BQ25618 [TI]

采用 WCSP 封装、具有 20mA 终止电流和 1A 升压操作的 I2C 控制型 1.5A 单节降压型电池充电器;
BQ25618
型号: BQ25618
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 WCSP 封装、具有 20mA 终止电流和 1A 升压操作的 I2C 控制型 1.5A 单节降压型电池充电器

电池
文件: 总66页 (文件大小:3691K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
BQ25618/619 20mA 终止电流1A 升压电流I2C 控制型单1.5A 电池充  
电器  
1 特性  
2 应用  
• 单芯片解决方案可以通过适配器或电池为可穿戴  
附件充电  
• 消费类可穿戴设备、智能手表  
• 个人护理和健身  
• 耳麦/耳机  
• 高1.5MHz 同步开关模式降压充电器  
• 耳塞真正无线TWS充电盒  
• 助听器充电盒  
0.5A 时充电效率95.5%1A 时充电效率为  
94.5%  
±0.5% 充电电压调节10mV 阶跃)  
– 充电电压、电流和温度阈值I2C 可编JEITA  
曲线  
3 说明  
BQ25618/619 将充电、升压转换器和电压保护功能集  
成在单个器件中。该器件为开关充电器提供了业界最低  
的终端电流从而以最大电池容量为可穿戴设备充电。  
BQ25618/619 具有出色的低静态电流可在运输模式  
下将电池泄漏降低至 6uA从而节约电池电量将器  
件的货架期延长一倍。BQ25619 采用 4x4 QFN 封  
以便于布局。BQ25618 采用 2.0x2.4mm2 WCSP  
封装以支持空间受限的设计。  
– 高精度低终止电20mA±10mA  
2.5 x 2.0 x 1.0mm3 的小电感器尺寸  
• 输出范围4.6V 5.15V 的升压模式  
1A 输出下具94% 的升压效率  
– 集成控制功能可实现充电模式与升压模式间的  
切换  
PMID_GOOD 引脚控制外PMOS FET用于  
针对故障情况提供保护  
器件信息  
封装(1)  
DSBGA (30)  
WQFN (24)  
封装尺寸标称值)  
2.00mm × 2.40mm  
4.00mm × 4.00mm  
• 单个输入USB 输入以及高电压适配器或无线  
电源  
器件型号  
BQ25618  
BQ25619  
– 支4V 13.5V 输入电压范围绝对最大输入  
额定值22V  
– 通I2C100mA 3.2A100mA/阶跃实  
现可编程输入电流限(IINDPM)  
– 通过高5.4V 的输入电压限(VINDPM) 进行  
最大功率跟踪  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
Ear  
PMID  
Buds  
Adapter  
Or  
Wireless RX  
4V œ 13.5V  
– 通VINDPM 阈值自动跟踪电池电压  
VDC (NVDC) 电源路径管理  
VBUS  
SYS 3.5V-4.6V  
SW  
I2C Bus  
– 无需电池或使用深度放电的电池即可使系统瞬时  
启动  
• 灵活I2C 配置和自主充电可实现出色的系统性  
Host  
SYS  
BAT  
Host Control  
ICHG  
REGN  
+
QON  
• 高集成度包括所MOSFET、电流感应和环路补偿  
RDSON 19.5mΩBATFET可更大程度地降低充  
电损耗和延长电池运行时间  
Optional  
TS  
– 提供用于运输模式BATFET 控制以及使用  
和不使用适配器的完全系统复位功能  
• 运输模式下具7µA 低电池泄漏电流  
• 在系统待机时具9.5µA 的低电池泄漏电流  
• 高精度电池充电曲线  
简化版应用  
±6% 充电电流调节  
±7.5% 输入电流调节  
– 远程电池检测可更快地进行充电  
– 用于电池完全充电的可编程充电完成计时器  
• 安全相关认证:  
IEC 62368-1 CB 认证  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSDF8  
 
 
 
 
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
Table of Contents  
8.4 Device Functional Modes..........................................31  
8.5 Register Maps...........................................................32  
9 Application and Implementation..................................46  
9.1 Application Information............................................. 46  
9.2 Typical Application.................................................... 46  
10 Power Supply Recommendations..............................50  
11 Layout...........................................................................51  
11.1 Layout Guidelines................................................... 51  
11.2 Layout Example...................................................... 51  
12 Device and Documentation Support..........................53  
12.1 Device Support....................................................... 53  
12.2 Documentation Support.......................................... 53  
12.3 接收文档更新通知................................................... 53  
12.4 支持资源..................................................................53  
12.5 Trademarks.............................................................53  
12.6 Electrostatic Discharge Caution..............................53  
12.7 术语表..................................................................... 53  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 7  
7.1 Absolute Maximum Ratings........................................ 7  
7.2 ESD Ratings............................................................... 7  
7.3 Recommended Operating Conditions.........................7  
7.4 Thermal Information....................................................8  
7.5 Thermal Information....................................................8  
7.6 Electrical Characteristics.............................................8  
7.7 Timing Requirements................................................13  
7.8 Typical Characteristics..............................................14  
8 Detailed Description......................................................16  
8.1 Overview...................................................................16  
8.2 Functional Block Diagram.........................................16  
8.3 Feature Description...................................................17  
Information.................................................................... 54  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision C (June 2021) to Revision D (December 2021)  
Page  
Deleted tSU_STA, tHD_DAT, trDA, and tfDA from Timing Requirements.................................................................. 13  
Changes from Revision B (September 2019) to Revision C (June 2021)  
Page  
• 添加了“安全相关认证IEC 62368-1 CB 认证............................................................................................. 1  
Changed REG2 ICHG[5:0] 111100: 1430 mA to 111110: 1430 mA and 111100: 1500 mA to 111111: 1500 mA...  
32  
Changes from Revision A (July 2019) to Revision B (September 2019)  
Page  
• 添加BQ25618.................................................................................................................................................1  
Changes from Revision * (June 2019) to Revision A (July 2019)  
Page  
• 将“预告信息”更改为“量产数据”.................................................................................................................. 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: BQ25618 BQ25619  
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
5 说明)  
BQ25619/618 是一款高度集成的 1.5A 开关模式电池充电管理和系统电源路径管理器件适用于锂离子和锂聚合  
物电池。它可为可穿戴设备、耳机充电盒等各种应用提供快速充电功能和高输入电压。其低阻抗电源路径对开关  
模式运行效率进行了优化缩短了电池充电时间并延长了放电阶段的电池运行时间。其输入电压和电流调节、低  
终止电流 和电池远程检测可以为电池提供最大的充电功率。该解决方案在系统和电池之间高度集成输入反向阻断  
FETRBFETQ1高侧开关 FETHSFETQ2低侧开关 FETLSFETQ3及电池 FET  
BATFETQ4。它还集成了自举二极管以进行高侧栅极驱动从而简化系统设计。具有充电和系统设置I2C  
串行接口使该器件成为一个真正灵活的解决方案。  
该器件支持多种输入源包括标准 USB 主机端口、USB 充电端口、兼容 USB 的高电压适配器和无线电源。该器  
件符合 USB 2.0 USB 3.0 电源规格具有输入电流和电压调节功能。该器件从系统检测电路USB PHY 器  
获取结果。  
该器件通过单个电感器将降压充电器和升压稳压器集成在一个解决方案中。升压模式PMID 引脚上提5V 电压  
4.6V/4.75V/5V/5.15V 可调。升压模式用于节省 BOM可通过控制 PMID_GOOD 来为另一个电池充电。  
PMID_GOOD 引脚用于驱动外PMOS FET将升压输PMID 与所连附件断开。  
在应用适配器时电源路径管理将系统电压调节至稍高于电池电压的水平但不会降至最小系统电压 3.5V 以下  
可编程。借助于这个特性即使在电池电量完全耗尽或者电池被拆除时系统也能保持运行。当达到输入电  
流限值或电压限值时电源路径管理系统会自动减小充电电流。随着系统负载持续增加电池开始放电直到满  
足系统电源需求。该补充模式可防止输入源过载。  
此器件在无需软件控制情况下启动并完成一个充电周期。它感应电池电压并通过三个阶段为电池充电预充电、  
恒定电流和恒定电压。在充电周期的末尾当充电电流低于预设限值并且电池电压高于再充电阈值时充电器自  
动终止。如果充满电的电池降至再充电阈值以下则充电器自动开启另一个充电周期。  
此充电器提供针对电池充电和系统运行的多种安全特性其中包括电池负温度系数热敏电阻监视、充电安全性计  
时器以及过压和过流保护。当结温超过 110°C 热调节会减小充电电流。状态寄存器报告充电状态和任何故障  
状况。通I2CVBUS_GD 位指示电源是否正常而且在发生故障INT 输出会立即通知主机。  
该器件还提供用BATFET 使能和复位控制QON 引脚用来退出低功耗运输模式或完全系统复位功能。  
BQ25619 器件采用 24 引脚 4mm × 4mm x 0.75mm 薄型 WQFN 封装BQ25618 采用 30 焊球 2.0mm × 2.4mm  
WCSP 封装。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: BQ25618 BQ25619  
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
6 Pin Configuration and Functions  
1
2
3
4
5
GND  
SW  
PMID  
VBUS  
VAC  
A
GND  
SW  
SYS  
SYS  
SYS  
PMID  
BTST  
TS  
VBUS  
REGN  
/QON  
SDA  
NC  
B
BAT  
PSEL  
C
PMID_  
GOOD  
BAT  
D
BAT  
/CE  
STAT  
E
BAT  
SYS  
BATSNS  
/INT  
SCL  
F
6-1. BQ25618 YFF Package 30-Pin WCSP Top View  
24  
23  
22  
21  
20  
19  
1
2
3
4
5
6
18  
VAC  
PSEL  
PGND  
17 PGND  
16 SYS  
PMID_GOOD  
STAT  
BQ25619  
15  
14 BAT  
13  
SYS  
SCL  
SDA  
BAT  
7
8
9
10  
11  
12  
6-2. BQ25619 RTW Package 24-Pin WQFN Top View  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: BQ25618 BQ25619  
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
6-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
BQ25618 NO.  
BQ25619 NO.  
13  
Battery connection point to the positive terminal of the battery pack. The internal  
current sensing resistor is connected between SYS and BAT. Connect a 10 µF  
closely to the BAT pin.  
BAT  
C1, D1, E1, F1  
P
AIO  
P
14  
10  
Battery voltage sensing pin for charge voltage regulation. In order to minimize  
the parasitic trace resistance during charging, BATSNS pin is connected to the  
positive terminal of battery pack as close as possible. If BATSNS pin is open or  
short to ground, BATSNS_STAT bit is set to 1 and charger regulates the battery  
voltage through BAT pin.  
BATSNS  
F3  
PWM high-side driver positive supply. Internally, the BTST is connected to the  
cathode of the boot-strap diode. Connect the 0.047-μF bootstrap capacitor from  
SW to BTST.  
BTST  
C3  
21  
CE  
E3  
9
DI  
P
Charge enable pin. When this pin is driven LOW, battery charging is enabled.  
17  
18  
GND  
A1, B1  
Ground  
Open-drain interrupt output. Connect the INT to a logic rail through a 10-kΩ  
resistor. The INT pin sends an active low, 256-µs pulse to the host to report  
charger device status and fault.  
INT  
NC  
F4  
B5  
7
8
DO  
DO  
Not connected  
Boost mode output. Connected to the drain of the reverse blocking MOSFET  
(RBFET) and the drain of HSFET. Consider the total input capacitance, put 1 μF  
on VBUS to GND, and the rest capacitance on PMID to GND (typical 2x4.7 μF  
plus 1 nF).  
PMID  
A3, B3  
23  
Open drain active high PMID good indicator. Connect to the pullup rail REGN  
through 10-kΩresistor. HIGH indicates PMID voltage is below 5.2 V and the  
current through Q1 is below 110% of input current limit. This signal can be used  
to drive external PMOS FET to disconnect the PMID under charging load when  
Boost mode output voltage is too high or output current is too high.  
PMID_GOOD  
PSEL  
D5  
C5  
3
2
DO  
DI  
Power source selection input. HIGH indicates 500-mA input current limit. LOW  
indicates 2.4-A input current limit. Once the device gets into Host mode, the host  
can program a different input current limit to the IINDPM register.  
BATFET enable/reset control input. When the BATFET is in Ship mode, a logic  
LOW of tSHIPMODE duration turns on BATFET to exit Ship mode. When the  
BATFET is not in Ship mode, a logic LOW of tQON_RST (minimum 8 s) duration  
resets SYS (system power) by turning BATFET off for tBATFET_RST (minimum 250  
ms) and then re-enables BATFET to provide full system power reset. The host  
chooses the BATFET reset function with VBUS unplug or not through I2C bit  
BATFET_RST_WVBUS. The pin is pulled up to VBAT through 200 kΩto maintain  
default HIGH logic during Ship mode. It has an internal clamp to 6.5 V.  
QON  
D4  
12  
DI  
PWM low-side driver positive supply output. Internally, REGN is connected to the  
anode of the bootstrap diode. Connect a 4.7-μF (10-V rating) ceramic capacitor  
from REGN to analog GND. The capacitor should be placed close to the IC.  
REGN  
C4  
22  
P
I2C interface clock. Connect SCL to the logic rail through a 10-kΩresistor.  
I2C interface data. Connect SDA to the logic rail through a 10-kΩresistor.  
SCL  
SDA  
F5  
E4  
5
6
DI  
DIO  
Open-drain interrupt output. Connect the STAT pin to a logic rail via 10-kΩ  
resistor. The STAT pin indicates charger status.  
Charge in progress: LOW  
STAT  
E5  
4
DO  
Charge complete or charger in Sleep mode: HIGH  
Charge suspend (fault response): Blink at 1 Hz  
19  
20  
Switching node connecting to output inductor. Internally SW is connected to the  
source of the n-channel HSFET and the drain of the n-channel LSFET. Connect  
the 0.047-μF bootstrap capacitor from SW to BTST.  
SW  
A2, B2  
P
P
15  
16  
Converter output connection point. The internal current sensing resistor is  
connected between SYS and BAT. Connect a 10 µF (min) closely to the SYS pin.  
SYS  
C2, D2, E2, F2  
Battery temperature qualification voltage input. Connect a negative temperature  
coefficient thermistor (NTC). Program temperature window with a resistor divider  
from REGN to TS to GND. Charge and Boost mode suspend when TS pin  
voltage is out of range. When TS pin is not used, connect a 10-kΩresistor from  
REGN to TS and a 10-kΩresistor from TS to GND or set TS_IGNORE to HIGH  
to ignore TS pin. It is recommended to use a 103AT-2 thermistor.  
TS  
D3  
A5  
11  
1
AI  
AI  
VAC  
Input voltage sensing. This pin must be tied to VBUS.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: BQ25618 BQ25619  
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
6-1. Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
BQ25618 NO.  
BQ25619 NO.  
Charger input voltage. The internal n-channel reverse block MOSFET (RBFET)  
is connected between VBUS and PMID with VBUS on source. Place a 1-uF  
ceramic capacitor from VBUS to GND and place it as close as possible to IC.  
VBUS  
A4, B4  
24  
P
Ground reference for the device that is also the thermal pad used to conduct  
heat from the device. This connection serves two purposes. The first purpose is  
to provide an electrical ground connection for the device. The second purpose is  
to provide a low thermal-impedance path from the device die to the PCB. This  
pad should be tied externally to a ground plane.  
Thermal Pad  
P
(1) AI = Analog input, AO = Analog Output, AIO = Analog input Output, DI = Digital input, DO = Digital Output, DIO = Digital input Output,  
P = Power  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: BQ25618 BQ25619  
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
2  
MAX UNIT  
Voltage  
Voltage  
Voltage  
Voltage  
Voltage  
Voltage  
Voltage  
Voltage  
Output Sink Current  
TJ  
VAC (converter not switching)  
VBUS (converter not switching)  
PMID (converter not switching)  
SW  
22  
22  
22  
16  
17  
22  
7
V
V
-2  
V
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
V
BAT, SYS (converter not switching)  
BTST  
V
V
BATSNS (converter not switching)  
PSEL, STAT, SCL, SDA, INT, PMID_GOOD, CE, TS, QON  
SDA, STAT, INT, PMID_GOOD  
Junction temperature  
V
7
V
6
mA  
°C  
°C  
150  
150  
40  
55  
Tstg  
Storage temperature  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
7.2 ESD Ratings  
VALUE  
±2000  
±250  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD) Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
13.5  
4.52  
3.2  
1.8  
1.5  
5
UNIT  
VVBUS  
VBAT  
IVBUS  
ISW  
Input voltage  
4
V
V
Battery voltage  
Input current  
A
Output current (SW)  
Fast charging current  
RMS discharge current  
Ambient temperature  
Inductance  
A
IBAT  
A
IBAT  
A
TA  
85  
°C  
µH  
µF  
µF  
µF  
µF  
µF  
40  
L
1
1
2.2  
CVBUS  
CPMID  
CSYS  
CBAT  
CREGN  
VBUS capacitance  
PMID capacitance  
SYS capacitance  
BAT capacitance  
REGN capacitance  
10  
10  
10  
4.7  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: BQ25618 BQ25619  
 
 
 
 
 
 
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
7.4 Thermal Information  
BQ25618  
THERMAL METRIC(1)  
YFF (DSBGA)  
UNIT  
30 Balls  
58.8  
0.2  
RθJA  
Junction-to-ambient thermal resistance (JEDEC(1)  
)
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
8.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.4  
ΨJT  
8.3  
ΨJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Thermal Information  
BQ25619  
THERMAL METRIC(1)  
RTW (WQFN)  
UNIT  
24 Pins  
35.6  
22.7  
11.9  
0.2  
RθJA  
Junction-to-ambient thermal resistance (JEDEC(1)  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
)
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJT  
12  
ΨJB  
RθJC(bot)  
2.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.6 Electrical Characteristics  
VVBUS_UVLOZ < VVBUS < VVBUS_OV and VVBUS > VBAT + VSLEEP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
QUIESCENT CURRENTS  
VBAT = 4.5V, VBUS floating or VBUS  
= 0V - 5V, SCL, SDA = 0V or 1.8V, TJ  
< 85 °C, BATFET enabled  
Quiescent battery current (BATSNS,  
BAT, SYS, SW)  
IQ_BAT  
9.5  
7
15  
µA  
µA  
VBAT = 4.5V, VBUS floating or VBUS  
= 0V - 5V, SCL, SDA = 0V or 1.8V, TJ  
< 85 °C, BATFET disabled  
Shipmode battery current (BATSNS,  
BAT, SYS, SW)  
ISHIP_BAT  
9.5  
Input current (VBUS) in buck mode  
when converter is switching  
VBUS=5V, charge disabled, converter  
switching, ISYS = 0A  
IVBUS  
2.3  
37  
68  
mA  
µA  
µA  
VAC/VBUS = 5V, HIZ mode, no battery  
50  
90  
IHIZ_VBUS  
Quiescent input current in HIZ  
VAC/VBUS = 12V, HIZ mode, no  
battery  
Quiescent battery current (BATSNS,  
BAT, SYS, SW) in boost mode when  
converter is switching  
VBAT = 4.5V, VBUS = 5V, boost mode  
IBST  
enabled, converter switching, IPMID  
0A  
=
2.4  
mA  
VBUS / VBAT SUPPLY  
VVBUS_OP  
VBUS operating range  
VBUS rising for active I2C, no battery VBUS rising  
VBUS falling to turnoff I2C, no battery VBUS falling  
4
13.5  
3.7  
V
V
V
VVBUS_UVLOZ  
VVBUS_UVLO  
3.3  
3
3.3  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: BQ25618 BQ25619  
 
 
 
 
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
7.6 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OV and VVBUS > VBAT + VSLEEP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
3.65  
3.15  
MAX UNIT  
VVBUS_PRESENT  
VVBUS_PRESENTZ  
VBUS to enable REGN  
VBUS to disable REGN  
VBUS rising  
3.9  
3.4  
V
V
VBUS falling  
VBUS falling, VBUS - VBAT, VBAT =  
4V  
VSLEEP  
Enter Sleep mode threshold  
Exit Sleep mode threshold  
15  
60  
110  
340  
mV  
mV  
VBUS rising, VBUS - VBAT, VBAT =  
4V  
VSLEEPZ  
115  
220  
VAC rising, OVP[1:0]=00  
VAC rising, OVP[1:0]=01  
VAC rising, OVP[1:0]=10  
VAC rising, OVP[1:0]=11 (default)  
VAC falling, OVP[1:0]=00  
VAC falling, OVP[1:0]=01  
VAC falling, OVP[1:0]=10  
VAC falling, OVP[1:0]=11 (default)  
VBAT rising  
5.45  
6.1  
5.85  
6.4  
6.07  
6.75  
11.55  
14.85  
5.8  
V
V
V
V
V
V
V
V
V
VAC overvoltage rising threshold to  
turn of switching  
10.45  
13.5  
5.2  
11  
14.2  
5.6  
VACOV  
5.8  
6.2  
6.45  
11.1  
VAC overvoltage falling threshold to  
resume switching  
10  
10.7  
13.9  
13  
14.5  
VBAT_UVLOZ  
VBAT_DPLZ  
BAT voltage for active I2C, no VBUS  
2.5  
BAT depletion rising threshold to turn  
on BATFET  
VBAT rising  
2.35  
2.8  
V
BAT depletion falling threshold to turn  
off BATFET  
VBAT_DPL  
VBAT falling  
VBUS falling  
2.18  
3.75  
2.62  
4.0  
V
V
VPOORSRC  
Bad adapter detection threshold  
3.9  
POWER PATH MANAGEMENT  
Typical minimum system regulation  
voltage  
VBAT=3.2V < SYS_MIN = 3.5V, ISYS  
= 0A  
VSYS_MIN  
3.5  
3.65  
4.7  
35  
V
VREG = 4.35V, Charge disabled, ISYS  
= 0A  
VSYS_OVP  
RON_RBFET  
RON_RBFET  
RON_HSFET  
RON_HSFET  
RON_LSFET  
RON_LSFET  
System overvoltage threshold  
V
Blocking FET on-resistance  
(BQ25618)  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mV  
Blocking FET on-resistance  
(BQ25619)  
45  
High-side switching FET on-resistance  
(BQ25618)  
55  
High-side switching FET on-resistance  
(BQ25619)  
62  
Low-side switching FET on-resistance  
(BQ25618)  
60  
Low-side switching FET on-resistance  
(BQ25619)  
71  
BATFET forward voltage in  
supplement mode  
BAT discharge current 10mA,  
converter running  
VBATFET  
_
30  
FWD  
BATTERY CHARGER  
Typical charge voltage regulation  
range  
VREG_RANGE  
3.5  
4.52  
V
VREG_STEP  
VREG_ACC  
VREG_ACC  
VREG_ACC  
Typical charge voltage step  
Charge voltage accuracy  
Charge voltage accuracy  
Charge voltage accuracy  
4.3V < VREG < 4.52V  
10  
mV  
V
4.183  
4.333  
4.432  
4.2 4.2168  
VREG = 4.2V, TJ = 40°C - 85°C  
VREG = 4.35V, TJ = 40°C - 85°C  
VREG = 4.45V, TJ = 40°C - 85°C  
4.35  
4.45  
4.367  
4.468  
V
V
Typical charge current regulation  
range  
ICHG_RANGE  
0
1.5  
A
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: BQ25618 BQ25619  
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
7.6 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OV and VVBUS > VBAT + VSLEEP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ICHG_STEP  
Typical charge current regulation step  
20  
mA  
ICHG = 0.24A, VBAT = 3.1V or 3.8V,  
TJ = 40°C - 85°C  
0.216  
0.24  
0.264  
A
A
A
ICHG = 0.72A, VBAT = 3.1V or 3.8V,  
TJ = 40°C - 85°C  
Fast charge current regulation  
accuracy  
ICHG_ACC  
0.6768  
0.72 0.7632  
ICHG = 1.50A, VBAT = 3.1V or 3.8V,  
TJ = 40°C - 85°C  
1.41  
20  
1.5  
1.59  
260  
IPRECHG_RANGE  
IPRECHG_STEP  
Typical pre-charge current range  
Typical pre-charge current step  
mA  
mA  
mA  
mA  
mA  
mA  
20  
40  
VBAT = 2.6V, IPRECHG = 40mA  
VBAT = 2.6V, IPRECHG = 120mA  
28  
84  
20  
52  
156  
260  
IPRECHG_ACC  
Precharge current accuracy  
120  
ITERM_RANGE  
ITERM_STEP  
Typical termination current range  
Typical termination current step  
20  
40  
ITERM=40mA, ICHG>260mA,  
VREG=4.35V, TJ = 0°C - 85°C  
30  
10  
50  
30  
mA  
mA  
V
ITERM_ACC  
Termination current accuracy  
ITERM=20mA, ICHG<260mA,  
VREG=4.35V, TJ = 0°C - 85°C  
20  
Battery short voltage rising threshold  
to start pre-charge  
VBAT_SHORTZ  
VBAT rising  
2.13  
2.25  
2.35  
Battery short voltage falling threshold  
to stop pre-charge  
VBAT_SHORT  
IBAT_SHORT  
VBAT falling  
1.85  
15  
3
2
25  
2.15  
30  
V
mA  
V
Battery short trickle charging current  
VBAT < VBAT_SHORTZ  
VBAT rising  
Battery LOWV rising threshold to start  
fast-charge  
3.12  
3.24  
VBATLOWV  
Battery LOWV falling threshold to stop  
fast-charge  
VBAT falling  
2.7  
2.8  
2.9  
V
VRECHG=0, VBAT falling (default)  
VRECHG=1, VBAT falling  
90  
120  
210  
150  
245  
mV  
mV  
VRECHG  
Battery recharge threshold  
185  
System discharge load current during  
SYSOVP  
ISYS_LOAD  
30  
mA  
TJ = -40°C - 85°C  
TJ = -40°C - 125°C  
19.5  
19.5  
26  
30  
mΩ  
mΩ  
RON_BATFET  
Battery FET on-resistance  
BATTERY OVERVOLTAGE PROTECTION  
Battery overvoltage rising threshold  
Battery overvoltage falling threshold  
INPUT VOLTAGE / CURRENT REGULATION  
VINDPM_RANGE Typical input voltage regulation range  
VINDPM_STEP  
VBAT rising, as percentage of VREG  
VBAT falling, as percentage of VREG  
103  
101  
104  
102  
105  
103  
%
%
VBAT_OVP  
3.9  
5.4  
V
Typical input voltage regulation step  
100  
4.5  
mV  
Typical input voltage regulation  
accuracy  
VINDPM_ACC  
4.365  
4.635  
V
V
VINDPM threshold to track battery  
voltage  
VBAT = 4.35V, VINDPM_BAT_TRACK  
= VBAT+200mV  
VINDPM_TRACK  
4.45  
0.1  
4.55  
4.74  
3.2  
IINDPM_RANGE  
IINDPM_STEP  
IINDPM_ACC  
IINDPM_ACC  
IINDPM_ACC  
Typical input current regulation range  
Typical input current regulation step  
Input current regulation accuracy  
Input current regulation accuracy  
Input current regulation accuracy  
A
100  
465  
mA  
mA  
mA  
mA  
IINDPM = 500mA (TJ=-40°C - 85°C)  
IINDPM = 900mA (TJ=-40°C-85°C)  
IINDPM = 1500mA (TJ=-40°C-85°C)  
450  
750  
500  
900  
835  
1300  
1390  
1500  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: BQ25618 BQ25619  
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
7.6 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OV and VVBUS > VBAT + VSLEEP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
THERMAL REGULATION AND THERMAL SHUTDOWN  
TREG = 90°C  
90  
110  
150  
130  
°C  
°C  
°C  
°C  
Junction temperature regulation  
accuracy  
TREG  
TREG = 110°C  
TSHUT  
Thermal Shutdown Rising threshold  
Thermal Shutdown Falling threshold  
Temperature Increasing  
Temperature Decreasing  
CHARGE MODE THERMISTOR COMPARATOR (JEITA 616J or HOT/COLD 616)  
TS pin voltage rising threshold,  
Charge suspended above this voltage. 103AT)  
As Percentage to REGN (0°C w/  
VT1_RISE%  
72.4  
71.5  
73.3  
72  
74.2  
72.5  
%
%
TS pin voltage falling threshold.  
Charge re-enabled to 20% of ICHG  
and VREG below this  
voltage.  
VT1_FALL%  
As Percentage to REGN  
As Percentage to REGN,  
JEITA_T2=5°C w/ 103AT  
70.25  
67.75  
64.75  
61.75  
68.7  
70.75  
68.25  
65.25  
62.25  
69.2  
66.95  
64.2  
61.2  
48.25  
44.75  
40.7  
37.7  
49.3  
45.8  
41.8  
39  
71.25  
68.75  
65.75  
62.75  
69.7  
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
As Percentage to REGN,  
JEITA_T2=10°C w/ 103AT  
TS pin voltage rising threshold,  
Charge back to 20% of ICHG and  
VREG above this voltage.  
VT2_RISE%  
VT2_FALL%  
VT3_FALL%  
VT3_RISE%  
As Percentage to REGN,  
JEITA_T2=15°C w/ 103AT  
As Percentage to REGN,  
JEITA_T2=20°C w/ 103AT  
As Percentage to REGN,  
JEITA_T2=5°C w/ 103AT  
As Percentage to REGN,  
JEITA_T2=10°C w/ 103AT  
66.45  
63.7  
67.45  
64.7  
TS pin voltage falling threshold.  
Charge back to ICHG and VREG  
below this voltage.  
As Percentage to REGN,  
JEITA_T2=15°C w/ 103AT  
As Percentage to REGN,  
JEITA_T2=20°C w/ 103AT  
60.7  
61.7  
As Percentage to REGN,  
JEITA_T3=40°C w/ 103AT  
47.75  
44.25  
40.2  
48.75  
45.25  
41.2  
As Percentage to REGN,  
JEITA_T3=45°C w/ 103AT  
TS pin voltage falling threshold.  
Charge to ICHG and 4.1V below this  
voltage.  
As Percentage to REGN,  
JEITA_T3=50°C w/ 103AT  
As Percentage to REGN,  
JEITA_T3=55°C w/ 103AT  
37.2  
38.2  
As Percentage to REGN,  
JEITA_T3=40°C w/ 103AT  
48.8  
49.8  
As Percentage to REGN,  
JEITA_T3=45°C w/ 103AT  
45.3  
46.3  
TS pin voltage rising threshold.  
Charge back to ICHG and VREG  
above this voltage.  
As Percentage to REGN,  
JEITA_T3=50°C w/ 103AT  
41.3  
42.3  
As Percentage to REGN,  
JEITA_T3=55°C w/ 103AT  
38.5  
39.5  
TS pin voltage falling threshold,  
As Percentage to REGN (60°C w/  
charge suspended below this voltage. 103AT)  
VT5_FALL%  
33.7  
34.2  
35.1  
TS pin voltage rising threshold.  
VT5_RISE%  
Charge back to ICHG and 4.1V above As Percentage to REGN  
this voltage.  
35  
35.5  
36  
%
BOOST MODE THERMISTOR COMPARATOR (HOT/COLD)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: BQ25618 BQ25619  
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
7.6 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OV and VVBUS > VBAT + VSLEEP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
TS pin voltage rising threshold, boost  
mode is suspended above this  
voltage.  
As Percentage to REGN (19.5°C w/  
103AT)  
VBCOLD_RISE%  
79.5  
80  
80.5  
%
As Percentage to REGN (0°C w/  
103AT)  
VBCOLD_FALL%  
VBHOT_FALL%  
VBHOT_RISE%  
TS pin voltage falling threshold  
72  
31.2  
39  
%
%
%
TS pin voltage threshold. boost mode As Percentage to REGN, (64°C w/  
30.2  
1.32  
32.2  
is suspended below this voltage.  
103AT)  
As Percentage to REGN, (55°C w/  
103AT), REG0C[1:0]=11  
TS pin voltage rising threshold  
SWITCHING CONVERTER  
FSW  
PWM switching frequency  
Maximum PWM Duty Cycle  
Oscillator frequency  
1.5  
97  
1.68 MHz  
%
DMAX  
BOOST MODE CONVERTER  
Battery voltage exiting boost mode  
VVBAT falling  
2.6  
2.9  
2.4  
2.8  
3.0  
2.5  
2.9  
3.15  
2.6  
V
V
V
VBATLOWV_OTG  
Battery voltage entering boost mode  
Battery voltage exiting boost mode  
VVBAT rising  
VBST_BAT  
BAT fallingVVBAT  
Typical boost mode voltage regulation  
range  
VBST_RANGE  
4.6  
4.85  
5
5.15  
5.15  
V
V
A
V
Boost mode voltage regulation  
accuracy  
VBST_ACC  
IVBUS = 0A, BOOST_V = 5V  
5
6
Boost mode battery discharge current  
clamp on BATFET Q4  
ISYS_OCP_Q4  
Boost mode overvoltage threshold on  
PMID  
VBST_OVP  
5.55  
5.8  
6.15  
REGN LDO  
VVBUS = 5V, IREGN = 20mA  
VVBUS = 9V, IREGN = 20mA  
VVBUS = 5V, VREGN = 3.8V  
4.58  
5.6  
50  
4.7  
6
4.8  
6.5  
V
V
VREGN  
REGN LDO output voltage  
REGN LDO current limit  
IREGN  
mA  
I2C INTERFACE (SCL, SDA)  
Input high threshold level, SDA and  
SCL  
VIH  
Pull up rail 1.8V  
1.3  
V
VIL  
Input low threshold level  
Output low threshold level  
High-level leakage current  
Input high threshold level, SDA  
Input low threshold level  
Output low threshold level  
High-level leakage current  
Input high threshold level, SDA  
Input low threshold level  
Output low threshold level  
High-level leakage current  
Pull up rail 1.8V  
Sink current = 5mA  
Pull up rail 1.8V  
Pull up rail 1.8V  
Pull up rail 1.8V  
Sink current = 5mA  
Pull up rail 1.8V  
Pull up rail 1.8V  
Pull up rail 1.8V  
Sink current = 5mA  
Pull up rail 1.8V  
0.4  
0.4  
1
V
V
VOL  
IBIAS  
µA  
V
VIH_SDA  
VIL_SDA  
VOL_SDA  
IBIAS_SDA  
VIH_SCL  
VIL_SCL  
VOL_SCL  
IBIAS_SCL  
LOGIC INPUT PIN  
VIH  
1.3  
1.3  
0.4  
0.4  
1
V
V
µA  
V
0.4  
0.4  
1
V
V
µA  
Input high threshold level (/CE, PSEL)  
Input low threshold level (/CE, PSEL)  
1.3  
V
V
VIL  
0.4  
1
High-level leakage current (/CE,  
PSEL)  
IIN_BIAS  
Pull up rail 1.8V  
µA  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: BQ25618 BQ25619  
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
7.6 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OV and VVBUS > VBAT + VSLEEP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
LOGIC OUTPUT PIN  
Output low threshold level (/INT, STAT,  
PMID_GOOD)  
VOL  
Sink current = 5mA  
0.4  
1
V
High-level leakage current (/INT, STAT,  
PMID_GOOD)  
IOUT_BIAS  
Pull up rail 1.8V  
µA  
7.7 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
VBUS / VBAT POWER UP  
tVBUS_OV  
VBUS OVP Reaction-time  
130  
30  
2
ns  
ms  
s
tPOORSRC  
Bad adapter detection duration  
tPOORSRC_RETRY  
BATTERY CHARGER  
tTERM_DGL  
Bad adapter detection retry wait time  
Deglitch time for charge termination  
Deglitch time for recharge threshold  
30  
30  
30  
20  
10  
ms  
ms  
min  
hr  
tRECHG_DGL  
tTOP_OFF  
Typical top-off timer accuracy TOP_OFF_TIMER[1:0]=10  
Charge safety timer accuracy, CHG_TIMER = 20hr  
Charge safety timer accuracy, CHG_TIMER = 10hr  
24  
17  
8
36  
24  
12  
tSAFETY  
tSAFETY  
hr  
QON Timing  
QON low time to turn on BATFET and exit shipmode (10TJ  
60)  
tSHIPMODE  
0.9  
1.3  
s
QON low time before BATFET full system reset (10TJ ≤  
60)  
tQON_RST  
8
250  
10  
12  
400  
15  
s
ms  
s
tBATFET_RST  
tBATFET_DLY  
BATFET off time during full system reset (10TJ 60)  
Delay time before BATFET turn off in ship mode (10TJ ≤  
60)  
I2C INTERFACE  
fSCL  
SCL clock frequency  
400  
kHz  
DIGITAL CLOCK AND WATCHDOG  
fLPDIG Digital low-power clock (REGN LDO is disabled)  
fDIG  
tLP_WDT  
tWDT  
30  
500  
160  
160  
kHz  
kHz  
s
Digital power clock  
Watchdog Reset time  
Watchdog Reset time (WATCHDOG REG05[5:4] = 160s)  
s
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: BQ25618 BQ25619  
 
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
7.8 Typical Characteristics  
100  
100  
95  
90  
85  
80  
75  
70  
65  
95  
90  
85  
80  
75  
VBUS = 5 V  
VBUS = 9 V  
VBUS = 12 V  
VBUS = 5 V  
VBUS = 9 V  
VBUS = 12 V  
0
0.2  
0.4  
0.6  
Charge Current (A)  
0.8  
1
1.2  
1.4  
1.6  
0
0.2  
0.4  
0.6  
Charge Current (A)  
0.8  
1
1.2  
1.4  
1.6  
Char  
Char  
BQ25619EVM VBAT = 3.8V  
BQ25618EVM  
VBAT  
=
Inductor 1.0µH, DCR = 27 mΩ  
Inductor 2.2µH, DCR = 40 mΩ  
3.8V  
7-1. Charge Efficiency  
7-2. Charge Efficiency  
100  
100  
95  
90  
85  
80  
75  
95  
90  
85  
80  
75  
VBAT = 3.2 V  
VBAT = 3.8 V  
VBAT = 4.2 V  
VBAT = 4.2 V  
VBAT = 3.8 V  
VBAT = 3.2 V  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Boost Output Current (A)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Boost Ouput Current (A)  
1
OTG_  
Boos  
BQ25618EVM  
VPMID = 4.6V  
1.0 µH Inductor,  
BQ25619EVM  
VPMID  
=
Inductor 2.2µH, DCR = 40 mΩ  
4.6V  
DCR = 27 mΩ  
7-3. Boost Efficiency  
7-4. Boost Efficiency  
10  
9
8
7
6
5
4
3
2
1
0
4.45  
4.4  
VBUS = 5 V  
VBUS = 9 V  
VBATREG = 4.35 V  
4.35  
4.3  
4.25  
0
0.2  
0.4  
0.6  
Charge Current (A)  
0.8  
1
1.2  
1.4  
1.6  
-40  
-15  
10  
35  
60  
85  
110 125  
Junction Temperature (èC)  
Char  
Char  
7-5. Charge Current Accuracy  
7-6. Battery Charge Voltage vs Junction  
Temperature  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: BQ25618 BQ25619  
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
1.6  
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4
ICHG = 500 mA  
ICHG = 1000 mA  
ICHG = 1380 mA  
VINDPM = 4.1 V  
VINDPM = 4.3 V  
VINDPM = 4.4 V  
VINDPM = 4.5 V  
1.4  
1.2  
1
0.8  
0.6  
0.4  
-40  
-25  
-10  
5
20  
35  
50  
65  
8085  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (èC)  
Junction Temperature (èC)  
Char  
VIND  
7-7. Charge Current vs Junction Temperature  
7-8. VINDPM vs Junction Temperature  
3.8  
1.75  
IINDPM = 0.5 A  
INDPM = 0.9 A  
INDPM = 1.5 A  
1.5  
1.25  
1
3.75  
3.7  
0.75  
0.5  
3.65  
3.6  
0.25  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (èC)  
-40  
-25  
-10  
5
20  
35  
Junction Temperature (°C)  
50  
65  
8085  
VSYS  
IIND  
7-9. SYSMIN Voltage vs Junction Temperature  
7-10. Input Current Limit vs Junction  
(VSYS set at 3.5 V)  
Temperature  
5.25  
BOOSTV = 5.0 V  
BOOSTV = 5.15 V  
5.2  
5.15  
5.1  
5.05  
5
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (èC)  
VOTG  
7-11. Boost Output Voltage vs Junction Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: BQ25618 BQ25619  
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The BQ25619/618 device is a highly integrated 1.5-A switch-mode battery charger for single cell Li-ion and Li-  
polymer battery. It includes an input reverse-blocking FET (RBFET, Q1), high-side switching FET (HSFET, Q2),  
low-side switching FET (LSFET, Q3), and battery FET (BATFET, Q4), and bootstrap diode for the high-side gate  
drive.  
8.2 Functional Block Diagram  
VBUS  
PMID  
VVBUS_UVLOZ  
RBFET (Q1)  
+
UVLO  
SLEEP  
ACOV  
VVBUS  
Q1 Gate  
Control  
œ
IIN  
VBAT + VSLEEP  
+
REGN  
BTST  
EN_REGN  
EN_HIZ  
VAC  
VVBUS  
REGN  
LDO  
œ
VVBUS  
+
VVAC_OV  
œ
FBO  
VVBUS  
VBUS_OVP_BOOST  
+
VOTG_OVP  
œ
IQ2  
Q2_UCP_BOOST  
Q3_OCP_BOOST  
+
VOTG_HSZCP  
VVBUS  
œ
œ
+
+
œ
+
œ
œ
+
HSFET (Q2)  
LSFET (Q3)  
IQ3  
VINDPM  
SW  
+
VOTG_BAT  
IIN  
CONVERTER  
Control  
œ
REGN  
IINDPM  
BAT  
+
BATOVP  
UCP  
104% × V BAT_REG  
IC TJ  
TREG  
PGND  
œ
ILSFET_UCP  
BATSNS  
IQ2  
Q2_OCP  
+
œ
+
œ
+
+
IHSFET_OCP  
IQ3  
SYS  
VBAT_REG  
œ
œ
VSYSMIN  
VBTST - VSW  
ICHG  
EN_HIZ  
EN_CHARGE  
EN_BOOST  
+
REFRESH  
VBTST_REFRESH  
ICHG_REG  
œ
SYS  
ICHG  
VBAT_REG  
ICHG_REG  
BATFET  
(Q4)  
Q4 Gate  
Control  
IBADSRC  
IDC  
BAT  
BAD_SRC  
+
REF  
DAC  
Converter  
Control State  
Machine  
œ
IC TJ  
TSHUT  
+
TSHUT  
œ
BATSNS  
BATSNS  
VBATGD  
BAT_GD  
+
VQON  
Input Source  
Detection  
œ
USB  
PSEL  
Adapter  
VREG -VRECHG  
BATSNS  
ICHG  
+
RECHRG  
/QON  
œ
INT  
STAT  
+
TERMINATION  
BATLOWV  
ITERM  
œ
CHARGE  
CONTROL  
STATE  
VBATLOWV  
+
BATSNS  
VSHORT  
BQ25618  
BQ25619  
MACHINE  
œ
+
BATSHORT  
SUSPEND  
PMID_GOOD  
BATSNS  
I2C  
œ
Interface  
Battery  
Sensing  
TS  
Thermistor  
Copyright © 2019, Texas Instruments Incorporated  
SCL SDA /CE  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: BQ25618 BQ25619  
 
 
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Power-On-Reset (POR)  
The device powers internal bias circuits from the higher voltage of VBUS and BAT. When VVBUS rises above  
VVBUS_UVLOZ or VBAT rises above VBAT_UVLOZ, the sleep comparator, battery depletion comparator, and BATFET  
driver are active. The I2C interface is ready for communication and all registers are reset to default values. The  
host can access all registers after POR.  
8.3.2 Device Power Up From Battery Without Input Source  
If only the battery is present and the voltage is above depletion threshold (VBAT _DPLZ), the BATFET turns on and  
connects the battery to the system. The REGN stays off to minimize the quiescent current. The low RDSON of  
BATFET and the low quiescent current on BAT minimize the conduction loss and maximize the battery run time.  
The device always monitors the discharge current through the BATFET. When the system is overloaded or  
shorted (IBAT > ISYS_OCP_Q4), the device turns off BATFET immediately.  
With I2C, when the BATFET turns off due to overcurrent, the device sets the BATFET_DIS bit to indicate the  
BATFET is disabled until the input source plugs in again or one of the methods described in 8.3.7.2 is applied  
to re-enable BATFET.  
8.3.3 Power Up From Input Source  
When an input source is plugged in, the device checks the input source voltage to turn on the REGN LDO and  
all the bias circuits. It detects and sets the input current limit before the buck converter is started. The power-up  
sequence from input source is as listed:  
1. Power Up REGN LDO, see 8.3.3.1  
2. Poor Source Qualification, see 8.3.3.2  
3. Input Source Type Detection is based on PSEL to set default input current limit (IINDPM threshold), see 节  
8.3.3.3  
4. Input Voltage Limit Threshold Setting (VINDPM threshold), see 8.3.3.4  
5. Power Up Converter, see 8.3.3.5  
8.3.3.1 Power Up REGN LDO  
The REGN LDO supplies internal bias circuits as well as the HSFET and LSFET gate drive. It also provides the  
bias rail to TS external resistors. The pull-up rail of STAT can be connected to REGN as well. The REGN LDO is  
enabled when all the below conditions are valid:  
VVBUS > VVBUS_UVLOZ  
In buck mode, VVBUS > VBAT + VSLEEPZ  
In boost mode, VVBUS < VBAT + VSLEEPZ  
After 220-ms delay is completed  
During high impedance mode when EN_HIZ bit is 1, REGN LDO turns off. The battery powers up the system.  
8.3.3.2 Poor Source Qualification  
After the REGN LDO powers up, the device starts to check current capability of the input source. The first step is  
poor source detection.  
VBUS voltage above VPOORSRC when pulling IBADSRC (typical 30 mA)  
With I2C, once the input source passes poor source detection, the status register bit VBUS_GD is set to 1 and  
the INT pin is pulsed to signal to the host.  
If the device fails the poor source detection, it repeats poor source qualification every 2 seconds.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: BQ25618 BQ25619  
 
 
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.3.3.3 Input Source Type Detection (IINDPM Threshold)  
After poor source detection, the device runs input source detection through the PSEL pin. The PSEL pin sets  
input current limit 0.5 A (HIGH) or 2.4 A (LOW). After input source type detection is completed, the PMID_GOOD  
pin is asserted to HIGH and the PG_STAT bit goes to 1.  
With I2C, after input source type detection is completed, an INT pulse is asserted to the host. In addition, the  
following register bits are updated:  
1. Input Current Limit (IINDPM) register is updated from detection result  
2. VBUS_STAT bit is updated to indicate USB or other input source  
3. PG_STAT bit is updated to indicate good adapter plugs in  
The host can overwrite the IINDPM register to change the input current limit if needed.  
8.3.3.3.1 PSEL Pins Sets Input Current Limit  
The device with the PSEL pin directly takes the USB PHY device output to decide whether the input is a USB  
host or charging port. When the device operates in host-control mode, the host needs the INDET_EN bit set to 1  
to update the IINDPM register. When the device is in default mode, the PSEL value updates IINDPM in real time.  
8-1. Input Current Limit Setting from PSEL  
INPUT CURRENT LIMIT  
INPUT DETECTION  
PSEL PIN  
VBUS_STAT  
(ILIM)  
500 mA  
2.4 A  
USB SDP  
Adapter  
HIGH  
LOW  
001  
011  
8.3.3.4 Input Voltage Limit Threshold Setting (VINDPM Threshold)  
The device has two modes to set the VINDPM threshold.  
Fixed VINDPM threshold. VINDPM is in default set at 4.5 V (programmable from 3.9 V to 5.4 V).  
VINDPM threshold tracks the battery voltage to optimize the converter headroom between input and output.  
When it is enabled in REG07[1:0], the actual input voltage limit is the higher of the VINDPM setting in register  
and VBAT + offset voltage in VINDPM_BAT_TRACK[1:0] .  
8.3.3.5 Power Up Converter in Buck Mode  
After the input current limit is set, the converter is enabled and the HSFET and LSFET start switching. The  
system voltage is powered from the converter instead of the battery. If battery charging is disabled, the BATFET  
turns off. Otherwise, the BATFET stays on to charge the battery.  
The device provides soft start when the system rail is ramping up. When the system rail is below VBAT_SHORT, the  
input current is limited to the lower of 200 mA or IINDPM register setting. The system load should be  
appropriately planned not to exceed the 200-mA IINDPM limit. After the system rises above VBAT_SHORTZ, the  
device input current limit is the value set by the IINDPM register.  
As a battery charger, the device deploys a highly efficient 1.5-MHz step-down switching regulator. The fixed  
frequency oscillator keeps tight control of the switching frequency under all conditions of input voltage, battery  
voltage, charge current, and temperature simplifying output filter design.  
The converter supports PFM operation by default for fast transient response during system voltage regulation  
and better light load efficiency. The PFM_DIS bit disables PFM operation if system voltage is not in regulation.  
8.3.3.6 HIZ Mode with Adapter Present  
By setting the EN_HIZ bit to 1 with adapter, the device enters a high impedance state (HIZ). In HIZ mode, the  
system is powered from the battery even with good adapter present. The device is in the low input quiescent  
current state with Q1 RBFET, REGN LDO, and the bias circuits off.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: BQ25618 BQ25619  
 
 
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.3.4 Boost Mode Operation From Battery  
The device supports boost converter operation to deliver power from the battery to other portable devices  
through a USB port. The output voltage is regulated at 5 V (programmable 4.6/4.75/5.0/5.15 V) and output  
current is up to 1 A. The user needs to have at least 350 mV between VBAT and Boost mode regulation voltage  
(VBST) to power up Boost mode reliably. For example, the BOOSTV[1:0] setting is recommended to be 4.75 V or  
higher if the battery voltage is 4.4 V.  
Boost operation is enabled if the conditions below are valid:  
1. Register setting: BATFET_DIS = 0, CHG_COFNIG = 0 and BST_CONFIG = 1  
2. BAT above VBST_BAT set by MIN_VBAT_SEL bit,  
3. VBUS less than VBAT + VSLEEP (in sleep mode) before converter starts.  
4. Voltage at TS (thermistor) pin, as a percentage of VREGN, is within acceptable range (VBHOT_RISE% < VTS%  
VBCOLD_FALL%  
<
)
During Boost mode, the status register VBUS_STAT bits are set to 111.  
The converter supports PFM operation at light load in Boost mode. The PFM_DIS bit can be used to disable  
PFM operation in boost configuration.  
The BQ25619/618 keeps the Q1 FET off during Boost mode. During adapter plug-in or removal, the charger  
automatically transitions between charging mode and Boost mode by setting the BST_CONFIG bit and  
CHG_CONFIG bit both to 1. When the adapter plugs in and the conditions to start a new charge cycle are valid,  
the device is in charging mode. If the adapter is removed and the boost enable conditions are valid, the device  
transits to Boost mode to power the accessories connected to PMID automatically.  
8.3.5 Power Path Management  
The device accommodates a wide range of input sources such as USB, wall adapter, or car charger. The device  
provides automatic power path selection to supply the system (SYS) from the input source (VBUS), battery  
(BAT), or both.  
8.3.5.1 Narrow VDC Architecture  
When the battery is below the minimum system voltage setting, the BATFET operates in linear mode (LDO  
mode), and the system is typically 180 mV above the minimum system voltage setting. As the battery voltage  
rises above the minimum system voltage, the BATFET is fully on and the voltage difference between the system  
and battery is the VDS of the BATFET.  
When battery charging is disabled and above the minimum system voltage setting or charging is terminated, the  
system is always regulated at typically 50 mV above the battery voltage. The status register VSYS_STAT bit  
goes to 1 when the system is in minimum system voltage regulation.  
4.5  
Minimum System Voltage  
Charge Disabled  
Charge Enabled  
4.1  
4.3  
3.9  
3.7  
3.5  
3.3  
3.1  
2.7  
2.9  
3.1  
3.3  
3.5  
BAT (V)  
3.7  
3.9  
4.1  
4.3  
D002  
8-1. System Voltage vs Battery Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: BQ25618 BQ25619  
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.3.5.2 Dynamic Power Management  
To meet the maximum current limit in the USB specification and avoid overloading the adapter, the device  
features Dynamic Power Management (DPM), which continuously monitors the input current and input voltage.  
When input source is overloaded, either the current exceeds the input current limit (IINDPM) or the voltage falls  
below the input voltage limit (VINDPM). The device then reduces the charge current until the input current falls  
below the input current limit or the input voltage rises above the input voltage limit.  
When the charge current is reduced to zero, but the input source is still overloaded, the system voltage starts to  
drop. Once the system voltage falls below the battery voltage, the device automatically enters the supplement  
mode where the BATFET turns on and the battery starts discharging so that the system is supported from both  
the input source and battery.  
During DPM mode, the status register bits VINDPM_STAT or IINDPM_STAT go to 1.  
8.3.5.3 Supplement Mode  
When the system voltage falls below the battery voltage, the BATFET turns on and the BATFET gate is  
regulated so that the minimum BATFET VDS stays at 30 mV when the current is low. This prevents oscillation  
from entering and exiting the supplement mode.  
As the discharge current increases, the BATFET gate is regulated with a higher voltage to reduce RDSON until  
the BATFET is in full conduction. At this point onwards, the BATFET VDS linearly increases with discharge  
current. 8-2 shows the V-I curve of the BATFET gate regulation operation. The BATFET turns off to exit  
supplement mode when the battery is below battery depletion threshold.  
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
5
10 15 20 25 30 35 40 45 50 55  
V(BAT-SYS) (mV)  
D001  
Plot1  
8-2. BAFET V-I Curve  
8.3.6 Battery Charging Management  
The device charges a 1-cell Li-ion battery with up to 1.5-A charge current for a high capacity tablet battery. The  
19.5-mΩBATFET improves charging efficiency and minimizes the voltage drop during discharging.  
8.3.6.1 Autonomous Charging Cycle  
When battery charging is enabled (CHG_CONFIG bit = 1 and CE pin is LOW), the device autonomously  
completes a charging cycle without host involvement. The device default charging parameters are listed in 表  
8-2. The host configures the power path and charging parameters by writing to the corresponding registers  
through I2C.  
8-2. Charging Parameter Default Setting  
DEFAULT MODE  
Charging voltage  
Charging current  
BQ25619/618  
4.20 V  
340 mA  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: BQ25618 BQ25619  
 
 
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8-2. Charging Parameter Default Setting  
(continued)  
DEFAULT MODE  
Pre-charge current  
Termination current  
Temperature profile  
Safety timer  
BQ25619/618  
40 mA  
60 mA  
JEITA  
10 hours  
A new charge cycle starts when the following conditions are valid:  
Converter starts  
Battery charging is enabled (CHG_CONFIG bit = 1 and ICHG register is not 0 mA and CE is low)  
No thermistor fault on TS. (TS pin can be ignored by setting TS_IGNORE bit to 1)  
No safety timer fault  
BATFET is not forced to turn off (BATFET_DIS bit = 0)  
The device automatically terminates the charging cycle when the charging current is below the termination  
threshold, the battery voltage is above the recharge threshold, and the device is not in DPM mode or thermal  
regulation. When a fully charged battery is discharged below recharge threshold (selectable through VRECHG  
bit), the device automatically starts a new charging cycle. After the charge is done, a toggle of the CE pin or  
CHG_CONFIG bit initiates a new charging cycle. Adapter removal and replug will also restart a charging cycle.  
The STAT output indicates charging status: charging (LOW), charging complete or charge disable (HIGH), or  
charging fault (blinking). The status register (CHRG_STAT) indicates the different charging phases: 00-charging  
disable, 01-precharge, 10-fast charge (CC) and constant voltage (CV), 11-charging done. Once a charging cycle  
is completed, an INT pulse is asserted to notify the host.  
8.3.6.2 Battery Charging Profile  
The device charges the battery in five phases: battery short, preconditioning, constant current, constant voltage,  
and top-off trickle charging (optional). At the beginning of a charging cycle, the device checks the battery voltage  
and regulates current and voltage accordingly.  
Resistance between charger output and battery cell terminal such as board routing, connector, MOSFETs, and  
sense resistor can force the charging process to move from constant current to constant voltage too early and  
increase charge time. To speed up the charging cycle, the device provides the BATSNS pin to extend the  
constant current charge time to deliver maximum power to battery. The BATSNS pin is connected directly to the  
battery cell terminal to remotely sense battery cell voltage. BATSNS is by default enabled and can be disabled  
through the BATSNS_DIS bit. If BATSNS is connected to GND or left floating, the charger regulates the BAT pin  
instead.  
8-3. Charging Current Setting  
VBAT  
< 2.2 V  
CHARGING CURRENT  
DEFAULT SETTING  
CHRG_STAT  
IBAT_SHORT  
25 mA  
01  
01  
10  
2.2 V to 3 V  
> 3 V  
IPRECHG  
40 mA  
ICHG  
340 mA  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: BQ25618 BQ25619  
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
Regulation Voltage  
Charge Current  
Battery Voltage  
Charge Current  
VBATLOWV (3 V)  
VSHORTZ (2.2 V)  
IPRECHG  
ITERM  
ISHORT  
Fast Charge and Voltage Regulation  
Trickle Charge  
Pre-charge  
Safety Timer  
Expiration  
Top-off Timer  
8-3. Battery Charging Profile  
8.3.6.3 Charging Termination  
The device terminates a charge cycle when the battery voltage is above the recharge threshold, and the current  
is below termination current. After the charging cycle has completed, the BATFET turns off. STAT is asserted  
HIGH to indicate charging is done. The converter keeps running to power the system, and BATFET can turn on  
again to engage 8.3.5.3.  
If the device is in IINDPM/VINDPM regulation, or thermal regulation, the actual charging current will be less than  
the termination value. In this case, termination is temporarily disabled.  
When termination occurs, the STAT pin goes HIGH. The status register CHRG_STAT is set to 11, and an INT  
pulse is asserted to the host. Termination can be disabled by writing 0 to the EN_TERM bit prior to charge  
termination.  
Termination current is set in REG03[3:0]. For a small capacity battery, the termination current can be set as low  
as 20 mA for full charge. Due to the termination current accuracy, the actual termination current may be higher  
than the termination target. In order to compensate for termination accuracy, a programmable top-off timer can  
be applied after termination is detected . The top-off timer will follow safety timer constraints, such that if the  
safety timer is suspended, so will the top-off timer. Similarly, if the safety timer is doubled, so will the termination  
top-off timer. The TOPOFF_ACTIVE bit reports whether the top-off timer is active or not. The host can read  
CHRG_STAT and TOPOFF_ACTIVE to find out the termination status. The STAT pin stays HIGH during a top-off  
timer counting cycle.  
Top-off timer settings are read in once termination is detected by the charger. Programming a top-off timer value  
(01, 10, 11) after termination has no effect unless a recharge cycle is initiated. The top-off timer immediately  
stops if it is disabled (00). An INT is asserted to the host when entering a top-off timer segment as well as when  
the top-off timer expires.  
8.3.6.4 Thermistor Qualification  
The device provides a single thermistor input for battery temperature monitoring.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: BQ25618 BQ25619  
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.3.6.4.1 JEITA Guideline Compliance During Charging Mode  
To improve the safety of charging Li-ion batteries, the JEITA guideline was released on April 20, 2007. The  
guideline emphasized the importance of avoiding a high charge current and high charge voltage at certain low  
and high temperature ranges.  
To initiate a charge cycle, the voltage on TS pin, as a percentage of VREGN, must be within the VT1_FALL% to  
VT5_RISE% thresholds. If the TS voltage percentage exceeds the T1-T5 range, the controller suspends charging,  
a TS fault is reported and waits until the battery temperature is within the T1-T5 range.  
At cool temperature (T1-T2), the charge current is reduced to a programmable fast charge current (0%, 20%  
default, 50%, 100% of ICHG, by JEITA_ISET). At warm temperature (T3-T5), the charge voltage is reduced to 4.1  
V or kept at VREG (JEITA_VSET), and the charge current can be reduced to a programmable level (0%, 20%,  
50%, 100% default). Battery termination is disabled in T3-T5. The charger provides more flexible settings on a  
T2 and T3 threshold as well to program the temperature profile beyond JEITA. When T1 is set to 0°C and T5 is  
set to 60°C, T2 can be programmed to 5.5°C/10°C (default)/15°C/20°C, and T3 can be programmed to 40°C/  
45.5°C (default)/50.5°C/54.5°C.  
When the charger does not need to monitor the NTC, the host sets the TS_IGNORE bit to 1 to ignore the TS pin  
condition during charging and Boost mode. If the TS_IGNORE bit is set to 1, the TS pin is ignored and the  
charger ignores the TS pin input. In this case, the NTC_FAULT bits are 000 to report normal TS status.  
JEITA_WARM_ISET  
100% of ICHG  
(default)  
(0%, 20%, 50%, 100%)  
JEITA_VSET  
4.1V (default)  
(VREG or 4.1V)  
JEITA_COOL_ISET  
20% of ICHG  
(default)  
(0%,20%,50%,100%)  
T3  
T1  
0
T2  
T5  
60  
10  
5
15 20  
30 35  
45 50  
40  
25  
Battery Thermistor Temperature (°C)  
8-4. JEITA Profile  
方程1 through 方程2 describe how to calculate resistor divider values on the TS pin.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: BQ25618 BQ25619  
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
REGN  
TS  
RT1  
RT2  
NTC  
103AT  
8-5. TS Pin Resistor Network  
%
(1)  
(2)  
%
%
%
%
In the equations above, RNTC, T1 is the NTC thermistor resistance value at temperature T1 and RNTC, T5 is the  
NTC thermistor resistance value at temperature T5. Selecting a 0°C to 60°C range for a Li-ion or Li-polymer  
battery then:  
RNTC,T1 = 27.28 kΩ(0°C)  
RNTC,T5 = 3.02 kΩ(60°C)  
RT1 = 5.3 kΩ  
RT2 = 31.14 kΩ  
8.3.6.4.2 Boost Mode Thermistor Monitor During Battery Discharge Mode  
For battery protection during Boost mode, the device monitors battery temperature to be within the VBCOLD and  
VBHOT thresholds. When RT1 is 5.3 kΩ and RT2 is 31.14 kΩ, TBCOLD default is -19.5°C and TBHOT default is  
64°C. When the temperature is outside of the temperature thresholds, Boost mode is suspended. In addition, the  
VBUS_STAT bits are set to 000 and NTC_FAULT is reported. Once the temperature returns within the  
thresholds, Boost mode is recovered and NTC_FAULT is cleared.  
8.3.6.5 Charging Safety Timer  
The device has a built-in safety timer to prevent an extended charging cycle due to abnormal battery conditions.  
The safety timer is 2 hours when the battery is below the VBATLOWV threshold and 10 hours (10/20 hours in  
REG05[2] ) when the battery is higher than the VBATLOWV threshold. When the safety timer expires, the STAT pin  
is blinking at 1 Hz to report a safety timer expiration fault.  
The user can program the fast charge safety timer through I2C (CHG_TIMER bit REG05[2]). When the safety  
timer expires, the fault register CHRG_FAULT bits (REG09[5:4]) are set to 11 and an INT is asserted to the host.  
The safety timer (both fast charge and precharge) can be disabled through I2C by setting the EN_TIMER bit.  
During IINDPM/VINDPM regulation, thermal regulation, or JEITA cool/warm when fast charge current is reduced,  
the safety timer counts at a half clock rate, because the actual charge current is likely below the setting. For  
example, if the charger is in input current regulation (IINDPM_STAT = 1) throughout the whole charging cycle,  
and the safety time is set to 10 hours, the safety timer will expire in 20 hours. This half clock rate feature can be  
disabled by writing 0 to the TMR2X_EN bit.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: BQ25618 BQ25619  
 
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
During faults of BAT_FAULT, NTC_FAULT that lead to charging suspend, the safety timer is suspended as well.  
Once the fault goes away, the timer resumes. If the user stops the current charging cycle, and starts it again, the  
timer gets reset (toggle of CE pin or CHG_CONFIG bit).  
8.3.7 Ship Mode and QON Pin  
8.3.7.1 BATFET Disable (Enter Ship Mode)  
To extend battery life and minimize power when the system is powered off during system idle, shipping, or  
storage, the device turns off BATFET so that the system voltage is floating to minimize the battery leakage  
current. When the host sets the BATFET_DIS bit, the charger can turn off the BATFET immediately or delay by  
tBATFET_DLY as configured by the BATFET_DLY bit. To set the device into ship mode with the adapter present, the  
host has to first set BATFET_RST_VBUS to 1 and then BATFET_DIS to 1. The charger will turn off the BATFET  
(no charging, no supplement) while the adapter is still attached. When the adapter is removed, the charger will  
enter ship mode.  
8.3.7.2 BATFET Enable (Exit Ship Mode)  
When the BATFET is disabled (in ship mode) as indicated by setting BATFET_DIS, one of the following events  
can enable the BATFET to restore system power:  
1. Plug in adapter  
2. Clear BATFET_DIS bit  
3. Set REG_RST bit to reset all registers including BATFET_DIS bit to default (0)  
4. A logic high to low transition on QON pin with tSHIPMODE deglitch time to enable BATFET to exit ship mode.  
EN_HIZ bit is set to 1 (regardless of adapter present or not). Host has to set EN_HIZ bit to 0 before boost  
mode enable. Once adapter plugs in, EN_HIZ will be cleared.  
8.3.7.3 BATFET Full System Reset  
The BATFET functions as a load switch between the battery and system when an input source is not plugged in.  
When BATFET_RST_EN = 1 and BATFET_DIS = 0, the BATFET full system reset function is enabled. By  
changing the state of BATFET from on to off, systems connected to SYS can be effectively forced to have a  
power-on-reset. After the reset is complete, the device is in the POR state, and all registers are in POR default  
settings. The QON pin supports a push-button interface to reset system power without the host by changing the  
state of BATFET. Internally, it is pulled up to the VQON voltage through a 200-kΩresistor.  
When the QON pin is driven to logic low for tQON_RST, the BATFET reset process starts. The BATFET is turned  
off for tBATFET_RST and then it is re-enabled to reset system power. This function can be disabled by setting the  
BATFET_RST_EN bit to 0.  
The BATFET full system reset functions either with or without an adapter present. If BATFET_RST_WVBUS = 1,  
the system reset function starts after tQON_RST when the QON pin is pushed to LOW. Once the reset process  
starts, the device first goes into HIZ mode to turn off the converter, and then power cycles BATFET. If  
BATFET_RST_WVBUS = 0, the system reset function does not start until tQON_RST after the QON pin is pushed  
to LOW and the adapter is removed.  
After the BATFET full system reset is complete, the device powers up again if EN_HIZ is not set to 1 before the  
system reset.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: BQ25618 BQ25619  
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
Adapter  
/QON  
SYS  
Q4  
Control  
VQON  
/QON  
tBATFET_DLY  
tSHIPMODE  
ON  
BATFET Q4  
OFF  
Enter Shipmode  
after BATFET_DIS=1  
Exit Shipmode  
with /QON  
BATFET_RS  
T_WVBUS  
Adapter  
tQON_RST  
tQON_RST  
tQON_RST  
/QON  
ON  
ON  
ON  
Q4  
OFF  
OFF  
OFF  
tBATFET_RST  
tBATFET_RST  
tBATFET_RST  
Enter HIZ  
Enter HIZ  
BATFET Reset with  
BATFET_RST_WVBUS=0  
BATFET Reset with  
BATFET_RST_WVBUS=1  
8-6. QON Timing  
8.3.8 Status Outputs (STAT, INT , PMID_GOOD)  
8.3.8.1 Power Good Indicator (PG_STAT Bit)  
The PG_STAT bit goes to 1 to indicate a good input source when:  
VVBUS above VVBUS_UVLO  
VVBUS above battery (not in sleep)  
VVBUS below VACOV threshold  
VVBUS above VPOORSRC (typical 3.8 V) when IBADSRC (typical 30 mA) current is applied (not a poor source)  
Completed 8.3.3.3  
8.3.8.2 Charging Status Indicator (STAT)  
The device indicates the charging state on the open drain STAT pin. The STAT pin can drive an LED.  
8-4. STAT Pin State  
CHARGING STATE  
STAT INDICATOR  
LOW  
Charging in progress (including recharge)  
Charging termination (top off timer may be running)  
HIGH  
Sleep mode, charge disable, Boost mode  
HIGH  
Charge suspend (input overvoltage, TS fault, safety timer fault, or system overvoltage)  
Blinking at 1 Hz  
8.3.8.3 Interrupt to Host (INT)  
In some applications, the host does not always monitor charger operation. The INT pulse notifies the host on  
device operation. The following events generate a 256-μs INT pulse.  
Good input source detected:  
VVBUS above battery (not in sleep)  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: BQ25618 BQ25619  
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
VVBUS below VACOV threshold  
VVBUS above VPOORSRC (typical 3.8 V) when IBADSRC (typical 30 mA) current is applied (not a poor source)  
Input adapter removed  
USB/adapter source identified during 8.3.3.3.  
Charge complete  
Any FAULT event in REG09  
VINDPM / IINDPM event detected (REG0A[1:0], maskable)  
Top-off timer starts and expires  
REG09[7:0] and REG0A[6:4] report charger operation faults and status change to the host. When a fault/status  
change occurs, the charger sends out an INT pulse and keeps the state in REG09[7:0]/REG0A[6:4] until the host  
reads the registers. Before the host reads REG09[7:0]/REG0A[6:4] and all the ones are cleared, the charger  
does not send any INT upon new fault/status change. To read the current status, the host has to read REG09/  
REG0A two times consecutively. The first read reports the pre-existing register status and the second read  
reports the current register status.  
8.3.8.4 PMID Voltage Indicator (PMID_GOOD)  
In the BQ25619/618, the accessory devices can be connected to the charger PMID pin to get power either from  
the adapter through the Q1 direct path or from battery Boost mode. An optional external PMOS FET can be  
placed between the charger PMID pin and accessory input to disconnect the power path during overcurrent and  
overvoltage conditions. PMID_GOOD is used to drive an external PMOS FET through an inverter. PMID_GOOD  
HIGH turns on an inverter to pull the PMOS FET gate low to turn on the PMOS FET, and PMID_GOOD LOW  
turns off the PMOS FET.  
Upon adapter plug-in, PMID_GOOD goes from LOW to HIGH when VBUS rises above the battery but below  
VACOV, and passes poor source detection. During the operation, PMID_GOOD goes from HIGH to LOW if Q1  
current exceeds 115% of the IINDPM threshold, (IBLK_OCP), or adapter voltage rises above 5.8 V (VBST_OVP).  
The high-voltage adapter over VBST_OVP keeps charging the battery if all conditions are valid. The external  
PMOS FET stays off to protect the accessory from an overvoltage fault.  
When the adapter is removed, PMID_GOOD goes LOW before battery Boost mode starts.  
In battery Boost mode, the device regulates PMID voltage between 4.6 V to 5.15 V as a stable power supply to  
the accessory devices. PMID_GOOD goes from LOW to HIGH when PMID voltage rises above 3.8 V  
(VPOORSRC). Similar to the adapter present scenario, the PMID valid voltage range is between VPOORSRC and  
VBST_OVP. Once PMID voltage is out of this range, PMID_GOOD goes LOW to disconnect the accessory device  
from PMID. During Boost mode, all of the conditions to exit Boost mode will drive PMID_GOOD from HIGH to  
LOW, including Boost mode disable in register, ACOV, TS fault, battery depleted (VBAT_DPL), BATFET  
overcurrent, (ISYS_OCP_Q4), etc.  
8.3.9 Protections  
8.3.9.1 Voltage and Current Monitoring in Buck Mode  
8.3.9.1.1 Input Overvoltage Protection (ACOV)  
The input voltage is sensed via the VAC pin . The default OVP threshold is 14.2 V, and can be programmed at  
5.7 V/6.4 V/11 V/14.2 V via OVP[1:0] register bits. ACOV event immediately stops converter switching whether in  
buck or Boost mode. The device automatically resumes normal operation once the input voltage drops back  
below the OVP threshold. During ACOV, REGN LDO is on, and the device does not enter HIZ mode.  
During ACOV, the fault register CHRG_FAULT bits are set to 01. An INT pulse is asserted to the host.  
8.3.9.1.2 System Overvoltage Protection (SYSOVP)  
The charger device clamps the system voltage during a load transient so that the components connected to the  
system are not damaged due to high voltage. The VSYS_OVP threshold is about 300 mV above battery regulation  
voltage when battery charging is terminated. Upon SYSOVP, the converter stops switching immediately to clamp  
the overshoot. The charger pulls 30-mA ISYS_LOAD discharge current to bring down the system voltage.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: BQ25618 BQ25619  
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.3.9.2 Voltage and Current Monitoring in Boost Mode  
8.3.9.2.1 Boost Mode Overvoltage Protection  
When PMID voltage rises above the regulation target and exceeds VBST_OVP, the device stops switching  
immediately and the device exits Boost mode and PMID_GOOD is pulled low as well. The BST_CONFIG bit is  
set to 0. During Boost mode overvoltage, the fault register bit BOOST_FAULT is set to 1 to indicate a fault in  
boost operation. An INT is asserted to the host.  
8.3.9.2.2 PMID Overcurrent Protection  
The BQ25619/618 closely monitors the battery discharge current through BATFET (Q4) to ensure safe Boost  
mode operation. During an overcurrent condition when boost input current exceeds ISYS_OCP_Q4, the device  
latches off in 100 µs. When an overcurrent condition is detected, the fault register bit BOOST_FAULT is set high  
to indicate a fault in boost operation. An INT is asserted to the host.  
8.3.9.3 Thermal Regulation and Thermal Shutdown  
8.3.9.3.1 Thermal Protection in Buck Mode  
Besides the battery temperature monitor on the TS pin, the device monitors the internal junction temperature TJ  
to avoid overheating the chip and limits the IC junction temperature in buck mode. When the internal junction  
temperature exceeds the thermal regulation limit (110°C), the device lowers down the charge current. During  
thermal regulation, the actual charging current is usually below the programmed battery charging current.  
Therefore, termination is disabled, the safety timer runs at half the clock rate, and the status register  
THERM_STAT bit goes high.  
Additionally, the device has thermal shutdown to turn off the converter and the BATFET when the IC surface  
temperature exceeds TSHUT 150°C. The BATFET and converter are enabled to recover when IC temperature is  
130°C. The fault register CHRG_FAULT is set to 10 during thermal shutdown and an INT is asserted to the host.  
8.3.9.3.2 Thermal Protection in Boost Mode  
Besides the battery temperature monitor on the TS pin, the device monitors the internal junction temperature to  
provide thermal shutdown during Boost mode. When the IC junction temperature exceeds TSHUT 150°C, Boost  
mode is disabled by setting the BST_CONFIG bit low. When the IC junction temperature is below 145°C, the  
host can re-enable Boost mode.  
8.3.9.4 Battery Protection  
8.3.9.4.1 Battery Overvoltage Protection (BATOVP)  
The battery overvoltage limit is clamped at 4% above battery regulation voltage. When battery overvoltage  
occurs, the charger device immediately stops switching. The fault register BAT_FAULT bit goes high and an INT  
is asserted to the host.  
8.3.9.4.2 Battery Overdischarge Protection  
When the battery is discharged below VBAT_DPL_FALL, the BATFET latches off to protect the battery from  
overdischarge. To recover from overdischarge latch-off, an input source plug-in is required at VAC/VBUS.  
8.3.9.4.3 System Overcurrent Protection  
ISYS_OCP_Q4 sets the battery discharge current limit. Once IBAT > ISYS_OCP_Q4, the charger latches off Q4 and puts  
the device into Ship mode. All methods to exit Ship mode are valid to bring the part out of Q4 latch-off.  
8.3.10 Serial Interface  
The device uses an I2C compatible interface for flexible charging parameter programming and instantaneous  
device status reporting. I2CTM is a bi-directional 2-wire serial interface developed by Philips Semiconductor (now  
NXP Semiconductors). Only two bus lines are required: a serial data line (SDA) and a serial clock line (SCL).  
Devices can be considered as masters or slaves when performing data transfers. A master is the device which  
initiates a data transfer on the bus and generates the clock signals to permit that transfer. At that time, any  
device addressed is considered a slave.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: BQ25618 BQ25619  
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
The device operates as a slave device with address 6AH, receiving control inputs from the master device like a  
microcontroller or a digital signal processor through REG00 to REG0C. A register read beyond REG0C returns  
0xFF. The I2C interface supports both standard mode (up to 100 kbits), and fast mode (up to 400 kbits),  
connecting to the positive supply voltage via a current source or pullup resistor. When the bus is free, both lines  
are HIGH. The SDA and SCL pins are open drain.  
8.3.10.1 Data Validity  
The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the  
data line can only change when the clock signal on the SCL line is LOW. One clock pulse is generated for each  
data bit transferred.  
SDA  
SCL  
Data line stable;  
Data valid  
Change of data  
allowed  
8-7. Bit Transfer on the I2C Bus  
8.3.10.2 START and STOP Conditions  
All transactions begin with a START (S) and can be terminated by a STOP (P). A HIGH to LOW transition on the  
SDA line while SCL is HIGH defines a START condition. A LOW to HIGH transition on the SDA line when the  
SCL is HIGH defines a STOP condition. START and STOP conditions are always generated by the master. The  
bus is considered busy after the START condition, and free after the STOP condition.  
SDA  
SCL  
SDA  
SCL  
START (S)  
STOP (P)  
8-8. TS START and STOP conditions  
8.3.10.3 Byte Format  
Every byte on the SDA line must be 8 bits long. The number of bytes to be transmitted per transfer is  
unrestricted. Each byte has to be followed by an Acknowledge bit. Data is transferred with the Most Significant  
Bit (MSB) first. If a slave cannot receive or transmit another complete byte of data until it has performed some  
other function, it can hold the clock line SCL low to force the master into a wait state (clock stretching). Data  
transfer then continues when the slave is ready for another byte of data and release the clock line SCL.  
Acknowledgement  
signal from slave  
Acknowledgement  
signal from receiver  
MSB  
1
SDA  
SCL  
2
7
8
9
1
2
8
9
S or Sr  
P or Sr  
START or  
Repeated  
START  
STOP or  
Repeated  
START  
ACK  
ACK  
8-9. Data Transfer on the I2C Bus  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: BQ25618 BQ25619  
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.3.10.4 Acknowledge (ACK) and Not Acknowledge (NACK)  
The acknowledge takes place after every byte. The acknowledge bit allows the receiver to signal the transmitter  
that the byte was successfully received and another byte may be sent. All clock pulses, including the  
acknowledge ninth clock pulse, are generated by the master. The transmitter releases the SDA line during the  
acknowledge clock pulse so the receiver can pull the SDA line LOW and it remains stable LOW during the HIGH  
period of this clock pulse.  
When SDA remains HIGH during the ninth clock pulse, this is the Not Acknowledge signal. The master can then  
generate either a STOP to abort the transfer or a repeated START to start a new transfer.  
8.3.10.5 Slave Address and Data Direction Bit  
After the START, a slave address is sent. This address is 7 bits long followed by the eighth bit as a data direction  
bit (bit R/W). A zero indicates a transmission (WRITE) and a one indicates a request for data (READ).  
SDA  
1 - 7  
8
9
1-7  
8
9
1-7  
8
9
S
P
SCL  
START  
ADDRESS  
R / W  
ACK  
DATA  
ACK  
DATA  
ACK  
STOP  
8-10. Complete Data Transfer  
8.3.10.6 Single Read and Write  
If the register address is not defined, the charger IC sends back NACK and goes back to the idle state.  
1
7
1
0
1
8
1
8
1
1
S
Slave Address  
ACK  
Reg Addr  
ACK  
Data to Addr  
ACK  
P
8-11. Single Write  
1
7
1
1
8
1
1
7
1
1
S
Slave Address  
0
ACK  
Reg Addr  
ACK  
S
Slave Addr  
1
ACK  
8
1
1
Data  
NCK  
P
8-12. Single Read  
8.3.10.7 Multi-Read and Multi-Write  
The charger device supports multi-read and multi-write on REG00 through REG0C.  
1
7
1
0
1
8
1
S
Slave Address  
ACK  
Reg Addr  
ACK  
8
1
8
1
8
1
1
Data to Addr  
ACK  
Data to Addr + N  
ACK  
Data to Addr + N  
ACK  
P
8-13. Multi-Write  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: BQ25618 BQ25619  
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
1
7
1
0
1
8
1
1
7
1
1
1
S
Slave Address  
ACK  
Reg Addr  
ACK  
S
Slave Address  
ACK  
8
1
8
1
8
1
1
Data @ Addr  
ACK  
Data @ Addr + 1  
ACK  
Data @ Addr + N NCK  
P
8-14. Multi-Read  
REG09[7:0]/REG0A[6:4] are fault/status change registers. They keep all of the fault/status information from the  
last read until the host issues a new read. For example, if a Charge Safety Timer Expiration fault occurs but  
recovers later, the fault register REG09 reports the fault when it is read the first time, but returns to normal when  
it is read the second time. In order to get the fault information at present, the host has to read REG09/REG0A for  
the second time.  
8.4 Device Functional Modes  
8.4.1 Host Mode and Default Mode  
The device is a host controlled charger, but it can operate in default mode without host management. In default  
mode, the device can be used as an autonomous charger with no host or while the host is in sleep mode. When  
the charger is in default mode, the WATCHDOG_FAULT bit is HIGH. When the charger is in host mode, the  
WATCHDOG_FAULT bit is LOW.  
After power-on-reset, the device starts in default mode with watchdog timer expired, or default mode. All  
registers are in the default settings.  
In default mode, the device keeps charging the battery with the 10-hour fast charging safety timer. At the end of  
the 10-hour, charging is stopped and the buck converter continues to operate to supply system load. Any write  
command to the device transitions the charger from default mode to host mode. All device parameters can be  
programmed by the host. To keep the device in host mode, the host has to reset the watchdog timer by writing a  
1 to the WD_RST bit before the watchdog timer expires (WATCHDOG_FAULT bit is set), or disable the  
watchdog timer by setting the WATCHDOG bits = 00.  
All device parameters can be programmed by the host. To keep the device in host mode, the host has to reset  
the watchdog timer by writing a 1 to the WD_RST bit before the watchdog timer expires (WATCHDOG_FAULT  
bit is set), or disable the watchdog timer by setting the WATCHDOG bits = 00.  
POR  
watchdog timer expired  
Reset registers  
I2C interface enabled  
Host Mode  
Start watchdog timer  
Host programs registers  
Y
I2C Write?  
N
Default Mode  
Reset watchdog timer  
Reset selective registers  
Y
WD_RST bit = 1?  
N
N
Y
Y
N
I2C Write?  
Watchdog Timer  
Expired?  
8-15. Watchdog Timer Flow Chart  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: BQ25618 BQ25619  
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.5 Register Maps  
I2C Slave Address: 6AH  
Default I2C Slave Address: 0x6A (1101 010B + R/ W)  
8-5. I2C Registers  
Address  
00h  
Access Type  
Acronym  
REG00  
REG01  
REG02  
REG03  
REG04  
REG05  
REG06  
REG07  
REG08  
REG09  
REG0A  
REG0B  
REG0C  
Register Name  
Section  
Go  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Input Current Limit  
Charger Control 0  
Charge Current Limit  
Precharge and Termination Current Limit  
Battery Voltage Limit  
Charger Control 1  
Charger Control 2  
Charger Control 3  
Charger Status 0  
01h  
Go  
02h  
Go  
03h  
Go  
04h  
Go  
05h  
Go  
06h  
Go  
07h  
Go  
08h  
Go  
09h  
R
Charger Status 1  
Go  
0Ah  
0Bh  
0Ch  
R
Charger Status 2  
Go  
R
Part Information  
Go  
R/W  
Charger Control 4  
Go  
Complex bit access types are encoded to fit into small table cells. 8-6 shows the codes that are used for  
access types in this section.  
8-6. I2C Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
Write Type  
W
W
Write  
Reset Value  
-n  
Value after reset  
Undefined value  
-X  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: BQ25618 BQ25619  
 
 
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.5.1 Input Current Limit Register (Address = 00h) [Reset = 17h]  
8-16. REG00 Register  
7
0
6
0
5
0
4
3
2
1
1
1
0
1
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-7. REG00 Field Descriptions  
Bit  
Field  
POR  
Type  
Reset  
Description  
HIZ mode enable in buck mode.  
0 Disable (default)  
1 Enable  
by REG_RST  
by Watchdog  
7
EN_HIZ  
0
R/W  
When charger does not monitor the NTC, host sets this bit to 1 to  
ignore the TS pin condition during charging and boost mode.  
0 Include TS pin into charge and boost mode enable  
6
TS_IGNORE  
0
R/W  
by REG_RST conditions. (default)  
1 Ignore TS pin. Always consider TS is good to allow charging  
and boost mode. NTC_FAULT bits are 000 to report normal  
status.  
Select either BATSNS pin or BAT pin to regulate battery voltage.  
0 Enable BATSNS in battery CV regulation. If the device fails  
by REG_RST BATSNS open/short detection (BATSNS_STAT = 1). Battery  
voltage is regulated through BAT pin. (default)  
5
BATSNS_DIS  
0
R/W  
1 Disable BATSNS. Use BAT pin in battery CV regulation.  
4
3
2
1
IINDPM[4]  
IINDPM[3]  
IINDPM[2]  
IINDPM[1]  
1
0
1
1
R/W  
R/W  
R/W  
R/W  
by REG_RST 1600 mA  
by REG_RST 800 mA  
by REG_RST 400 mA  
by REG_RST 200 mA  
Input current limit setting (maximum limit, not  
typical)  
Offset: 100 mA  
Range: 100 mA (000000) 3.2 A (11111)  
Default: 2400 mA (10111)  
IINDPM bits are changed automatically after  
8.3.3.3 is completed  
PSEL HIGH = 500 mA  
PSEL LOW = 2.4 A  
0
IINDPM[0]  
1
R/W  
by REG_RST 100 mA  
Host can reprogram IINDPM register bits after  
input source detection is completed.  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: BQ25618 BQ25619  
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.5.2 Charger Control 0 Register (Address = 01h) [Reset = 1Ah]  
8-17. REG01 Register  
7
0
6
0
5
0
4
3
2
0
1
1
0
0
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-8. REG01 Field Descriptions  
Bit Field  
POR Type Reset  
Description  
PFM disable in both buck and boost mode.  
R/W by REG_RST 0 PFM enable (default)  
1 PFM disable  
7
6
PFM_DIS  
0
0
I2C Watchdog timer reset. Back to 0 after watchdog timer reset  
0 Normal (default)  
1 Reset  
by REG_RST  
by Watchdog  
WD_RST  
R/W  
Boost mode enable. In charging case application, based on adapter  
plug-in or removal, the charger will automatically transit between  
charging mode and boost mode by setting BST_CONFIG bit and  
CHG_CONFIG bit both to 1.  
by REG_RST  
by Watchdog  
5
BST_CONFIG  
0
R/W  
0 Boost mode disable (default)  
1 Boost mode enable  
Battery charging buck mode enable. Charging is enabled when CE pin  
is pulled low, CHG_CONFIG bit is 1 and charge current is not zero.  
by Watchdog 0 Charge Disable  
1 Charge Enable (default)  
by REG_RST  
4
CHG_CONFIG  
1
R/W  
3
2
SYS_MIN[2]  
SYS_MIN[1]  
1
0
R/W by REG_RST System minimum voltage setting.  
000 2.6 V  
R/W by REG_RST  
001 2.8 V  
010 3 V  
011 3.2 V  
100 3.4 V  
101 3.5 V (default)  
110 3.6 V  
1
0
SYS_MIN[0]  
1
0
R/W by REG_RST  
111 3.7 V  
Minimum battery voltage when exiting boost mode. The rising threshold  
allows the device to start boost mode if other conditions are valid.  
0 2.8 V VBAT falling, 3 V rising (default)  
MIN_VBAT_SEL  
R/W by REG_RST  
1 2.5 V VBAT falling, 2.8 V rising  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: BQ25618 BQ25619  
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.5.3 Charge Current Limit Register (Address = 02h) [Reset = 91h]  
8-18. REG02 Register  
7
1
6
0
5
0
4
3
2
0
1
0
0
1
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-9. REG02 Field Descriptions  
Bit  
Field  
POR  
Type  
Reset  
Description  
7
Reserved  
1
R/W  
In buck mode, charger will fully turn on Q1 RBFET according  
to this bit setting when IINDPM is below 700 mA. When  
IINDPM is over 700 mA, Q1 is always fully on.  
0 Partially turn on Q1 for better regulation accuracy when  
IINDPM is below 700 mA. (default)  
6
Q1_FULLON  
0
R/W  
by REG_RST  
1 Fully turn on Q1 for better efficiency when IINDPM is  
below 700 mA.  
R/W  
R/W  
by REG_RST  
by Watchdog  
5
4
3
2
1
0
ICHG[5]  
ICHG[4]  
ICHG[3]  
ICHG[2]  
ICHG[1]  
ICHG[0]  
0
1
0
0
0
1
640 mA  
Fast charge current setting  
by REG_RST  
by Watchdog  
320 mA  
160 mA  
80 mA  
40 mA  
20 mA  
Default: 340 mA (010001)  
Range: 0 mA (0000001) –  
1180 mA (111011), 20 mA/  
step  
111100: 1290 mA  
111101: 1360 mA  
111110: 1430 mA  
111111: 1500 mA  
ICHG 0 mA disables charge.  
by REG_RST  
by Watchdog  
R/W  
R/W  
by REG_RST  
by Watchdog  
R/W  
R/W  
by REG_RST  
by Watchdog  
by REG_RST  
by Watchdog  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: BQ25618 BQ25619  
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.5.4 Precharge and Termination Current Limit Register (Address = 03h) [Reset = 12h]  
8-19. REG03 Register  
7
0
6
0
5
0
4
3
2
0
1
1
0
0
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-10. REG03 Field Descriptions  
Bit Field  
POR Type Reset  
Description  
by REG_RST  
by Watchdog  
7
6
5
4
3
2
1
0
IPRECHG[3]  
0
0
0
1
0
0
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
160 mA  
Precharge current setting  
Default: 40 mA (0001)  
Range: 20 mA (0000) 260 mA  
(1100)  
Offset: 20 mA  
Note: IPRECHG > 260 mA is  
clamped to 260 mA (1100)  
by REG_RST  
by Watchdog  
IPRECHG[2]  
IPRECHG[1]  
IPRECHG[0]  
ITERM[3]  
80 mA  
40 mA  
20 mA  
160 mA  
80 mA  
40 mA  
20 mA  
by REG_RST  
by Watchdog  
by REG_RST  
by Watchdog  
by REG_RST  
by Watchdog  
Termination current setting  
Default: 60 mA (0010)  
Range: 20 mA 260 mA (1100)  
Offset: 20 mA  
Note: ITERM > 260 mA is clamped  
to 260 mA (1100)  
by REG_RST  
by Watchdog  
ITERM[2]  
by REG_RST  
by Watchdog  
ITERM[1]  
by REG_RST  
by Watchdog  
ITERM[0]  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: BQ25618 BQ25619  
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.5.5 Battery Voltage Limit Register (Address = 04h) [Reset = 40h]  
8-20. REG04 Register  
7
0
6
1
5
0
4
3
2
0
1
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-11. REG04 Field Descriptions  
Bit Field  
POR Type Reset  
Description  
by REG_RST Battery voltage setting, also called VREG  
by Watchdog Default: 4.200 V (01000)  
.
7
6
5
4
VBATREG[4]  
0
1
0
0
R/W  
R/W  
R/W  
R/W  
00000 3.504 V  
00001 3.600 V  
00010 3.696 V  
00011 3.800 V  
by REG_RST  
by Watchdog  
VBATREG[3]  
VBATREG[2]  
VBATREG[1]  
by REG_RST  
by Watchdog  
00100 3.904 V  
by REG_RST  
by Watchdog  
00101 4.000 V  
00110 4.100 V  
00111 4.150 V  
01000 4.200 V  
by REG_RST  
3
VBATREG[0]  
0
R/W  
by Watchdog 01001 - 11111 4.300 V - 4.520 V, 10 mV/step  
01110 4.350 V, 10011 4.400 V, 11000 4.450 V, 11101 4.500 V  
by REG_RST Top-off timer setting.  
2
1
TOPOFF_TIMER[1]  
TOPOFF_TIMER[0]  
0
0
R/W  
R/W  
by Watchdog  
00 Disabled (default)  
01 15 minutes  
10 30 minutes  
11 45 minutes  
by REG_RST  
by Watchdog  
by REG_RST Battery recharge threshold setting.  
by Watchdog  
0
VRECHG  
0
R/W  
0 120 mV (default)  
1 210 mV  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: BQ25618 BQ25619  
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.5.6 Charger Control 1 Register (Address = 05h) [Reset = 9Eh]  
8-21. REG05 Register  
7
1
6
0
5
0
4
3
2
1
1
1
0
0
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-12. REG05 Field Descriptions  
Bit  
Field  
POR  
Type  
Reset  
Description  
Battery charging termination enable.  
0 Disable  
1 Enable (default)  
by REG_RST  
by Watchdog  
7
EN_TERM  
1
R/W  
by REG_RST  
by Watchdog  
6
5
Reserved  
0
0
R/W  
R/W  
Reserved  
by REG_RST Watchdog timer setting.  
by Watchdog  
WATCHDOG[1]  
00 Disable timer  
01 40 s (default)  
10 80 s  
by REG_RST  
by Watchdog  
4
3
WATCHDOG[0]  
EN_TIMER  
1
1
R/W  
R/W  
11 160 s  
Battery charging safety timer enable, including both fast  
charge and precharge timers. Precharge timer is 2 hours.  
Fast charge timer is set by REG05[2]  
0 Disable  
by REG_RST  
by Watchdog  
1 Enable timer (default)  
Battery fast charging safety timer setting.  
0 20 hrs  
1 10 hrs (default)  
by REG_RST  
by Watchdog  
2
1
CHG_TIMER  
TREG  
1
1
R/W  
R/W  
Thermal regulation threshold:  
0 90°C  
1 110°C (default)  
by REG_RST  
by Watchdog  
Battery voltage setting during JEITA warm (T3 - T5,  
typically 45C - 60C)  
by Watchdog 0 Set charge voltage to 4.1 V (max) (default)  
1 Set charge voltage to VREG  
by REG_RST  
0
JEITA_VSET (45C-60C)  
0
R/W  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: BQ25618 BQ25619  
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.5.7 Charger Control 2 Register (Address = 06h) [Reset = E6h]  
8-22. REG06 Register  
7
1
6
1
5
1
4
3
2
1
1
1
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-13. REG06 Field Descriptions  
Bit Field  
POR Type Reset  
Description  
7
6
5
4
OVP[1]  
1
1
1
0
R/W by REG_RST VACOV threshold during buck mode and boost mode.  
00 5.85 V  
01 6.4 V (5-V input)  
10 11 V (9-V input)  
OVP[0]  
R/W by REG_RST  
11 14.2 V (12-V input) (default)  
BOOSTV[1]  
BOOSTV[0]  
R/W by REG_RST Boost regulation voltage setting  
00 4.6 V  
01 4.75 V  
10 5.0 V (default)  
R/W by REG_RST  
11 5.15 V  
3
2
1
0
VINDPM[3]  
VINDPM[2]  
VINDPM[1]  
VINDPM[0]  
0
1
1
0
R/W by REG_RST 800 mV  
R/W by REG_RST 400 mV  
R/W by REG_RST 200 mV  
R/W by REG_RST 100 mV  
VINDPM threshold setting  
Default: 4.5 V (0110)  
Range: 3.9 V (0000) 5.4 V  
(1111)  
Offset: 3.9 V  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: BQ25618 BQ25619  
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.5.8 Charger Control 3 Register (Address = 07h) [Reset = 4Ch]  
8-23. REG07 Register  
7
0
6
1
5
0
4
3
2
1
1
0
0
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-14. REG07 Field Descriptions  
Bit Field  
POR Type Reset  
Description  
Force input source type detection. After the detection is complete, this  
bit returns to 0.  
by Watchdog 0 Not in input current limit detection. (default)  
1 Force input current limit detection when adapter is present.  
by REG_RST  
7
6
IINDET_EN  
0
1
R/W  
R/W  
Safety timer is slowed by 2X during input DPM, JEITA cool/warm or  
thermal regulation.  
by REG_RST  
TMR2X_EN  
0 Disable. Safety timer duration is set by REG05[2].  
by Watchdog  
1 Safety timer slowed by 2X during input DPM (both V and I) or  
JEITA cool/warm (except ICHG=100%), or thermal regulation. (default)  
BATFET Q4 ON/OFF control. Set this bit to 1 to enter ship mode. To  
reset the device with adapter present, the host shall set  
BATFET_RST_WVBUS to 1 and then BATFET_DIS to 1.  
0 Turn on Q4. (default)  
1 Turn off Q4 after tBATFET_DLY delay time (REG07[3])  
5
4
3
BATFET_DIS  
0
0
1
R/W by REG_RST  
R/W by REG_RST  
Start BATFET full system reset with or without adapter present.  
0 Start BATFET full system reset after adapter is removed from  
VBUS. (default)  
BATFET_RST_WVBUS  
BATFET_DLY  
1 Start BATFET full system reset when adapter is present on VBUS.  
Delay from BATFET_DIS (REG07[5]) set to 1 to BATFET turn off during  
ship mode.  
R/W by REG_RST 0 Turn off BATFET immediately when BATFET_DIS bit is set.  
1 Turn off BATFET after tBATFET_DLY (typ 10 s) when BATFET_DIS bit  
is set. (default)  
Enable BATFET full system reset. The time to start of BATFET full  
system reset is based on the setting of BATFET_RST_WVBUS bit.  
by REG_RST  
by Watchdog 0 Disable BATFET reset function  
1 Enable BATFET reset function when REG07[5] is also 1. (default)  
2
1
BATFET_RST_EN  
1
0
R/W  
VINDPM_BAT_TRACK[1]  
R/W by REG_RST Sets VINDPM to track BAT voltage. Actual VINDPM is higher of register  
value and VBAT + VINDPM_BAT_TRACK.  
00 Disable function (VINDPM set by register) (default)  
01 VBAT + 200 mV  
10 VBAT + 250 mV  
11 VBAT + 300 mV  
0
VINDPM_BAT_TRACK[0]  
0
R/W by REG_RST  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: BQ25618 BQ25619  
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.5.9 Charger Status 0 Register (Address = 08h)  
8-24. REG08  
7
x
6
x
5
x
4
3
2
x
1
x
0
x
x
x
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-15. REG08 Field Descriptions  
Bit Field  
POR Type  
Reset  
Description  
7
6
VBUS_STAT[2]  
x
x
R
R
NA  
VBUS Status register  
000 No input  
001 USB host SDP (500 mA) PSEL pin HIGH  
011 Adapter 2.4 A PSEL pin LOW  
111 Boost mode  
VBUS_STAT[1]  
VBUS_STAT[0]  
CHRG_STAT[1]  
NA  
5
4
x
x
R
R
NA  
NA  
Software current limit is reported in IINDPM register  
Charging status:  
00 Not charging  
01 Precharge or trickle charge (< VBATLOWV  
10 Fast charging  
11 Charge termination  
)
3
2
CHRG_STAT[0]  
PG_STAT  
x
x
R
R
NA  
NA  
Power Good status:  
0 Power Not Good  
1 Power Good  
0 Not in thermal regulation  
1 In thermal regulation  
1
0
THERM_STAT  
VSYS_STAT  
x
x
R
R
NA  
NA  
0 Not in SYS_MIN regulation (VBAT > VSYS_MIN  
1 In SYS_MIN regulation (VBAT < VSYS_MIN  
)
)
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: BQ25618 BQ25619  
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.5.10 Charger Status 1 Register (Address = 09h)  
8-25. REG09 Register  
7
1
6
x
5
x
4
3
2
x
1
x
0
x
x
x
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-16. REG09 Field Descriptions  
Bit Field  
POR Type Reset  
Description  
0 Normal, device is in host mode,  
7
WATCHDOG_FAULT  
1
R
R
NA  
NA  
1 Watchdog timer expiration, device is in default mode.  
0 Normal  
1 Fault detected in boost mode (any conditions that are not valid for  
boost operation), including VBUS overloaded (BST_OVP) or battery is  
too low (BST_BAT)  
6
BOOST_FAULT  
x
5
4
CHRG_FAULT[1]  
CHRG_FAULT[0]  
x
x
R
R
NA  
NA  
00 Normal  
01 Input fault  
10 Thermal shutdown  
11 Charge safety timer expiration  
0 Normal,  
1 Battery overvoltage.  
3
BAT_FAULT  
x
R
NA  
2
1
NTC_FAULT[2]  
NTC_FAULT[1]  
x
x
R
R
NA  
NA  
TS fault in buck mode  
000 Normal  
010 Warm  
011 Cool  
101 Cold  
110 Hot  
0
NTC_FAULT[0]  
x
R
NA  
TS fault in boost mode  
000 Normal  
101 Cold  
110 Hot  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: BQ25618 BQ25619  
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.5.11 Charger Status 2 Register (Address = 0Ah)  
8-26. REG0A Register  
7
x
6
x
5
x
4
3
2
x
1
0
0
0
x
x
R
R
R
R
R
R
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-17. REG0A Field Descriptions  
Bit Field  
POR Type Reset  
Description  
0 VBUS does not pass poor source detection  
1 VBUS passes poor source detection  
7
6
5
VBUS_GD  
x
x
x
R
R
R
NA  
NA  
NA  
0 Not in VINDPM  
1 In VINDPM  
VINDPM_STAT  
IINDPM_STAT  
0 Not in IINDPM  
1 In IINDPM  
0 BATSNS pin is in good connection. Regulation battery voltage  
through BATSNS pin.  
1 BATSNS pin is open/short. Regulate battery voltage through BAT  
4
BATSNS_STAT  
x
R
NA  
pin.  
0 Top off timer not counting.  
1 Top off timer counting  
3
2
TOPOFF_ACTIVE  
ACOV_STAT  
x
x
R
R
NA  
NA  
0 Not in ACOV  
1 In ACOV  
Allow or block INT pulse assertion to host during VINDPM.  
1
0
VINDPM_INT_ MASK  
IINDPM_INT_ MASK  
0
0
R/W by REG_RST 0 INT is asserted to host during VINDPM (default).  
1 No INT pulse asserted to host during VINDPM.  
Allow or block INT pulse assertion to host during IINDPM  
R/W by REG_RST 0 INT is asserted to host during IINDPM (default).  
1 No INT pulse asserted to host during IINDPM.  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: BQ25618 BQ25619  
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.5.12 Part Information Register (Address = 0Bh)  
8-27. REG0B Register  
7
0
6
0
5
1
4
3
2
1
1
0
0
0
0
1
R/W  
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-18. REG0B Field Descriptions  
Bit Field  
POR Type Reset  
Description  
Register reset  
0 Keep current register setting (default).  
1 Reset to default register value and reset safety timer. This bit  
7
REG_RST  
0
R/W NA  
returns to 0 after register reset is completed.  
6
5
4
3
2
PN[3]  
0
1
0
1
1
R
R
R
R
R
NA  
NA  
NA  
NA  
NA  
PN[2]  
Reserved  
PN[1]  
PN[0]  
Reserved  
Reserved  
Reserved  
1
0
0
0
R
R
NA  
NA  
Reserved  
Reserved  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: BQ25618 BQ25619  
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
8.5.13 Charger Control 4 Register (Address = 0Ch) [Reset = 75h]  
8-28. REG0C  
7
0
6
1
5
1
4
3
2
1
1
0
0
1
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-19. REG0C Field Descriptions  
Bit Field  
POR Type Reset  
Description  
by REG_RST Fast charge current setting during cool temperature range (T1 - T2), as  
by Watchdog percentage of ICHG in REG02[5:0].  
00 No Charge  
7
6
5
4
JEITA_COOL_ISET [1]  
0
1
1
1
R/W  
R/W  
R/W  
R/W  
01 20% of ICHG (default)  
10 50% of ICHG  
11 100% of ICHG (safety timer does not become 2X)  
by REG_RST  
by Watchdog  
JEITA_COOL_ISET [0]  
JEITA_WARM_ISET [1]  
JEITA_WARM_ISET [0]  
by REG_RST Fast charge current setting during warm temperature range (T3 - T5), as  
by Watchdog percentage of ICHG in REG02[5:0].  
00 No Charge  
01 20% of ICHG  
10 50% of ICHG  
11 100% of ICHG (safety timer does not become 2X) (default)  
by REG_RST  
by Watchdog  
by REG_RST  
by Watchdog  
00 VT2% = 70.75% (5.5°C)  
01 VT2% = 68.25% (10°C) (default)  
10 VT2% = 65.25% (15°C)  
11 VT2% = 62.25% (20°C)  
3
2
1
0
JEITA_VT2 [1]  
JEITA_VT2 [0]  
JEITA_VT3 [1]  
JEITA_VT3 [0]  
0
1
0
1
R/W  
R/W  
R/W  
R/W  
by REG_RST  
by Watchdog  
by REG_RST  
by Watchdog  
00 VT3% = 48.25% (40°C)  
01 VT3% = 44.75% (44.5°C) (default)  
10 VT3% = 40.75% (50.5°C)  
11 VT3% = 37.75% (54.5°C)  
by REG_RST  
by Watchdog  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: BQ25618 BQ25619  
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
A typical application consists of the device configured as an I2C controlled power path management device and  
a single cell battery charger for Li-ion and Li-polymer batteries used in a wide range of smart phones and other  
portable devices. It integrates an input reverse-block FET (RBFET, Q1), high-side switching FET (HSFET, Q2),  
low-side switching FET (LSFET, Q3), and battery FET (BATFET Q4) between the system and battery. The  
device also integrates a bootstrap diode for the high-side gate drive.  
9.2 Typical Application  
INPUT  
4 Vœ 13.5 V  
Max 22V  
SYSTEM  
3.5V-4.52V  
VAC  
Optional  
1µH  
SW  
VBUS  
10k  
Q1  
1µF  
Q2  
10µF  
BTST  
47nF  
Q3  
Optional  
VPB  
REGN  
Ear Phone  
PMID  
4. 7µF  
15kΩ  
10µF  
20kΩ  
PGND  
SYS  
SYS  
REGN  
Q4  
STAT  
VREF  
BAT  
PMID_GOOD  
10µF  
BATSNS  
SDA  
SCL  
/INT  
/CE  
REGN  
Host  
TS  
+
Optional if  
TS_IGNORE=1  
/QON  
USB  
PHY  
PSEL  
Optional  
BQ25618  
BQ25619  
9-1. BQ25619 Application Diagram with Optional PMOS  
See the BQ25618 BMS024 Evaluation Module User's Guide and BQ25619 BMS025 Evaluation Module EVM  
User's Guide for complete schematic and component placement with trace and via locations.  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: BQ25618 BQ25619  
 
 
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
9.2.1 Design Requirements  
For this design example, use the parameters shown in the table below.  
9-1. Design Parameters  
PARAMETER  
VALUE  
4 V to 13.5 V  
2.4 A  
VVBUS voltage range  
Input current limit (REG00[4:0] )  
Fast charge current limit (REG02[5:0] )  
Minimum system voltage (REG01[3:1])  
Battery regulation voltage (REG04[7:3] )  
1.024 A  
3.5 V  
4.2 V  
9.2.2 Detailed Design Procedure  
9.2.2.1 Inductor Selection  
The 1.5-MHz switching frequency allows the use of small inductor and capacitor values to maintain an inductor  
saturation current higher than the charging current (ICHG) plus half the ripple current (IRIPPLE):  
I
SAT ICHG + (1/2) IRIPPLE  
(3)  
The inductor ripple current depends on the input voltage (VVBUS), the duty cycle (D = VBAT/VVBUS), the switching  
frequency (fS) and the inductance (L).  
VIN ´D ´ (1- D)  
=
IRIPPLE  
fs ´ L  
(4)  
The maximum inductor ripple current occurs when the duty cycle (D) is 0.5 or approximately 0.5. Usually  
inductor ripple is designed in the range between 20% and 40% maximum charging current as a trade-off  
between inductor size and efficiency for a practical design.  
For compact solution size and efficiency at high current, a 1-µH inductor is recommended. To achieve better light  
load efficiency during boost mode (output current below 500 mA), the device also supports a 2.2-µH inductor  
with a 10-µF (min) cap on the system.  
9.2.2.2 Input Capacitor and Resistor  
Design the input capacitance to provide enough ripple current rating to absorb the input switching ripple current.  
Worst case RMS ripple current is half of the charging current when the duty cycle is 0.5. If the converter does not  
operate at 50% duty cycle, then the worst case capacitor RMS current ICIN occurs where the duty cycle is closest  
to 50% and can be estimated using 方程5.  
ICIN = ICHG ´ D ´ (1- D)  
(5)  
A low ESR ceramic capacitor such as X7R or X5R is preferred for the input decoupling capacitor and should be  
placed as close as possible to the drain of the high-side MOSFET and source of the low-side MOSFET. The  
voltage rating of the capacitor must be higher than the normal input voltage level. A 25-V or higher rated  
capacitor is preferred for a 12-V input voltage. Minimum capacitance of 10 μF is suggested for typical of 1.5-A  
charging current.  
During high current output over 700 mA in boost mode, a 10-kΩpull-down resistor on VBUS is recommended to  
keep VBUS low in case Q1 RBFET leakage gets high.  
9.2.2.3 Output Capacitor  
Ensure that the output capacitance has enough ripple current rating to absorb the output switching ripple current.  
方程6 shows the output capacitor RMS current ICOUT calculation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: BQ25618 BQ25619  
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
IRIPPLE  
ICOUT  
=
» 0.29 ´ IRIPPLE  
2 ´  
3
(6)  
The output capacitor voltage ripple can be calculated as follows:  
æ
ç
è
ö
VOUT  
8LCfs2  
VOUT  
V
DVO =  
1-  
÷
IN ø  
(7)  
At certain input and output voltages and switching frequency, the voltage ripple can be reduced by increasing the  
output filter LC.  
The charger device has internal loop compensation optimized for >10-μF ceramic output capacitance. The  
preferred ceramic capacitor is 10-V rating, X7R or X5R.  
9.2.3 Application Curves  
VVBUS = 5 V  
VBAT = 3.8 V  
VVBUS = 5 V  
VBAT = 3.8 V  
9-2. VBUS Plugged In and Unplugged with  
9-3. VBUS Plugged In with Boost Mode Enabled  
Boost Mode Disabled  
VVBUS = 5 V  
VBAT = 3.8 V  
VBoost = 5 V  
VVBUS = 5 V  
VBAT = 3.2 V  
9-4. VBUS Unplugged with Boost Mode Enabled  
9-5. Power Up with Charge Disabled  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: BQ25618 BQ25619  
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
ICHG = 1.5 A  
VVBUS = 5 V  
VBAT = 3.2 V  
ISYS = 0 - 2 A  
ICHG = 1.5 A  
VVBUS = 5 V  
VBAT = 3.7 V  
IINDPM = 1 A  
9-6. Power Up with Charge Enabled  
9-7. System Load Transient Response  
VVBUS = 5 V  
VBAT = 3.7 V  
IINDPM = 2 A  
VVBUS = 5 V  
VBAT = 3.7 V  
IINDPM = 1 A  
ISYS = 0 2 A  
ISYS = 0 4 A  
ICHG = 1 A  
ICHG = 1.5 A  
9-8. System Load Transient Respose  
9-9. System Load Transient Response  
VVBUS = 5 V  
VBAT = 3.7 V  
IINDPM = 2 A  
ISYS = 0 4 A  
ICHG = 1.5 A  
9-10. System Load Transient Response  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: BQ25618 BQ25619  
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
10 Power Supply Recommendations  
In order to provide an output voltage on SYS, the battery charger requires a power supply between 4 V and 13.5  
V input with at least a 100-mA current rating connected to VBUS and a single-cell Li-ion battery with battery  
voltage greater than VBAT_UVLOZ connected to BAT. The source current rating needs to be at least 3 A in order for  
the buck converter of the charger to provide maximum output power to SYS.  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: BQ25618 BQ25619  
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
The switching node rise and fall times should be minimized for minimum switching loss. Proper layout of the  
components to minimize the high frequency current path loop (see 11-1) is important to prevent electrical and  
magnetic field radiation and high frequency resonant problems. Follow this specific order carefully to achieve the  
proper layout.  
1. Place an input capacitor as close as possible to the PMID pin and GND pin connections and use the shortest  
copper trace connection or GND plane. Add a 1-nF small size (such as 0402 or 0201) decoupling cap for the  
high frequency noise filter and EMI improvement.  
2. Place the inductor input pin as close as possible to SW pin. Minimize the copper area of this trace to lower  
electrical and magnetic field radiation but make the trace wide enough to carry the charging current. Do not  
use multiple layers in parallel for this connection. Minimize parasitic capacitance from this area to any other  
trace or plane.  
3. Put the output capacitor near to the inductor and the device. Ground connections need to be tied to the IC  
ground with a short copper trace connection or GND plane.  
4. Route the analog ground separately from power ground. Connect the analog ground and connect power  
ground separately. Connect the analog ground and power ground together using the thermal pad as the  
single ground connection point. Or use a 0-Ωresistor to tie the analog ground to power ground.  
5. Use a single ground connection to tie the charger power ground to the charger analog ground just beneath  
the device. Use ground copper pour but avoid power pins to reduce inductive and capacitive noise coupling.  
6. Place the decoupling capacitors next to the IC pins and make the trace connection as short as possible.  
7. It is critical that the exposed thermal pad on the backside of the device package be soldered to the PCB  
ground. Ensure that there are sufficient thermal vias directly under the IC, connecting to the ground plane on  
the other layers.  
8. Ensure that the number and sizes of vias allow enough copper for a given current path.  
See the BQ25618 BMS024 Evaluation Module User's Guide and BQ25619 BMS025 Evaluation Module EVM  
User's Guide for the recommended component placement with trace and via locations. For the VQFN  
information, refer to Quad Flatpack No-Lead Logic Packages Application Report and QFN and SON PCB  
Attachment Application Report.  
11.2 Layout Example  
+
+
œ
11-1. High Frequency Current Path  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: BQ25618 BQ25619  
 
 
 
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
11-2. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: BQ25618 BQ25619  
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation see the following:  
BQ25619 BMS025 Evaluation Module User's Guide  
BQ25618 BMS024 Evaluation Module User's Guide  
12.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: BQ25618 BQ25619  
 
 
 
 
 
 
 
 
BQ25618, BQ25619  
ZHCSJZ6D JUNE 2019 REVISED DECEMBER 2021  
www.ti.com.cn  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: BQ25618 BQ25619  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ25618YFFR  
BQ25618YFFT  
BQ25619RTWR  
BQ25619RTWT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
WQFN  
WQFN  
YFF  
YFF  
30  
30  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
BQ25618  
SNAGCU  
NIPDAU  
NIPDAU  
BQ25618  
BQ25619  
BQ25619  
RTW  
RTW  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Sep-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ25618YFFR  
BQ25618YFFT  
BQ25619RTWR  
BQ25619RTWT  
DSBGA  
DSBGA  
WQFN  
WQFN  
YFF  
YFF  
30  
30  
24  
24  
3000  
250  
180.0  
180.0  
330.0  
180.0  
8.4  
8.4  
2.09  
2.09  
4.25  
4.25  
2.59  
2.59  
4.25  
4.25  
0.78  
0.78  
1.15  
1.15  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q2  
Q2  
RTW  
RTW  
3000  
250  
12.4  
12.4  
12.0  
12.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Sep-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ25618YFFR  
BQ25618YFFT  
BQ25619RTWR  
BQ25619RTWT  
DSBGA  
DSBGA  
WQFN  
WQFN  
YFF  
YFF  
30  
30  
24  
24  
3000  
250  
182.0  
182.0  
367.0  
210.0  
182.0  
182.0  
367.0  
185.0  
20.0  
20.0  
35.0  
35.0  
RTW  
RTW  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
YFF0030  
DSBGA - 0.625 mm max height  
S
C
A
L
E
4
.
5
0
0
DIE SIZE BALL GRID ARRAY  
B
E
A
BUMP A1  
CORNER  
D
C
0.625 MAX  
SEATING PLANE  
0.05 C  
BALL TYP  
0.30  
0.12  
1.6 TYP  
SYMM  
F
E
D: Max = 2.392 mm, Min =2.332 mm  
E: Max = 1.992 mm, Min =1.931 mm  
D
C
SYMM  
2
TYP  
B
A
0.4 TYP  
1
2
4
5
3
0.3  
30X  
0.4 TYP  
0.2  
0.015  
C A B  
4219433/A 03/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YFF0030  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
3
30X ( 0.23)  
(0.4) TYP  
2
4
5
1
A
B
C
SYMM  
D
E
F
SYMM  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.05 MAX  
0.05 MIN  
(
0.23)  
(
0.23)  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4219433/A 03/2016  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFF0030  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
30X ( 0.25)  
(R0.05) TYP  
1
3
2
4
5
A
B
(0.4)  
TYP  
METAL  
TYP  
C
D
E
F
SYMM  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4219433/A 03/2016  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
GENERIC PACKAGE VIEW  
RTW 24  
4 x 4, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224801/A  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY