BQ25600D [TI]

具有电源路径、USB 检测和 OTG 且采用 WCSP 封装的 I2C 单节 3A 降压电池充电器;
BQ25600D
型号: BQ25600D
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有电源路径、USB 检测和 OTG 且采用 WCSP 封装的 I2C 单节 3A 降压电池充电器

电池
文件: 总66页 (文件大小:2298K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
BQ25600 and BQ25600D 用于高输入电压NVDC 电源路径管理I2C 控制型  
单节电3.0A 降压电池充电器  
17µA 低电池泄漏电流  
• 高精度  
1 特性  
• 高1.5 MHz 同步开关模式降压充电器  
– 充电电压调节范围±0.5%  
1.38A 充电电流调节范围±6%  
0.9A 输入电流调节范围±10%  
– 用于快速充电的远程电池感应  
2A 电流5V 输入下具92% 的充电效率  
– 针USB 电压输(5V) 进行了优化  
– 用于轻负载运行的可选低功耗脉冲频率调制  
(PFM) 模式  
2 应用  
• 支USB On-The-Go (OTG)  
智能手机  
手机附件  
医疗设备  
– 具有高1.2A 输出的升压转换器  
1A 输出下具92% 的升压效率  
– 精确的恒定电(CC) 限制  
– 高500µF 容性负载的软启动  
– 输出短路保护  
– 低功PFM 模式适合轻载运行  
• 单个输入USB 输入和高电压适配器  
3 说明  
BQ25600 and BQ25600D 是高度集成的 3.0A 开关模  
式电池充电管理和系统电源路径管理器件适用于单节  
锂离子和锂聚合物电池。其低阻抗电源路径对开关模式  
运行效率进行了优化、缩短了电池充电时间并延长了放  
电阶段的电池使用寿命。具有充电和系统设置的 I2C 串  
行接口使得此器件成为一种真正灵活的解决方案。  
– 支3.9V 13.5V 输入电压范围绝对最大输  
入电压额定值22V  
– 可编程输入电流限制100 mA 3.2A分辨率  
100 mA),USB 2.0USB 3.0 标准和  
高压适配(IINDPM)  
– 通过高5.4V 的输入电压限(VINDPM) 进行  
最大功率跟踪  
VINDPM 阈值自动跟踪电池电压  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
BQ25600  
BQ25600D  
WCSP (30)  
2.00mm × 2.40mm  
– 自动检USB SDPDCP 以及非标准适配器  
• 高电池放电效率电池放MOSFET 19.5 mΩ  
VDC (NVDC) 电源路径管理  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
– 无需电池或深度放电的电池即可瞬时启动  
– 电池充电模式下实现理想二极管运行  
BATFET 控制支持运输模式、唤醒和完全系统复  
• 灵活的自主I2C 模式可实现最优系统性能  
• 高集成度包括所MOSFET、电流感测和环路补  
USB  
Host  
VBUS  
SW  
I2C Bus  
BTST  
SYS  
BAT  
Host Control  
ICHG  
REGN  
+
QON  
Optional  
TS  
简化版应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSCJ4  
 
 
 
 
 
 
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
Table of Contents  
8.5 Programming............................................................ 33  
8.6 Register Maps...........................................................36  
9 Application and Implementation..................................47  
9.1 Application Information............................................. 47  
9.2 Typical Application.................................................... 48  
10 Power Supply Recommendations..............................55  
11 Layout...........................................................................56  
11.1 Layout Guidelines................................................... 56  
11.2 Layout Example...................................................... 56  
12 Device and Documentation Support..........................57  
12.1 Device Support....................................................... 57  
12.2 接收文档更新通知................................................... 57  
12.3 支持资源..................................................................57  
12.4 Trademarks.............................................................57  
12.5 Electrostatic Discharge Caution..............................57  
12.6 术语表..................................................................... 57  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................4  
6 Pin Configuration and Functions...................................5  
7 Specifications.................................................................. 8  
7.1 Absolute Maximum Ratings........................................ 8  
7.2 ESD Ratings............................................................... 8  
7.3 Recommended Operating Conditions.........................8  
7.4 Thermal Information....................................................9  
7.5 Electrical Characteristics.............................................9  
7.6 Timing Requirements................................................14  
7.7 Typical Characteristics..............................................16  
8 Detailed Description......................................................18  
8.1 Overview...................................................................18  
8.2 Functional Block Diagram.........................................19  
8.3 Feature Description...................................................20  
8.4 Device Functional Modes..........................................29  
Information.................................................................... 58  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (August 2017) to Revision B (March 2022)  
Page  
• 删除了整个数据表中WEBENCH.................................................................................................................... 1  
Deleted VREGN MAX values in Electrical Characteristics table...........................................................................9  
Added last sentence to 8.3.3.5 ....................................................................................................................22  
Changed 8-3 ............................................................................................................................................... 25  
Changed 8-4 ............................................................................................................................................... 25  
Added 8-5 ....................................................................................................................................................25  
Changed 8-6 ............................................................................................................................................... 26  
Added 8.4 ....................................................................................................................................................29  
Changed 8-7 ............................................................................................................................................... 29  
Changed description of exiting shipping mode from QON pin .........................................................................31  
Added 8.5 ....................................................................................................................................................33  
Changed BQ25600 010 to 011 in Description in 8-15 .................................................................................44  
Deleted PG pin in 9-2 ..................................................................................................................................48  
Added 9-1 ....................................................................................................................................................49  
Changes from Revision * (June 2017) to Revision A (August 2017)  
Page  
• 更改了数据表标题...............................................................................................................................................1  
• 从1 中删除了“200 nS 快速关闭”................................................................................................................ 1  
• 更改了简化版应用原理图.................................................................................................................................... 1  
Deleted ACDRV pin references from Pin Functions table.................................................................................. 5  
Changed VAC pin description in Pin Functions table......................................................................................... 5  
Changed ACDRV pin references to "NC" in 6 section................................................................................... 5  
Deleted ACDRV pin references from 7.1 table...............................................................................................8  
Added Input supply current specification (IVACVBUS_HIZ) in Electrical Characteristics table................................ 9  
Changed 8.2 ................................................................................................................................................19  
Changed Power Up from Input Source section................................................................................................ 20  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: BQ25600 BQ25600D  
 
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
Deleted Power Up OVPFET section.................................................................................................................20  
Deleted OVPFET Startup Control timing illustration ........................................................................................20  
Added subsection explaining D+/Ddetection ...............................................................................................21  
Changed Input Overvoltage (ACOV) section....................................................................................................27  
Changed Power Path Management Application schematic..............................................................................48  
Changed BQ25600D Applications Diagram schematic ................................................................................... 48  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: BQ25600 BQ25600D  
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
5 说明)  
BQ25600 and BQ25600D 支持高输入电压和快速充电功能适用于各类智能手机、平板电脑和便携式设备。其输  
入电压和电流调节以及电池远程感应可以为电池提供最大的充电功率。它还集成了一个自举二极管以进行高侧栅  
极驱动从而简化了系统设计。具有充电和系统设置I2C 串行接口使得此器件成为一个真正灵活的解决方案。  
该器件支持多种输入源包括标准 USB 主机端口、USB 充电端口以及兼USB 的高电压适配器。该器件根据内  
USB 接口设置默认输入电流限值。为了设置默认输入电流限值该器件使用内置 USB 接口或者从系统检测电  
USB PHY 器件中获取结果。该器件符合 USB 2.0 USB 3.0 电源规范具有输入电流和电压调节功  
能。该器件还具有高达 1.2 A 的恒定电流限制能力能够为 VBUS 提供 5.15V 的电压符合 USB On-the-Go  
(OTG) 运行功率额定值规格。  
电源路径管理将系统电压调节至稍高于电池电压的水平但是不会下降至 3.5V 最小系统电压可编程以下。借  
助于这个特性即使在电池电量完全耗尽或者电池被拆除时系统也能保持运行。当达到输入电流限值或电压限  
值时电源路径管理技术自动将充电电流减0。随着系统负载持续增加电源路径将使电池放电直到满足系统  
电源需求。这种补充模式可防止输入源过载。  
此器件无需软件控制即可启动并完成一个充电周期。它可感测电池电压并分三个阶段为电池充电预充电、恒定  
电流和恒定电压。在充电周期结束时当充电电流低于预设限值并且电池电压高于再充电阈值时充电器自动终  
止。如果充满电的电池降至再充电阈值以下则充电器自动开启另一个充电周期。  
此充电器提供针对电池充电和系统运行的多种安全特性其中包括电池负温度系数热敏电阻监视、充电安全性计  
时器和过压/过流保护。当结温超过 110°C可编程热调节会使充电电流减小。STAT 输出报告充电状态和  
任何故障状况。其他安全特性包括针对充电和升压模式的电池温度感应、热调节和热关断以及输入 UVLO 和过压  
保护。VBUS_GD 位指示电源是否正常。当故障发生时INT 输出会立即通知主机。  
该器件还提供用BATFET 使能和复位控制QON 引脚用以退出低功耗运输模式或完全系统复位功能。  
该器件系列采30 2.0mm × 2.4mm WCSP 封装。  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: BQ25600 BQ25600D  
 
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
6 Pin Configuration and Functions  
1
2
3
4
5
A
B
C
D
E
F
GND  
GND  
BAT  
BAT  
BAT  
BAT  
SW  
PMID  
VBUS  
VAC  
SW  
SYS  
SYS  
SYS  
SYS  
PMID  
BTST  
TS  
VBUS  
REGN  
QON  
SDA  
NC  
PSEL  
PG  
CE  
STAT  
SCL  
BAT  
SNS  
INT  
6-1. BQ25600 YFF Package 30-Pin WCSP Top View  
1
2
3
4
5
A
B
C
D
E
F
GND  
SW  
PMID  
VBUS  
VAC  
GND  
BAT  
BAT  
BAT  
BAT  
SW  
SYS  
SYS  
SYS  
SYS  
PMID  
BTST  
TS  
VBUS  
REGN  
QON  
SDA  
NC  
D+  
D-  
CE  
STAT  
SCL  
BAT  
SNS  
INT  
6-2. BQ25600D YFF Package 30-Pin WCSP Top View  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: BQ25600 BQ25600D  
 
 
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
6-1. Pin Functions  
PIN  
BQ25600  
WCSP  
C1  
BQ25600D  
TYPE(1)  
DESCRIPTION  
NAME  
WCSP  
C1  
Battery connection point to the positive terminal of the battery pack. The internal  
current sensing resistor is connected between SYS and BAT. Connect a 10 µF closely  
to the BAT pin.  
D1  
D1  
BAT  
P
E1  
E1  
F1  
F1  
Battery voltage sensing pin for charge current regulation. in order to minimize the  
parasitic trace resistance during charging, BATSNS pin is connected to the actual  
battery pack as close as possible.  
BATSNS  
F3  
F3  
AIO  
PWM high side driver positive supply. internally, the BTST is connected to the cathode  
of the boost-strap diode. Connect the 0.047-μF bootstrap capacitor from SW to BTST.  
BTST  
CE  
C3  
E3  
C3  
E3  
P
DI  
Charge enable pin. When this pin is driven low, battery charging is enabled.  
Positive line of the USB data line pair. D+/Dbased USB host/charging port detection.  
The detection includes data contact detection (DCD), primary and secondary detection  
in BC1.2.  
D+  
C5  
D5  
AIO  
Negative line of the USB data line pair. D+/Dbased USB host/charging port  
detection. The detection includes data contact detection (DCD), primary and secondary  
detection in BC1.2.  
AIO  
P
D–  
A1  
B1  
A1  
B1  
GND  
Ground  
Open-drain interrupt Output. Connect the INT to a logic rail through 10-kΩresistor.  
The INT pin sends active low, 256-µs pulse to host to report charger device status and  
fault.  
INT  
NC  
PG  
F4  
B5  
D5  
F4  
B5  
DO  
No connection. This pin must be floating.  
Open drain active low power good indicator. Connect to the pull up rail through 10 kΩ  
resistor. LOW indicates a good input source if the input voltage is between UVLO and  
ACOV, above SLEEP mode threshold, and current limit is above 30 mA.  
DO  
DO  
DI  
A3  
B3  
A3  
B3  
Connected to the drain of the reverse blocking MOSFET (RBFET) and the drain of  
HSFET. Given the total input capacitance, put 1 μF on VBUS to GND, and the rest  
capacitance on PMID to GND.  
PMID  
PSEL  
Power source selection input. High indicates 500 mA input current limit. Low indicates  
2.4A input current limit. Once the device gets into host mode, the host can program  
different input current limit to IINDPM register.  
C5  
D4  
C4  
BATFET enable/reset control input. When BATFET is in ship mode, a logic low of  
tSHIPMODE duration turns on BATFET to exit shipping mode. When VBUS is not  
pluggedin, a logic low of tQON_RST (minimum 8 s) duration resets SYS (system  
power) by turning BATFET off for tBATFET_RST (minimum 250 ms) and then re-enable  
BATFET to provide full system power reset. The pin contains an internal pull-up to  
maintain default high logic.  
QON  
D4  
DI  
P
PWM low side driver positive supply output. internally, REGN is connected to the  
anode of the boost-strap diode. Connect a 4.7-μF (10-V rating) ceramic capacitor from  
REGN to analog GND. The capacitor should be placed close to the IC.  
REGN  
C4  
I2C interface clock. Connect SCL to the logic rail through a 10-kΩresistor.  
I2C interface data. Connect SDA to the logic rail through a 10-kΩresistor.  
SCL  
SDA  
F5  
E4  
F5  
E4  
DI  
DIO  
Open-drain interrupt output. Connect the STAT pin to a logic rail via 10-kresistor. The  
STAT pin indicates charger status.  
STAT  
SW  
E5  
E5  
DO  
P
Charge in progress: LOW  
Charge complete or charger in SLEEP mode: HIGH  
Charge suspend (fault response): Blink at 1Hz  
A2  
B2  
A2  
B2  
Switching node connecting to output inductor. Internally SW is connected to the source  
of the n-channel HSFET and the drain of the n-channel LSFET. Connect the 0.047-μF  
bootstrap capacitor from SW to BTST.  
C2  
D2  
E2  
F2  
C2  
D2  
E2  
F2  
Converter output connection point. The internal current sensing resistor is connected  
between SYS and BAT. Connect a 20 µF closely to the SYS pin.  
SYS  
P
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: BQ25600 BQ25600D  
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
6-1. Pin Functions (continued)  
PIN  
BQ25600  
BQ25600D  
WCSP  
TYPE(1)  
DESCRIPTION  
NAME  
WCSP  
Ground reference for the device that is also the thermal pad used to conduct heat from  
the device. This connection serves two purposes. The first purpose is to provide an  
electrical ground connection for the device. The second purpose is to provide a low  
thermal-impedance path from the device die to the PCB. This pad should be tied  
externally to a ground plane.  
Thermal Pad  
P
Temperature qualification voltage input to support JEITA profile. Connect a negative  
temperature coefficient thermistor. Program temperature window with a resistor divider  
from REGN to TS to GND. Charge suspends when TS pin voltage is out of range.  
When TS pin is not used, connect a 10-kΩresistor from REGN to TS and a 10-kΩ  
resistor from TS to GND. It is recommended to use a 103AT-2 thermistor.  
TS  
D3  
D3  
AI  
VAC  
A5  
A4  
A5  
A4  
AI  
P
Input voltage sensing. This pin must be tied to VBUS.  
Charger input voltage. The internal n-channel reverse block MOSFET (RBFET) is  
connected between VBUS and PMID with VBUS on source. Place a 1-uF ceramic  
capacitor from VBUS to GND and place it as close as possible to IC.  
VBUS  
B4  
B4  
(1) AI = Analog input, AO = Analog Output, AIO = Analog input Output, DI = Digital input, DO = Digital Output, DIO = Digital input Output,  
P = Power  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: BQ25600 BQ25600D  
 
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Voltage Range (with respect to  
GND)  
VAC  
22  
V
2  
Voltage Range (with respect to  
VBUS (converter not switching)(2)  
GND)  
22  
22  
V
V
2  
Voltage Range (with respect to  
BTST, PMID (converter not switching)(2)  
GND)  
0.3  
Voltage Range (with respect to  
GND)  
SW  
16  
7
V
V
2  
Voltage Range (with respect to  
GND)  
BTST to SW  
PSEL  
0.3  
Voltage Range (with respect to  
GND)  
7
V
0.3  
Voltage Range (with respect to  
GND)  
7
7
V
V
D+, D–  
0.3  
0.3  
Voltage Range (with respect to  
GND)  
BATSNS (converter not switching)  
Voltage Range (with respect to  
GND)  
REGN, TS, CE, PG, BAT, SYS (converter not switching)  
7
V
0.3  
Output Sink Current  
STAT  
6
7
mA  
V
Voltage Range (with respect to  
GND)  
SDA, SCL, INT, QON, STAT  
0.3  
0.3  
Voltage Range (with respect to  
GND)  
PGND to GND (QFN package only)  
INT  
0.3  
V
Output Sink Current  
6
mA  
°C  
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
40  
65  
°C  
(1) Stresses beyond those listed under Absolute maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability. All voltage values are with respect to the network ground terminal unless otherwise noted.  
(2) VBUS is specified up to 22 V for a maximum of one hour at room temperature  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/  
ESDA/JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per  
JEDEC specification JESD22-C101, all  
pins(2)  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
MIN  
NOM  
MAX UNIT  
VBUS  
Iin  
Input voltage  
3.9  
13.5 (1)  
V
A
A
Input current (VBUS)  
Output current (SW)  
3.25  
3.25  
ISWOP  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: BQ25600 BQ25600D  
 
 
 
 
 
 
 
 
 
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
7.3 Recommended Operating Conditions (continued)  
MIN  
NOM  
MAX UNIT  
VBATOP  
IBATOP  
IBATOP  
TA  
Battery voltage  
4.624  
3.0  
6
V
A
Fast charging current  
Discharging current (continuous)  
Operating ambient temperature  
A
85  
°C  
40  
(1) The inherent switching noise voltage spikes should not exceed the absolute maximum voltage rating on either the BTST or SW pins. A  
tight layout minimizes switching noise.  
7.4 Thermal Information  
BQ25600(D)  
THERMAL METRIC  
YFF (DSBGA)  
UNIT  
30 Balls  
58.8  
0.2  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
8.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.4  
ΨJT  
8.3  
ΨJB  
RθJC(bot)  
N/A  
7.5 Electrical Characteristics  
VVAC_UVLOZ < VVAC < VVAC_OV and VVAC > VBAT + VSLEEP, TJ = 40°C to 125°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
QUIESCENT CURRENTS  
VBAT = 4.5 V, VBUS < VAC-UVLOZ  
leakage between BAT and VBUS,  
TJ< 85°C  
,
Battery discharge current (BAT, SW,  
SYS) in buck mode  
IBAT  
5
µA  
VBAT = 4.5 V, HIZ Mode and  
OVPFET_DIS = 1 or No VBUS, I2C  
disabled, BATFET Disabled. TJ <  
85°C  
Battery discharge current (BAT) in  
buck mode  
IBAT  
17  
33  
µA  
VBAT = 4.5 V, HIZ Mode and  
Battery discharge current (BAT, SW, OVPFET_DIS = 1 or No VBUS, I2C  
IBAT  
58  
24  
85  
37  
µA  
µA  
SYS)  
Disabled, BATFET Enabled. TJ <  
85°C  
IVAC_HIZ  
Input supply current (VAC) in buck  
mode  
VVAC = 5 V, HIZ Mode and  
OVPFET_DIS = 1, No battery  
VVAC = 12 V, HIZ Mode and  
OVPFET_DIS = 1, No battery  
41  
37  
61  
50  
µA  
µA  
IVACVBUS_HIZ  
Input supply current (VAC and VBUS VVAC = 5 V, HIZ Mode and  
short) in buck mode  
OVPFET_DIS = 1, No battery  
VVAC = 12 V, HIZ Mode and  
OVPFET_DIS = 1, No battery  
68  
90  
3
µA  
VVBUS = 12 V, VVBUS > VVBAT  
converter not switching  
,
1.5  
mA  
Input supply current (VBUS) in buck  
mode  
IVBUS  
VVBUS > VUVLO, VVBUS > VVBAT  
converter switching, VBAT = 3.8V,  
ISYS = 0A  
,
3
3
mA  
mA  
Battery discharge current in boost  
mode  
VBAT = 4.2 V, boost mode, IVBUS = 0  
A, converter switching  
IBOOST  
VBUS, VAC AND BAT PIN POWER-UP  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: BQ25600 BQ25600D  
 
 
 
 
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
VVAC_UVLOZ < VVAC < VVAC_OV and VVAC > VBAT + VSLEEP, TJ = 40°C to 125°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VVBUS rising  
MIN  
TYP  
MAX  
UNIT  
V
VBUS_OP  
VBUS operating range  
3.9  
13.5  
VAC for active I2C, no battery  
Sense VAC pin voltage  
V
VVAC_UVLOZ  
VVAC rising  
3.3  
3.7  
3.9  
VVAC_UVLOZ_HYS I2C active hysteresis  
VAC falling from above VVAC_UVLOZ  
VVAC rising  
300  
mV  
V
VVAC_PRESENT  
REGN turn-on threshold  
3.65  
VVAC_PRESENT_H  
mV  
VVAC falling  
500  
60  
YS  
(VVACVVBAT ), VBUSMIN_FALL  
BAT VREG, VAC falling  
VSLEEP  
Sleep mode falling threshold  
Sleep mode rising threshold  
15  
131  
mV  
V
(VVACVVBAT ), VBUSMIN_FALL  
BAT VREG, VAC rising  
VSLEEPZ  
115  
6.1  
220  
6.42  
11  
340  
6.75  
11.5  
15  
mV  
V
V
VAC 6.5-V Overvoltage rising  
threshold  
VVAC_OV_RISE  
VVAC_OV_RISE  
VVAC_OV_RISE  
VVAC_OV_HYS  
VVAC_OV_HYS  
VAC rising; OVP (REG06[7:6]) = '01'  
VAC rising, OVP (REG06[7:6]) = '10'  
VAC rising, OVP (REG06[7:6]) = '11'  
VAC 10.5-V Overvoltage rising  
threshold  
10.35  
13.5  
V
VAC 14-V Overvoltage rising  
threshold  
14.2  
130  
V
VAC falling, OVP (REG06[7:6]) =  
'01'  
VAC 6.5-V Overvoltage hysteresis  
VAC 10.5-V Overvoltage hysteresis  
mV  
mV  
VAC falling, OVP (REG06[7:6]) =  
'10'  
250  
300  
VVAC_OV_HYS  
VBAT_UVLOZ  
VBAT_DPL_FALL  
VBAT_DPL_RISE  
VAC 14-V Overvoltage hysteresis  
BAT for active I2C, no adapter  
Battery Depletion Threshold  
Battery Depletion Threshold  
VAC falling, OVP (REG06[7:6]) = '11'  
VBAT rising  
mV  
V
2.5  
2.18  
2.34  
VBAT falling  
2.62  
2.86  
V
VBAT rising  
V
VBAT_DPL_HYST Battery Depletion rising hysteresis  
VBAT rising  
180  
3.8  
180  
30  
mV  
Bad adapter detection falling  
VBUSMIN_FALL  
threshold  
VBUS falling  
3.68  
3.9  
V
VBUSMIN_HYST  
IBADSRC  
Bad adapter detection hysteresis  
mV  
mA  
Bad adapter detection current  
source  
Sink current from VBUS to GND  
POWER-PATH  
VSYS_MIN  
VVBAT < SYS_MIN[2:0] = 101,  
BATFET Disabled (REG07[5] = 1)  
System regulation voltage  
3.5  
4.4  
3.68  
V
V
ISYS = 0 A, VVBAT > VSYSMIN, VVBAT  
4.400 V, BATFET disabled  
(REG07[5] = 1)  
=
VBAT + 50  
mV  
VSYS  
System Regulation Voltage  
Maximum DC system voltage output  
ISYS = 0 A, , Q4 off, VVBAT4.400 V,  
VVBAT > VSYSMIN = 3.5V  
VSYS_MAX  
4.45  
35  
4.48  
V
Top reverse blocking MOSFET on-  
resistance between VBUS and  
PMID - Q1  
RON(RBFET)  
-40°CTA 125°C  
mΩ  
Top switching MOSFET on-  
resistance between PMID and SW -  
Q2  
RON(HSFET)  
55  
VREGN = 5 V , -40°CTA 125°C  
VREGN = 5 V , -40°CTA 125°C  
mΩ  
Bottom switching MOSFET on-  
resistance between SW and GND -  
Q3  
RON(LSFET)  
60  
30  
mΩ  
BATFET forward voltage in  
supplement mode  
VFWD  
mV  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: BQ25600 BQ25600D  
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
VVAC_UVLOZ < VVAC < VVAC_OV and VVAC > VBAT + VSLEEP, TJ = 40°C to 125°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
QFN package, Measured from BAT  
to SYS, VBAT = 4.2V, TJ = 40 -  
125°C  
RON(BAT-SYS)  
SYS-BAT MOSFET on-resistance  
19.5  
mΩ  
BATTERY CHARGER  
VBATREG_RANGE Charge voltage program range  
3.856  
4.624  
V
VBATREG_STEP  
Charge voltage step  
32  
mV  
VREG (REG04[7:3]) = 4.208 V  
(01011), V, 40 TJ 85°C  
4.187  
4.330  
4.208  
4.229  
4.374  
V
V
VBATREG  
Charge voltage setting  
VREG (REG04[7:3]) = 4.352 V  
(01111), V, 40 TJ 85°C  
4.352  
VBAT = 4.208 V or VBAT = 4.352 V, –  
40 TJ 85°C  
VBATREG_ACC  
Charge voltage setting accuracy  
0.5%  
3000  
0.5%  
ICHG_REG_RANGE Charge current regulation range  
ICHG_REG_STEP Charge current regulation step  
0
mA  
mA  
60  
ICHG = 240 mA, VVBAT = 3.1V or  
VVBAT = 3.8 V  
ICHG_REG  
Charge current regulation setting  
0.214  
0.24  
0.26  
A
ICHG = 240 mA, VVBAT = 3.1 V or  
VVBAT = 3.8 V  
ICHG_REG_ACC  
ICHG_REG  
Charge current regulation accuracy  
Charge current regulation setting  
9%  
11%  
ICHG = 720 mA, VVBAT = 3.1 V or  
VVBAT = 3.8 V  
0.68  
0.720  
1.380  
0.76  
A
ICHG_REG = 720 mA, VBAT = 3.1 V or  
VBAT = 3.8 V  
ICHG_REG  
Charge current regulation accuracy  
Charge current regulation setting  
Charge current regulation accuracy  
-6%  
1.30  
6%  
1.45  
6%  
ICHG = 1.38 A, VVBAT = 3.1 V or  
VVBAT = 3.8 V  
ICHG_REG  
A
ICHG = 720 mA or ICHG = 1.38 A,  
VVBAT = 3.1 V or VVBAT = 3.8 V  
ICHG_REG_ACC  
6%  
VBATLOWV_FALL Battery LOWV falling threshold  
VBATLOWV_RISE Battery LOWV rising threshold  
ICHG = 240 mA  
2.7  
3
2.8  
3.12  
170  
2.9  
3.24  
190  
V
V
Pre-charge to fast charge  
IPRECHG[3:0] = '0010' = 180 mA  
IPRECHG  
IPRECHG_ACC  
ITERM  
Precharge current regulation  
150  
mA  
Precharge current regulation  
accuracy  
IPRECHG[3:0] = '0010' = 180 mA  
5
%
15  
Termination current regulation  
ICHG > 780 mA, ITERM[3:0] = '0010'  
= 180 mA, VVBAT = 4.208 V  
145  
180  
60  
215  
mA  
Termination current regulation  
accuracy  
ICHG > 780 mA, , ITERM[3:0] =  
'0010' = 180 mA, VVBAT = 4.208 V  
ITERM_ACC  
ITERM  
-20%  
44  
20%  
75  
I
CHG 780 mA, , ITERM[3:0] =  
Termination current regulation  
mA  
'0000' = 60 mA, VVBAT = 4.208 V  
Termination current regulation  
accuracy  
I
CHG 780 mA, ,ITERM[3:0] =  
ITERM_ACC  
-27%  
25%  
'0000' = 60 mA, VVBAT = 4.208 V  
VSHORT  
VSHORTZ  
ISHORT  
Battery short voltage  
Battery short voltage  
Battery short current  
VVBAT falling  
1.85  
2.15  
50  
2
2.25  
90  
2.15  
2.35  
117  
V
V
VVBAT rising  
VVBAT < VSHORTZ  
mA  
Recharge Threshold below  
VBAT_REG  
VRECHG  
VBAT falling, REG04[0] = 0  
90  
120  
150  
265  
mV  
Recharge Threshold below  
VBAT_REG  
VRECHG  
VBAT falling, REG04[0] = 1  
VSYS = 4.2 V  
200  
230  
30  
mV  
mA  
ISYSLOAD  
System discharge load current  
INPUT VOLTAGE AND CURRENT REGULATION  
VINDPM Input voltage regulation limit  
VINDPM (REG06[3:0] = 0000) = 3.9 V  
3.78  
3.95  
4.1  
V
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: BQ25600 BQ25600D  
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
VVAC_UVLOZ < VVAC < VVAC_OV and VVAC > VBAT + VSLEEP, TJ = 40°C to 125°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
4.5%  
4.268  
3%  
TYP  
4.4  
MAX  
4%  
UNIT  
V
VINDPM_ACC  
VINDPM  
VINDPM_ACC  
VDPM_VBAT  
Input voltage regulation accuracy  
Input voltage regulation limit  
Input voltage regulation accuracy  
VINDPM (REG06[3:0] = 0000) = 3.9 V  
VINDPM (REG06[3:0] = 0110) = 4.4 V  
VINDPM (REG06[3:0] = 0110) = 4.4 V  
4.532  
3%  
Input voltage regulation limit tracking VINDPM = 3.9V,  
VBAT VDPM_VBAT_TRACK = 300mV,  
4.17  
4.3  
4.46  
V
VBAT = 4.0V  
VDPM_VBAT_ACC Input voltage regulation accuracy  
tracking VBAT  
VINDPM = 3.9V,  
VDPM_VBAT_TRACK = 300mV,  
VBAT = 4.0V  
4%  
3%  
VVBUS = 5 V, current pulled from SW,  
IINDPM (REG[4:0] = 00100) = 500  
mA, 40 TJ 85°C  
450  
750  
500  
900  
1.5  
mA  
mA  
VVBUS = 5 V, current pulled from SW,  
IINDPM (REG[4:0] = 01000) = 900  
mA, 40 TJ 85°C  
IINDPM  
USB input current regulation limit  
VVBUS = 5 V, current pulled from SW,  
IINDPM (REG[4:0] = 01110) = 1.5 A,  
40 TJ 85°C  
1.28  
A
Input current limit during system  
start-up sequence  
IIN_START  
200  
mA  
BAT PIN OVERVOLTAGE PROTECTION  
VBATOVP_RISE Battery overvoltage threshold  
VBAT rising, as percentage of  
VBAT_REG  
103  
104  
2
105  
%
%
VBAT falling, as percentage of  
VBAT_REG  
VBATOVP_Fall_HYS Battery overvoltage falling hysteresis  
THERMAL REGULATION AND THERMAL SHUTDOWN  
Temperature Increasing, TREG  
(REG05[1] = 1) = 110℃  
Junction Temperature Regulation  
TJUNCTION_REG  
110  
90  
°C  
°C  
Threshold  
TJUNCTION_REG Junction Temperature Regulation  
Threshold  
Temperature Increasing, TREG  
(REG05[1] = 0) = 90℃  
Thermal Shutdown Rising  
Temperature  
TSHUT  
Temperature Increasing  
160  
30  
°C  
°C  
TSHUT_HYST  
Thermal Shutdown Hysteresis  
JEITA THERMISTOR COMPARATOR (BUCK MODE)  
T1 (0°C) threshold, Charge  
suspended T1 below this  
temperature.  
Charger suspends charge. As  
Percentage to VREGN  
VT1  
VT1  
VT2  
VT2  
VT3  
72.4%  
69%  
73.3%  
71.5%  
68%  
74.2%  
74%  
Falling  
As Percentage to VREGN  
As percentage of VREGN  
As Percentage to VREGN  
T2 (10°C) threshold, Charge back to  
ICHG/2 and 4.2 V below this  
temperature  
67.2%  
66%  
69%  
Falling  
66.8%  
44.7%  
67.7%  
45.8%  
T3 (45°C) threshold, charge back to  
ICHG and 4.05V above this  
temperature.  
Charger suspends charge. As  
Percentage to VREGN  
43.8%  
VT3  
VT5  
VT5  
Falling  
As Percentage to VREGN  
As Percentage to VREGN  
As Percentage to VREGN  
45.1%  
33.7%  
34.5%  
45.7%  
34.2%  
35.3%  
46.2%  
35.1%  
36.2%  
T5 (60°C) threshold, charge  
suspended above this temperature.  
Falling  
COLD OR HOT THERMISTER COMPARATOR (BOOST MODE)  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: BQ25600 BQ25600D  
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
VVAC_UVLOZ < VVAC < VVAC_OV and VVAC > VBAT + VSLEEP, TJ = 40°C to 125°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
79.5%  
78.5%  
30.2%  
33.8%  
TYP  
80%  
MAX  
80.5%  
79.5%  
32.2%  
34.9%  
UNIT  
As Percentage to VREGN (Approx.  
-20°C w/ 103AT), TJ = 20°C -  
125°C  
Cold Temperature Threshold, TS pin  
Voltage Rising Threshold  
VBCOLD  
VBCOLD  
VBHOT  
VBHOT  
Falling  
79%  
TJ = 20°C - 125°C  
As Percentage to VREGN (Approx.  
60°C w/ 103AT), TJ = 20°C -  
125°C  
Hot Temperature Threshold, TS pin  
Voltage falling Threshold  
31.2%  
34.4%  
Rising  
TJ = 20°C - 125°C  
CHARGE OVERCURRENT COMPARATOR (CYCLE-BY-CYCLE)  
IBATFET_OCP  
System over load threshold  
6.0  
A
PWM  
Oscillator frequency, buck mode  
Oscillator frequency, boost mode  
1320  
1150  
1500  
1412  
97%  
1680  
1660  
kHz  
kHz  
fSW  
PWM switching frequency  
DMAX  
Maximum PWM duty cycle(1)  
BOOST MODE OPERATION  
VVBAT = 3.8 V, I(PMID) = 0 A,  
BOOSTV[1:0] = '10' = 5.15 V  
VOTG_REG  
Boost mode regulation voltage  
4.972  
-3  
5.126  
5.280  
3
V
Boost mode regulation voltage  
accuracy  
VVBAT = 3.8 V, I(PMID) = 0 A,  
BOOSTV[1:0] = '10' = 5.15 V  
VOTG_REG_ACC  
%
VVBAT falling, MIN_VBAT_SEL  
(REG01[0]) = 0  
2.6  
2.9  
2.8  
3.0  
2.9  
V
V
VVBAT rising, MIN_VBAT_SEL  
(REG01[0]) = 0  
3.15  
VBATLOWV_OTG Battery voltage exiting boost mode  
VVBAT falling, MIN_VBAT_SEL  
(REG01[0]) = 1  
2.4  
2.7  
2.5  
2.8  
1.4  
2.6  
2.9  
V
V
VVBAT rising, MIN_VBAT_SEL  
(REG01[0]) = 1  
IOTG  
OTG mode output current  
BOOST_LIM (REG02[7]) = 1  
BOOST_LIM = 0.5 A (REG02[7] = 0)  
Rising threshold  
1.16  
0.5  
1.6  
0.73  
6.15  
A
A
Boost mode RBFET over-current  
protection accuracy  
IOTG_OCP_ACC  
VOTG_OVP  
IOTG_HSZCP  
OTG overvoltage threshold  
5.55  
5.8  
V
HSFET under current falling  
threshold  
100  
mA  
REGN LDO  
VREGN  
REGN LDO output voltage  
REGN LDO output voltage  
VVBUS = 9V, IREGN = 40mA  
VVBUS = 5V, IREGN = 20mA  
5.6  
6
V
V
VREGN  
4.58  
4.7  
LOGIC I/O PIN CHARACTERISTICS ( CE, PSEL, SCL, SDA,, INT)  
VILO  
VIH  
Input low threshold CE  
0.4  
V
V
Input high threshold CE  
1.3  
1.3  
IBIAS  
VILO  
VIH  
High-level leakage current CE  
Input low threshold PSEL  
Input high threshold PSEL  
High-level leakage current PSEL  
Pull up rail 1.8 V  
Pull up rail 1.8V  
1
µA  
V
0.4  
V
IBIAS  
1
µA  
LOGIC I/O PIN CHARACTERISTICS ( PG, STAT)  
VOL Low-level output voltage  
0.4  
V
D+/DDETECTION  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: BQ25600 BQ25600D  
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
VVAC_UVLOZ < VVAC < VVAC_OV and VVAC > VBAT + VSLEEP, TJ = 40°C to 125°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
D+ Threshold for Non-standard  
adapter (combined V1P2_VTH_LO  
and V1P2_VTH_HI)  
VD+_1P2  
ID+_LKG  
1.05  
1.35  
V
Leakage current into D+  
HiZ  
-1  
500  
1
700  
150  
24.8  
µA  
mV  
µA  
VD_600MVSRC Voltage source (600 mV)  
600  
100  
ID_100UAISNK  
RD_19K  
VD= 500 mV,  
VD= 500 mV,  
50  
Dcurrent sink (100 µA)  
14.25  
Dresistor to ground (19 kΩ)  
kΩ  
Dcomparator threshold for  
primary detection  
VD_0P325  
250  
400  
mV  
Dpin Rising  
DThreshold for non-standard  
adapter (combined V2P8_VTH_LO  
and V2P8_VTH_HI)  
VD_2P8  
2.55  
2.85  
V
V
DComparator threshold for non-  
standard adapter (For non-standard  
same as bq2589x)  
VD_2P0  
1.85  
2.15  
DThreshold for non-standard  
adapter (combined V1P2_VTH_LO  
and V1P2_VTH_HI)  
VD_1P2  
ID_LKG  
1.05  
-1  
1.35  
1
V
HiZ  
µA  
Leakage current into D–  
(1) Specified by design. Not production tested.  
7.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
VBUS/BAT POWER UP  
VAC rising above ACOV threshold to  
turn off Q2  
tACOV  
VAC OVP reaction time  
200  
30  
ns  
tBADSRC  
Bad adapter detection duration  
ms  
BATTERY CHARGER  
tTERM_DGL  
Deglitch time for charge termination  
250  
250  
ms  
ms  
tRECHG_DGL  
Deglitch time for recharge  
System over-current deglitch time to  
turn off Q4  
tSYSOVLD_DGL  
100  
1
µs  
µs  
Battery over-voltage deglitch time to  
disable charge  
tBATOVP  
tSAFETY  
Typical Charge Safety Timer Range  
Typical Top-Off Timer Range  
CHG_TIMER = 1  
8
10  
30  
12  
36  
hr  
tTOP_OFF  
TOP_OFF_TIMER[1:0] = 10 (30 min)  
24  
min  
QON TIMING  
/QON low time to turn on BATFET and  
exit ship mode  
tSHIPMODE  
tQON_RST_2  
tBATFET_RST  
tSM_DLY  
0.9  
8
1.3  
12  
s
s
10TJ 60℃  
10TJ 60℃  
10TJ 60℃  
10TJ 60℃  
QON low time to reset BATFET  
BATFET off time during full system  
reset  
250  
10  
400  
15  
ms  
s
Enter ship mode delay  
DIGITAL CLOCK AND WATCHDOG TIMER  
tWDT  
fLPDIG  
fDIG  
REG05[4]=1  
REGN LDO disabled  
REGN LDO disabled  
REGN LDO enabled  
40  
30  
s
Digital Low Power Clock  
Digital Clock  
kHz  
kHz  
500  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: BQ25600 BQ25600D  
 
 
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
MIN  
NOM  
MAX  
UNIT  
fSCL  
SCL clock frequency  
400  
kHz  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: BQ25600 BQ25600D  
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
7.7 Typical Characteristics  
100  
97.5  
95  
100  
97.5  
95  
92.5  
90  
92.5  
90  
87.5  
85  
87.5  
85  
82.5  
80  
82.5  
80  
VBUS = 5 V  
VBUS = 9 V  
VBUS = 12 V  
VBAT = 3.1 V  
VBAT = 3.8 V  
VBAT = 4.2 V  
77.5  
75  
77.5  
75  
0
0.5  
1
1.5  
Charge Current (A)  
2
2.5  
3
0
0.2  
0.4  
0.6  
OTG Current (A)  
0.8  
1
1.2  
D001  
D001  
fSW = 1.5 MHz  
VBAT=3.8V  
VOTG = 5.15 V  
inductor DCR = 18 mΩ  
inductor DCR = 18 mΩ  
7-2. Efficiency vs. OTG Current  
7-1. Charge Efficiency vs. Charge Current  
6
5
4
5
4
3
2
1
0
3
2
1
0
-1  
-2  
-3  
-4  
-5  
0
0.2  
0.4  
0.6  
Output Current (A)  
0.8  
1
1.2  
1.4  
1.6  
0
0.5  
1
1.5  
Charge Current (A)  
2
2.5  
3
D001  
D001  
IOTG = 1.2 A  
VOTG = 5.15 V  
7-4. Charge Current Accuracy  
VVBAT = 3.8 V  
7-3. OTG Output Voltage vs. Output Current  
3.85  
4.5  
4.4  
4.3  
4.2  
4.1  
4
VBATREG = 4.208 V  
VBATREG = 4.352 V  
3.8  
3.75  
3.7  
3.65  
3.6  
3.55  
3.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
D001  
D001  
7-5. SYSMIN Voltage vs. Junction Temperature  
7-6. BATREG Charge Voltage vs. Junction  
Temperature  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: BQ25600 BQ25600D  
 
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
2.5  
2.25  
2
2
1.8  
1.6  
1.4  
1.2  
1
IINDPM = 0.5 A  
IINDPM = 0.9 A  
IINDPM = 1.5 A  
ICHG = 0.24 A  
ICHG = 0.72 A  
ICHG = 1.38 A  
1.75  
1.5  
1.25  
1
0.8  
0.6  
0.4  
0.2  
0
0.75  
0.5  
0.25  
0
-40  
-25  
-10  
5
20  
35  
50  
Junction Temperature (°C)  
65  
80  
95  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
D001  
D001  
7-7. Input Current Limit vs. Junction  
7-8. Charge Current vs. Junction Temperature  
Temperature  
2.25  
2
1.75  
1.5  
1.25  
1
0.75  
0.5  
110 °C  
90 °C  
0.25  
0
55  
65  
75  
85  
95  
105  
Junction Temperature (°C)  
115  
125  
135  
D001  
7-9. Charge Current vs. Junction Temperature Under Thermal Regulation  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: BQ25600 BQ25600D  
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The BQ25600 and BQ25600D is a highly integrated 3.0-A switch-mode battery charger for single cell Li-ion and  
Li-polymer batteries. It includes an input reverse-blocking FET (RBFET, Q1), high-side switching FET (HSFET,  
Q2), low-side switching FET (LSFET, Q3), and battery FET (BATFET, Q4), and bootstrap diode for the high-side  
gate drive.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: BQ25600 BQ25600D  
 
 
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
8.2 Functional Block Diagram  
VBUS  
PMID  
VVVAC_PRESENT  
RBFET (Q1)  
+
UVLO  
SLEEP  
ACOV  
VVAC  
Q1 Gate  
Control  
œ
IIN  
VBAT + VSLEEP  
+
REGN  
BTST  
EN_REGN  
EN_HIZ  
VVAC  
REGN  
LDO  
œ
VVAC  
+
VVAC_OV  
œ
FBO  
VVBUS  
VBUS_OVP_BOOST  
+
VAC  
VAC  
VOTG_OVP  
œ
IQ2  
Q2_UCP_BOOST  
Q3_OCP_BOOST  
+
VOTG_HSZCP  
VVBUS  
œ
œ
+
+
œ
+
œ
œ
+
HSFET (Q2)  
LSFET (Q3)  
IQ3  
VINDPM  
SW  
+
VOTG_BAT  
IIN  
CONVERTER  
Control  
œ
REGN  
BAT  
IINDPM  
+
BATOVP  
UCP  
104% × V BAT_REG  
IC TJ  
TREG  
PGND  
œ
ILSFET_UCP  
BATSNS  
IQ2  
Q2_OCP  
+
œ
+
œ
+
+
IHSFET_OCP  
IQ3  
SYS  
VBAT_REG  
œ
œ
VSYSMIN  
VBTST - VSW  
ICHG  
EN_HIZ  
EN_CHARGE  
EN_BOOST  
+
REFRESH  
VBTST_REFRESH  
ICHG_REG  
œ
SYS  
ICHG  
VBAT_REG  
ICHG_REG  
BATFET  
(Q4)  
Q4 Gate  
Control  
BAT  
IBADSRC  
IDC  
BAD_SRC  
+
REF  
DAC  
Converter  
Control State  
Machine  
œ
IC TJ  
TSHUT  
+
TSHUT  
œ
BATSNS  
BATSNS  
VBATGD  
BAT_GD  
+
D+ (BQ25600D)  
VQON  
Input  
Source  
Detection  
œ
DÅ (BQ25600D)  
USB  
Adapter  
PSEL (BQ25600)  
VREG -VRECHG  
BATSNS  
ICHG  
+
RECHRG  
QON  
œ
INT  
STAT  
+
TERMINATION  
BATLOWV  
ITERM  
œ
CHARGE  
CONTROL  
STATE  
VBATLOWV  
+
BATSNS  
VSHORT  
MACHINE  
œ
BQ25600(D)  
+
BATSHORT  
SUSPEND  
PG (BQ25600)  
BATSNS  
I2C  
Interface  
œ
Battery  
Temperature  
Sensing  
TS  
SCL SDA CE  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: BQ25600 BQ25600D  
 
 
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Power-On-Reset (POR)  
The device powers internal bias circuits from the higher voltage of VBUS and BAT. When VBUS rises above  
VVBUS_UVLOZ or BAT rises above VBAT_UVLOZ , the sleep comparator, battery depletion comparator and BATFET  
driver are active. I2C interface is ready for communication and all the registers are reset to default value. The  
host can access all the registers after POR.  
8.3.2 Device Power Up from Battery without Input Source  
If only battery is present and the voltage is above depletion threshold (VBAT _DPL_RISE), the BATFET turns on and  
connects battery to system. The REGN stays off to minimize the quiescent current. The low RDSON of BATFET  
and the low quiescent current on BAT minimize the conduction loss and maximize the battery run time.  
The device always monitors the discharge current through BATFET (Supplement Mode). When the system is  
overloaded or shorted (IBAT > IBATFET_OCP), the device turns off BATFET immediately and set BATFET_DIS bit to  
indicate BATFET is disabled until the input source plugs in again or one of the methods described in BATFET  
Enable (Exit Shipping Mode) is applied to re-enable BATFET.  
8.3.3 Power Up from Input Source  
When an input source is plugged in, the device checks the input source voltage to turn on REGN LDO and all  
the bias circuits. It detects and sets the input current limit before the buck converter is started. The power-up  
sequence from input source is as listed:  
1. Power up REGN LDO  
2. Poor source qualification  
3. Input source type detection is based on D+/Dor PSEL to set default input current limit (IINDPM) register  
or input source type.  
4. Input voltage limit threshold setting (VINDPM threshold)  
5. Converter power up  
8.3.3.1 Power Up REGN Regulation  
The REGN LDO supplies internal bias circuits as well as the HSFET and LSFET gate drive. The REGN also  
provides bias rail to TS external resistors. The pull-up rail of STAT can be connected to REGN as well. The  
REGN is enabled when all the below conditions are valid:  
VVAC above VVAC_PRESENT  
VVAC above VBAT + VSLEEPZ in buck mode or VBUS below VBAT + VSLEEP in boost mode  
After 220-ms delay is completed  
If any one of the above conditions is not valid, the device is in high impedance mode (HIZ) with REGN LDO off.  
The device draws less than IVBUS_HIZ from VBUS during HIZ state. The battery powers up the system when  
the device is in HIZ.  
8.3.3.2 Poor Source Qualification  
After REGN LDO powers up, the device confirms the current capability of the input source. The input source  
must meet both of the following requirements in order to start the buck converter.  
VAC voltage below VVAC_OV  
VBUS voltage above VVBUSMIN when pulling IBADSRC (typical 30 mA)  
Once the input source passes all the conditions above, the status register bit VBUS_GD is set high and the INT  
pin is pulsed to signal to the host. If the device fails the poor source detection, it repeats poor source  
qualification every 2 seconds.  
8.3.3.3 Input Source Type Detection  
After the VBUS_GD bit is set and REGN LDO is powered, the device runs input source detection through  
D+/Dlines or the PSEL pin. The BQ25600D follows the USB Battery Charging Specification 1.2 (BC1.2) to  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: BQ25600 BQ25600D  
 
 
 
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
detect input source (SDP/ DCP) and nonstandard adapter through USB D+/Dlines. The BQ25600 sets input  
current limit through PSEL pins.  
After input source type detection is completed, an INT pulse is asserted to the host. in addition, the following  
registers and pin are changed:  
1. Input Current Limit (IINDPM) register is changed to set current limit  
2. PG_STAT bit is set  
3. VBUS_STAT bit is updated to indicate USB or other input source  
The host can overwrite IINDPM register to change the input current limit if needed. The charger input current is  
always limited by the IINDPM register.  
8.3.3.3.1 D+/DDetection Sets Input Current Limit in BQ25600D  
The BQ25600D contains a D+/Dbased input source detection to set the input current limit at VBUS plug-in.  
The D+/Ddetection includes standard USB BC1.2 and nonstandard adapter. When input source is plugged in,  
the device starts standard USB BC1.2 detections. The USB BC1.2 is capable to identify Standard Downstream  
Port (SDP) and Dedicated Charging Port (DCP). When the Data Contact Detection (DCD) timer expires, the  
nonstandard adapter detection is applied to set the input current limit. The nonstandard detection is used to  
distinguish vendor specific adapters (Apple and Samsung) based on their unique dividers on the D+/Dpins. If  
an adapter is detected as DCP, the input current limit is set at 2.4 A. If an adapter is detected as unknown, the  
input current limit is set at 500 mA  
8-1. Nonstandard Adapter Detection  
NONSTANDARD  
D+ THRESHOLD  
INPUT CURRENT LIMIT (A)  
DTHRESHOLD  
ADAPTER  
Divider 1  
Divider 2  
Divider 3  
Divider 4  
VD+ within VD+ _2p8  
VD+ within VD+ _1p2  
VD+ within VD+ _2p0  
VD+ within VD+ _2p8  
VDwithin VD_2p0  
VDwithin VD_1p2  
VDwithin VD_2p8  
VDwithin VD_2p8  
2.1  
2
1
2.4  
8-2. Input Current Limit Setting from D+/DDetection  
INPUT CURRENT LIMIT (IINLIM)  
D+/DDETECTION  
USB SDP (USB500)  
USB DCP  
500 mA  
2.4 A  
1 A  
Divider 3  
Divider 1  
2.1 A  
2.4 A  
2 A  
Divider 4  
Divider 2  
Unknown 5-V adapter  
500 mA  
8.3.3.3.2 PSEL Pins Sets Input Current Limit in BQ25600  
The BQ25600 has PSEL pin for input current limit setting to interface with USB PHY. It directly takes the USB  
PHY device output to decide whether the input is USB host or charging port. When the device operates in host-  
control mode, the host needs to IINDET_EN bit to read the PSEL value and update the IINDPM register. When  
the device is in default mode, PSEL value updates IINDPM in real time.  
8-3. Input Current Limit Setting from PSEL  
INPUT CURRENT LIMIT  
INPUT DETECTION  
PSEL PIN  
VBUS_STAT  
(ILIM)  
500 mA  
2.4A  
USB SDP  
Adapter  
High  
Low  
001  
011  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: BQ25600 BQ25600D  
 
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
8.3.3.4 Input Voltage Limit Threshold Setting (VINDPM Threshold)  
The device supports wide range of input voltage limit (3.9 V to 5.4 V) for USB. The device VINDPM is set at 4.5  
V. The device supports dynamic VINDPM trackingsettings which tracks the battery voltage. This function can be  
enabled via the VDPM_BAT_TRACK[1:0] register bits. When enabled, the actual input voltage limit will be the  
higher of the VINDPM register and VBAT + VDPM_BAT_TRACK offset.  
8.3.3.5 Converter Power Up  
After the input current limit is set, the converter is enabled and the HSFET and LSFET start switching. If battery  
charging is disabled, BATFET turns off. Otherwise, BATFET stays on to charge the battery.  
The device provides soft start when system rail is ramped up. When the system rail is below 2.2 V, the input  
current is limited to is to the lower of 200 mA or IINDPM register setting. After the system rises above 2.2 V, the  
device limits input current to the value set by IINDPM register.  
As a battery charger, the device deploys a highly efficient 1.5 MHz step-down switching regulator. The fixed  
frequency oscillator keeps tight control of the switching frequency under all conditions of input voltage, battery  
voltage, charge current and temperature, simplifying output filter design.  
The device switches to PFM control at light load or when battery is below minimum system voltage setting or  
charging is disabled. The PFM_DIS bit can be used to prevent PFM operation in either buck or boost  
configuration. PFM mod is only enabled when IINDPM is set 500 mA. When IINDPM is set 400 mA, PFM  
mode is disabled.  
8.3.4 Boost Mode Operation From Battery  
The device supports boost converter operation to deliver power from the battery to other portable devices  
through USB port. The boost mode output current rating meets the USB On-The-Go 500 mA output requirement.  
The maximum output current is up to 1.2 A. The boost operation can be enabled if the conditions are valid:  
1. BAT above VOTG_BAT  
2. VBUS less than BAT+VSLEEP (in sleep mode)  
3. Boost mode operation is enabled (OTG_CONFIG bit = 1)  
4. Voltage at TS (thermistor) pin as a percentage of VREGN is within acceptable range (VBHOT < VTS < VBCOLD  
)
5. After 30-ms delay from boost mode enable  
During boost mode, the status register VBUS_STAT bits is set to 111, the VBUS output is 5.15 V and the output  
current can reach up to 1.2 A , selected through I2C (BOOST_LIM bit). The boost output is maintained when  
BAT is above VOTG_BAT threshold.  
When OTG is enabled, the device starts up with PFM and later transits to PWM to minimize the overshoot. The  
PFM_DIS bit can be used to prevent PFM operation in either buck or boost configuration.  
8.3.5 Host Mode and Standalone Power Management  
8.3.5.1 Host Mode and Default Mode in BQ25600 and BQ25600D  
The BQ25600 and BQ25600D is a host controlled charger, but it can operate in default mode without host  
management. in default mode, the device can be used as an autonomous charger with no host or while host is in  
sleep mode. When the charger is in default mode, WATCHDOG_FAULT bit is HIGH. When the charger is in host  
mode, WATCHDOG_FAULT bit is LOW.  
After power-on-reset, the device starts in default mode with watchdog timer expired, or default mode. All the  
registers are in the default settings. During default mode, any change on PSEL pin will make real time IINDPM  
register changes.  
In default mode, the device keeps charging the battery with default 10-hour fast charging safety timer. At the end  
of the 10-hour, the charging is stopped and the buck converter continues to operate to supply system load.  
Writing a 1 to the WD_RST bit transitions the charger from default mode to host mode. All the device parameters  
can be programmed by the host. To keep the device in host mode, the host has to reset the watchdog timer by  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: BQ25600 BQ25600D  
 
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
writing 1 to WD_RST bit before the watchdog timer expires (WATCHDOG_FAULT bit is set), or disable watchdog  
timer by setting WATCHDOG bits = 00.  
When the watchdog timer expires (WATCHDOG_FAULT bit = 1), the device returns to default mode and all  
registers are reset to default values except IINDPM, VINDPM, BATFET_RST_EN, BATFET_DLY, and  
BATFET_DIS bits.  
POR  
watchdog timer expired  
Reset registers  
I2C interface enabled  
Host Mode  
Start watchdog timer  
Host programs registers  
Y
I2C Write?  
N
Default Mode  
Reset watchdog timer  
Reset selective registers  
Y
N
WD_RST bit = 1?  
N
N
Y
Y
I2C Write?  
Watchdog Timer  
Expired?  
8-1. Watchdog Timer Flow Chart  
8.3.6 Power Path Management  
The device accommodates a wide range of input sources from USB, wall adapter, to car charger. The device  
provides automatic power path selection to supply the system (SYS) from input source (VBUS), battery (BAT), or  
both.  
8.3.7 Battery Charging Management  
The device charges 1-cell Li-Ion battery with up to 3.0-A charge current for high capacity tablet battery. The 19.5-  
mΩBATFET improves charging efficiency and minimize the voltage drop during discharging.  
8.3.7.1 Autonomous Charging Cycle  
With battery charging enabled (CHG_CONFIG bit = 1 and CE pin is LOW), the device autonomously completes  
a charging cycle without host involvement. The device default charging parameters are listed in 8-4. The host  
can always control the charging operations and optimize the charging parameters by writing to the  
corresponding registers through I2C.  
8-4. Charging Parameter Default Setting  
DEFAULT MODE  
Charging voltage  
Charging current  
Precharge current  
Termination current  
Temperature profile  
Safety timer  
BQ25600 and BQ25600D  
4.208V  
2.048 A  
180 mA  
180 mA  
JEITA  
10 hours  
A new charge cycle starts when the following conditions are valid:  
Converter starts  
Battery charging is enabled (CHG_CONFIG bit = 1 and ICHG register is not 0 mA and CE is low)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: BQ25600 BQ25600D  
 
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
No thermistor fault on TS  
No safety timer fault  
BATFET is not forced to turn off (BATFET_DIS bit = 0)  
The charger device automatically terminates the charging cycle when the charging current is below termination  
threshold, battery voltage is above recharge threshold, and device not is in DPM mode or thermal regulation.  
When a fully charged battery is discharged below recharge threshold (selectable through VRECHG bit), the  
device automatically starts a new charging cycle. After the charge is done, toggle CE pin or CHG_CONFIG bit  
can initiate a new charging cycle.  
The STAT output indicates the charging status: charging (LOW), charging complete or charge disable (HIGH) or  
charging fault (blinking). The STAT output can be disabled by setting EN_ICHG_MON bits = 11. in addition, the  
status register (CHRG_STAT) indicates the different charging phases: 00-charging disable, 01-precharge, 10-  
fast charge (constant current) and constant voltage mode, 11-charging done. Once a charging cycle is  
completed, an INT is asserted to notify the host.  
8.3.7.2 Battery Charging Profile  
The device charges the battery in five phases: battery short, preconditioning, constant current, constant voltage  
and top-off trickle charging (optional). At the beginning of a charging cycle, the device checks the battery voltage  
and regulates current and voltage accordingly.  
8-5. Charging Current Setting  
REGISTER DEFAULT  
VBAT  
CHARGING CURRENT  
CHRG_STAT  
SETTING  
100 mA  
180 mA  
2.048 A  
< 2.2 V  
2.2 V to 3 V  
> 3 V  
ISHORT  
IPRECHG  
ICHG  
01  
01  
10  
If the charger device is in DPM regulation or thermal regulation during charging, the actual charging current will  
be less than the programmed value. in this case, termination is temporarily disabled and the charging safety  
timer is counted at half the clock rate.  
Regulation Voltage  
VREG[7:3]  
Battery Voltage  
Charge Current  
ICHG[5:0]  
Charge Current  
VBATLOWV (3 V)  
VSHORTZ (2.2 V)  
IPRECHG[7:4]  
ITERM[3:0]  
ISHORT  
Fast Charge and Voltage Regulation  
Trickle Charge  
Pre-charge  
Top-off Timer  
(optional)  
Safety Timer  
Expiration  
8-2. Battery Charging Profile  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: BQ25600 BQ25600D  
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
8.3.7.3 Charging Termination  
The device terminates a charge cycle when the battery voltage is above recharge threshold, and the current is  
below termination current. After the charging cycle is completed, the BATFET turns off. The converter keeps  
running to power the system, and BATFET can turn on again to engage Supplement Mode.  
When termination occurs, the status register CHRG_STAT is set to 11, and an INT pulse is asserted to the host.  
Termination is temporarily disabled when the charger device is in input current, voltage, or thermal regulation .  
Termination can be disabled by writing 0 to EN_TERM bit prior to charge termination.  
At low termination currents, due to the comparator offset, the actual termination current may be 10 mA-20 mA  
higher than the termination target. in order to compensate for comparator offset, a programmable top-off timer  
can be applied after termination is detected. The termination timer will follow safety timer constraints, such that if  
safety timer is suspended, so will the termination timer. Similarly, if safety timer is doubled, so will the termination  
timer. TOPOFF_ACTIVE bit reports whether the top off timer is active or not. The host can read CHRG_STAT  
and TOPOFF_ACTIVE to find out the termination status.  
Top off timer gets reset at one of the following conditions:  
1. Charge disable to enable  
2. Termination status low to high  
3. REG_RST register bit is set  
The top-off timer settings are read in once termination is detected by the charger. Programming a top-off timer  
value after termination will have no effect unless a recharge cycle is initiated. An INT is asserted to the host  
when entering top-off timer segment as well as when top-off timer expires.  
8.3.7.4 Thermistor Qualification  
The charger device provides a single thermistor input for battery temperature monitor.  
8.3.7.5 JEITA Guideline Compliance During Charging Mode  
To improve the safety of charging Li-ion batteries, JEITA guideline was released on April 20, 2007. The guideline  
emphasized the importance of avoiding a high charge current and high charge voltage at certain low and high  
temperature ranges.  
To initiate a charge cycle, the voltage on TS pin must be within the VT1 to VT5 thresholds. If TS voltage exceeds  
the T1-T5 range, the controller suspends charging and waits until the battery temperature is within the T1 to T5  
range.  
At cool temperature (T1-T2), JEITA recommends the charge current to be reduced to half of the charge current  
or lower. At warm temperature (T3-T5), JEITA recommends charge voltage less than 4.1 V.  
The charger provides flexible voltage/current settings beyond the JEITA requirement. The voltage setting at  
warm temperature (T3-T5) can be VREG or 4.1V (configured by JEITA_VSET). The current setting at cool  
temperature (T1-T2) can be further reduced to 20% of fast charge current (JEITA_ISET).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: BQ25600 BQ25600D  
 
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
100  
90  
VBATREG  
4.1V  
JEITA_VSET = 1  
JEITA_VSET = 0  
80  
70  
60  
JEITA_ISET= 0  
50  
40  
30  
JEITA_ISET= 1  
20  
10  
0
0
T1  
0
T2  
T3  
T5  
55  
60 65  
5
10 15 20  
25  
30 35  
40  
45 50  
œ5  
T1  
0
T2  
T3  
T5  
Battery Thermistor Temperature (°C)  
5
10 15 20  
25  
30 35  
40  
45 50  
55  
60 65  
70  
œ5  
8-4. JEITA Profile: Charging Voltage  
Battery Thermistor Temperature (°C)  
8-3. JEITA Profile: Charging Current  
REGN  
TS  
RT1  
RT2  
RTH  
103AT  
8-5. TS Resistor Network  
方程1 through 方程2 describe updates to the resistor bias network.  
1
1
æ
ö
VREGN ´ RTHCOLD ´ RTHHOT  
´
-
VT1 VT5  
ç
÷
è
ø
RT2 =  
V
V
æ
æ
ö
ö
REGN  
REGN  
RTHHOT  
´
- 1 - RTHCOLD  
´
ç
- 1  
ç
÷
÷
VT5  
VT1  
è
ø
è
ø
(1)  
(2)  
æ
ö
V
æ
REGN ö  
- 1  
ç
è
÷
ç
÷
VT1  
è
ø
ø
RT1=  
æ
ö
÷
1
1
æ
ö
+
ç
ç
÷
RT2  
RTHCOLD ø  
è
ø
è
Select 0°C to 60°C range for Li-ion or Li-polymer battery:  
RTHCOLD = 27.28 KΩ  
RTHHOT = 3.02 KΩ  
RT1 = 5.23 KΩ  
RT2 = 30.9 KΩ  
8.3.7.6 Boost Mode Thermistor Monitor During Battery Discharge Mode  
For battery protection during boost mode, the device monitors the battery temperature to be within the VBCOLD to  
VBHOT thresholds. When temperature is outside of the temperature thresholds, the boost mode is suspended. In  
additional, VBUS_STAT bits are set to 000 and NTC_FAULT is reported. Once temperature returns within  
thresholds, the boost mode is recovered and NTC_FAULT is cleared.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: BQ25600 BQ25600D  
 
 
 
 
 
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
Temperature Range to Boost  
Boost Disabled  
100%  
V
BCOLD  
(œ10°C)  
Boost Enabled  
Boost Disabled  
V
BHOT  
(65°C)  
0%  
8-6. TS Pin Thermistor Sense Threshold in Boost Mode  
8.3.7.7 Charging Safety Timer  
The device has built-in safety timer to prevent extended charging cycle due to abnormal battery conditions. The  
safety timer is two hours when the battery is below VBATLOWV threshold and 10 hours when the battery is higher  
than VBATLOWV threshold.  
The user can program fast charge safety timer through I2C (CHG_TIMER bits). When safety timer expires, the  
fault register CHRG_FAULT bits are set to 11 and an INT is asserted to the host. The safety timer feature can be  
disabled through I2C by setting EN_TIMER bit.  
During input voltage, current, JEITA cool or thermal regulation, the safety timer counts at half clock rate as the  
actual charge current is likely to be below the register setting. For example, if the charger is in input current  
regulation (IDPM_STAT = 1) throughout the whole charging cycle, and the safety time is set to five hours, the  
safety timer will expire in 10 hours. This half clock rate feature can be disabled by writing 0 to TMR2X_EN bit.  
During the fault, timer is suspended. Once the fault goes away, the timer resumes counting. If user stops the  
current charging cycle, and start again, timer gets reset (toggle CE pin or CHRG_CONFIG bit).  
8.3.8 Protections  
8.3.8.1 Voltage and Current Monitoring in Converter Operation  
The device closely monitors the input and system voltage, as well as internal FET currents for safe buck and  
boost mode operation.  
8.3.8.1.1 Voltage and Current Monitoring in Buck Mode  
8.3.8.1.1.1 Input Overvoltage (ACOV)  
If VBUS voltage exceeds VVAC_OV (programmable via OVP[2:0] bits), the device stops switching immediately.  
During input overvoltage event (ACOV), the fault register CHRG_FAULT bits are set to 01. An INT pulse is  
asserted to the host. The device will automatically resume normal operation once the input voltage drops back  
below the OVP threshold.  
8.3.8.1.1.2 System Overvoltage Protection (SYSOVP)  
The charger device clamps the system voltage during load transient so that the components connect to system  
would not be damaged due to high voltage. SYSOVP threshold is 350 mV above minimum system regulation  
voltage when the system is regulate at VSYS_MIN. Upon SYSOVP, converter stops switching immediately to  
clamp the overshoot. The charger provides 30-mA discharge current (ISYSLOAD) to bring down the system  
voltage.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: BQ25600 BQ25600D  
 
 
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
8.3.8.2 Voltage and Current Monitoring in Boost Mode  
The device closely monitors the VBUS voltage, as well as RBFET and LSFET current to ensure safe boost mode  
operation.  
8.3.8.2.1 VBUS Soft Start  
When the boost function is enabled, the device soft-starts boost mode to avoid inrush current.  
8.3.8.2.2 VBUS Output Protection  
The device monitors boost output voltage and other conditions to provide output short circuit and overvoltage  
protection. The boost build in accurate constant current regulation to allow OTG to adapt to various types of  
load. If a short circuit is detected on VBUS, boost turns off and retries 7 times. If retries are not successful, OTG  
is disabled with OTG_CONFIG bit cleared. In addition, the BOOST_FAULT bit is set and INT pulse is generated.  
The BOOST_FAULT bit can be cleared by host by reenabling boost mode  
8.3.8.2.3 Boost Mode Overvoltage Protection  
When the VBUS voltage rises above regulation target and exceeds VOTG_OVP, the device enters overvoltage  
protection which stops switching, clears OTG_CONFIG bit and exits boost mode. At Boost overvoltage duration,  
the fault register bit (BOOST_FAULT) is set high to indicate fault in boost operation. An INT is also asserted to  
the host.  
8.3.8.3 Thermal Regulation and Thermal Shutdown  
8.3.8.3.1 Thermal Protection in Buck Mode  
The BQ25600 and BQ25600D monitors the internal junction temperature TJ to avoid overheat of the chip and  
limits the IC surface temperature in buck mode. When the internal junction temperature exceeds thermal  
regulation limit (110°C), the device lowers down the charge current. During thermal regulation, the actual  
charging current is usually below the programmed battery charging current. Therefore, termination is disabled,  
the safety timer runs at half the clock rate, and the status register THERM_STAT bit goes high.  
Additionally, the device has thermal shutdown to turn off the converter and BATFET when IC surface  
temperature exceeds TSHUT(160°C). The fault register CHRG_FAULT is set to 1 and an INT is asserted to the  
host. The BATFET and converter is enabled to recover when IC temperature is TSHUT_HYS (30°C) below  
TSHUT(160°C).  
8.3.8.3.2 Thermal Protection in Boost Mode  
The device monitors the internal junction temperature to provide thermal shutdown during boost mode. When IC  
junction temperature exceeds TSHUT (160°C), the boost mode is disabled by setting OTG_CONFIG bit low and  
BATFET is turned off. When IC junction temperature is below TSHUT(160°C) - TSHUT_HYS (30°C), the BATFET is  
enabled automatically to allow system to restore and the host can re-enable OTG_CONFIG bit to recover.  
8.3.8.4 Battery Protection  
8.3.8.4.1 Battery Overvoltage Protection (BATOVP)  
The battery overvoltage limit is clamped at 4% above the battery regulation voltage. When battery over voltage  
occurs, the charger device immediately disables charging. The fault register BAT_FAULT bit goes high and an  
INT is asserted to the host.  
8.3.8.4.2 Battery Overdischarge Protection  
When battery is discharged below VBAT_DPL_FALL, the BATFET is turned off to protect battery from overdischarge.  
To recover from overdischarge latch-off, an input source plug-in is required at VBUS. The battery is charged with  
ISHORT (typically 100 mA) current when the VBAT < VSHORT, or precharge current as set in IPRECHG register  
when the battery voltage is between VSHORTZ and VBAT_LOWV  
.
8.3.8.4.3 System Overcurrent Protection  
When the system is shorted or significantly overloaded (IBAT > IBATOP) and the current exceeds BATFET  
overcurrent limit, the BATFET latches off. Section BATFET Enable (Exit Shipping Mode) can reset the latch-off  
condition and turn on BATFET.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: BQ25600 BQ25600D  
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Narrow VDC Architecture  
The device deploys Narrow VDC architecture (NVDC) with BATFET separating system from battery. The  
minimum system voltage is set by SYS_MIN bits. Even with a fully depleted battery, the system is regulated  
above the minimum system voltage.  
When the battery is below minimum system voltage setting, the BATFET operates in linear mode (LDO mode),  
and the system is typically 180 mV above the minimum system voltage setting. As the battery voltage rises  
above the minimum system voltage, BATFET is fully on and the voltage difference between the system and  
battery is the VDS of BATFET.  
When the battery charging is disabled and above minimum system voltage setting or charging is terminated, the  
system is always regulated at typically 50 mV above battery voltage. The status register VSYS_STAT bit goes  
high when the system is in minimum system voltage regulation.  
4.4  
Minimum System Voltage  
SYS (Charge Disabled)  
SYS (Charge Enabled)  
4.3  
4.2  
4.1  
4
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
2.7  
2.9  
3.1  
3.3  
3.5  
BAT (V)  
3.7  
3.9  
4.1  
4.3  
D002  
8-7. System Voltage vs Battery Voltage  
8.4.2 Dynamic Power Management  
To meet maximum current limit in USB spec and avoid over loading the adapter, the device features Dynamic  
Power management (DPM), which continuously monitors the input current and input voltage. When input source  
is over-loaded, either the current exceeds the input current limit (IINDPM) or the voltage falls below the input  
voltage limit (VINDPM). The device then reduces the charge current until the input current falls below the input  
current limit and the input voltage rises above the input voltage limit.  
When the charge current is reduced to zero, but the input source is still overloaded, the system voltage starts to  
drop. Once the system voltage falls below the battery voltage, the device automatically enters the supplement  
mode where the BATFET turns on and battery starts discharging so that the system is supported from both the  
input source and battery.  
During DPM mode, the status register bits VDPM_STAT (VINDPM) or IDPM_STAT (IINDPM) goes high. shows  
the DPM response with 9-V/1.2-A adapter, 3.2-V battery, charge current and 3.5-V minimum system voltage  
setting.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: BQ25600 BQ25600D  
 
 
 
 
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
Voltage  
9V  
VBUS  
SYS  
BAT  
3.6V  
3.4V  
3.2V  
3.18V  
Current  
4A  
ICHG  
IIN  
3.2A  
2.8A  
ISYS  
1.2A  
1.0A  
0.5A  
-0.6A  
DPM  
DPM  
Supplement  
8-8. DPM Response  
8.4.3 Supplement Mode  
When the system voltage falls 180 mV (VBAT > VSYS_MIN) or 45 mV (VBAT < VSYS_MIN) below the battery voltage,  
the BATFET turns on and the BATFET gate is regulated the gate drive of BATFET so that the minimum BATFET  
VDS stays at 30 mV when the current is low. This prevents oscillation from entering and exiting the supplement  
mode.  
As the discharge current increases, the BATFET gate is regulated with a higher voltage to reduce RDSON until  
the BATFET is in full conduction. At this point onwards, the BATFET VDS linearly increases with discharge  
current. 8-9 shows the V-I curve of the BATFET gate regulation operation. BATFET turns off to exit  
supplement mode when the battery is below battery depletion threshold.  
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
5
10 15 20 25 30 35 40 45 50 55  
V(BAT-SYS) (mV)  
D001  
Plot1  
8-9. BAFET V-I Curve  
8.4.4 Shipping Mode and QON Pin  
8.4.4.1 BATFET Disable Mode (Shipping Mode)  
To extend battery life and minimize power when system is powered off during system idle, shipping, or storage,  
the device can turn off BATFET so that the system voltage is zero to minimize the battery leakage current. When  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: BQ25600 BQ25600D  
 
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
the host set BATFET_DIS bit, the charger can turn off BATFET immediately or delay by tSM_DLY as configured by  
BATFET_DLY bit.  
8.4.4.2 BATFET Enable (Exit Shipping Mode)  
When the BATFET is disabled (in shipping mode) and indicated by setting BATFET_DIS, one of the following  
events can enable BATFET to restore system power:  
1. Plug in adapter  
2. Clear BATFET_DIS bit  
3. Set REG_RST bit to reset all registers including BATFET_DIS bit to default (0)  
4. A logic high to low transition on QON pin with tSHIPMODE deglitch time to enable BATFET to exit shipping  
mode  
8.4.4.3 BATFET Full System Reset  
The BATFET functions as a load switch between battery and system when input source is not plugged in. By  
changing the state of BATFET from on to off, systems connected to SYS can be effectively forced to have a  
power-on-reset. The QON pin supports push-button interface to reset system power without host by changing  
the state of BATFET.  
When the QON pin is driven to logic low for tQON_RST while input source is not plugged in and BATFET is  
enabled (BATFET_DIS = 0), the BATFET is turned off for tBATFET_RST and then it is re-enabled to reset system  
power. This function can be disabled by setting BATFET_RST_EN bit to 0.  
8.4.4.4 QON Pin Operations  
The QON pin incorporates two functions to control BATFET. QON is pulled up to VQON by an internal 200-kΩ  
pull-up resistor.  
1. BATFET Enable: A QON logic transition from high to low with longer than tSHIPMODE deglitch turns on  
BATFET to exit shipping mode. When exiting shipping mode, HIZ is enabled (EN_HIZ = 1) as well. HIZ can  
be disabled (EN_HIZ = 0) by the host after exiting shipping mode. OTG cannot be enabled (OTG_CONFIG =  
1) until HIZ is disabled.  
2. BATFET Reset: When QON is driven to logic low by at least tQON_RST while adapter is not plugged in (and  
BATFET_DIS = 0), the BATFET is turned off for tBATFET_RST. The BATFET is re-enabled after tBATFET_RST  
duration. This function allows systems connected to SYS to have power-on-reset. This function can be  
disabled by setting BATFET_RST_EN bit to 0.  
8-10 shows the sample external configurations for each.  
QON  
Press  
push button  
Press  
push button  
t
QON_RST  
t
SHIPMODE  
t
BATFET_RST  
Q4 Status  
2
Q4  
off  
Q4 off due to I C or  
system overload  
Q4 on  
Q4 on  
Turn on Q4 FET  
when BATFET_DIS = 1 or SLEEPZ = 1  
Reset Q4 FET  
When BATFET_DIS = 0 and SLEEPZ = 0  
8-10. QON Timing  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: BQ25600 BQ25600D  
 
 
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
SYS  
Q4  
Control  
BAT  
VPULL-UP  
+
QON  
8-11. QON Circuit  
8.4.5 Status Outputs ( PG, STAT, INT)  
8.4.5.1 Power Good Indicator ( PG Pin and PG_STAT Bit)  
The PG_STAT bit goes HIGH and PG pin goes LOW to indicate a good input source when:  
VBUS above VVBUS_UVLO  
VBUS above battery (not in sleep)  
VBUS below VVAC_OV threshold  
VBUS above VVBUSMin (typical 3.8 V) when IBADSRC (typical 30 mA) current is applied (not a poor source)  
Completed input Source Type Detection  
8.4.5.2 Charging Status Indicator (STAT)  
The device indicates charging state on the open drain STAT pin. The STAT pin can drive LED. The STAT pin  
function can be disabled by setting the EN_ICHG_MON bits = 11.  
8-6. STAT Pin State  
CHARGING STATE  
STAT INDICATOR  
LOW  
Charging in progress (including recharge)  
Charging complete  
HIGH  
Sleep mode, charge disable  
HIGH  
Charge suspend (input overvoltage, TS fault, timer fault or system overvoltage)  
Boost Mode suspend (due to TS fault)  
Blinking at 1 Hz  
8.4.5.3 Interrupt to Host ( INT)  
In some applications, the host does not always monitor the charger operation. The INT pulse notifies the system  
on the device operation. The following events will generate 256-μs INT pulse.  
USB/adapter source identified (through PSEL pin or DPDM detection)  
Good input source detected  
VBUS above battery (not in sleep)  
VBUS below VVAC_OV threshold  
VBUS above VVBUSMin (typical 3.8 V) when IBADSRC (typical 30 mA) current is applied (not a poor source)  
Input removed  
Charge complete  
Any FAULT event in REG09  
VINDPM / IINDPM event detected (maskable)  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: BQ25600 BQ25600D  
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
When a fault occurs, the charger device sends out INT and keeps the fault state in REG09 until the host reads  
the fault register. Before the host reads REG09 and all the faults are cleared, the charger device would not send  
any INT upon new faults. To read the current fault status, the host has to read REG09 two times consecutively.  
The first read reports the pre-existing fault register status and the second read reports the current fault register  
status.  
8.5 Programming  
8.5.1 Serial Interface  
The device uses I2C compatible interface for flexible charging parameter programming and instantaneous device  
status reporting. I2C is a bi-directional 2-wire serial interface developed by Philips Semiconductor (now NXP  
Semiconductors). Only two bus lines are required: a serial data line (SDA) and a serial clock line (SCL). Devices  
can be considered as masters or slaves when performing data transfers. A master is the device which initiates a  
data transfer on the bus and generates the clock signals to permit that transfer. At that time, any device  
addressed is considered a slave.  
The device operates as a slave device with address 6BH, receiving control inputs from the master device like  
micro controller or a digital signal processor through REG00-REG0B. Register read beyond REG0B (0x0B)  
returns 0xFF. The I2C interface supports both standard mode (up to 100 kbits), and fast mode (up to 400 kbits).  
connecting to the positive supply voltage via a current source or pull-up resistor. When the bus is free, both lines  
are HIGH. The SDA and SCL pins are open drain.  
8.5.1.1 Data Validity  
The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the  
data line can only change when the clock signal on the SCL line is LOW. One clock pulse is generated for each  
data bit transferred.  
SDA  
SCL  
Data line stable;  
Data valid  
Change of data  
allowed  
8-12. Bit Transfer on the I2C Bus  
8.5.1.2 START and STOP Conditions  
All transactions begin with a START (S) and can be terminated by a STOP (P). A HIGH to LOW transition on the  
SDA line while SCl is HIGH defines a START condition. A LOW to HIGH transition on the SDA line when the  
SCL is HIGH defines a STOP condition. START and STOP conditions are always generated by the master. The  
bus is considered busy after the START condition, and free after the STOP condition.  
SDA  
SCL  
SDA  
SCL  
START (S)  
STOP (P)  
8-13. TS START and STOP conditions  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: BQ25600 BQ25600D  
 
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
8.5.1.3 Byte Format  
Every byte on the SDA line must be 8 bits long. The number of bytes to be transmitted per transfer is  
unrestricted. Each byte has to be followed by an Acknowledge bit. Data is transferred with the Most Significant  
Bit (MSB) first. If a slave cannot receive or transmit another complete byte of data until it has performed some  
other function, it can hold the clock line SCL low to force the master into a wait state (clock stretching). Data  
transfer then continues when the slave is ready for another byte of data and release the clock line SCL.  
Acknowledgement  
signal from slave  
Acknowledgement  
signal from receiver  
MSB  
1
SDA  
SCL  
2
7
8
9
1
2
8
9
S or Sr  
P or Sr  
START or  
Repeated  
START  
STOP or  
Repeated  
START  
ACK  
ACK  
8-14. Data Transfer on the I2C Bus  
8.5.1.4 Acknowledge (ACK) and Not Acknowledge (NACK)  
The acknowledge takes place after every byte. The acknowledge bit allows the receiver to signal the transmitter  
that the byte was successfully received and another byte may be sent. All clock pulses, including the  
acknowledge ninth clock pulse, are generated by the master. The transmitter releases the SDA line during the  
acknowledge clock pulse so the receiver can pull the SDA line LOW and it remains stable LOW during the HIGH  
period of this clock pulse.  
When SDA remains HIGH during the ninth clock pulse, this is the Not Acknowledge signal. The master can then  
generate either a STOP to abort the transfer or a repeated START to start a new transfer.  
8.5.1.5 Slave Address and Data Direction Bit  
After the START, a slave address is sent. This address is 7 bits long followed by the eighth bit as a data direction  
bit (bit R/W). A zero indicates a transmission (WRITE) and a one indicates a request for data (READ).  
SDA  
1 - 7  
8
9
1-7  
8
9
1-7  
8
9
S
P
SCL  
START  
ADDRESS  
R / W  
ACK  
DATA  
ACK  
DATA  
ACK  
STOP  
8-15. Complete Data Transfer  
8.5.1.6 Single Read and Write  
If the register address is not defined, the charger IC send back NACK and go back to the idle state.  
1
7
1
0
1
8
1
8
1
1
S
Slave Address  
ACK  
Reg Addr  
ACK  
Data to Addr  
ACK  
P
8-16. Single Write  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: BQ25600 BQ25600D  
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
1
7
1
0
1
8
1
1
7
1
1
1
S
Slave Address  
ACK  
Reg Addr  
ACK  
S
Slave Addr  
ACK  
8
1
1
Data  
NCK  
P
8-17. Single Read  
8.5.1.7 Multi-Read and Multi-Write  
The charger device supports multi-read and multi-write on REG00 through REG0B.  
1
7
1
0
1
8
1
S
Slave Address  
ACK  
Reg Addr  
ACK  
8
1
8
1
8
1
1
Data to Addr  
ACK  
Data to Addr + N  
ACK  
Data to Addr + N  
ACK  
P
8-18. Multi-Write  
1
7
1
1
8
1
1
7
1
1
1
S
Slave Address  
0
ACK  
Reg Addr  
ACK  
S
Slave Address  
ACK  
8
1
8
1
8
1
1
Data @ Addr  
ACK  
Data @ Addr + 1  
ACK  
Data @ Addr + N NCK  
P
8-19. Multi-Read  
REG09 is a fault register. It keeps all the fault information from last read until the host issues a new read. For  
example, if Charge Safety Timer Expiration fault occurs but recovers later, the fault register REG09 reports the  
fault when it is read the first time, but returns to normal when it is read the second time. in order to get the fault  
information at present, the host has to read REG09 for the second time. The only exception is NTC_FAULT  
which always reports the actual condition on the TS pin. in addition, REG09 does not support multi-read and  
multi-write.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: BQ25600 BQ25600D  
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
8.6 Register Maps  
I2C Slave Address: 6BH  
8.6.1 REG00  
8-7. REG00 Field Descriptions  
Bit Field  
POR Type Reset  
Description  
Comment  
7
Enable HIZ Mode  
0 Disable (default)  
1 Enable  
by REG_RST  
by Watchdog  
EN_HIZ  
0
0
R/W  
0 Disable, 1 Enable  
6
5
EN_ICHG_MON[1]  
EN_ICHG_MON[0]  
R/W by REG_RST  
R/W  
00 Enable STAT pin function  
(default)  
01 Reserved  
10 Reserved  
0
by REG_RST  
11 Disable STAT pin function  
(float pin)  
4
3
2
1
IINDPM[4]  
IINDPM[3]  
IINDPM[2]  
IINDPM[1]  
1
0
1
1
R/W by REG_RST 1600 mA  
R/W by REG_RST 800 mA  
R/W by REG_RST 400 mA  
R/W by REG_RST 200 mA  
Input Current Limit  
Offset: 100 mA  
Range: 100 mA (000000) 3.2 A  
(11111)  
Default: 2400 mA (10111),  
maximum input current limit, not  
typical.  
IINDPM bits are changed  
automatically after input source  
detection is completed  
BQ25600D  
USB SDP = 500 mA  
USB DCP = 2.4 A  
Unknown Adapter = 500 mA  
Non-Standard Adapter = 1 A, 2 A,  
2.1 A, or 2.4 A  
0
IINDPM[0]  
1
R/W by REG_RST 100 mA  
BQ25600  
PSEL = Hi = 500 mA  
PSEL = Lo = 2.4 A  
Host can over-write IINDPM  
register bits after input source  
detection is completed.  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: BQ25600 BQ25600D  
 
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
8.6.2 REG01  
8-8. REG01 Field Descriptions  
Bit Field  
POR Type Reset  
Description  
Comment  
R/W  
R/W  
R/W  
0 Enable PFM  
1 Disable PFM  
7
6
PFM _DIS  
WD_RST  
0
0
by REG_RST  
Default: 0 - Enable  
by REG_RST I2C Watchdog Timer Reset 0 –  
by Watchdog  
Default: Normal (0) Back to 0 after  
watchdog timer reset  
Normal ; 1 Reset  
Default: OTG disable (0)  
Note:  
1. OTG_CONFIG would over-ride  
Charge Enable Function in  
CHG_CONFIG  
by REG_RST 0 OTG Disable  
by Watchdog  
5
4
OTG_CONFIG  
CHG_CONFIG  
0
1
1 OTG Enable  
R/W  
Default: Charge Battery (1)  
Note:  
1. Charge is enabled when both  
CE pin is pulled low AND  
CHG_CONFIG bit is 1.  
by REG_RST 0 Charge Disable  
by Watchdog  
1 Charge Enable  
3
2
SYS_MIN[2]  
SYS_MIN[1]  
1
0
R/W by REG_RST  
R/W by REG_RST  
R/W  
000: 2.6 V  
001: 2.8 V  
010: 3 V  
011: 3.2 V  
100: 3.4 V  
101: 3.5 V  
110: 3.6 V  
111: 3.7 V  
System Minimum Voltage  
1
0
SYS_MIN[0]  
1
0
by REG_RST  
Default: 3.5 V (101)  
R/W  
Minimum battery voltage for OTG  
mode. Default falling 2.8 V (0);  
Rising threshold 3.0 V (0)  
0 2.8 V BAT falling,  
1 2.5 V BAT falling  
MIN_VBAT_SEL  
by REG_RST  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: BQ25600 BQ25600D  
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
8.6.3 REG02  
8-9. REG02 Field Descriptions  
Bit Field  
POR Type Reset  
Description  
Comment  
R/W by REG_RST  
by Watchdog 0 0.5 A  
1 1.2 A  
Default: 1.2 A (1)  
Note:  
The current limit options listed are  
minimum current limit specs.  
7
BOOST_LIM  
1
R/W by REG_RST  
0 Use higher Q1 RDSON when  
programmed IINDPM < 700mA  
(better accuracy)  
In boost mode, full FET is always  
used and this bit has no effect  
6
Q1_FULLON  
0
1 Use lower Q1 RDSON always  
(better efficiency)  
R/W by REG_RST  
by Watchdog  
5
4
3
2
1
0
ICHG[5]  
ICHG[4]  
ICHG[3]  
ICHG[2]  
ICHG[1]  
ICHG[0]  
1
0
0
0
1
0
1920 mA  
960 mA  
480 mA  
240 mA  
120 mA  
60 mA  
R/W by REG_RST  
by Watchdog  
Fast Charge Current  
Default: 2040 mA (100010)  
Range: 0 mA (0000000) 3000  
mA (110010)  
by REG_RST  
R/W  
by Watchdog  
Note:  
R/W by REG_RST  
by Watchdog  
ICHG = 0 mA disables charge.  
ICHG > 3000 mA (110010 clamped  
to register value 3000 mA  
(110010))  
R/W by REG_RST  
by Watchdog  
R/W by REG_RST  
by Watchdog  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: BQ25600 BQ25600D  
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
8.6.4 REG03  
8-10. REG03 Field Descriptions  
Bit Field  
POR Type Reset  
Description  
Comment  
7
6
5
4
3
2
1
0
IPRECHG[3]  
0
0
1
0
0
0
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
by REG_RST  
by Watchdog  
480 mA  
Precharge Current  
Default: 180 mA (0010)  
Offset: 60 mA  
Note: IPRECHG > 780 mA  
clamped to 780 mA (1100)  
IPRECHG[2]  
IPRECHG[1]  
IPRECHG[0]  
ITERM[3]  
by REG_RST  
by Watchdog  
240 mA  
120 mA  
60 mA  
by REG_RST  
by Watchdog  
by REG_RST  
by Watchdog  
by REG_RST  
by Watchdog  
480 mA  
240 mA  
120 mA  
60 mA  
Termination Current  
Default: 180 mA (0010)  
Offset: 60 mA  
Note: ITERM > 780 mA clamped to  
780 mA(1100)  
ITERM[2]  
by REG_RST  
by Watchdog  
ITERM[1]  
by REG_RST  
by Watchdog  
ITERM[0]  
by REG_RST  
by Watchdog  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: BQ25600 BQ25600D  
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
8.6.5 REG04  
8-11. REG04 Field Descriptions  
Description  
Bit Field  
POR Type Reset  
Comment  
by REG_RST  
by Watchdog  
7
6
5
4
3
2
1
0
VREG[4]  
0
1
0
1
1
0
0
0
R/W  
512 mV  
256 mV  
128 mV  
64 mV  
Charge Voltage  
Offset: 3.856 V  
by REG_RST  
by Watchdog  
VREG[3]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Range: 3.856 V to 4.624 V (11000)  
Default: 4.208 V (01011)  
Special Value:  
by REG_RST  
by Watchdog  
VREG[2]  
(01111): 4.352 V  
by REG_RST  
by Watchdog  
VREG[1]  
Note: Value above 11000 (4.624 V)  
is clamped to register value 11000  
(4.624 V)  
by REG_RST  
by Watchdog  
VREG[0]  
32 mV  
by REG_RST  
by Watchdog  
00 Disabled (Default)  
01 15 minutes  
10 30 minutes  
The extended time following the  
termination condition is met. When  
disabled, charge terminated when  
termination conditions are met  
TOPOFF_TIMER[1]  
TOPOFF_TIMER[0]  
VRECHG  
by REG_RST  
by Watchdog  
11 45 minutes  
by REG_RST  
by Watchdog  
0 100 mV  
1 200 mV  
Recharge threshold  
Default: 100 mV (0)  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: BQ25600 BQ25600D  
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
8.6.6 REG05  
8-12. REG05 Field Descriptions  
Bit Field  
POR Type Reset  
Description  
Comment  
by REG_RST 0 Disable  
7
6
EN_TERM  
1
0
R/W  
R/W  
Default: Enable termination (1)  
by Watchdog  
1 Enable  
Default: Enable OVPFET (0)  
Note: This bit only takes effect  
when EN_HIZ bit is active  
by REG_RST 0 Enable OVPFET  
OVPFET_DIS  
by Watchdog  
1 Disable OVPFET  
by REG_RST  
by Watchdog  
5
4
WATCHDOG[1]  
WATCHDOG[0]  
0
1
R/W  
R/W  
00 Disable timer, 01 40 s, 10  
80 s,11 160 s  
Default: 40 s (01)  
by REG_RST  
by Watchdog  
0 Disable  
1 Enable both fast charge and  
precharge timer  
by REG_RST  
by Watchdog  
3
2
1
0
EN_TIMER  
CHG_TIMER  
TREG  
1
1
1
1
R/W  
R/W  
R/W  
R/W  
Default: Enable (1)  
Default: 10 hours (1)  
Default: 110°C (1)  
Default: 20% (1)  
by REG_RST 0 5 hrs  
by Watchdog  
1 10 hrs  
Thermal Regulation Threshold:  
0 90°C  
1 110°C  
by REG_RST  
by Watchdog  
JEITA_ISET  
(0C-10C)  
by REG_RST 0 50% of ICHG  
by Watchdog  
1 20% of ICHG  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: BQ25600 BQ25600D  
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
8.6.7 REG06  
8-13. REG06 Field Descriptions  
Description  
Bit Field  
POR Type Reset  
Comment  
7
6
5
4
OVP[1]  
0
1
1
0
R/W by REG_RST  
VAC OVP threshold:  
00 - 5.5 V  
01 6.5 V (5-V input)  
10 10.5 V (9-V input)  
11 14 V (12-V input)  
Default: 6.5 V (01)  
OVP[0]  
R/W by REG_RST  
BOOSTV[1]  
BOOSTV[0]  
R/W by REG_RST  
R/W by REG_RST  
Boost Regulation Voltage:  
00 4.85 V  
01 5.00 V  
10 5.15 V  
11 5.30 V  
3
2
1
0
VINDPM[3]  
VINDPM[2]  
VINDPM[1]  
VINDPM[0]  
0
1
1
0
R/W by REG_RST 800 mV  
R/W by REG_RST 400 mV  
R/W by REG_RST 200 mV  
R/W by REG_RST 100 mV  
Absolute VINDPM Threshold  
Offset: 3.9 V  
Range: 3.9 V (0000) 5.4 V  
(1111)  
Default: 4.5 V (0110)  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: BQ25600 BQ25600D  
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
8.6.8 REG07  
8-14. REG07 Field Descriptions  
Bit Field  
POR Type Reset  
Description  
Comment  
0 Not in D+/Ddetection (or  
PSEL detection);  
1 Force D+/Ddetection  
Default: Not in DPDM detection (0)  
Note: For PSEL part, reads PSEL  
pin value  
by REG_RST  
by Watchdog  
7
6
IINDET_EN  
0
1
R/W  
R/W  
0 Disable  
by REG_RST  
by Watchdog  
1 Safety timer slowed by 2X  
during input DPM (both V and I) or  
JEITA cool, or thermal regulation  
TMR2X_EN  
0 Allow Q4 turn on, 1 Turn off  
Q4 with tBATFET_DLY delay time  
(REG07[3])  
5
4
BATFET_DIS  
0
0
R/W by REG_RST  
Default: Allow Q4 turn on(0)  
0 Set Charge Voltage to 4.1V  
( max),  
1 Set Charge Voltage to VREG  
JEITA_VSET  
(45C-60C)  
by REG_RST  
R/W  
by Watchdog  
0 Turn off BATFET immediately  
when BATFET_DIS bit is set  
1 Turn off BATFET after  
tBATFET_DLY (typ. 10 s) when  
BATFET_DIS bit is set  
Default: 1  
Turn off BATFET after tBATFET_DLY  
(typ. 10 s) when BATFET_DIS bit  
is set  
3
BATFET_DLY  
1
R/W by REG_RST  
by REG_RST 0 Disable BATFET reset function Default: 1  
2
1
BATFET_RST_EN  
1
0
R/W  
by Watchdog  
Enable BATFET reset function  
1 Enable BATFET reset function  
VDPM_BAT_TRACK[1]  
R/W by REG_RST  
R/W by REG_RST  
00 Disable function (VINDPM  
set by register)  
01 VBAT + 200 mV  
10 VBAT + 250 mV  
11 VBAT + 300 mV  
Sets VINDPM to track BAT voltage.  
Actual VINDPM is higher of  
register value and VBAT +  
VDPM_BAT_TRACK  
0
VDPM_BAT_TRACK[0]  
0
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: BQ25600 BQ25600D  
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
8.6.9 REG08  
8-15. REG08 Field Descriptions  
Bit Field  
POR Type  
Reset  
Description  
7
6
VBUS_STAT[2]  
x
x
R
R
NA  
VBUS Status register  
BQ25600D  
000: No input  
VBUS_STAT[1]  
NA  
001: USB Host SDP  
010: USB CDP: (1.5A)  
011: USB DCP (2.4 A)  
101: Unknown Adapter (500 mA)  
110: Non-Standard Adapter (1A/2A/2.1A/2.4A)  
111: OTG  
5
VBUS_STAT[0]  
x
R
NA  
BQ25600  
000 No input  
001 USB Host SDP (500 mA) PSEL HIGH  
011 Adapter 2.4 A PSEL LOW  
111 OTG  
Software current limit is reported in IINDPM register  
4
3
CHRG_STAT[1]  
CHRG_STAT[0]  
x
x
R
R
NA  
NA  
Charging status:  
00 Not Charging  
01 Pre-charge (< VBATLOWV  
10 Fast Charging  
)
11 Charge Termination  
Power Good status:  
0 Power Not Good  
1 Power Good  
2
PG_STAT  
x
R
NA  
0 Not in thermal regulation  
1 In thermal regulation  
1
0
THERM_STAT  
VSYS_STAT  
x
x
R
R
NA  
NA  
0 Not in VSYS_MIN regulation (BAT > VSYS_MIN  
1 In VSYS_MIN regulation (BAT < VSYS_MIN  
)
)
LEGEND: R/W = Read/Write  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: BQ25600 BQ25600D  
 
 
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
8.6.10 REG09  
8-16. REG09 Field Descriptions  
Bit Field  
POR Type Reset  
Description  
7
6
WATCHDOG_FAULT  
x
x
R
R
NA  
NA  
0 Normal, 1- Watchdog timer expiration  
0 Normal, 1 VBUS overloaded in OTG, or VBUS OVP, or battery is  
too low (any conditions that cannot start boost function)  
BOOST_FAULT  
5
4
3
2
1
CHRG_FAULT[1]  
CHRG_FAULT[0]  
BAT_FAULT  
x
x
x
x
x
R
R
R
R
R
NA  
NA  
NA  
NA  
NA  
00 Normal, 01 input fault (VAC OVP or VBAT < VBUS < 3.8 V), 10  
- Thermal shutdown, 11 Charge Safety Timer Expiration  
0 Normal, 1 BATOVP  
NTC_FAULT[2]  
NTC_FAULT[1]  
JEITA  
000 Normal, 010 Warm, 011 Cool, 101 Cold, 110 Hot  
(Buck mode)  
0
NTC_FAULT[0]  
x
R
NA  
000 Normal, 101 Cold, 110 Hot (Boost mode)  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: BQ25600 BQ25600D  
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
8.6.11 REG0A  
8-17. REG0A Field Descriptions  
Bit Field  
POR Type Reset  
Description  
0 Not VBUS attached,  
1 VBUS Attached  
7
VBUS_GD  
x
R
NA  
6
5
4
VINDPM_STAT  
IINDPM_STAT  
Reserved  
x
x
x
R
R
R
NA  
NA  
NA  
0 Not in VINDPM, 1 in VINDPM  
0 Not in IINDPM, 1 in IINDPM  
0 Top off timer not counting.  
1 Top off timer counting  
3
2
1
0
TOPOFF_ACTIVE  
ACOV_STAT  
x
x
0
0
R
R
NA  
NA  
0 Device is NOT in ACOV  
1 Device is in ACOV  
0 Allow VINDPM INT pulse  
1 Mask VINDPM INT pulse  
VINDPM_INT_ MASK  
IINDPM_INT_ MASK  
R/W by REG_RST  
R/W by REG_RST  
0 Allow IINDPM INT pulse  
1 Mask IINDPM INT pulse  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: BQ25600 BQ25600D  
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
8.6.12 REG0B  
8-18. REG0B Field Descriptions  
Bit Field  
POR Type Reset  
Description  
Register reset  
0 Keep current register setting  
1 Reset to default register value and reset safety timer  
Note: Bit resets to 0 after register reset is completed  
7
REG_RST  
0
R/W NA  
6
5
4
3
2
1
0
PN[3]  
x
x
x
x
x
x
x
R
R
R
R
R
R
R
NA  
NA  
NA  
NA  
NA  
NA  
NA  
PN[2]  
BQ25600: 0000  
BQ25600D: 0001  
PN[1]  
PN[0]  
Reserved  
DEV_REV[1]  
DEV_REV[0]  
LEGEND: R/W = Read/Write; R = Read only  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
A typical application consists of the device configured as an I2C controlled power path management device and  
a single cell battery charger for Li-Ion and Li-polymer batteries used in a wide range of Smartphone and other  
portable devices. It integrates an input reverse-block FET (RBFET, Q1), high-side switching FET (HSFET, Q2),  
low-side switching FET (LSFET, Q3), and battery FET (BATFET Q4) between the system and battery. The  
device also integrates a bootstrap diode for the high-side gate drive.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: BQ25600 BQ25600D  
 
 
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
9.2 Typical Application  
SYSTEM  
3.5V œ 4.6V  
1 H  
VBUS  
PMID  
SW  
1 F  
10 F  
47 nF  
BTST  
REGN  
10 F  
4.7 µF  
GND  
SYS  
VAC  
SYS  
SYS  
Opt.  
2.2 kꢁ  
2.2 kꢁ  
PG  
BAT  
BQ25600  
STAT  
VREF  
10 F  
BATSNS  
3 x 10 kꢁ  
REGN  
5.23 kꢁ  
SDA  
SCL  
INT  
CE  
TS  
Host  
+
30.1 k10 kꢁ  
QON  
PHY  
PSEL  
Optional  
9-1. Power Path Management Application  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: BQ25600 BQ25600D  
 
 
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
SYSTEM  
3.5V œ 4.6V  
1 H  
VBUS  
PMID  
SW  
1 F  
10 F  
47 nF  
BTST  
REGN  
10 F  
4.7 µF  
GND  
SYS  
VAC  
SYS  
Opt.  
BAT  
BQ25600D  
STAT  
VREF  
10 F  
BATSNS  
3 x 10 kꢁ  
REGN  
5.23 kꢁ  
SDA  
SCL  
INT  
TS  
Host  
+
30.1 k10 kꢁ  
CE  
QON  
D+  
D-  
USB  
Optional  
9-2. BQ25600D Applications Diagram  
9.2.1 Design Requirements  
9-1. Design Parameters  
PARAMETER  
VALUE  
4 V to 13.5 V  
3.2 A  
VBUS voltage range  
Input current limit (REG00[4:0])  
Fast charge current limit (REG02[5:0])  
Minimum system voltage (REG01[3:1])  
Battery regulation voltage (REG04[7:3])  
2.4 A  
3.5 V  
4.2 V  
9.2.2 Detailed Design Procedure  
9.2.2.1 Inductor Selection  
The 1.5-MHz switching frequency allows the use of small inductor and capacitor values to maintain an inductor  
saturation current higher than the charging current (ICHG) plus half the ripple current (IRIPPLE):  
I
SAT ICHG + (1/2) IRIPPLE  
(3)  
The inductor ripple current depends on the input voltage (VVBUS), the duty cycle (D = VBAT/VVBUS), the switching  
frequency (fS) and the inductance (L).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: BQ25600 BQ25600D  
 
 
 
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
VIN ´D ´ (1- D)  
=
IRIPPLE  
fs ´ L  
(4)  
The maximum inductor ripple current occurs when the duty cycle (D) is 0.5 or approximately 0.5. Usually  
inductor ripple is designed in the range between 20% and 40% maximum charging current as a trade-off  
between inductor size and efficiency for a practical design.  
9.2.2.2 Input Capacitor  
Design input capacitance to provide enough ripple current rating to absorb input switching ripple current. The  
worst case RMS ripple current is half of the charging current when duty cycle is 0.5. If the converter does not  
operate at 50% duty cycle, then the worst case capacitor RMS current ICin occurs where the duty cycle is closest  
to 50% and can be estimated using 方程5.  
ICIN = ICHG ´ D ´ (1- D)  
(5)  
Low ESR ceramic capacitor such as X7R or X5R is preferred for input decoupling capacitor and should be  
placed to the drain of the high-side MOSFET and source of the low-side MOSFET as close as possible. Voltage  
rating of the capacitor must be higher than normal input voltage level. A rating of 25 V or higher capacitor is  
preferred for 15-V input voltage. Capacitance of 22 μF is suggested for typical of 3-A charging current.  
9.2.2.3 Output Capacitor  
Ensure that the output capacitance has enough ripple current rating to absorb the output switching ripple current.  
方程6 shows the output capacitor RMS current ICOUT calculation.  
IRIPPLE  
ICOUT  
=
» 0.29 ´ IRIPPLE  
2 ´  
3
(6)  
The output capacitor voltage ripple can be calculated as follows:  
æ
ç
è
ö
VOUT  
8LCfs2  
VOUT  
V
DVO =  
1-  
÷
IN ø  
(7)  
At certain input and output voltage and switching frequency, the voltage ripple can be reduced by increasing the  
output filter LC.  
The charger device has internal loop compensation optimized for >20-μF ceramic output capacitance. The  
preferred ceramic capacitor is 10-V rating, X7R or X5R.  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: BQ25600 BQ25600D  
 
 
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
9.2.3 Application Curves  
VVBUS = 5 V  
VVBAT = 3.2 V  
VVBUS = 5 V  
ICHG = 2 A  
VVBAT = 3.2 V  
9-3. Power-Up with Charge Disabled  
9-4. Power-Up with Charge Enabled  
VVBUS = 5 V  
VVBUS = 9 V  
ISYS = 50 mA  
ISYS = 50 mA  
Charge Disabled  
Charge Disabled  
9-5. PFM Switching in Buck Mode  
9-6. PFM Switching in Buck Mode  
VVBUS = 12 V  
ISYS = 50 mA  
VVBUS = 5 V  
ICHG = 2 A  
VVBAT = 3.8 V  
Charge Disabled  
9-7. PFM Switching in Buck Mode  
9-8. PWM Switching in Buck Mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: BQ25600 BQ25600D  
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
VVBUS = 12 V  
ICHG = 2 A  
VVBAT = 3.8 V  
VVBUS = 5 V  
ICHG = 2 A  
VVBAT = 3.2 V  
9-9. PWM Switching in Buck mode  
9-10. Charge Enable  
VVBUS = 5 V  
ICHG = 2 A  
VVBAT = 3.2 V  
VVBAT = 4 V  
ILOAD= 50 mA  
PFM Enabled  
9-11. Charge Disable  
9-12. OTG Switching  
VVBAT = 4 V  
ILOAD= 1 A  
VVBAT = 4 V  
ILOAD= 0 A  
PFM Enabled  
PFM Disabled  
9-13. OTG Switching  
9-14. OTG Switching  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: BQ25600 BQ25600D  
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
VVBUS = 5 V  
IINDPM = 1 A  
ICHG = 1 A  
VVBUS = 5 V  
IINDPM = 2 A  
ISYS from 0 A to 2 A  
VBAT = 3.7 V  
ISYS from 0 A to 4 A  
VBAT = 3.7 V  
ICHG = 1 A  
9-15. System Load Transient  
9-16. System Load Transient  
VVBUS = 5 V  
IINDPM = 1 A  
ICHG = 2 A  
VVBUS = 5 V  
IINDPM = 1 A  
ICHG = 2 A  
ISYS from 0 A to 2 A  
VBAT = 3.7 V  
ISYS from 0 A to 4 A  
VBAT = 3.7 V  
9-17. System Load Transient  
9-18. System Load Transient  
VVBUS = 5 V  
IINDPM = 2 A  
ICHG = 2 A  
VVBUS = 5 V  
IINDPM = 2 A  
ICHG = 2 A  
ISYS from 0 A to 2 A  
VBAT = 3.7 V  
ISYS from 0 A to 4 A  
VBAT = 3.7 V  
9-19. System Load Transient  
9-20. System Load Transient  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: BQ25600 BQ25600D  
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
VBAT = 3.8 V  
CLOAD = 470 µF  
Adaptor ILIM = 1 A  
9-21. OTG Start-Up  
9-22. VINDPM Tracking Battery Voltage  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: BQ25600 BQ25600D  
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
10 Power Supply Recommendations  
In order to provide an output voltage on SYS, the BQ25600 and BQ25600D device requires a power supply  
between 3.9-V and 13.5-V input with at least 100-mA current rating connected to VBUS and a single-cell Li-Ion  
battery with voltage > VBATUVLO connected to BAT. The source current rating needs to be at least 3 A in order for  
the buck converter of the charger to provide maximum output power to SYS.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: BQ25600 BQ25600D  
 
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
The switching node rise and fall times should be minimized for minimum switching loss. Proper layout of the  
components to minimize high frequency current path loop (see 11-1) is important to prevent electrical and  
magnetic field radiation and high frequency resonant problems.  
备注  
It is essential to follow this specific layout PCB order.  
1. Place input capacitor as close as possible to PMID pin and GND pin connections and use shortest copper  
trace connection or GND plane.  
2. Put output capacitor near to the inductor and the IC.  
3. Decoupling capacitors should be placed next to the IC pins and make trace connection as short as possible.  
4. Place inductor input terminal to SW pin as close as possible. Minimize the copper area of this trace to lower  
electrical and magnetic field radiation but make the trace wide enough to carry the charging current. Do not  
use multiple layers in parallel for this connection. Minimize parasitic capacitance from this area to any other  
trace or plane.  
5. It is OK to connect all grounds together to reduce PCB size and improve thermal dissipation.  
6. Try to avoid ground planes in parallel with high frequency traces in other layers.  
See the EVM design for the recommended component placement with trace and via locations.  
11.2 Layout Example  
+
+
œ
11-1. High Frequency Current Path  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: BQ25600 BQ25600D  
 
 
 
 
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: BQ25600 BQ25600D  
 
 
 
 
 
 
 
BQ25600, BQ25600D  
ZHCSGO5B JUNE 2017 REVISED MARCH 2022  
www.ti.com.cn  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: BQ25600 BQ25600D  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Mar-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ25600DYFFR  
BQ25600DYFFT  
BQ25600YFFR  
BQ25600YFFT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFF  
YFF  
YFF  
YFF  
30  
30  
30  
30  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
BQ25600D  
SNAGCU  
SNAGCU  
SNAGCU  
BQ25600D  
BQ25600  
BQ25600  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Mar-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Jan-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ25600DYFFR  
BQ25600DYFFT  
BQ25600YFFR  
BQ25600YFFT  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFF  
YFF  
YFF  
YFF  
30  
30  
30  
30  
3000  
250  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
2.09  
2.09  
2.09  
2.09  
2.59  
2.59  
2.59  
2.59  
0.78  
0.78  
0.78  
0.78  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q1  
Q1  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Jan-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ25600DYFFR  
BQ25600DYFFT  
BQ25600YFFR  
BQ25600YFFT  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFF  
YFF  
YFF  
YFF  
30  
30  
30  
30  
3000  
250  
210.0  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
YFF0030  
DSBGA - 0.625 mm max height  
S
C
A
L
E
4
.
5
0
0
DIE SIZE BALL GRID ARRAY  
B
E
A
BUMP A1  
CORNER  
D
C
0.625 MAX  
SEATING PLANE  
0.05 C  
BALL TYP  
0.30  
0.12  
1.6 TYP  
SYMM  
F
E
D: Max = 2.392 mm, Min =2.332 mm  
E: Max = 1.992 mm, Min =1.931 mm  
D
C
SYMM  
2
TYP  
B
A
0.4 TYP  
1
2
4
5
3
0.3  
30X  
0.4 TYP  
0.2  
0.015  
C A B  
4219433/A 03/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YFF0030  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
3
30X ( 0.23)  
(0.4) TYP  
2
4
5
1
A
B
C
SYMM  
D
E
F
SYMM  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.05 MAX  
0.05 MIN  
(
0.23)  
(
0.23)  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4219433/A 03/2016  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFF0030  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
30X ( 0.25)  
(R0.05) TYP  
1
3
2
4
5
A
B
(0.4)  
TYP  
METAL  
TYP  
C
D
E
F
SYMM  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4219433/A 03/2016  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY