BQ25600CYFFR [TI]

用于并联充电应用的 I2C 单节 3A 降压电池充电器 | YFF | 30 | -40 to 85;
BQ25600CYFFR
型号: BQ25600CYFFR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

用于并联充电应用的 I2C 单节 3A 降压电池充电器 | YFF | 30 | -40 to 85

电池
文件: 总51页 (文件大小:1011K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
bq25600C  
ZHCSGR7 SEPTEMBER 2017  
用于并联充电应用的 bq25600C I2C 控制型 3.0A  
单节电池 充电器  
1 特性  
17µA 低电池泄漏电流  
高精度  
1
在双充电器操作下,并联充电器提供快速充电  
高效 1.5MHz 同步开关模式降压充电器  
±0.5% 充电电压调节  
±5% 1.5A 充电电流调节  
±6% 1.38A 充电电流调节  
±10% 0.9A 输入电流调节  
用于快速充电的远程电池感应  
2A 电流(5V 输入)下具有 92% 的充电效率  
针对 USB 电压输入 (5V) 进行了优化  
用于轻负载运行的低功耗脉冲频率调制 (PFM)  
模式  
单个输入,支持 USB 输入和高压适配器  
2 应用  
支持 3.9V 13.5V 输入电压范围,绝对最大输  
入电压额定值为 22V  
智能电话  
平板电脑  
可编程输入电流限制(100mA 3.2A,分辨率  
100mA),支持 USB2.0USB3.0 标准和高  
压适配器 (IINDPM)  
3 说明  
通过高达 5.4V 的输入电压限制 (VINDPM) 进行  
最大功率跟踪  
bq25600C 器件是高度集成的 3.0A 开关模式电池充电  
管理和系统电源路径管理器件,适用于单节锂离子和锂  
聚合物电池。低阻抗电源路径可优化开关模式运行效率  
并缩短电池充电时间。具有充电和系统设置的 I2C 串行  
接口使得此器件成为一个真正的灵活解决方案。  
VINDPM 阈值自动跟踪电池电压  
采用 19.5mΩ 充电电流感应 MOSFET 实现高充电  
效率  
VDC (NVDC) 电源路径管理  
器件信息(1)  
无需电池或深度放电的电池即可瞬时启动  
器件型号  
bq25600C  
封装  
封装尺寸(标称值)  
电池充电模式下的理想二极管运行  
灵活的自主和 I2C 模式,可实现最优系统性能  
DSBGA (30)  
2.2mm × 2.59mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
高集成度,包括所有 MOSFET、电流感应和环路补  
简化电路原理图  
USB  
Host  
VBUS  
SW  
BTST  
SYS  
I2C  
I2C  
BAT  
PMID  
+
bq25600C  
Parallel Charger  
I2C Bus  
V
VBUS  
BAT  
I2C  
SYS  
Main Charger  
SYS  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLUSD36  
 
 
 
 
bq25600C  
ZHCSGR7 SEPTEMBER 2017  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 17  
8.4 Register Maps......................................................... 27  
Application and Implementation ........................ 38  
9.1 Application information............................................ 38  
9.2 Typical Application Diagram .................................. 39  
9.3 Application Curves .................................................. 41  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal information .................................................. 6  
7.5 Electrical Characteristics........................................... 7  
7.6 Timing Requirements.............................................. 12  
7.7 Typical Characteristics............................................ 13  
Detailed Description ............................................ 15  
8.1 Overview ................................................................. 15  
8.2 Functional Block Diagram ....................................... 16  
9
10 Power Supply Recommendations ..................... 43  
11 Layout................................................................... 44  
11.1 Layout Guidelines ................................................. 44  
11.2 Layout Example .................................................... 44  
12 器件和文档支持 ..................................................... 45  
12.1 社区资源................................................................ 45  
12.2 ....................................................................... 45  
12.3 静电放电警告......................................................... 45  
12.4 Glossary................................................................ 45  
13 机械、封装和可订购信息....................................... 45  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2017 9 月  
*
初始发行版。  
2
版权 © 2017, Texas Instruments Incorporated  
 
bq25600C  
www.ti.com.cn  
ZHCSGR7 SEPTEMBER 2017  
5 说明 (续)  
bq25600C 是高度集成的 3.0A 开关模式电池充电管理和系统电源路径管理器件,适用于单节锂离子和锂聚合物电  
池。该器件 通过 高输入电压和高效率实现快速充电, 支持 用于各种智能手机、平板电脑和便携式设备的并联充电  
应用。bq25600C 具有与 bq25600 不同的 I2C 地址,因此在选择 bq25600 作为主充电器并选择 bq25600C 作为并  
联充电器时,仅需要单个 I2C 总线。其低阻抗电源路径可优化开关模式运行效率并缩短电池充电时间。其输入电压  
和电流调节以及电池远程感应可以为电池提供最大的充电功率。该解决方案在系统和电池之间高度集成输入反向阻  
FETRBFETQ1)、高侧开关 FETHSFETQ2)、低侧开关 FETLSFETQ3)以及电池 FET  
BATFETQ4)。它还集成了自举二极管以进行高侧栅极驱动,从而简化系统设计。具有充电和系统设置的 I2C  
串行接口使得此器件成为一个真正的灵活解决方案。  
该器件支持多种输入源,包括标准 USB 主机端口、USB 充电端口以及兼容 USB 的高电压适配器。该器件根据内  
USB 接口设置默认输入电流限值。为了设置默认输入电流限值,器件使用内置 USB 接口或者从系统检测电路  
(如 USB PHY 器件)中获取结果。该器件符合 USB 2.0 USB 3.0 电源规范,具有输入电流和电压调节功能。  
此器件在无需软件控制情况下启动并完成一个充电周期。它感应电池电压并通过三个阶段为电池充电:预充电、恒  
定电流和恒定电压。在充电周期的末尾,当充电电流低于预设限值并且电池电压高于再充电阈值时,充电器自动终  
止。如果已完全充电的电池降至再充电阈值以下,则充电器自动启动另一个充电周期。  
此充电器提供针对电池充电和系统运行的多种安全 特性, 其中包括充电安全计时器以及过压和过流保护。当结温  
超过 110°C(可编程)时,热调节会减小充电电流。STAT 输出报告充电状态和任何故障状况。其他安全 特性 包  
括热调节和热关断以及输入 UVLO 和过压保护。VBUS_GD 位指示电源是否正常。当发生故障时,INT 输出会立即  
通知主机。  
这些器件采用 30 个焊球、2.0mm × 2.4mm WCSP 封装。  
Copyright © 2017, Texas Instruments Incorporated  
3
bq25600C  
ZHCSGR7 SEPTEMBER 2017  
www.ti.com.cn  
6 Pin Configuration and Functions  
bq25600C YFF Package  
30-Pin DSBGA  
Top View  
1
2
3
4
5
A
B
C
D
E
F
GND  
GND  
BAT  
BAT  
BAT  
BAT  
SW  
PMID  
VBUS  
VAC  
SW  
SYS  
SYS  
SYS  
SYS  
PMID  
BTST  
NC  
VBUS  
REGN  
NC  
NC  
PSEL  
PG  
CE  
SDA  
INT  
STAT  
SCL  
BAT  
SNS  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
B5  
C1  
D1  
E1  
F1  
NC  
AO  
No Connect. Must leave this pin floating.  
Battery connection point to the positive terminal of the battery pack. The internal current sensing resistor is  
connected between SYS and BAT. Connect a 10 µF closely to the BAT pin.  
BAT  
P
Battery voltage sensing pin for charge current regulation. in order to minimize the parasitic trace resistance  
during charging, BATSNS pin is connected to the actual battery pack as close as possible.  
BATSNS  
F3  
C3  
AIO  
PWM high side driver positive supply. internally, the BTST is connected to the cathode of the boost-strap diode.  
Connect the 0.047-μF bootstrap capacitor from SW to BTST.  
BTST  
CE  
P
E3  
A1  
B1  
DI  
Charge enable pin. When this pin is driven low, battery charging is enabled.  
GND  
INT  
Open-drain interrupt Output. Connect the INT to a logic rail through 10-kΩ resistor. The INT pin sends active low,  
256-µs pulse to host to report charger device status and fault.  
F4  
D5  
DO  
Open drain active low power good indicator. Connect to the pull up rail through 10 kΩ resistor. LOW indicates a  
good input source if the input voltage is between UVLO and ACOV, above SLEEP mode threshold, and current  
limit is above 30 mA.  
PG  
DO  
A3  
B3  
Connected to the drain of the reverse blocking MOSFET (RBFET) and the drain of HSFET. Given the total input  
capacitance, put 1 μF on VBUS to GND, and the rest capacitance on PMID to GND.  
PMID  
PSEL  
DO  
DI  
Power source selection input. High indicates 500 mA input current limit. Low indicates 2.4A input current limit.  
Once the device gets into host mode, the host can program different input current limit to IINDPM register.  
C5  
C4  
PWM low side driver positive supply output. internally, REGN is connected to the anode of the boost-strap diode.  
Connect a 4.7-μF (10-V rating) ceramic capacitor from REGN to analog GND. The capacitor should be placed  
close to the IC.  
REGN  
P
(1) AI = Analog input, AO = Analog Output, AIO = Analog input Output, DI = Digital input, DO = Digital Output, DIO = Digital input Output, P  
= Power  
4
Copyright © 2017, Texas Instruments Incorporated  
bq25600C  
www.ti.com.cn  
ZHCSGR7 SEPTEMBER 2017  
Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
SCL  
NO.  
F5  
I2C interface clock. Connect SCL to the logic rail through a 10-kΩ resistor.  
I2C interface data. Connect SDA to the logic rail through a 10-kΩ resistor.  
DI  
SDA  
E4  
DIO  
Open-drain interrupt output. Connect the STAT pin to a logic rail via 10-kresistor. The STAT pin indicates  
charger status.  
STAT  
SW  
E5  
DO  
P
Charge in progress: LOW  
Charge complete or charger in SLEEP mode: HIGH  
Charge suspend (fault response): Blink at 1Hz  
A2  
B2  
C2  
D2  
E2  
F2  
Switching node connecting to output inductor. Internally SW is connected to the source of the n-channel HSFET  
and the drain of the n-channel LSFET. Connect the 0.047-μF bootstrap capacitor from SW to BTST.  
Converter output connection point. The internal current sensing resistor is connected between SYS and BAT.  
Connect a 20 µF closely to the SYS pin.  
SYS  
P
Ground reference for the device that is also the thermal pad used to conduct heat from the device. This  
connection serves two purposes. The first purpose is to provide an electrical ground connection for the device.  
The second purpose is to provide a low thermal-impedance path from the device die to the PCB. This pad  
should be tied externally to a ground plane.  
Thermal Pad  
P
NC  
D3, D4  
A5  
AI  
AI  
No Connect. Leave this pin floating.  
VAC  
Input voltage sensing. This pin must be connected to VBUS.  
A4  
Charger input voltage. The internal n-channel reverse block MOSFET (RBFET) is connected between VBUS and  
PMID with VBUS on source. Place a 1-uF ceramic capacitor from VBUS to GND and place it as close as  
possible to IC.  
VBUS  
P
B4  
Copyright © 2017, Texas Instruments Incorporated  
5
bq25600C  
ZHCSGR7 SEPTEMBER 2017  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–2  
MAX  
UNIT  
V
VAC  
22  
22  
22  
16  
7
VBUS (converter not switching)(2)  
BTST, PMID (converter not switching)(2)  
SW  
–2  
V
–0.3  
–2  
V
V
Voltage Range (with respect to  
GND)  
BTST to SW  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
V
PSEL  
7
V
BATSNS (converter not switching)  
7
V
REGN, TS, CE, PG, BAT, SYS (converter not switching)  
7
V
SDA, SCL, INT, STAT  
STAT, INT  
7
V
Output Sink Current  
6
mA  
°C  
°C  
Operating junction temperature, TJ  
Storage temperature, Tstg  
–40  
–65  
150  
150  
(1) Stresses beyond those listed under Absolute maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage  
values are with respect to the network ground terminal unless otherwise noted.  
(2) VBUS is specified up to 22 V for a maximum of one hour at room temperature  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
±2000  
ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per  
JEDEC specification JESD22-C101, all  
pins(2)  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
MIN  
NOM  
MAX UNIT  
VBUS  
Iin  
Input voltage  
3.9  
13.5(1)  
V
A
Input current (VBUS)  
Output current (SW)  
Battery voltage  
3.25  
3.25  
4.624  
3.0  
ISWOP  
VBATOP  
IBATOP  
IBATOP  
TA  
A
V
Fast charging current  
Discharging current (continuous)  
Operating ambient temperature  
A
6
A
–40  
85  
°C  
(1) The inherent switching noise voltage spikes should not exceed the absolute maximum voltage rating on either the BTST or SW pins. A  
tight layout minimizes switching noise.  
7.4 Thermal information  
bq25600C  
THERMAL METRIC  
YFF (DSBGA)  
30 Balls  
58.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
0.2  
8.3  
6
Copyright © 2017, Texas Instruments Incorporated  
bq25600C  
www.ti.com.cn  
ZHCSGR7 SEPTEMBER 2017  
Thermal information (continued)  
bq25600C  
THERMAL METRIC  
YFF (DSBGA)  
UNIT  
30 Balls  
1.4  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
°C/W  
°C/W  
°C/W  
ΨJB  
8.3  
RθJC(bot)  
N/A  
7.5 Electrical Characteristics  
VVAC_UVLOZ < VVAC < VVAC_OV and VVAC > VBAT + VSLEEP, TJ = –40°C to 125°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
QUIESCENT CURRENTS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VBAT = 4.5 V, VBUS < VAC-UVLOZ  
leakage between BAT and VBUS,  
TJ< 85°C  
,
Battery discharge current (BAT, SW,  
SYS) in buck mode  
IBAT  
5
µA  
µA  
VBAT = 4.5 V, HIZ Mode and  
OVPFET_DIS = 1 or No VBUS, I2C  
disabled, BATFET Disabled. TJ <  
85°C  
Battery discharge current (BAT) in  
buck mode  
IBAT  
17  
33  
VBAT = 4.5 V, HIZ Mode and  
Battery discharge current (BAT, SW, OVPFET_DIS = 1 or No VBUS, I2C  
IBAT  
58  
24  
85  
37  
µA  
µA  
SYS)  
Disabled, BATFET Enabled. TJ <  
85°C  
IVAC_HIZ  
Input supply current (VAC) in buck  
mode  
VVAC = 5 V, HIZ Mode and  
OVPFET_DIS = 1, No battery  
Input supply current (VAC) in buck  
mode  
VVAC = 12 V, HIZ Mode and  
OVPFET_DIS = 1, No battery  
IVAC_HIZ  
41  
37  
61  
50  
µA  
µA  
IVACVBUS_HIZ  
Input supply current (VAC and  
VBUS short) in buck mode  
VVAC = 5 V, HIZ Mode and  
OVPFET_DIS = 1, No battery  
Input supply current (VAC and  
VBUS short) in buck mode  
VVAC = 12 V, HIZ Mode and  
OVPFET_DIS = 1, No battery  
IVACVBUS_HIZ  
IVBUS  
68  
90  
3
µA  
Input supply current (VBUS) in buck VVBUS = 12 V, VVBUS > VVBAT  
mode  
,
1.5  
mA  
converter not switching  
VVBUS > VUVLO, VVBUS > VVBAT  
converter switching, VBAT = 3.8V,  
ISYS = 0A  
,
Input supply current (VBUS) in buck  
mode  
IVBUS  
3
mA  
VBUS, VAC AND BAT PIN POWER-UP  
VBUS_OP  
VBUS operating range  
VAC for active I2C, no battery  
VVBUS rising  
VVAC rising  
3.9  
13.5  
3.7  
V
V
VVAC_UVLOZ  
3.3  
Sense VAC pin voltage  
VVAC_UVLOZ_HYS I2C active hysteresis  
VAC falling from above VVAC_UVLOZ  
VVAC rising  
300  
mV  
V
VVAC_PRESENT  
VAC to turn on REGN  
3.65  
3.9  
VVAC_PRESENT_H  
YS  
mV  
VAC to turn on REGN hysteresis  
VVAC falling  
500  
60  
(VVAC–VVBAT ), VBUSMIN_FALL VBAT  
VREG, VAC falling  
VSLEEP  
Sleep mode falling threshold  
Sleep mode rising threshold  
15  
115  
131  
340  
6.75  
11.5  
15  
mV  
mV  
V
(VVAC–VVBAT ), VBUSMIN_FALL VBAT  
VREG, VAC rising  
VSLEEPZ  
220  
6.42  
11  
VAC 6.5-V Overvoltage rising  
threshold  
VVAC_OV_RISE  
VVAC_OV_RISE  
VVAC_OV_RISE  
VAC rising; OVP (REG06[7:6]) = '01'  
VAC rising, OVP (REG06[7:6]) = '10'  
VAC rising, OVP (REG06[7:6]) = '11'  
6.1  
VAC 10.5-V Overvoltage rising  
threshold  
10.35  
13.5  
V
VAC 14-V Overvoltage rising  
threshold  
14.2  
V
Copyright © 2017, Texas Instruments Incorporated  
7
bq25600C  
ZHCSGR7 SEPTEMBER 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
VVAC_UVLOZ < VVAC < VVAC_OV and VVAC > VBAT + VSLEEP, TJ = –40°C to 125°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VAC falling, OVP (REG06[7:6]) =  
'01'  
VVAC_OV_HYS  
VVAC_OV_HYS  
VVAC_OV_HYS  
VAC 6.5-V Overvoltage hysteresis  
130  
mV  
VAC falling, OVP (REG06[7:6]) =  
'10'  
VAC 10.5-V Overvoltage hysteresis  
250  
300  
mV  
mV  
VAC falling, OVP (REG06[7:6]) =  
'11'  
VAC 14-V Overvoltage hysteresis  
VBAT_UVLOZ  
BAT for active I2C, no adapter  
Battery Depletion Threshold  
Battery Depletion Threshold  
Battery Depletion rising hysteresis  
VBAT rising  
VBAT falling  
VBAT rising  
VBAT rising  
2.5  
2.18  
2.34  
V
V
VBAT_DPL_FALL  
VBAT_DPL_RISE  
VBAT_DPL_HYST  
2.62  
2.86  
V
180  
3.8  
180  
30  
mV  
Bad adapter detection falling  
threshold  
VBUSMIN_FALL  
VBUSMIN_HYST  
IBADSRC  
VBUS falling  
3.68  
3.9  
V
Bad adapter detection hysteresis  
mV  
mA  
Bad adapter detection current  
source  
Sink current from VBUS to GND  
POWER-PATH  
VSYS_MIN  
VVBAT < SYS_MIN[2:0] = 101,  
BATFET Disabled (REG07[5] = 1)  
System regulation voltage  
System Regulation Voltage  
3.5  
4.4  
3.68  
V
V
ISYS = 0 A, VVBAT > VSYSMIN, VVBAT  
= 4.400 V, BATFET disabled  
(REG07[5] = 1)  
VBAT  
+
VSYS  
50 mV  
ISYS = 0 A, , Q4 off, VVBAT4.400 V,  
VVBAT > VSYSMIN = 3.5V  
VSYS_MAX  
Maximum DC system voltage output  
Top reverse blocking MOSFET on-  
4.45  
35  
4.48  
V
RON(RBFET)  
resistance between VBUS and PMID -40°CTA 125°C  
mΩ  
- Q1  
Top switching MOSFET on-  
RON(HSFET)  
resistance between PMID and SW - VREGN = 5 V , -40°CTA 125°C  
Q2  
55  
60  
mΩ  
mΩ  
Bottom switching MOSFET on-  
RON(LSFET)  
resistance between SW and GND -  
Q3  
VREGN = 5 V , -40°CTA 125°C  
BATFET forward voltage in  
supplement mode  
VFWD  
30  
mV  
Measured from BAT to SYS, VBAT  
4.2V, TJ = –40 - 125°C  
=
RON(BAT-SYS)  
SYS-BAT MOSFET on-resistance  
19.5  
mΩ  
BATTERY CHARGER  
VBATREG_RANGE Charge voltage program range  
3.856  
4.624  
V
VBATREG_STEP  
Charge voltage step  
32  
mV  
VREG (REG04[7:3]) = 4.208 V  
(01011), V, –40 TJ 85°C  
4.187  
4.330  
4.208  
4.229  
4.374  
V
V
VBATREG  
Charge voltage setting  
VREG (REG04[7:3]) = 4.352 V  
(01111), V, –40 TJ 85°C  
4.352  
VBAT = 4.208 V or VBAT = 4.352 V,  
–40 TJ 85°C  
VBATREG_ACC  
Charge voltage setting accuracy  
–0.5%  
0
0.5%  
3000  
ICHG_REG_RANGE Charge current regulation range  
mA  
mA  
ICHG_REG_STEP  
Charge current regulation step  
60  
ICHG = 240 mA, VVBAT = 3.1V or  
VVBAT = 3.8 V  
ICHG_REG  
Charge current regulation setting  
0.214  
–11%  
0.24  
0.26  
9%  
A
ICHG = 240 mA, VVBAT = 3.1 V or  
VVBAT = 3.8 V  
ICHG_REG_ACC  
Charge current regulation accuracy  
8
Copyright © 2017, Texas Instruments Incorporated  
bq25600C  
www.ti.com.cn  
ZHCSGR7 SEPTEMBER 2017  
Electrical Characteristics (continued)  
VVAC_UVLOZ < VVAC < VVAC_OV and VVAC > VBAT + VSLEEP, TJ = –40°C to 125°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ICHG_REG  
Charge current regulation setting  
ICHG = 720 mA, VVBAT = 3.1 V or  
VVBAT = 3.8 V  
0.68  
0.720  
0.76  
A
ICHG_REG = 720 mA, VBAT = 3.1 V or  
VBAT = 3.8 V  
ICHG_REG  
Charge current regulation accuracy  
Charge current regulation setting  
Charge current regulation accuracy  
-6%  
1.30  
–6%  
6%  
1.45  
6%  
ICHG = 1.38 A, VVBAT = 3.1 V or  
VVBAT = 3.8 V  
ICHG_REG  
1.380  
A
ICHG = 720 mA or ICHG = 1.38 A,  
VVBAT = 3.1 V or VVBAT = 3.8 V  
ICHG_REG_ACC  
VBATLOWV_FALL  
VBATLOWV_RISE  
IPRECHG  
Battery LOWV falling threshold  
Battery LOWV rising threshold  
Precharge current regulation  
ICHG = 240 mA  
2.7  
3
2.8  
3.12  
170  
2.9  
3.24  
190  
V
V
Pre-charge to fast charge  
IPRECHG[3:0] = '0010' = 180 mA  
150  
mA  
Precharge current regulation  
accuracy  
IPRECHG_ACC  
ITERM  
IPRECHG[3:0] = '0010' = 180 mA  
–15  
145  
5
%
Termination current regulation  
ICHG > 780 mA, ITERM[3:0] = '0010'  
= 180 mA, VVBAT = 4.208 V  
180  
60  
215  
mA  
Termination current regulation  
accuracy  
ICHG > 780 mA, , ITERM[3:0] =  
'0010' = 180 mA, VVBAT = 4.208 V  
ITERM_ACC  
ITERM  
-20%  
44  
20%  
75  
ICHG 780 mA, , ITERM[3:0] =  
Termination current regulation  
mA  
'0000' = 60 mA, VVBAT = 4.208 V  
Termination current regulation  
accuracy  
ICHG 780 mA, ,ITERM[3:0] = '0000'  
= 60 mA, VVBAT = 4.208 V  
ITERM_ACC  
-27%  
25%  
VSHORT  
VSHORTZ  
ISHORT  
Battery short voltage  
Battery short voltage  
Battery short current  
VVBAT falling  
1.85  
2.15  
50  
2
2.25  
90  
2.15  
2.35  
117  
V
V
VVBAT rising  
VVBAT < VSHORTZ  
mA  
Recharge Threshold below  
VBAT_REG  
VRECHG  
VBAT falling, REG04[0] = 0  
90  
120  
150  
265  
mV  
Recharge Threshold below  
VBAT_REG  
VRECHG  
VBAT falling, REG04[0] = 1  
VSYS = 4.2 V  
200  
230  
30  
mV  
mA  
ISYSLOAD  
System discharge load current  
INPUT VOLTAGE AND CURRENT REGULATION  
VINDPM  
Input voltage regulation limit  
Input voltage regulation accuracy  
Input voltage regulation limit  
Input voltage regulation accuracy  
VINDPM (REG06[3:0] = 0000) = 3.9 V  
VINDPM (REG06[3:0] = 0000) = 3.9 V  
VINDPM (REG06[3:0] = 0110) = 4.4 V  
VINDPM (REG06[3:0] = 0110) = 4.4 V  
3.78  
–4.5%  
4.268  
–3%  
3.95  
4.4  
4.1  
4%  
V
V
V
VINDPM_ACC  
VINDPM  
VINDPM_ACC  
VDPM_VBAT  
4.532  
3%  
Input voltage regulation limit tracking VINDPM = 3.9V,  
4.17  
4.3  
4.46  
VBAT  
VDPM_VBAT_TRACK = 300mV,  
VBAT = 4.0V  
VDPM_VBAT_ACC  
Input voltage regulation accuracy  
tracking VBAT  
VINDPM = 3.9V,  
VDPM_VBAT_TRACK = 300mV,  
VBAT = 4.0V  
–3%  
4%  
VVBUS = 5 V, current pulled from  
SW, IINDPM (REG[4:0] = 00100) =  
500 mA, –40 TJ 85°C  
450  
750  
500  
900  
1.5  
mA  
mA  
VVBUS = 5 V, current pulled from  
SW, IINDPM (REG[4:0] = 01000) =  
900 mA, –40 TJ 85°C  
IINDPM  
USB input current regulation limit  
VVBUS = 5 V, current pulled from  
SW, IINDPM (REG[4:0] = 01110) =  
1.5 A, –40 TJ 85°C  
1.28  
A
Input current limit during system  
start-up sequence  
IIN_START  
200  
mA  
BAT PIN OVERVOLTAGE PROTECTION  
Copyright © 2017, Texas Instruments Incorporated  
9
bq25600C  
ZHCSGR7 SEPTEMBER 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
VVAC_UVLOZ < VVAC < VVAC_OV and VVAC > VBAT + VSLEEP, TJ = –40°C to 125°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VBAT rising, as percentage of  
VBAT_REG  
VBATOVP_RISE  
Battery overvoltage threshold  
103  
104  
105  
%
VBAT falling, as percentage of  
VBAT_REG  
VBATOVP_Fall_HYS Battery overvoltage falling hysteresis  
2
%
10  
Copyright © 2017, Texas Instruments Incorporated  
bq25600C  
www.ti.com.cn  
ZHCSGR7 SEPTEMBER 2017  
Electrical Characteristics (continued)  
VVAC_UVLOZ < VVAC < VVAC_OV and VVAC > VBAT + VSLEEP, TJ = –40°C to 125°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
THERMAL REGULATION AND THERMAL SHUTDOWN  
Junction Temperature Regulation  
Temperature Increasing, TREG  
(REG05[1] = 1) = 110  
TJUNCTION_REG  
Threshold  
110  
90  
°C  
°C  
TJUNCTION_REG  
Junction Temperature Regulation  
Threshold  
Temperature Increasing, TREG  
(REG05[1] = 0) = 90℃  
Thermal Shutdown Rising  
Temperature  
TSHUT  
Temperature Increasing  
160  
30  
°C  
°C  
TSHUT_HYST  
Thermal Shutdown Hysteresis  
CHARGE OVERCURRENT COMPARATOR (CYCLE-BY-CYCLE)  
IBATFET_OCP  
PWM  
System over load threshold  
6.0  
A
fSW  
PWM switching frequency  
Maximum PWM duty cycle(1)  
Oscillator frequency, buck mode  
1320  
1500  
97%  
1680  
kHz  
DMAX  
REGN LDO  
VREGN  
REGN LDO output voltage  
REGN LDO output voltage  
VVBUS = 9V, IREGN = 40mA  
VVBUS = 5V, IREGN = 20mA  
5.6  
6
6.65  
4.8  
V
V
VREGN  
4.58  
4.7  
LOGIC I/O PIN CHARACTERISTICS (CE, PSEL, SCL, SDA,, INT)  
VILO  
VIH  
Input low threshold CE  
0.4  
V
V
Input high threshold CE  
1.3  
1.3  
IBIAS  
VILO  
VIH  
High-level leakage current CE  
Input low threshold PSEL  
Input high threshold PSEL  
High-level leakage current PSEL  
Pull up rail 1.8 V  
Pull up rail 1.8V  
1
µA  
V
0.4  
V
IBIAS  
1
µA  
LOGIC I/O PIN CHARACTERISTICS (PG, STAT)  
VOL Low-level output voltage  
(1) Specified by design. Not production tested.  
0.4  
V
Copyright © 2017, Texas Instruments Incorporated  
11  
bq25600C  
ZHCSGR7 SEPTEMBER 2017  
www.ti.com.cn  
UNIT  
7.6 Timing Requirements  
MIN  
NOM  
MAX  
VBUS/BAT POWER UP  
VAC rising above ACOV threshold to  
turn off Q2  
tACOV  
VAC OVP reaction time  
200  
30  
ns  
tBADSRC  
Bad adapter detection duration  
ms  
BATTERY CHARGER  
tTERM_DGL  
Deglitch time for charge termination  
250  
250  
ms  
ms  
tRECHG_DGL  
Deglitch time for recharge  
System over-current deglitch time to  
turn off Q4  
tSYSOVLD_DGL  
tBATOVP  
100  
1
µs  
µs  
Battery over-voltage deglitch time to  
disable charge  
tSAFETY  
Typical Charge Safety Timer Range  
Typical Top-Off Timer Range  
8
10  
30  
12  
36  
hr  
tTOP_OFF  
TOP_OFF_TIMER[1:0] = 10 (30 min)  
24  
min  
DIGITAL CLOCK AND WATCHDOG TIMER  
tWDT  
fLPDIG  
fDIG  
REG05[4]=1  
REGN LDO disabled  
REGN LDO disabled  
REGN LDO enabled  
40  
30  
s
Digital Low Power Clock  
Digital Clock  
kHz  
kHz  
kHz  
500  
fSCL  
SCL clock frequency  
400  
12  
版权 © 2017, Texas Instruments Incorporated  
bq25600C  
www.ti.com.cn  
ZHCSGR7 SEPTEMBER 2017  
7.7 Typical Characteristics  
100  
97.5  
95  
5
4
3
92.5  
90  
2
1
87.5  
85  
0
-1  
-2  
-3  
-4  
-5  
82.5  
80  
VBUS = 5 V  
VBUS = 9 V  
VBUS = 12 V  
77.5  
75  
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
Charge Current (A)  
Charge Current (A)  
D001  
D001  
fSW = 1.5 MHz  
VBAT = 3.8 V  
Inductor DCR = 18 mΩ  
1. Charge Efficiency vs. Charge Current  
2. Charge Current Accuracy  
3.85  
3.8  
4.5  
4.4  
4.3  
4.2  
4.1  
4
VBATREG = 4.208 V  
VBATREG = 4.352 V  
3.75  
3.7  
3.65  
3.6  
3.55  
3.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
D001  
D001  
3. SYSMIN Voltage vs. Junction Temperature  
4. BATREG Charge Voltage vs. Junction Temperature  
2.5  
2.25  
2
2
IINDPM = 0.5 A  
IINDPM = 0.9 A  
IINDPM = 1.5 A  
ICHG = 0.24 A  
ICHG = 0.72 A  
ICHG = 1.38 A  
1.8  
1.6  
1.75  
1.5  
1.25  
1
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0.75  
0.5  
0.25  
0
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
Junction Temperature (°C)  
D001  
D001  
5. Input Current Limit vs. Junction Temperature  
6. Charge Current vs. Junction Temperature  
版权 © 2017, Texas Instruments Incorporated  
13  
bq25600C  
ZHCSGR7 SEPTEMBER 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
2.25  
2
1.75  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
110 °C  
90 °C  
55  
65  
75  
85  
95  
105  
115  
125  
135  
Junction Temperature (°C)  
D001  
7. Charge Current vs. Junction Temperature Under Thermal Regulation  
14  
版权 © 2017, Texas Instruments Incorporated  
bq25600C  
www.ti.com.cn  
ZHCSGR7 SEPTEMBER 2017  
8 Detailed Description  
8.1 Overview  
The bq25600C device is a highly integrated 3.0-A switch-mode battery charger for single cell Li-Ion and Li-  
polymer battery. It includes the input reverse-blocking FET (RBFET, Q1), high-side switching FET (HSFET, Q2),  
low-side switching FET (LSFET, Q3), and battery FET (BATFET, Q4), and bootstrap diode for the high-side gate  
drive.  
版权 © 2017, Texas Instruments Incorporated  
15  
bq25600C  
ZHCSGR7 SEPTEMBER 2017  
www.ti.com.cn  
8.2 Functional Block Diagram  
VBUS  
PMID  
VVVAC_PRESENT  
RBFET (Q1)  
+
UVLO  
SLEEP  
ACOV  
VVAC  
Q1 Gate  
Control  
œ
IIN  
VBAT + VSLEEP  
+
REGN  
EN_REGN  
EN_HIZ  
VVAC  
REGN  
LDO  
œ
VVAC  
+
VVAC_OV  
œ
BTST  
FBO  
VAC  
VAC  
BAT  
+
BATOVP  
UCP  
VVBUS  
104% × V BAT_REG  
ILSFET_UCP  
IQ3  
œ
+
+
œ
+
œ
œ
+
HSFET (Q2)  
LSFET (Q3)  
œ
VINDPM  
SW  
+
IIN  
CONVERTER  
Control  
REGN  
œ
IINDPM  
IC TJ  
TREG  
PGND  
IQ2  
BATSNS  
VBAT_REG  
Q2_OCP  
+
œ
+
œ
+
IHSFET_OCP  
SYS  
œ
VSYSMIN  
VBTST - VSW  
ICHG  
EN_HIZ  
+
REFRESH  
EN_CHARGE  
VBTST_REFRESH  
ICHG_REG  
œ
SYS  
ICHG  
VBAT_REG  
ICHG_REG  
BATFET  
(Q4)  
Q4 Gate  
Control  
BAT  
IBADSRC  
IDC  
BAD_SRC  
+
REF  
DAC  
Converter  
œ
Control State  
Machine  
IC TJ  
TSHUT  
+
TSHUT  
œ
BATSNS  
BATSNS  
VBATGD  
BAT_GD  
+
Input  
Source  
œ
PSEL  
USB  
Detection  
Adapter  
VREG -VRECHG  
BATSNS  
ICHG  
+
RECHRG  
œ
INT  
STAT  
PG  
+
TERMINATION  
BATLOWV  
ITERM  
œ
CHARGE  
CONTROL  
STATE  
VBATLOWV  
+
BATSNS  
VSHORT  
MACHINE  
œ
+
BATSHORT  
SUSPEND  
BATSNS  
I2C  
Interface  
œ
SCL SDA CE  
Copyright © 2017, Texas Instruments Incorporated  
16  
版权 © 2017, Texas Instruments Incorporated  
bq25600C  
www.ti.com.cn  
ZHCSGR7 SEPTEMBER 2017  
8.3 Feature Description  
8.3.1 Power-On-Reset (POR)  
The device powers internal bias circuits from the higher voltage of VBUS and BAT. When VBUS rises above  
VVBUS_UVLOZ or BAT rises above VBAT_UVLOZ , the sleep comparator, battery depletion comparator and BATFET  
driver are active. I2C interface is ready for communication and all the registers are reset to default value. The  
host can access all the registers after POR.  
8.3.2 Device Power Up from Battery without Input Source  
If only battery is present and the voltage is above depletion threshold (VBAT_DPL_RISE), the BATFET turns on and  
connects battery to system. The REGN stays off to minimize the quiescent current. The low RDSON of BATFET  
and the low quiescent current on BAT minimize the conduction loss and maximize the battery run time.  
8.3.3 Power Up from Input Source  
When an input source is plugged in, the device checks the input source voltage to turn on REGN LDO and all the  
bias circuits. It detects and sets the input current limit before the buck converter is started. The power up  
sequence from input source is as listed:  
1. Power Up REGN LDO  
2. Poor Source Qualification  
3. IInput Source Type Detection is based on PSEL to set default input current limit (IINDPM) register or input  
source type.  
4. Input Voltage Limit Threshold Setting (VINDPM threshold)  
5. Converter Power-up  
8.3.3.1 Power Up REGN Regulation  
The REGN LDO supplies internal bias circuits as well as the HSFET and LSFET gate drive. The REGN also  
provides bias rail to TS external resistors. The pull-up rail of STAT can be connected to REGN as well. The  
REGN is enabled when all the below conditions are valid:  
above VVAC_PRESENT  
VVAC above VBAT + VSLEEPZ in buck mode  
After 220-ms delay is completed  
If any one of the above conditions is not valid, the device is in high impedance mode (HIZ) with REGN LDO off.  
The device draws less than IVBUS_HIZ from VBUS during HIZ state. The battery powers up the system when  
the device is in HIZ.  
8.3.3.2 Poor Source Qualification  
After REGN LDO powers up, the device confirms the current capability of the input source. The input source  
must meet both of the following requirements in order to start the buck converter.  
voltage below VVAC_OV  
VBUS voltage above VVBUSMIN when pulling IBADSRC (typical 30 mA)  
Once the input source passes all the conditions above, the status register bit VBUS_GD is set high and the INT  
pin is pulsed to signal to the host. If the device fails the poor source detection, it repeats poor source qualification  
every 2 seconds.  
8.3.3.3 Input Source Type Detection  
After the VBUS_GD bit is set and REGN LDO is powered, the device runs input source detection through PSEL  
pin. The bq25600C sets input current limit through PSEL pins.  
After input source type detection is completed, an INT pulse is asserted to the host. in addition, the following  
registers and pin are changed:  
1. Input Current Limit (IINDPM) register is changed to set current limit  
2. PG_STAT bit is set  
3. VBUS_STAT bit is updated to indicate USB or other input source  
版权 © 2017, Texas Instruments Incorporated  
17  
bq25600C  
ZHCSGR7 SEPTEMBER 2017  
www.ti.com.cn  
Feature Description (接下页)  
The host can over-write IINDPM register to change the input current limit if needed. The charger input current is  
always limited by the IINDPM register.  
8.3.3.3.1 PSEL Pins Sets Input Current Limit in bq25600C  
The bq25600C has PSEL pin for input current limit setting to interface with USB PHY. It directly takes the USB  
PHY device output to decide whether the input is USB host or charging port. When the device operates in host-  
control mode, the host needs to IINDET_EN bit to read the PSEL value and update the IINDPM register. When  
the device is in default mode, PSEL value updates IINDPM in real time.  
1. Input Current Limit Setting from PSEL  
INPUT CURRENT LIMIT  
Input Detection  
PSEL Pin  
VBUS_STAT  
(ILIM)  
500 mA  
2.4 A  
USB SDP  
Adapter  
High  
Low  
001  
011  
8.3.3.4 Input Voltage Limit Threshold Setting (VINDPM Threshold)  
The device supports wide range of input voltage limit (3.9 V – 5.4 V) for USBThe device's VINDPM is set at 4.5  
V. The device supports dynamic VINDPM trackingsettings which tracks the battery voltage. This function can be  
enabled via the VDPM_BAT_TRACK[1:0] register bits. When enabled, the actual input voltage limit will be the  
higher of the VINDPM register and VBAT + VDPM_BAT_TRACK offset.  
8.3.3.5 Converter Power-Up  
After the input current limit is set, the converter is enabled and the HSFET and LSFET start switching. If battery  
charging is disabled, BATFET turns off. Otherwise, BATFET stays on to charge the battery.  
The device provides soft-start when system rail is ramped up. When the system rail is below 2.2 V, the input  
current is limited to is to the lower of 200 mA or IINDPM register setting. After the system rises above 2.2 V, the  
device limits input current to the value set by IINDPM register.  
As a battery charger, the device deploys a highly efficient 1.5 MHz step-down switching regulator. The fixed  
frequency oscillator keeps tight control of the switching frequency under all conditions of input voltage, battery  
voltage, charge current and temperature, simplifying output filter design.  
The device switches to PFM control at light load or when battery is below minimum system voltage setting or  
charging is disabled. The PFM_DIS bit can be used to prevent PFM operation in either buck configuration.  
8.3.4 Host Mode and Standalone Power Management  
8.3.4.1 Host Mode and Default Mode in bq25600C  
The bq25600C is a host controlled charger, but it can operate in default mode without host management. In  
default mode, the device can be used as an autonomous charger with no host or while host is in sleep mode.  
When the charger is in default mode, WATCHDOG_FAULT bit is HIGH. When the charger is in host mode,  
WATCHDOG_FAULT bit is LOW.  
After power-on-reset, the device starts in default mode with watchdog timer expired, or default mode. All the  
registers are in the default settings. During default mode, any change on PSEL pin will make real time IINDPM  
register changes.  
in default mode, the device keeps charging the battery with default 10-hour fast charging safety timer. At the end  
of the 10-hour, the charging is stopped and the buck converter continues to operate to supply system load.  
Writing a 1 to the WD_RST bit transitions the charger from default mode to host mode. All the device parameters  
can be programmed by the host. To keep the device in host mode, the host has to reset the watchdog timer by  
writing 1 to WD_RST bit before the watchdog timer expires (WATCHDOG_FAULT bit is set), or disable watchdog  
timer by setting WATCHDOG bits = 00.  
18  
版权 © 2017, Texas Instruments Incorporated  
bq25600C  
www.ti.com.cn  
ZHCSGR7 SEPTEMBER 2017  
When the watchdog timer expires (WATCHDOG_FAULT bit = 1), the device returns to default mode and all  
registers are reset to default values except IINDPM, VINDPM, BATFET_RST_EN, BATFET_DLY, and  
BATFET_DIS bits.  
POR  
watchdog timer expired  
Reset registers  
I2C interface enabled  
Host Mode  
Y
I2C Write?  
N
Start watchdog timer  
Host programs registers  
Default Mode  
Reset watchdog timer  
Reset selective registers  
Y
N
WD_RST bit = 1?  
N
N
Y
Y
I2C Write?  
Watchdog Timer  
Expired?  
8. Watchdog Timer Flow Chart  
8.3.5 Power Path Management  
The device accommodates a wide range of input sources from USB, wall adapter, to car charger. The device  
provides automatic power path selection to supply the system (SYS) from input source (VBUS), battery (BAT), or  
both.  
8.3.6 Battery Charging Management  
The device charges 1-cell Li-Ion battery with up to 3.0-A charge current for high capacity tablet battery. The 19.5-  
mΩ BATFET improves charging efficiency and minimize the voltage drop during discharging.  
8.3.6.1 Autonomous Charging Cycle  
With battery charging is enabled (CHG_CONFIG bit = 1 and CE pin is LOW), the device autonomously  
completes a charging cycle without host involvement. The device default charging parameters are listed in 2.  
The host can always control the charging operations and optimize the charging parameters by writing to the  
corresponding registers through I2C.  
2. Charging Parameter Default Setting  
PARAMETER  
Charging voltage  
Charging current  
Pre-charge current  
Termination current  
Safety timer  
SETTING  
4.208 V  
2.048 A  
180 mA  
180 mA  
10 hours  
A new charge cycle starts when the following conditions are valid:  
Converter starts  
Battery charging is enabled (CHG_CONFIG bit = 1 and ICHG register is not 0 mA and CE is low)  
No safety timer fault  
BATFET is not forced to turn off (BATFET_DIS bit = 0)  
版权 © 2017, Texas Instruments Incorporated  
19  
 
bq25600C  
ZHCSGR7 SEPTEMBER 2017  
www.ti.com.cn  
The charger device automatically terminates the charging cycle when the charging current is below termination  
threshold, battery voltage is above recharge threshold, and device not is in DPM mode or thermal regulation.  
When a fully charged battery is discharged below recharge threshold (selectable through VRECHG bit), the  
device automatically starts a new charging cycle. After the charge is done, toggle CE pin or CHG_CONFIG bit  
can initiate a new charging cycle.  
The STAT output indicates the charging status: charging (LOW), charging complete or charge disable (HIGH) or  
charging fault (Blinking). The STAT output can be disabled by setting EN_ICHG_MON bits = 11. in addition, the  
status register (CHRG_STAT) indicates the different charging phases: 00-charging disable, 01-precharge, 10-fast  
charge (constant current) and constant voltage mode, 11-charging done. Once a charging cycle is completed, an  
INT is asserted to notify the host.  
8.3.6.2 Battery Charging Profile  
The device charges the battery in five phases: battery short, preconditioning, constant current, constant voltage  
and top-off trickle charging (optional). At the beginning of a charging cycle, the device checks the battery voltage  
and regulates current and voltage accordingly.  
3. Charging Current Setting  
REGISTER DEFAULT  
VBAT  
CHARGinG CURRENT  
CHRG_STAT  
SETTinG  
100 mA  
180 mA  
2.048 A  
< 2.2 V  
2.2 V to 3 V  
> 3 V  
ISHORT  
IPRECHG  
ICHG  
01  
01  
10  
If the charger device is in DPM regulation or thermal regulation during charging, the actual charging current will  
be less than the programmed value. in this case, termination is temporarily disabled and the charging safety  
timer is counted at half the clock rate.  
Regulation Voltage  
VREG[7:3]  
Battery Voltage  
Charge Current  
ICHG[5:0]  
Charge Current  
VBATLOWV (3 V)  
VSHORTZ (2.2 V)  
IPRECHG[7:4]  
ITERM[3:0]  
ISHORT  
Fast Charge and Voltage Regulation  
Trickle Charge  
Pre-charge  
Top-off Timer  
(optional)  
Safety Timer  
Expiration  
9. Battery Charging Profile  
8.3.6.3 Charging Termination  
The device terminates a charge cycle when the battery voltage is above recharge threshold, and the current is  
below termination current. After the charging cycle is completed, the BATFET turns off. The converter keeps  
running to power the system, and BATFET can turn on again to engage Supplement Mode.  
20  
版权 © 2017, Texas Instruments Incorporated  
bq25600C  
www.ti.com.cn  
ZHCSGR7 SEPTEMBER 2017  
When termination occurs, the status register CHRG_STAT is set to 11, and an INT pulse is asserted to the host.  
Termination is temporarily disabled when the charger device is in input current, voltage or thermal regulation.  
Termination can be disabled by writing 0 to EN_TERM bit prior to charge termination.  
At low termination currents (25 mA-50 mA), due to the comparator offset, the actual termination current may be  
10 mA-20 mA higher than the termination target. in order to compensate for comparator offset, a programmable  
top-off timer can be applied after termination is detected. The termination timer will follow safety timer  
constraints, such that if safety timer is suspended, so will the termination timer. Similarly, if safety timer is  
doubled, so will the termination timer. TOPOFF_ACTIVE bit reports whether the top off timer is active or not. The  
host can read CHRG_STAT and TOPOFF_ACTIVE to find out the termination status.  
Top off timer gets reset at one of the following conditions:  
1. Charge disable to enable  
2. Termination status low to high  
3. REG_RST register bit is set  
The top-off timer settings are read in once termination is detected by the charger. Programming a top-off timer  
value after termination will have no effect unless a recharge cycle is initiated. An INT is asserted to the host  
when entering top-off timer segment as well as when top-off timer expires.  
8.3.6.4 Charging Safety Timer  
The device has built-in safety timer to prevent extended charging cycle due to abnormal battery conditions. The  
safety timer is 2 hours when the battery is below VBATLOWV threshold and 10 hours when the battery is higher  
than VBATLOWV threshold.  
The user can program fast charge safety timer through I2C (CHG_TIMER bits). When safety timer expires, the  
fault register CHRG_FAULT bits are set to 11 and an INT is asserted to the host. The safety timer feature can be  
disabled through I2C by setting EN_TIMER bit  
During input voltage, current, or thermal regulation, the safety timer counts at half clock rate as the actual charge  
current is likely to be below the register setting. For example, if the charger is in input current regulation  
(IDPM_STAT = 1) throughout the whole charging cycle, and the safety time is set to 5 hours, the safety timer will  
expire in 10 hours. This half clock rate feature can be disabled by writing 0 to TMR2X_EN bit.  
During the fault, timer is suspended. Once the fault goes away, fault resumes. If user stops the current charging  
cycle, and start again, timer gets reset (toggle CE pin or CHRG_CONFIG bit).  
8.3.6.5 Narrow VDC Architecture  
The device deploys Narrow VDC architecture (NVDC) with BATFET separating system from battery. The  
minimum system voltage is set by SYS_Min bits. Even with a fully depleted battery, the system is regulated  
above the minimum system voltage.  
When the battery is below minimum system voltage setting, the BATFET operates in linear mode (LDO mode),  
and the system is typically 180 mV above the minimum system voltage setting. As the battery voltage rises  
above the minimum system voltage, BATFET is fully on and the voltage difference between the system and  
battery is the VDS of BATFET.  
When the battery charging is disabled and above minimum system voltage setting or charging is terminated, the  
system is always regulated at typically 50mV above battery voltage. The status register VSYS_STAT bit goes  
high when the system is in minimum system voltage regulation.  
版权 © 2017, Texas Instruments Incorporated  
21  
bq25600C  
ZHCSGR7 SEPTEMBER 2017  
www.ti.com.cn  
4.5  
4.3  
4.1  
3.9  
3.7  
3.5  
3.3  
3.1  
Charge Disabled  
Charge Enabled  
Minimum System Voltage  
2.7  
2.9  
3.1  
3.3  
3.5  
3.7  
3.9  
4.1  
4.3  
BAT (V)  
D002  
Plot1  
10. System Voltage vs Battery Voltage  
8.3.7 Shipping Mode  
8.3.7.1 BATFET Disable Mode (Shipping Mode)  
To extend battery life and minimize power when system is powered off during system idle, shipping, or storage,  
the device can turn off BATFET so that the system voltage is zero to minimize the battery leakage current. When  
the host set BATFET_DIS bit, the charger can turn off BATFET immediately or delay by tSM_DLY as configured by  
BATFET_DLY bit.  
8.3.7.2 BATFET Enable (Exit Shipping Mode)  
When the BATFET is disabled (in shipping mode) and indicated by setting BATFET_DIS, one of the following  
events can enable BATFET to restore system power:  
1. Plug in adapter  
2. Clear BATFET_DIS bit  
3. Set REG_RST bit to reset all registers including BATFET_DIS bit to default (0)  
8.3.8 Status Outputs (PG, STAT)  
8.3.8.1 Power Good indicator (PG Pin and PG_STAT Bit)  
The PG_STAT bit goes HIGH and PG pin goes LOW to indicate a good input source when:  
VBUS above VVBUS_UVLO  
VBUS above battery (not in sleep)  
VBUS below VVAC_OV threshold  
VBUS above VVBUSMin (typical 3.8 V) when IBADSRC (typical 30 mA) current is applied (not a poor source)  
Completed input Source Type Detection  
8.3.8.2 Charging Status indicator (STAT)  
The device indicates charging state on the open drain STAT pin. The STAT pin can drive LED. The STAT pin  
function can be disabled by setting the EN_ICHG_MON bits = 11.  
4. STAT Pin State  
CHARGING STATE  
STAT INDICATOR  
Charging in progress (including recharge)  
Charging complete  
LOW  
HIGH  
HIGH  
Sleep mode, charge disable  
22  
版权 © 2017, Texas Instruments Incorporated  
bq25600C  
www.ti.com.cn  
ZHCSGR7 SEPTEMBER 2017  
4. STAT Pin State (接下页)  
CHARGING STATE  
STAT INDICATOR  
Charge suspend (input overvoltage, TS fault, timer fault or system overvoltage)  
Blinking at 1 Hz  
8.3.8.3 Interrupt to Host (INT)  
In some applications, the host does not always monitor the charger operation. The INT pulse notifies the system  
on the device operation. The following events will generate 256-μs INT pulse.  
USB/adapter source identified (through PSEL or DPDMdetection)  
Good input source detected  
VBUS above battery (not in sleep)  
VBUS below VVAC_OV threshold  
VBUS above VVBUSMin (typical 3.8 V) when IBADSRC (typical 30 mA) current is applied (not a poor source)  
input removed  
Charge Complete  
Any FAULT event in REG09  
VINDPM / IINDPM event detected (maskable)  
When a fault occurs, the charger device sends out INT and keeps the fault state in REG09 until the host reads  
the fault register. Before the host reads REG09 and all the faults are cleared, the charger device would not send  
any INT upon new faults. To read the current fault status, the host has to read REG09 two times consecutively.  
The first read reports the pre-existing fault register status and the second read reports the current fault register  
status.  
8.3.9 Protections  
8.3.9.1 Voltage and Current Monitoring in Converter Operation  
The device closely monitors the input and system voltage, as well as internal FET currents for safe buck mode  
operation.  
8.3.9.1.1 Voltage and Current Monitoring in Buck Mode  
8.3.9.1.1.1 Input Overvoltage (ACOV)  
This device integrates the functionality of an overvoltage protector. The input voltage is sensed via the VAC pin.  
The OVP threshold defaults to 6.2V, but can be programmed at 5.5V, 6.2V, 10.5V, or 14.3V via OVP register  
bits. The ACOV circuit has a reaction time of tAC_OV_FLT  
.
During input overvoltage event (ACOV), the fault register CHRG_FAULT bits are set to 01. An INT pulse is  
asserted to the host. The device will automatically resume normal operation once the input voltage drops back  
below the OVP threshold.  
8.3.9.2 Thermal Regulation and Thermal Shutdown  
8.3.9.2.1 Thermal Protection in Buck Mode  
The bq25600C device monitors the internal junction temperature TJ to avoid overheat the chip and limits the  
device surface temperature in buck mode. When the internal junction temperature exceeds thermal regulation  
limit (110°C), the device lowers down the charge current. During thermal regulation, the actual charging current is  
usually below the programmed battery charging current. Therefore, termination is disabled, the safety timer runs  
at half the clock rate, and the status register THERM_STAT bit goes high.  
Additionally, the device has thermal shutdown to turn off the converter and BATFET when device surface  
temperature exceeds TSHUT(160ºC). The fault register CHRG_FAULT is set to 1 and an INT is asserted to the  
host. The BATFET and converter is enabled to recover when IC temperature is TSHUT_HYS (30ºC) below  
TSHUT(160ºC).  
Copyright © 2017, Texas Instruments Incorporated  
23  
bq25600C  
ZHCSGR7 SEPTEMBER 2017  
www.ti.com.cn  
8.3.9.3 Battery Protection  
8.3.9.3.1 Battery overvoltage Protection (BATOVP)  
The battery overvoltage limit is clamped at 4% above the battery regulation voltage. When battery over voltage  
occurs, the charger device immediately disables charging. The fault register BAT_FAULT bit goes high and an  
INT is asserted to the host.  
8.3.10 Serial interface  
The device uses I2C compatible interface for flexible charging parameter programming and instantaneous device  
status reporting. I2CTM is a bi-directional 2-wire serial interface developed by Philips Semiconductor (now NXP  
Semiconductors). Only two bus lines are required: a serial data line (SDA) and a serial clock line (SCL). Devices  
can be considered as masters or slaves when performing data transfers. A master is the device which initiates a  
data transfer on the bus and generates the clock signals to permit that transfer. At that time, any device  
addressed is considered a slave.  
The device operates as a slave device with address 6AH, receiving control inputs from the master device like  
micro controller or a digital signal processor through REG00-REG0B. Register read beyond REG0B (0x0B)  
returns 0xFF. The I2C interface supports both standard mode (up to 100 kbits), and fast mode (up to 400 kbits).  
connecting to the positive supply voltage via a current source or pull-up resistor. When the bus is free, both lines  
are HIGH. The SDA and SCL pins are open drain.  
8.3.10.1 Data Validity  
The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the  
data line can only change when the clock signal on the SCL line is LOW. One clock pulse is generated for each  
data bit transferred.  
SDA  
SCL  
Data line stable;  
Data valid  
Change of data  
allowed  
Figure 11. Bit Transfer on the I2C Bus  
8.3.10.2 START and STOP Conditions  
All transactions begin with a START (S) and can be terminated by a STOP (P). A HIGH to LOW transition on the  
SDA line while SCl is HIGH defines a START condition. A LOW to HIGH transition on the SDA line when the  
SCL is HIGH defines a STOP condition. START and STOP conditions are always generated by the mAster. The  
bus is considered busy after the START condition, and free after the STOP condition.  
SDA  
SCL  
SDA  
SCL  
START (S)  
STOP (P)  
Figure 12. TS START and STOP conditions  
24  
Copyright © 2017, Texas Instruments Incorporated  
bq25600C  
www.ti.com.cn  
ZHCSGR7 SEPTEMBER 2017  
8.3.10.3 Byte Format  
Every byte on the SDA line must be 8 bits long. The number of bytes to be transmitted per transfer is  
unrestricted. Each byte has to be followed by an Acknowledge bit. Data is transferred with the Most Significant  
Bit (MSB) first. If a slave cannot receive or transmit another complete byte of data until it has performed some  
other function, it can hold the clock line SCL low to force the mAster into a wait state (clock stretching). Data  
transfer then continues when the slave is ready for another byte of data and release the clock line SCL.  
Acknowledgement  
signal from slave  
Acknowledgement  
signal from receiver  
MSB  
1
SDA  
SCL  
2
7
8
9
1
2
8
9
S or Sr  
P or Sr  
START or  
Repeated  
START  
STOP or  
Repeated  
START  
ACK  
ACK  
Figure 13. Data Transfer on the I2C Bus  
8.3.10.4 Acknowledge (ACK) and Not Acknowledge (NACK)  
The acknowledge takes place after every byte. The acknowledge bit allows the receiver to signal the transmitter  
that the byte was successfully received and another byte may be sent. All clock pulses, including the  
acknowledge ninth clock pulse, are generated by the mAster. The transmitter releases the SDA line during the  
acknowledge clock pulse so the receiver can pull the SDA line LOW and it remains stable LOW during the HIGH  
period of this clock pulse.  
When SDA remains HIGH during the ninth clock pulse, this is the Not Acknowledge signal. The mAster can then  
generate either a STOP to abort the transfer or a repeated START to start a new transfer.  
8.3.10.5 Slave Address and Data Direction Bit  
After the START, a slave address is sent. This address is 7 bits long followed by the eighth bit as a data direction  
bit (bit R/W). A zero indicates a transmission (WRITE) and a one indicates a request for data (READ).  
SDA  
1 - 7  
8
9
1-7  
8
9
1-7  
8
9
S
P
SCL  
START  
ADDRESS  
R / W  
ACK  
DATA  
ACK  
DATA  
ACK  
STOP  
Figure 14. Complete Data Transfer  
8.3.10.6 Single Read and Write  
If the register address is not defined, the charger IC send back NACK and go back to the idle state.  
1
7
1
0
1
8
1
8
1
1
S
Slave Address  
ACK  
Reg Addr  
ACK  
Data to Addr  
ACK  
P
Figure 15. Single Write  
Copyright © 2017, Texas Instruments Incorporated  
25  
bq25600C  
ZHCSGR7 SEPTEMBER 2017  
www.ti.com.cn  
1
7
1
0
1
8
1
1
7
1
1
1
S
Slave Address  
ACK  
Reg Addr  
ACK  
S
Slave Addr  
ACK  
8
1
1
Data  
NCK  
P
Figure 16. Single Read  
8.3.10.7 Multi-Read and Multi-Write  
The charger device supports multi-read and multi-write on REG00 through REG0B.  
1
7
1
0
1
8
1
S
Slave Address  
ACK  
Reg Addr  
ACK  
8
1
8
1
8
1
1
Data to Addr  
ACK  
Data to Addr + N  
ACK  
Data to Addr + N  
ACK  
P
Figure 17. Multi-Write  
1
7
1
1
8
1
1
7
1
1
1
S
Slave Address  
0
ACK  
Reg Addr  
ACK  
S
Slave Address  
ACK  
8
1
8
1
8
1
1
Data @ Addr  
ACK  
Data @ Addr + 1  
ACK  
Data @ Addr + N NCK  
P
Figure 18. Multi-Read  
REG09 is a fault register. It keeps all the fault information from last read until the host issues a new read. For  
example, if Charge Safety Timer Expiration fault occurs but recovers later, the fault register REG09 reports the  
fault when it is read the first time, but returns to normal when it is read the second time. in order to get the fault  
information at present, the host has to read REG09 for the second time. The only exception is NTC_FAULT  
which always reports the actual condition on the TS pin. in addition, REG09 does not support multi-read and  
multi-write.  
26  
版权 © 2017, Texas Instruments Incorporated  
bq25600C  
www.ti.com.cn  
ZHCSGR7 SEPTEMBER 2017  
8.4 Register Maps  
I2C Slave Address: 6AH  
8.4.1 REG00  
5. REG00 Field Descriptions  
Bit  
Field  
POR  
Type Reset  
Description  
Comment  
7
Enable HIZ Mode  
0 – Disable (default)  
1 – Enable  
by REG_RST  
by Watchdog  
EN_HIZ  
0
R/W  
0 – Disable, 1 – Enable  
6
5
4
3
2
1
Reserved  
Reserved  
IINDPM[4]  
IINDPM[3]  
IINDPM[2]  
IINDPM[1]  
1
0
1
1
R/W by REG_RST 1600 mA  
R/W by REG_RST 800 mA  
R/W by REG_RST 400 mA  
R/W by REG_RST 200 mA  
Input Current Limit  
Offset: 100 mA  
Range: 100 mA (000000) – 3.2 A  
(11111)  
Default:, maximum input current  
limit, not typical.  
IINDPM bits are changed  
automatically after input source  
detection is completed  
bq25600C  
PSEL = Hi = 500 mA  
PSEL = Lo =  
0
IINDPM[0]  
1
R/W by REG_RST 100 mA  
Host can over-write IINDPM  
register bits after input source  
detection is completed.  
LEGEND: R/W = Read/Write; R = Read only  
版权 © 2017, Texas Instruments Incorporated  
27  
bq25600C  
ZHCSGR7 SEPTEMBER 2017  
www.ti.com.cn  
8.4.2 REG01  
6. REG01 Field Descriptions  
Bit  
Field  
POR  
Type Reset  
Description  
Comment  
0 – Enable PFM  
1 – Disable PFM  
7
PFM _DIS  
0
R/W by REG_RST  
Default: 0 - Enable  
I2C Watchdog Timer Reset 0 –  
Normal ; 1 – Reset  
Default: Normal (0) Back to 0 after  
watchdog timer reset  
by REG_RST  
R/W  
6
5
WD_RST  
Reserved  
0
1
by Watchdog  
Default: Charge Battery (1)  
Note:  
1. Charge is enabled when both  
CE pin is pulled low AND  
CHG_CONFIG bit is 1.  
by REG_RST  
R/W  
0 - Charge Disable  
1- Charge Enable  
4
CHG_CONFIG  
by Watchdog  
3
2
SYS_Min[2]  
SYS_Min[1]  
1
0
R/W by REG_RST  
R/W by REG_RST  
000: 2.6 V  
001: 2.8 V  
010: 3 V  
011: 3.2 V  
100: 3.4 V  
101: 3.5 V  
110: 3.6 V  
111: 3.7 V  
Default: 3.5 V (101)  
System Minimum Voltage  
1
0
SYS_Min[0]  
Reserved  
1
R/W by REG_RST  
LEGEND: R/W = Read/Write; R = Read only  
28  
版权 © 2017, Texas Instruments Incorporated  
bq25600C  
www.ti.com.cn  
ZHCSGR7 SEPTEMBER 2017  
8.4.3 REG02  
7. REG02 Field Descriptions  
Bit  
Field  
POR  
Type Reset  
Description  
Comment  
7
Reserved  
by REG_RST 0 – Use higher Q1 RDSON when  
programmed IINDPM < 700mA  
(better accuracy)  
6
Q1_FULLON  
0
R/W  
1 – Use lower Q1 RDSON always  
(better efficiency)  
by REG_RST  
by Watchdog  
5
4
3
2
1
0
ICHG[5]  
ICHG[4]  
ICHG[3]  
ICHG[2]  
ICHG[1]  
ICHG[0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
by REG_RST  
by Watchdog  
Fast Charge Current  
Default: 2040mA (100010)  
Range: 0 mA (0000000) – 3000  
mA (110010)  
0
1
by REG_RST  
by Watchdog  
Note:  
by REG_RST  
by Watchdog  
ICHG = 0 mA disables charge.  
ICHG > 3000 mA (110010 clamped  
to register value 3000 mA  
(110010))  
by REG_RST  
by Watchdog  
by REG_RST  
by Watchdog  
LEGEND: R/W = Read/Write; R = Read only  
版权 © 2017, Texas Instruments Incorporated  
29  
bq25600C  
ZHCSGR7 SEPTEMBER 2017  
www.ti.com.cn  
8.4.4 REG03  
8. REG03 Field Descriptions  
Bit  
Field  
POR  
Type Reset  
Description  
Comment  
7
IPRECHG[3]  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
by REG_RST  
by Watchdog  
Precharge Current  
Default: 180 mA (0010)  
Offset: 60 mA  
Note: IPRECHG > clamped to  
(1100)  
6
5
4
3
2
1
0
IPRECHG[2]  
IPRECHG[1]  
IPRECHG[0]  
ITERM[3]  
0
by REG_RST  
by Watchdog  
by REG_RST  
by Watchdog  
by REG_RST  
by Watchdog  
0
0
by REG_RST  
by Watchdog  
Termination Current  
Default: 180 mA (0010)  
Offset: 60 mA  
Note: ITERM > 780 mA clamped  
to (1100)  
ITERM[2]  
by REG_RST  
by Watchdog  
ITERM[1]  
by REG_RST  
by Watchdog  
ITERM[0]  
by REG_RST  
by Watchdog  
LEGEND: R/W = Read/Write; R = Read only  
30  
版权 © 2017, Texas Instruments Incorporated  
bq25600C  
www.ti.com.cn  
ZHCSGR7 SEPTEMBER 2017  
8.4.5 REG04  
9. REG04 Field Descriptions  
Bit  
Field  
POR  
Type Reset  
Description  
Comment  
by REG_RST  
by Watchdog  
7
VREG[4]  
0
R/W  
R/W  
R/W  
R/W  
R/W  
512 mV  
Charge Voltage  
Offset: 3.856 V  
by REG_RST  
by Watchdog  
6
5
4
3
VREG[3]  
VREG[2]  
VREG[1]  
VREG[0]  
1
0
1
1
256 mV  
128 mV  
64 mV  
32 mV  
Range: 3.856  
(11000)  
V
to 4.624  
V
by REG_RST  
by Watchdog  
Default: 4.208 V (01011)  
Special Value:  
by REG_RST  
by Watchdog  
(01111): 4.352 V  
Note: Value above 11000 (4.624  
V) is clamped to register value  
11000 (4.624 V)  
by REG_RST  
by Watchdog  
2
1
Reserved  
Reserved  
by REG_RST  
by Watchdog  
0 – 100 mV  
1 – 200 mV  
Recharge threshold  
Default: 100mV (0)  
0
VRECHG  
0
R/W  
LEGEND: R/W = Read/Write; R = Read only  
版权 © 2017, Texas Instruments Incorporated  
31  
bq25600C  
ZHCSGR7 SEPTEMBER 2017  
www.ti.com.cn  
8.4.6 REG05  
10. REG05 Field Descriptions  
Bit  
Field  
POR  
Type Reset  
Description  
Comment  
by REG_RST 0 – Disable  
by Watchdog 1 – Enable  
7
EN_TERM  
1
R/W  
Default: Enable termination (1)  
Default: Enable OVPFET (0)  
Note: This bit only takes effect  
when EN_HIZ bit is active  
by REG_RST  
by Watchdog  
0 – Enable OVPFET  
1 – Disable OVPFET  
6
OVPFET_DIS  
0
R/W  
by REG_RST  
by Watchdog  
5
4
WATCHDOG[1]  
WATCHDOG[0]  
0
1
R/W  
R/W  
00 – Disable timer, 01 – 40 s, 10 –  
80 s,11 – 160 s  
Default: 40 s (01)  
by REG_RST  
by Watchdog  
0 – Disable  
1 – Enable both fast charge and  
precharge timer  
by REG_RST  
by Watchdog  
3
2
EN_TIMER  
1
1
1
R/W  
R/W  
R/W  
Default: Enable (1)  
Default: 10 hours (1)  
Default: 110°C (1)  
by REG_RST 0 – 5 hrs  
by Watchdog 1 – 10 hrs  
CHG_TIMER  
Thermal Regulation Threshold:  
by REG_RST  
by Watchdog  
1
0
TREG  
0 - 90°C  
1 - 110°C  
Reserved  
LEGEND: R/W = Read/Write; R = Read only  
32  
版权 © 2017, Texas Instruments Incorporated  
bq25600C  
www.ti.com.cn  
ZHCSGR7 SEPTEMBER 2017  
8.4.7 REG06  
11. REG06 Field Descriptions  
Bit  
Field  
POR  
Type Reset  
Description  
Comment  
7
OVP[1]  
0
R/W by REG_RST  
R/W by REG_RST  
VAC OVP threshold:  
00 - 5.5 V  
01 – 6.5 V (5-V input)  
10 – 10.5 V (9-V input)  
11 – 14 V (12-V input)  
Default: 6.5V (01)  
6
OVP[0]  
1
5
4
3
2
1
0
Reserved  
Reserved  
VINDPM[3]  
VINDPM[2]  
VINDPM[1]  
VINDPM[0]  
0
1
1
0
R/W by REG_RST 800 mV  
R/W by REG_RST 400 mV  
R/W by REG_RST 200 mV  
R/W by REG_RST 100 mV  
Absolute VINDPM Threshold  
Offset: 3.9 V  
Range: 3.9 V (0000) – 5.4 V  
(1111)  
Default: 4.5V (0110)  
LEGEND: R/W = Read/Write; R = Read only  
版权 © 2017, Texas Instruments Incorporated  
33  
bq25600C  
ZHCSGR7 SEPTEMBER 2017  
www.ti.com.cn  
8.4.8 REG07  
12. REG07 Field Descriptions  
Bit  
Field  
POR  
Type Reset  
Description  
Comment  
7
Reserved  
0 – Disable  
by REG_RST  
by Watchdog  
1 – Safety timer slowed by 2X  
during input DPM (both V and I) or  
thermal regulation  
6
TMR2X_EN  
1
0
R/W  
0 – Allow Q4 turn on, 1 – Turn off  
5
4
BATFET_DIS  
Reserved  
R/W by REG_RST Q4 with tBATFET_DLY delay time  
(REG07[3])  
Default: Allow Q4 turn on(0)  
0 – Turn off BATFET immediately  
when BATFET_DIS bit is set  
R/W by REG_RST 1 –Turn off BATFET after  
tBATFET_DLY (typ. 10 s) when  
Default: 1  
Turn off BATFET after tBATFET_DLY  
(typ. 10 s) when BATFET_DIS bit  
is set  
3
BATFET_DLY  
1
BATFET_DIS bit is set  
by REG_RST  
by Watchdog  
0 – Disable BATFET reset function Default: 1  
1 – Enable BATFET reset function Enable BATFET reset function  
2
1
BATFET_RST_EN  
1
0
R/W  
VDPM_BAT_TRACK[1]  
R/W by REG_RST 00 - Disable function (VINDPM set  
Sets VINDPM to track BAT  
voltage. Actual VINDPM is higher  
of register value and VBAT +  
VDPM_BAT_TRACK  
by register)  
01 - VBAT + 200mV  
10 - VBAT + 250mV  
11 - VBAT + 300mV  
0
VDPM_BAT_TRACK[0]  
0
R/W by REG_RST  
LEGEND: R/W = Read/Write; R = Read only  
34  
版权 © 2017, Texas Instruments Incorporated  
bq25600C  
www.ti.com.cn  
ZHCSGR7 SEPTEMBER 2017  
8.4.9 REG08  
13. REG08 Field Descriptions  
Bit  
7
Field  
POR  
Type Reset  
Description  
VBUS_STAT[2]  
VBUS_STAT[1]  
x
x
R
R
NA  
NA  
VBUS Status register  
bq25600C  
000: No input  
6
001: USB Host SDP (500 mA) PSEL HIGH  
010: Adapter PSEL LOW  
111: Reserved  
5
VBUS_STAT[0]  
x
R
NA  
Software current limit is reported in IINDPM register  
4
3
CHRG_STAT[1]  
CHRG_STAT[0]  
x
x
R
R
NA  
NA  
Charging status:  
00 – Not Charging  
01 – Pre-charge (< VBATLOWV  
10 – Fast Charging  
)
11 – Charge Termination  
Power Good status:  
0 – Power Not Good  
1 – Power Good  
2
PG_STAT  
x
R
NA  
0 – Not in ther mAl regulation  
1 – in ther mAl regulation  
1
0
THERM_STAT  
VSYS_STAT  
x
x
R
R
NA  
NA  
0 – Not in VSYSMin regulation (BAT > VSYSMin)  
1 – in VSYSMin regulation (BAT < VSYSMin)  
LEGEND: R/W = Read/Write  
版权 © 2017, Texas Instruments Incorporated  
35  
bq25600C  
ZHCSGR7 SEPTEMBER 2017  
www.ti.com.cn  
8.4.10 REG09  
14. REG09 Field Descriptions  
Bit  
7
Field  
POR  
Type Reset  
Description  
WATCHDOG_FAULT  
Reserved  
x
R
NA  
0 – Normal, 1- Watchdog timer expiration  
6
5
CHRG_FAULT[1]  
CHRG_FAULT[0]  
BAT_FAULT  
Reserved  
x
x
x
R
R
R
NA  
NA  
NA  
00 – Normal, 01 – input fault (VAC OVP or VBAT < VBUS < 3.8 V), 10 -  
Thermal shutdown, 11 – Charge Safety Timer Expiration  
4
3
0 – Normal, 1 – BATOVP  
2
1
Reserved  
0
Reserved  
LEGEND: R/W = Read/Write; R = Read only  
36  
版权 © 2017, Texas Instruments Incorporated  
bq25600C  
www.ti.com.cn  
ZHCSGR7 SEPTEMBER 2017  
8.4.11 REG0A  
15. REG0A Field Descriptions  
Bit  
Field  
POR  
Type Reset  
Description  
0 – Not VBUS attached,  
1 – VBUS Attached  
7
VBUS_GD  
x
R
NA  
6
5
4
3
VINDPM_STAT  
IINDPM_STAT  
Reserved  
x
x
x
R
R
R
NA  
NA  
NA  
0 – Not in VINDPM, 1 – in VINDPM  
0 – Not in IINDPM, 1 – in IINDPM  
Reserved  
0 – Device is NOT in ACOV  
1 – Device is in ACOV  
2
1
0
ACOV_STAT  
x
0
0
R
NA  
0 - Allow VINDPM INT pulse  
1 - Mask VINDPM INT pulse  
VINDPM_INT_ MASK  
IINDPM_INT_ MASK  
R/W by REG_RST  
R/W by REG_RST  
0 - Allow IINDPM INT pulse  
1 - Mask IINDPM INT pulse  
LEGEND: R/W = Read/Write; R = Read only  
版权 © 2017, Texas Instruments Incorporated  
37  
bq25600C  
ZHCSGR7 SEPTEMBER 2017  
www.ti.com.cn  
8.4.12 REG0B  
16. REG0B Field Descriptions  
Bit  
Field  
POR  
Type Reset  
Description  
Register reset  
0 – Keep current register setting  
1 – Reset to default register value and reset safety timer  
Note: Bit resets to 0 after register reset is completed  
7
REG_RST  
0
R/W NA  
6
5
4
3
2
1
0
PN[3]  
x
x
x
x
R
R
R
R
NA  
NA  
NA  
NA  
PN[2]  
bq25600C: 0110  
PN[1]  
PN[0]  
Reserved  
DEV_REV[1]  
DEV_REV[0]  
x
x
R
R
NA  
NA  
LEGEND: R/W = Read/Write; R = Read only  
9 Application and Implementation  
information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application information  
A typical application consists of the device configured as an I2C controlled parallel charger with a main charger  
bq25600 to fast charge single cell Li-Ion and Li-polymer batteries used in a wide range of smart phones and  
other portable devices. bq25600 and bq25660C have different I2C address so that two devices can share the  
same I2C bus.  
38  
版权 © 2017, Texas Instruments Incorporated  
bq25600C  
www.ti.com.cn  
ZHCSGR7 SEPTEMBER 2017  
9.2 Typical Application Diagram  
VIN  
3.9V œ 13.5V  
SYSTEM  
3.5V œ 4.6V  
1 H  
VBUS  
PMID  
SW  
1 F  
10 F  
47 nF  
BTST  
REGN  
10 F  
4.7 µF  
GND  
SYS  
bq25600  
(Main Charger)  
BAT  
VREF  
10 F  
REGN  
5.23 kꢁ  
SDA  
SCL  
/INT  
TS  
Host  
+
30.1 k10 kꢁ  
/QON  
Optional  
1 H  
VBUS  
SW  
10 F  
1 F  
47 nF  
PMID  
BTST  
REGN  
10 F  
4.7 µF  
GND  
SYS  
bq25600C  
(Parallel Charger)  
SDA  
SCL  
/INT  
BAT  
10 F  
Copyright © 2017, Texas Instruments Incorporated  
19. Parallel Charger Application  
版权 © 2017, Texas Instruments Incorporated  
39  
bq25600C  
ZHCSGR7 SEPTEMBER 2017  
www.ti.com.cn  
Typical Application Diagram (接下页)  
9.2.1 Design Requirements  
9.2.2 Detailed Design Procedure  
9.2.2.1 Inductor Selection  
The 1.5-MHz switching frequency allows the use of small inductor and capacitor values to maintain an inductor  
saturation current higher than the charging current (ICHG) plus half the ripple current (IRIPPLE):  
ISAT ICHG + (1/2) IRIPPLE  
(1)  
The inductor ripple current depends on the input voltage (VVBUS), the duty cycle (D = VBAT/VVBUS), the switching  
frequency (fS) and the inductance (L).  
VIN ´D ´ (1- D)  
=
IRIPPLE  
fs ´ L  
(2)  
The maximum inductor ripple current occurs when the duty cycle (D) is 0.5 or approximately 0.5. Usually inductor  
ripple is designed in the range between 20% and 40% maximum charging current as a trade-off between  
inductor size and efficiency for a practical design.  
9.2.2.2 input Capacitor  
Design input capacitance to provide enough ripple current rating to absorb input switching ripple current. The  
worst case RMS ripple current is half of the charging current when duty cycle is 0.5. If the converter does not  
operate at 50% duty cycle, then the worst case capacitor RMS current ICin occurs where the duty cycle is closest  
to 50% and can be estimated using 公式 3.  
ICIN = ICHG ´ D ´ (1- D)  
(3)  
Low ESR ceramic capacitor such as X7R or X5R is preferred for input decoupling capacitor and should be  
placed to the drain of the high-side MOSFET and source of the low-side MOSFET as close as possible. Voltage  
rating of the capacitor must be higher than normal input voltage level. A rating of 25-V or higher capacitor is  
preferred for 15 V input voltage. Capacitance of 22-μF is suggested for typical of 3A charging current.  
9.2.2.3 Output Capacitor  
Ensure that the output capacitance has enough ripple current rating to absorb the output switching ripple current.  
公式 4 shows the output capacitor RMS current ICOUT calculation.  
IRIPPLE  
ICOUT  
=
» 0.29 ´ IRIPPLE  
2 ´  
3
(4)  
The output capacitor voltage ripple can be calculated as follows:  
æ
ç
è
ö
VOUT  
8LCfs2  
VOUT  
V
DVO =  
1-  
÷
IN ø  
(5)  
At certain input and output voltage and switching frequency, the voltage ripple can be reduced by increasing the  
output filter LC.  
The charger device has internal loop compensation optimized for >20μF ceramic output capacitance. The  
preferred ceramic capacitor is 10V rating, X7R or X5R.  
40  
版权 © 2017, Texas Instruments Incorporated  
 
 
bq25600C  
www.ti.com.cn  
ZHCSGR7 SEPTEMBER 2017  
9.3 Application Curves  
VVBUS = 5 V  
VVBAT = 3.2 V  
VVBUS = 5 V  
ICHG = 2 A  
VVBAT = 3.2 V  
20. Power-Up with Charge Disabled  
21. Power-Up with Charge Enabled  
VVBUS = 5 V  
ISYS = 50 mA  
VVBUS = 9 V  
ISYS = 50 mA  
Charge Disabled  
Charge Disabled  
22. PFM Switching in Buck Mode  
23. PFM Switching in Buck Mode  
VVBUS = 12 V  
ISYS = 50 mA  
VVBUS = 5 V  
ICHG = 2 A  
VVBAT = 3.8 V  
Charge Disabled  
24. PFM Switching in Buck Mode  
25. PWM Switching in Buck Mode  
版权 © 2017, Texas Instruments Incorporated  
41  
bq25600C  
ZHCSGR7 SEPTEMBER 2017  
www.ti.com.cn  
Application Curves (接下页)  
VVBUS = 12 V  
ICHG = 2 A  
VVBAT = 3.8 V  
VVBUS = 5 V  
ICHG = 2 A  
VVBAT = 3.2 V  
26. PWM Switching in Buck mode  
27. Charge Enable  
VVBUS = 5 V  
ICHG = 2 A  
VVBAT = 3.2 V  
28. Charge Disable  
42  
版权 © 2017, Texas Instruments Incorporated  
bq25600C  
www.ti.com.cn  
ZHCSGR7 SEPTEMBER 2017  
10 Power Supply Recommendations  
In order to provide an output voltage on the SYS pins, the bq25600C device requires a power supply between  
3.9 V and 14.2 V input with at least 100-mA current rating connected to VBUS and a single-cell Li-Ion battery  
with voltage > VBATUVLO connected to BAT. The source current rating needs to be at least 3 A in order for the  
buck converter of the charger to provide maximum output power to SYS.  
版权 © 2017, Texas Instruments Incorporated  
43  
bq25600C  
ZHCSGR7 SEPTEMBER 2017  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
The switching node rise and fall times should be minimized for minimum switching loss. Proper layout of the  
components to minimize high frequency current path loop (see 29) is important to prevent electrical  
andmagnetic field radiation and high frequency resonant problems.  
IMPORTANT  
It is essential to follow this specific layout PCB order.  
Place input capacitor as close as possible to PMID pin and GND pin connections and use shortest copper  
trace connection or GND plane.  
Put output capacitor near to the inductor and the device.  
Decoupling capacitors should be placed next to the device pins and make trace connection as short as  
possible.  
Place inductor input terminal to SW pin as close as possible. Minimize the copper area of this trace to lower  
electrical and magnetic field radiation but make the trace wide enough to carry the charging current. Do not  
use multiple layers in parallel for this connection. Minimize parasitic capacitance from this area to any other  
trace or plane.  
It is OK to connect all grounds together to reduce PCB size and improve thermal dissipation.  
Try to avoid ground planes in parallel with high frequency traces in other layers.  
See the EVM design for the recommended component placement with trace and via locations.  
11.2 Layout Example  
+
+
œ
29. High Frequency Current Path  
44  
版权 © 2017, Texas Instruments Incorporated  
 
bq25600C  
www.ti.com.cn  
ZHCSGR7 SEPTEMBER 2017  
12 器件和文档支持  
12.1 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.2 商标  
E2E is a trademark of Texas Instruments.  
12.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
版权 © 2017, Texas Instruments Incorporated  
45  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ25600CYFFR  
BQ25600CYFFT  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YFF  
YFF  
30  
30  
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
BQ25600C  
BQ25600C  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
YFF0030  
DSBGA - 0.625 mm max height  
S
C
A
L
E
4
.
5
0
0
DIE SIZE BALL GRID ARRAY  
B
E
A
BUMP A1  
CORNER  
D
C
0.625 MAX  
SEATING PLANE  
0.05 C  
BALL TYP  
0.30  
0.12  
1.6 TYP  
SYMM  
F
E
D: Max = 2.392 mm, Min =2.332 mm  
E: Max = 1.992 mm, Min =1.931 mm  
D
C
SYMM  
2
TYP  
B
A
0.4 TYP  
1
2
4
5
3
0.3  
30X  
0.4 TYP  
0.2  
0.015  
C A B  
4219433/A 03/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YFF0030  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
3
30X ( 0.23)  
(0.4) TYP  
2
4
5
1
A
B
C
SYMM  
D
E
F
SYMM  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.05 MAX  
0.05 MIN  
(
0.23)  
(
0.23)  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4219433/A 03/2016  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFF0030  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
30X ( 0.25)  
(R0.05) TYP  
1
3
2
4
5
A
B
(0.4)  
TYP  
METAL  
TYP  
C
D
E
F
SYMM  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4219433/A 03/2016  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY