written, the setting goes to  
4.65 V.  
40  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25120A  
www.ti.com.cn  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
9.6.7 SYS VOUT Control Register  
Memory location 0x06h, Reset State: 1010 1010 (BQ25120A)  
31. SYS VOUT Control Register  
7 (MSB)  
1
6
0
5
1
4
0
3
1
2
0
1
1
0 (LSB)  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
18. SYS VOUT Control Register  
Bit  
Field  
Type  
Reset  
Description  
B7 (MSB) EN_SYS_OUT  
R/W  
1
0 – Disable SW  
1 – Enable SW  
(When disabled, output is pulled low)  
B6  
B5  
SYS_SEL1  
SYS_SEL0  
R/W  
R/W  
0
1
00 – 1.1 V and 1.2 V selection  
01 – 1.3 V through 2.8 V selection  
10 – 1.5V through 2.75 V selection  
11 – 1.8 V through 3.3 V selection  
B4  
B3  
SYS_VOUT_3  
SYS_VOUT_2  
SYS_VOUT_1  
SYS_VOUT_0  
R/W  
R/W  
R/W  
R/W  
0
1
0
1
0
OUT Voltage: 800 mV step if SYS_SEL is 01 or 11  
OUT Voltage: 400 mV step if SYS_SEL is 01 or 11  
OUT Voltage: 200 mV step if SYS_SEL is 01 or 11  
OUT Voltage: 100 mV step if SYS_SEL is 01 or 11  
B2  
B1  
B0 (LSB)  
SW_VOUT Bits: Use SYS_SEL and SYS_VOUT bits to set the output on SYS. The SYS voltage is calculated using the following equation:  
See table below for all VOUT values that can be programmed through SYS_SEL and SYS_VOUT.  
If SYS_SEL = 01, then SYS = 1.30 V + SYS_VOUTCODE x 100 mV.  
If SYS_SEL = 11, then SYS = 1.80 V + SYS_VOUTCODE x 100 mV.  
19. SYS_SEL Codes  
SYS_SEL  
00  
SYS_VOUT  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
TYP  
1.1  
UNIT  
V
00  
1.2  
V
00  
1.25  
1.333  
1.417  
1.5  
V
00  
V
00  
V
00  
V
00  
1.583  
1.667  
1.75  
1.833  
1.917  
2
V
00  
V
00  
V
00  
V
00  
V
00  
V
00  
2.083  
2.167  
2.25  
2.333  
1.3  
V
00  
V
00  
V
00  
V
01  
V
01  
1.4  
V
01  
1.5  
V
01  
1.6  
V
01  
1.7  
V
01  
1.8  
V
01  
1.9  
V
版权 © 2017–2018, Texas Instruments Incorporated  
41  
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
www.ti.com.cn  
19. SYS_SEL Codes (接下页)  
SYS_SEL  
01  
01  
01  
01  
01  
01  
01  
01  
01  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
SYS_VOUT  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
TYP  
2
UNIT  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
1.5  
1.583  
1.667  
1.75  
1.833  
1.917  
2
2.083  
2.167  
2.25  
2.333  
2.417  
2.5  
2.583  
2.667  
2.75  
1.8  
1.9  
2
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3
3.1  
3.2  
3.3  
42  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25120A  
www.ti.com.cn  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
9.6.8 Load Switch and LDO Control Register  
Memory location 0x07h, Reset State: 0111 110x (BQ25120A)  
32. Load Switch and LDO Control Register  
7 (MSB)  
0
6
1
5
1
4
1
3
1
2
1
1
0
0 (LSB)  
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
20. Load Switch and LDO Control Register  
Bit  
Field  
Type  
Reset  
Description  
B7 (MSB) EN_LS_LDO  
R/W  
0
0 – Disable LS/LDO  
1 – Enable LS/LDO  
B6  
B5  
B4  
B3  
B2  
B1  
LS_LDO_4  
LS_LDO_3  
LS_LDO_2  
LS_LDO_1  
LS_LDO_0  
R/W  
R/W  
R/W  
R/W  
R/W  
1
1
1
1
1
0
0
LS/LDO Voltage: 1600 mV  
LS/LDO Voltage: 800 mV  
LS/LDO Voltage: 400 mV  
LS/LDO Voltage: 200 mV  
LS/LDO Voltage: 100 mV  
B0 (LSB) MRRESET_VIN  
R/W  
0 – Reset sent when MR Reset time is met  
1 – Reset sent when MR Reset time is met and VUVLO + VSLP  
VIN < VOVP  
<
LS_LDO Bits: Use LS_LDO bits to set the LS/LDO output. The LS/LDO voltage is calculated using the following equation: LS/LDO = 0.8 V  
+ LS_LDOCODE x 100 mV. If a value greater than 3.3 V is written, the setting goes to pass-through mode where LS/LDO = VINLS -  
VDROPOUT. The LS_LDO output can only be changed when the EN_LS_LDO and LSCTRL pin has disabled the output.  
版权 © 2017–2018, Texas Instruments Incorporated  
43  
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
www.ti.com.cn  
9.6.9 Push-button Control Register  
Memory location 0x08h, Reset State: 0110 10xx (BQ25120A)  
33. Push-button Control Register  
7 (MSB)  
0
6
1
5
1
4
0
3
1
2
0
1
x
0 (LSB)  
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
21. Push-button Control Register  
Bit  
Field  
Type  
Reset  
Description  
B7 (MSB) MRWAKE1  
R/W  
0
MR Timer adjustment for WAKE1:  
0 – 80 ms < MR  
1 – 600 ms < MR  
B6  
B5  
MRWAKE2  
MRREC  
R/W  
R/W  
1
1
MR Timer adjustment for WAKE2:  
0 –1000 ms < MR  
1 – 1500 ms < MR  
0 – After Reset, device enters Ship mode  
1 – After Reset, device enters Hi-Z Mode  
B4  
B3  
MRRESET_1  
MRRESET_0  
R/W  
R/W  
0
1
MR Timer adjustment for reset:  
00 – 5 s ± 20%  
01 - 9 s ± 20%  
10 - 11 s ± 20%  
11 - 15 s ± 20%  
B2  
B1  
PGB_MR  
WAKE1  
R/W  
R
0
x
x
0 – Output functions as PG  
1 – Output functions as voltage shifted push-button (MR) input  
1 – WAKE1 status. Indicates when the device meets the WAKE1  
conditions, and is cleared after I2C read.  
B0 (LSB) WAKE2  
R
1 – WAKE2 status. Indicates when the device meets the WAKE2  
conditions, and is cleared after I2C read.  
44  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25120A  
www.ti.com.cn  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
9.6.10 ILIM and Battery UVLO Control Register  
Memory location 0x09h, Reset State: 0000 1010 (BQ25120A)  
34. ILIM and Battery UVLO Control Register  
7 (MSB)  
0
6
0
5
0
4
0
3
1
2
0
1
1
0 (LSB)  
0
Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
22. ILIM and Battery UVLO Control Register, Memory Location 1001  
Bit  
Field  
Type  
Reset  
Description  
B7 (MSB) RESET  
Write  
only  
0
Write:  
1- Reset all registers to default values  
0 – No effect  
Read: Always get 0  
B6  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
1
0
1
0
N/A  
B5  
B4  
B3  
B2  
B1  
INLIM_2  
INLIM_1  
INLIM_0  
BUVLO_2  
BUVLO_1  
Input Current Limit: 200 mA  
Input Current Limit: 100 mA  
Input Current Limit: 50 mA  
000, 001: RESERVED  
010: BUVLO = 3.0 V  
011: BUVLO = 2.8 V  
100: BUVLO = 2.6 V  
101: BULVO = 2.4 V  
110: BUVLO = 2.2 V  
111: BUVLO = 2.2V  
B0 (LSB) BUVLO_0  
INLIM Bits: Use INLIM bits to set the input current limit. The I(INLIM) is calculated using the following equation: I(INLIM) = 50 mA +  
I(INLIM)CODE x 50 mA. The default may be overridden by the external resistor on ILIM.  
9.6.11 Voltage Based Battery Monitor Register  
Memory location 0x0Ah, Reset State: 0xxx xxxx (BQ25120A)  
35. Voltage Based Battery Monitor Register  
7 (MSB)  
0
6
x
5
x
4
x
3
x
2
x
1
x
0 (LSB)  
x
R/W  
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
23. Voltage Based Battery Monitor Register, Memory Location 1010  
Bit  
Field  
Type  
R/W  
R
Reset  
Description  
B7 (MSB) VBMON_READ  
0
x
x
Write 1 to initiate a new VBATREG reading. Read always 0.  
B6  
B5  
VBMON_RANGE_1  
VBMON_RANGE_0  
11 – 90% to 100% of VBATREG  
10 – 80% to 90% of VBATREG  
01 – 70% to 80% of VBATREG  
00 – 60% to 70% of VBATREG  
R
B4  
B3  
B2  
VBMON_TH_2  
VBMON_TH_1  
VBMON_TH_0  
R
R
R
x
x
x
111 – Above 8% of VBMON_RANGE  
110 – Above 6% of VBMON_RANGE  
011 – Above 4% of VBMON_RANGE  
010 – Above 2% of VBMON_RANGE  
001 – Above 0% of VBMON_RANGE  
B1  
R
R
x
x
N/A  
N/A  
B0 (LSB)  
The VBMON registers are used to determine the battery voltage. Before entering a low power state, the device will determine the voltage  
level by starting at VBMON_RANGE 11 (90% to 100%), and if VBMON_TH of 000 is read, then it will move to VBMON_RANGE 10 (80% to  
90%) and continue until a non 000 value of VBMON_TH is found. If this does not happen, then VBMON_RANGE and VBMON_TH will be  
written with 00 000. The VBMON_READ bit can be used to initiate a new reading by writing a 1 to it. Example: A reading of 10 011  
indicated a VBAT voltage of between 84% and 86% of the VBATREG setting.  
版权 © 2017–2018, Texas Instruments Incorporated  
45  
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
www.ti.com.cn  
9.6.12 VIN_DPM and Timers Register  
Memory location 0x0Bh, Reset State: 0100 1010 (BQ25120A)  
36. VIN_DPM and Timers Register  
7 (MSB)  
0
6
1
5
0
4
0
3
0
2
0
1
1
0 (LSB)  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
24. VIN_DPM and Timers Register  
Bit  
Field  
Type  
Reset  
Description  
B7 (MSB) VINDPM_ON  
R/W  
0
0 - enable VINDPM  
1 - disable VINDPM  
B6  
B5  
B4  
B3  
VINDPM_2  
VINDPM_1  
VINDPM_0  
2XTMR_EN  
R/W  
R/W  
R/W  
R/W  
1
0
0
0
Input V(IN_DPM) voltage: 400 mV  
Input V(IN_DPM) voltage: 200 mV  
Input V(IN_DPM) voltage: 100 mV  
0 – Timer is not slowed at any time  
1 – Timer is slowed by 2x when in any control other than CC or  
CV  
B2  
B1  
TMR_1  
TMR_0  
R/W  
R/W  
0
1
Safety Timer Time Limit  
00 – 30 minute fast charge  
01 – 3 hour fast charge  
10 – 9 hour fast charge  
11 – Disable safety timers  
B0 (LSB)  
0
The VINDPM threshold is set using the following equation: VINDPM = 4.2 + VINDPM_CODE x 100 mV  
46  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25120A  
www.ti.com.cn  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI's customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
A typical design is shown in 37. This design uses the BQ25120A with external resistors for ILIM, IPRETERM,  
and ISET. These are not needed if these values are set with a host controller through I2C commands. This  
design also shows the TS resistors, which is also optional.  
When powering up in default mode the battery voltage is the default for the part (4.2 V), the SYS output is the  
default (1.8 V). External resistors set the charge current to 40 mA, the termination current to 10% (4 mA), and  
the input current limit to 100 mA. If the I2C interface is used the part goes to the internal default settings until  
changed by the host.  
10.2 Typical Application  
37. Typical Application Circuit  
版权 © 2017–2018, Texas Instruments Incorporated  
47  
 
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
www.ti.com.cn  
Typical Application (接下页)  
10.2.1 Design Requirements  
This application is for a low power system that has varying loads from less than 10 mA up to 300 mA. It must  
work with a valid adaptor or USB power input. Below are some of the key components that are needed in normal  
operation. For this example, the fast charge current is 50 mA, input current limit is 400 mA and the pre-charge  
and termination current is 10% of the fast charge current.  
Supply voltage = 3.4 V to 20 V  
Fast charge current is default to 10 mA with ISET pin shorted to ground. To program the fast charge current,  
connect an external resistor from ISET to ground.  
Input current limit is default to 100 mA with ILIM pin shorted to ground. To program the input current limit,  
connect an external resistor from ILIM to ground.  
Termination current threshold is default to 2 mA with IPRETERM pin shorted to ground. To program the input  
current limit, connect an external resistor from IPRETERM to ground.  
A 2.2-µH inductor is needed between SW pin and SYS pin for PWM output.  
TS- Battery temperature sense needs a NTC connected on TS pin.  
10.2.2 Detailed Design Procedure  
See 37 for an example of the application diagram.  
10.2.2.1 Default Settings  
• Connect ISET, ILIM and IPRETERM pins to ground to program fast charge current to 10mA, input current  
limit to 100mA and pre-charge/termination current to 2 mA.  
BAT_UVLO = 3 V.  
VSYS = 1.8 V  
LS/LDO is LS  
VBREG = 4.2 V  
VIN_DPM is enabled and VIN_DPM Threshold = 4.6 V.  
Safety Timer = 3 hr  
If the function is not needed, connect TS to the center tab of the resistor divider between VIN and the ground.  
(pull up resistor = 14 kΩ, pull down resistor = 14.3 kΩ)  
10.2.2.2 Choose the Correct Inductance and Capacitance  
Refer to the Buck (PWM) Output section for the detailed procedure to determine the optimal inductance and  
capacitance for the buck output.  
10.2.2.3 Calculations  
10.2.2.3.1 Program the Fast Charge Current (ISET)  
RISET = KISET/ICHG  
(10)  
(11)  
KISET = 200 Afrom the Specifications table  
RISET = 200 A/ 0.05A = 4 kΩ  
Select the closest standard value, which in this case is 4.99 k. Connect this resistor between ISET pin and  
GND.  
10.2.2.3.2 Program the Input Current Limit (ILIM)  
RILIM = KILIM/II_MAX  
(12)  
(13)  
KILIM = 200 Afrom the Specifications table  
RILIM = 200 A/ 0.4A = 500 Ω  
Select the closest standard value, which in this case is 499 . Connect this resistor between ILIM pin and GND.  
48  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25120A  
www.ti.com.cn  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
Typical Application (接下页)  
10.2.2.3.3 Program the Pre-charge/termination Threshold (IPRETERM)  
According to 3, the RIPRETERM is 4990 for 10% termination threshold. Therefore, connect a 4.99 kΩ  
resistor between IPRETERM pin and GND.  
10.2.2.3.4 TS Resistors (TS)  
The voltage at TS is monitored to determine that the battery is at a safe temperature during charging. This device  
uses JEITA temperature profile which has four temperature thresholds. Refer to Specifications for the detailed  
thresholds number.  
The TS circuit is shown in 18. The resistor values can be calculated using 公式 1 and 公式 2.  
版权 © 2017–2018, Texas Instruments Incorporated  
49  
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
www.ti.com.cn  
Typical Application (接下页)  
10.2.3 Application Performance Curves  
10.2.3.1 Charger Curves  
Time 100 ms/div  
Time 4 ms/div  
39. Power Supply Connected to VIN  
38. Battery Connected to V(BAT)  
Time 4 ms/div  
Time 4 ms/div  
41. Exiting DPPM Mode  
40. Entering DPPM Mode  
Time 4 ms/div  
Time 4 ms/div  
42. Entering Battery Supplement Mode  
43. Exiting Battery Supplement Mode  
50  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25120A  
www.ti.com.cn  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
Typical Application (接下页)  
Time 4 ms/div  
Time 2 ms/div  
45. OVP Fault  
44. Charger On/Off Using CD  
版权 © 2017–2018, Texas Instruments Incorporated  
51  
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
www.ti.com.cn  
Typical Application (接下页)  
10.2.3.2 SYS Output Curves  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
2.7 V BAT  
3.0 V BAT  
3.6 V BAT  
3.8 V BAT  
4.2 V BAT  
2.7 V BAT  
3.0 V BAT  
3.6 V BAT  
3.8 V BAT  
4.2 V BAT  
1E-6  
1E-5  
0.0001  
0.001  
0.01  
0.10.2 0.5  
1E-6  
1E-5  
0.0001  
0.001  
0.01  
0.10.2 0.5  
Load Current (A)  
Load Current (A)  
D001  
D004  
TA = 25°C  
VSYS = 1.2 V  
TA = 25°C  
VSYS = 1.5 V  
46. 1.2 VSYS System Efficiency  
47. 1.5 VSYS System Efficiency  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
2.7 V BAT  
3.0 V BAT  
3.6 V BAT  
3.8 V BAT  
4.2 V BAT  
3.0 V BAT  
3.6 V BAT  
3.8 V BAT  
4.2 V BAT  
1E-6  
1E-5  
0.0001  
0.001  
0.01  
0.10.2 0.5  
1E-6  
1E-5  
0.0001  
0.001  
0.01  
0.10.2 0.5  
Load Current (A)  
Load Current (A)  
D007  
D010  
TA = 25°C  
VSYS = 1.8 V  
TA = 25°C  
VSYS = 2.5 V  
48. 1.8 VSYS System Efficiency  
49. 2.5 VSYS System Efficiency  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
1.238  
1.228  
1.218  
1.208  
1.198  
1.188  
1.178  
1.168  
1.158  
2.7 V  
3 V  
3.6 V  
3.8 V  
4.2 V  
3.6 V BAT  
3.8 V BAT  
4.2 V BAT  
1E-6  
1E-5  
0.0001  
0.001  
0.01  
0.10.2 0.5  
1E-6  
1E-5  
0.0001  
0.001  
0.01  
0.1  
0.5  
Load Current (A)  
Load Current (A)  
D013  
D003  
TA = 25°C  
VSYS = 3.3 V  
TA = 25°C  
VSYS = 1.2 V  
50. 3.3 VSYS System Efficiency  
51. 1.2 VSYS Load Regulation  
52  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25120A  
www.ti.com.cn  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
Typical Application (接下页)  
1.5475  
1.857  
1.837  
1.817  
1.797  
1.777  
1.757  
1.737  
1.5275  
1.5075  
1.4875  
2.7 V BAT  
3.0 V BAT  
3.6 V BAT  
3.8 V BAT  
4.2 V BAT  
2.7 V BAT  
3.0 V BAT  
3.6 V BAT  
3.8 V BAT  
4.2 V BAT  
1.4675  
1.4475  
1E-6  
1E-5  
0.0001  
0.001  
0.01  
0.1  
0.5  
1E-6  
1E-5  
0.0001  
0.001  
0.01  
0.1  
0.5  
Load Current (A)  
Load Current (A)  
D006  
D009  
TA = 25°C  
VSYS = 1.5 V  
TA = 25°C  
VSYS = 1.8 V  
52. 1.5 VSYS Load Regulation  
53. 1.8 VSYS Load Regulation  
2.5725  
3.3845  
3.3345  
3.2845  
3.2345  
3.1845  
2.5525  
2.5325  
2.5125  
2.4925  
2.4725  
2.4525  
2.4325  
2.4125  
3.0 V BAT  
3.6 V BAT  
3.8 V BAT  
4.2 V BAT  
3.8 V BAT  
4.2 V BAT  
1E-6  
1E-5  
0.0001  
0.001  
0.01  
0.1  
0.5  
1E-6  
1E-5  
0.0001  
0.001  
0.01  
0.1  
0.5  
Load Current (A)  
Load Current (A)  
D012  
D015  
TA = 25°C  
VSYS = 2.5 V  
TA = 25°C  
VSYS = 3.3 V  
54. 2.5 VSYS Load Regulation  
55. 3.3 VSYS Load Regulation  
1.238  
1.228  
1.218  
1.208  
1.198  
1.188  
1.178  
1.168  
1.158  
1.5475  
1.5275  
1.5075  
1.4875  
1.4675  
1.4475  
1 PA  
10 PA  
100 PA  
1 mA  
10 mA  
100 mA  
1 PA  
10 PA  
100 PA  
1 mA  
10 mA  
100 mA  
3
3.2  
3.4  
3.6  
3.8  
4
4.2  
4
3
3.2  
3.4  
3.6  
3.8  
4.2  
VBAT Voltage (V)  
VBAT Voltage (V)  
D002  
D005  
TA = 25°C  
VSYS = 1.2 V  
TA = 25°C  
VSYS = 1.5 V  
56. 1.2 VSYS Line Regulation  
57. 1.5 VSYS Line Regulation  
版权 © 2017–2018, Texas Instruments Incorporated  
53  
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
www.ti.com.cn  
Typical Application (接下页)  
1.857  
2.5725  
2.5525  
2.5325  
2.5125  
2.4925  
2.4725  
2.4525  
2.4325  
2.4125  
1.837  
1.817  
1.797  
1.777  
1.757  
1 PA  
1 mA  
10 mA  
100 mA  
1 PA  
10 PA  
100 PA  
1 mA  
10 mA  
100 mA  
300ma  
10 PA  
100 PA  
1.737  
4
3
3.2  
3.4  
3.6  
3.8  
4.2  
3
3.2  
3.4  
3.6  
3.8  
4
4.2  
VBAT Voltage (V)  
VBAT Voltage (V)  
D008  
D011  
TA = 25°C  
VSYS = 1.8 V  
TA = 25°C  
VSYS = 2.1 V  
58. 1.8 VSYS Line Regulation  
59. 2.1 VSYS Line Regulation  
3.3845  
3.3345  
3.2845  
3.2345  
3.1845  
1400  
1200  
1000  
800  
600  
400  
1 PA  
10 PA  
100 PA  
1 mA  
10 mA  
100 mA  
200  
5 V VBAT  
4.2 V VBAT  
3.6 V VBAT  
3 V VBAT  
2.5 V VBAT  
0
0
50  
100  
150  
200  
250  
300  
3.8  
4
4.2  
Load Current (mA)  
VBAT Voltage (V)  
D023  
D014  
TA = 25°C  
VSYS = 3.3 V  
61. 1.8 VSYS Switching Frequency vs Load Current  
60. 3.3 VSYS Line Regulation  
SW  
SW  
Time 40 ms/div  
Time 40 ms/div  
ILOAD = 10 µA  
62. Light Load Operation Showing SW  
ILOAD = 100 mA  
63. Light Load Operation Showing SW  
54  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25120A  
www.ti.com.cn  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
Typical Application (接下页)  
SW  
SW  
Time 40 ms/div  
Time 2 ms/div  
ILOAD = 1 mA  
ILOAD = 10 mA  
64. Light Load Operation Showing SW  
65. Light Load Operation Showing SW  
SW  
SW  
Time 400 ns/div  
Time 400 ns/div  
ILOAD = 100 mA  
ILOAD = 200 mA  
66. Light Load Operation Showing SW  
67. Light Load Operation Showing SW  
SW  
SW  
Time 4 ms/div  
Time 400 ns/div  
ILOAD = 300 mA  
VSYS = 1.2 V  
68. Light Load Operation Showing SW  
69. 1.2 VSYS Load Transient, 0 to 50 mA  
版权 © 2017–2018, Texas Instruments Incorporated  
55  
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
www.ti.com.cn  
Typical Application (接下页)  
SW  
SW  
Time 4 ms/div  
Time 4 ms/div  
VSYS = 1.8 V  
VSYS = 2.1 V  
70. 1.8 VSYS Load Transient, 0 to 50 mA  
71. 2.1 VSYS Load Transient, 0 to 50 mA  
SW  
SW  
Time 4 ms/div  
Time 4 ms/div  
VSYS = 2.5 V  
VSYS = 3.3 V  
73. 3.3 VSYS Load Transient, 0 to 50 mA  
72. 2.5 VSYS Load Transient, 0 to 50 mA  
SW  
SW  
Time 4 ms/div  
Time 4 ms/div  
VSYS = 1.2 V  
74. 1.2 VSYS Load Transient, 0 to 200 mA  
VSYS = 1.8 V  
75. 1.8 VSYS Load Transient, 0 to 200 mA  
56  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25120A  
www.ti.com.cn  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
Typical Application (接下页)  
SW  
SW  
Time 4 ms/div  
Time 4 ms/div  
VSYS = 2.1 V  
VSYS = 2.5 V  
76. 2.1 VSYS Load Transient, 0 to 200 mA  
77. 2.5 VSYS Load Transient, 0 to 200 mA  
SW  
Time 4 ms/div  
Time 1 ms/div  
VSYS = 3.3 V  
79. Startup Showing SS on SYS in PWM Mode  
78. 3.3 VSYS Load Transient, 0 to 200 mA  
Time 20 ms/div  
80. Short Circuit and Recovery for SYS  
版权 © 2017–2018, Texas Instruments Incorporated  
57  
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
www.ti.com.cn  
Typical Application (接下页)  
10.2.3.3 Load Switch and LDO Curves  
Time 20 ms/div  
Time 400 ms/div  
81. Short Circuit and Recovery for LS  
82. Startup Showing SS on LS/LDO Output  
Time 4 ms/div  
Time 4 ms/div  
VSLSDO = 0.8 V  
VSLSDO = 1.2 V  
84. 1.2 VLSLDO Load Transient, 0 to 10 mA  
83. 0.8 VLSLDO Load Transient, 0 to 10 mA  
Time 4 ms/div  
Time 4 ms/div  
VSLSDO = 1.8 V  
VSLSDO = 2.5 V  
86. 2.5 VLSLDO Load Transient, 0 to 10 mA  
85. 1.8 VLSLDO Load Transient, 0 to 10 mA  
58  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25120A  
www.ti.com.cn  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
Typical Application (接下页)  
Time 4 ms/div  
Time 4 ms/div  
VSLSDO = 3.3 V  
VSLSDO = 0.8 V  
88. 0.8 VLSLDO Load Transient, 0 to 100 mA  
87. 3.3 VLSLDO Load Transient, 0 to 10 mA  
Time 4 ms/div  
Time 4 ms/div  
VSLSDO = 1.8 V  
90. 1.8 VLSLDO Load Transient, 0 to 100 mA  
VSLSDO = 1.2 V  
89. 1.2 VLSLDO Load Transient, 0 to 100 mA  
Time 4 ms/div  
Time 4 ms/div  
VSLSDO = 2.5 V  
91. 2.5 VLSLDO Load Transient, 0 to 100 mA  
VSLSDO = 3.3 V  
92. 3.3 VLSLDO Load Transient, 0 to 100 mA  
版权 © 2017–2018, Texas Instruments Incorporated  
59  
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
www.ti.com.cn  
Typical Application (接下页)  
10.2.3.4 LS/LDO Output Curves  
Time 400 ms/div  
Time 20 ms/div  
94. Short Circuit and Recovery for LDO  
93. Startup Showing SS on LS/LDO in LDO Mode  
60  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25120A  
www.ti.com.cn  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
Typical Application (接下页)  
10.2.3.5 Timing Waveforms Curves  
Time 10 ms/div  
Time 2 ms/div  
95. Show PG and INT Timing (VIN Insertion)  
96. Show PG and INT Timing (VIN Removal)  
Time 400 ms/div  
Time 400 ms/div  
97. PG Functions as Shifted MR Output  
98. PG Functions as Shifted MR Output  
Time 200 ms/div  
Time 200 ms/div  
Wake1 = 500 ms  
Wake2 = 1 s  
Wake1 = 50 ms  
Wake2 = 1.5 s  
99. Show MR Timing  
100. Show MR Timing  
版权 © 2017–2018, Texas Instruments Incorporated  
61  
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
www.ti.com.cn  
Typical Application (接下页)  
Time 1 s/div  
Time 1 s/div  
RESET = 4 s  
RESET = 8 s  
101. RESET Timing  
102. RESET Timing  
Time 2 s/div  
Time 2 s/div  
RESET = 14 s  
103. RESET Timing  
104. RESET Timing and Enter Ship Mode  
11 Power Supply Recommendations  
It is recommended to use a power supply that is capable of delivering 5 V at the input current limit set by the  
BQ25120A.  
62  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25120A  
www.ti.com.cn  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
12 Layout  
12.1 Layout Guidelines  
Keep the core components of the system close to each other and the device.  
Keep the PMID, IN, and SYS caps as close to their respective pins as possible. Place the bypass caps for  
PMID, SYS, and LSLDO close to the pins.  
Place the GNDs of the PMID and IN caps close to each other.  
Don’t route so the power planes are interrupted.  
12.2 Layout Example  
105. BQ25120A Layout  
版权 © 2017–2018, Texas Instruments Incorporated  
63  
bq25120A  
ZHCSHF5A MAY 2017REVISED JANUARY 2018  
www.ti.com.cn  
13 器件和文档支持  
13.1 器件支持  
13.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
13.2 商标  
All trademarks are the property of their respective owners.  
13.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修  
订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
64  
版权 © 2017–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ25120AYFPR  
BQ25120AYFPT  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YFP  
YFP  
25  
25  
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
BQ25120A  
BQ25120A  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Jan-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ25120AYFPR  
BQ25120AYFPT  
DSBGA  
DSBGA  
YFP  
YFP  
25  
25  
3000  
250  
180.0  
180.0  
8.4  
8.4  
2.65  
2.65  
2.65  
2.65  
0.69  
0.69  
4.0  
4.0  
8.0  
8.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Jan-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ25120AYFPR  
BQ25120AYFPT  
DSBGA  
DSBGA  
YFP  
YFP  
25  
25  
3000  
250  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
YFP0025  
DSBGA - 0.5 mm max height  
SCALE 8.000  
DIE SIZE BALL GRID ARRAY  
B
E
A
BALL A1  
CORNER  
D
0.30  
0.25  
C
0.5 MAX  
SEATING PLANE  
0.05 C  
0.19  
0.13  
1.6 TYP  
SYMM  
E
D
C
SYMM  
1.6  
TYP  
D: Max = 2.56 mm, Min = 2.5 mm  
E: Max = 2.498 mm, Min =2.438 mm  
B
0.4 TYP  
A
3
4
5
2
1
0.25  
25X  
0.21  
0.4 TYP  
0.015  
C A B  
4225306/A 09/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YFP0025  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
25X ( 0.23)  
(0.4) TYP  
3
4
5
1
2
A
B
C
SYMM  
D
E
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 40X  
0.05 MIN  
0.05 MAX  
METAL UNDER  
SOLDER MASK  
(
0.23)  
METAL  
(
0.23)  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4225306/A 09/2019  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFP0025  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
(R0.05) TYP  
3
25X ( 0.25)  
4
5
1
2
A
(0.4) TYP  
B
C
METAL  
TYP  
SYMM  
D
E
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE: 40X  
4225306/A 09/2019  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY