BQ25628RYKR [TI]

具有升压模式和 ADC 的 I²C 控制型 18V 最大输入、2A 单节电池充电器 | RYK | 18 | -40 to 85;
BQ25628RYKR
型号: BQ25628RYKR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有升压模式和 ADC 的 I²C 控制型 18V 最大输入、2A 单节电池充电器 | RYK | 18 | -40 to 85

电池
文件: 总82页 (文件大小:3624K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
BQ25628/BQ25629 I2C 控制,2A,最18V 输入,具NVDC 电源路径管理和  
OTG 输出的充电器  
1 特性  
3 说明  
• 适用于单节电池的高1.5MHz 同步开关模式降压  
充电器  
BQ25628 BQ25629 是适用于单节锂离子电池和锂  
聚合物电池的高度集成型 2A 开关模式电池充电管理和  
系统电源路径管理器件。该解决方案在系统和电池之间  
高度集成了内置电流检测、环路补偿、输入反向阻断  
FETRBFETQ1高侧开关 FETHSFET,  
Q2、低侧开关 FETLSFETQ3以及电池 FET  
BATFETQ4。该器件使用窄范围 VDC 电源路径  
管理将系统电压调节至稍高于电池电压的水平但是  
不会下降至低于可配置的最小系统电压。低阻抗电源路  
径提高了开关模式的工作效率、缩短了电池充电时间,  
并延长了放电阶段的电池寿命而且 0.15μA 的超低  
运输模式电流延长了电池的货架期。具有充电和系统设  
置的 I2C 串行接口使得 BQ25628 BQ25629 成为真  
正灵活的解决方案。  
– 输入电压5V 输出电流低25mA效率  
90%  
– 充电终止范围为  
– 灵活JEITA 曲线可在过热条件下实现安全  
充电  
BATFET 控制支持关断、运输模式和完全系统复  
– 纯电池模式下静态电1.5µA  
– 运输模式下电池漏电流0.15µA  
– 关断模式下电池漏电流0.1µA  
• 支持升压模式运行以为附件供电  
– 升压模式运行支3.84V 5.2V 输出  
– 对5V PMID升压效率大90%升压电流  
100mA  
器件信息  
封装(1)  
WQFN (18)  
WQFN (18)  
封装尺寸标称值)  
2.50 mm × 3.00mm  
2.50 mm × 3.00mm  
器件型号  
BQ25628  
BQ25629  
• 支持宽输入源  
3.9V 18V 宽输入工作电压范围绝对最大输  
入电压26V  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
– 通过输入电压调(VINDPM) 和输入电流调节  
(IINDPM) 更大限度地提高电源功率  
VINDPM 阈值自动跟踪电池电压  
• 使15mΩBATFET 实现高效电池运行  
VDC (NVDC) 电源路径管理  
System  
Load  
1 uH  
3.4 - 18V  
VBUS  
USB  
SW  
D+/D- (629)  
Ear  
Phone  
PMID  
– 系统在电池耗尽或无电池的情况下可瞬时启动  
– 适配器满载时电池可为系统补充电量  
• 灵活的自主I2C 控制模式  
• 用于电压、电流和温度监测的集12 ADC  
• 高精度  
BTST  
SYS  
PMID_GD  
STAT  
2.6 – 4.85V  
SYS  
(629) REGN  
(628) TS_BIAS  
I2C Bus  
CE  
Host  
(628) ILIM  
TS  
– 充电电压调节范围±0.4%  
– 充电电流调节范围±5%  
– 输入电流调节范围±5%  
• 安全  
QON  
1.8 – 4.8V  
BQ25628 BAT  
BQ25629  
– 热调节和热关断  
GND  
– 输入、系统和电池过压保护  
– 电池和转换器过流保护  
– 充电安全计时器  
Optional  
BQ25628/629 简化版应用  
2 应用  
• 消费类可穿戴设备、智能手表  
• 便携式扬声器、TWS 耳机  
• 助听器TWS 充电盒  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSEG4  
 
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
Table of Contents  
9.5 Programming............................................................ 36  
9.6 Register Maps...........................................................39  
10 Application and Implementation................................65  
10.1 Application Information........................................... 65  
10.2 Typical Application.................................................. 65  
11 Power Supply Recommendations..............................71  
12 Layout...........................................................................72  
12.1 Layout Guidelines................................................... 72  
12.2 Layout Example...................................................... 72  
13 Device and Documentation Support..........................75  
13.1 Device Support....................................................... 75  
13.2 Documentation Support.......................................... 75  
13.3 接收文档更新通知................................................... 75  
13.4 支持资源..................................................................75  
13.5 Trademarks.............................................................75  
13.6 Electrostatic Discharge Caution..............................75  
13.7 术语表..................................................................... 75  
14 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................3  
6 Device Comparison.........................................................4  
7 Pin Configuration and Functions...................................5  
8 Specifications.................................................................. 7  
8.1 Absolute Maximum Ratings........................................ 7  
8.2 ESD Ratings............................................................... 7  
8.3 Recommended Operating Conditions.........................7  
8.4 Thermal Information....................................................8  
8.5 Electrical Characteristics.............................................8  
8.6 Timing Requirements................................................16  
8.7 Typical Characteristics..............................................18  
9 Detailed Description......................................................20  
9.1 Overview...................................................................20  
9.2 Functional Block Diagram.........................................21  
9.3 Feature Description...................................................22  
9.4 Device Functional Modes..........................................34  
Information.................................................................... 76  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
December 2022  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
5 说明)  
BQ25628 支持多种输入源包括标准 USB 主机端口、USB 充电端口以及兼容 USB 的高电压适配器。BQ25629  
具有用于设置默认输入电流限制的 ILIM 引脚和用于控制热敏电阻偏置的 TS_BIAS 引脚。该器件符合用于输入电  
流和电压调节USB 2.0 USB 3.0 电源规范并符USB On-the-Go (OTG) 运行额定功率规范2.0A。  
电源路径管理将系统电压调节至稍高于电池电压的水平但是不会下降至可编程最小系统电压以下。借助于这个  
特性即使在电池电量完全耗尽或者电池被拆除时系统也能保持运行。当达到输入电流限值或输入电压限值  
电源路径管理系统会自动减小充电电流。随着系统负载持续增加电池开始放电直到满足系统电源需求。  
该补充模式可防止输入源过载。  
在升压或旁路 OTG 模式下BQ25628 BQ25629 直接通过适配器或电池为连接到 PMID 的附件供电。升压  
OTG 通过转换器中的升压操作在 PMID 上通过电池提供稳定的电压。旁路 OTG 提供从电池到 PMID 的直接路  
以实现出色效率。BQ25628 BQ25629 可配置为在移除适配器时自动转换到升压 OTG 模式并在连接适  
配器时返回正向充电以便在任一配置中为 PMID 供电而无需主机干预。在正向充电、升压 OTG 和旁路 OTG  
PMID_GD 信号指示 PMID 电压和电流处于可接受的范围内。如果检测到超出范围的电压或电流PMID_GD  
可用于驱动外PMOS FET从而通过将所连接的附件PMID 断开来保护这些附件。  
BQ25628 BQ25629 在没有主机控制的情况下启动并完成一个充电周期。它通过检测电池电压在四个不同阶  
段为电池充电涓流充电、预充电、恒定电流 (CC) 充电和恒定电压 (CV) 充电。在充电周期的末尾当充电电流  
低于预设阈值并且电池电压高于再充电阈值时充电器自动终止。所TS 引脚温度区域均支持端接。  
BQ25628 BQ25629 提供针对电池充电和系统运行的多种安全特性其中包括电池负温度系数热敏电阻监测、  
充电安全性计时器以及过压和过流保护。当结温超过可编程的阈值时热调节会减小充电电流。STAT 输出报告充  
电状态和任何故障状况。其他安全特性包括针对充电模式和 OTG 升压模式的电池温度感应、热关断以及输入  
UVLO 和过压保护。当发生故障或状态改变时INT 输出会通知主机。  
BQ25628 BQ25629 18 2.5mm × 3.0mm WQFN 封装。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: BQ25628 BQ25629  
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
6 Device Comparison  
6-1. Device Comparison  
FUNCTION  
BQ25618  
BQ25628  
3.9V - 18V  
I2C  
BQ25629  
Input Voltage Range  
Part Configuration  
4V - 13.5V  
I2C  
3.9V - 18V  
I2C  
3.5 - 4.3V (100mV per step); 4.3 -  
4.52V (10mV per step)  
Programmable Charge Voltage  
3.5 - 4.8V (10mV per step)  
3.5 - 4.8V (10mV per step)  
D+/D- USB Detection  
ILIM Pin  
Yes  
No  
Yes  
No  
JEITA  
Yes  
No  
TS Profile  
JEITA  
1.5μA  
JEITA  
1.5μA  
Quiescent Battery Current  
OTG  
9.5μA  
Yes  
Yes  
Yes  
OTG Voltage Range  
Package  
4.6V/4.75V/5V/5.15V  
2x2.4mm2 WCSP (30)  
3.84V - 5.2V (80mV per step)  
2.5x3mm2 QFN (18)  
3.84V - 5.2V (80mV per step)  
2.5x3mm2 QFN (18)  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
7 Pin Configuration and Functions  
14  
CE  
1
BTST  
REGN  
PMID_GD  
ILIM  
2
3
4
13  
12  
11  
SCL  
SDA  
INT  
BQ25628  
RYK  
2.5mm x 3mm  
TS_BIAS  
5
10  
STAT  
7-1. BQ25628 Pinout, 18-Pin WQFN Top View  
14  
CE  
1
BTST  
REGN  
PMID_GD  
D-  
2
3
4
13  
12  
11  
SCL  
SDA  
INT  
BQ25629  
RYK  
2.5mm x 3mm  
D+  
5
10  
STAT  
7-2. BQ25629 Pinout, 18-Pin WQFN Top View  
7-1. Pin Functions  
NAME  
NO.  
TYPE(1)  
DESCRIPTION  
BQ25628  
BQ25629  
High Side Switching MOSFET Gate Driver Power Supply Connect a 10V or higher  
rating, 47nF ceramic capacitor between SW and BTST as the bootstrap capacitor for driving  
high side switching MOSFET (Q2).  
BTST  
1
2
P
The Charger Internal Linear Regulator Output Internally, REGN is connected to the  
anode of the boost-strap diode. Connect a 10V or higher rating, 4.7μF ceramic capacitor  
from REGN to power ground, The capacitor should be placed close to the IC. The REGN  
LDO output is used for the internal MOSFETs gate driving voltage and for biasing the  
external TS pin thermistor in BQ25629.  
REGN  
P
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: BQ25628 BQ25629  
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
7-1. Pin Functions (continued)  
NAME  
NO.  
TYPE(1)  
DESCRIPTION  
BQ25628  
BQ25629  
Open Drain Active High PMID Good Indicator Connect to the pull up rail REGN through  
10 kΩresistor. HIGH indicates PMID output voltage is good. This signal can be used to drive  
external PMOS FET to disconnect the PMID under charging load when boost mode output  
voltage is too high or output current is too high.  
PMID_GD  
3
DO  
Input Current Limit Setting Input Pin ILIM pin sets the input current limit as IINREG  
=
KILIM / RILIM, where RILIM is connected from ILIM pin to GND. The input current is limited to  
the lower of the two values set by ILIM pin and IINDPM register bits. The ILIM pin can also  
be used to monitor input current. The input current is proportional to the voltage on ILIM pin  
and can be calculated by IIN = (KILIM x VILIM) / (RILIM x 0.8). The ILIM pin function is disabled  
when EN_EXTILIM bit is set to 0.  
ILIM  
D-  
4
5
AIO  
Negative Line of the USB Data Line Pair D+/D- based USB host/charging port  
detection. The detection includes data contact detection (DCD), primary and secondary  
detection in BC1.2.  
Bias for the TS Resistor Voltage Divider Provides the bias voltage for the TS resistor  
voltage divider.  
P
TS_BIAS  
D+  
Positive Line of the USB Data Line Pair D+/D- based USB host/charging port detection.  
The detection includes data contact detection (DCD), primary and secondary detection in  
BC1.2.  
AIO  
Temperature Qualification Voltage Input Connect a negative temperature coefficient  
thermistor. Program temperature window with a resistor divider from TS pin bias reference  
(REGN in BQ25629, TS_BIAS in BQ25628) to TS, then to GND. Charge suspends when TS  
pin voltage is out of range. Recommend a 103AT-2 10kΩthermistor.  
TS  
6
7
AI  
DI  
BATFET Enable or System Power Reset Control Input If the charger is in ship mode, a  
logic low on this pin with tSM_EXIT duration forces the device to exit ship mode. If the charger  
is not in ship mode, a logic low on this pin with tRST initiates a full system power reset if either  
VVBUS < VVBUS_UVLO or BATFET_CTRL_WVBUS = 1. QON has no effect during shutdown  
mode. The pin contains an internal pull-up to maintain default high logic.  
QON  
The Battery Charging Power Connection Connect to the positive terminal of the battery  
pack. The internal BATFET is connected between SYS and BAT.  
BAT  
SYS  
8
9
P
P
The Charger Output Voltage to System The Buck converter output connection point to  
the system. The internal BATFET is connected between SYS and BAT.  
Open Drain Charge Status Output It indicates various charger operations. Connect to  
the pull up rail via 10kΩresistor. LOW indicates charging in progress. HIGH indicates  
charging completed or charging disabled. When any fault condition occurs, STAT pin blinks  
at 1Hz. Setting DIS_STAT = 1 disables the STAT pin function, causing the pin to be pulled  
HIGH. Leave floating if unused.  
STAT  
10  
DO  
Open Drain Interrupt Output. Connect to the pull up rail via 10kΩresistor. The INT pin  
sends an active low, 256μs pulse to the host to report the charger device status and faults.  
INT  
11  
DO  
I2C Interface Data Connect SDA to the logic rail through a 10 kΩresistor.  
I2C Interface Clock Connect SCL to the logic rail through a 10 kΩresistor.  
SDA  
SCL  
12  
13  
DIO  
DI  
Active Low Charge Enable Pin Battery charging is enabled when EN_CHG bit is 1 and  
CE pin is LOW. CE pin must be pulled HIGH or LOW, do not leave floating.  
CE  
14  
15  
DI  
P
GND  
Ground Return  
Switching Node Connecting to Output Inductor Internally SW is connected to the  
source of the n-channel HSFET and the drain of the n-channel LSFET. Connect the 47 nF  
bootstrap capacitor from SW to BTST.  
SW  
16  
P
HSFET Drain Connection Internally PMID is connected to the drain of the reverse  
blocking MOSFET (RBFET) and the drain of HSFET.  
PMID  
VBUS  
17  
18  
P
P
Charger Input Voltage The internal n-channel reverse block MOSFET (RBFET) is  
connected between VBUS and PMID with VBUS on source.  
(1) AI = Analog input, AO = Analog Output, AIO = Analog input Output, DI = Digital input, DO = Digital Output, DIO = Digital input Output,  
P = Power  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
2  
MAX  
26  
26  
6
UNIT  
V
VBUS (converter not switching)  
PMID (converter not switching)  
BAT, SYS (converter not switching)  
V
0.3  
V
0.3  
Voltage range (with  
respect to GND)  
SW  
21  
27  
6
V
2 (50ns)  
0.3  
BTST (when converter switching)  
V
CE, STAT, SCL, SDA, INT, REGN, QON  
D+, D-, ILIM, TS, TS_BIAS , PMID_GD  
V
0.3  
6
V
0.3  
Output Sink Current  
Differential Voltage  
INT, STAT, PMID_GD  
BTST-SW  
6
mA  
V
6
0.3  
0.3  
0.3  
40  
55  
PMID-VBUS  
6
V
SYS-BAT  
6
V
TJ  
Junction temperature  
Storage temperature  
150  
150  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
8.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101, all  
pins(2)  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
18  
UNIT  
V
VVBUS  
VBAT  
IVBUS  
ISW  
Input voltage  
3.9  
Battery voltage  
4.8  
3.2  
3.5  
3.5  
6
V
Input current  
A
Output current (SW)  
A
Fast charging current  
A
IBAT  
RMS discharge current (continuously)  
Peak discharge current (up to 50ms)  
Maximum REGN Current  
Ambient temperature  
A
10  
A
IREGN  
TA  
20  
mA  
°C  
°C  
µH  
µF  
µF  
85  
40  
40  
0.68  
1
TJ  
Junction temperature  
125  
2.2  
LSW  
Inductor for the switching regulator  
VBUS capacitor (without de-rating)  
PMID capacitor (without de-rating)  
CVBUS  
CPMID  
10  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: BQ25628 BQ25629  
 
 
 
 
 
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
8.3 Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
20  
NOM  
MAX  
500  
UNIT  
µF  
CSYS  
CBAT  
SYS capacitor (without de-rating)  
BAT capacitor (without de-rating)  
10  
µF  
8.4 Thermal Information  
BQ25620, BQ25622  
THERMAL METRIC(1)  
RYK (QFN)  
18 pins  
60.1  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
42.1  
13.0  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1.3  
12.8  
ΨJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
8.5 Electrical Characteristics  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
QUIESCENT CURRENTS  
Quiescent battery current (BAT,  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VBAT = 4V, No VBUS, BATFET is  
SYS, SW) when the charger is in enabled, I2C enabled, ADC disabled,  
the battery only mode, BATFET is system is powered by battery. -40 °C < TJ  
IQ_BAT  
1.5  
3
µA  
µA  
enabled, ADC is disabled  
< 60 °C  
Quiescent battery current (BAT,  
VBAT = 4V, No VBUS, BATFET is  
SYS, SW) when the charger is in enabled, I2C enabled, ADC enabled,  
the battery only mode, BATFET is system is powered by battery. -40 °C < TJ  
IQ_BAT_ADC  
260  
0.1  
enabled, ADC is enabled  
< 60 °C  
Quiescent battery current (BAT)  
when the charger is in shutdown  
mode, BATFET is disabled, ADC  
is disabled  
VBAT = 4V, No VBUS, BATFET is  
disabled, I2C disabled, in shutdown  
mode, ADC disabled, TJ < 60 °C  
IQ_BAT_SD  
0.2 µA  
Quiescent battery current (BAT)  
when the charger is in ship mode,  
BATFET is disabled, ADC is  
disabled  
VBAT = 4V, No VBUS, BATFET is  
disabled, I2C disabled, in ship mode,  
ADC disabled, TJ < 60 °C  
IQ_BAT_SHIP  
0.15  
450  
0.5 µA  
VBUS = 5V, VBAT = 4V, charge disabled,  
converter switching, ISYS = 0A, PFM  
enabled  
IQ_VBUS  
Quiescent input current (VBUS)  
µA  
VBUS = 5V, VBAT = 4V, HIZ mode, ADC  
disabled  
5
20 µA  
35 µA  
Quiescent input current (VBUS) in  
HIZ  
IQ_VBUS_HIZ  
VBUS = 15V, VBAT = 4V, HIZ mode, ADC  
disabled  
20  
VBAT = 4.2V, VPMID = 5V, Boost mode  
enabled, converter switching, PFM  
enabled, IVPMID = 0A  
Quiescent battery current (BAT,  
SYS, SW) in boost mode  
IQ_BOOST  
220  
500  
µA  
Quiescent battery current (BAT,  
SYS) in bypass OTG mode  
VBAT = 4V, bypass OTG mode enabled,  
IPMID = 0A  
IQ_BYP_OTG  
850 µA  
VBUS / VBAT SUPPLY  
VVBUS_OP VBUS operating range  
3.9  
18  
V
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
 
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
8.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VBUS falling  
VBUS rising  
MIN  
TYP  
MAX UNIT  
VBUS falling to turn off I2C, no  
battery  
VVBUS_UVLO  
VVBUS_UVLOZ  
3.0  
3.15  
3.3  
3.5  
V
V
VBUS rising for active I2C, no  
battery  
3.2  
3.35  
VVBUS_OVP  
VVBUS_OVPZ  
VVBUS_OVP  
VBUS overvoltage rising threshold VBUS rising, VBUS_OVP = 0  
VBUS overvoltage falling hreshold VBUS rising, VBUS_OVP = 0  
VBUS overvoltage rising threshold VBUS rising, VBUS_OVP = 1  
6.1  
5.8  
6.4  
6.0  
6.7  
6.2  
V
V
V
18.2  
18.5  
18.8  
VBUS overvoltage falling  
VBUS falling, VBUS_OVP = 1  
threshold  
VVBUS_OVPZ  
VPMID_OVP  
17.4  
5.5  
17.7  
5.75  
18.0  
6.0  
V
V
Forward mode PMID OVP to drive  
VPMID rising  
PMID_GD low  
Forward mode PMID voltage  
VPMID_OVPZ  
threshold to exit OVP and drive  
PMID_GD high  
VPMID falling  
5.25  
5.5  
5.75  
V
VSLEEP  
Enter Sleep mode threshold  
Exit Sleep mode threshold  
(VBUS - VBAT), VBUS falling  
(VBUS - VBAT), VBUS rising  
9
45  
85 mV  
VSLEEPZ  
115  
220  
340 mV  
BAT voltage for active I2C, turn on  
BATFET, no VBUS  
VBAT_UVLOZ  
VBAT rising  
2.3  
2.4  
2.5  
V
VBAT falling, VBAT_UVLO = 0  
VBAT falling, VBAT_UVLO = 1  
VBAT rising, VBAT_OTG_MIN = 0  
VBAT rising, VBAT_OTG_MIN = 1  
VBAT falling, VBAT_OTG_MIN = 0  
VBAT falling, VBAT_OTG_MIN = 1  
VBUS falling  
2.1  
1.7  
2.9  
2.5  
2.7  
2.3  
3.6  
2.2  
1.8  
3.0  
2.6  
2.8  
2.4  
3.7  
2.3  
1.9  
3.1  
2.7  
2.9  
2.5  
V
V
V
V
V
V
V
BAT voltage to turnoff I2C, turn off  
BATFET, no VBUS  
VBAT_UVLO  
BAT voltage rising threshold to  
enable OTG mode  
VBAT_OTG  
BAT voltage falling threshold to  
disable OTG mode  
VBAT_OTGZ  
VPOORSRC  
IPOORSRC  
Bad adapter detection threshold  
Bad adapter detection current  
source  
10  
mA  
POWER-PATH MANAGEMENT  
ISYS = 0A, VBAT > VSYSMIN, Charge  
Disabled. Offset above VBAT  
50  
mV  
mV  
VSYS_REG_ACC  
Typical system voltage regulation  
ISYS = 0A, VBAT < VSYSMIN, Charge  
Disabled. Offset above VSYSMIN  
230  
VSYSMIN_RNG  
VSYSMIN register range  
2.56  
3.52  
3.84  
V
VSYSMIN_REG_STEP  
VSYSMIN register step size  
80  
mV  
Minimum DC system voltage  
output  
ISYS = 0A, VBAT < VSYSMIN = B00h  
(3.52V), Charge Disabled  
VSYSMIN_REG_ACC  
VSYS_SHORT  
3.75  
V
V
V
VSYS short voltage falling  
threshold to enter forced PFM  
0.9  
1.1  
VSYS short voltage rising  
threshold to exit forced PFM  
VSYS_SHORTZ  
BATTERY CHARGER  
VREG_RANGE  
Typical charge voltage regulation  
range  
3.50  
4.80  
V
VREG_STEP  
Typical charge voltage step  
Charge voltage accuracy  
10  
mV  
%
TJ = 25°C  
0.3  
0.4  
0.3  
0.4  
VREG_ACC  
%
TJ = 10°C - 85°C  
Typical charge current regulation  
range  
ICHG_RANGE  
0.04  
2.00  
A
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: BQ25628 BQ25629  
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
8.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Typical charge current regulation  
step  
ICHG_STEP  
40  
mA  
VBAT = 3.1V or 3.8V, ICHG = 1040mA, TJ  
= 10°C - 85°C  
5.5  
5.5  
10  
%
%
%
5.5  
5.5  
10  
VBAT = 3.1V or 3.8V, ICHG = 320mA, TJ  
= 10°C - 85°C  
ICHG_ACC  
Charge current accuracy  
VBAT = 3.1V or 3.8V, ICHG = 240mA, TJ  
= 10°C - 85°C  
VBAT = 3.1V or 3.8V, ICHG = 80mA, TJ =  
10°C - 85°C  
60  
10  
80  
10  
100 mA  
IPRECHG_RANGE  
IPRECHG_STEP  
Typical pre-charge current range  
Typical pre-charge current step  
310 mA  
mA  
VBAT = 2.5V, IPRECHG = 250mA, TJ =  
10°C - 85°C  
12  
15  
25  
%
%
%
12  
15  
VBAT = 2.5V, IPRECHG = 100mA, TJ =  
10°C - 85°C  
Pre-charge current accuracy when  
VBAT below VSYSMIN setting  
IPRECHG_ACC  
VBAT = 2.5V, IPRECHG = 50mA, TJ = –  
10°C - 85°C  
25  
ITERM_RANGE  
ITERM_STEP  
Typical termination current range  
Typical termination current step  
5
310 mA  
mA  
5
80  
17  
10  
%
%
%
ITERM = 10mA, TJ = 10°C - 85°C  
ITERM = 50mA, TJ = 10°C - 85°C  
ITERM = 100mA, TJ = 10°C - 85°C  
80  
17  
10  
ITERM_ACC  
Termination current accuracy  
Battery short voltage rising  
threshold to start pre-charge  
VBAT_SHORTZ  
VBAT_SHORT  
VBAT_SHORT  
VBAT rising  
2.25  
2.05  
1.85  
V
V
V
Battery short voltage falling  
threshold to stop pre-charge  
VBAT falling, VBAT_UVLO=0  
VBAT falling, VBAT_UVLO=1  
Battery short voltage falling  
threshold to stop pre-charge  
VBAT < VBAT_SHORTZ, ITRICKLE = 0  
VBAT < VBAT_SHORTZ, ITRICKLE = 1  
Transition from pre-charge to fast charge  
Transition from fast charge to pre-charge  
VBAT falling, VRECHG = 0  
5
28  
10  
40  
17 mA  
52 mA  
Battery short trickle charging  
current  
IBAT_SHORT  
VBAT_LOWVZ  
VBAT_LOWV  
Battery voltage rising threshold  
Battery voltage falling threshold  
2.9  
2.7  
3.0  
2.8  
100  
200  
30  
3.1  
2.9  
V
V
mV  
mV  
mA  
mA  
mA  
Battery recharge threshold below  
VREG  
VRECHG  
VBAT falling, VRECHG = 1  
IPMID_LOAD  
IBAT_LOAD  
ISYS_LOAD  
BATFET  
PMID discharge load current  
Battery discharge load current  
System discharge load current  
20  
20  
20  
30  
30  
MOSFET on resistance from SYS  
to BAT  
RBATFET  
15  
25  
mΩ  
BATTERY PROTECTIONS  
Battery overvoltage rising  
threshold  
VBAT_OVP  
As percentage of VREG  
As percentage of VREG  
103  
101  
6
104  
102  
105  
103  
%
%
A
Battery overvoltage falling  
threshold  
VBAT_OVPZ  
IBATFET_OCP  
BATFET over-current rising  
threshold  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
8.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
1.5  
3
TYP  
MAX UNIT  
IBAT_PK = 00  
A
A
A
A
IBAT_PK = 01  
IBAT_PK = 10  
IBAT_PK = 11  
Battery discharging peak current  
rising threshold  
IBAT_PK  
6
12  
INPUT VOLTAGE / CURRENT REGULATION  
Typical input voltage regulation  
range  
VINDPM_RANGE  
VINDPM_STEP  
3.8  
16.8  
V
Typical input voltage regulation  
step  
40  
mV  
VINDPM=4.6V  
4
3
2
%
%
%
4  
3  
2  
VINDPM_ACC  
Input voltage regulation accuracy VINDPM=8V  
VINDPM=16V  
VBAT = 3.9V, VINDPM_BAT_TRACK=1,  
VINDPM = 4V  
VINDPM_BAT_TRACK  
IINDPM_RANGE  
IINDPM_STEP  
Battery tracking VINDPM accuracy  
4.15  
0.1  
4.3  
20  
4.45  
3.2  
V
A
Typical input current regulation  
range  
Typical input current regulation  
step  
mA  
IINDPM = 500mA, VBUS=5V  
450  
810  
475  
855  
500 mA  
900 mA  
1500 mA  
IINDPM_ACC  
Input current regulation accuracy IINDPM = 900mA, VBUS=5V  
IINDPM = 1500mA, VBUS=5V  
1350  
1425  
Forwrad mode VBUS overcurrent  
IVBUS_OCP  
to drive PMID_GD low as a  
percentage of IINDPM  
As a percentage of IINDPM  
INREG = 1.6 A  
108  
%
ILIM Pin Scale Factor, IINREG =  
KILIM / RILIM  
KILIM  
2250  
2500  
2750  
AΩ  
D+ / D- DETECTION  
VD+D-_0p6V_SRC  
ID+D-_LKG  
D+/D- voltage source (600 mV)  
Leakage current into D+/D-  
1 mA load on D+/D-  
HiZ mode  
400  
600  
800 mV  
1
µA  
V
1  
D+/D- comparator threshold for  
non-standard adapter  
VD+D-_2p8  
VD+D-_2p0  
2.55  
1.85  
2.85  
D+/D- comparator threshold for  
non-standard adapter  
2.15  
V
THERMAL REGULATION AND THERMAL SHUTDOWN  
TREG = 1  
TREG = 0  
120  
60  
°C  
°C  
Junction temperature regulation  
accuracy  
TREG  
Thermal Shutdown Rising  
Threshold  
TSHUT  
Temperature Increasing  
140  
30  
°C  
°C  
Thermal Shutdown Falling  
TSHUT_HYS  
Hysteresis  
Temperature Decreasing by TSHUT_HYS  
THERMISTOR COMPARATORS (CHARGE MODE)  
As Percentage to TS pin bias reference  
(-5°C w/ 103AT), TS_TH1_TH2_TH3  
= 100, 101, 110  
75.0  
72.8  
75.5  
73.3  
76.0  
73.8  
%
%
TS pin rising voltage threshold  
for TH1 comparator to transition  
from TS_COOL to TS_COLD.  
Charge suspended above this  
voltage.  
VTS_COLD  
As Percentage to TS pin bias reference  
(0°C w/ 103AT), Fixed JEITA threshold or  
TS_TH1_TH2_TH3 = 000, 001, 010, 011,  
111  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: BQ25628 BQ25629  
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
8.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
As Percentage to TS pin bias reference  
(-2.5°C w/ 103AT), TS_TH1_TH2_TH3  
= 100, 101, 110  
73.9  
74.4  
74.9  
72.7  
71.6  
68.9  
%
%
%
%
TS pin falling voltage threshold  
for TH1 comparator to transition  
from TS_COLD to TS_COOL.  
TS_COOL charge settings resume  
below this voltage.  
VTS_COLDZ  
As Percentage to TS pin bias reference  
(2.5°C w/ 103AT), Fixed JEITA threshold  
or TS_TH1_TH2_TH3 = 000, 001, 010,  
011, 111  
71.7  
70.6  
67.9  
72.2  
71.1  
68.4  
As Percentage to TS pin bias reference  
(5°C w/ 103AT), TS_ISET_COOL = 00 or  
TS_TH1_TH2_TH3 = 000, 100  
As Percentage to TS pin bias reference  
(10°C w/ 103AT), TS_ISET_COOL = 01  
or TS_TH1_TH2_TH3 = 001, 101, 110,  
111  
TS pin rising voltage threshold  
for TH2 comparator to transition  
from TS_PRECOOL to  
VTS_COOL  
TS_COOL. TS_COOL charging  
settings used above this voltage.  
As Percentage to TS pin bias reference  
(15°C w/ 103AT), TS_ISET_COOL = 10  
or TS_TH1_TH2_TH3 = 010  
65.0  
61.9  
69.3  
65.5  
62.4  
69.8  
66.0  
62.9  
70.3  
%
%
%
As Percentage to TS pin bias reference  
(20°C w/ 103AT), TS_ISET_COOL = 11  
or TS_TH1_TH2_TH3 = 011  
As Percentage to TS pin bias reference  
(7.5°C w/ 103AT), TS_ISET_COOL = 00  
or TS_TH1_TH2_TH3 = 000, 100  
As Percentage to TS pin bias reference  
(12.5°C w/ 103AT), TS_ISET_COOL = 01  
or TS_TH1_TH2_TH3 = 001, 101, 110,  
111  
TS pin falling voltage threshold  
for TH2 comparator to transition  
from TS_COOL to  
TS_PRECOOL. TS_PRECOOL  
charging settings resume below  
this voltage.  
66.6  
67.1  
67.6  
%
VTS_COOLZ  
As Percentage to TS pin bias reference  
(17.5°C w/ 103AT), TS_ISET_COOL = 10  
or TS_TH1_TH2_TH3 = 010  
63.7  
60.6  
65.0  
61.9  
63.7  
60.6  
51.5  
47.9  
64.2  
61.1  
65.5  
62.4  
64.2  
61.1  
52.0  
48.4  
64.7  
61.6  
66.0  
62.9  
64.7  
61.6  
52.5  
48.9  
%
%
%
%
%
%
%
%
As Percentage to TS pin bias reference  
(22.5°C w/ 103AT), TS_ISET_COOL = 11  
or TS_TH1_TH2_TH3 = 011  
As Percentage to TS pin bias reference  
(15°C w/ 103AT), TS_TH1_TH2_TH3 =  
000, 001, 100, 101  
TS pin rising voltage threshold  
for TH3 comparator to transition  
from TS_NORMAL to  
TS_PRECOOL. TS_PRECOOL  
charge settings used above this  
voltage.  
VTS_PRECOOL  
VTS_PRECOOLZ  
VTS_PREWARM  
As Percentage to TS pin bias reference  
(20°C w/ 103AT), TS_TH1_TH2_TH3 =  
010, 011, 110, 111  
As Percentage to TS pin bias reference  
(17.5°C w/ 103AT), TS_TH1_TH2_TH3 =  
000, 001, 100, 101  
TS pin falling voltage threshold  
for TH3 comparator to transition  
from TS_PRECOOL to  
TS_NORMAL. Normal charging  
resumes below this voltage.  
As Percentage to TS pin bias reference  
(22.5°C w/ 103AT), TS_TH1_TH2_TH3 =  
010, 011, 110, 111  
As Percentage to TS pin bias reference  
(35°C w/ 103AT), TS_TH4_TH5_TH6 =  
000, 001, 010, 100, 101  
TS pin falling voltage threshold  
for TH4 comparator to transition  
from TS_NORMAL to  
TS_PREWARM. TS_PREWARM  
charging settings used below this  
voltage.  
As Percentage to TS pin bias reference  
(40°C w/ 103AT), TS_TH4_TH5_TH6 =  
011, 110, 111  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
8.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
As Percentage to TS pin bias reference  
(32.5°C w/ 103AT), TS_TH4_TH5_TH6 =  
000, 001, 010, 100, 101  
TS pin rising voltage threshold  
for TH4 comparator to transition  
from TS_PREWARM to  
TS_NORMAL. Normal charging  
resumes above this voltage.  
53.3  
53.8  
54.3  
50.2  
48.9  
45.3  
41.7  
38.2  
50.2  
46.6  
43.0  
39.5  
41.7  
%
%
%
%
%
%
%
%
%
%
%
VTS_PREWARMZ  
As Percentage to TS pin bias reference  
(37.5°C w/ 103AT), TS_TH4_TH5_TH6 =  
011, 110, 111  
49.2  
47.9  
44.3  
40.7  
37.2  
49.2  
45.6  
42.0  
38.5  
40.7  
49.7  
48.4  
44.8  
41.2  
37.7  
49.7  
46.1  
42.5  
39  
As Percentage to TS pin bias reference  
(40°C w/ 103AT), TS_ISET_WARM = 00  
or TS_TH4_TH5_TH6 = 000, 100  
As Percentage to TS pin bias reference  
(45°C w/ 103AT), TS_ISET_WARM = 01  
or TS_TH4_TH5_TH6 = 001, 101, 110  
TS pin falling voltage threshold  
for TH5 comparator to transition  
from TS_PREWARM to  
TS_WARM. TS_WARM charging  
settings used below this voltage.  
VTS_WARM  
As Percentage to TS pin bias reference  
(50°C w/ 103AT), TS_ISET_WARM = 10  
or TS_TH4_TH5_TH6 = 010, 111  
As Percentage to TS pin bias reference  
(55°C w/ 103AT), TS_ISET_WARM = 11  
or TS_TH4_TH5_TH6 = 011  
As Percentage to TS pin bias reference  
(37.5°C w/ 103AT), TS_ISET_WARM =  
00 or TS_TH4_TH5_TH6 = 000, 100  
As Percentage to TS pin bias reference  
(42.5°C w/ 103AT), TS_ISET_WARM =  
01 or TS_TH4_TH5_TH6 = 001, 101, 110  
TS pin rising voltage threshold  
for TH5 comparator to transition  
from TS_WARM to  
TS_PREWARM. TS_PREWARM  
charging settings resume above  
this voltage.  
VTS_WARMZ  
As Percentage to TS pin bias reference  
(47.5°C w/ 103AT), TS_ISET_WARM =  
10 or TS_TH4_TH5_TH6 = 010, 111  
As Percentage to TS pin bias reference  
(52.5°C w/ 103AT), TS_ISET_WARM =  
11 or TS_TH4_TH5_TH6 = 011  
As Percentage to TS pin bias reference  
(50°C w/ 103AT), TS_TH4_TH5_TH6 =  
100 or 101  
41.2  
TS pin falling voltage threshold  
for TH6 comparator to transition  
from TS_WARM to TS_HOT.  
Charging is suspended below this  
voltage.  
VTS_HOT  
As Percentage to TS pin bias reference  
(60°C w/ 103AT), Fixed JEITA threshold  
or TS_TH4_TH5_TH6 = 000, 001, 010,  
011, 110 or 111  
33.9  
42.0  
35.2  
34.4  
42.5  
35.7  
34.9  
43.0  
36.2  
%
%
%
As Percentage to TS pin bias reference  
(47.5°C w/ 103AT), TS_TH4_TH5_TH6 =  
100 or 101  
TS pin rising voltage threshold  
for TH6 comparator to transition  
from TS_HOT to  
TS_WARM. TS_WARM charging  
settings resume above this  
voltage.  
VTS_HOTZ  
As Percentage to TS pin bias reference  
(57.5°C w/ 103AT), Fixed JEITA threshold  
or TS_TH4_TH5_TH6 = 000, 001, 010,  
011, 110 or 111  
THERMISTOR COMPARATORS (OTG MODE)  
As Percentage to TS pin bias reference  
(20°C w/ 103AT), TS_TH_OTG_COLD  
= 0  
TS pin rising voltage threshold to  
transition from  
TS_OTG_NORMAL to  
TS_OTG_COLD. OTG suspended  
above this voltage.  
79.5  
76.6  
80.0  
77.1  
80.5  
77.6  
%
%
VTS_ OTG_ COLD  
As Percentage to TS pin bias reference  
(10°C w/ 103AT), TS_TH_OTG_COLD  
= 1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: BQ25628 BQ25629  
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
8.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
As Percentage to TS pin bias reference  
(15°C w/ 103AT), TS_TH_OTG_COLD  
= 0  
78.2  
78.7  
79.2  
76.5  
38.2  
%
%
%
TS pin falling voltage threshold to  
transition from TS_OTG_COLD to  
TS_OTG_NORMAL. OTG  
VTS_OTG_COLDZ  
As Percentage to TS pin bias reference  
(5°C w/ 103AT), TS_TH_OTG_COLD =  
1
resumes below this voltage.  
75.0  
37.2  
75.5  
37.7  
As Percentage to TS pin bias  
reference (55°C w/ 103AT),  
TS_OTG_HOT = 00  
TS pin falling voltage threshold to  
transition from  
VTS_OTG_HOT  
TS_OTG_NORMAL to  
TS_OTG_HOT. OTG suspended  
below this voltage.  
As Percentage to TS pin bias reference  
(60°C w/ 103AT), TS_OTG_HOT = 01  
33.9  
30.8  
38.5  
34.4  
31.3  
39.0  
34.9  
31.8  
39.5  
%
%
%
As Percentage to TS pin bias reference  
(65°C w/ 103AT), TS_OTG_HOT = 10  
As Percentage to TS pin bias reference  
(52.5°C w/ 103AT), TS_OTG_HOT = 00  
TS pin rising voltage threshold to As Percentage to TS pin bias  
transition from TS_OTG_HOT to  
TS_OTG_NORMAL. OTG  
resumes above this threshold.  
reference (57.5°C w/ 103AT),  
TS_OTG_HOT = 01  
35.2  
32.0  
35.7  
32.5  
36.2  
33.0  
%
%
VTS_OTG_HOTZ  
As Percentage to TS pin bias  
reference (62.5°C w/ 103AT),  
TS_OTG_HOT = 10  
SWITCHING CONVERTER  
FSW  
PWM switching frequency  
Oscillator frequency  
1.35  
1.5  
1.65 MHz  
MOSFET TURN-ON RESISTANCE  
RQ1_ON  
VBUS to PMID on resistance  
26  
55  
34  
78  
Tj = 40°C-85°C  
Tj = 40°C-85°C  
mΩ  
mΩ  
Buck high-side switching MOSFET  
turn on resistance between PMID  
and SW  
RQ2_ON  
Buck low-side switching MOSFET  
turn on resistance between SW  
and PGND  
RQ3_ON  
60  
90  
Tj = 40°C-85°C  
mΩ  
OTG MODE CONVERTER  
Typical boost mode voltage  
VBOOST_RANGE  
3.8  
5.2  
V
mV  
%
V
regulation range  
Typical boost mode voltage  
regulation step  
VBOOST_STEP  
80  
Boost mode voltage regulation  
accuracy  
VBOOST_ACC  
IVBUS = 0A, VOTG = 5V  
3
3  
OTG mode undervoltage falling  
threshold at PMID  
VOTG_UVP  
3.4  
5.75  
107  
107  
OTG mode overvoltage rising  
threshold at VBUS  
VOTG_VBUS_OVP  
VBYPASS_PMID_OVP  
VBOOST_PMID_OVP  
5.5  
105  
105  
6.0  
109  
109  
V
Bypass OTG Mode overvoltage  
rising threshold at PMID  
As a percentage of VSYS  
%
%
Boost OTG mode overvoltage  
rising threshold at PMID  
As percentage of VOTG regulation  
Bypass OTG Mode reverse  
current (from PMID to BAT)  
threshold  
IBYPASS_RCP  
415  
500  
550 mA  
REGN LDO  
VVBUS = 5V, IREGN = 20mA  
VVBUS = 9V, IREGN = 20mA  
4.4  
4.8  
4.6  
5.0  
V
VREGN  
REGN LDO output voltage  
5.2  
V
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
8.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Converter switching  
3.2  
V
V
VREGNZ_OK  
IREGN_LIM  
ITS_BIAS_FAULT  
REGN not good falling threshold  
Converter not switching  
2.3  
REGN LDO current limit  
VVBUS = 5V, VREGN = 4.3V  
20  
mA  
Rising threshold to transition from  
TSBIAS good condition to fault  
condition  
REGN=5V; ISINK applied on TS_BIAS  
pin  
2.5  
4.5  
8
7
mA  
mA  
Falling threshold to transition from  
TSBIAS fault condition to good  
condition  
REGN=5V; ISINK applied on TS_BIAS  
pin  
ITS_BIAS_FAULTZ  
2
3.85  
ADC MEASUREMENT ACCURACY AND PERFORMANCE  
ADC_SAMPLE = 00  
24  
12  
6
ms  
ms  
ms  
ms  
bits  
bits  
bits  
bits  
ADC_SAMPLE = 01  
ADC_SAMPLE = 10  
ADC_SAMPLE = 11  
ADC_SAMPLE = 00  
ADC_SAMPLE = 01  
ADC_SAMPLE = 10  
ADC_SAMPLE = 11  
Conversion-time, Each  
Measurement  
tADC_CONV  
3
11  
10  
9
12  
11  
10  
9
ADCRES  
Effective Resolution  
8
ADC MEASUREMENT RANGE AND LSB  
ADC Bus Current Reading (both  
Range  
LSB  
4
19.85  
19.85  
5.572  
5.572  
4.0  
A
mA  
V
4  
0
IBUS_ADC  
VBUS_ADC  
VPMID_ADC  
VBAT_ADC  
VSYS_ADC  
IBAT_ADC  
forward and OTG)  
2
3.97  
3.97  
1.99  
1.99  
2
Range  
LSB  
ADC VBUS Voltage Reading  
mV  
V
Range  
LSB  
0
ADC PMID Voltage Reading  
ADC BAT Voltage Reading  
ADC SYS Voltage Reading  
ADC BAT Current Reading  
mV  
V
Range  
LSB  
0
mV  
V
Range  
LSB  
0
mV  
A
Range  
LSB  
-7.5  
mA  
Range as a percent of REGN (40 to  
85 for 103AT)  
ADC TS Voltage Reading  
ADC TS Voltage Reading  
20.9  
83.2  
%
%
TS_ADC  
LSB  
0.0961  
0.5  
Range  
LSB  
150 °C  
°C  
40  
TDIE_ADC  
ADC Die Temperature Reading  
I2C INTERFACE (SCL, SDA)  
Input high threshold level, SDA  
and SCL  
VIH  
VIL  
0.78  
V
Input low threshold level, SDA and  
SCL  
0.42  
V
VOL_SDA  
IBIAS  
Output low threshold level  
High-level leakage current  
Capacitive load for each bus line  
Sink current = 5mA, 1.2V VDD  
Pull up rail 1.8V  
0.3  
1
V
µA  
CBUS  
400 pF  
LOGIC OUTPUT PIN (INT, STAT, PMID_GD)  
VOL Output low threshold level  
Sink current = 5mA  
0.3  
V
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: BQ25628 BQ25629  
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
8.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
0.78  
1.3  
TYP  
MAX UNIT  
IOUT_BIAS  
High-level leakage current  
Pull up rail 1.8V  
1
µA  
LOGIC INPUT PIN (CE, QON)  
VIH_CE Input high threshold level, /CE  
VIL_CE  
V
V
Input low threshold level, /CE  
High-level leakage current, /CE  
Input high threshold level, /QON  
Input low threshold level, /QON  
Internal /QON pull up  
0.4  
1
IIN_BIAS_CE  
VIH_QON  
VIL_QON  
VQON  
Pull up rail 1.8V  
µA  
V
0.4  
V
/QON is pulled up internally  
5
V
RQON  
Internal /QON pull up resistance  
250  
kΩ  
8.6 Timing Requirements  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
VBUS / VBAT POWER UP  
VBUS_OVP propagation delay to  
tVBUS_OVP_PROP  
stop converter, VBUS rising (no  
deglitch)  
130  
200  
ns  
µs  
VBUS OVP deglitch time to set  
VBUS_OVP_STAT and  
VBUS_OVP_FLAG  
tVBUS_OVP  
tPOORSRC  
Bad adapter detection duration  
30  
2
ms  
s
Bad adapter detection retry wait  
time  
tPOORSRC_RETRY  
Restart the bad adapter detection  
after latchoff  
tPOORSRC_RESTART  
15  
30  
min  
ms  
The duration of the pull down  
current source applied on VBUS  
tVBUS_PD  
BATTERY CHARGER  
tTERM_DGL  
Deglitch time for charge  
termination  
50  
256  
3
ms  
ms  
µs  
Deglitch time for recharge  
threshold at VBAT falling  
tRECHG_DGL  
(SPEC ONLY) Propagation delay  
for PMID OVP in forward mode  
tPMID_OVP_PROP  
tPMID_OVP_FALL  
(SPEC ONLY) PMID OVP falling  
deglitch time in forward mode  
8
ms  
12  
24  
36  
15  
30  
45  
18 min  
36 min  
54 min  
tTOP_OFF  
Typical top-off timer accuracy  
Charge safety timer accuracy in  
trickle charge  
tSAFETY_TRKCHG  
0.85  
1
1.1 hr  
PRECHG_TMR = 0  
PRECHG_TMR = 1  
CHG_TMR = 0  
1.75  
0.43  
10.5  
21.0  
2
0.5  
2.2 hr  
0.55 hr  
12.5 hr  
24.5 hr  
Charge safety timer accuracy in  
pre-charge  
tSAFETY_PRECHG  
11.5  
22.5  
Charge safety timer accuracy in  
fast charge  
tSAFETY  
CHG_TMR = 1  
BATFET CONTROL  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
8.6 Timing Requirements (continued)  
PARAMETER  
TEST CONDITIONS  
BATFET_DLY = 1  
MIN  
NOM  
MAX UNIT  
Time after writing to  
10  
s
BATFET_CTRL before BATFET  
turned off for ship mode or  
tBATFET_DLY  
BATFET_DLY = 0  
20  
ms  
shutdown  
Deglitch time for QON to be pulled  
tSM_EXIT  
low in order to exit from Ship  
Mode  
0.55  
9.0  
0.65  
0.75  
11.5  
s
Time QON is held low to initiate  
system power reset  
tQON_RST  
10  
s
Duration that BATFET is disabled  
during system power reset  
tBATFET_RST  
350  
ms  
I2C INTERFACE  
fSCL  
SCL clock frequency  
1.0 MHz  
DIGITAL CLOCK AND WATCHDOG  
Watchdog Reset time (EN_HIZ =  
tLP_WDT  
100  
136  
160  
160  
s
s
1, WATCHDOG = 160s)  
Watchdog Reset time (EN_HIZ =  
0, WATCHDOG = 160s)  
tWDT  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: BQ25628 BQ25629  
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
8.7 Typical Characteristics  
CVBUS = 1µF, CPMID= 10µF, CSYS= 20µF, CBAT= 1µF, L= 1µH (unless otherwise specified)  
100  
95  
90  
85  
80  
75  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
VBUS = 5V  
VBUS = 5V  
VBUS = 9V  
VBUS = 12V  
VBUS = 15V  
VBUS = 9V  
VBUS = 12V  
VBUS = 15V  
5
10  
50  
100  
500  
1000  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
System Current (mA)  
Charge Current (A)  
VSYSMIN = 3.52V  
VBAT = 3.8  
DCR = 15mΩ  
DCR = 15mΩ  
8-2. System Light Load Efficiency vs. System Current  
8-1. Charge Efficiency vs. Charge Current  
100  
95  
90  
85  
80  
75  
10  
VBAT = 3.0V  
VBAT = 3.8V  
8
6
4
2
0
-2  
-4  
-6  
-8  
-10  
VBAT = 3.2V  
VBAT = 3.8V  
VBAT = 4.2V  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
5
10  
50  
100  
500 1000 2000  
ICHG Setting (A)  
Boost Current (mA)  
VBUS = 5V  
8-4. Charge Current Accuracy vs. ICHG Setting  
VOTG = 5.04V  
DCR = 15mΩ  
8-3. Boost Mode Efficiency vs. Boost Output Current  
4.4  
4.3  
4.35  
4.3  
4.2  
4.1  
4
4.25  
4.2  
3.9  
3.8  
3.7  
3.6  
3.5  
4.15  
4.1  
VREG = 4.1V  
VREG = 4.2V  
VREG = 4.35V  
4.05  
VBAT = 3.2V (SYSMIN)  
VBAT = 4.2V (Charge Done)  
4
-40  
-20  
0
20  
40  
60 80 100  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
System Current (A)  
1
Temperature (C)  
8-5. Charge Voltage Accuracy vs. VREG Setting  
VBUS = 12V  
8-6. System Load Regulation for SYSMIN and After Charge  
Done  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
8.7 Typical Characteristics (continued)  
CVBUS = 1µF, CPMID= 10µF, CSYS= 20µF, CBAT= 1µF, L= 1µH (unless otherwise specified)  
1
-1  
3
2
-40C  
25C  
85C  
-3  
1
-5  
-7  
0
-9  
-1  
-2  
-3  
-11  
-13  
-15  
-40C  
25C  
85C  
0.75  
1
1.25 1.5 1.75  
2
2.25 2.5 2.75  
3
3.25  
3.8  
4
4.2  
4.4  
4.6  
4.8  
5
5.2  
IINDPM Setting (A)  
Boost Voltage Setting (V)  
VBUS = 5V  
VBAT = 3.2V  
8-7. Input Current Regulation Accuracy vs. IINDPM Setting  
8-8. Boost Voltage Regulation Accuracy vs Boost Voltage  
Setting  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: BQ25628 BQ25629  
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
BQ25628 and BQ25629 are highly-integrated 2A switch-mode battery chargers for single-cell Li-ion and Li-  
polymer batteries. The device includes input reverse-blocking FET (RBFET, Q1), high-side switching FET  
(HSFET, Q2), low-side switching FET (LSFET, Q3), battery FET (BATFET, Q4), and bootstrap diode for the high-  
side gate driver.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9.2 Functional Block Diagram  
PMID  
VBUS  
RBFET (Q1)  
VVBUS_PRESENT  
+
VBUS_UVLO  
IBUS  
VVBUS  
VBAT + VSLEEP  
VVBUS  
Q1 Gate  
Control  
+
REGN  
EN_REGN  
EN_HIZ  
SLEEP  
REGN  
LDO  
VVBUS  
+
VBUS_OV  
VVBUS_OV  
BTST  
VO_REF  
VVBUS  
+
VBUS_OVP_BOOST  
VOTG_OVP  
VVBUS  
+
+
+
+
IQ2  
+
VOTG  
Q2_UCP_BOOST  
Q3_OCP_BOOST  
HSFET (Q2)  
VOTG_HSZCP  
VVBUS  
SW  
IQ3  
+
VINDPM  
REGN  
VOTG_BAT  
IBUS  
BATSNS  
CONVERTER  
Control  
IINDPM  
+
BATOVP  
UCP  
LSFET (Q3)  
VBAT_OVP  
IC_TJ  
TREG  
GND  
ILSFET_UCP  
IQ2  
IHSFET_OCP  
BATSNS  
+
+
+
+
Q2_OCP  
SYS  
VBAT_REG  
IQ3  
+
+
VSYSMIN  
ICHG  
VBTST - VSW  
VBTST_REFRESH  
EN_HIZ  
REFRESH  
ICHG_REG  
EN_CHG  
SYS  
EN_OTG  
GND  
ICHG  
VBAT_REG  
ICHG_REG  
BATFET  
(Q4)  
Q4 Gate  
Control  
VPOORSRC  
Converter  
Control State  
Machine  
+
BAT  
REF  
DAC  
VVBUS  
IC_TJ  
TSHUT  
POORSRC  
TSHUT  
BATSNS  
AMP  
+
BATSNS  
ILIM  
IBUS  
VBUS  
VPMID  
IBAT  
D+  
D-  
VQON  
Input  
Source  
Detection  
USB  
Adapter  
ADC  
VBAT  
VSYS  
VTS  
PMID_GD  
QON  
TDIE  
VREG -VRECHG  
BATSNS  
+
RECHRG  
BQ25628 / 629  
Block Diagram  
ICHG  
STAT  
INT  
+
TERMINATION  
ITERM  
CHARGE  
CONTROL  
STATE  
REGN  
VBAT_LOWV  
+
BATLOWV  
TS_BIAS  
TS  
BATSNS  
VBAT_SHORT  
BATSNS  
MACHINE  
+
BATSHORT  
SUSPEND  
I2C  
Interface  
VTS  
Battery  
Temperature  
Sensing  
SCL SDA  
CE  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: BQ25628 BQ25629  
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Power-On-Reset (POR)  
BQ25628 and BQ25629 power internal bias circuits from the higher voltage of VBUS and BAT. When either  
voltage rises above its undervoltage lockout (UVLO) threshold, all registers are reset to their POR values and  
the I2C interface is enabled for communication. A non-maskable INT pulse is generated, after which the host can  
access all of the registers.  
9.3.2 Device Power Up from Battery  
If only the battery is present and the VBAT is above depletion threshold (VBAT_UVLOZ), BQ25628 and BQ25629  
perform a power-on reset then turns on the BATFET to connect the battery to system. The REGN LDO output  
remains off to minimize the quiescent current. The low RDSON of BATFET and the low quiescent current on BAT  
minimize the conduction loss and maximize the battery run time.  
9.3.3 Device Power Up from Input Source  
When a valid input source is plugged in with VBAT < VBAT_UVLOZ, BQ25628 and BQ25629 perform a power-on  
reset then checks the input source voltage to turn on the REGN LDO and all the bias circuits. It detects and sets  
the input current limit before the buck converter is started. The power up sequence from input source is as listed:  
1. REGN LDO power up (9.3.3.1)  
2. Poor source qualification (9.3.3.2)  
3. Input voltage limit threshold setting (9.3.3.5)  
4. Converter power-up (9.3.3.6)  
9.3.3.1 REGN LDO Power Up  
The REGN LDO regulator supplies internal bias circuits as well as the HSFET and LSFET gate drive. The REGN  
LDO also provides bias rail to TS external resistors. The pull-up rail of STAT can be connected to REGN as well.  
The REGN is enabled when all the below conditions are valid:  
VBUS above VVBUS_UVLOZ  
VBUS above VBAT + VSLEEPZ  
EN_HIZ = 0  
After 220-ms delay is completed  
If any one of the above conditions is not valid, the REGN LDO and the converter power stage remain off with the  
converter disabled. In this state, the battery supplies power to the system.  
9.3.3.2 Poor Source Qualification  
After the REGN LDO powers up, the device checks the current capability of the input source. The input source  
has to meet the following requirements in order to move forward to the next power on steps.  
1. VBUS voltage below VVBUS_OVP  
2. VBUS voltage above VPOORSRC when pulling IPOORSRC  
Once these conditions are met, BQ25628 and BQ25629 set VBUS_STAT to 0x4 and VBUS_FLAG transitions to  
1.  
9.3.3.3 D+/DDetection Sets Input Current Limit (BQ25629)  
After the REGN LDO is powered, the adapter has been qualified as a good source, and AUTO_INDET_EN bit =  
1 (POR default), BQ25629 runs input source detection through D+/Dlines to detect USB Battery Charging  
Specification 1.2 (BC1.2) input sources (CDP / SDP / DCP) and non-standard adapters. The detection algorithm  
runs automatically each time that VBUS is plugged in, updating the IINDPM according to 9-2. If  
AUTO_INDET_EN = 0, the detection algorithm is not run and IINDPM remains unchanged. The host can force  
the detection algorithm to run and update IINDPM by setting FORCE_INDET to 1.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
 
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
The USB BC1.2 is able to identify Standard Downstream Port (SDP), Charging Downstream Port (CDP), and  
Dedicated Charging Port (DCP). When the Data Contact Detection (DCD) timer of 500ms is expired, the non-  
standard adapter detection is applied to set the input current limit.  
The secondary detection is used to distinguish two types of charging ports (CDP and DCP). Most of the time, a  
CDP requires the portable device (such as smart phone, tablet) to send back an enumeration within 2.5 seconds  
of CDP plug-in. Otherwise, the port reverts back to SDP even though the D+/Ddetection indicates CDP.  
Upon the completion of input source type detection, the following registers are changed:  
1. Input Current Limit (IINDPM) register is changed to set current limit  
2. VBUS_STAT bits are updated to indicate the detected input source type  
After detection completes, the host can over-write the IINDPM register to change the input current limit if  
needed.  
Divider 1: 1A  
Non-Standard  
Adapter  
Divider 2: 2.1A  
Divider 3: 2.4A  
Divider 4: 1A  
DCP  
(1.5A)  
Adapter Plug-in  
or  
FORCE_INDET  
Data Detec on  
Contact  
(DCD)  
DCP/CDP  
Primary Detec on  
(PD)  
Secondary  
Detection  
VBUS Detec on  
USB BC1.2 Standard  
SDP  
(500mA)  
CDP  
(1.5A)  
9-1. D+/DDetection Flow  
If DCP is detected (VBUS_STAT = 011), BQ25629 turns on VD+D-_0p6V_SRC on D+ if EN_DCP_BIAS is set to 1.  
Setting EN_DCP_BIAS to 0 while VBUS_STAT = 011 disables the VD+D-_0p6V_SRC on D+ pin, and setting  
EN_DCP_BIAS to 1 while VBUS_STAT = 011 enables the VD+D-_0p6V_SRC on D+ pin. The EN_HIZ bit has priority  
over EN_DCP_BIAS.  
The non-standard detection is used to distinguish vendor specific adapters based on their unique dividers on the  
D+/D- pins. Comparators detect the voltage applied on each pin and determine the input current limit according  
to 9-1.  
9-1. Non-Standard Adapter Detection  
INPUT CURRENT  
NON-STANDARD ADAPTER  
D+ THRESHOLD  
DTHRESHOLD  
LIMIT (A)  
Divider 1  
Divider 2  
Divider 3  
VD+ within VD+D-_2p0  
VD+ within VD+D-_2p8  
VD+ within VD+D-_2p8  
VDwithin VD+D-_2p8  
VDwithin VD+D-_2p0  
VDwithin VD+D-_2p8  
1
2.1  
2.4  
9-2. Input Current Limit Setting from D+/DDetection  
INPUT CURRENT LIMIT (IINLIM)  
VBUS_STAT  
D+/DDETECTION  
USB SDP (USB500)  
USB CDP  
500 mA  
1.5 A  
1.5 A  
1 A  
0x1  
0x2  
0x3  
0x5  
0x5  
0x5  
USB DCP  
Divider 1  
Divider 2  
2.1 A  
2.4 A  
Divider 3  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: BQ25628 BQ25629  
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9-2. Input Current Limit Setting from D+/DDetection (continued)  
INPUT CURRENT LIMIT (IINLIM)  
VBUS_STAT  
D+/DDETECTION  
Unknown 5-V Adapter  
500mA  
0x4  
9.3.3.4 ILIM Pin (BQ25628 Only)  
The ILIM pin clamps the input current limit to IINREG = KILIM / RILIM, where RILIM is connected from the ILIM pin  
to GND. The ILIM pin can be used to limit the input current limit from 100 mA - 3.2 A. The input current is limited  
to the lower of the two values set by the ILIM pin and IINDPM register bits. The ILIM pin can also be used to  
monitor input current. The input current is proportional to the voltage on the ILIM pin and can be calculated by  
IIN = (KILIM x VILIM) / (RILIM x 0.8). The ILIM pin function is disabled when the EN_EXTILIM bit is set to 0. In  
BQ25628, if the ILIM pin voltage exceeds VILIM_OCP (900mV), the device detects input over current. The  
converter drives PMID_GD high and clears the OTG_FAULT_STAT bit to 0.  
An RC filter in parallel with RILIM is required when the input current setting on the ILIM pin is either:  
below 400 mA or  
above 2 A when using a 2.2-μH inductor  
The value for the RC filter is 1.2 kΩand 330 nF, respectively.  
9.3.3.5 Input Voltage Limit Threshold Setting (VINDPM Threshold)  
BQ25628 and BQ25629 support a wide range of input voltage limit (3.8 V 16.8V). Its POR default VINDPM  
threshold is set at 4.6V. BQ25628 and BQ25629 also support dynamic VINDPM tracking, which tracks the  
battery voltage to ensure a sufficient margin between input and battery voltages for proper operation of the buck  
converter. This function is enabled via the VINDPM_BAT_TRACK register bit. When enabled, the actual input  
voltage limit is the higher of the VINDPM register or VINDPM_BAT_TRACK (VBAT + 400 mV typical offset.)  
9.3.3.6 Converter Power-Up  
After the input current and voltage limits are set, the converter is enabled and the HSFET and LSFET start  
switching. If battery charging is disabled, the BATFET turns off. Otherwise, the BATFET stays on to charge the  
battery. Converter startup requires the following conditions:  
VBUS has passed poor source qualification ( 9.3.3.2 )  
VBUS > VBAT + VSLEEPZ  
VVBUS < VVBUS_OVP  
EN_HIZ = 0  
VSYS < VSYS_OVP  
TJ < TSHUT  
BQ25628 and BQ25629 provide soft start when the system rail is ramped up by setting IINDPM to its lowest  
programmable value and stepping up through each available setting until reaching the value set by IINDPM  
register. Concurrently, the system short protection limits the output current to approximately 0.5A when the  
system rail is below VSYS_SHORT  
.
These devices use a highly efficient 1.5 MHz, fixed frequency pulse width modulated (PWM) step-down  
switching regulator. The internally compensated feedback loop keep tight control of the switching frequency  
under all conditions of input voltage, battery voltage, charge current and temperature, simplifying output filter  
design.  
The device switches to pulse frequency modulation (PFM) control at light load condition. The PFM_FWD_DIS  
and PFM_OTG_DIS bits can be used to disable the PFM operation in buck and boost respectively.  
9.3.4 Power Path Management  
BQ25628 accommodate a wide range of input sources from USB, wall adapter, wireless charger, to car charger.  
They provide automatic power path selection to supply the system from input source, battery, or both.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9.3.4.1 Narrow VDC Architecture  
BQ25628 use the Narrow VDC architecture (NVDC) with BATFET separating system from battery. The minimum  
system voltage is set by VSYSMIN register setting. Even with a fully depleted battery, the system is regulated to  
the minimum system voltage. If charging is enabled, the BATFET operates in linear mode (LDO mode). The  
default minimum system voltage at POR is 3.52 V.  
As the battery voltage rises above the minimum system voltage, the BATFET is turned fully on. When battery  
charging is disabled and VBAT is above the minimum system voltage setting, or charging is terminated, the  
system is regulated 50mV (typical) above battery voltage.  
9.3.4.2 Dynamic Power Management  
To meet the USB maximum current limit and avoid overloading the adapter, the device features Dynamic Power  
Management (DPM), which continuously monitors the input current and input voltage. When the input source is  
overloaded, either the current exceeds the input current limit (IINDPM) or the voltage falls below the input  
voltage limit (VINDPM). The device then reduces the charge current until the input current falls below the input  
current limit and the input voltage rises above the input voltage limit.  
When the charge current is reduced to zero, but the input source is still overloaded, the system voltage starts to  
drop. Once the system voltage falls below the battery voltage by VSUPP, the device automatically enters the  
supplement mode where the BATFET turns on and the battery starts discharging so that the system is supported  
from both the input source and battery.  
9.3.4.3 High Impedance Mode  
The host may place BQ25628 into high impedance mode by writing EN_HIZ = 1. In high impedance mode,  
RBFET (Q1), HSFET (Q2) and LSFET (Q3) are turned off. The RBFET and HSFET block current flow to and  
from VBUS, putting the VBUS pin into a high impedance state. The BATFET (Q4) is turned on to connect the  
BAT to SYS. During high impedance mode, REGN is disabled and the digital clock is slowed to conserve power.  
BQ25628 drives PMID_GD low in high-impedance mode.  
9.3.5 Battery Charging Management  
BQ25628 and BQ25629 charge 1-cell Li-Ion battery with up to 2.0 A charge current. The 15 mΩ BATFET  
improves charging efficiency and minimizes the voltage drop during discharging.  
9.3.5.1 Autonomous Charging Cycle  
When battery charging is enabled (EN_CHG bit = 1 and CE pin is LOW), BQ25628 and BQ25629 autonomously  
complete a charging cycle without host involvement. The device default charging parameters are listed in 9-3.  
The host can always control the charging operations and optimize the charging parameters by writing to the  
corresponding registers through I2C.  
9-3. Charging Parameter Default Setting  
TOPOFF  
VREG  
VRECHG  
ITRICKLE  
IPRECHG  
ICHG  
ITERM  
TIMER  
Disabled  
Disabled  
BQ25628  
BQ25629  
4.2V  
4.2V  
VREG - 100 mV  
VREG - 100 mV  
10 mA  
10 mA  
30 mA  
30 mA  
320 mA  
320 mA  
20 mA  
20 mA  
A new charge cycle starts when the following conditions are valid:  
Converter starts per the conditions in 9.3.3.6  
EN_CHG = 1  
CE pin is low  
No thermistor fault on TS  
No safety timer fault  
BQ25628 and BQ25629 automatically terminate the charging cycle when the charging current is below  
termination threshold, battery voltage is above recharge threshold, and device not is in DPM or thermal  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: BQ25628 BQ25629  
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
regulation. When a fully charged battery is discharged below VRECHG, the device automatically starts a new  
charging cycle. After charging terminates, toggling CE pin or EN_CHG bit also initiates a new charging cycle.  
The STAT output indicates the charging status. Refer to 9.3.8.1 for details of STAT pin operation. In addition,  
the status register (CHG_STAT) indicates the different charging phases: 00-charging disabled or terminated, 01-  
constant current, 10 constant voltage, 11-topoff charging.  
9.3.5.2 Battery Charging Profile  
BQ25628 and BQ25629 charges the battery in five phases: trickle charge, pre-charge, constant current,  
constant voltage and an optional top-off charging phase. At the beginning of a charging cycle, the device checks  
the battery voltage and regulates current and voltage accordingly.  
Regula on Voltage  
VREG  
Ba ery Voltage  
Charge Current  
ICHG  
Charge Current  
VBAT_LOWVZ (3 V)  
VBAT_SHORTZ (2.25 V)  
IPRECHG  
ITERM  
IBAT_SHORT  
Fast Charge and Voltage Regula on  
Trickle Charge  
Pre-charge  
Top-o Timer  
(op onal)  
Safety Timer  
Expira on  
9-2. Battery Charging Profile  
9.3.5.3 Charging Termination  
BQ25628 and BQ25629 terminate a charge cycle when the battery voltage is above recharge threshold, the  
converter is in constant-voltage regulation and the current is below ITERM. Because constant-voltage regulation  
is required for termination, BQ25628 and BQ25629 do not terminate while IINDPM, VINDPM or thermal  
regulation loops are active. After the charging cycle is completed, the BATFET turns off. The converter keeps  
running to power the system, and the BATFET can turn on again to engage supplement mode. Termination can  
be permanently disabled by writing 0 to EN_TERM bit prior to charge termination.  
At low termination currents, due to the comparator offset, the actual termination current may be 10 mA-20 mA  
higher than the termination target. in order to compensate for comparator offset, a programmable top-off timer  
can be applied after termination is detected. The top-off timer follows safety timer constraints, such that if the  
safety timers suspend, so does the top-off timer. Similarly, if the safety timers count at half-clock rate, so does  
the top-off timer. Refer to 9.3.5.5 for the list of conditions. The host can read CHG_STAT to find out the  
termination status.  
Top-off timer gets reset by any of the following conditions:  
1. Charging cycle stop and restart (toggle CE pin, toggle EN_CHG bit, charged battery falls below recharge  
threshold or adapter removed and replugged)  
2. Termination status low to high  
3. REG_RST register bit is set  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
The top-off timer settings are read in after is detected by the charger. Programming a top-off timer value after  
termination has no effect unless a recharge cycle is initiated. CHG_FLAG is set to 1 when entering top-off timer  
segment and again when the top-off timer expires.  
9.3.5.4 Thermistor Qualification  
BQ25628 and BQ25629 provide a single thermistor input for battery temperature monitoring. The TS pin input of  
the battery temperature can be ignored by the charger if TS_IGNORE = 1. When the TS pin feedback is ignored,  
the charger considers the TS to always be valid for charging and OTG modes, and TS_STAT always reports  
000. The TS pin may be left floating if TS_IGNORE is set to 1.  
When TS_IGNORE=1, the TS_ADC channel is disabled, with TS_ADC_DIS forced to 1; Attempting to write to 0  
is ignored.  
When TS_IGNORE = 0, the charger adjusts the charging profile based on the TS pin feedback information  
according to the configurable profile described in 9.3.5.4.1. When the battery temperature crosses from one  
temperature range to another, TS_STAT is updated accordingly, and the charger sets the FLAG bit for the newly-  
entered temperature range. If TS_MASK is set to 0, any change to TS_STAT, including a transition to  
TS_NORMAL, generates an INT pulse.  
9.3.5.4.1 Advanced Temperature Profile in Charge Mode  
To improve the safety of charging Li-ion batteries, JEITA guideline was released on April 20, 2007. The guideline  
emphasized the importance of avoiding a high charge current and high charge voltage at certain low and high  
temperature ranges. As battery technology continues to evolve, battery manufacturers have released  
temperature safety specifications that extend beyond the JEITA standard. BQ25628 and BQ25629 feature a  
highly flexible temperature-based charging profile to meet these advanced specifications while remaining  
backwards compatible with the original JEITA standard. Figure 8-3 shows the programmability for charger  
behavior under different battery temperature (TS) operating regions.  
Percentage of  
ICHG / CHG_RATE  
Charging Voltage  
programmable  
programmable  
programmable  
100%  
VREG  
VREG -100mV  
VREG -200mV  
VREG -300mV  
TS_VSET_SYM  
40%  
20%  
suspend  
TH1  
TH2  
TS_PRECOOL  
TH4  
TH5  
TH6  
TH1  
TH2  
TS_PRECOOL  
TH4  
TH5  
TH6  
TH3  
TH3  
TS_COLD TS_COOL  
TS_NORMAL  
TS_PREWARM TS_WARM TS_HOT  
TS_COLD TS_COOL  
TS_NORMAL  
TS_PREWARM TS_WARM TS_HOT  
TS Temperature  
TS Temperature  
9-3. TS Charging Values  
Charging safety timer is adjusted within the temperature zones to reflect changes to the charging current. When  
IPRECHG and ICHG are reduced to 20% or 40% in the cool or warm temperature zones, the charging safety  
timer counts at half rate. If charging is suspended, the safety timer is suspended, the STAT pin blinks and  
CHG_STAT is set to 00 (not charging or charge terminated.)  
9.3.5.4.2 TS Pin Thermistor Configuration  
The typical TS resistor network is illustrated below.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: BQ25628 BQ25629  
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
TS_BIAS  
TS  
10 kΩ  
9-4. TS Resistor Network  
The value of RT1 and RT2 are determined from the resistance of the thermistor at 0 and 60 ºC (RTH0degC and  
RTH60degC) and the corresponding voltage thresholds VTS_0degC and VTS_60degC (expressed as percentage of  
REGN with value between 0 and 1.) For the most accurate thermistor curve fitting, use the rising threshold for  
VTS_COLD at 0 ºC and the falling threshold for VTS_HOT at 60 ºC, regardless of the actual register settings for  
TS_TH1_TH2_TH3 and TS_TH4_TH5_TH6.  
1
1
RTH  
× RTH  
1
×
60degC  
0degC  
×
V
V
TS_0degC  
TS_60degC  
RT2 =  
RT1 =  
(1)  
(2)  
1
RTH  
V
1 RTH  
0degC  
×
1  
60degC  
V
V
TS_60degC  
TS_0degC  
1
1  
TS_0degC  
1
R
1
+
RTH  
T2  
0degC  
Assuming a 103AT NTC thermistor on the battery pack, the RT1 and RT2 are calculated to be 5.30 kΩand 31.1  
kΩrespectively.  
If the thermistor is biased from TS_BIAS, the maximum current should be checked against ITS_BIAS_FAULT. For  
the worst-case condition of thermistor at 0 Ωimpedance (very hot), the bias current is :  
V
REGN  
RT1  
I
=
(3)  
BIAS_MAX  
For 5.30 kΩ RT1, this has a maximum IBIAS of 0.94 mA, which is well below the minimum ITS_BIAS_FAULT  
threshold. The 103AT NTC thermistor is the recommended thermistor and has 10 kΩnominal impedance. Using  
a lower impedance thermistor will change the value of R1 and may produce a bias current that exceeds the  
TS_BIAS pin fault threshold. TS_STAT[2:0] is set to 111.  
9.3.5.4.3 Cold/Hot Temperature Window in OTG Mode  
For battery protection during boost OTG and bypass OTG modes, BQ25628 and BQ25629 monitor the battery  
temperature to be within the TS_TH_OTG_COLD to TS_TH_OTG_HOT register settings. For a 103AT NTC  
thermistor with RT1 of 5.3 kΩ and RT2 of 31.1 kΩ, TS_TH_OTG_COLD default is -10°C and  
TS_TH_OTG_HOT default is 60°C. When temperature is outside of this range, the OTG mode is suspended  
with REGN remaining on. In addition, VBUS_STAT bits are set to 000, TS_STAT is set to 001 (TS_OTG_COLD)  
or 010 (TS_OTG_HOT), and TS_FLAG is set. In bypass OTG, PMID_GD drives low and the HSFET is disabled.  
Once the battery temperature returns to normal temperature, the boost OTG or bypass OTG is restarted and  
TS_STAT returns to 000 (TS_NORMAL).  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
IOTG  
Suspended  
TH_OTG_COLD  
TH_OTG_HOT  
TS_OTG_HOT  
TS_OTG_COLD  
TS_NORMAL  
TS Temperature  
9-5. TS Pin Thermistor Sense Threshold in Boost Mode  
9.3.5.4.4 JEITA Charge Rate Scaling  
The TS_ISET_PRECOOL, TS_ISET_COOL, TS_ISET_PREWARM and TS_ISET_WARM cool and warm  
charge current fold backs are based on a 1C charging rate.  
A setting of TS_ISET_COOL = 01 sets ICHG_COOL = 20% ICHG1C. When the battery enters the TS_COOL  
temperature zone, the current is reduced to 20% of the 1C charging rate. In order to convert the charging  
foldback, the host must set the CHG_RATE register to the C rate for the battery. This scales the fold back  
accordingly, producing an ICHG_COOL as shown in 方程4:  
I
CHG_COOL  
I
=
× JEITA_ISETC  
(4)  
CHG  
CHG_RATE  
When TS_ISET_PRECOOL, TS_ISET_COOL, TS_ISET_PREWARM or TS_ISET_WARM is set to either 00  
(suspend) or 11 (unchanged), the CHG_RATE setting has no effect. A summary is provided in 9-4.  
9-4. ICHG Fold Back  
TS_ISET_PRECOOL, TS_ISET_COOL,  
TS_ISET_PREWARM or TS_ISET_WARM  
FOLD-BACK CURRENT AS PERCENTAGE  
OF ICHG  
CHG_RATE  
00  
Any  
0% (Suspended)  
20%  
01 (20%)  
00 (1C)  
01 (2C)  
10 (4C)  
11 (6C)  
00 (1C)  
01 (2C)  
10 (4C)  
11 (6C)  
Any  
10%  
5%  
3.3%  
10 (40%)  
40%  
20%  
10%  
6.6%  
11  
100%  
9.3.5.4.5 TS_BIAS Pin  
The BQ25628 has the TS_BIAS pin to isolate the battery temperature sensing thermistor and associated  
resistor-divider from REGN. The 103AT thermistor with typical resistor-divider network requires about 400 μA to  
bias. The BQ25628 provides the TS_BIAS pin, which is internally connected to the REGN LDO via a back-to-  
back MOSFET switch. When no temperature measurement is being taken, the switch is disabled to disconnect  
the thermistor and resistor-divider from the REGN LDO, saving the 400 μA bias current from being expended  
unnecessarily.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: BQ25628 BQ25629  
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
The TS_BIAS pin has short-circuit protection. If a short is detected on the TS_BIAS pin, the switch is disabled to  
disconnect the short from REGN. If this condition occurs, TS_STAT register is set to 0x3. Charging and OTG  
modes are suspended until the short is removed.  
9.3.5.5 Charging Safety Timers  
BQ25628 and BQ25629 have three built-in safety timers to prevent extended charging cycle due to abnormal  
battery conditions. The fast charge safety timer and pre-charge safety timers are set through I2C CHG_TMR and  
PRECHG_TMR fields, respectively. The trickle charge timer is fixed at 1 hour.  
The trickle charging, pre-charging and fast charging safety timers can be disabled by setting  
EN_SAFETY_TMRS = 0. EN_SAFETY_TMRS can be enabled anytime regardless of which charging stage the  
charger is in. Each timer starts to count as soon as the following two conditions are simultaneously true:  
EN_SAFETY_TMRS=1 and the corresponding charging stage is active.  
When either the fast charging, trickle charging or pre-charging safety timer expires, the SAFETY_TMR_STAT  
and SAFETY_TMR_FLAG bits are set to 1.  
Events that cause a reduction in charging current also cause the charging safety timer to count at half-clock rate  
if TMR2X_EN bit is set.  
During faults which suspend charging, the charge, pre-charge and trickle safety timers are also suspended,  
regardless of the state of the TMR2X_EN bit. Once the fault goes away, charging resumes and the safety timer  
resumes from where it stopped.  
The charging safety timer and the charging termination can be disabled at the same time. Under this condition,  
the charging keeps running until it is disabled by the host.  
9.3.6 USB On-The-Go (OTG)  
9.3.6.1 Boost OTG Mode  
BQ25628 and BQ25629 support boost converter operation to deliver power from the battery to PMID. The output  
voltage is set in VOTG. VBUS_STAT is set to 111 upon a successful entry into boost OTG. The boost operation  
is enabled when the following conditions are met:  
1. BAT above VBAT_OTG  
2. VBUS less than VBAT+VSLEEP  
3. Boost mode operation is enabled (EN_OTG = 1)  
4. VTS_OTG_HOT < VTS < VTS_OTG_COLD  
5. VREGN > VREGN_OK  
6. 30 ms delay after EN_OTG = 1  
7. Boost mode regulation voltage in REG0x0C is greater than 105% of battery voltage.  
9.3.6.2 Bypass OTG Mode  
In addition to boost OTG mode, the BQ25628 and BQ25629 provide bypass mode to directly connect the battery  
to PMID pin through BATFET and HSFET. The low impedance path in bypass mode achieves the highest  
efficiency when powering up external accessories, and maximizes the battery run time. During bypass OTG  
mode, the status register VBUS_STAT is set to 111.  
Bypass OTG mode is entered when:  
VBAT > VBAT_OTG  
VVBUS < VBAT+VSLEEP  
OTG mode has been enabled (EN_OTG=1) and bypass mode is enabled (EN_BYPASS_OTG=1).  
VTS_OTG_HOT < VTS < VTS_OTG_COLD  
VREGN > VREGN_OK  
30 ms delay after EN_OTG = EN_BYPASS_OTG = 1, bypass OTG is enabled by turning on HSFET and  
BATFET.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
 
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
Any of the following conditions will exit from bypass OTG. Unless otherwise indicated, exit from bypass mode  
leads into battery-only mode by setting EN_OTG = EN_BYPASS_OTG = 0:  
OTG mode is disabled (EN_OTG=0)  
Bypass OTG mode is disabled (EN_BYPASS_OTG = 0) will cause exit into boost OTG mode if EN_OTG  
remains at 1.  
Entry into shutdown, ship mode or system power reset will exit from bypass OTG by setting EN_OTG =  
EN_BYPASS_OTG = 0 and then enter into shutdown, ship mode or system power reset as selected.  
BQ25628 and BQ25629 can be configured to automatically transition between charging mode and bypass OTG  
mode by setting EN_CHG = 1, EN_OTG = 1 and EN_BYPASS_OTG = 1. When the adapter plugs in, and all  
conditions to start a new charge cycle are valid, the device automatically transitions to charging mode. If the  
adapter is removed and bypass enable conditions are valid, the device automatically transitions to bypass OTG  
mode to power the accessories connected to PMID.  
9.3.6.3 PMID Voltage Indicator ( PMID_GD)  
In BQ25628 and BQ25629, accessory devices can be connected to charger PMID pin to get power either from  
the adapter through Q1 direct path or from battery boost mode. An optional external PMOS FET can be placed  
between the PMID pin and accessory input to disconnect the power path during over-current and over-voltage  
conditions. PMID_GD is used to drive this external PMOS FET through an inverter. PMID_GD HIGH turns on an  
inverter to pull the PMOS FET gate low to turn on PMOS FET, and PMID_GD LOW turns off the PMOS FET.  
Upon adapter plug-in, PMID_GD goes from LOW to HIGH when VBUS rises above VBAT but below VPMID_OVP  
and passes poor source detection. An adapter voltage that is greater than VPMID_OVP but less than VVBUS_OVP  
will drive PMID_GD low, but will charge the battery if all other conditions are valid. In this state, the external  
PMOS FET will stay off to protect the accessory from over-voltage fault.  
When the adapter is removed, PMID_GD goes LOW before battery boost mode starts. In battery boost mode,  
the device regulates PMID voltage to the VOTG register setting as a stable power supply to the accessory  
devices. PMID_GOOD goes from LOW to HIGH when PMID voltage rises above VOTG_UVPZ. Once PMID voltage  
is out of this range, PMID_GOOD goes LOW to disconnect the accessory device from PMID. During boost  
mode, any of the conditions to exit boost mode will also drive PMID_GD from HIGH to LOW. See 9.3.6.1 for a  
list of these conditions.  
If the device enters bypass OTG mode, the PMID_GD goes from LOW to HIGH when HSFET (Q2) is enabled.  
During bypass OTG mode, any conditions to exit will also drive PMID_GD from HIGH to LOW. See 9.3.6.2 for  
a list of these conditions.  
9.3.7 Integrated 12-Bit ADC for Monitoring  
BQ25628 provide an integrated 12-bit ADC for the host to monitor various system parameters.  
To enable the ADC, the ADC_EN bit must be set to 1. The ADC is disabled by default (ADC_EN=0) to  
conserve power. The ADC is allowed to operate if either VBUS > VPOORSRC or VBAT > VBAT_LOWV is valid. If  
ADC_EN is set to 1before VBUS or VBAT reach their respective valid thresholds, then ADC_EN stays '0'.  
When the charger enters HIZ mode, the ADC is disabled. The host can re-enable the ADC during HIZ mode by  
setting ADC_EN =1.  
At battery only condition, if the TS_ADC channel is enabled, the ADC only operates when the battery voltage is  
higher than 3.2V (the minimal value to turn on REGN), otherwise, the ADC operates when the battery voltage is  
higher than VBAT_LOWV  
.
The ADC_DONE_STAT, ADC_DONE_FLAG bits are set when a conversion is complete in one-shot mode only.  
During continuous conversion mode, the ADC_DONE_STAT, ADC_DONE_FLAG bits have no meaning and  
remain at 0. In one-shot mode, the ADC_EN bit is set to 0 at the completion of the conversion, at the same time  
as the ADC_DONE_FLAG bit is set. In continuous mode, the ADC_EN bit remains at 1 until the user disables  
the ADC by setting it to 0.  
9.3.8 Status Outputs ( STAT, INT)  
9.3.8.1 Charging Status Indicator (STAT)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: BQ25628 BQ25629  
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
BQ25628 indicates charging state on the open drain STAT pin. The STAT pin can drive an LED. The STAT pin  
function can be disabled via the DIS_STAT bit.  
9-5. STAT Pin State  
CHARGING STATE  
STAT INDICATOR  
LOW  
Charging in progress (including recharge)  
Not charging, no fault detected. (Includes charging complete, Charge Disabled, no adapter present, in OTG mode.)  
HIGH  
Charge suspend  
Boost Mode suspend  
Blinking at 1 Hz  
9.3.8.2 Interrupt to Host ( INT)  
In many applications, the host does not continually poll the charger status registers. Instead, the INT pin may be  
used to notify the host of a status change with a 256-μs INT pulse. Upon receiving the interrupt pulse, the host  
may read the flag registers (Charger_Flag_X and FAULT_Flag_X) to determine the event that caused the  
interrupt, and for each flagged event, read the corresponding status registers (Charger_Status_X and  
FAULT_Status_X) to determine the current state. Once set to 1, the flag bits remain latched at 1 until they are  
read by the host, which clears them. The status bits, however, are updated whenever there is a change to status  
and always represent the current state of the system.  
All of the INT events can be masked off to prevent INT pulses from being sent out when they occur, with the  
exception of the initial power-up interrupt. Interrupt events are masked by setting their mask bit in registers  
(Charger_Mask_X and FAULT_Mask_X.) Events always cause the corresponding flag bit to be set to 1,  
regardless of whether or not the interrupt pulse has been masked.  
9.3.9 BATFET Control  
BQ25628 and BQ25629 have an integrated, bi-directionally blocking BATFET that can be turned off to remove  
leakage current from the battery to the system. The BATFET is controlled by the BATFET_CTRL register bits,  
and supports shutdown mode, ship mode and system power reset.  
9-6. BATFET Control Modes  
ENTRY, WITH ADAPTER, ENTRY, WITH ADAPTER,  
MODE  
BATFET  
I2C  
ENTRY, NO ADAPTER  
BATFET_CTRL_WVBUS BATFET_CTRL_WVBUS  
= 0 = 1  
EXIT  
Normal  
Ship mode  
On  
Off  
Active  
Off  
N/A  
Writing BATFET_CTRL = Writing BATFET_CTRL = Writing BATFET_CTRL = QON or  
10 turns off BATFET after 10 has no effect while 10 turns off BATFET after adapter  
BATFET_DLY and enters adapter is present. When BATFET_DLY. When both plug-in  
ship mode. both BATFET_DLY has BATFET_DLY has expired  
N/A  
N/A  
N/A  
expired and the adapter is and adapter is removed,  
removed, the device turns the device enters ship  
off BATFET and enters  
ship mode. Writing  
mode. Writing  
BATFET_CTRL = 00  
before adapter is removed  
BATFET_CTRL = 00  
before adapter is removed turns BATFET on and  
aborts ship mode.  
aborts ship mode.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9-6. BATFET Control Modes (continued)  
ENTRY, WITH ADAPTER, ENTRY, WITH ADAPTER,  
BATFET_CTRL_WVBUS BATFET_CTRL_WVBUS  
= 0 = 1  
MODE  
BATFET  
I2C  
ENTRY, NO ADAPTER  
EXIT  
System reset  
On to Off Active  
to On  
Writing BATFET_CTRL = Writing BATFET_CTRL = Writing BATFET_CTRL = N/A  
11 initiates system reset  
after BATFET_DLY.  
Holding QON low for  
tQON_RST initiates  
immediate reset  
11 is ignored and  
11 initiates system reset  
BATFET_CTRL resets to after BATFET_DLY.  
00. Holding QON low for  
tQON_RST is ignored.  
Holding QON low for  
tQON_RST initiates  
immediate reset.  
(BATFET_DLY is not  
applied.)  
Converter is placed in HIZ  
during system reset and  
exits HIZ when system  
reset completes.  
Shutdown mode  
Off  
Off  
Writing BATFET_CTRL = Writing BATFET_CTRL = 01 with adapter present is  
01 turns off BATFET after ignored, regardless of BATFET_CTRL_WVBUS  
BATFET_DLY and enters setting, and BATFET_CTRL is reset to 00.  
shutdown.  
Adapter  
plug-in  
9.3.9.1 Shutdown Mode  
For the lowest battery leakage current, the host can shut down BQ25628 and BQ25629 by setting the register  
bits BATFET_CTRL to 01. In this mode, the BATFET is turned off to prevent the battery from powering the  
system, the I2C is disabled and the charger is totally shut down. BQ25628 and BQ25629 can only be woken up  
by plugging in an adapter. When the adapter is plugged in, BQ25628 and BQ25629 start back up with all register  
settings in their POR default.  
After the host sets BATFET_CTRL to 01, the BATFET turns off after waiting either 20 ms or 10 s as configured  
by BATFET_DLY register bit. Shutdown mode can only be entered when VVBUS < VVBUS_UVLO, regardless of the  
BATFET_CTRL_WVBUS setting, which has no effect on shutdown mode entry. If the host writes BATFET_CTRL  
= 01 with VVBUS > VVBUS_UVLOZ, the request is ignored and the BATFET_CTRL bits are set back to 00.  
If the host writes BATFET_CTRL to 01 while boost OTG or bypass OTG is active, BQ25628 and BQ25629 first  
exit from boost OTG by setting EN_OTG = 0 or exits from bypass OTG by setting EN_OTG =  
EN_BYPASS_OTG = 0 and then enters shutdown mode.  
QON has no effect during shutdown mode. The internal pull-up on the QON pin is disabled during shutdown to  
prevent leakage through the pin.  
9.3.9.2 Ship Mode  
The host may place BQ25628 and BQ25629 into ship mode by setting BATFET_CTRL = 10. In ship mode, the  
BATFET is turned off to prevent the battery from powering the system, and the I2C is disabled. Ship mode has  
slightly higher quiescent current than shutdown mode, but QON may be used to exit from ship mode. BQ25628  
and BQ25629 are taken out of ship mode by either of these methods:  
Pulling the QON pin low for tSM_EXIT  
VVBUS > VVBUS_UVLOZ (adapter plug-in)  
When BQ25628 and BQ25629 exit from ship mode, the registers are reset to their POR values.  
Ship mode is only entered when the adapter is not present. Setting BATFET_CTRL = 10 while VVBUS  
>
VVBUS_UVLOZ (adapter present) either disables the BATFET or has no immediate effect depending on the setting  
of BATFET_CTRL_WVBUS.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: BQ25628 BQ25629  
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9.3.9.3 System Power Reset  
The BATFET functions as a load switch between battery and system when the converter is not running. By  
changing the state of BATFET from on to off, systems connected to SYS can be power cycled. Any of the  
following conditions initiates a system power reset:  
BATFET_CTRL_WVBUS = 1 and QON is pulled low for tQON_RST  
BATFET_CTRL_WVBUS = 1 and BATFET_CTRL = 11  
BATFET_CTRL_WVBUS = 0 and VBUS < VVBUS_UVLO simultaneously with QON pulled low for tQON_RST  
BATFET_CTRL_WVBUS = 0 and VBUS < VVBUS_UVLO and BATFET_CTRL = 11  
BATFET_CTRL  
_WVBUS  
Adapter  
tQON_RST  
tQON_RST  
tQON_RST  
/QON  
ON  
ON  
ON  
BATFET  
OFF  
tBATFET_RST  
OFF  
tBATFET_RST  
OFF  
tBATFET_RST  
Enter HIZ  
Enter HIZ  
BATFET Reset with  
BATFET_CTRL_WVBUS=0  
BATFET Reset with  
BATFET_CTRL_WVBUS=1  
9-6. System Power Reset Timing  
When BATFET_CTRL_WVBUS is set to 1, system power reset proceeds if either BATFET_CTRL is set to 11 or  
QON is pulled low for tQON_RST, regardless of whether VBUS is present or not . There is a delay of tBATFET_DLY  
before initiating the system power reset. If QON is pulled low, there is no delay after the tQON_RST completes,  
regardless of BATFET_DLY setting.  
The system power reset can be initiated from the battery only condition, from OTG mode or from the forward  
charging mode with adapter present. If the system power is reset when the charger is in boost OTG mode, the  
boost OTG mode is first stopped by setting EN_OTG = 0. If the system power is reset when the charger is in  
bypass OTG mode, the bypass OTG mode will first be terminated by setting EN_OTG = EN_BYPASS_OTG = 0.  
9.4 Device Functional Modes  
9.4.1 Host Mode and Default Mode  
The device is a host controlled charger, but it can operate in default mode without host management. In default  
mode, the device can be used as an autonomous charger with no host or while host is in sleep mode. When the  
charger is in default mode, WD_STAT bit becomes HIGH, WD_FLAG is set to 1, and an INT is asserted low to  
alert the host (unless masked by WD_MASK). The WD_FLAG bit would read as 1 upon the first read and then 0  
upon subsequent reads. When the charger is in host mode, WD_STAT bit is LOW.  
After power-on-reset, the device starts in default mode with watchdog timer expired. All the registers are in the  
default settings.  
In default mode, the device keeps charging the battery with default 1-hour trickle charging safety timer, 2-hour  
pre-charging safety timer and the 12-hour fast charging safety timer. At the end of the 1-hour or 2-hour or 12-  
hour timer expired, the charging is stopped and the buck converter continues to operate to supply system load.  
A write to any I2C register transitions the charger from default mode to host mode, and initiates the watchdog  
timer. All the device parameters can be programmed by the host. To keep the device in host mode, the host has  
to reset the watchdog timer by writing 1 to WD_RST bit before the watchdog timer expires (WD_STAT bit is set),  
or disable watchdog timer by setting WATCHDOG bits = 00.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
When the watchdog expires, the device returns to default mode. The ICHG value is divided in half when the  
watchdog timer expires, and a number of other fields are reset to their POR default values as shown in the notes  
column of the register tables in 9.6. When watchdog timer expires, WD_STAT and WD_FLAG is set to 1, and  
an INT is asserted low to alert the host (unless masked by WD_MASK).  
Reset  
Selective  
Registers  
Default Mode  
WD_STAT=1  
POR  
I2C Write  
Reset  
Watchdog  
Timer  
Yes  
Host Mode  
WD_STAT=0  
I2C Write to  
WD_RST  
No  
Watchdog Timer Expired?  
Yes  
No  
9-7. Watchdog Timer Flow Chart  
9.4.2 Register Bit Reset  
Beside the register reset by the watchdog timer in the default mode, the register and the timer could be reset to  
the default value by writing the REG_RST bit to 1. The register bits, which can be reset by the REG_RST bit, are  
noted in the Register Map section. After the register reset, the REG_RST bit goes back from 1 to 0 automatically.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: BQ25628 BQ25629  
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9.5 Programming  
9.5.1 Serial Interface  
BQ25628 and BQ25629 uses I2C compatible interface for flexible charging parameter programming and  
instantaneous device status reporting. I2C is a bi-directional 2-wire serial interface. Only two open-drain bus lines  
are required: a serial data line (SDA), and a serial clock line (SCL).  
The device has 7-bit I2C address 0x6A , receiving control inputs from a host device such as a micro-controller or  
digital signal processor through register addresses 0x02 0x38. The host device initiates all transfers and the  
charger responds. Register reads outside of these addresses return 0xFF. When the bus is free, both SDA and  
SCL lines are HIGH.  
The I2C interface supports standard mode (up to 100 kbits/s), fast mode (up to 400 kbits/s) and fast mode plus  
(up to 1 Mbits/s.) These lines are pulled up to a reference voltage via pull-up resistor. The device I2C detection  
thresholds support a communication reference voltage from 1.2 V to 5 V.  
9.5.1.1 Data Validity  
The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the  
data line can only change when the clock signal on the SCL line is LOW. One clock pulse is generated for each  
data bit transferred.  
SDA  
SCL  
Data line stable;  
Data valid  
Change of data  
allowed  
9-8. Bit Transfer on the I2C Bus  
9.5.1.2 START and STOP Conditions  
All transactions begin with a START (S) and are terminated with a STOP (P). A HIGH to LOW transition on the  
SDA line while SCL is HIGH defines a START condition. A LOW to HIGH transition on the SDA line when the  
SCL is HIGH defines a STOP condition.  
START and STOP conditions are always generated by the host. The bus is considered busy after the START  
condition, and free after the STOP condition.  
SDA  
SCL  
SDA  
SCL  
STOP (P)  
9-9. START and STOP Conditions on the I2C Bus  
START (S)  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9.5.1.3 Byte Format  
Every byte on the SDA line must be 8 bits long. The number of bytes to be transmitted per transfer is  
unrestricted. Each byte has to be followed by an ACKNOWLEDGE (ACK) bit. Data is transferred with the Most  
Significant Bit (MSB) first. If target cannot receive or transmit another complete byte of data until it has  
performed some other function, it can hold the SCL line low to force the host into a wait state (clock stretching).  
Data transfer then continues when the target is ready for another byte of data and releases the SCL line.  
Acknowledgement  
Acknowledgement  
signal from host  
signal from target  
MSB  
SDA  
1
2
7
8
9
1
2
8
9
SCL S or Sr  
START or  
P or Sr  
ACK  
ACK  
STOP or  
Repeate  
d START  
Repeated  
START  
9-10. Data Transfer on the I2C Bus  
9.5.1.4 Acknowledge (ACK) and Not Acknowledge (NACK)  
The ACK signaling takes place after each transmitted byte. The ACK bit allows the target to signal the host that  
the byte was successfully received and another byte may be sent. All clock pulses, including the acknowledge  
9th clock pulse, are generated by the host.  
The host releases the SDA line during the acknowledge clock pulse so the target can pull the SDA line LOW and  
it remains stable LOW during the HIGH period of this 9th clock pulse.  
A NACK is signaled when the SDA line remains HIGH during the 9th clock pulse. The host can then generate  
either a STOP to abort the transfer or a repeated START to start a new transfer.  
9.5.1.5 Target Address and Data Direction Bit  
After the START signal, a target address is sent. This address is 7 bits long, followed by the 8 bit as a data  
direction bit (bit R/ W). A zero indicates a transmission (WRITE) and a one indicates a request for data (READ).  
The device 7-bit address is defined as  
SDA  
S
8
9
8
9
8
9
P
SCL  
1-7  
1-7  
1-7  
DATA  
START  
ADDRESS  
R/W ACK  
DATA  
ACK  
ACK  
STOP  
9-11. Complete Data Transfer on the I2C Bus  
9.5.1.6 Single Write and Read  
S
Target Addr  
0
ACK  
Reg Addr  
ACK  
Data to Addr  
ACK  
P
9-12. Single Write  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: BQ25628 BQ25629  
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
S
Target Addr  
0
ACK  
Reg Addr  
ACK  
S
Target Addr  
ACK  
1
Data  
NCK  
P
9-13. Single Read  
If the register address is not defined, the charger IC sends back NACK and returns to the idle state.  
9.5.1.7 Multi-Write and Multi-Read  
The charger device supports multi-byte read and multi-byte write of all registers. These multi-byte operations are  
allowed to cross register boundaries. For instance, the entire register map may be read in a single operation with  
a 39-byte read that starts at register address 0x01.  
S
Target Addr  
0
ACK  
Reg Addr  
ACK  
Data to Addr  
ACK  
Data to Addr+1  
ACK  
Data to Addr+N  
ACK  
P
9-14. Multi-Write  
S
Target Addr  
0
ACK  
Reg Addr  
ACK  
S
Target Addr  
ACK  
1
Data @ Addr  
ACK Data @ Addr+1 ACK  
Data @ Addr+N NCK  
P
9-15. Multi-Read  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9.6 Register Maps  
I2C Device Address: 0x6A.  
9.6.1 Register Programming  
The BQ25628 and BQ25629 contain 8-bit and 16-bit registers. When writing to 16-bit registers, I2C transactions  
follow the little endian format, starting at the address of the least significant byte and writing both register bytes in  
a single 16-bit transaction.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: BQ25628 BQ25629  
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9.6.2 BQ25628 Registers  
9-7 lists the memory-mapped registers for the BQ25628 registers. All register offset addresses not listed in 表  
9-7 should be considered as reserved locations and the register contents should not be modified.  
9-7. BQ25628 Registers  
Address Acronym  
Register Name  
Section  
Go  
0x2  
0x4  
0x6  
0x8  
0xC  
0xE  
REG0x02_Charge_Current_Limit Charge Current Limit  
REG0x04_Charge_Voltage_Limit Charge Voltage Limit  
Go  
REG0x06_Input_Current_Limit  
REG0x08_Input_Voltage_Limit  
REG0x0C_VOTG_regulation  
Input Current Limit  
Input Voltage Limit  
VOTG regulation  
Go  
Go  
Go  
REG0x0E_Minimal_System_Volt Minimal System Voltage  
age  
Go  
0x10  
0x12  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
REG0x10_Pre-charge_Control  
REG0x12_Termination_Control  
REG0x14_Charge_Control  
Pre-charge Control  
Termination Control  
Charge Control  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
REG0x15_Charge_Timer_Control Charge Timer Control  
REG0x16_Charger_Control_0  
REG0x17_Charger_Control_1  
REG0x18_Charger_Control_2  
REG0x19_Charger_Control_3  
REG0x1A_NTC_Control_0  
REG0x1B_NTC_Control_1  
REG0x1C_NTC_Control_2  
REG0x1D_Charger_Status_0  
REG0x1E_Charger_Status_1  
REG0x1F_FAULT_Status_0  
REG0x20_Charger_Flag_0  
REG0x21_Charger_Flag_1  
REG0x22_FAULT_Flag_0  
REG0x23_Charger_Mask_0  
REG0x24_Charger_Mask_1  
REG0x25_FAULT_Mask_0  
REG0x26_ADC_Control  
Charger Control 0  
Charger Control 1  
Charger Control 2  
Charger Control 3  
NTC Control 0  
NTC Control 1  
NTC Control 2  
Charger Status 0  
Charger Status 1  
FAULT Status 0  
Charger Flag 0  
Charger Flag 1  
FAULT Flag 0  
Charger Mask 0  
Charger Mask 1  
FAULT Mask 0  
ADC Control  
REG0x27_ADC_Function_Disabl ADC Function Disable 0  
e_0  
0x28  
0x2A  
0x2C  
0x2E  
0x30  
0x32  
0x34  
0x36  
0x38  
REG0x28_IBUS_ADC  
REG0x2A_IBAT_ADC  
REG0x2C_VBUS_ADC  
REG0x2E_VPMID_ADC  
REG0x30_VBAT_ADC  
REG0x32_VSYS_ADC  
REG0x34_TS_ADC  
IBUS ADC  
IBAT ADC  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
VBUS ADC  
VPMID ADC  
VBAT ADC  
VSYS ADC  
TS ADC  
REG0x36_TDIE_ADC  
REG0x38_Part_Information  
TDIE ADC  
Part Information  
Complex bit access types are encoded to fit into small table cells. 9-8 shows the codes that are used for  
access types in this section.  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9-8. BQ25628 Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
9.6.2.1 REG0x02_Charge_Current_Limit Register (Address = 0x2) [Reset = X]  
REG0x02_Charge_Current_Limit is shown in 9-16 and described in 9-9.  
Return to the Summary Table.  
Charge Current Limit  
9-16. REG0x02_Charge_Current_Limit Register  
15  
7
14  
13  
12  
11  
10  
9
1
8
0
RESERVED  
R-0x0  
ICHG  
R/W-X  
6
5
4
3
2
ICHG  
R/W-X  
RESERVED  
R-0x0  
9-9. REG0x02_Charge_Current_Limit Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
X
Notes  
Description  
15:12  
11:5  
RESERVED  
ICHG  
R
Reserved  
R/W  
WATCHDOG Timer  
Expiration sets ICHG to  
1/2 its previous value  
(rounded down)  
Reset by:  
Charge Current Regulation Limit:  
This 16-bit register follows the little-endian convention.  
ICHG[5:3] falls in REG0x03[2:0], and ICHG[2:0] falls in  
REG0x02[7:5].  
POR: 320mA (8h)  
REG_RESET  
Range: 40mA-2000mA (1h-32h)  
Clamped Low  
Clamped High  
Bit Step: 40mA (1h)  
NOTE: When Q4_FULLON=1, this register has a  
minimum value of 80mA  
4:0  
RESERVED  
R
0x0  
Reserved  
9.6.2.2 REG0x04_Charge_Voltage_Limit Register (Address = 0x4) [Reset = 0x0D20]  
REG0x04_Charge_Voltage_Limit is shown in 9-17 and described in 9-10.  
Return to the Summary Table.  
Charge Voltage Limit  
9-17. REG0x04_Charge_Voltage_Limit Register  
15  
7
14  
6
13  
12  
11  
10  
9
8
0
RESERVED  
R-0x0  
VREG  
R/W-0x1A4  
5
4
3
2
1
VREG  
RESERVED  
R-0x0  
R/W-0x1A4  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: BQ25628 BQ25629  
 
 
 
 
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9-17. REG0x04_Charge_Voltage_Limit Register (continued)  
9-10. REG0x04_Charge_Voltage_Limit Register Field Descriptions  
Bit  
15:12  
11:3  
Field  
Type  
R
Reset  
0x0  
Notes  
Description  
RESERVED  
VREG  
Reserved  
R/W  
0x1A4  
Reset by:  
Battery Voltage Regulation Limit:  
REG_RESET  
This 16-bit register follows the little-endian convention.  
VREG[8:5] falls in REG0x05[3:0], and VREG[4:0] falls  
in REG0x04[7:3].  
POR: 4200mV (1A4h)  
Range: 3500mV-4800mV (15Eh-1E0h)  
Clamped Low  
Clamped High  
Bit Step: 10mV  
2:0  
RESERVED  
R
0x0  
Reserved  
9.6.2.3 REG0x06_Input_Current_Limit Register (Address = 0x6) [Reset = 0x0A00]  
REG0x06_Input_Current_Limit is shown in 9-18 and described in 9-11.  
Return to the Summary Table.  
Input Current Limit  
9-18. REG0x06_Input_Current_Limit Register  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
0
RESERVED  
R-0x0  
IINDPM  
R/W-0xA0  
5
4
3
2
IINDPM  
RESERVED  
R-0x0  
R/W-0xA0  
9-11. REG0x06_Input_Current_Limit Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
15:12  
11:4  
RESERVED  
IINDPM  
R
0x0  
Reserved  
R/W  
0xA0  
Reset by:  
Input Current Regulation Limit:  
REG_RESET  
Adapter Removal  
This 16-bit register follows the little-endian convention.  
IINDPM[7:4] falls in REG0x07[3:0], and IINDPM[3:0]  
falls in REG0x06[7:4]. Based on D+/D- detection  
results:  
USB SDP = 500mA  
USB CDP = 1.5A  
USB DCP = 1.5A  
Unknown Adapter = 500mA  
Non-Standard Adapter = 1A/2.1A/2.4A  
POR: 3200mA (A0h)  
Range: 100mA-3200mA (5h-A0h)  
Clamped Low  
Clamped High  
Bit Step: 20mA  
When the adapter is removed, IINDPM is reset to its  
POR value of 3.2 A.  
3:0  
RESERVED  
R
0x0  
Reserved  
9.6.2.4 REG0x08_Input_Voltage_Limit Register (Address = 0x8) [Reset = 0x0E60]  
REG0x08_Input_Voltage_Limit is shown in 9-19 and described in 9-12.  
Return to the Summary Table.  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
 
 
 
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
Input Voltage Limit  
9-19. REG0x08_Input_Voltage_Limit Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
RESERVED  
R-0x0  
VINDPM  
R/W-0x73  
7
6
5
4
3
2
VINDPM  
RESERVED  
R-0x0  
R/W-0x73  
9-12. REG0x08_Input_Voltage_Limit Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
15:14  
13:5  
RESERVED  
VINDPM  
R
0x0  
Reserved  
R/W  
0x73  
Absolute Input Voltage Regulation Limit:  
This 16-bit register follows the little-endian convention.  
VINDPM[8:3] falls in REG0x09[5:0], and VINDPM[2:0]  
falls in REG0x08[7:5].  
POR: 4600mV (73h)  
Range: 3800mV-16800mV (5Fh-1A4h)  
Clamped Low  
Clamped High  
Bit Step: 40mV  
4:0  
RESERVED  
R
0x0  
Reserved  
9.6.2.5 REG0x0C_VOTG_regulation Register (Address = 0xC) [Reset = 0x0FC0]  
REG0x0C_VOTG_regulation is shown in 9-20 and described in 9-13.  
Return to the Summary Table.  
VOTG regulation  
9-20. REG0x0C_VOTG_regulation Register  
15  
7
14  
13  
12  
11  
10  
9
1
8
0
RESERVED  
R-0x0  
VOTG  
R/W-0x3F  
6
5
4
3
2
VOTG  
RESERVED  
R-0x0  
R/W-0x3F  
9-13. REG0x0C_VOTG_regulation Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
15:13  
12:6  
RESERVED  
VOTG  
R
0x0  
Reserved  
R/W  
0x3F  
Reset by:  
Boost mode regulation voltage:  
REG_RESET  
This 16-bit register follows the little-endian convention.  
VOTG[6:2] falls in REG0x0D[4:0], and VOTG[1:0] falls  
in REG0x0C[7:6].  
POR: 5040mV (3Fh)  
Range: 3840mV-5200mV (30h-41h)  
Clamped Low  
Clamped High  
Bit Step: 80mV  
5:0  
RESERVED  
R
0x0  
Reserved  
9.6.2.6 REG0x0E_Minimal_System_Voltage Register (Address = 0xE) [Reset = 0x0B00]  
REG0x0E_Minimal_System_Voltage is shown in 9-21 and described in 9-14.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: BQ25628 BQ25629  
 
 
 
 
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
Return to the Summary Table.  
Minimal System Voltage  
9-21. REG0x0E_Minimal_System_Voltage Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
RESERVED  
R-0x0  
VSYSMIN  
R/W-0x2C  
7
6
5
4
3
2
VSYSMIN  
R/W-0x2C  
RESERVED  
R-0x0  
9-14. REG0x0E_Minimal_System_Voltage Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
15:12  
11:6  
RESERVED  
VSYSMIN  
R
0x0  
Reserved  
R/W  
0x2C  
Reset by:  
Minimal System Voltage:  
REG_RESET  
This 16-bit register follows the little-endian convention.  
VSYSMIN[5:2] falls in REG0x0F[3:0], and  
VSYSMIN[1:0] falls in REG0x0E[7:6].  
POR: 3520mV (2Ch)  
Range: 2560mV-3840mV (20h-30h)  
Clamped Low  
Clamped High  
Bit Step: 80mV  
5:0  
RESERVED  
R
0x0  
Reserved  
9.6.2.7 REG0x10_Pre-charge_Control Register (Address = 0x10) [Reset = 0x0018]  
REG0x10_Pre-charge_Control is shown in 9-22 and described in 9-15.  
Return to the Summary Table.  
Pre-charge Control  
9-22. REG0x10_Pre-charge_Control Register  
15  
7
14  
6
13  
12  
11  
10  
9
8
RESERVED  
R-0x0  
IPRECHG  
R/W-0x3  
5
4
3
2
1
0
IPRECHG  
R/W-0x3  
RESERVED  
R-0x0  
9-15. REG0x10_Pre-charge_Control Register Field Descriptions  
Bit  
15:9  
8:3  
Field  
Type  
Reset  
Notes  
Description  
RESERVED  
IPRECHG  
R
0x0  
Reserved  
R/W  
0x3  
Reset by:  
Pre-charge current regulation limit:  
REG_RESET  
This 16-bit register follows the little-endian convention.  
IPRECHG[4:0] falls in REG0x10[7:3]  
POR: 30mA (3h)  
Range: 10mA-310mA (1h-1Fh)  
Clamped Low  
Bit Step: 10mA (1h)  
NOTE: When Q4_FULLON=1, this register has a  
minimum value of 80mA, so Reset value becomes  
80mA in this case  
2:0  
RESERVED  
R
0x0  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
 
 
 
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9.6.2.8 REG0x12_Termination_Control Register (Address = 0x12) [Reset = 0x0010]  
REG0x12_Termination_Control is shown in 9-23 and described in 9-16.  
Return to the Summary Table.  
Termination Control  
9-23. REG0x12_Termination_Control Register  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
RESERVED  
R-0x0  
ITERM  
R/W-0x4  
5
4
3
2
0
ITERM  
RESERVED  
R-0x0  
R/W-0x4  
9-16. REG0x12_Termination_Control Register Field Descriptions  
Bit  
15:9  
8:2  
Field  
Type  
Reset  
Notes  
Description  
RESERVED  
ITERM  
R
0x0  
Reserved  
R/W  
0x4  
Reset by:  
Termination Current Threshold:  
REG_RESET  
This 16-bit register follows the little-endian convention.  
ITERM[5:0] falls in REG0x12[7:2].  
POR: 20mA (4h)  
Range: 5mA-310mA (1h-3Eh)  
Clamped Low  
Bit Step: 5mA (1h)  
NOTE: When Q4_FULLON=1, this register has a  
minimum value of 60mA, so Reset value becomes  
60mA in this case  
1:0  
RESERVED  
R
0x0  
Reserved  
9.6.2.9 REG0x14_Charge_Control Register (Address = 0x14) [Reset = 0x06]  
REG0x14_Charge_Control is shown in 9-24 and described in 9-17.  
Return to the Summary Table.  
Charge Control  
9-24. REG0x14_Charge_Control Register  
7
6
5
4
3
2
1
0
Q1_FULLON  
Q4_FULLON  
ITRICKLE  
TOPOFF_TMR  
R/W-0x0  
EN_TERM  
VINDPM_BAT_TRAC  
K
VRECHG  
R-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x1  
R/W-0x1  
R/W-0x0  
9-17. REG0x14_Charge_Control Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
Q1_FULLON  
R
0x0  
Forces RBFET (Q1) into low resistance state (26  
mΩ) , regardless of IINDPM setting.  
0x0 = RBFET RDSON determined by IINDPM setting  
(default)  
0x1 = RBFET RDSON is always 26 mΩ  
6
Q4_FULLON  
R/W  
0x0  
Forces BATFET (Q4) into low resistance state (15  
mΩ), regardless of ICHG setting (Only applies when  
VBAT > VSYSMIN).  
0x0 = BATFET RDSON determined by charge current  
(default)  
0x1 = BATFET RDSON is always 15 mΩ  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: BQ25628 BQ25629  
 
 
 
 
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9-17. REG0x14_Charge_Control Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Notes  
Description  
5
ITRICKLE  
R/W  
0x0  
Reset by:  
REG_RESET  
Trickle charging current setting:  
0b = 10mA (default)  
1b = 40mA  
4:3  
TOPOFF_TMR  
EN_TERM  
R/W  
R/W  
0x0  
Reset by:  
REG_RESET  
Top-off timer control:  
0x0 = Disabled (default)  
0x1 = 15 mins  
0x2 = 30 mins  
0x3 = 45 mins  
2
1
0x1  
0x1  
Reset by:  
REG_RESET  
WATCHDOG  
Enable termination:  
0x0 = Disable  
0x1 = Enable (default)  
VINDPM_BAT_TRA R/W  
CK  
Reset by:  
REG_RESET  
Sets VINDPM to track BAT voltage. Actual VINDPM is  
higher of the VINDPM register value and VBAT +  
VINDPM_BAT_TRACK.  
0x0 = Disable function (VINDPM set by register)  
0x1 = VBAT + 400 mV (default)  
0
VRECHG  
R/W  
0x0  
Reset by:  
REG_RESET  
Battery Recharge Threshold Offset (Below VREG)  
0x0 = 100mV (default)  
0x1 = 200mV  
9.6.2.10 REG0x15_Charge_Timer_Control Register (Address = 0x15) [Reset = 0x5C]  
REG0x15_Charge_Timer_Control is shown in 9-25 and described in 9-18.  
Return to the Summary Table.  
Charge Timer Control  
9-25. REG0x15_Charge_Timer_Control Register  
7
6
5
4
3
2
1
0
DIS_STAT  
R/W-0x0  
EN_AUTO_INDET  
R/W-0x1  
FORCE_INDET  
R/W-0x0  
EN_DCP_BIAS  
R/W-0x1  
TMR2X_EN  
R/W-0x1  
EN_SAFETY_TMRS  
R/W-0x1  
PRECHG_TMR  
R/W-0x0  
CHG_TMR  
R/W-0x0  
9-18. REG0x15_Charge_Timer_Control Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
DIS_STAT  
R/W  
0x0  
Reset by:  
REG_RESET  
Disable the STAT pin output  
0x0 = Enable (default)  
0x1 = Disable  
6
EN_AUTO_INDET  
R/W  
0x1  
Reset by:  
Automatic D+/D- Detection Enable  
REG_RESET  
WATCHDOG  
0x0 = Disable DPDM detection when VBUS is  
plugged-in  
0x1 = Enable DPDM detection when VBUS is plugged-  
in (default)  
5
4
FORCE_INDET  
EN_DCP_BIAS  
R/W  
R/W  
0x0  
0x1  
Reset by:  
REG_RESET  
WATCHDOG  
Force D+/D- detection  
0x0 = Do not force DPDM detection (default)  
0x1 = Force DPDM algorithm, when DPDM detection  
is done, this bit is reset to 0  
Reset by:  
REG_RESET  
WATCHDOG  
Enable 600 mV bias on D+ pin whenever DCP is  
detected by BC1.2 detection algorithm (VBUS_STAT =  
011b.)  
0x0 = Disable 600 mV bias on D+ pin  
0x1 = Enable 600 mV bias on D+ pin if DCP detected  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
 
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9-18. REG0x15_Charge_Timer_Control Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Notes  
Description  
3
TMR2X_EN  
R/W  
0x1  
Reset by:  
2X charging timer control  
REG_RESET  
0x0 = Trickle charge, pre-charge and fast charge timer  
not slowed by 2X during input DPM or thermal  
regulation.  
0x1 = Trickle charge, pre-charge and fast charge timer  
slowed by 2X during input DPM or thermal regulation  
(default)  
2
EN_SAFETY_TMRS R/W  
0x1  
Reset by:  
Enable fast charge, pre-charge and trickle charge  
REG_RESET  
WATCHDOG  
timers  
0x0 = Disable  
0x1 = Enable (default)  
1
0
PRECHG_TMR  
CHG_TMR  
R/W  
R/W  
0x0  
0x0  
Reset by:  
REG_RESET  
Pre-charge safety timer setting  
0x0 = 2 hrs (default)  
0x1 = 0.5 hrs  
Reset by:  
REG_RESET  
Fast charge safety timer setting  
0x0 = 12 hrs (default)  
0x1 = 24 hrs  
9.6.2.11 REG0x16_Charger_Control_0 Register (Address = 0x16) [Reset = 0xA1]  
REG0x16_Charger_Control_0 is shown in 9-26 and described in 9-19.  
Return to the Summary Table.  
Charger Control 0  
9-26. REG0x16_Charger_Control_0 Register  
7
6
5
4
3
2
1
0
EN_AUTO_IBATDIS  
R/W-0x1  
FORCE_IBATDIS  
R/W-0x0  
EN_CHG  
R/W-0x1  
EN_HIZ  
R/W-0x0  
FORCE_PMID_DIS  
R/W-0x0  
WD_RST  
R/W-0x0  
WATCHDOG  
R/W-0x1  
9-19. REG0x16_Charger_Control_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
EN_AUTO_IBATDIS R/W  
0x1  
Reset by:  
REG_RESET  
Enable the auto battery discharging during the battery  
OVP fault  
0x0 = The charger does NOT apply a discharging  
current on BAT during battery OVP triggered  
0x1 = The charger does apply a discharging current on  
BAT during battery OVP triggered (default)  
6
FORCE_IBATDIS  
R/W  
0x0  
Reset by:  
REG_RESET  
WATCHDOG  
Force a battery discharging current (~30mA)  
0x0 = IDLE (default)  
0x1 = Force the charger to apply a discharging current  
on BAT  
5
4
EN_CHG  
EN_HIZ  
R/W  
R/W  
0x1  
0x0  
Reset by:  
REG_RESET  
WATCHDOG  
Charger enable configuration  
0x0 = Charge Disable  
0x1 = Charge Enable (default)  
Reset by:  
Enable HIZ mode.  
0x0 = Disable (default)  
0x1 = Enable  
REG_RESET  
WATCHDOG  
Adapter Plug In  
3
2
FORCE_PMID_DIS R/W  
0x0  
0x0  
Reset by:  
REG_RESET  
WATCHDOG  
Force a PMID discharge current (~30mA.)  
0x0 = Disable (default)  
0x1 = Enable  
WD_RST  
R/W  
Reset by:  
I2C watch dog timer reset  
REG_RESET  
0x0 = Normal (default)  
0x1 = Reset (this bit goes back to 0 after timer reset)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: BQ25628 BQ25629  
 
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9-19. REG0x16_Charger_Control_0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Notes  
Description  
1:0  
WATCHDOG  
R/W  
0x1  
Reset by:  
REG_RESET  
Watchdog timer setting  
0x0 = Disable  
0x1 = 40s (default)  
0x2 = 80s  
0x3 = 160s  
9.6.2.12 REG0x17_Charger_Control_1 Register (Address = 0x17) [Reset = 0x4F]  
REG0x17_Charger_Control_1 is shown in 9-27 and described in 9-20.  
Return to the Summary Table.  
Charger Control 1  
9-27. REG0x17_Charger_Control_1 Register  
7
6
5
4
3
2
1
0
REG_RST  
R/W-0x0  
TREG  
R/W-0x1  
SET_CONV_FREQ  
R/W-0x0  
SET_CONV_STRN  
R/W-0x3  
RESERVED  
R/W-0x1  
VBUS_OVP  
R/W-0x1  
9-20. REG0x17_Charger_Control_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
REG_RST  
R/W  
0x0  
REG_RESET  
Reset registers to default values and reset timer  
Value resets to 0 after reset completes.  
0x0 = Not reset (default)  
0x1 = Reset  
6
TREG  
R/W  
0x1  
0x0  
Reset by:  
REG_RESET  
Thermal regulation thresholds.  
0x0 = 60C  
0x1 = 120C (default)  
5:4  
SET_CONV_FREQ R/W  
SET_CONV_STRN R/W  
Reset by:  
REG_RESET  
Adjust switching frequency of the converter  
0x0 = Nominal, 1.5 MHz (default)  
0x1 = -10%, 1.35 MHz  
0x2 = +10%, 1.65 MHz  
0x3 = RESERVED  
3:2  
0x3  
Reset by:  
Adjust the high side and low side drive strength of the  
REG_RESET  
converter to adjust efficiency versus EMI.  
0x0 = weak  
0x1 = normal  
0x2 = RESERVED  
0x3 = strong  
1
0
RESERVED  
VBUS_OVP  
R/W  
R/W  
0x1  
0x1  
Reserved  
Reset by:  
REG_RESET  
Sets VBUS overvoltage protection threshold  
0x0 = 6.3 V  
0x1 = 18.5 V (default)  
9.6.2.13 REG0x18_Charger_Control_2 Register (Address = 0x18) [Reset = 0x04]  
REG0x18_Charger_Control_2 is shown in 9-28 and described in 9-21.  
Return to the Summary Table.  
Charger Control 2  
9-28. REG0x18_Charger_Control_2 Register  
7
6
5
4
3
2
1
0
EN_BYPASS_OTG  
EN_OTG  
PFM_OTG_DIS  
PFM_FWD_DIS  
BATFET_CTRL_WV  
BUS  
BATFET_DLY  
BATFET_CTRL  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R-0x0  
R/W-0x1  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
 
 
 
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9-28. REG0x18_Charger_Control_2 Register (continued)  
9-21. REG0x18_Charger_Control_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
EN_BYPASS_OTG R/W  
0x0  
Reset by:  
REG_RESET  
WATCHDOG  
Enable the Boost bypass mode  
0x0 = Disable (default)  
0x1 = Enable  
6
5
4
3
EN_OTG  
R/W  
R/W  
R/W  
R
0x0  
0x0  
0x0  
0x0  
Reset by:  
REG_RESET  
WATCHDOG  
Boost mode control  
0b = OTG Disable (default)  
1b = OTG Enable  
PFM_OTG_DIS  
PFM_FWD_DIS  
Reset by:  
REG_RESET  
Disable PFM in boost mode  
0x0 = Enable (Default)  
0x1 = Disable  
Reset by:  
REG_RESET  
Disable PFM in forward buck mode  
0x0 = Enable (Default)  
0x1 = Disable  
BATFET_CTRL_WV  
BUS  
Optionally allows BATFET off or system power reset  
with adapter present.  
0x0 = 0x0  
0x1 = 0x1  
2
BATFET_DLY  
R/W  
R/W  
0x1  
0x0  
Reset by:  
REG_RESET  
Delay time added to the taking action in bits [1:0] of the  
BATFET_CTRL  
0x0 = Add 20 ms delay time  
0x1 = Add 10s delay time (default)  
1:0  
BATFET_CTRL  
Reset by:  
BATFET control  
REG_RESET  
The control logic of the BATFET to force the device  
enter different modes.  
0x0 = Normal (default)  
0x1 = Shutdown Mode  
0x2 = Ship Mode  
0x3 = System Power Reset  
9.6.2.14 REG0x19_Charger_Control_3 Register (Address = 0x19) [Reset = 0xC4]  
REG0x19_Charger_Control_3 is shown in 9-29 and described in 9-22.  
Return to the Summary Table.  
Charger Control 3  
9-29. REG0x19_Charger_Control_3 Register  
7
6
5
4
3
2
1
0
IBAT_PK  
R/W-0x3  
VBAT_UVLO  
R/W-0x0  
VBAT_OTG_MIN  
R/W-0x0  
RESERVED  
R-0x0  
EN_EXTILIM  
R/W-0x1  
CHG_RATE  
R/W-0x0  
9-22. REG0x19_Charger_Control_3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7:6  
IBAT_PK  
R/W  
0x3  
Reset by:  
Battery discharging peak current protection threshold  
REG_RESET  
setting  
0x0 = 1.5A  
0x1 = 3A  
0x2 = 6A  
0x3 = 12A (default)  
5
VBAT_UVLO  
R/W  
0x0  
Reset by:  
REG_RESET  
Select the VBAT_UVLO falling threshold and  
VBAT_SHORT threshold  
0x0 = VBAT_UVLO 2.2V, VBAT_SHORT 2.05V  
(default)  
0x1 = VBAT_UVLO 1.8V, VBAT_SHORT 1.85V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: BQ25628 BQ25629  
 
 
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9-22. REG0x19_Charger_Control_3 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Notes  
Description  
4
VBAT_OTG_MIN  
R/W  
0x0  
Reset by:  
REG_RESET  
Select the minimal battery voltage to start the boost  
mode  
0x0 = 3V rising / 2.8 falling (default)  
0x1 = 2.6V rising / 2.4 falling  
3
2
RESERVED  
EN_EXTILIM  
R
0x0  
0x1  
Reserved  
R/W  
Reset by:  
BQ25628:  
REG_RESET  
WATCHDOG  
Enable the external ILIM pin input current regulation  
0b = Disabled  
1b = Enabled (default)  
BQ25629: Reserved with default 0  
1:0  
CHG_RATE  
R/W  
0x0  
Reset by:  
The charge rate definition for the fast charge stage.  
REG_RESET  
The charging current fold back value is equal to ICHG  
register setting times the fold back ratio, then divided  
by the charge rate.  
0x0 = 1C (default)  
0x1 = 2C  
0x2 = 4C  
0x3 = 6C  
9.6.2.15 REG0x1A_NTC_Control_0 Register (Address = 0x1A) [Reset = 0x3D]  
REG0x1A_NTC_Control_0 is shown in 9-30 and described in 9-23.  
Return to the Summary Table.  
NTC Control 0  
9-30. REG0x1A_NTC_Control_0 Register  
7
6
5
4
3
2
1
0
TS_IGNORE  
R/W-0x0  
TS_TH_OTG_HOT  
R/W-0x1  
TS_TH_OTG_COLD  
R/W-0x1  
TS_ISET_WARM  
R/W-0x3  
TS_ISET_COOL  
R/W-0x1  
9-23. REG0x1A_NTC_Control_0 Register Field Descriptions  
Bit  
Field  
TS_IGNORE  
Type  
Reset  
Notes  
Description  
7
R/W  
0x0  
Reset by:  
REG_RESET  
WATCHDOG  
Ignore the TS feedback: the charger considers the TS  
is always good to allow charging and OTG modes,  
TS_STAT reports TS_NORMAL condition.  
0x0 = Not ignore (Default)  
0x1 = Ignore  
6:5  
TS_TH_OTG_HOT R/W  
0x1  
Reset by:  
REG_RESET  
OTG Mode TS_HOT rising temperature threshold to  
transition from normal operation into suspended OTG  
mode when a 103AT NTC thermistor is used,  
RT1=5.24kΩand RT2=30.31kΩ.  
0x0 = 55°C  
0x1 = 60°C (default)  
0x2 = 65°C  
0x3 = Disable  
4
TS_TH_OTG_COLD R/W  
0x1  
0x3  
Reset by:  
REG_RESET  
OTG Mode TS_COLD falling temperature threshold to  
transition from normal operation into suspended OTG  
mode when a 103AT NTC thermistor is used,  
RT1=5.24kΩand RT2=30.31kΩ.  
0x0 = -20°C  
0x1 = -10°C (default)  
3:2  
TS_ISET_WARM  
R/W  
Reset by:  
REG_RESET  
TS_WARM Current Setting  
0x0 = Charge Suspend  
0x1 = Set ICHG to 20%  
0x2 = Set ICHG to 40%  
0x3 = ICHG unchanged (default)  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
 
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9-23. REG0x1A_NTC_Control_0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Notes  
Description  
1:0  
TS_ISET_COOL  
R/W  
0x1  
Reset by:  
REG_RESET  
TS_COOL Current Setting  
0x0 = Charge Suspend  
0x1 = Set ICHG to 20% (default)  
0x2 = Set ICHG to 40%  
0x3 = ICHG unchanged  
9.6.2.16 REG0x1B_NTC_Control_1 Register (Address = 0x1B) [Reset = 0x25]  
REG0x1B_NTC_Control_1 is shown in 9-31 and described in 9-24.  
Return to the Summary Table.  
NTC Control 1  
9-31. REG0x1B_NTC_Control_1 Register  
7
6
5
4
3
2
1
0
TS_TH1_TH2_TH3  
R/W-0x1  
TS_TH4_TH5_TH6  
R/W-0x1  
TS_VSET_WARM  
R/W-0x1  
9-24. REG0x1B_NTC_Control_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7:5  
TS_TH1_TH2_TH3 R/W  
0x1  
Reset by:  
REG_RESET  
TH1, TH2 and TH3 comparator falling temperature  
thresholds when a 103AT NTC thermistor is used,  
RT1=5.24kΩand RT2=30.31kΩ.  
0x0 = TH1 is 0°C, TH2 is 5°C, TH3 is 15°C  
0x1 = TH1 is 0°C, TH2 is 10°C, TH3 is 15°C (default)  
0x2 = TH1 is 0°C, TH2 is 15°C, TH3 is 20°C  
0x3 = TH1 is 0°C, TH2 is 20°C, TH3 20°C  
0x4 = TH1 is -5°C, TH2 is 5°C, TH3 is 15°C  
0x5 = TH1 is -5°C, TH2 is 10°C, TH3 is 15°C  
0x6 = TH1 is -5°C, TH2 is 10°C, TH3 is 20°C  
0x7 = TH1 is 0°C, TH2 is 10°C, TH3 is 20°C  
4:2  
TS_TH4_TH5_TH6 R/W  
0x1  
Reset by:  
REG_RESET  
TH4, TH5 and TH6 comparator rising temperature  
thresholds when a 103AT NTC thermistor is used,  
RT1=5.24kΩand RT2=30.31kΩ.  
0x0 = TH4 is 35°C, TH5 is 40°C, TH6 is 60°C  
0x1 = TH4 is 35°C, TH5 is 45°C, TH6 is 60°C (default)  
0x2 = TH4 is 35°C, TH5 is 50°C, TH6 is 60°C  
0x3 = TH4 is 40°C, TH5 is 55°C, TH6 is 60°C  
0x4 = TH4 is 35°C, TH5 is 40°C, TH6 is 50°C  
0x5 = TH4 is 35°C, TH5 is 45°C, TH6 is 50°C  
0x6 = TH4 is 40°C, TH5 is 45°C, TH6 is 60°C  
0x7 = TH4 is 40°C, TH5 is 50°C, TH6 is 60°C  
1:0  
TS_VSET_WARM  
R/W  
0x1  
Reset by:  
TS_WARM Voltage Setting  
REG_RESET  
0x0 = Set VREG to VREG-300mV  
0x1 = Set VREG to VREG-200mV (default)  
0x2 = Set VREG to VREG-100mV  
0x3 = VREG unchanged  
9.6.2.17 REG0x1C_NTC_Control_2 Register (Address = 0x1C) [Reset = 0x3F]  
REG0x1C_NTC_Control_2 is shown in 9-32 and described in 9-25.  
Return to the Summary Table.  
NTC Control 2  
9-32. REG0x1C_NTC_Control_2 Register  
7
6
5
4
3
2
1
0
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: BQ25628 BQ25629  
 
 
 
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9-32. REG0x1C_NTC_Control_2 Register (continued)  
RESERVED  
R-0x0  
TS_VSET_SYM  
R/W-0x0  
TS_VSET_PREWARM  
TS_ISET_PREWARM  
TS_ISET_PRECOOL  
R/W-0x3  
R/W-0x3  
R/W-0x3  
9-25. REG0x1C_NTC_Control_2 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Notes  
Description  
RESERVED  
R
0x0  
RESERVED  
6
TS_VSET_SYM  
R/W  
0x0  
Reset by:  
REG_RESET  
When this bit is set to 0, the voltage regulation for  
TS_PRECOOL and TS_COOL is unchanged. When  
this bit is set to 1, TS_PRECOOL uses the  
TS_VSET_PREWARM setting of TS_PREWARM and  
TS_COOL uses the TS_VSET_WARM setting of  
TS_WARM .  
0x0 = VREG unchanged (default)  
0x1 = TS_COOLx matches TS_WARMx  
5:4  
3:2  
1:0  
TS_VSET_PREWAR R/W  
M
0x3  
0x3  
0x3  
Reset by:  
REG_RESET  
Advanced temperature profile voltage setting for  
TS_PREWARM (TH4 - TH5)  
0x0 = Set VREG to VREG-300mV  
0x1 = Set VREG to VREG-200mV  
0x2 = Set VREG to VREG-100mV  
0x3 = VREG unchanged (default)  
TS_ISET_PREWAR R/W  
M
Reset by:  
REG_RESET  
Advanced temperature profile current setting for  
TS_PREWARM zone(TH4 - TH5)  
0x0 = Charge Suspend  
0x1 = Set ICHG to 20%  
0x2 = Set ICHG to 40%  
0x3 = ICHG unchanged (default)  
TS_ISET_PRECOO R/W  
L
Reset by:  
REG_RESET  
Advanced temperature profile current setting for  
TS_PRECOOL zone (TH2 - TH3)  
0x0 = Charge Suspend  
0x1 = Set ICHG to 20%  
0x2 = Set ICHG to 40%  
0x3 = ICHG unchanged (default)  
9.6.2.18 REG0x1D_Charger_Status_0 Register (Address = 0x1D) [Reset = 0x00]  
REG0x1D_Charger_Status_0 is shown in 9-33 and described in 9-26.  
Return to the Summary Table.  
Charger Status 0  
9-33. REG0x1D_Charger_Status_0 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0x0  
ADC_DONE_STAT  
R-0x0  
TREG_STAT  
R-0x0  
VSYS_STAT  
R-0x0  
IINDPM_STAT  
R-0x0  
VINDPM_STAT  
R-0x0  
SAFETY_TMR_STAT  
R-0x0  
WD_STAT  
R-0x0  
9-26. REG0x1D_Charger_Status_0 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Notes  
Description  
RESERVED  
R
0x0  
Reserved  
6
ADC_DONE_STAT  
R
0x0  
ADC Conversion Status (in one-shot mode only)  
Note: Always reads 0 in continuous mode  
0x0 = Conversion not complete  
0x1 = Conversion complete  
5
4
TREG_STAT  
VSYS_STAT  
R
R
0x0  
0x0  
IC Thermal regulation status  
0x0 = Normal  
0x1 = Device in thermal regulation  
VSYS Regulation Status (forward mode)  
0x0 = Not in VSYSMIN regulation (BAT>VSYSMIN)  
0x1 = In VSYSMIN regulation (BAT<VSYSMIN)  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
 
 
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9-26. REG0x1D_Charger_Status_0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Notes  
Description  
3
IINDPM_STAT  
R
0x0  
In forward mode, indicates that either IINDPM  
regulation is active or ILIM pin regulation is active  
In OTG mode, indicates that IOTG regulation is active  
0x0 = Normal  
0x1 = In IINDPM/ILIM regulation or IOTG regulation  
2
VINDPM_STAT  
R
0x0  
VINDPM status (forward mode) or VOTG status (OTG  
mode, backup mode)  
0x0 = Normal  
0x1 = In VINDPM regulation or VOTG regulation  
1
0
SAFETY_TMR_STA  
T
R
R
0x0  
0x0  
Fast charge, trickle charge and pre-charge timer status  
0x0 = Normal  
0x1 = Safety timer expired  
WD_STAT  
I2C watch dog timer status  
0x0 = Normal  
0x1 = WD timer expired  
9.6.2.19 REG0x1E_Charger_Status_1 Register (Address = 0x1E) [Reset = 0x00]  
REG0x1E_Charger_Status_1 is shown in 9-34 and described in 9-27.  
Return to the Summary Table.  
Charger Status 1  
9-34. REG0x1E_Charger_Status_1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0x0  
CHG_STAT  
R-0x0  
VBUS_STAT  
R-0x0  
9-27. REG0x1E_Charger_Status_1 Register Field Descriptions  
Bit  
7:5  
4:3  
Field  
Type  
Reset  
Notes  
Description  
RESERVED  
CHG_STAT  
R
0x0  
Reserved  
R
0x0  
Charge Status bits  
0x0 = Not Charging or Charge Terminated  
0x1 = Trickle Charge, Pre-charge or Fast charge (CC  
mode)  
0x2 = Taper Charge (CV mode)  
0x3 = Top-off Timer Active Charging  
2:0  
VBUS_STAT  
R
0x0  
VBUS status bits  
BQ25629:  
000b = No qualified adapter, or EN_AUTO_INDET = 0.  
001b = USB SDP Adapter (500mA)  
010b = USB CDP Adapter (1.5A)  
011b = USB DCP Adapter (1.5A)  
100b = Unknown Adapter (500mA)  
101b = Non-Standard Adapter (1A/2.1A/2.4A)  
110b = Reserved  
111b = In boost OTG mode  
BQ25628:  
100b = Unknown Adapter (default IINDPM setting)  
9.6.2.20 REG0x1F_FAULT_Status_0 Register (Address = 0x1F) [Reset = 0x00]  
REG0x1F_FAULT_Status_0 is shown in 9-35 and described in 9-28.  
Return to the Summary Table.  
FAULT Status 0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: BQ25628 BQ25629  
 
 
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9-35. REG0x1F_FAULT_Status_0 Register  
7
6
5
4
3
2
1
0
VBUS_FAULT_STAT  
R-0x0  
BAT_FAULT_STAT  
R-0x0  
SYS_FAULT_STAT  
R-0x0  
OTG_FAULT_STAT  
R-0x0  
TSHUT_STAT  
R-0x0  
TS_STAT  
R-0x0  
9-28. REG0x1F_FAULT_Status_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
VBUS_FAULT_STAT R  
0x0  
VBUS fault status, VBUS OVP and sleep comparator  
0x0 = Normal  
0x1 = Device not switching due to over voltage  
protection or sleep comparator  
6
BAT_FAULT_STAT  
R
0x0  
BAT fault status, IBAT OCP and VBAT OVP  
0x0 = Normal  
0x1 = Device in battery over current protection or  
battery overvoltage protection  
5
4
SYS_FAULT_STAT  
OTG_FAULT_STAT  
R
R
0x0  
0x0  
VSYS under voltage and over voltage status  
0x0 = Normal  
0x1 = SYS in SYS short circuit or over voltage  
Forward mode: IBUS overcurrent or PMID overvoltage  
Boost mode: PMID and VBUS reverse-current, under  
voltage and over voltage status  
0x0 = Normal  
0x1 = Fault detected  
3
TSHUT_STAT  
TS_STAT  
R
R
0x0  
0x0  
IC temperature shutdown status  
0x0 = Normal  
0x1 = Device in thermal shutdown protection  
2:0  
The TS temperature zone.  
0x0 = TS_NORMAL  
0x1 = TS_COLD or TS_OTG_COLD or TS resistor  
string power rail is not available.  
0x2 = TS_HOT or TS_OTG_HOT  
0x3 = TS_COOL  
0x4 = TS_WARM  
0x5 = TS_PRECOOL  
0x6 = TS_PREWARM  
0x7 = TS pin bias reference fault  
9.6.2.21 REG0x20_Charger_Flag_0 Register (Address = 0x20) [Reset = 0x00]  
REG0x20_Charger_Flag_0 is shown in 9-36 and described in 9-29.  
Return to the Summary Table.  
Charger Flag 0  
9-36. REG0x20_Charger_Flag_0 Register  
7
6
5
4
3
2
1
0
RESERVED  
ADC_DONE_FLAG  
TREG_FLAG  
VSYS_FLAG  
IINDPM_FLAG  
VINDPM_FLAG  
SAFETY_TMR_FLA  
G
WD_FLAG  
R-0x0  
R-0x0  
R-0x0  
R-0x0  
R-0x0  
R-0x0  
R-0x0  
R-0x0  
9-29. REG0x20_Charger_Flag_0 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Notes  
Description  
RESERVED  
R
0x0  
Reserved  
6
ADC_DONE_FLAG  
R
0x0  
ADC conversion flag (only in one-shot mode)  
0x0 = Conversion not completed  
0x1 = Conversion completed  
5
TREG_FLAG  
R
0x0  
IC Thermal regulation flag  
0x0 = Normal  
0x1 = TREG signal rising threshold detected  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
 
 
 
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9-29. REG0x20_Charger_Flag_0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Notes  
Description  
4
VSYS_FLAG  
R
0x0  
VSYS min regulation flag  
0x0 = Normal  
0x1 = Entered or existed VSYS min regulation  
3
2
IINDPM_FLAG  
R
R
0x0  
0x0  
Indicates that either the IINDPM regulation loop, ILIM  
pin regulation or IOTG regulation loop has been  
entered.  
0x0 = Normal  
0x1 = IINDPM, ILIM or IOTG regulation signal rising  
edge detected  
VINDPM_FLAG  
VINDPM or VOTG flag  
0x0 = Normal  
0x1 = VINDPM or VOTG regulation signal rising edge  
detected  
1
0
SAFETY_TMR_FLA  
G
R
R
0x0  
0x0  
Fast charge, trickle charge and pre-charge timer flag  
0x0 = Normal  
0x1 = Fast charge timer expired rising edge detected  
WD_FLAG  
I2C watchdog timer flag  
0x0 = Normal  
0x1 = WD timer signal rising edge detected  
9.6.2.22 REG0x21_Charger_Flag_1 Register (Address = 0x21) [Reset = 0x00]  
REG0x21_Charger_Flag_1 is shown in 9-37 and described in 9-30.  
Return to the Summary Table.  
Charger Flag 1  
9-37. REG0x21_Charger_Flag_1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0x0  
CHG_FLAG  
R-0x0  
RESERVED  
R-0x0  
VBUS_FLAG  
R-0x0  
9-30. REG0x21_Charger_Flag_1 Register Field Descriptions  
Bit  
7:4  
3
Field  
Type  
Reset  
Notes  
Description  
RESERVED  
CHG_FLAG  
R
0x0  
Reserved  
R
0x0  
Charge status flag  
0x0 = Normal  
0x1 = Charge status changed  
2:1  
0
RESERVED  
VBUS_FLAG  
R
R
0x0  
0x0  
Reserved  
VBUS status flag  
0x0 = Normal  
0x1 = VBUS status changed  
9.6.2.23 REG0x22_FAULT_Flag_0 Register (Address = 0x22) [Reset = 0x00]  
REG0x22_FAULT_Flag_0 is shown in 9-38 and described in 9-31.  
Return to the Summary Table.  
FAULT Flag 0  
9-38. REG0x22_FAULT_Flag_0 Register  
7
6
5
4
3
2
1
0
VBUS_FAULT_FLAG BAT_FAULT_FLAG  
R-0x0 R-0x0  
SYS_FAULT_FLAG  
R-0x0  
OTG_FAULT_FLAG  
R-0x0  
TSHUT_FLAG  
R-0x0  
RESERVED  
R-0x0  
TS_FLAG  
R-0x0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: BQ25628 BQ25629  
 
 
 
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9-38. REG0x22_FAULT_Flag_0 Register (continued)  
9-31. REG0x22_FAULT_Flag_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
VBUS_FAULT_FLA  
G
R
0x0  
VBUS over-voltage or sleep flag  
0x0 = Normal  
0x1 = Entered VBUS OVP or sleep  
6
5
BAT_FAULT_FLAG  
SYS_FAULT_FLAG  
R
R
0x0  
0x0  
IBAT over-current and VBAT over-voltage flag  
0x0 = Normal  
0x1 = Entered battery discharged OCP or VBAT OVP  
VSYS over voltage and SYS short flag  
0x0 = Normal  
0x1 = Stopped switching due to system over-voltage or  
SYS short fault  
4
OTG_FAULT_FLAG  
R
0x0  
Forward mode: IBUS overcurrent or PMID overvoltage  
Boost mode: PMID and VBUS reverse-current, under  
voltage and over voltage flag  
0x0 = Normal  
0x1 = Turned off PMID_GD or stopped boost mode  
due to forward over-current, over-voltage or boost  
mode reverse-current, under-voltage or over-voltage  
faults  
3
TSHUT_FLAG  
R
0x0  
IC thermal shutdown flag  
0x0 = Normal  
0x1 = TS shutdown signal rising threshold detected  
2:1  
0
RESERVED  
TS_FLAG  
R
R
0x0  
0x0  
Reserved  
TS status flag  
0x0 = Normal  
0x1 = A change to TS status was detected  
9.6.2.24 REG0x23_Charger_Mask_0 Register (Address = 0x23) [Reset = 0x00]  
REG0x23_Charger_Mask_0 is shown in 9-39 and described in 9-32.  
Return to the Summary Table.  
Charger Mask 0  
9-39. REG0x23_Charger_Mask_0 Register  
7
6
5
4
3
2
1
0
RSERVED  
ADC_DONE_MASK  
TREG_MASK  
VSYS_MASK  
IINDPM_MASK  
VINDPM_MASK  
SAFETY_TMR_MAS  
K
WD_MASK  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
9-32. REG0x23_Charger_Mask_0 Register Field Descriptions  
Bit  
7
Field  
RSERVED  
Type  
Reset  
Notes  
Description  
R/W  
0x0  
Reserved  
6
ADC_DONE_MASK R/W  
0x0  
Reset by:  
REG_RESET  
ADC conversion mask flag (only in one-shot mode)  
0x0 = ADC conversion done does produce INT pulse  
0x1 = ADC conversion done does not produce INT  
pulse  
5
4
TREG_MASK  
VSYS_MASK  
R/W  
R/W  
0x0  
0x0  
Reset by:  
REG_RESET  
IC thermal regulation mask flag  
0x0 = Entering TREG does produce INT  
0x1 = Entering TREG does not produce INT  
Reset by:  
REG_RESET  
VSYS min regulation mask flag  
0x0 = Enter or exit VSYSMIN regulation does produce  
INT pulse  
0x1 = Enter or exit VSYSMIN regulation does not  
produce INT pulse  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
 
 
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9-32. REG0x23_Charger_Mask_0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Notes  
Description  
3
IINDPM_MASK  
R/W  
0x0  
Reset by:  
IINDPM, ILIM or IOTG mask  
REG_RESET  
0x0 = Enter IINDPM, ILIM or IOTG does produce INT  
pulse  
0x1 = Enter IINDPM, ILIM or IOTG does not produce  
INT pulse  
2
1
VINDPM_MASK  
R/W  
0x0  
0x0  
Reset by:  
REG_RESET  
VINDPM or VOTG mask  
0x0 = Enter VINDPM or VOTG does produce INT  
pulse  
0x1 = Enter VINDPM or VOTG does not produce INT  
pulse  
SAFETY_TMR_MAS R/W  
K
Reset by:  
REG_RESET  
Fast charge, trickle charge and pre-charge timer mask  
flag  
0x0 = Fast charge, trickle charge or pre-charge timer  
expiration does produce INT  
0x1 = Fast charge, trickle charge or pre-charge timer  
expiration does not produce INT  
0
WD_MASK  
R/W  
0x0  
Reset by:  
I2C watch dog timer mask  
REG_RESET  
0x0 = I2C watch dog timer expired does produce INT  
pulse  
0x1 = I2C watch dog timer expired does not produce  
INT pulse  
9.6.2.25 REG0x24_Charger_Mask_1 Register (Address = 0x24) [Reset = 0x00]  
REG0x24_Charger_Mask_1 is shown in 9-40 and described in 9-33.  
Return to the Summary Table.  
Charger Mask 1  
9-40. REG0x24_Charger_Mask_1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0x0  
CHG_MASK  
R/W-0x0  
RESERVED  
R-0x0  
VBUS_MASK  
R/W-0x0  
9-33. REG0x24_Charger_Mask_1 Register Field Descriptions  
Bit  
7:4  
3
Field  
Type  
Reset  
Notes  
Description  
RESERVED  
CHG_MASK  
R
0x0  
Reserved  
R/W  
0x0  
Reset by:  
Charge status mask flag  
REG_RESET  
0x0 = Charging status change does produce INT  
0x1 = Charging status change does not produce INT  
2:1  
0
RESERVED  
R
0x0  
0x0  
Reserved  
VBUS_MASK  
R/W  
Reset by:  
VBUS status mask flag  
REG_RESET  
0x0 = VBUS status change does produce INT  
0x1 = VBUS status change does not produce INT  
9.6.2.26 REG0x25_FAULT_Mask_0 Register (Address = 0x25) [Reset = 0x00]  
REG0x25_FAULT_Mask_0 is shown in 9-41 and described in 9-34.  
Return to the Summary Table.  
FAULT Mask 0  
9-41. REG0x25_FAULT_Mask_0 Register  
7
6
5
4
3
2
1
0
VBUS_FAULT_MAS BAT_FAULT_MASK SYS_FAULT_MASK OTG_FAULT_MASK  
K
TSHUT_MASK  
RESERVED  
TS_MASK  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: BQ25628 BQ25629  
 
 
 
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9-41. REG0x25_FAULT_Mask_0 Register (continued)  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R-0x0  
R/W-0x0  
9-34. REG0x25_FAULT_Mask_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
VBUS_FAULT_MAS R/W  
K
0x0  
Reset by:  
REG_RESET  
VBUS over-voltage and sleep comparator mask flag  
0x0 = Entering VBUS OVP or sleep does produce INT  
0x1 = Entering VBUS OVP or sleep does not produce  
INT  
6
BAT_FAULT_MASK R/W  
SYS_FAULT_MASK R/W  
OTG_FAULT_MASK R/W  
0x0  
0x0  
0x0  
Reset by:  
REG_RESET  
IBAT over current and VBAT overvoltage mask flag  
0x0 = IBAT OCP fault or VBAT OVP fault does  
produce INT  
0x1 = Neither IBAT OCP fault nor VBAT OVP fault  
produces INT  
5
4
Reset by:  
REG_RESET  
SYS over voltage and SYS short mask  
0x0 = System over-voltage or SYS short fault does  
produce INT  
0x1 = Neither system over voltage nor SYS short fault  
produces INT  
Reset by:  
REG_RESET  
Forward mode: IBUS overcurrent or PMID overvoltage  
Boost mode: PMID and VBUS reverse-current, under  
voltage and over voltage mask  
0x0 = OTG VBUS or PMID reverse-current, under  
voltage fault or over voltage fault does produce INT  
0x1 = Neither reverse-current fault, OTG PMID or  
VBUS under voltage nor over voltage fault produces  
INT  
3
TSHUT_MASK  
R/W  
0x0  
Reset by:  
REG_RESET  
IC thermal shutdown mask flag  
0x0 = TSHUT does produce INT  
0x1 = TSHUT does not produce INT  
2:1  
0
RESERVED  
TS_MASK  
R
0x0  
0x0  
Reserved  
R/W  
Reset by:  
REG_RESET  
Temperature charging profile interrupt mask  
0x0 = A change to TS temperature zone does produce  
INT  
0x1 = A change to the TS temperature zone does not  
produce INT  
9.6.2.27 REG0x26_ADC_Control Register (Address = 0x26) [Reset = 0x30]  
REG0x26_ADC_Control is shown in 9-42 and described in 9-35.  
Return to the Summary Table.  
ADC Control  
9-42. REG0x26_ADC_Control Register  
7
6
5
4
3
2
1
0
ADC_EN  
R/W-0x0  
ADC_RATE  
R/W-0x0  
ADC_SAMPLE  
R/W-0x3  
ADC_AVG  
R/W-0x0  
ADC_AVG_INIT  
R/W-0x0  
RESERVED  
R-0x0  
9-35. REG0x26_ADC_Control Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
ADC_EN  
R/W  
0x0  
Reset by:  
ADC Control  
REG_RESET  
WATCHDOG  
The registers POR to all 0 's, then after that always  
retain the last measurement, and never clear.  
0x0 = Disable (default)  
0x1 = Enable  
6
ADC_RATE  
R/W  
0x0  
Reset by:  
ADC conversion rate control  
REG_RESET  
0x0 = Continuous conversion (default)  
0x1 = One shot conversion  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
 
 
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9-35. REG0x26_ADC_Control Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Notes  
Description  
5:4  
ADC_SAMPLE  
R/W  
0x3  
Reset by:  
ADC sample speed  
REG_RESET  
0x0 = 12 bit effective resolution  
0x1 = 11 bit effective resolution  
0x2 = 10 bit effective resolution  
0x3 = 9 bit effective resolution (default)  
3
2
ADC_AVG  
R/W  
R/W  
0x0  
0x0  
Reset by:  
REG_RESET  
ADC average control  
0x0 = Single value (default)  
0x1 = Running average  
ADC_AVG_INIT  
Reset by:  
REG_RESET  
ADC average initial value control  
0x0 = Start average using the existing register value  
(default)  
0x1 = Start average using a new ADC conversion  
1:0  
RESERVED  
R
0x0  
Reserved  
9.6.2.28 REG0x27_ADC_Function_Disable_0 Register (Address = 0x27) [Reset = 0x00]  
REG0x27_ADC_Function_Disable_0 is shown in 9-43 and described in 9-36.  
Return to the Summary Table.  
ADC Function Disable 0  
9-43. REG0x27_ADC_Function_Disable_0 Register  
7
6
5
4
3
2
1
0
IBUS_ADC_DIS  
R/W-0x0  
IBAT_ADC_DIS  
R/W-0x0  
VBUS_ADC_DIS  
R/W-0x0  
VBAT_ADC_DIS  
R/W-0x0  
VSYS_ADC_DIS  
R/W-0x0  
TS_ADC_DIS  
R/W-0x0  
TDIE_ADC_DIS  
R/W-0x0  
VPMID_ADC_DIS  
R/W-0x0  
9-36. REG0x27_ADC_Function_Disable_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
IBUS_ADC_DIS  
IBAT_ADC_DIS  
VBUS_ADC_DIS  
VBAT_ADC_DIS  
VSYS_ADC_DIS  
TS_ADC_DIS  
R/W  
0x0  
Reset by:  
REG_RESET  
IBUS ADC control  
0x0 = Enable (Default)  
0x1 = Disable  
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Reset by:  
REG_RESET  
IBAT ADC control  
0x0 = Enable (Default)  
0x1 = Disable  
Reset by:  
REG_RESET  
VBUS ADC control  
0x0 = Enable (Default)  
0x1 = Disable  
Reset by:  
REG_RESET  
VBAT ADC control  
0x0 = Enable (Default)  
0x1 = Disable  
Reset by:  
REG_RESET  
VSYS ADC control  
0x0 = Enable (Default)  
0x1 = Disable  
Reset by:  
REG_RESET  
TS ADC control  
0x0 = Enable (Default)  
0x1 = Disable  
TDIE_ADC_DIS  
VPMID_ADC_DIS  
Reset by:  
REG_RESET  
TDIE ADC control  
0x0 = Enable (Default)  
0x1 = Disable  
Reset by:  
REG_RESET  
VPMID ADC control  
0x0 = Enable (Default)  
0x1 = Disable  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: BQ25628 BQ25629  
 
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9.6.2.29 REG0x28_IBUS_ADC Register (Address = 0x28) [Reset = 0x0000]  
REG0x28_IBUS_ADC is shown in 9-44 and described in 9-37.  
Return to the Summary Table.  
IBUS ADC  
9-44. REG0x28_IBUS_ADC Register  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
IBUS_ADC  
R-0x0  
5
4
3
2
0
IBUS_ADC  
R-0x0  
RESERVED  
R-0x0  
9-37. REG0x28_IBUS_ADC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
15:1  
IBUS_ADC  
R
0x0  
IBUS ADC reading  
Reported in 2 's Complement.  
When the current is flowing from VBUS to PMID, IBUS  
ADC reports positive value, and when the current is  
flowing from PMID to VBUS, IBUS ADC reports  
negative value.  
POR: 0mA (0h)  
Format: 2s Complement  
Range: -4000mA-4000mA (7830h-7FFFh), (0h-7D0h)  
Clamped Low  
Clamped High  
Bit Step: 2mA  
0
RESERVED  
R
0x0  
Reserved  
9.6.2.30 REG0x2A_IBAT_ADC Register (Address = 0x2A) [Reset = 0x0000]  
REG0x2A_IBAT_ADC is shown in 9-45 and described in 9-38.  
Return to the Summary Table.  
IBAT ADC  
9-45. REG0x2A_IBAT_ADC Register  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
0
IBAT_ADC  
R-0x0  
5
4
3
2
IBAT_ADC  
R-0x0  
RESERVED  
R-0x0  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
 
 
 
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9-38. REG0x2A_IBAT_ADC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
15:2  
IBAT_ADC  
R
0x0  
IBAT ADC reading  
Reported in 2 's Complement.  
The IBAT ADC reports positive value for the battery  
charging current, and negative value for the battery  
discharging current.  
The IBAT ADC resets to zero when EN_CHG=0.  
POR: 0mA (0h)  
Format: 2s Complement  
Range: -7500mA-4000mA (38ADh-3FFFh), (0h-3E8h)  
Clamped Low  
Clamped High  
Bit Step: 4mA  
If polarity of battery current changes from charging to  
discharging or vice-versa during the ADC  
measurement, the conversion is aborted and the  
register reports code 0x8000 (which is code 0x2000 for  
IBAT_ADC field)  
1:0  
RESERVED  
R
0x0  
Reserved  
9.6.2.31 REG0x2C_VBUS_ADC Register (Address = 0x2C) [Reset = 0x0000]  
REG0x2C_VBUS_ADC is shown in 9-46 and described in 9-39.  
Return to the Summary Table.  
VBUS ADC  
9-46. REG0x2C_VBUS_ADC Register  
15  
14  
6
13  
12  
11  
10  
9
1
8
0
RESERVED  
R-0x0  
VBUS_ADC  
R-0x0  
7
5
4
3
2
VBUS_ADC  
R-0x0  
RESERVED  
R-0x0  
9-39. REG0x2C_VBUS_ADC Register Field Descriptions  
Bit  
15  
Field  
Type  
Reset  
Notes  
Description  
RESERVED  
VBUS_ADC  
R
0x0  
Reserved  
14:2  
R
0x0  
VBUS ADC reading  
POR: 0mV (0h)  
Range: 0mV-19850mV (0h-1388h)  
Clamped High  
Bit Step: 3.97mV  
1:0  
RESERVED  
R
0x0  
Reserved  
9.6.2.32 REG0x2E_VPMID_ADC Register (Address = 0x2E) [Reset = 0x0000]  
REG0x2E_VPMID_ADC is shown in 9-47 and described in 9-40.  
Return to the Summary Table.  
VPMID ADC  
9-47. REG0x2E_VPMID_ADC Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R-0x0  
VPMID_ADC  
R-0x0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: BQ25628 BQ25629  
 
 
 
 
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9-47. REG0x2E_VPMID_ADC Register (continued)  
7
6
5
4
3
2
1
0
VPMID_ADC  
R-0x0  
RESERVED  
R-0x0  
9-40. REG0x2E_VPMID_ADC Register Field Descriptions  
Bit  
15  
Field  
Type  
Reset  
Notes  
Description  
RESERVED  
VPMID_ADC  
R
0x0  
Reserved  
14:2  
R
0x0  
VPMID ADC reading  
POR: 0mV (0h)  
Range: 0mV-19850mV (0h-1388h)  
Clamped High  
Bit Step: 3.97mV  
1:0  
RESERVED  
R
0x0  
Reserved  
9.6.2.33 REG0x30_VBAT_ADC Register (Address = 0x30) [Reset = 0x0000]  
REG0x30_VBAT_ADC is shown in 9-48 and described in 9-41.  
Return to the Summary Table.  
VBAT ADC  
9-48. REG0x30_VBAT_ADC Register  
15  
7
14  
13  
12  
11  
10  
9
1
8
RESERVED  
R-0x0  
VBAT_ADC  
R-0x0  
6
5
4
3
2
0
VBAT_ADC  
R-0x0  
RESERVED  
R-0x0  
9-41. REG0x30_VBAT_ADC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
15:13  
12:1  
RESERVED  
VBAT_ADC  
R
0x0  
Reserved  
R
0x0  
VBAT ADC reading  
POR: 0mV (0h)  
Range: 0mV-5572mV (0h-AF0h)  
Clamped High  
Bit Step: 1.99mV  
0
RESERVED  
R
0x0  
Reserved  
9.6.2.34 REG0x32_VSYS_ADC Register (Address = 0x32) [Reset = 0x0000]  
REG0x32_VSYS_ADC is shown in 9-49 and described in 9-42.  
Return to the Summary Table.  
VSYS ADC  
9-49. REG0x32_VSYS_ADC Register  
15  
7
14  
13  
12  
11  
10  
9
1
8
RESERVED  
R-0x0  
VSYS_ADC  
R-0x0  
6
5
4
3
2
0
VSYS_ADC  
R-0x0  
RESERVED  
R-0x0  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
 
 
 
 
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9-49. REG0x32_VSYS_ADC Register (continued)  
9-42. REG0x32_VSYS_ADC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
15:13  
12:1  
RESERVED  
VSYS_ADC  
R
0x0  
Reserved  
R
0x0  
VSYS ADC reading  
POR: 0mV (0h)  
Range: 0mV-5572mV (0h-AF0h)  
Clamped High  
Bit Step: 1.99mV  
0
RESERVED  
R
0x0  
Reserved  
9.6.2.35 REG0x34_TS_ADC Register (Address = 0x34) [Reset = 0x0000]  
REG0x34_TS_ADC is shown in 9-50 and described in 9-43.  
Return to the Summary Table.  
TS ADC  
9-50. REG0x34_TS_ADC Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
RESERVED  
R-0x0  
TS_ADC  
R-0x0  
4
3
TS_ADC  
R-0x0  
9-43. REG0x34_TS_ADC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
15:12  
11:0  
RESERVED  
TS_ADC  
R
0x0  
Reserved  
R
0x0  
TS ADC reading as TS pin voltage in percentage of  
bias reference. Valid with TS pin bias reference active.  
POR: 0%(0h)  
Range: 0% - 98.3103% (0h-3FFh)  
Clamped High  
Bit Step: 0.0961%  
9.6.2.36 REG0x36_TDIE_ADC Register (Address = 0x36) [Reset = 0x0000]  
REG0x36_TDIE_ADC is shown in 9-51 and described in 9-44.  
Return to the Summary Table.  
TDIE ADC  
9-51. REG0x36_TDIE_ADC Register  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
0
RESERVED  
R-0x0  
TDIE_ADC  
R/W-0x0  
5
4
3
2
TDIE_ADC  
R/W-0x0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: BQ25628 BQ25629  
 
 
 
 
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
9-44. REG0x36_TDIE_ADC Register Field Descriptions  
Bit  
15:12  
11:0  
Field  
Type  
Reset  
Notes  
Description  
RESERVED  
TDIE_ADC  
R
0x0  
Reserved  
R/W  
0x0  
TDIE ADC reading  
Reported in 2 's Complement.  
POR: 0°C(0h)  
Format: 2s Complement  
Range: -40°C - 150°C (FB0h-12Ch)  
Clamped Low  
Clamped High  
Bit Step: 0.5°C  
9.6.2.37 REG0x38_Part_Information Register (Address = 0x38) [Reset = 0x02]  
REG0x38_Part_Information is shown in 9-52 and described in 9-45.  
Return to the Summary Table.  
Part Information  
9-52. REG0x38_Part_Information Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0x0  
PN  
DEV_REV  
R-0x2  
R-0x0  
9-45. REG0x38_Part_Information Register Field Descriptions  
Bit  
7:6  
5:3  
Field  
Type  
Reset  
Notes  
Description  
RESERVED  
PN  
R
0x0  
Reserved  
R
0x0  
Device Part number  
2h = BQ25628  
6h = BQ25629  
2:0  
DEV_REV  
R
0x2  
Device Revision  
Copyright © 2022 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
 
 
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
10 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Application Information  
A typical application consists of the device configured as an I2C controlled power path management device and  
a single cell battery charger for Li-Ion and Li-polymer batteries used in a wide range of smartphone and other  
portable devices. It integrates an input reverse-block FET (RBFET, Q1), high-side switching FET (HSFET, Q2),  
low-side switching FET (LSFET, Q3), and battery FET (BATFET Q4) between the system and battery. The  
device also integrates a bootstrap diode for the high-side gate drive.  
10.2 Typical Application  
System  
Load  
Q1  
Q2  
1 uH  
3.9 - 18 V  
1 µF  
SW  
VBUS  
VBUS  
PMID  
47 nF  
BTST  
20uF  
Q3  
4.7 µF  
REGN  
10 µF  
Ear  
Phone  
GND  
SYS  
1.85 - 4.85 V  
1.8 - 4.8 V  
REGN  
Q4  
PMID_GD  
ILIM  
10 µF  
BAT  
TS_BIAS  
SYS  
TS  
VREF  
BQ25628  
SYS  
STAT  
SDA  
QON  
SCL  
INT  
CE  
Host  
Optional  
10-1. BQ25628 Application Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: BQ25628 BQ25629  
 
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
System  
Load  
Q1  
Q2  
1 uH  
3.9 - 18 V  
1 µF  
SW  
VBUS  
VBUS  
PMID  
47 nF  
BTST  
20uF  
Q3  
4.7 µF  
REGN  
10 µF  
Ear  
Phone  
GND  
SYS  
1.85 - 4.85 V  
1.8 - 4.8 V  
REGN  
Q4  
PMID_GD  
10 µF  
BAT  
TS  
REGN  
D+  
D-  
USB  
SYS  
VREF  
SYS  
BQ25629  
STAT  
SDA  
QON  
SCL  
INT  
CE  
Host  
Optional  
10-2. BQ25629 Application Diagram  
10.2.1 Design Requirements  
10-1. Design Requirements  
PARAMETER  
VALUE  
3.9 -18.0 V  
3200 mA  
320 mA  
VBUS range  
Input current limit (REG0x06-0x07)  
Fast charge current (REG0x02-0x03)  
Minimum system voltage (REG0x0E-0x0F)  
Battery regulation voltage (REG0x04-0x05)  
3520 mV  
4200 mV  
10.2.2 Detailed Design Procedure  
10.2.2.1 Inductor Selection  
The 1.5-MHz switching frequency allows the use of small inductor and capacitor values to maintain an inductor  
saturation current higher than the charging current (ICHG) plus half the ripple current (IRIPPLE):  
I
SAT ICHG + (1/2) IRIPPLE  
(5)  
Copyright © 2022 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
The inductor ripple current depends on the input voltage (VVBUS), the duty cycle (D = VBAT/VVBUS), the switching  
frequency (fS) and the inductance (L).  
VIN ´D ´ (1- D)  
=
IRIPPLE  
fs ´ L  
(6)  
The maximum inductor ripple current occurs when the duty cycle (D) is approximately 0.5. Usually inductor ripple  
is designed between 20% and 40% of the maximum charging current as a trade-off between inductor size and  
efficiency.  
10.2.2.2 Input Capacitor  
Design input capacitance to provide enough ripple current rating to absorb input switching ripple current. The  
worst case RMS ripple current is half of the charging current when duty cycle is 0.5. If the converter does not  
operate at 50% duty cycle, then the worst case capacitor RMS current ICin occurs where the duty cycle is closest  
to 50% and can be estimated using 方程7.  
ICIN = ICHG ´ D ´ (1- D)  
(7)  
Low ESR ceramic capacitor such as X7R or X5R is preferred for input decoupling capacitor and should be  
placed as close as possible to the drain of the high-side MOSFET (PMID) and source of the low-side MOSFET  
(GND). Voltage rating of the capacitor must be higher than normal input voltage level. A rating of 25-V or higher  
capacitor is preferred for 15 V input voltage. 10-μF ceramic capacitor is suggested for typical of 2.0A charging  
current.  
10.2.2.3 Output Capacitor  
Ensure that the output capacitance has enough ripple current rating to absorb the output switching ripple current.  
方程8 shows the output capacitor RMS current ICOUT calculation.  
IRIPPLE  
ICOUT  
=
» 0.29 ´ IRIPPLE  
2 ´  
3
(8)  
(9)  
The output capacitor voltage ripple can be calculated as follows:  
V
V
SYS  
SYS  
8 × L × C  
ΔV  
=
1 −  
V
SYS  
2
VBUS  
× f  
SW  
SYS  
At certain input and output voltage and switching frequency, the voltage ripple can be reduced by increasing the  
output filter LC.  
The charger device has internal loop compensation optimized for 10-μF ceramic output capacitor. The  
preferred ceramic capacitor is 10-V rating, X7R or X5R.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: BQ25628 BQ25629  
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
10.2.3 Application Curves  
VVBUS = 5 V  
ICHG = 1 A  
VBAT = 3.2 V  
VVBUS = 5 V  
ICHG = 1 A  
VBAT = 3.2 V  
10-3. Power-Up with Charge Enabled  
10-4. Power-Down  
VVBUS = 5 V  
ICHG = 1 A  
VBAT = 3.2 V  
VVBUS = 5 V  
ICHG = 1 A  
VBAT = 3.2 V  
10-5. Charge Enable  
10-6. Charge Disable  
VBAT = 3.2 V  
VVBUS = 5 V  
VBAT = 3.2 V  
ICHG = 480mA  
10-7. System Reset by QON without VBUS  
Present  
10-8. System Reset by QON with VBUS Present  
Copyright © 2022 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
VVBUS = 5 V  
ISYS = 50 mA  
VBAT = 3.2 V  
VVBUS = 5 V  
ICHG = 1 A  
VVBAT = 3.2 V  
Charge Disabled  
10-9. PFM Switching in Buck Mode  
10-10. PWM Switching in Buck Mode  
VBAT = 3.8 V  
VBOOST = 5.04 V  
VVBUS = 5 V  
ISYS from 0 A to 1 A  
VBAT = 3.2 V  
IBOOST = 100 mA  
Charge Disabled  
10-12. Boost Mode Power Up  
10-11. System Load Transient  
VBAT = 3.8 V  
IBOOST = 100 mA  
VBOOST = 5.04V  
VBAT = 3.8 V  
IBOOST= 50 mA  
VBOOST = 5.04V  
10-13. Boost Mode Power Down  
10-14. PFM Switching in Boost Mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: BQ25628 BQ25629  
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
VBAT = 3.8 V  
IBOOST= 1 A  
VBOOST = 5.04V  
VBAT = 3.8 V  
VBOOST = 5.04 V  
IBOOST from 5 mA to 500 mA  
10-15. PWM Switching in Boost Mode  
10-16. Boost Mode Load Transient  
Copyright © 2022 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
11 Power Supply Recommendations  
In order to provide an output voltage on SYS, the device requires a power supply between 3.9 V and 18.0 V  
input with at least 100-mA current rating connected to VBUS or a single-cell Li-Ion battery with voltage >  
VBATUVLO connected to BAT.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: BQ25628 BQ25629  
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
The switching node rise and fall times should be minimized for lowest switching loss. Proper layout of the  
components to minimize high frequency current path loop (see 12-1) is important to prevent electrical and  
magnetic field radiation and high frequency resonant problems. Follow this specific order carefully to achieve the  
proper layout.  
1. For lowest switching noise during forward/charge mode, place the decoupling capacitor CPMID1 and then  
bulk capacitor CPMID2 positive terminals as close as possible to PMID pin. Place the capacitor ground  
terminal close to the GND pin using the shortest copper trace connection or GND plane on the same layer  
as the IC. See 12-2.  
2. For lowest switching noise during reverse/OTG mode, place the CSYS1 and CSYS2 output capacitors'  
positive terminals near the SYS pin. The capacitors' ground terminals must be via'd down through multiple  
vias to an all ground internal layer that returns to IC GND pin through multiple vias under the IC. See 图  
12-2.  
3. Since REGN powers the internal gate drivers, place the CREGN capacitor positive terminal close to REGN  
pin to minimize switching noise. The capacitor's ground terminal must be via'd down through multiple vias to  
an all ground internal layer that returns to IC GND pin through multiple vias under the IC. See 12-2.  
4. Place the CVBUS and CBAT capacitors positive terminals as close to the VBUS and BAT pins as possible.  
The capacitors' ground terminals must be via'd down through multiple vias to an all ground internal layer that  
returns to IC GND pin through multiple vias under the IC. See 12-2.  
5. Place the inductor input pin near the positive terminal of the SYS pin capacitors. Due to the PMID capacitor  
placement requirements, the inductor's switching node terminal must be via'd down with multiple via's to a  
second internal layer with a wide trace that returns to the SW pin with multiple vias. See 12-3. Using  
multiple vias ensures that the via's additional resistance is negligible compared to the inductor's dc  
resistance and therefore does not impact efficiency. The vias additional series inductance is negligible  
compared to the inductor's inductance.  
6. Place the BTST capacitor on the opposite side from the IC using vias to connect to the BTST pin and SW  
node. See 12-4.  
7. A separate analog GND plane for non-power related resistors and capacitors is not required if those  
components are placed away from the power components traces and planes.  
8. Ensure that the I2C SDA and SCL lines are routed away from the SW node.  
Additionally, it is important that the PCB footprint and solder mask for BQ25628 cover the entire length of each of  
the pins. GND, SW, PMID, SYS and BAT pins extend further into the package than the other pins. Using the  
entire length of these pins reduces parasitic resistance and increases thermal conductivity from the package into  
the board.  
12.2 Layout Example  
+
+
œ
12-1. High Frequency Current Path  
Copyright © 2022 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
 
 
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
12-2. Layout Example: Top Layer (red) and All PGND Internal Layer 2 (brown)  
12-3. Layout Example: Inner Layer 3 (AGND pour; SW node pour; signal routing)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: BQ25628 BQ25629  
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
12-4. Layout Example: Bottom Layer X-Ray From Top (PGND pour; BTST capacitor; redundant SW,  
SYS and BAT pours)  
Copyright © 2022 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
13 Device and Documentation Support  
13.1 Device Support  
13.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
13.2 Documentation Support  
13.2.1 Related Documentation  
For related documentation see the following:  
BQ25601 and BQ25601D (PWR877) Evaluation Module User's Guide  
13.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
13.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
13.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
13.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: BQ25628 BQ25629  
 
 
 
 
 
 
 
 
BQ25628, BQ25629  
ZHCSN01 DECEMBER 2022  
www.ti.com.cn  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: BQ25628 BQ25629  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-Jan-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ25628RYKR  
BQ25629RYKR  
ACTIVE  
ACTIVE  
WQFN-HR  
WQFN-HR  
RYK  
RYK  
18  
18  
3000 RoHS & Green  
3000 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
BQ628  
BQ629  
Samples  
Samples  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-Jan-2023  
Addendum-Page 2  
PACKAGE OUTLINE  
WQFN-HR - 0.8 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RYK0018A  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
2.6  
2.4  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
0.525  
0.325  
3X  
0.5  
0.3  
5X  
PKG  
0.675  
0.475  
2X  
0.725  
2X  
0.6  
0.525  
(0.1) TYP  
4X  
0.4  
9
6
0.9  
0.7  
10  
2X 0.85  
5X  
5
2X 0.407  
2X 0.007  
0
PKG  
2X 0.393  
2X 0.85  
1
14  
0.25  
0.15  
22X  
15  
18  
0.519  
0.319  
0.1  
C A B  
C
0.05  
PIN 1 ID (OPTIONAL)  
4226526/A 02/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
WQFN-HR - 0.8 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RYK0018A  
2X (0.775)  
(0.619)  
PKG  
2X (0.825)  
15  
18  
(1.141)  
4X (0.7)  
5X (1)  
2X (0.95)  
1
14  
2X (0.85)  
2X (0.393)  
PKG  
(0)  
2X (0.007)  
2X (0.407)  
22X (0.2)  
(R 0.05) TYP  
10  
5
2X (1.1)  
(1.15)  
9
6
5X (0.6)  
3X (0.625)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4226526/A 02/2021  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271) .  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
WQFN-HR - 0.8 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RYK0018A  
2X (0.775)  
(0.619)  
PKG  
2X (0.825)  
15  
18  
(1.141)  
4X (0.7)  
1
5X (1)  
2X (0.95)  
14  
2X (0.85)  
2X (0.393)  
PKG  
(0)  
2X (0.007)  
2X (0.407)  
22X (0.2)  
(R 0.05) TYP  
10  
5
2X (1.1)  
(1.15)  
9
6
5X (0.6)  
3X (0.625)  
SOLDER PASTE EXAMPLE  
BASED ON 0.100 mm THICK STENCIL  
SCALE: 20X  
4226526/A 02/2021  
NOTES: (continued)  
5.  
Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY