BQ25700A [TI]

具有系统功率监控器和处理器的 SMBus 1 至 4 节 NVDC 降压/升压电池充电控制器;
BQ25700A
型号: BQ25700A
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有系统功率监控器和处理器的 SMBus 1 至 4 节 NVDC 降压/升压电池充电控制器

电池 控制器 监控
文件: 总84页 (文件大小:2042K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
具有系统功率监测器和处理器热量监测器的 bq25700A SMBus 多化合物电  
池降压/升压充电控制器  
1 特性  
输入电流优化器 (ICO) 可获取最大输入功率  
为任意化学电池充电:Li+LiFePO4、镍镉、镍  
氢、铅酸  
1
从各种输入源为 1 4 节电池充电  
3.5V 24V 输入工作电压  
封装:32 引脚 4 x 4 WQFN  
支持 USB 2.0USB 3.0USB 3.1 (Type-C)  
USB_PD 输入电流设置  
2 应用  
在降压和升压操作之间进行无缝转换  
超极本、笔记本、可拆卸电脑、平板电脑和移动电  
提供输入电流和电压调节(IDPM VDPM)以  
防电源过载  
工业用和医疗用设备  
带可充电电池的便携式设备  
用于 CPU 节流的功率/电流监控器  
综合 PROCHOT 设置,符合 IMVP8  
输入和电池电流监控器  
3 说明  
系统功率监控器,符合 IMVP8  
bq25700A 是一种同步 NVDC 电池降压/升压充电控制  
器,为空间受限的多化合物电池充电应用提供了组件数  
量少的高效 解决方案。  
VDC (NVDC) 电源路径管理  
无需电池或使用深度放电的电池亦可瞬时启动  
适配器满载时,电池可为系统补充电量  
NVDC-1 配置可将系统电压稳定在电池电压范围内,  
但不会低于系统最小电压。即便在电池完全放电或被取  
出时,系统也仍会继续工作。当负载功率超过输入源额  
定值时,电池会进入补电模式并防止系统崩溃。  
从电池给 USB 端口加电 (USB OTG)  
输出 4.48V 20.8V USB PD 兼容  
输出电流限制高达 6.35A  
用于 1µH 3.3µH 电感器的 800kHz 1.2MHz  
可编程开关频率  
The bq25700A USB 适配器、高电压 USB PD 源和  
传统适配器等各种输入源为电池充电。  
可通过主机控制接口实现灵活系统配置  
SMBus (bq25700A) 端口用于优化系统性能和  
状态报告  
器件信息 (1)  
器件型号  
bq25700A  
封装  
WQFN (32)  
封装尺寸(标称值)  
硬件引脚可用于设置输入电流限制,无需 EC 控  
4.00mm × 4.00mm  
集成型 ADC 可监控电压、电流和功率  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
高精度调节和监控  
±0.5% 充电电压调节  
±2% 输入/充电电流调节  
±2% 输入/充电电流监控  
±5% 功率监控器  
703A I2C  
VSYS  
Adapter  
3.5V œ 24V  
BATT  
(1S-4S)  
Q2  
Q3  
Q1  
Q4  
安全性  
HIDRV1  
SW1BTST1BTST2SW2  
HIDRV2  
LODRV1  
LODRV2  
热关断  
SYS  
VBUS  
ACN  
ACP  
BATDRV  
SRP  
bq25700A  
输入、系统、电池过电压保护  
SRN  
MOSFET 电感过流保护  
低电池静态电流  
Host  
Copyright © 2017, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLUSCQ8  
 
 
 
 
 
 
 
 
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
目录  
8.5 Programming .......................................................... 30  
8.6 Register Map........................................................... 32  
Application and Implementation ........................ 65  
9.1 Application Information .......................................... 65  
9.2 Typical Application .................................................. 65  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 4  
Pin Configuration and Functions......................... 5  
Specifications......................................................... 8  
7.1 Absolute Maximum Ratings ...................................... 8  
7.2 ESD Ratings ............................................................ 8  
7.3 Recommended Operating Conditions....................... 8  
7.4 Thermal Information.................................................. 9  
7.5 Electrical Characteristics........................................... 9  
7.6 Timing Requirements.............................................. 17  
7.7 Typical Characteristics ........................................... 18  
Detailed Description ............................................ 21  
8.1 Overview ................................................................ 21  
8.2 Functional Block Diagram ...................................... 22  
8.3 Feature Description................................................. 23  
8.4 Device Functional Modes........................................ 29  
9
10 Power Supply Recommendations ..................... 72  
11 Layout................................................................... 73  
11.1 Layout Guidelines ................................................. 73  
11.2 Layout Example .................................................... 73  
12 器件和文档支持 ..................................................... 75  
12.1 器件支持 ............................................................... 75  
12.2 文档支持 ............................................................... 75  
12.3 接收文档更新通知 ................................................. 75  
12.4 社区资源................................................................ 75  
12.5 ....................................................................... 75  
12.6 静电放电警告......................................................... 75  
12.7 术语表 ................................................................... 75  
13 机械、封装和可订购信息....................................... 76  
8
4 修订历史记录  
Changes from Original (May 2017) to Revision A  
Page  
已删除 删除了特性中补电模式下的理想二极管 运行 ............................................................................................................ 1  
已更改 将 2.2µH 改为 3.3µH 并删除了特性中的 低厚度 ..................................................................................................... 1  
已添加 在特性中增加了可监控电压、电流和功率的 集成型 ADC......................................................................................... 1  
已更改 将说明中的输入源从过载改为 防止系统崩溃” ....................................................................................................... 1  
Changed 18.5 V for 3-cell, and 19.5 for 4-cell to 19.5 V for 3-cell/4-cell in CELL_BATPRESZ description.......................... 5  
Changed I to O for CMPOUT I/O ........................................................................................................................................... 6  
Changed V(IADP) to V(IADPT) in IADPT description ................................................................................................................... 6  
Deleted minimum 10-ms and added minimum to PROCHOT description ............................................................................ 6  
Changed REG0x3B to REG0x3D in VDPM_REG_ACC Test Conditions in Electrical Characteristics ........................................ 11  
Changed REG0x3D to REG0x3B in VOTG_REG_ACC Test Conditions in Electrical Characteristics ........................................ 11  
Changed REG0x12[15] = 0 to REG0x12[15] = 1 in Test Conditions for IBAT_BATFET_ON........................................................ 11  
Changed REG0x12[15] = 0 to REG0x12[15] = 1 in Test Conditions for IBAT_BATFET_ON........................................................ 11  
Changed IBATOVP test condition from: on SRP and SRN to: on VSYS pin............................................................................ 14  
Added overbar to (BATDRV) in heading ............................................................................................................................. 16  
已添加 overbar to PROCHOT in Overview .......................................................................................................................... 21  
已更改 18.5V to 19.5V in 3S row SYSOVP column in 1 ................................................................................................. 23  
已更改 0 to 0 A, lowside to low-side, and LSFET turn-on to LSFET turn-on when the HSFET is off in Continuous  
Conduction Mode (CCM) ..................................................................................................................................................... 24  
已更改 Pulse Frequency Modulation (PFM) ........................................................................................................................ 24  
已更改 during forward mode to during forward supplement mode in High-Accuracy Current Sense Amplifier (IADPT  
and IBAT).............................................................................................................................................................................. 25  
已更改 Processor Hot Indication .......................................................................................................................................... 26  
已更改 IADP to IADPT in 13 ............................................................................................................................................ 27  
已更改 bq2570x to bq2570xA in 14 ................................................................................................................................ 28  
已添加 overbar to PROCHOT in PROCHOT Status ........................................................................................................... 28  
2
版权 © 2017–2018, Texas Instruments Incorporated  
 
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
修订历史记录 (接下页)  
已更改 subscript of ILIM2_VTH in Input Overcurrent Protection (ACOC).................................................................................. 28  
已更改 3s – 18.5 V to 3s/4s – 19.5 V in System Overvoltage Protection (SYSOVP) .......................................................... 29  
已添加 REG to Battery Charging ......................................................................................................................................... 29  
已更改 0 mA – 6350 mA to 50 mA – 6400 mA for 3Fh in 6 ........................................................................................... 33  
已更改 Device Address to DeviceID for FFh in 6 ........................................................................................................... 33  
已添加 <default at POR> to PWM_FREQ description in 7 ............................................................................................. 35  
已添加 sentence to IBAT_GAIN description in 8 ............................................................................................................ 35  
已更改 LDO to internal resistor in EN_LDO description in 8 .......................................................................................... 35  
已删除 Independent Comparator Reference in 10 .......................................................................................................... 36  
已删除 Independent Comparator Polarity in 10 .............................................................................................................. 37  
已删除 Independent Comparator Deglitch Time in 10 .................................................................................................... 37  
已添加 independent to FORCE_LATCHOFF description in 10 ...................................................................................... 37  
已添加 <default at POR> to BATFETOFF_ HIZ description in 14 .................................................................................. 40  
已添加 <default at POR> to PSYS_OTG_ IDCHG description in 14 .............................................................................. 40  
已添加 PROCHOT Pulse Extension Enable to EN_PROCHOT_EXT description in 16.................................................. 41  
已添加 There is a 128 mA offset. to IDCHG_VTH description in 17 ............................................................................... 43  
已更改 0 mA to 000000b in IDCHG_VTH description in 17 ............................................................................................ 43  
已更改 text in ChargeCurrent Register (SMBus address = 14h) [reset = 0h] ..................................................................... 49  
已删除 text and changed larger to 20-mΩ in Input Current Registers ................................................................................. 54  
已添加 paragraph to IIN_HOST Register With 10-mΩ Sense Resistor (SMBus address = 3Fh) [reset = 4000h]............... 55  
已更改 Minimum System Voltage from 614 mV to 6144 mV in Design Requirements........................................................ 66  
已删除 Input Snubber and Filter for Voltage Spike Damping section ................................................................................. 66  
版权 © 2017–2018, Texas Instruments Incorporated  
3
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
5 说明 (续)  
在加电期间,充电器基于输入源和电池状况,将转换器设置为降压、升压或降压/升压配置。充电器自动在降压、升  
压、降压/升压配置间转换,无需主机控制。  
在无输入源的情况下,bq25700A 可通过 1 4 节电池支持 On-the-Go (OTG) 功能,从而在 VBUS 上生成 4.48V  
20.8V 电压。在 OTG 模式下,充电器调节输出电压和输出电流。  
bq25700A 可监控适配器电流、电池电流和系统功率。灵活编程的 PROCHOT 输出直达 CPU,可根据需要降低其  
频率。  
4
Copyright © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
6 Pin Configuration and Functions  
RSN Package  
32-Pin WQFN  
Top View  
VBUS  
ACN  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
HIDRV2  
SW2  
ACP  
VSYS  
CHRG_OK  
EN_OTG  
ILIM_HIZ  
VDDA  
BATDRV  
SRP  
Thermal  
Pad  
SRN  
CELL_BATPRESZ  
COMP2  
IADPT  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NUMBER  
Input current sense resistor negative input. The leakage on ACP and ACN are matched. The  
series resistors on the ACP and ACN pins are placed between sense resistor and filter cap.  
Refer to Application and Implementation for ACP/ACN filter design.  
ACN  
ACP  
2
PWR  
PWR  
Input current sense resistor positive input. The leakage on ACP and ACN are matched. The  
series resistors on the ACP and ACN pins are placed between sense resistor and filter cap.  
Refer to Application and Implementation for ACP/ACN filter design.  
3
P-channel battery FET (BATFET) gate driver output. It is shorted to VSYS to turn off the  
BATFET. It goes 10 V below VSYS to fully turn on BATFET. BATFET is in linear mode to  
regulate VSYS at minimum system voltage when battery is depleted. BATFET is fully on  
during fast charge and supplement mode.  
BATDRV  
21  
O
Buck mode high side power MOSFET driver power supply. Connect a 0.047-µF capacitor  
between SW1 and BTST1. The bootstrap diode between REGN and BTST1 is integrated.  
BTST1  
BTST2  
30  
25  
PWR  
PWR  
Boost mode high side power MOSFET driver power supply. Connect a 0.047-μF capacitor  
between SW2 and BTST2. The bootstrap diode between REGN and BTST2 is integrated.  
Battery cell selection pin for 1–4 cell battery setting. CELL_BATPRESZ pin is biased from  
VDDA. CELL_BATPRESZ pin also sets SYSOVP threshold to 5 V for 1-cell, 12 V for 2-cell,  
and 19.5 V for 3-cell/4-cell. CELL_BATPRESZ pin is pulled below VCELL_BATPRESZ_FALL to  
indicate battery removal. The device exits LEARN mode, and disables charge. REG0x15()  
goes back to default.  
CELL_BATPRESZ  
18  
I
Copyright © 2017–2018, Texas Instruments Incorporated  
5
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NUMBER  
Open drain active high indicator to inform the system good power source is connected to the  
charger input. Connect to the pullup rail via 10-kΩ resistor. When VBUS rises above 3.5V or  
falls below 24.5V, CHRG_OK is HIGH after 50ms deglitch time. When VBUS is falls below  
3.2 V or rises above 26 V, CHRG_OK is LOW. When fault occurs, CHRG_OK is asserted  
LOW.  
CHRG_OK  
4
O
Input of independent comparator. The independent comparator compares the voltage sensed  
on CMPIN pin to internal reference, and its output is on CMPOUT pin. Internal reference,  
output polarity and deglitch time is selectable by SMBus. With polarity HIGH (REG0x30[6] =  
1), place a resistor between CMPIN and CMPOUT to program hysteresis. With polarity LOW  
(REG0x30[6] = 0), the internal hysteresis is 100 mV. If the independent comparator is not in  
use, tie CMPIN to ground.  
CMPIN  
14  
I
Open-drain output of independent comparator. Place pullup resistor from CMPOUT to pullup  
supply rail. Internal reference, output polarity and deglitch time are selectable by SMBus.  
CMPOUT  
COMP2  
COMP1  
15  
17  
16  
O
I
Buck boost converter compensation pin 2. Refer to bq25700 EVM schematic for COMP2 pin  
RC network.  
Buck boost converter compensation pin 1. Refer to bq25700 EVM schematic for COMP1 pin  
RC network.  
I
Active HIGH to enable OTG mode. When EN_OTG pin is HIGH and REG0x32[13] is HIGH,  
OTG can be enabled, refer to USB On-The-Go (OTG) for details of how to enable OTG  
function  
EN_OTG  
5
I
Buck mode high side power MOSFET (Q1) driver. Connect to high side n-channel MOSFET  
gate.  
HIDRV1  
HIDRV2  
31  
24  
O
O
Boost mode high side power MOSFET(Q4) driver. Connect to high side n-channel MOSFET  
gate.  
Buffered adapter current output. V(IADPT) = 20 or 40 × (V(ACP) – V(ACN)). With ratio selectable  
in REG0x12[4]. Place a resistor from the IADPT pin to ground corresponding to inductor in  
use. For 2.2 µH, the resistor is 137 kΩ. Place 100-pF or less ceramic decoupling capacitor  
from IADPT pin to ground. IADPT output voltage is clamped below 3.3 V.  
IADPT  
IBAT  
8
9
I/O  
O
Buffered battery current selected by SMBus. V(IBAT) = 8 or 16 × (V(SRP) – V(SRN)) for charge  
current, or V(IBAT) = 8 or 16 × (V(SRN) – V(SRP)) for discharge current, with ratio selectable in  
REG0x12[3]. Place 100-pF or less ceramic decoupling capacitor from IBAT pin to ground.  
This pin can be floating if not in use. Its output voltage is clamped below 3.3 V.  
Input current limit input. Program ILIM_HIZ voltage by connecting a resistor divider from  
supply rail to ILIM_HIZ pin to ground. The pin voltage is calculated as: V(ILIM_HIZ) = 1 V + 40  
× IDPM × RAC, in which IDPM is the target input current. The input current limit used by the  
charger is the lower setting of ILIM_HIZ pin and REG0x3F(). When the pin voltage is below  
0.4 V, the device enters Hi-Z mode with low quiescent current. When the pin voltage is  
above 0.8 V, the device is out of Hi-Z mode.  
ILIM_HIZ  
LODRV1  
6
I
Buck mode low side power MOSFET (Q2) driver. Connect to low side n-channel MOSFET  
gate.  
29  
O
Boost mode low side power MOSFET (Q3) driver. Connect to low side n-channel MOSFET  
gate.  
LODRV2  
PGND  
26  
27  
O
GND  
Device power ground.  
Active low open drain output of processor hot indicator. It monitors adapter input current,  
battery discharge current, and system voltage. After any event in the PROCHOT profile is  
triggered, a pulse is asserted. The minimum pulse width is adjustable in REG0x33[5:2].  
PROCHOT  
11  
10  
28  
O
Current mode system power monitor. The output current is proportional to the total power  
from the adapter and battery. The gain is selectable through SMBus. Place a resistor from  
PSYS to ground to generate output voltage. This pin can be floating if not in use. Its output  
voltage is clamped below 3.3 V. Place a capacitor in parallel with the resistor for filtering.  
PSYS  
O
6-V linear regulator output supplied from VBUS or VSYS. The LDO is active when VBUS  
above VVBUS_CONVEN. Connect a 2.2- or 3.3-μF ceramic capacitor from REGN to power  
ground. REGN pin output is for power stage gate drive.  
REGN  
PWR  
SMBus clock input. Connect to clock line from the host controller or smart battery. Connect a  
10-kΩ pullup resistor according to SMBus specifications.  
SCL  
SDA  
13  
12  
I
SMBus open-drain data I/O. Connect to data line from the host controller or smart battery.  
Connect a 10-kΩ pullup resistor according to SMBus specifications.  
I/O  
6
Copyright © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NUMBER  
Charge current sense resistor negative input. SRN pin is for battery voltage sensing as well.  
Connect SRN pin with optional 0.1-μF ceramic capacitor to GND for common-mode filtering.  
Connect a 0.1-μF ceramic capacitor from SRP to SRN to provide differential mode filtering.  
The leakage current on SRP and SRN are matched. For reverse battery plug-in protection,  
10-Ω series resistors are placed on SRP and SRN.  
SRN  
19  
PWR  
Charge current sense resistor positive input. Connect 0.1-μF ceramic capacitor from SRP to  
SRN to provide differential mode filtering. The leakage current on SRP and SRN are  
matched. For reverse battery plug-in protection, 10-Ω series resistors are placed on SRP and  
SRN. Connect SRP pin with optional 0.1-uF ceramic capacitor to GND for common-mode  
filtering.  
SRP  
20  
PWR  
Buck mode high side power MOSFET driver source. Connect to the source of the high side  
n-channel MOSFET.  
SW1  
32  
23  
1
PWR  
PWR  
PWR  
PWR  
PWR  
Boost mode high side power MOSFET driver source. Connect to the source of the high side  
n-channel MOSFET.  
SW2  
Charger input voltage. An input low pass filter of 1Ω and 0.47 µF (minimum) is  
recommended.  
VBUS  
VDDA  
VSYS  
Internal reference bias pin. Connect a 10-Ω resistor from REGN to VDDA and a 1-μF  
ceramic capacitor from VDDA to power ground.  
7
Charger system voltage sensing. The system voltage regulation limit is programmed in  
REG0x15() and REG0x3E().  
22  
Exposed pad beneath the IC. Analog ground and power ground star-connected near the IC's  
ground. Always solder thermal pad to the board, and have vias on the thermal pad plane  
connecting to power ground planes. It also serves as a thermal pad to dissipate the heat.  
Thermal pad  
Copyright © 2017–2018, Texas Instruments Incorporated  
7
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
–2.0  
–0.3  
–4.0  
–4.0  
–4.0  
MAX  
30  
30  
36  
7
UNIT  
SRN, SRP, ACN, ACP, VBUS, VSYS, BATDRV  
SW1, SW2  
BTST1, BTST2, HIDRV1, HIDRV2  
LODRV1, LODRV2 (2% duty cycle)  
HIDRV1, HIDRV2 (2% duty cycle)  
36  
30  
Voltage  
V
SW1, SW2 (2% duty cycle)  
SDA, SCL, REGN, CHRG_OK, CELL_BATPRESZ,  
ILIM_HIZ, LODRV1, LODRV2, VDDA, COMP1, COMP2,  
CMPIN, CMPOUT, EN_OTG  
–0.3  
7
PROCHOT  
–0.3  
–0.3  
–0.3  
–0.5  
–40  
5.5  
3.6  
7
IADPT, IBAT, PSYS  
BTST1-SW1, BTST2-SW2, HIDRV1-SW1, HIDRV2-SW2  
Differential voltage  
V
SRP-SRN, ACP-ACN  
0.5  
155  
155  
Junction temperature range, TJ  
Storage temperature, Tstg  
°C  
°C  
–40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to GND if not specified. Currents are positive into, negative out of the specified terminal. Consult Packaging  
Section of the data book for thermal limitations and considerations of packages.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
24  
UNIT  
ACN, ACP, VBUS  
0
0
SRN, SRP, VSYS, BATDRV  
SW1, SW2  
19.2  
24  
–2  
0
BTST1, BTST2, HIDRV1, HIDRV2  
30  
Voltage  
V
SDA, SCL, REGN, CHRG_OK, CELL_BATPRESZ, ILIM_HIZ, LODRV1,  
LODRV2, VDDA, COMP1, COMP2, CMPIN, CMPOUT  
0
6.5  
PROCHOT  
0
0
5.3  
3.3  
IADPT, IBAT, PSYS  
BTST1-SW1, BTST2-SW2, HIDRV1-SW1, HIDRV2-SW2  
SRP-SRN, ACP-ACN  
0
6.5  
Differential  
voltage  
V
–0.35  
–40  
–40  
0.35  
125  
85  
Junction temperature, TJ  
°C  
°C  
Operating free-air temperature, TA  
8
Copyright © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
7.4 Thermal Information  
bq25700A  
THERMAL METRIC(1)  
RSN (WQFN)  
UNIT  
32 PINS  
37.2  
26.1  
7.8  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJB  
7.8  
RθJC(bot)  
2.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
over TJ = –40 to 125°C (unless otherwise noted)  
PARAMETER  
Input voltage operating range  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VINPUT_OP  
3.5  
26  
V
REGULATION ACCURACY  
MAX SYSTEM VOLTAGE REGULATION  
System voltage regulation,  
measured on VSYS  
VSYSMAX_RNG  
1.024  
19.2  
V
V
VSRN + 160 mV  
VSRN + 160 mV  
VSRN + 160 mV  
VSRN + 160 mV  
REG0x15() = 0x41A0H  
(16.800 V)  
–2%  
–2%  
–3%  
–3%  
2%  
2%  
3%  
3%  
V
V
V
REG0x15() = 0x3130H  
(12.592 V)  
System voltage regulation  
accuracy (charge disable)  
VSYSMAX_ACC  
REG0x15() = 0x20D0H  
(8.400 V)  
REG0x15() = 0x1060H  
(4.192 V)  
MINIMUM SYSTEM VOLTAGE REGULATION  
System voltage regulation,  
VSYSMIN_RNG  
1.024  
19.2  
V
V
measured on VSYS  
12.288  
9.216  
6.144  
3.584  
REG0x3E() = 0x3000H  
REG0x3E() = 0x2400H  
REG0x3E() = 0x1800H  
REG0x3E() = 0x0E00H  
–2%  
–2%  
2%  
2%  
V
V
V
Minimum system voltage  
regulation accuracy (charge  
enable, VBAT below  
VSYSMIN_REG_ACC  
REG0x3E() setting)  
–3%  
3%  
–3%  
4%  
CHARGE VOLTAGE REGULATION  
VBAT_RNG  
Battery voltage regulation  
1.024  
–0.5%  
–0.5%  
–0.6%  
–1.1%  
19.2  
0.5%  
0.5%  
0.6%  
1.2%  
V
V
16.8  
12.592  
8.4  
REG0x15() = 0x41A0H  
REG0x15() = 0x3130H  
REG0x15() = 0x20D0H  
REG0x15() = 0x1060H  
V
V
V
Battery voltage regulation  
accuracy (charge enable)  
(0°C to 85°C)  
VBAT_REG_ACC  
4.192  
Copyright © 2017–2018, Texas Instruments Incorporated  
9
 
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
MAX UNIT  
Electrical Characteristics (continued)  
over TJ = –40 to 125°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
CHARGE CURRENT REGULATION IN FAST CHARGE  
Charge current regulation  
differential voltage range  
VIREG_CHG = VSRP –  
VSRN  
VIREG_CHG_RNG  
0
81.28  
mV  
mA  
4096  
2048  
1024  
512  
REG0x14() = 0x1000H  
REG0x14() = 0x0800H  
REG0x14() = 0x0400H  
REG0x14() = 0x0200H  
–3%  
–4%  
2%  
3%  
mA  
mA  
mA  
Charge current regulation  
accuracy 10-mΩ current  
sensing resistor, VBAT above  
0x3E() setting (0°C to 85°C)  
ICHRG_REG_ACC  
–5%  
6%  
–12%  
12%  
CHARGE CURRENT REGULATION IN LDO MODE  
CELL 2s-4s  
384  
384  
mA  
mA  
CELL 1 s, VSRN < 3 V  
ICLAMP  
Pre-charge current clamp  
CELL 1 s, 3 V < VSRN  
VSYSMIN  
<
2
A
REG0x14() = 0x0180H  
384  
mA  
2S-4S  
–15%  
–25%  
15%  
25%  
1S  
REG0x14() = 0x0100H  
256  
192  
128  
mA  
mA  
Pre-charge current regulation  
accuracy with 10-Ω SRP/SRN  
series resistor, VBAT below  
REG0x3E() setting (0°C to  
85°C)  
2S-4S  
–20%  
–35%  
20%  
35%  
IPRECHRG_REG_ACC  
1S  
REG0x14() = 0x00C0H  
2S-4S  
–25%  
–50%  
25%  
50%  
1S  
REG0x14() = 0x0080H  
2S-4S  
mA  
µA  
–30%  
–12  
30%  
10  
SRP, SRN leakage current  
mismatch (0°C to 85°C)  
ILEAK_SRP_SRN  
INPUT CURRENT REGULATION  
Input current regulation  
VIREG_DPM_RNG  
VIREG_DPM = VACP – VACN  
0.5  
64  
mV  
differential voltage range  
REG0x3F() = 0x4FFFH  
REG0x3F() = 0x3BFFH  
REG0x3F() = 0x1DFFH  
REG0x3F() = 0x09FFH  
3820  
2830  
1350  
340  
4000  
3000  
1500  
500  
mA  
mA  
mA  
mA  
Input current regulation  
accuracy (–40°C to 105°C)  
with 10-Ω ACP/ACN series  
resistor  
IDPM_REG_ACC  
ACP, ACN leakage current  
mismatch  
ILEAK_ACP_ACN  
–16  
1
10  
4
µA  
V
Voltage Range for input  
current regulation  
VIREG_DPM_RNG_ILIM  
VILIM_HIZ = 2.6 V  
VILIM_HIZ = 2.2 V  
VILIM_HIZ = 1.6 V  
VILIM_HIZ = 1.2 V  
3800  
2800  
1300  
300  
4000  
3000  
1500  
500  
4200  
3200  
1700  
700  
1
mA  
mA  
mA  
mA  
µA  
Input Current Regulation  
Accuracy on ILIM_HIZ pin  
VILIM_HIZ = 1 V + 40 × IDPM ×  
RAC, with 10-Ω ACP/ACN  
series resistor  
IDPM_REG_ACC_ILIM  
ILEAK_ILIM  
ILIM_HIZ pin leakage  
–1  
INPUT VOLTAGE REGULATION  
VIREG_DPM_RNG Input voltage regulation range Voltage on VBUS  
3.2  
19.52  
V
10  
Copyright © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
Electrical Characteristics (continued)  
over TJ = –40 to 125°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
–2%  
TYP  
MAX UNIT  
REG0x3D()=0x3C80H  
18688  
mV  
2%  
mV  
REG0x3D()=0x1E00H  
REG0x3D()=0x0500H  
10880  
4480  
Input voltage regulation  
VDPM_REG_ACC  
accuracy  
–2.5%  
–3%  
2.5%  
mV  
5%  
OTG CURRENT REGULATION  
Input current regulation  
VIOTG_REG_RNG  
VIREG_DPM = VACP – VACN  
0
81.28  
mV  
differential voltage range  
Input current regulation  
accuracy with 50-mA LSB,  
with 10-Ω ACP/ACN series  
resistor  
REG0x3C() = 0x3C00H  
REG0x3C() = 0x1E00H  
REG0x3C() = 0x0A00H  
2800  
1300  
300  
3000  
1500  
500  
3200  
1700  
700  
mA  
mA  
mA  
IOTG_ACC  
OTG VOLTAGE REGULATION  
VIREG_DPM_RNG  
Input voltage regulation range Voltage on VBUS  
4.48  
–2%  
–2%  
–3%  
20.8  
2%  
2%  
3%  
V
V
20.032  
12.032  
5.056  
REG0x3B()=0x3CC0H  
REG0x3B()=0x1D80H  
REG0x3B()=0x0240H  
V
V
OTG voltage regulation  
accuracy  
VOTG_REG_ACC  
REFERENCE AND BUFFER  
REGN REGULATOR  
REGN regulator voltage (0  
mA–60 mA)  
VREGN_REG  
VDROPOUT  
IREGN_LIM_Charging  
CREGN  
VVBUS = 10 V  
5.7  
3.8  
50  
2.2  
1
6
4.3  
65  
6.3  
4.6  
V
V
REGN voltage in drop out  
mode  
VVBUS = 5 V, ILOAD = 20 mA  
REGN current limit when  
converter is enabled  
VVBUS = 10 V, force VREGN  
4 V  
=
mA  
µF  
µF  
REGN output capacitor  
required for stability  
ILOAD = 100 µA to 50 mA  
ILOAD = 100 µA to 50 mA  
REGN output capacitor  
required for stability  
CVDDA  
QUIESCENT CURRENT  
VBAT = 18 V, REG0x12[15]  
= 1, in low power mode  
22  
45  
µA  
µA  
VBAT = 18 V, REG0x12[15]  
= 1, REG0x30[14:13] = 01,  
REGN off  
105  
175  
System powered by battery.  
VBAT=18 V, REG0x12[15] =  
1, REG0x30[14:13] = 10,  
REGN off  
BATFET on. ISRN + ISRP  
+
60  
860  
960  
90  
1150  
1250  
µA  
µA  
IBAT_BATFET_ON  
ISW2+ IBTST2 + ISW1 + IBTST1  
ACP + IACN + IVBUS + IVSYS  
+
VBAT = 18 V, REG0x12[15]  
= 0, REG0x30[12] = 0,  
REGN on, EN_PSYS  
VBAT = 18 V, REG0x12[15]  
= 0, REG0x30[12] = 1,  
REGN on  
Input current during PFM in  
buck mode, no load, IVBUS  
+
VIN = 20 V, VBAT = 12.6 V,  
3 s, REG0x12[10] = 0;  
MOSFET Qg = 4 nC  
IAC_SW_LIGHT_buck  
IACP + IACN + IVSYS + ISRP  
ISRN + ISW1 + IBTST + ISW2  
IBTST2  
+
+
2.2  
mA  
Copyright © 2017–2018, Texas Instruments Incorporated  
11  
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
over TJ = –40 to 125°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Input current during PFM in  
boost mode, no load, IVBUS  
IACP + IACN + IVSYS + ISRP  
ISRN + ISW1 + IBTST2 + ISW2  
IBTST2  
+
VIN = 5 V, VBAT = 8.4 V, 2  
s, REG0x12[10] = 0;  
MOSFET Qg = 4 nC  
IAC_SW_LIGHT_boost  
+
2.7  
mA  
+
Input current during PFM in  
buck boost mode, no load,  
VIN = 12 V, VBAT = 12 V,  
REG0x12[10] = 0; MOSFET  
Qg = 4 nC  
IAC_SW_LIGHT_buckboost IVBUS + IACP + IACN + IVSYS  
ISRP + ISRN + ISW1 + IBTST1  
+
+
2.4  
mA  
ISW2 + IBTST2  
VBAT = 8.4 V, VBUS = 5 V,  
800-kHz switching  
frequency, MOSFET Qg = 4  
nC  
3
4.2  
6.2  
3.2  
Quiescent current during PFM VBAT = 8.4 V, VBUS = 12  
in OTG mode IVBUS + IACP  
IACN + IVSYS + ISRP + ISRN  
ISW1 + IBTST2 + ISW2 + IBTST2  
+
+
V, 800-kHz switching  
frequency, MOSFET Qg = 4  
nC  
IOTG_STANDBY  
mA  
VBAT = 8.4 V, VBUS = 20  
V, 800-kHz switching  
frequency, MOSFET Qg = 4  
nC  
VACP/N_OP  
VIADPT_CLAMP  
IIADPT  
Input common mode range  
IADPT output clamp voltage  
IADPT output current  
Voltage on ACP/ACN  
3.8  
3.1  
26  
3.3  
1
V
V
mA  
V(IADPT) / V(ACP-ACN)  
REG0x12[4] = 0  
,
,
20  
40  
V/V  
V/V  
AIADPT  
Input current sensing gain  
V(IADPT) / V(ACP-ACN)  
REG0x12[4] = 1  
V(ACP-ACN) = 40.96 mV  
V(ACP-ACN) = 20.48 mV  
V(ACP-ACN) =10.24 mV  
V(ACP-ACN) = 5.12 mV  
–2%  
–3%  
2%  
3%  
Input current monitor  
accuracy  
VIADPT_ACC  
–6%  
6%  
–10%  
10%  
Maximum output load  
capacitance  
CIADPT_MAX  
100  
pF  
VSRP/N_OP  
VIBAT_CLAMP  
IIBAT  
Battery common mode range Voltage on SRP/SRN  
IBAT output clamp voltage  
2.5  
18  
3.3  
1
V
V
3.05  
3.2  
IBAT output current  
mA  
V(IBAT) / V(SRN-SRP)  
REG0x12[3] = 0,  
,
,
8
V/V  
V/V  
Charge and discharge current  
sensing gain on IBAT pin  
AIBAT  
V(IBAT) / V(SRN-SRP)  
REG0x12[3] = 1,  
16  
V(SRN-SRP) = 40.96 mV  
V(SRN-SRP) = 20.48 mV  
V(SRN-SRP) =10.24 mV  
V(SRN-SRP) = 5.12 mV  
–2%  
–3%  
2%  
4%  
Charge and discharge current  
monitor accuracy on IBAT pin  
IIBAT_CHG_ACC  
–6%  
6%  
–12%  
12%  
Maximum output load  
capacitance  
CIBAT_MAX  
100  
pF  
SYSTEM POWER SENSE AMPLIFIER  
VPSYS PSYS output voltage range  
IPSYS  
0
0
3.3  
V
PSYS output current  
PSYS system gain  
160  
µA  
V(PSYS) / (P(IN)+ P(BAT))  
REG0x30[9] = 1  
,
APSYS  
1
µA/W  
12  
Copyright © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
Electrical Characteristics (continued)  
over TJ = –40 to 125°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Adapter only with system  
power = 19.5 V / 45 W, TA  
0 to 85°C  
=
=
–5%  
5%  
Adapter only with system  
power = 19.5 V / 45 W, TA  
–40 to 125°C  
–7%  
–5%  
6%  
5%  
6%  
PSYS gain accuracy  
VPSYS_ACC  
(REG0x30[9] = 1)  
Battery only with system  
power = 11 V / 44 W, TA = 0  
to 85°C  
Battery only with system  
power = 11 V / 44 W, TA  
–40 to 125°C  
=
–6%  
3
VPSYS_CLAMP  
PSYS clamp voltage  
3.3  
V
COMPARATOR  
VBUS UNDER VOLTAGE LOCKOUT COMPARATOR  
VBUS undervoltage rising  
VVBUS_UVLOZ  
threshold  
VBUS rising  
VBUS falling  
2.34  
2.2  
2.55  
2.4  
2.77  
2.6  
V
V
VBUS undervoltage falling  
VVBUS_UVLO  
threshold  
VBUS undervoltage  
VVBUS_UVLO_HYST  
150  
3.5  
mV  
V
hysteresis  
VBUS converter enable rising  
VVBUS_CONVEN  
threshold  
VBUS rising  
VBUS falling  
3.2  
2.9  
3.9  
3.5  
VBUS converter enable falling  
VVBUS_CONVENZ  
threshold  
3.2  
V
VBUS converter enable  
VVBUS_CONVEN_HYST  
400  
mV  
hysteresis  
BATTERY UNDER VOLTAGE LOCKOUT COMPARATOR  
VBAT undervoltage rising  
threshold  
VVBAT_UVLOZ  
VVBAT_UVLO  
VVBAT_UVLO_HYST  
VVBAT_OTGEN  
VSRN rising  
2.35  
2.2  
2.55  
2.4  
2.75  
2.6  
V
V
VBAT undervoltage falling  
threshold  
VSRN falling  
VBAT undervoltage  
hysteresis  
150  
3.55  
mV  
V
VBAT OTG enable rising  
threshold  
VSRN rising  
VSRN falling  
3.3  
3
3.75  
3.4  
VBAT OTG enable falling  
threshold  
VVBAT_OTGENZ  
3.2  
V
VVBAT_OTGEN_HYST  
VBAT OTG enable hysteresis  
350  
mV  
VBUS UNDER VOLTAGE COMPARATOR (OTG MODE)  
VBUS undervoltage falling  
threshold  
As percentage of  
REG0x3B()  
VVBUS_OTG_UV  
tVBUS_OTG_UV  
85.0%  
7
VBUS undervoltage deglitch  
time  
ms  
ms  
VBUS OVER VOLTAGE COMPARATOR (OTG MODE)  
VBUS overvoltage rising  
As percentage of  
REG0x3B()  
VVBUS_OTG_OV  
threshold  
105%  
10  
VBUS Over-Voltage Deglitch  
Time  
tVBUS_OTG_OV  
LDO mode to fast charge  
VBAT_SYSMIN_RISE  
as percentage of 0x3E()  
as percentage of 0x3E()  
98%  
100%  
97.5%  
102%  
mode threshold, VSRN rising  
LDO mode to fast charge  
VBAT_SYSMIN_FALL  
mode threshold, VSRN falling  
Copyright © 2017–2018, Texas Instruments Incorporated  
13  
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
MAX UNIT  
Electrical Characteristics (continued)  
over TJ = –40 to 125°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
Fast charge mode to LDO  
VBAT_SYSMIN_HYST  
as percentage of 0x3E()  
2.5%  
mode threshold hysteresis  
BATTERY LOWV COMPARATOR (Pre-charge to Fast Charge Thresold for 1S)  
VBATLV_FALL  
VBATLV_RISE  
VBATLV_RHYST  
BATLOWV falling threshold  
BATLOWV rising threshold  
BATLOWV hysteresis  
1 s  
2.80  
3.00  
200  
V
V
mV  
INPUT OVER-VOLTAGE COMPARATOR (ACOVP)  
VBUS overvoltage rising  
VACOV_RISE  
threshold  
VBUS rising  
VBUS falling  
25  
24  
26  
27  
25  
V
VBUS overvoltage falling  
VACOV_FALL  
threshold  
24.5  
1.5  
V
V
VACOV_HYST  
VBUS overvoltage hysteresis  
VBUS overvoltage rising  
deglitch  
VBUS rising to stop  
converter  
tACOV_RISE_DEG  
100  
µs  
VBUS overvoltage falling  
deglitch  
VBUS falling to start  
converter  
tACOV_FALL_DEG  
1
ms  
INPUT OVER CURRENT COMPARATOR (ACOC)  
ACP to ACN rising threshold, Voltage across input sense  
VACOC  
w.r.t. ILIM2 in  
REG0x33[15:11]  
resistor rising, Reg0x31[2] =  
1
195%  
210%  
225%  
Measure between ACP and  
ACN  
VACOC_FLOOR  
VACOC_CEILING  
tACOC_DEG_RISE  
tACOC_RELAX  
Set IDPM to minimum  
Set IDPM to maximum  
44  
50  
180  
250  
250  
56  
mV  
mV  
µs  
Measure between ACP and  
ACN  
172  
188  
Deglitch time to trigger  
ACOC  
Rising deglitch time  
Relax time  
Relax time before converter  
starts again  
ms  
SYSTEM OVER-VOLTAGE COMPARATOR (SYSOVP)  
1 s  
2 s  
3 s  
4 s  
1 s  
2 s  
3 s  
4 s  
4.85  
11.7  
19  
5
12  
5.1  
12.2  
20  
System overvoltage rising  
VSYSOVP_RISE  
V
threshold to turn off converter  
19.5  
19.5  
4.8  
19  
20  
11.5  
19  
System overvoltage falling  
threshold  
VSYSOVP_FALL  
V
19  
Discharge current when  
ISYSOVP  
SYSOVP stop switching was on SYS  
triggered  
20  
mA  
BAT OVER-VOLTAGE COMPARATOR (BATOVP)  
Overvoltage rising threshold  
as percentage of VBAT_REG in  
REG0x15()  
1 s, 4.2 V  
2 s - 4 s  
102.5%  
102.5%  
100%  
104%  
104%  
102%  
102%  
2%  
106%  
105%  
104%  
103%  
VBATOVP_RISE  
Overvoltage falling threshold 1 s  
as percentage of VBAT_REG  
in REG0x15()  
VBATOVP_FALL  
2 s - 4 s  
100%  
Overvoltage hysteresis as  
percentage of VBAT_REG in  
REG0x15()  
1 s  
VBATOVP_HYST  
2 s - 4 s  
2%  
Discharge current during  
BATOVP  
IBATOVP  
on VSYS pin  
20  
mA  
14  
Copyright © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
Electrical Characteristics (continued)  
over TJ = –40 to 125°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Overvoltage rising deglitch to  
tBATOVP_RISE  
turn off BATDRV to disable  
charge  
20  
ms  
CONVERTER OVER-CURRENT COMPARATOR (Q2)  
Reg0x31[5]=1  
150  
210  
45  
VOCP_limit_Q2  
Converter Over-Current Limit  
System Short or SRN<2.5 V  
mV  
mV  
Reg0x31[5]=0  
Reg0x31[5]=1  
Reg0x31[5]=0  
VOCP_limit_SYSSH  
ORT_Q2  
60  
CONVERTER OVER-CURRENT COMPARATOR (ACX)  
Reg0x31[4]=1  
Reg0x31[4]=0  
Reg0x31[4]=1  
Reg0x31[4]=0  
150  
280  
90  
VOCP_limit_ACX  
Converter Over-Current Limit  
System Short or SRN<2.5 V  
mV  
mV  
VOCP_limit_SYSSH  
ORT_ACX  
150  
THERMAL SHUTDOWN COMPARATOR  
Thermal shutdown rising  
temperature  
TSHUT_RISE  
Temperature increasing  
Temperature reducing  
155  
°C  
Thermal shutdown falling  
temperature  
TSHUTF_FALL  
TSHUT_HYS  
tSHUT_RDEG  
135  
20  
°C  
°C  
µs  
Thermal shutdown hysteresis  
Thermal shutdown rising  
deglitch  
100  
Thermal shutdown falling  
deglitch  
tSHUT_FHYS  
12  
ms  
VSYS PROCHOT COMPARATOR  
Reg0x33[7:6] = 00, 1 s  
Reg0x33[7:6] = 00, 2–4 s  
Reg0x33[7:6] = 01, 1 s  
Reg0x33[7:6] = 01, 2–4 s  
Reg0x33[7:6] = 10, 1 s  
Reg0x33[7:6] = 10, 2–4 s  
Reg0x33[7:6] = 11, 1 s  
Reg0x33[7:6] = 11, 2–4 s  
2.85  
5.75  
3.1  
V
V
2.95  
5.8  
3.25  
6.1  
V
V
V
V
V
V
5.95  
3.3  
VSYS threshold falling  
threshold  
VSYS_PROCHOT  
6.25  
3.5  
6.5  
VSYS rising deglitch for  
throttling  
tSYS_PRO_RISE_DEG  
8
µs  
ICRIT PROCHOT COMPARATOR  
Input current rising threshold Reg0x33[15:11] = 00000  
for throttling as 10% above  
105%  
142%  
110%  
150%  
116%  
156%  
VICRIT_PRO  
Reg0x33[15:11] = 01001  
ILIM2 (REG0x33[15:11])  
INOM PROCHOT COMPARATOR  
INOM rising threshold as 10%  
above IIN (REG0x3F())  
IDCHG PROCHOT COMPARATOR  
IDCHG threshold for throttling  
VINOM_PRO  
105%  
95%  
110%  
6272  
116%  
102%  
mA  
VIDCHG_PRO  
Reg0x34[15:10] =001100  
for IDSCHG of 6 A  
INDEPENDENT COMPARATOR  
Reg0x30[7] = 1, CMPIN  
falling  
1.17  
2.27  
1.2  
2.3  
1.23  
2.33  
V
V
Independent comparator  
threshold  
VINDEP_CMP  
Reg0x30[7] = 0, CMPIN  
falling  
Copyright © 2017–2018, Texas Instruments Incorporated  
15  
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
over TJ = –40 to 125°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Independent comparator  
Reg0x3B[6] = 0, CMPIN  
falling  
VINDEP_CMP_HYS  
hysteresis  
100  
mV  
POWER MOSFET DRIVER  
PWM OSCILLATOR AND RAMP  
Reg0x12[9] = 0  
Reg0x12[9] = 1  
1020  
680  
1200  
800  
1380  
920  
kHz  
kHz  
FSW  
PWM switching frequency  
BATFET GATE DRIVER (BATDRV)  
Gate drive voltage on  
BATFET  
VBATDRV_ON  
8.5  
10  
30  
11.5  
V
Drain-source voltage on  
BATFET during ideal diode  
operation  
VBATDRV_DIODE  
mV  
Measured by sourcing 10-µA  
current to BATDRV  
RBATDRV_ON  
RBATDRV_OFF  
3
4
6
kΏ  
kΏ  
Measured by sinking 10-µA  
current from BATDRV  
1.2  
2.1  
PWM HIGH SIDE DRIVER (HIDRV Q1)  
High side driver (HSD) turnon  
resistance  
RDS_HI_ON_Q1  
VBTST1 – VSW1 = 5 V  
VBTST1 – VSW1 = 5 V  
6
Ω
Ω
High side driver turnoff  
resistance  
RDS_HI_OFF_Q1  
1.3  
2.2  
4.6  
VBTST1 – VSW1 when low  
side refresh pulse is  
requested  
Bootstrap refresh comparator  
falling threshold voltage  
VBTST1_REFRESH  
3.2  
3.7  
V
PWM HIGH SIDE DRIVER (HIDRV Q4)  
High side driver (HSD) turnon  
RDS_HI_ON_Q4  
VBTST2 – VSW2 = 5 V  
VBTST2 – VSW2 = 5 V  
6
Ω
Ω
resistance  
High side driver turnoff  
resistance  
RDS_HI_OFF_Q4  
1.5  
2.4  
4.6  
VBTST2 – VSW2 when low  
side refresh pulse is  
requested  
Bootstrap refresh comparator  
falling threshold voltage  
VBTST2_REFRESH  
3.3  
3.7  
V
PWM LOW SIDE DRIVER (LODRV Q2)  
Low side driver (LSD) turnon  
RDS_LO_ON_Q2  
VBTST1 – VSW1 = 5.5 V  
VBTST1 – VSW1 = 5.5 V  
6
Ω
Ω
resistance  
Low side driver turnoff  
resistance  
RDS_LO_OFF_Q2  
1.7  
2.6  
4.6  
PWM LOW SIDE DRIVER (LODRV Q3)  
Low side driver (LSD) turnon  
resistance  
RDS_LO_ON_Q3  
VBTST2 – VSW2 = 5.5 V  
VBTST2 – VSW2 = 5.5 V  
7.6  
2.9  
Ω
Ω
Low side driver turnoff  
resistance  
RDS_LO_OFF_Q3  
INTERNAL SOFT START During Charge Enable  
SSSTEP_DAC  
SSSTEP_DAC  
Soft Start Step Size  
Soft Start Step Time  
64  
8
mA  
µs  
INTEGRATED BTST DIODE (D1)  
VF_D1  
VR_D1  
Forward bias voltage  
Reverse breakdown voltage  
IF = 20 mA at 25°C  
IR = 2 µA at 25°C  
0.8  
0.8  
V
V
20  
20  
INTEGRATED BTST DIODE (D2)  
VF_D2  
Forward bias voltage  
Reverse breakdown voltage  
IF = 20 mA at 25°C  
IR = 2 µA at 25°C  
V
V
VR_D2  
PWM DRIVERS TIMING  
16  
Copyright © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
Electrical Characteristics (continued)  
over TJ = –40 to 125°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
INTERFACE  
LOGIC INPUT (SDA, SCL, EN_OTG)  
VIN_ LO  
VIN_ HI  
Input low threshold  
Input high threshold  
SMBus  
SMBus (bq25700A)  
0.8  
V
V
2.1  
–1  
–1  
–1  
–1  
LOGIC OUTPUT OPEN DRAIN (SDA, CHRG_OK, CMPOUT)  
VOUT_ LO  
Output saturation voltage  
Leakage current  
5-mA drain current  
V = 7 V  
0.4  
1
V
VOUT_ LEAK  
mA  
LOGIC OUTPUT OPEN DRAIN SDA  
VOUT_ LO_SDA  
Output Saturation Voltage  
Leakage Current  
5 mA drain current  
V = 7V  
0.4  
1
V
VOUT_ LEAK_SDA  
mA  
LOGIC OUTPUT OPEN DRAIN CHRG_OK  
VOUT_ LO_CHRG_OK Output Saturation Voltage  
5 mA drain current  
V = 7V  
0.4  
1
V
VOUT_ LEAK _CHRG_OK Leakage Current  
mA  
LOGIC OUTPUT OPEN DRAIN CMPOUT  
VOUT_ LO_CMPOUT  
Output Saturation Voltage  
Leakage Current  
5 mA drain current  
V = 7V  
0.4  
1
V
VOUT_ LEAK _CMPOUT  
mA  
LOGIC OUTPUT OPEN DRAIN (PROCHOT)  
50-Ω pullup to 1.05 V / 5-mA  
load  
VOUT_ LO_PROCHOT Output saturation voltage  
300  
1
mV  
mA  
VOUT_ LEAK_PROCHOT Leakage current  
V = 5.5 V  
–1  
ANALOG INPUT (ILIM_HIZ)  
Voltage to get out of HIZ  
mode  
VHIZ_ LO  
ILIM_HIZ pin rising  
ILIM_HIZ pin falling  
0.8  
V
V
VHIZ_ HIGH  
Voltage to enable HIZ mode  
0.4  
ANALOG INPUT (CELL_BATPRESZ)  
REGN = 6 V, as percentage  
of REGN  
VCELL_4S  
VCELL_3S  
VCELL_2S  
VCELL_1S  
4S  
3S  
2S  
1S  
68.4%  
51.7%  
35%  
75%  
55%  
40%  
25%  
REGN = 6 V, as percentage  
of REGN  
65%  
49.1%  
31.6%  
REGN = 6 V, as percentage  
of REGN  
REGN = 6 V, as percentage  
of REGN  
18.4%  
18%  
VCELL_BATPRESZ_RISE Battery is present  
VCELL_BATPRESZ_FALL Battery is removed  
ANALOG INPUT (COMP1, COMP2)  
CELL_BATPRESZ falling  
15%  
ILEAK_COMP1  
ILEAK_COMP2  
COMP1 Leakage  
COMP2 Leakage  
–120  
–120  
120  
120  
nA  
nA  
7.6 Timing Requirements  
MIN TYP MAX UNIT  
SMBus TIMING CHARACTERISTICS  
tr  
SCLK/SDATA rise time  
SCLK/SDATA fall time  
1
300  
50  
µs  
ns  
µs  
µs  
µs  
µs  
tf  
tW(H)  
tW(L)  
tSU(STA)  
tH(STA)  
SCLK pulse width high  
SCLK Pulse Width Low  
Setup time for START condition  
4
4.7  
4.7  
4
START condition hold time after which first clock pulse is generated  
版权 © 2017–2018, Texas Instruments Incorporated  
17  
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
Timing Requirements (接下页)  
MIN TYP MAX UNIT  
tSU(DAT)  
tH(DTA)  
tSU(STOP)  
t(BUF)  
Data setup time  
250  
300  
4
ns  
ns  
Data hold time  
Setup time for STOP condition  
Bus free time between START and STOP condition  
Clock Frequency  
µs  
4.7  
10  
µs  
FS(CL)  
100  
35  
KHz  
HOST COMMUNICATION FAILURE  
ttimeout  
tBOOT  
SMBus bus release timeout(1)  
25  
10  
ms  
ms  
s
Deglitch for watchdog reset signal  
Watchdog timeout period, ChargeOption() bit [14:13] = 01(2)  
Watchdog timeout period, ChargeOption() bit bit [14:13] = 10(2)  
Watchdog timeout period, ChargeOption() bit bit [14:13] = 11(2) (default)  
35  
44  
88  
53  
105  
210  
tWDI  
70  
s
140  
175  
s
(1) Devices participating in a transfer will timeout when any clock low exceeds the 25ms minimum timeout period. Devices that have  
detected a timeout condition must reset the communication no later than the 35 ms maximum timeout period. Both a master and a slave  
must adhere to the maximum value specified as it incorporates the cumulative stretch limit for both a master (10 ms) and a slave (25  
ms).  
(2) User can adjust threshold via SMBus ChargeOption() REG0x12.  
7.7 Typical Characteristics  
90  
85  
80  
75  
70  
65  
60  
90  
85  
80  
75  
70  
65  
60  
VOUT = 6.1 V  
VOUT = 8.4 V  
VOUT = 9.2 V  
VOUT = 12.5 V  
VOUT = 6.1 V  
VOUT = 8.4 V  
VOUT = 9.2 V  
VOUT = 12.5 V  
0
0.01  
0.02  
0.03  
0.04  
0.05  
0
0.01  
0.02  
0.03  
0.04  
0.05  
Output Current (A)  
Output Current (A)  
D001  
D001  
VIN = 5 V  
VIN = 12 V  
1. Light Load Efficiency  
2. Light Load Efficiency  
90  
85  
80  
75  
70  
65  
60  
96  
94  
92  
90  
88  
86  
84  
82  
80  
VOUT = 6.1 V  
VOUT = 3.7 V  
VOUT = 8.4 V  
VOUT = 9.2 V  
VOUT = 12.5 V  
VOUT = 7.4 V  
VOUT = 11.1 V  
VOUT = 14.8 V  
0
0.01  
0.02  
0.03  
0.04  
0.05  
0
1
2
3
4
5
6
Output Current (A)  
Output Current (A)  
D001  
D001  
VIN = 20 V  
VIN = 5 V  
3. Light Load Efficiency  
4. System Efficiency  
18  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
Typical Characteristics (接下页)  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
VOUT = 3.7 V  
VOUT = 7.4 V  
VOUT = 11.1 V  
VOUT = 14.8 V  
VOUT = 3.7 V  
VOUT = 7.4 V  
VOUT = 11.1 V  
VOUT = 14.8 V  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Output Current (A)  
Output Current (A)  
D001  
D001  
VIN = 9 V  
VIN = 12 V  
5. System Efficiency  
6. System Efficiency  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
96  
94  
92  
90  
88  
86  
84  
82  
80  
VOTG = 5 V  
VOTG = 12 V  
VOTG = 20 V  
VOUT = 3.7 V  
VOUT = 7.4 V  
VOUT = 11.1 V  
VOUT = 14.8 V  
0
1
2
3
4
5
6
0
1
2
3
4
5
Output Current (A)  
Output Current (A)  
D001  
D001  
VIN = 20 V  
7. System Efficiency  
8. OTG Efficiency with 1S Battery  
96  
94  
92  
90  
88  
86  
84  
82  
80  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
VOTG = 5 V  
VOTG = 12 V  
VOTG = 20 V  
VOTG = 5 V  
VOTG = 12 V  
VOTG = 20 V  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Output Current (A)  
Output Current (A)  
D001  
D001  
9. OTG Efficiency with 2S Battery  
10. OTG Efficiency with 3S Battery  
版权 © 2017–2018, Texas Instruments Incorporated  
19  
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
98  
96  
94  
92  
90  
88  
86  
84  
82  
VOTG = 5 V  
VOTG = 12 V  
VOTG = 20 V  
80  
0
1
2
3
4
5
6
Output Current (A)  
D001  
11. OTG Efficiency with 4S Battery  
20  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
8 Detailed Description  
8.1 Overview  
The bq25700A is a buck boost NVDC (narrow voltage DC) charge controller for multi-chemistry portable  
applications such as notebook, detachable, ultrabook, tablet and other mobile devices with rechargeable  
batteries. It provides seamless transition between converter operation modes (buck, boost, or buck boost), fast  
transient response, and high light load efficiency.  
The bq25700A supports wide range of power sources, including USB PD ports, legacy USB ports, traditional AC-  
DC adapters, etc. It takes input voltage from 3.5 V to 24 V, and charges battery of 1-4 series. It also supports  
USB On-The-Go (OTG) to provide 4.48V to 20.8V output at USB port.  
The bq25700A features Dynamic Power Management (DPM) to limit the input power and avoid AC adapter  
overloading. During battery charging, as the system power increases, the charging current will reduce to maintain  
total input current below adapter rating. If system power demand temporarily exceeds adapter rating, the  
bq25700A supports NVDC architecture to allow battery discharge energy to supplement system power. For  
details, refer to System Voltage Regulation section.  
In order to be compliant with an Intel IMVP8 compliant system, the bq25700A includes PSYS function to monitor  
the total platform power from adapter and battery. Besides PSYS, it provides both an independent input current  
buffer (IADPT) and a battery current buffer (IBAT) with highly accurate current sense amplifiers. If the platform  
power exceeds the available power from adapter and battery, a PROCHOT signal is asserted to CPU so that the  
CPU optimizes its performance to the power available to the system.  
The SMBus controls input current, charge current and charge voltage registers with high resolution, high  
accuracy regulation limits. It also sets the PROCHOT timing and threshold profile to meet system requirements.  
版权 © 2017–2018, Texas Instruments Incorporated  
21  
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.2 Functional Block Diagram  
4
CHRG_OK  
CHRG_OK_DRV  
50ms Rising  
Deglitch  
bq25700A Block Diagram  
** programmable in register  
EN_REGN  
50ms Rising  
Deglitch  
3.9V  
26V  
1
VBUS  
VREF_CMP**  
14  
CMP_DEG**  
CMPIN  
ACOVP  
15  
CMPOUT  
VREF_VDPM or VREF_VOTG  
VSNS_VDPM or VSYS_VOTG  
COMP1  
COMP2  
16  
17  
EN_HIZ  
VREF_ILIM  
6
Decoder  
ILIM_HIZ  
VSYS  
VREF_IDPM, or VREF_IOTG  
2
3
LDO Mode  
Gate Control  
ACP  
ACN  
VSNS_IDPM, or VSNS_IOTG  
21  
BATDRV  
20X**  
VSYS-10V  
8
9
IADPT  
IBAT  
VSNS_ICHG  
30  
31  
32  
7
BTST1  
VSNS_IDCHG  
HIDRV1  
Loop Selector  
and  
Error Amplifier  
SW1  
16X  
PWM  
VREF_ICHG  
VSNS_ICHG  
VDDA  
EN_REGN  
20  
19  
REGN  
LDO  
SRP  
SRN  
REGN  
28  
20X**  
EN_HIZ  
EN_LEARN  
EN_LDO  
VREF_VBAT  
VSNS_VBAT  
EN_CHRG  
EN_OTG  
PWM  
Driver  
Logic  
29  
27  
25  
24  
23  
LODRV1  
PGND  
BTST2  
HIDRV2  
SW2  
22  
VREF_VSYS  
VSNS_VSYS  
VSYS  
VSNS_VSYS  
ACN  
Over  
Current  
Over  
Voltage  
Detect  
VSNS_VBAT  
VSNS_ICHG  
VSNS_IDCHG  
VSNS_IDPM  
VSNS_VDPM  
(ACP-ACN)  
SRN  
10  
12  
PSYS  
SDA  
(SRN-SRP)  
26  
18  
LODRV2  
EN_HIZ  
SMBUS  
Interface  
EN_LEARN  
EN_LDO  
EN_CHRG  
EN_OTG  
BATPRESZ  
CELL_CONFIG  
ChargeOption0()  
ChargeOption1()  
ChargeOption2()  
ChargeCurrent()  
ChargeVoltage()  
InputCurrent()  
InputVoltage()  
MinSysVoltage()  
OTGVoltage()  
OTGCurrent()  
Decoder  
CELL_BATPRESZ  
VREF_VSYS  
13  
5
SCL  
VREF_VBAT  
VREF_ICHG  
VREF_IDPM  
VREF_VDPM  
VREF_IOTG  
VREF_VOTG  
Loop  
Regulation  
Reference  
IADPT  
IBAT  
EN_OTG  
Processor  
Hot  
11  
PROCHOT  
VSYS  
CHRG_OK  
Copyright © 2017, Texas Instruments Incorporated  
22  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
8.3 Feature Description  
8.3.1 Power-Up from Battery Without DC Source  
If only battery is present and the voltage is above VVBAT_UVLOZ, the BATFET turns on and connects battery to  
system. By default, the charger is in low power mode (REG0x12[15] = 1) with lowest quiescent current. The LDO  
stays off. When device moves to performance mode (REG0x12[15] = 0), The host enables IBAT buffer through  
SMBus to monitor discharge current. For PSYS, PROCHOT or independent comparator, REGN LDO is enabled  
for an accurate reference.  
8.3.2 Power-Up From DC Source  
When an input source plugs in, the charger checks the input source voltage to turn on LDO and all the bias  
circuits. It sets the input current limit before the converter starts.  
The power-up sequence from DC source is as follows:  
1. 50 ms after VBUS above VVBUS_CONVEN, enable 6 V LDO and CHRG_OK goes HIGH  
2. Input voltage and current limit setup  
3. Battery CELL configuration  
4. 150 ms after VBUS above VVBUS_CONVEN, converter powers up.  
8.3.2.1 CHRG_OK Indicator  
CHRG_OK is an active HIGH open drain indicator. It indicates the charger is in normal operation when the  
following conditions are valid:  
VBUS is above VVBUS_CONVEN  
VBUS is below VACOV  
No MOSFET/inductor, or over-voltage, over-current, thermal shutdown fault  
8.3.2.2 Input Voltage and Current Limit Setup  
After CHRG_OK goes HIGH, the charger sets default input current limit in REG0x3F() to 3.30 A. The actual input  
current limit is the lower setting of REG0x3F() and ILIM_HIZ pin.  
Charger initiates a VBUS voltage measurement without any load (VBUS at no load). The default VINDPM  
threshold is VBUS at no load – 1.28 V.  
After input current and voltage limits are set, the charger device is ready to power up. The host can always  
update input current and voltage limit based on input source type.  
8.3.2.3 Battery Cell Configuration  
CELL_BATPRESZ pin is biased with resistors from REGN to CELL_BATPRESZ to GND. After VDDA LDO is  
activated, the device detects the battery configuration through CELL_BATPRESZ pin bias voltage. Refer to  
Electrical Characteristics for CELL setting thresholds.  
1. Battery Cell Configuration  
CELL COUNT  
PIN VOLTAGE w.r.t. VDDA  
BATTERY VOLTAGE (REG0x15)  
SYSOVP  
19.5V  
19.5V  
12V  
4S  
3S  
2S  
1S  
75%  
55%  
40%  
25%  
16.800V  
12.592V  
8.400V  
4.192V  
5V  
8.3.2.4 Device Hi-Z State  
The charger enters Hi-Z mode when ILIM_HIZ pin voltage is below 0.4 V or REG0x32[15] is set to 1. During Hi-Z  
mode, the input source is present, and the charger is in the low quiescent current mode with REGN LDO  
enabled.  
版权 © 2017–2018, Texas Instruments Incorporated  
23  
 
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.3.3 USB On-The-Go (OTG)  
The device supports USB OTG operation to deliver power from the battery to other portable devices through  
USB port. The OTG mode output voltage is set in REG0x3B(). The OTG mode output current is set in  
REG0x3C(). The OTG operation can be enabled if the conditions are valid:  
Valid battery voltage is set REG0x15()  
OTG output voltage is set in REG0x3B() and output current is set in REG0x3C()  
EN_OTG pin is HIGH and REG0x32[12] = 1  
VBUS is below VVBUS_UVLO  
10 ms after the above conditions are valid, converter starts and VBUS ramps up to target voltage. CHRG_OK  
pin goes HIGH if REG0x12[11] = 1.  
8.3.4 Converter Operation  
The charger employs a synchronous buck-boost converter that allows charging from a standard 5-V or a high-  
voltage power source. The charger operates in buck, buck-boost and boost mode. The buck-boost can operate  
uninterruptedly and continuously across the three operation modes.  
2. MOSFET Operation  
MODE  
Q1  
BUCK  
Switching  
Switching  
OFF  
BUCK-BOOST  
Switching  
BOOST  
ON  
Q2  
Switching  
OFF  
Q3  
Switching  
Switching  
Switching  
Q4  
ON  
Switching  
8.3.4.1 Inductor Setting through IADPT Pin  
The charger reads the inductor value through the IADPT pin.  
3. Inductor Setting on IADPT Pin  
INDUCTOR IN USE  
1 µH  
RESISTOR ON IADPT PIN  
93 kΩ  
137 kΩ  
169 kΩ  
2.2 µH  
3.3 µH  
8.3.4.2 Continuous Conduction Mode (CCM)  
With sufficient charge current, the inductor current does not cross 0 A, which is defined as CCM. The controller  
starts a new cycle with ramp coming up from 200 mV. As long as error amplifier output voltage is above the ramp  
voltage, the high-side MOSFET (HSFET) stays on. When the ramp voltage exceeds error amplifier output  
voltage, HSFET turns off and low-side MOSFET (LSFET) turns on. At the end of the cycle, ramp gets reset and  
LSFET turns off, ready for the next cycle. There is always break-before-make logic during transition to prevent  
cross-conduction and shoot-through. During the dead time when both MOSFETs are off, the body-diode of the  
low-side power MOSFET conducts the inductor current.  
During CCM, the inductor current always flows and creates a fixed two-pole system. Having the LSFET turn-on  
when the HSFET is off keeps the power dissipation low and allows safe charging at high currents.  
8.3.4.3 Pulse Frequency Modulation (PFM)  
In order to improve converter light-load efficiency, the bq25700A switches to PFM control at light load. The  
effective switching frequency will decrease accordingly when system load decreases. The minimum frequency  
can be limit to 25 kHz (ChargeOption0() bit[10]=1).  
24  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
8.3.5 Current and Power Monitor  
8.3.5.1 High-Accuracy Current Sense Amplifier (IADPT and IBAT)  
As an industry standard, a high-accuracy current sense amplifier (CSA) is used to monitor the input current  
during forward charging, or output current during OTG (IADPT) and the charge/discharge current (IBAT). IADPT  
voltage is 20× or 40× the differential voltage across ACP and ACN. IBAT voltage is 8x/16× (during charging), or  
8×/16× (during discharging) of the differential across SRP and SRN. After input voltage or battery voltage is  
above UVLO, IADPT output becomes valid. To lower the voltage on current monitoring, a resistor divider from  
CSA output to GND can be used and accuracy over temperature can still be achieved.  
V(IADPT) = 20 or 40 × (V(ACP) – V(ACN)) during forward mode, or 20 or 40 × (V(ACN) – V(ACP)) during reverse OTG  
mode.  
V(IBAT) = 8 or 16 × (V(SRP) – V(SRN)) during forward mode.  
V(IBAT) = 8 or 16 × (V(SRN) – V(SRP)) during forward supplement mode, or reverse OTG mode.  
A maximum 100-pF capacitor is recommended to connect on the output for decoupling high-frequency noise. An  
additional RC filter is optional, if additional filtering is desired. Note that adding filtering also adds additional  
response delay. The CSA output voltage is clamped at 3.3 V.  
8.3.5.2 High-Accuracy Power Sense Amplifier (PSYS)  
The charger monitors total system power. During forward mode, the input adapter powers system. During  
reverse OTG mode, the battery powers the system and VBUS output. The ratio of PSYS current and total power  
KPSYS can be programmed in REG0x30[9] with default 1 μA/W. The input and charge sense resistors (RAC and  
RSR) are programmed in REG0x30[11:10]. PSYS voltage can be calculated with 公式 1 where IIN>0 when  
adapter is in forward charging, and IBAT>0 when the battery is in discharge when the battery is in discharge.  
VPSYS = RPSYS ìKPSYS(VACP ìIIN + VBAT ìIBAT  
)
(1)  
For proper PSYS functionality, RAC and RSR values are limited to 10 mΩ and 20 mΩ.  
8.3.6 Input Source Dynamic Power Manage  
Refer to Input Current and Input Voltage Registers for Dynamic Power Management.  
8.3.7 Two-Level Adapter Current Limit (Peak Power Mode)  
Usually adapter can supply current higher than DC rating for a few milliseconds to tens of milliseconds. The  
charger employs two-level input current limit, or peak power mode, to fully utilize the overloading capability and  
minimize battery discharge during CPU turbo mode. Peak power mode is enabled in  
REG0x31[13](EN_PKPWR_IDPM) or REG0x31[12(EN_PKPWR_VSYS)]. The DC current limit, or ILIM1, is the  
same as adapter DC current, set in REG0x3F(). The overloading current, or ILIM2, is set in REG0x33[15:11], as a  
percentage of ILIM1.  
When the charger detects input current surge and battery discharge due to load transient, it applies ILIM2 for  
TOVLD in REG0x31[15:14], first, and then ILIM1 for up to TMAX – TOVLD time. TMAX is programmed in REG0x31[9:8].  
After TMAX, if the load is still high, another peak power cycle starts. Charging is disabled during TMAX,; once TMAX,  
expires, charging continues. If TOVLD is programmed higher than TMAX, then peak power mode is always on.  
版权 © 2017–2018, Texas Instruments Incorporated  
25  
 
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
ICRIT  
ILIM2  
ILIM1  
TOVLD  
TOVLD  
TMAX  
IVBUS  
ISYS  
IBAT  
Battery Discharge  
PROCHOT  
12. Two-Level Adapter Current Limit Timing Diagram  
8.3.8 Processor Hot Indication  
When CPU is running turbo mode, the system peak power may exceed available power from adapter and battery  
together. The adapter current and battery discharge peak current, or system voltage drop is indication that  
system power is too high. The charger processor hot function monitors these events, and PROCHOT pulse is  
asserted. Once CPU receives PROCHOT pulse from charger, it slows down to reduce system power. The  
processor hot function monitors these events, and PROCHOT pulse is asserted.  
The PROCHOT triggering events include:  
ICRIT: adapter peak current, as 110% of ILIM2  
INOM: adapter average current (110% of input current limit)  
IDCHG: battery discharge current  
VSYS: system voltage on VSYS  
Adapter Removal: upon adapter removal (CHRG_OK pin HIGH to LOW)  
Battery Removal: upon battery removal (CELL_BATPRESZ pin goes LOW)  
CMPOUT: Independent comparator output (CMPOUT pin HIGH to LOW)  
The threshold of ICRIT, IDCHG or VSYS, and the deglitch time of ICRIT, INOM, IDCHG or CMPOUT are  
programmable through SMBus. Each triggering event can be individually enabled in REG0x34[6:0]. When any  
event in PROCHOT profile is triggered, PROCHOT is asserted low for minimum 10 ms programmable in  
0x33[4:3]. At the end of the 10 ms, if the PROCHOT event is still active, the pulse gets extended.  
26  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
ICRIT  
IADPT  
Adjustable  
Deglitch  
1.05V  
INOM  
IDCHG  
50 Ω  
PROCHOT  
Ref_DCHG  
10 ms  
Debounce  
Ref  
<0.3V  
10 ms  
VSRP  
20 µs  
Deglitch  
CELL_BATPRESZ  
(one shot on pin falling edge)  
CHRG_OK  
(one shot on pin falling edge)  
CMPOUT  
Copyright © 2017, Texas Instruments Incorporated  
13. PROCHOT Profile  
8.3.8.1 PROCHOT During Low Power Mode  
During low power mode (REG0x12[15] = 1), the charger offers a low quiescent current (~150 µA). Low power  
PROCHOT function uses the independent comparator to monitor battery discharge current and system voltage,  
and assert PROCHOT to CPU.  
Below lists the register setting to enable PROCHOT during low power mode.  
REG0x12[15] = 1  
REG0x34[5:0] = 000000  
REG0x30[6:4] = 100  
Independent comparator threshold is always 1.2 V  
When REG0x30[14] = 1, charger monitors discharge current. Connect CMPIN to voltage proportional to IBAT  
pin. PROCHOT triggers from HIGH to LOW when CMPIN voltage falls below 1.2 V.  
When REG0x30[13] = 1, charger monitors system voltage. Connect CMPIN to voltage proportional to system.  
PROCHOT triggers from HIGH to LOW when CMPIN voltage rises above 1.2 V.  
版权 © 2017–2018, Texas Instruments Incorporated  
27  
 
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
PROCHOT  
1.2 V  
Independent  
Comparator  
Voltage î  
VSYS  
CMPIN  
Voltage î (VSRN œ VSRP  
)
bq2570xA  
Copyright © 2017, Texas Instruments Incorporated  
14. PROCHOT Low Power Mode Implementation  
8.3.8.2 PROCHOT Status  
REG0x21[6:0] reports which event in the profile triggers PROCHOT by setting the corresponding bit to 1. The  
status bit can be reset back to 0 after it is read by host, and current PROCHOT event is no longer active.  
Assume there are two PROCHOT events, event A and event B. Event A triggers PROCHOT first, but event B is  
also active. Both status bits will be HIGH. At the end of the 10 ms PROCHOT pulse, if PROCHOT is still active  
(either by A or B), the PROCHOT pulse is extended.  
8.3.9 Device Protection  
8.3.9.1 Watchdog Timer  
The charger includes watchdog timer to terminate charging if the charger does not receive a write  
MaxChargeVoltage() or write ChargeCurrent() command within 175 s (adjustable via REG0x12[14:13]). When  
watchdog timeout occurs, all register values are kept unchanged except ChargeCurrent() resets to zero. Battery  
charging is suspended. Write MaxChargeVoltage() or write ChargeCurrent() commands must be re-sent to reset  
watchdog timer and resume charging. Writing REG0x12[14:13] = 00 to disable watchdog timer also resumes  
charging.  
8.3.9.2 Input Overvoltage Protection (ACOV)  
The charger has fixed ACOV voltage. When VBUS pin voltage is higher than ACOV, it is considered as adapter  
over voltage. CHRG_OK will be pulled low, and converter will be disabled. As system falls below battery voltage,  
BATFET will be turned on. When VBUS pin voltage falls below ACOV, it is considered as adapter voltage returns  
back to normal voltage. CHRG_OK is pulled high by external pull up resistor. The converter resumes if enable  
conditions are valid.  
8.3.9.3 Input Overcurrent Protection (ACOC)  
If the input current exceeds the 1.25× or 2× (REG0x31[2]) of ILIM2_VTH (REG0x33[15:11]) set point, converter  
stops switching. After 300 ms, converter starts switching again.  
28  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
8.3.9.4 System Overvoltage Protection (SYSOVP)  
When the converter starts up, the bq25700A reads CELL pin configuration and sets MaxChargeVoltage() and  
SYSOVP threshold (1s – 5 V, 2s – 12 V, 3s/4s – 19.5 V). Before REGx15() is written by the host, the battery  
configuration will change with CELL pin voltage. When SYSOVP happens, the device latches off the converter.  
REG20[4] is set as 1. The user can clear latch-off by either writing 0 to the SYSOVP bit or removing and  
plugging in the adapter again. After latch-off is cleared, the converter starts again.  
8.3.9.5 Battery Overvoltage Protection (BATOVP)  
Battery over-voltage may happen when battery is removed during charging or the user plugs in a wrong battery.  
The BATOVP threshold is 104% (1 s) or 102% (2 s to 4 s) of regulation voltage set in REG0x15().  
8.3.9.6 Battery Short  
If BAT voltage falls below SYSMIN during charging, the maximum current is limited to 384 mA.  
8.3.9.7 Thermal Shutdown (TSHUT)  
The WQFN package has low thermal impedance, which provides good thermal conduction from the silicon to the  
ambient, to keep junction temperatures low. As added level of protection, the charger converter turns off for self-  
protection whenever the junction temperature exceeds the 155°C. The charger stays off until the junction  
temperature falls below 135°C. During thermal shut down, the LDO current limit is reduced to 16 mA and REGN  
LDO stays off. When the temperature falls below 135°C, charge can be resumed with soft start.  
8.4 Device Functional Modes  
8.4.1 Forward Mode  
When input source is connected to VBUS, bq25700A is in forward mode to regulate system and charge battery.  
8.4.1.1 System Voltage Regulation with Narrow VDC Architecture  
The bq25700A employs Narrow VDC architecture (NVDC) with BATFET separating system from battery. The  
minimum system voltage is set by MinSystemVoltage(). Even with a deeply depleted battery, the system is  
regulated above the minimum system voltage.  
When the battery is below minimum system voltage setting, the BATFET operates in linear mode (LDO mode).  
As the battery voltage rises above the minimum system voltage, BATFET is fully on when charging or in  
supplement mode and the voltage difference between the system and battery is the VDS of BATFET. System  
voltage is regulated 160 mV above battery voltage when BATFET is off (no charging or no supplement current).  
See System Voltage Regulation for details on system voltage regulation and register programming.  
8.4.1.2 Battery Charging  
The bq25700A charges 1-4 cell battery in constant current (CC), and constant voltage (CV) mode. Based on  
CELL_BATPREZ pin setting, the charger sets default battery voltage 4.2V/cell to ChargeVoltage(), or  
REG0x15(). According to battery capacity, the host programs appropriate charge current to ChargeCurrent(), or  
REG0x14(). When battery is full or battery is not in good condition to charge, host terminates charge by setting  
REG0x12[0] to 1, or setting ChargeCurrent() to zero.  
See Feature Description for details on register programming.  
8.4.2 USB On-The-Go  
The bq25700A supports USB OTG functionality to deliver power from the battery to other portable devices  
through USB port (reverse mode). The OTG output voltage is compliant with USB PD specification, including 5 V,  
9 V, 15 V, and 20 V (REG0x3B()). The output current regulation is compliant with USB type C specification,  
including 500 mA, 1.5 A, 3 A and 5 A (REG0x3C()).  
Similar to forward operation, the device switches from PWM operation to PFM operation at light load to improve  
efficiency.  
版权 © 2017–2018, Texas Instruments Incorporated  
29  
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.5 Programming  
The charger supports battery-charger commands that use either Write-Word or Read-Word protocols, as  
summarized in 6. The SMBUS address is 12h (0001001_X), where X is the read/write bit. The ManufacturerID  
and DeviceID registers are assigned identify the charger device. The ManufacturerID register command always  
returns 40h.  
8.5.1 SMBus Interface  
The bq25700A device operates as a slave, receiving control inputs from the embedded controller host through  
the SMBus interface. The bq25700A device uses a simplified subset of the commands documented in System  
Management Bus Specification V1.1, which can be downloaded from www.smbus.org. The bq25700A device  
uses the SMBus read-word and write-word protocols (shown in 4 and 5) to communicate with the smart  
battery. The device performs only as a SMBus slave device with address 0b00010010 (0x12H) and does not  
initiate communication on the bus. In addition, the device has two identification registers, a 16-bit device ID  
register (0xFFH) and a 16-bit manufacturer ID register (0xFEH).  
SMBus communication starts when VCC is above V(UVLO)  
.
The data (SDA) and clock (SCL) pins have Schmitt-trigger inputs that can accommodate slow edges. Choose  
pullup resistors (10 kΩ) for SDA and SCL to achieve rise times according to the SMBus specifications.  
Communication starts when the master signals a start condition, which is a high-to-low transition on SDA, while  
SCL is high. When the master has finished communicating, the master issues a stop condition, which is a low-to-  
high transition on SDA, while SCL is high. The bus is then free for another transmission. 15 and 16 show  
the timing diagram for signals on the SMBus interface. The address byte, command byte, and data bytes are  
transmitted between the start and stop conditions. The SDA state changes only while SCL is low, except for the  
start and stop conditions. Data is transmitted in 8-bit bytes and is sampled on the rising edge of SCL. Nine clock  
cycles are required to transfer each byte in or out of the device because either the master or the slave  
acknowledges the receipt of the correct byte during the ninth clock cycle. The bq25700A supports the charger  
commands listed in 4.  
30  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
Programming (接下页)  
8.5.1.1 SMBus Write-Word and Read-Word Protocols  
4. Write-Word Format  
S
SLAVE  
W
ACK  
COMMAND  
BYTE(1)  
ACK  
LOW DATA  
BYTE(1)  
ACK  
HIGH DATA  
BYTE(1)  
ACK  
P
(1)(2)  
(1)(3)  
(4)(5)  
(4)(5)  
(4)(5)  
(4)(5)  
(1)(6)  
ADDRESS(1)  
7 bits  
1b  
0
1b  
0
8 bits  
1b  
0
8 bits  
1b  
0
8 bits  
1b  
0
MSB LSB  
MSB LSB  
MSB LSB  
MSB LSB  
(1) Master to slave  
(2) S = Start condition or repeated start condition  
(3) W = Write bit (logic-low)  
(4) Slave to master (shaded gray)  
(5) ACK = Acknowledge (logic-low)  
(6) P = Stop condition  
5. Read-Word Format  
S(1)  
SLAVE  
W
ACK COMMAND ACK S(1)  
SLAVE  
R(1) ACK LOW DATA ACK HIGH DATA NACK  
P
(2)  
(1)(3)  
(4)(5)  
(4)(5)  
(2)  
(6)  
(4)(5)  
(1)(5)  
(1)(7)  
(1)(8)  
ADDRESS(1)  
BYTE(1)  
8 bits  
ADDRESS(1)  
BYTE(4)  
8 bits  
BYTE(4)  
8 bits  
7 bits  
1b  
0
1b  
0
1b  
0
7 bits  
1b  
1
1b  
0
1b  
0
1b  
1
MSB LSB  
MSB LSB  
MSB LSB  
MSB LSB  
MSB LSB  
(1) Master to slave  
(2) S = Start condition or repeated start condition  
(3) W = Write bit (logic-low)  
(4) Slave to master (shaded gray)  
(5) ACK = Acknowledge (logic-low)  
(6) R = Read bit (logic-high)  
(7) NACK = Not acknowledge (logic-high)  
(8) P = Stop condition  
8.5.1.2 Timing Diagrams  
A
B
C
D
E
F
G
H
I
J
K
L
M
tLOW tHIGH  
SMBCLK  
SMBDATA  
tSU:STA tHD:STA  
A = Start condition  
tSU:DAT tHD:DAT  
tHD:DAT  
tSU:STO tBUF  
H = LSB of data clocked into slave  
I = Slave pulls SMBDATA line low  
B = MSB of address clocked into slave  
C = LSB of address clocked into slave  
D = R/W bit clocked into slave  
J = Acknowledge clocked into master  
K = Acknowledge clock pulse  
E = Slave pulls SMBDATA line low  
F = ACKNOWLEDGE bit clocked into master  
G = MSB of data clocked into slave  
L = Stop condition, data executed by slave  
M = New start condition  
15. SMBus Write Timing  
版权 © 2017–2018, Texas Instruments Incorporated  
31  
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
A
B
C
D
E
F
G
H
I
J
K
tLOW tHIGH  
SMBCLK  
SMBDATA  
tSU:STA tHD:STA  
tSU:DAT  
tHD:DAT  
tSU:DAT  
tSU:STO tBUF  
A = START CONDITION  
E = SLAVE PULLS SMBDATA LINE LOW  
I = ACKNOWLEDGE CLOCK PULSE  
A = Start condition  
G = MSB of data clocked into master  
B = MSB of address clocked into slave  
C = LSB of address clocked into slave  
D = R/W bit clocked into slave  
H = LSB of data clocked into master  
I = Acknowledge clock pulse  
J = Stop condition  
E = Slave pulls SMBDATA line low  
F = ACKNOWLEDGE bit clocked into master  
K = New start condition  
16. SMBus Read Timing  
8.6 Register Map  
6. Charger Command Summary  
SMBus  
ADDR  
REGISTER NAME  
TYPE  
DESCRIPTION  
LINKS  
12h  
14h  
ChargeOption0()  
ChargeCurrent()  
R/W  
Charge Option 0  
Go  
Go  
R/W  
R/W  
7-bit charge current setting  
LSB 64 mA, Range 8128 mA  
15h  
MaxChargeVoltage()  
11-bit charge voltage setting  
Go  
LSB 16 mV, Default: 1S-4192mV, 2S-8400mV,  
3S-12592mV, 4S-16800mV  
30h  
31h  
32h  
33h  
34h  
35h  
20h  
21h  
22h  
ChargeOption1()  
ChargeOption2()  
ChargeOption3()  
ProchotOption0()  
ProchotOption1()  
ADCOption()  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Charge Option 1  
Charge Option 2  
Charge Option 3  
PROCHOT Option 0  
PROCHOT Option 1  
ADC Option  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
ChargerStatus()  
ProchotStatus()  
IIN_DPM()  
Charger Status  
Prochot Status  
R
R
7-bit input current limit in use  
LSB: 50 mA, Range: 50 mA - 6400 mA  
23h  
ADCVBUS/PSYS()  
R
R
8-bit digital output of input voltage,  
8-bit digital output of system power  
PSYS: Full range: 3.06 V, LSB: 12 mV  
VBUS: Full range: 3.2 V - 19.52 V, LSB 64 mV  
Go  
24h  
ADCIBAT()  
8-bit digital output of battery charge current,  
8-bit digital output of battery discharge current  
ICHG: Full range 8.128 A, LSB 64 mA  
Go  
IDCHG: Full range: 32.512 A, LSB: 256 mA  
32  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
Register Map (接下页)  
6. Charger Command Summary (接下页)  
SMBus  
ADDR  
REGISTER NAME  
TYPE  
DESCRIPTION  
LINKS  
25h  
ADCIINCMPIN()  
R
R
8-bit digital output of input current,  
Go  
Go  
8-bit digital output of CMPIN voltage  
POR State - IIN: Full range: 12.75 A, LSB 50 mA  
CMPIN: Full range 3.06 V, LSB: 12 mV  
26h  
ADCVSYSVBAT()  
8-bit digital output of system voltage,  
8-bit digital output of battery voltage  
VSYS: Full range: 2.88 V - 19.2 V, LSB: 64 mV  
VBAT: Full range : 2.88 V - 19.2 V, LSB 64 mV  
3Bh  
3Ch  
3Dh  
3Eh  
OTGVoltage()  
R/W  
R/W  
R/W  
R/W  
8-bit OTG voltage setting  
LSB 64 mV, Range: 4480 – 20800 mV  
Go  
Go  
Go  
Go  
OTGCurrent()  
7-bit OTG output current setting  
LSB 50 mA, Range: 0 A – 6350 mA  
InputVoltage()  
8-bit input voltage setting  
LSB 64 mV, Range: 3200 mV – 19520 mV  
MinSystemVoltage()  
6-Bit minimum system voltage setting  
LSB: 256 mV, Range: 1024 mV - 16182 mV  
Default: 1S-3.584V, 2S-6.144V, 3S-9.216V, 4S-  
12.288V  
3Fh  
IIN_HOST()  
R/W  
6-bit Input current limit set by host  
Go  
LSB: 50 mA, Range: 50 mA - 6400 mA  
FEh  
FFh  
ManufacturerID()  
DeviceID()  
R
R
Manufacturer ID - 0x0040H  
Device ID  
Go  
Go  
版权 © 2017–2018, Texas Instruments Incorporated  
33  
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.6.1 Setting Charge and PROCHOT Options  
8.6.1.1 ChargeOption0 Register (SMBus address = 12h) [reset = E20Eh]  
17. ChargeOption0 Register (SMBus address = 12h) [reset = E20Eh]  
15  
14  
13  
12  
11  
10  
9
8
EN_LWPWR  
WDTMR_ADJ  
R/W  
IDPM_AUTO_  
DISABLE  
OTG_ON_  
CHRGOK  
EN_OOA  
PWM_FREQ  
Reserved  
R/W  
7
R/W  
R/W  
R/W  
R/W  
R/W  
6
5
4
3
2
1
0
Reserved  
R/W  
EN_LEARN  
R/W  
IADPT_GAIN  
R/W  
IBAT_GAIN  
R/W  
EN_LDO  
R/W  
EN_IDPM  
R/W  
CHRG_INHIBIT  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7. ChargeOption0 Register (SMBus address = 12h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15  
EN_LWPWR  
R/W  
1b  
Low Power Mode Enable  
0b: Disable Low Power Mode. Device in performance mode with battery only.  
The PROCHOT, current/power monitor buffer and comparator follow register  
setting.  
1b: Enable Low Power Mode. Device in low power mode with battery only for  
lowest quiescent current. PROCHOT, discharge current monitor buffer, power  
monitor buffer and independent comparator are disabled. ADC is not available  
in Low Power Mode. Independent comparator can be enabled by setting either  
REG0X30()[14] or [13] to 1. <default at POR>  
14-13  
WDTMR_ADJ  
R/W  
11b  
WATCHDOG Timer Adjust  
Set maximum delay between consecutive SMBus write of charge voltage or  
charge current command.  
If device does not receive a write on the REG0x15() or the REG0x14() within  
the watchdog time period, the charger will be suspended by setting the  
REG0x14() to 0 mA.  
After expiration, the timer will resume upon the write of REG0x14(),  
REG0x15() or REG0x12[14:13]. The charger will resume if the values are  
valid.  
00b: Disable Watchdog Timer  
01b: Enabled, 5 sec  
10b: Enabled, 88 sec  
11b: Enable Watchdog Timer, 175 sec <default at POR>  
12  
IDPM_AUTO_  
DISABLE  
R/W  
0b  
IDPM Auto Disable  
When CELL_BATPRESZ pin is LOW, the charger automatically disables the  
IDPM function by setting EN_IDPM (REG0x12[1]) to 0. The host can enable  
IDPM function later by writing EN_IDPM bit (REG0x12[1]) to 1.  
0b: Disable this function. IDPM is not disabled when CELL_BATPRESZ goes  
LOW. <default at POR>  
1b: Enable this function. IDPM is disabled when CELL_BATPRESZ goes  
LOW.  
11  
10  
OTG_ON_  
CHRGOK  
R/W  
R/W  
0b  
0b  
Add OTG to CHRG_OK  
Drive CHRG_OK to HIGH when the device is in OTG mode.  
0b: Disable <default at POR>  
1b: Enable  
EN_OOA  
Out-of-Audio Enable  
0b: No limit of PFM burst frequency <default at POR>  
1b: Set minimum PFM burst frequency to above 25 kHz to avoid audio noise  
34  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
SMBus  
ZHCSGD7A MAY 2017REVISED MAY 2018  
7. ChargeOption0 Register (SMBus address = 12h) Field Descriptions (接下页)  
FIELD  
PWM_FREQ  
TYPE  
RESET  
DESCRIPTION  
BIT  
9
R/W  
1b  
Switching Frequency  
Two converter switching frequencies. One for small inductor and the other for  
big inductor.  
Recommend 800 kHz with 2.2 µH or 3.3 µH, and 1.2 MHz with 1 µH or 1.5 µH.  
0b: 1200 kHz  
1b: 800 kHz <default at POR>  
Reserved  
8
Reserved  
R/W  
0b  
8. ChargeOption0 Register (SMBus address = 12h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7-6  
5
Reserved  
R/W  
R/W  
00b  
0b  
Reserved  
EN_LEARN  
LEARN function allows the battery to discharge while the adapter is present. It  
calibrates the battery gas gauge over a complete discharge/charge cycle.  
When the battery voltage is below battery depletion threshold, the system  
switches back to adapter input by the host. When CELL_BATPRESZ pin is  
LOW, the device exits LEARN mode and this bit is set back to 0.  
0b: Disable LEARN Mode <default at POR>  
1b: Enable LEARN Mode  
4
3
2
IADPT_GAIN  
IBAT_GAIN  
EN_LDO  
R/W  
R/W  
R/W  
0b  
1b  
1b  
IADPT Amplifier Ratio  
The ratio of voltage on IADPT and voltage across ACP and ACN.  
0b: 20× <default at POR>  
1b: 40×  
IBAT Amplifier Ratio  
The ratio of voltage on IBAT and voltage across SRP and SRN  
0b: 8×  
1b: 16× <default at POR>  
LDO Mode Enable  
When battery voltage is below minimum system voltage (REG0x3E()), the  
charger is in pre-charge with LDO mode enabled.  
0b: Disable LDO mode, BATFET fully ON. Precharge current is set by battery  
pack internal resistor. The system is regulated by the MaxChargeVoltage  
register.  
1b: Enable LDO mode, Precharge current is set by the ChargeCurrent register  
and clamped below 384 mA (2 cell – 4 cell) or 2A (1 cell). The system is  
regulated by the MinSystemVoltage register. <default at POR>  
1
0
EN_IDPM  
R/W  
R/W  
1b  
0b  
IDPM Enable  
Host writes this bit to enable IDPM regulation loop. When the IDPM is disabled  
by the charger (refer to IDPM_AUTO_DISABLE), this bit goes LOW.  
0b: IDPM disabled  
1b: IDPM enabled <default at POR>  
CHRG_INHIBIT  
Charge Inhibit  
When this bit is 0, battery charging will start with valid values in the  
MaxChargeVoltage register and the ChargeCurrent register.  
0b: Enable Charge <default at POR>  
1b: Inhibit Charge  
版权 © 2017–2018, Texas Instruments Incorporated  
35  
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.6.1.2 ChargeOption1 Register (SMBus address = 30h) [reset = 211h]  
18. ChargeOption1 Register (SMBus address = 30h) [reset = 211h]  
15  
14  
13  
12  
EN_PSYS  
R/W  
11  
RSNS_RAC  
R/W  
10  
RSNS_RSR  
R/W  
9
8
EN_IBAT  
R/W  
EN_PROCHOT_LPWR  
R/W  
PSYS_RATIO  
R/W  
Reserved  
R/W  
7
6
5
4
3
2
1
0
CMP_REF  
CMP_POL  
CMP_DEG  
R/W  
FORCE_  
LATCHOFF  
Reserved  
EN_SHIP_  
DCHG  
AUTO_  
WAKEUP_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9. ChargeOption1 Register (SMBus address = 30h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET DESCRIPTION  
15  
EN_IBAT  
R/W  
0b  
IBAT Enable  
Enable the IBAT output buffer. In low power mode (REG0x12[15] = 1), IBAT  
buffer is always disabled regardless of this bit value.  
0b Turn off IBAT buffer to minimize Iq <default at POR>  
1b: Turn on IBAT buffer  
14-13 EN_PROCHOT  
_LPWR  
R/W  
00b  
Enable PROCHOT during battery only low power mode  
With battery only, enable IDCHG or VSYS in PROCHOT with low power  
consumption. Do not enable this function with adapter present. Refer to  
PROCHOT During Low Power Mode for more details.  
00b: Disable low power PROCHOT <default at POR>  
01b: Enable IDCHG low power PROCHOT  
10b: Enable VSYS low power PROCHOT  
11b: Reserved  
12  
EN_PSYS  
R/W  
0b  
PSYS Enable  
Enable PSYS sensing circuit and output buffer (whole PSYS circuit). In low  
power mode (REG0x12[15] = 1), PSYS sensing and buffer are always disabled  
regardless of this bit value.  
0b: Turn off PSYS buffer to minimize Iq <default at POR>  
1b: Turn on PSYS buffer  
11  
10  
9
RSNS_RAC  
RSNS_RSR  
PSYS_RATIO  
R/W  
R/W  
R/W  
0b  
0b  
1b  
Input sense resistor RAC  
0b: 10 mΩ <default at POR>  
1b: 20 mΩ  
Charge sense resistor RSR  
0b: 10 mΩ <default at POR>  
1b: 20 mΩ  
PSYS Gain  
Ratio of PSYS output current vs total input and battery power with 10-mΩ sense  
resistor.  
0b: 0.25 µA/W  
1b: 1 µA/W <default at POR>  
8
Reserved  
R/W  
0b  
Reserved  
10. ChargeOption1 Register (SMBus address = 30h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET DESCRIPTION  
7
CMP_REF  
R/W  
0b  
Independent Comparator internal Reference  
0b: 2.3 V <default at POR>  
1b: 1.2 V  
36  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
SMBus  
ZHCSGD7A MAY 2017REVISED MAY 2018  
10. ChargeOption1 Register (SMBus address = 30h) Field Descriptions (接下页)  
FIELD  
TYPE  
RESET DESCRIPTION  
BIT  
6
CMP_POL  
R/W  
0b  
Independent Comparator output Polarity  
0b: When CMPIN is above internal threshold, CMPOUT is LOW (internal  
hysteresis) <default at POR>  
1b: When CMPIN is below internal threshold, CMPOUT is LOW (external  
hysteresis)  
5-4  
CMP_DEG  
R/W  
01b  
Independent comparator deglitch time, only applied to the falling edge of  
CMPOUT (HIGH LOW).  
00b: Independent comparator is disabled  
01b: Independent comparator is enabled with output deglitch time 1 µs <default  
at POR>  
10b: Independent comparator is enabled with output deglitch time of 2 ms  
11b: Independent comparator is enabled with output deglitch time of 5 sec  
3
FORCE_LATCHOFF  
R/W  
0b  
Force Power Path Off  
When independent comparator triggers, charger turns off Q1 and Q4 (same as  
disable converter) so that the system is disconnected from the input source. At  
the same time, CHRG_OK signal goes to LOW to notify the system.  
0b: Disable this function <default at POR>  
1b: Enable this function  
2
1
Reserved  
R/W  
R/W  
0b  
0b  
Reserved  
EN_SHIP_DCHG  
Discharge SRN for Shipping Mode  
When this bit is 1, discharge SRN pin down below 3.8 V in 140 ms. When 140  
ms is over, this bit is reset to 0.  
0b: Disable shipping mode <default at POR>  
1b: Enable shipping mode  
0
AUTO_WAKEUP_EN  
R/W  
1b  
Auto Wakeup Enable  
When this bit is HIGH, if the battery is below minimum system voltage  
(REG0x3E()), the device will automatically enable 128 mA charging current for  
30 mins. When the battery is charged up above minimum system voltage, charge  
will terminate and the bit is reset to LOW.  
0b: Disable  
1b: Enable <default at POR>  
版权 © 2017–2018, Texas Instruments Incorporated  
37  
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.6.1.3 ChargeOption2 Register (SMBus address = 31h) [reset = 2B7]  
19. ChargeOption2 Register (SMBus address = 31h) [reset = 2B7]  
15  
14  
13  
12  
11  
10  
9
8
PKPWR_TOVLD_DEG  
EN_PKPWR_  
IDPM  
EN_PKPWR_  
VSYS  
PKPWR_  
OVLD_STAT  
PKPWR_  
RELAX_STAT  
PKPWR_TMAX[1:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
6
5
4
3
2
1
0
EN_EXTILIM  
EN_ICHG  
_IDCHG  
Q2_OCP  
ACX_OCP  
EN_ACOC  
ACOC_VTH  
EN_BATOC  
BATOC_VTH  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
11. ChargeOption2 Register (SMBus address = 31h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-14  
PKPWR_  
TOVLD_DEG  
R/W  
00b  
Input Overload time in Peak Power Mode  
00b: 1 ms <default at POR>  
01b: 2 ms  
10b: 10 ms  
11b: 20 ms  
13  
EN_PKPWR_IDPM  
EN_PKPWR_VSYS  
R/W  
R/W  
0b  
0b  
Enable Peak Power Mode triggered by input current overshoot  
If REG0x31[13:12] are 00b, peak power mode is disabled. Upon  
adapter removal, the bits are reset to 00b.  
0b: Disable peak power mode triggered by input current overshoot  
<default at POR>  
1b: Enable peak power mode triggered by input current overshoot.  
12  
Enable Peak Power Mode triggered by system voltage under-shoot  
If REG0x31[13:12] are 00b, peak power mode is disabled. Upon  
adapter removal, the bits are reset to 00b.  
0b: Disable peak power mode triggered by system voltage under-shoot  
<default at POR>  
1b: Enable peak power mode triggered by system voltage under-shoot.  
11  
10  
PKPWR_  
OVLD_STAT  
R/W  
R/W  
R/W  
0b  
Indicator that the device is in overloading cycle. Write 0 to get out of  
overloading cycle.  
0b: Not in peak power mode. <default at POR>  
1b: In peak power mode.  
PKPWR_  
RELAX_STAT  
0b  
Indicator that the device is in relaxation cycle. Write 0 to get out of  
relaxation cycle.  
0b: Not in relaxation cycle. <default at POR>  
1b: In relaxation mode.  
9-8  
PKPWR_  
TMAX[1:0]  
10b  
Peak power mode overload and relax cycle time.  
When REG0x31[15:14] is programmed longer than REG0x31[9:8],  
there is no relax time.  
00b: 5 ms  
01b: 10 ms  
10b: 20 ms <default at POR>  
11b: 40 ms  
38  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
SMBus  
ZHCSGD7A MAY 2017REVISED MAY 2018  
12. ChargeOption2 Register (SMBus address = 31h) Field Descriptions  
FIELD  
TYPE  
RESET  
DESCRIPTION  
BIT  
7
EN_EXTILIM  
R/W  
1b  
Enable ILIM_HIZ pin to set input current limit  
0b: Input current limit is set by REG0x3F.  
1b: Input current limit is set by the lower value of ILIM_HIZ pin and  
REG0x3F. <default at POR>  
6
5
EN_ICHG  
_IDCHG  
R/W  
R/W  
0b  
1b  
0b: IBAT pin as discharge current. <default at POR>  
1b: IBAT pin as charge current.  
Q2_OCP  
Q2 OCP threshold by sensing Q2 VDS  
0b: 210 mV  
1b: 150 mV <default at POR>  
4
3
ACX_OCP  
EN_ACOC  
R/W  
R/W  
1b  
0b  
Input current OCP threshold by sensing ACP-ACN.  
0b: 280 mV  
1b: 150 mV <default at POR>  
ACOC Enable  
Input overcurrent (ACOC) protection by sensing the voltage across  
ACP and ACN. Upon ACOC (after 100-µs blank-out time), converter is  
disabled.  
0b: Disable ACOC <default at POR>  
1b: ACOC threshold 125% or 200% ICRIT  
2
1
ACOC_VTH  
EN_BATOC  
R/W  
R/W  
1b  
1b  
ACOC Limit  
Set MOSFET OCP threshold as percentage of IDPM with current  
sensed from RAC.  
0b: 125% of ICRIT  
1b: 200% of ICRIT <default at POR>  
BATOC Enable  
Battery discharge overcurrent (BATOC) protection by sensing the  
voltage across SRN and SRP. Upon BATOC, converter is disabled.  
0b: Disable BATOC  
1b: BATOC threshold 125% or 200% PROCHOT IDCHG <default at  
POR>  
0
BATOC_VTH  
R/W  
1b  
Set battery discharge overcurrent threshold as percentage of  
PROCHOT battery discharge current limit.  
0b: 125% of PROCHOT IDCHG  
1b: 200% of PROCHOT IDCHG <default at POR>  
版权 © 2017–2018, Texas Instruments Incorporated  
39  
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.6.1.4 ChargeOption3 Register (SMBus address = 32h) [reset = 0h]  
20. ChargeOption3 Register (SMBus address = 32h) [reset = 0h]  
15  
14  
13  
12  
11  
10  
9
8
0
EN_HIZ  
RESET_REG  
RESET_  
VINDPM  
EN_OTG  
EN_ICO_MOD  
E
Reserved  
R/W  
7
R/W  
6
R/W  
5
R/W  
4
R/W  
3
R/W  
1
2
Reserved  
BATFETOFF_  
HIZ  
PSYS_OTG_  
IDCHG  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
R/W  
R/W  
13. ChargeOption3 Register (SMBus address = 32h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15  
EN_HIZ  
R/W  
0b  
Device Hi-Z Mode Enable  
When the charger is in Hi-Z mode, the device draws minimal quiescent  
current. With VBUS above UVLO. REGN LDO stays on, and system  
powers from battery.  
0b: Device not in Hi-Z mode <default at POR>  
1b: Device in Hi-Z mode  
14  
RESET_REG  
R/W  
0b  
Reset Registers  
All the registers go back to the default setting except the VINDPM  
register.  
0b: Idle <default at POR>  
1b: Reset all the registers to default values. After reset, this bit goes back  
to 0.  
13  
12  
RESET_VINDPM  
EN_OTG  
R/W  
R/W  
0b  
0b  
Reset VINDPM Threshold  
0b: Idle  
1b: Converter is disabled to measure VINDPM threshold. After VINDPM  
measurement is done, this bit goes back to 0 and converter starts.  
OTG Mode Enable  
Enable device in OTG mode when EN_OTG pin is HIGH.  
0b: Disable OTG <default at POR>  
1b: Enable OTG mode to supply VBUS from battery.  
11  
EN_ICO_MODE  
Reserved  
R/W  
R/W  
0b  
Enable ICO Algorithm  
0b: Disable ICO algorithm. <default at POR>  
1b: Enable ICO algorithm.  
10-8  
000b  
Reserved  
14. ChargeOption3 Register (SMBus address = 32h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7-2  
1
Reserved  
R/W  
R/W  
000000b  
0b  
Reserved  
BATFETOFF_  
HIZ  
Control BATFET during HIZ mode.  
0b: BATFET on during Hi-Z <default at POR>  
1b: BATFET off during Hi-Z  
0
PSYS_OTG_  
IDCHG  
R/W  
0b  
PSYS function during OTG mode.  
0b: PSYS as battery discharge power minus OTG output power <default  
at POR>  
1b: PSYS as battery discharge power only  
40  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
8.6.1.5 ProchotOption0 Register (SMBus address = 33h) [reset = 04A54h]  
21. ProchotOption0 Register (SMBus address = 33h) [reset = 04A54h]  
15-11  
ILIM2_VTH  
R/W  
10-9  
ICRIT_DEG  
R/W  
8
Reserved  
R/W  
7-6  
5
4-3  
2
1
0
VSYS_VTH  
EN_PROCHOT  
_EXT  
PROCHOT_WIDTH  
PROCHOT_  
CLEAR  
INOM_DEG  
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
15. ProchotOption0 Register (SMBus address = 33h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-11 ILIM2_VTH  
R/W  
01001b  
ILIM2 Threshold  
5 bits, percentage of IDPM in 0x3FH. Measure current between ACP and ACN.  
Trigger when the current is above this threshold:  
00001b - 11001b: 110% - 230%, step 5%  
11010b - 11110b: 250% - 450%, step 50%  
11111b: Out of Range (Ignored)  
Default 150%, or 01001  
10-9  
ICRIT_DEG  
R/W  
01b  
ICRIT Deglitch time  
ICRIT threshold is set to be 110% of  
.
ILIM2  
Typical ICRIT deglitch time to trigger PROCHOT.  
00b: 15 µs  
01b: 100 µs <default at POR>  
10b: 400 µs (max 500 us)  
11b: 800 µs (max 1 ms)  
8
Reserved  
R/W  
0b  
Reserved  
16. ProchotOption0 Register (SMBus address = 33h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7-6  
VSYS_VTH  
R/W  
01b  
VSYS Threshold  
Measure on VSYS with fixed 20-µs deglitch time. Trigger when SYS pin voltage is  
below the threshold.  
00b: 5.75 V (2-4 s) or 2.85 V (1 s)  
01b: 6 V (2-4 s) or 3.1 V (1 s) <default at POR>  
10b: 6.25 V (2-4 s) or 3.35 V (1 s)  
11b: 6.5 V (2-4 s) or 3.6 V (1 s)  
5
EN_PROCHOT  
_EXT  
R/W  
R/W  
0b  
PROCHOT Pulse Extension Enable  
When pulse extension is enabled, keep the PROCHOT pin voltage LOW until host  
writes 0x33[2] = 0.  
0b: Disable pulse extension <default at POR>  
1b: Enable pulse extension  
4-3  
PROCHOT  
_WIDTH  
10b  
PROCHOT Pulse Width  
Minimum PROCHOT pulse width when REG0x33[5] = 0  
00b: 100 µs  
01b: 1 ms  
10b: 10 ms <default at POR>  
11b: 5 ms  
版权 © 2017–2018, Texas Instruments Incorporated  
41  
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
16. ProchotOption0 Register (SMBus address = 33h) Field Descriptions (接下页)  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
2
PROCHOT  
_CLEAR  
R/W  
1b  
PROCHOT Pulse Clear  
Clear PROCHOT pulse when 0x33[5] = 1.  
0b: Clear PROCHOT pulse and drive PROCHOT pin HIGH.  
1b: Idle <default at POR>  
1
INOM_DEG  
R/W  
R/W  
0b  
0b  
INOM Deglitch Time  
INOM is always 10% above IDPM in 0x3FH. Measure current between ACP and  
ACN.  
Trigger when the current is above this threshold.  
0b: 1 ms (must be max) <default at POR>  
1b: 50 ms (max 60 ms)  
0
Reserved  
Reserved  
42  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
8.6.1.6 ProchotOption1 Register (SMBus address = 34h) [reset = 8120h]  
22. ProchotOption1 Register (SMBus address = 34h) [reset = 8120h]  
15-10  
9-8  
IDCHG_VTH  
R/W  
IDCHG_DEG  
R/W  
7
6
5
4
3
2
1
0
Reserved  
PROCHOT_PR  
OFILE_IC  
PP_ICRIT  
PP_INOM  
PP_IDCHG  
PP_VSYS  
PP_BATPRES  
PP_ACOK  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
17. ProchotOption1 Register (SMBus address = 34h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-10  
IDCHG_VTH  
R/W  
100000b  
IDCHG Threshold  
6 bit, range, range 0 A to 32256 mA, step 512 mA. There is a 128 mA offset  
Measure current between SRN and SRP.  
Trigger when the discharge current is above the threshold.  
If the value is programmed to 000000b PROCHOT is always triggered.  
Default: 16384 mA or 100000b  
9-8  
IDCHG_DEG  
R/W  
01b  
IDCHG Deglitch Time  
00b: 1.6 ms  
01b: 100 µs <default at POR>  
10b: 6 ms  
11b: 12 ms  
18. ProchotOption1 Register (SMBus address = 34h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
6
Reserved  
R/W  
R/W  
0b  
0b  
Reserved  
PROCHOT  
_PROFILE_COMP  
PROCHOT Profile  
When all the REG0x34[6:0] bits are 0, PROCHOT function is disabled.  
Bit6 Independent comparator  
0b: disable <default at POR>  
1b: enable  
5
4
3
2
1
PROCHOT  
_PROFILE_ICRIT  
R/W  
R/W  
R/W  
R/W  
R/W  
1b  
0b  
0b  
0b  
0b  
0b: disable  
1b: enable <default at POR>  
PROCHOT  
_PROFILE_INOM  
0b: disable <default at POR>  
1b: enable  
PROCHOT  
_PROFILE_IDCHG  
0b: disable <default at POR>  
1b: enable  
PROCHOT  
_PROFILE_VSYS  
0b: disable <default at POR>  
1b: enable  
PROCHOT  
_PROFILE_BATPRES  
0b: disable <default at POR>  
1b: enable (one-shot falling edge triggered)  
If BATPRES is enabled in PROCHOT after the battery is removed, it will  
immediately send out one-shot PROCHOT pulse.  
版权 © 2017–2018, Texas Instruments Incorporated  
43  
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
18. ProchotOption1 Register (SMBus address = 34h) Field Descriptions (接下页)  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
0
PROCHOT  
_PROFILE_ACOK  
R/W  
0b  
0b: disable <default at POR>  
1b: enable  
ChargeOption0[15] = 0 to assert PROCHOT pulse after adapter removal.  
If PROCHOT_PROFILE_ACOK is enabled in PROCHOT after the adapter is  
removed, it will be pulled low.  
44  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
8.6.1.7 ADCOption Register (SMBus address = 35h) [reset = 2000h]  
23. ADCOption Register (SMBus address = 35h) [reset = 2000h]  
15  
14  
13  
12-8  
ADC_CONV  
ADC_START  
ADC_  
Reserved  
FULLSCALE  
R/W  
7
R/W  
6
R/W  
5
R/W  
2
4
3
1
0
EN_ADC_  
CMPIN  
EN_ADC_  
VBUS  
EN_ADC_  
PSYS  
EN_ADC_  
IIN  
EN_ADC_  
IDCHG  
EN_ADC_  
ICHG  
EN_ADC_  
VSYS  
EN_ADC_  
VBAT  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
The ADC registers are read in the following order: VBAT, VSYS, ICHG, IDCHG, IIN, PSYS, VBUS, CMPIN. ADC  
is disabled in low power mode. When enabling ADC, the device exit low power mode at battery only.  
19. ADCOption Register (SMBus address = 35h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15  
ADC_CONV  
R/W  
0b  
Typical ADC conversion time is 10 ms.  
0b: One-shot update. Do one set of conversion updates to registers  
REG0x23(), REG0x24(), REG0x25(), and REG0x26() after ADC_START =  
1.  
1b: Continuous update. Do a set of conversion updates to registers  
REG0x23(), REG0x24(), REG0x25(), and REG0x26() every 1 sec.  
14  
13  
ADC_START  
R/W  
R/W  
0b  
1b  
0b: No ADC conversion  
1b: Start ADC conversion. After the one-shot update is complete, this bit  
automatically resets to zero  
ADC_  
FULLSCALE  
ADC input voltage range. When input voltage is below 5 V, or battery is 1S,  
full scale 2.04 V is recommended.  
0b: 2.04 V  
1b: 3.06 V <default at POR>  
Reserved  
12-8  
Reserved  
R/W  
00000b  
20. ADCOption Register (SMBus address = 35h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
6
5
4
3
2
1
0
EN_ADC_CMPIN  
R/W  
0b  
0b: Disable <default at POR>  
1b: Enable  
EN_ADC_VBUS  
EN_ADC_PSYS  
EN_ADC_IIN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b: Disable <default at POR>  
1b: Enable  
0b: Disable <default at POR>  
1b: Enable  
0b: Disable <default at POR>  
1b: Enable  
EN_ADC_IDCHG  
EN_ADC_ICHG  
EN_ADC_VSYS  
EN_ADC_VBAT  
0b: Disable <default at POR>  
1b: Enable  
0b: Disable <default at POR>  
1b: Enable  
0b: Disable <default at POR>  
1b: Enable  
0b: Disable <default at POR>  
1b: Enable  
版权 © 2017–2018, Texas Instruments Incorporated  
45  
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.6.2 Charge and PROCHOT Status  
8.6.2.1 ChargerStatus Register (SMBus address = 20h) [reset = 0000h]  
24. ChargerStatus Register (SMBus address = 20h) [reset = 0000h]  
15  
AC_STAT  
R
14  
ICO_DONE  
R
13  
Reserved  
R
12  
IN_VINDPM  
R
11  
IN_IINDPM  
R
10  
IN_FCHRG  
R
9
IN_PCHRG  
R
8
IN_OTG  
R
7
6
5
4
3
2
1
0
Fault ACOV  
Fault BATOC  
Fault ACOC  
SYSOVP_  
STAT  
Reserved  
Fault Latchoff  
Fault_OTG_  
OVP  
Fault_OTG_  
OCP  
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
21. ChargerStatus Register (SMBus address = 20h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15  
AC_STAT  
R
0b  
Input source status, same as CHRG_OK pin  
0b: Input not present  
1b: Input is present  
14  
ICO_DONE  
R
0b  
After the ICO routine is successfully executed, the bit goes 1.  
0b: ICO is not complete  
1b: ICO is complete  
13  
12  
Reserved  
R
R
0b  
0b  
Reserved  
IN_VINDPM  
0b: Charger is not in VINDPM during forward mode, or voltage  
regulation during OTG mode  
1b: Charger is in VINDPM during forward mode, or voltage  
regulation during OTG mode  
11  
10  
9
IN_IINDPM  
IN_FCHRG  
IN_PCHRG  
IN_OTG  
R
R
R
R
0b  
0b  
0b  
0b  
0b: Charger is not in IINDPM  
1b: Charger is in IINDPM  
0b: Charger is not in fast charge  
1b: Charger is in fast charger  
0b: Charger is not in pre-charge  
1b: Charger is in pre-charge  
8
0b: Charger is not in OTG  
1b: Charge is in OTG  
22. ChargerStatus Register (SMBus address = 20h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
6
5
Fault ACOV  
R
0b  
The faults are latched until a read from host.  
0b: No fault  
1b: ACOV  
Fault BATOC  
Fault ACOC  
R
R
0b  
0b  
The faults are latched until a read from host.  
0b: No fault  
1b: BATOC  
The faults are latched until a read from host.  
0b: No fault  
1b: ACOC  
46  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
SMBus  
ZHCSGD7A MAY 2017REVISED MAY 2018  
22. ChargerStatus Register (SMBus address = 20h) Field Descriptions (接下页)  
FIELD  
TYPE  
RESET  
DESCRIPTION  
BIT  
4
SYSOVP_STAT  
R
0b  
SYSOVP Status and Clear  
When the SYSOVP occurs, this bit is HIGH. During the SYSOVP,  
the converter is disabled.  
After the SYSOVP is removed, the user must write a 0 to this bit or  
unplug the adapter to clear the SYSOVP condition to enable the  
converter again.  
0b: Not in SYSOVP <default at POR>  
1b: In SYSOVP. When SYSOVP is removed, write 0 to clear the  
SYSOVP latch.  
3
2
Reserved  
R
R
0b  
0b  
Reserved  
Fault Latchoff  
The faults are latched until a read from host.  
0b: No fault  
1b: Latch off (REG0x30[3])  
1
0
Fault_OTG_OVP  
Fault_OTG_UCP  
R
R
0b  
0b  
The faults are latched until a read from host.  
0b: No fault  
1b: OTG OVP  
The faults are latched until a read from host.  
0b: No fault  
1b: OTG OCP  
版权 © 2017–2018, Texas Instruments Incorporated  
47  
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.6.2.2 ProchotStatus Register (SMBus address = 21h) [reset = 0h]  
25. ProchotStatus Register (SMBus address = 21h) [reset = 0h]  
15-8  
Reserved  
R
7
6
5
4
3
2
1
0
Reserved  
STAT_COMP  
STAT_ICRIT  
STAT_INOM  
STAT_IDCHG  
STAT_VSYS  
STAT_Battery_ STAT_Adapter  
Removal  
_Removal  
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
23. ProchotStatus Register (SMBus address = 21h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-8  
Reserved  
R
0000000  
0b  
Reserved  
24. ProchotStatus Register (SMBus address = 21h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
6
Reserved  
R
R
0b  
0b  
Reserved  
STAT_COMP  
0b: Not triggered  
1b: Triggered  
5
4
3
2
1
0
STAT_ICRIT  
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b: Not triggered  
1b: Triggered  
STAT_INOM  
0b: Not triggered  
1b: Triggered  
STAT_IDCHG  
0b: Not triggered  
1b: Triggered  
STAT_VSYS  
0b: Not triggered  
1b: Triggered  
STAT_Battery_Removal  
STAT_Adapter_Removal  
0b: Not triggered  
1b: Triggered  
0b: Not triggered  
1b: Triggered  
48  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
8.6.3 ChargeCurrent Register (SMBus address = 14h) [reset = 0h]  
To set the charge current, write a 16-bit ChargeCurrent() command (REG0x14h()) using the data format listed in  
25 and 26.  
With 10-mΩ sense resistor, the charger provides charge current range of 64 mA to 8.128 A, with a 64-mA step  
resolution. Upon POR, ChargeCurrent() is 0 A. Any conditions for CHRG_OK low except ACOV will reset  
ChargeCurrent() to zero. CELL_BATPRESZ going LOW (battery removal) will reset the ChargeCurrent() register  
to 0 A.  
Charge current is not reset in ACOC, TSHUT, power path latch off (REG0x30[1]), and SYSOVP.  
A 0.1-µF capacitor between SRP and SRN for differential mode filtering is recommended; an optional 0.1-µF  
capacitor between SRN and ground, and an optional 0.1-µF capacitor between SRP and ground for common  
mode filtering. Meanwhile, the capacitance on SRP should not be higher than 0.1 µF in order to properly sense  
the voltage across SRP and SRN for cycle-by-cycle current detection.  
The SRP and SRN pins are used to sense voltage drop across RSR with default value of 10 mΩ. However,  
resistors of other values can also be used. For a larger sense resistor, a larger sense voltage is given, and a  
higher regulation accuracy; but, at the expense of higher conduction loss. A current sensing resistor value no  
more than 20 mΩ is suggested.  
26. ChargeCurrent Register With 10-mΩ Sense Resistor (SMBus address = 14h) [reset = 0h]  
15  
14  
13  
12  
11  
10  
9
8
Reserved  
Charge  
Charge  
Charge  
Charge  
Charge  
Current, bit 6  
Current, bit 5  
Current, bit 4  
Current, bit 3  
Current, bit 2  
R/W  
6
R/W  
4
R/W  
3
R/W  
R/W  
1
R/W  
0
7
5
2
Charge  
Charge  
Reserved  
Reserved  
Current, bit 1  
Current, bit 0  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
25. Charge Current Register (14h) With 10-mΩ Sense Resistor (SMBus address = 14h) Field  
Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-13  
12  
Reserved  
R/W  
R/W  
000b  
0b  
Not used. 1 = invalid write.  
Charge Current, bit 6  
0 = Adds 0 mA of charger current.  
1 = Adds 4096 mA of charger current.  
11  
10  
9
Charge Current, bit 5  
Charge Current, bit 4  
Charge Current, bit 3  
Charge Current, bit 2  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0 = Adds 0 mA of charger current.  
1 = Adds 2048 mA of charger current.  
0 = Adds 0 mA of charger current.  
1 = Adds 1024 mA of charger current.  
0 = Adds 0 mA of charger current.  
1 = Adds 512 mA of charger current.  
8
0 = Adds 0 mA of charger current.  
1 = Adds 256 mA of charger current.  
26. Charge Current Register (14h) With 10-mΩ Sense Resistor (SMBus address = 14h) Field  
Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
Charge Current, bit 1  
R/W  
0b  
0 = Adds 0 mA of charger current.  
1 = Adds 128 mA of charger current.  
6
Charge Current, bit 0  
R/W  
0b  
0 = Adds 0 mA of charger current.  
1 = Adds 64 mA of charger current.  
版权 © 2017–2018, Texas Instruments Incorporated  
49  
 
 
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
26. Charge Current Register (14h) With 10-mΩ Sense Resistor (SMBus address = 14h) Field  
Descriptions (接下页)  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
5-0  
Reserved  
R/W  
000000b  
Not used. Value Ignored.  
8.6.3.1 Battery Pre-Charge Current Clamp  
During pre-charge, BATFET works in linear mode or LDO mode (default REG0x12[2] = 1). For 2-4 cell battery,  
the system is regulated at minimum system voltage in REG0x3E() and the pre-charge current is clamped at 384  
mA. For 1 cell battery, the pre-charge to fast charge threshold is 3 V, and the pre-charge current is clamped at  
384 mA. However, the BATFET stays in LDO mode operation till battery voltage is above minimum system  
voltage (~3.6 V). During battery voltage from 3 V to 3.6 V, the fast charge current is clamped at 2 A.  
50  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
8.6.4 MaxChargeVoltage Register (SMBus address = 15h) [reset value based on CELL_BATPRESZ pin  
setting]  
To set the output charge voltage, write a 16-bit ChargeVoltage register command (REG0x15()) using the data  
format listed in 27 and 28. The charger provides charge voltage range from 1.024 V to 19.200 V, with 16-  
mV step resolution. Any write below 1.024 V or above 19.200 V is ignored. Upon POR or when charge is  
disabled, the system is regulated at the MaxChargeVoltage register.  
Upon POR, REG0x15() is by default set as 4192 mV for 1 s, 8400 mV for 2 s, 12592 mV for 3 s or 16800 mV for  
4 s. After CHRG_OK, if host writes REG0x14() before REG0x15(), the charge will start after the write to  
REG0x14().If the battery is different from 4.2 V/cell, the host has to write to REG0x15() before REG0x14() for  
correct battery voltage setting. Writing REG0x15() to 0 will set REG0x15() to default value on CELL_BATPRESZ  
pin, and force REG0x14() to zero to disable charge.  
The SRN pin is used to sense the battery voltage for voltage regulation and should be connected as close to the  
battery as possible, and directly place a decoupling capacitor (0.1 µF recommended) as close to the device as  
possible to decouple high frequency noise.  
27. MaxChargeVoltage Register (SMBus address = 15h) [reset value based on CELL_BATPRESZ pin  
setting]  
15  
14  
13  
12  
11  
10  
9
8
Reserved  
Max Charge  
Voltage, bit 10  
Max Charge  
Voltage, bit 9  
Max Charge  
Voltage, bit 8  
Max Charge  
Voltage, bit 7  
Max Charge  
Voltage, bit 6  
Max Charge  
Voltage, bit 5  
Max Charge  
Voltage, bit 4  
R/W  
7
R/W  
6
R/W  
5
R/W  
4
R/W  
3
R/W  
2
R/W  
1
R/W  
0
Max Charge  
Voltage, bit 3  
Max Charge  
Voltage, bit 2  
Max Charge  
Voltage, bit 1  
Max Charge  
Voltage, bit 0  
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
27. MaxChargeVoltage Register (SMBus address = 15h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15  
14  
Reserved  
R/W  
R/W  
0b  
0b  
Not used. 1 = invalid write.  
Max Charge Voltage, bit 10  
0 = Adds 0 mV of charger voltage.  
1 = Adds 16384 mV of charger voltage.  
13  
12  
11  
10  
9
Max Charge Voltage, bit 9  
Max Charge Voltage, bit 8  
Max Charge Voltage, bit 7  
Max Charge Voltage, bit 6  
Max Charge Voltage, bit 5  
Max Charge Voltage, bit 4  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0 = Adds 0 mV of charger voltage.  
1 = Adds 8192 mV of charger voltage  
0 = Adds 0 mV of charger voltage.  
1 = Adds 4096 mV of charger voltage.  
0 = Adds 0 mV of charger voltage.  
1 = Adds 2048 mV of charger voltage.  
0 = Adds 0 mV of charger voltage.  
1 = Adds 1024 mV of charger voltage.  
0 = Adds 0 mV of charger voltage.  
1 = Adds 512 mV of charger voltage.  
8
0 = Adds 0 mV of charger voltage.  
1 = Adds 256 mV of charger voltage.  
28. MaxChargeVoltage Register (SMBus address = 15h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
Max Charge Voltage, bit 3  
R/W  
0b  
0 = Adds 0 mV of charger voltage.  
1 = Adds 128 mV of charger voltage.  
版权 © 2017–2018, Texas Instruments Incorporated  
51  
 
 
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
28. MaxChargeVoltage Register (SMBus address = 15h) Field Descriptions (接下页)  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
6
Max Charge Voltage, bit 2  
R/W  
0b  
0 = Adds 0 mV of charger voltage.  
1 = Adds 64 mV of charger voltage.  
5
Max Charge Voltage, bit 1  
Max Charge Voltage, bit 0  
Reserved  
R/W  
R/W  
R/W  
0b  
0 = Adds 0 mV of charger voltage.  
1 = Adds 32 mV of charger voltage.  
4
0b  
0 = Adds 0 mV of charger voltage.  
1 = Adds 16 mV of charger voltage.  
3-0  
0000b  
Not used. Value Ignored.  
52  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
8.6.5 MinSystemVoltage Register (SMBus address = 3Eh) [reset value based on CELL_BATPRESZ pin  
setting]  
To set the minimum system voltage, write a 16-bit MinSystemVoltage register command (REG0x3E()) using the  
data format listed in 29 and 30. The charger provides minimum system voltage range from 1.024 V to  
16.128 V, with 256-mV step resolution. Any write below 1.024 V or above 16.128 V is ignored. Upon POR, the  
MinSystemVoltage register is 3.584 V for 1 S, 6.144 V for 2 S and 9.216 V for 3 S, and 12.288 V for 4 S.  
28. MinSystemVoltage Register (SMBus address = 3Eh) [reset value based on CELL_BATPRESZ pin  
setting]  
15  
7
14  
6
13  
12  
11  
10  
9
8
Reserved  
R/W  
Min System  
Voltage, bit 5  
Min System  
Voltage, bit 4  
Min System  
Voltage, bit 3  
Min System  
Voltage, bit 2  
Min System  
Voltage, bit 1  
Min System  
Voltage, bit 0  
R/W  
5
R/W  
4
R/W  
3
R/W  
2
R/W  
1
R/W  
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
29. MinSystemVoltage Register (SMBus address = 3Eh) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-14  
13  
Reserved  
R/W  
R/W  
00b  
0b  
Not used. 1 = invalid write.  
Min System Voltage, bit 5  
0 = Adds 0 mV of system voltage.  
1 = Adds 8192 mV of system voltage.  
12  
11  
10  
9
Min System Voltage, bit 4  
Min System Voltage, bit 3  
Min System Voltage, bit 2  
Min System Voltage, bit 1  
Min System Voltage, bit 0  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0 = Adds 0 mV of system voltage.  
1 = Adds 4096mV of system voltage.  
0 = Adds 0 mV of system voltage.  
1 = Adds 2048 mV of system voltage.  
0 = Adds 0 mV of system voltage.  
1 = Adds 1024 mV of system voltage.  
0 = Adds 0 mV of system voltage.  
1 = Adds 512 mV of system voltage.  
8
0 = Adds 0 mV of system voltage.  
1 = Adds 256 mV of system voltage.  
30. MinSystemVoltage Register (SMBus address = 3Eh) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7-0  
Reserved  
R/W  
0000000  
0b  
Not used. Value Ignored.  
8.6.5.1 System Voltage Regulation  
The device employs Narrow VDC architecture (NVDC) with BATFET separating system from battery. The  
minimum system voltage is set by REG0x3E(). Even with a deeply depleted battery, the system is regulated  
above the minimum system voltage with BATFET.  
When the battery is below minimum system voltage setting, the BATFET operates in linear mode (LDO mode),  
and the system is regulated above the minimum system voltage setting. As the battery voltage rises above the  
minimum system voltage, BATFET is fully on when charging or in supplement mode and the voltage difference  
between the system and battery is the VDS of BATFET. System voltage is regulated 160 mV above battery  
voltage when BATFET is off (no charging or no supplement current).  
When BATFET is removed, the system node VSYS is shorted to SRP. Before the converter starts operation,  
LDO mode needs to be disabled. The following sequence is required to configure charger without BATFET.  
1. Before adapter plugs in, put the charger into HIZ mode. (either pull pin 6 ILIM_HIZ to ground, or set  
版权 © 2017–2018, Texas Instruments Incorporated  
53  
 
 
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
REG0x32[15] to 1)  
2. Set 0x12[2] to 0 to disable LDO mode.  
3. Set 0x30[0] to 0 to disable auto-wakeup mode.  
4. Check if battery voltage is properly programmed (REG0x15)  
5. Set pre-charge/charge current (REG0x14)  
6. Put the device out of HIZ mode. (Release ILIM_HIZ from ground and set REG0x32[15]=0).  
In order to prevent any accidental SW mistakes, the host sets low input current limit (a few hundred milliamps)  
when device is out of HIZ.  
8.6.6 Input Current and Input Voltage Registers for Dynamic Power Management  
The charger supports Dynamic Power Management (DPM). Normally, the input power source provides power for  
the system load or to charge the battery. When the input current exceeds the input current setting, or the input  
voltage falls below the input voltage setting, the charger decreases the charge current to provide priority to the  
system load. As the system current rises, the available charge current drops accordingly towards zero. If the  
system load keeps increasing after the charge current drops down to zero, the system voltage starts to drop. As  
the system voltage drops below the battery voltage, the battery will discharge to supply the heavy system load.  
8.6.6.1 Input Current Registers  
To set the maximum input current limit, write a 16-bit IIN_HOST register command (REG0x3F()) using the data  
format listed in 31 and 32. When using a 10-mΩ sense resistor, the charger provides an input-current limit  
range of 50 mA to 6400 mA, with 50-mA resolution. The default current limit is 3.3 A. Due to the USB current  
setting requirement, the register setting specifies the maximum current instead of the typical current. Upon  
adapter removal, the input current limit is reset to the default value of 3.3 A. The register offset is 50 mA. With  
code 0, the input current limit is 50 mA.  
The ACP and ACN pins are used to sense RAC with the default value of 10 mΩ. For a 20-mΩ sense resistor, a  
larger sense voltage is given and a higher regulation accuracy, but at the expense of higher conduction loss.  
Instead of using the internal DPM loop, the user can build up an external input current regulation loop and have  
the feedback signal on the ILIM_HIZ pin.  
V
= 1V + 40´ V  
(
- VACN = 1+ 40´IDPM ´RAC  
)
ILIM_HIZ  
ACP  
(2)  
In order to disable ILIM_HIZ pin, the host can write to 0x31[7] to disable ILIM_HIZ pin, or pull ILIM_HIZ pin above  
4.0 V.  
54  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
8.6.6.1.1 IIN_HOST Register With 10-mΩ Sense Resistor (SMBus address = 3Fh) [reset = 4000h]  
The register offset is 50 mA. With code 0, the input current limit readback is 50 mA.  
29. IIN_HOST Register With 10-mΩ Sense Resistor (SMBus address = 3Fh) [reset = 4100h]  
15  
14  
13  
12  
11  
10  
9
8
Reserved  
Input Current  
Input Current  
Input Current  
Input Current  
Input Current  
Input Current  
Input Current  
set by host, bit set by host, bit set by host, bit set by host, bit set by host, bit set by host, bit set by host, bit  
6
5
4
3
2
1
0
R/W  
7
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
6
5
4
3
2
1
0
Reserved  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
31. IIN_HOST Register With 10-mΩ Sense Resistor (SMBus address = 3Fh) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15  
14  
Reserved  
R/W  
R/W  
0b  
1b  
Not used. 1 = invalid write.  
Input Current set by host, bit 6  
0 = Adds 0 mA of input current.  
1 = Adds 3200 mA of input current.  
13  
12  
11  
10  
9
Input Current set by host, bit 5  
Input Current set by host, bit 4  
Input Current set by host, bit 3  
Input Current set by host, bit 2  
Input Current set by host, bit 1  
Input Current set by host, bit 0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0 = Adds 0 mA of input current.  
1 = Adds 1600 mA of input current.  
0 = Adds 0 mA of input current.  
1 = Adds 800 mA of input current.  
0 = Adds 0 mA of input current.  
1 = Adds 400 mA of input current.  
0 = Adds 0 mA of input current.  
1 = Adds 200 mA of input current.  
0 = Adds 0 mA of input current.  
1 = Adds 100 mA of input current.  
8
0 = Adds 0 mA of input current.  
1 = Adds 50 mA of input current.  
32. IIN_HOST Register With 10-mΩ Sense Resistor (SMBus address = 3Fh) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7-0  
Reserved  
R
0000000  
0b  
Not used. Value Ignored.  
版权 © 2017–2018, Texas Instruments Incorporated  
55  
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.6.6.1.2 IIN_DPM Register With 10-mΩ Sense Resistor (SMBus address = 022h) [reset = 0h]  
IIN_DPM register reflects the actual input current limit programmed in the register, either from host or from ICO.  
After ICO, the current limit used by DPM regulation may differ from the IIN_HOST register settings. The actual  
DPM limit is reported in REG0x22(). The register offset is 50 mA. With code 0, the input current limit read-back is  
50 mA.  
30. IIN_DPM Register With 10-mΩ Sense Resistor (SMBus address = 022h) [reset = 0h]  
15  
14  
13  
12  
11  
10  
9
8
Reserved  
Input Current in Input Current in Input Current in Input Current in Input Current in Input Current in Input Current in  
DPM, bit 6  
R
DPM, bit 5  
R
DPM, bit 4  
R
DPM, bit 3  
R
DPM, bit 2  
R
DPM, bit 1  
R
DPM, bit 0  
R
R
7
6
5
4
3
2
1
0
Reserved  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
33. IIN_DPM Register With 10-mΩ Sense Resistor (SMBus address = 022h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15  
14  
Reserved  
R
R
0b  
0b  
Not used. 1 = invalid write.  
Input Current in DPM, bit 6  
0 = Adds 0 mA of input current.  
1 = Adds 3200 mA of input current.  
13  
12  
11  
10  
9
Input Current in DPM, bit 5  
Input Current in DPM, bit 4  
Input Current in DPM, bit 3  
Input Current in DPM, bit 2  
Input Current in DPM, bit 1  
Input Current in DPM, bit 0  
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0 = Adds 0 mA of input current.  
1 = Adds 1600 mA of input current.  
0 = Adds 0 mA of input current.  
1 = Adds 800mA of input current  
0 = Adds 0 mA of input current.  
1 = Adds 400 mA of input current.  
0 = Adds 0 mA of input current.  
1 = Adds 200 mA of input current.  
0 = Adds 0 mA of input current.  
1 = Adds 100 mA of input current.  
8
0 = Adds 0 mA of input current.  
1 = Adds 50 mA of input current.  
34. IIN_DPM Register With 10-mΩ Sense Resistor (SMBus address = 022h) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7-0  
Reserved  
R
00000000b  
Not used. Value Ignored.  
56  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
8.6.6.1.3 InputVoltage Register (SMBus address = 3Dh) [reset = VBUS-1.28V]  
To set the input voltage limit, write a 16-bit InputVoltage register command (REG0x3D()) using the data format  
listed in 35 and 36.  
If the input voltage drops more than the InputVoltage register allows, the device enters DPM and reduces the  
charge current. The default offset voltage is 1.28 V below the no-load VBUS voltage. The DC offset is 3.2 V  
(0000000).  
31. InputVoltage Register (SMBus address = 3Dh) [reset = VBUS-1.28V]  
15  
7
14  
13  
12  
11  
10  
9
8
Reserved  
R/W  
Input Voltage,  
bit 7  
Input Voltage,  
bit 6  
Input Voltage,  
bit 5  
Input Voltage,  
bit 4  
Input Voltage,  
bit 3  
Input Voltage,  
bit 2  
R/W  
5
R/W  
4
R/W  
3
R/W  
2
R/W  
1
R/W  
0
6
Input Voltage,  
bit 1  
Input Voltage,  
bit 0  
Reserved  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
35. InputVoltage Register (SMBus address = 3Dh) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-14  
13  
Reserved  
R/W  
R/W  
00b  
0b  
Not used. 1 = invalid write.  
Input Voltage, bit 7  
0 = Adds 0 mV of input voltage.  
1 = Adds 8192 mV of input voltage.  
12  
11  
10  
9
Input Voltage, bit 6  
Input Voltage, bit 5  
Input Voltage, bit 4  
Input Voltage, bit 3  
Input Voltage, bit 2  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0 = Adds 0 mV of input voltage.  
1 = Adds 4096mV of input voltage.  
0 = Adds 0 mV of input voltage.  
1 = Adds 2048 mV of input voltage.  
0 = Adds 0 mV of input voltage.  
1 = Adds 1024 mV of input voltage.  
0 = Adds 0 mV of input voltage.  
1 = Adds 512 mV of input voltage.  
8
0 = Adds 0 mV of input voltage.  
1 = Adds 256 mV of input voltage.  
36. InputVoltage Register (SMBus address = 3Dh) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
Input Voltage, bit 1  
R/W  
0b  
0 = Adds 0 mV of input voltage.  
1 = Adds 128 mV of input voltage.  
6
Input Voltage, bit 0  
Reserved  
R/W  
R/W  
0b  
0 = Adds 0 mV of input voltage.  
1 = Adds 64 mV of input voltage  
5-0  
000000b  
Not used. Value Ignored.  
版权 © 2017–2018, Texas Instruments Incorporated  
57  
 
 
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.6.7 OTGVoltage Register (SMBus address = 3Bh) [reset = 0h]  
To set the OTG output voltage limit, write to REG0x3B() using the data format listed in 37 and 38. The DC  
offset is 4.48 V (0000000).  
32. OTGVoltage Register (SMBus address = 3Bh) [reset = 0h]  
15  
7
14  
6
13  
12  
11  
10  
9
8
Reserved  
R/W  
OTG Voltage,  
bit 7  
OTG Voltage,  
bit 6  
OTG Voltage,  
bit 5  
OTG Voltage,  
bit 4  
OTG Voltage,  
bit 3  
OTG Voltage,  
bit 2  
R/W  
5
R/W  
4
R/W  
3
R/W  
2
R/W  
1
R/W  
0
OTG Voltage,  
bit 1  
OTG Voltage,  
bit 0  
Reserved  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
37. OTGVoltage Register (SMBus address = 3Bh) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-14  
13  
Reserved  
R/W  
R/W  
00b  
0b  
Not used. 1 = invalid write.  
OTG Voltage, bit 7  
0 = Adds 0 mV of OTG voltage.  
1 = Adds 8192 mV of OTG voltage.  
12  
11  
10  
9
OTG Voltage, bit 6  
OTG Voltage, bit 5  
OTG Voltage, bit 4  
OTG Voltage, bit 3  
OTG Voltage, bit 2  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0 = Adds 0 mV of OTG voltage.  
1 = Adds 4096 mV of OTG voltage.  
0 = Adds 0 mV of OTG voltage.  
1 = Adds 2048 mV of OTG voltage.  
0 = Adds 0 mV of OTG voltage.  
1 = Adds 1024 mV of OTG voltage.  
0 = Adds 0 mV of OTG voltage.  
1 = Adds 512 mV of OTG voltage.  
8
0 = Adds 0 mV of OTG voltage.  
1 = Adds 256 mV of OTG voltage.  
38. OTGVoltage Register (SMBus address = 3Bh) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
OTG Voltage, bit 1  
R/W  
0b  
0 = Adds 0 mV of OTG voltage.  
1 = Adds 128 mV of OTG voltage.  
6
OTG Voltage, bit 0  
Reserved  
R/W  
R/W  
0b  
0 = Adds 0 mV of OTG voltage.  
1 = Adds 64 mV of OTG voltage.  
5-0  
000000b  
Not used. Value Ignored.  
58  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
8.6.8 OTGCurrent Register (SMBus address = 3Ch) [reset = 0h]  
To set the OTG output current limit, write to REG0x3C() using the data format listed in 39 and 40.  
33. OTGCurrent Register (SMBus address = 3Ch) [reset = 0h]  
15  
14  
13  
12  
11  
10  
9
8
Reserved  
OTG Current  
OTG Current  
OTG Current  
OTG Current  
OTG Current  
OTG Current  
OTG Current  
set by host, bit set by host, bit set by host, bit set by host, bit set by host, bit set by host, bit set by host, bit  
6
5
4
3
2
1
0
R/W  
7
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
6
5
4
3
2
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
39. OTGCurrent Register (SMBus address = 3Ch) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15  
14  
Reserved  
R/W  
R/W  
0b  
0b  
Not used. 1 = invalid write.  
OTG Current set by host, bit 6  
0 = Adds 0 mA of OTG current.  
1 = Adds 3200 mA of OTG current.  
13  
12  
11  
10  
9
OTG Current set by host, bit 5  
OTG Current set by host, bit 4  
OTG Current set by host, bit 3  
OTG Current set by host, bit 2  
OTG Current set by host, bit 1  
OTG Current set by host, bit 0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0 = Adds 0 mA of OTG current.  
1 = Adds 1600mA of OTG current.  
0 = Adds 0 mA of OTG current.  
1 = Adds 800 mA of OTG current.  
0 = Adds 0 mA of OTG current.  
1 = Adds 400 mA of OTG current.  
0 = Adds 0 mA of OTG current.  
1 = Adds 200 mA of OTG current.  
0 = Adds 0 mA of OTG current.  
1 = Adds 100 mA of OTG current.  
8
0 = Adds 0 mA of OTG current.  
1 = Adds 50 mA of OTG current.  
40. OTGCurrent Register (SMBus address = 3Ch) Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7-0  
Reserved  
R/W  
00000000  
b
Not used. Value Ignored.  
版权 © 2017–2018, Texas Instruments Incorporated  
59  
 
 
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.6.9 ADCVBUS/PSYS Register (SMBus address = 23h)  
PSYS: Full range: 3.06 V, LSB: 12 mV  
VBUS: Full range: 3200 mV to 19520 mV, LSB: 64 mV  
34. ADCVBUS/PSYS Register (SMBus address = 23h)  
15  
R
7
14  
R
6
13  
R
5
12  
R
4
11  
R
3
10  
R
2
9
R
1
8
R
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
41. ADCVBUS/PSYS Register Field Descriptions  
BIT  
15-8  
7-0  
FIELD  
TYPE  
RESET  
DESCRIPTION  
R
R
8-bit Digital Output of Input Voltage  
8-bit Digital Output of System Power  
60  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
8.6.10 ADCIBAT Register (SMBus address = 24h)  
ICHG: Full range: 8.128 A, LSB: 64 mA  
IDCHG: Full range: 32.512 A, LSB: 256 mA  
35. ADCIBAT Register (SMBus address = 24h)  
15  
Reserved  
7
14  
R
6
13  
R
5
12  
R
4
11  
R
3
10  
R
2
9
R
1
8
R
0
Reserved  
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
42. ADCIBAT Register Field Descriptions  
BIT  
15  
FIELD  
TYPE  
RESET  
DESCRIPTION  
Reserved  
R
R
R
R
Not used. Value ignored.  
14-8  
7
7-bit Digital Output of Battery Charge Current  
Not used. Value ignored.  
Reserved  
6-0  
7-bit Digital Output of Battery Discharge Current  
版权 © 2017–2018, Texas Instruments Incorporated  
61  
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.6.11 ADCIINCMPIN Register (SMBus address = 25h)  
IIN: Full range: 12.75 A, LSB: 50 mA  
CMPIN: Full range: 3.06 V, LSB: 12 mV  
36. ADCIINCMPIN Register (SMBus address = 25h)  
15  
R
7
14  
R
6
13  
R
5
12  
R
4
11  
R
3
10  
R
2
9
R
1
8
R
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
43. ADCIINCMPIN Register Field Descriptions  
BIT  
15-8  
7-0  
FIELD  
TYPE  
RESET  
DESCRIPTION  
R
R
8-bit Digital Output of Input Current  
8-bit Digital Output of CMPIN voltage  
62  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
8.6.12 ADCVSYSVBAT Register (SMBus address = 26h)  
VSYS: Full range: 2.88 V to 19.2 V, LSB: 64 mV  
VBAT: Full range: 2.88 V to 19.2 V, LSB: 64 mV  
37. ADCVSYSVBAT Register (SMBus address = 26h) (reset = )  
15  
R
7
14  
R
6
13  
R
5
12  
R
4
11  
R
3
10  
R
2
9
R
1
8
R
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
44. ADCVSYSVBAT Register Field Descriptions  
BIT  
15-8  
7-0  
FIELD  
TYPE  
RESET  
DESCRIPTION  
R
R
8-bit Digital Output of System Voltage  
8-bit Digital Output of Battery Voltage  
版权 © 2017–2018, Texas Instruments Incorporated  
63  
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.6.13 ID Registers  
8.6.13.1 ManufactureID Register (SMBus address = FEh) [reset = 0040h]  
38. ManufactureID Register (SMBus address = FEh) [reset = 0040h]  
15-0  
MANUFACTURE_ID  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
45. ManufactureID Register Field Descriptions  
SMBus  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION (READ ONLY)  
40h  
15-0  
MANUFACTURE_ID  
R
8.6.13.2 Device ID (DeviceAddress) Register (SMBus address = FFh) [reset = 0h]  
39. Device ID (DeviceAddress) Register (SMBus address = FFh) [reset = 0h]  
15-8  
Reserved  
R
7-0  
DEVICE_ID  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
46. Device ID (DeviceAddress) Register Field Descriptions  
SMBus  
FIELD  
TYPE  
RESET  
DESCRIPTION (READ ONLY)  
BIT  
15-8  
7-0  
Reserved  
R
R
0b  
0b  
Reserved  
DEVICE_ID  
SMBus: 79h  
64  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The bq2570xEVM-732 evaluation module (EVM) is a complete charger module for evaluating the bq25700A. The  
application curves were taken using the bq2570xEVM-732. Refer to the EVM user's guide (SLUUBG6) for EVM  
information.  
9.2 Typical Application  
VSYS  
6x10mF  
2.2uH  
RAC=10mW  
RSR=10mW  
ADAPTER  
2.2W  
Q2  
6x10mF  
BATT  
10nF  
Q3  
Q1  
Q4  
47nF  
47nF  
1mF  
10W  
10W  
1W  
Optional  
snubber  
15nF  
15nF  
HIDRV1  
VBUS  
SW1BTST1 BTST2 SW2  
HIDRV2  
LODRV2  
LODRV1  
SYS  
470nF  
BATDRV  
SRP  
ACN  
ACP  
10W  
SRN  
REGN  
VDDA  
REGN  
ILIM_HIZ  
1uF  
2.2œ3.3uF  
VDDA  
GND  
bq25700A  
350kW  
CELL_BATPRESZ  
250kW  
COMP1  
COMP2  
IADPT  
IBAT  
PSYS  
100pF  
100pF  
100kW  
30kW  
CHRG_OK  
SDA SCL  
CMPOUT  
CMPIN  
50W  
PROCHOT  
1.05V  
EN_OTG  
10kW  
To CPU  
10kW  
10kW  
10kW  
3.3V or 1.8V  
Host  
(SMBus)  
Copyright © 2017, Texas Instruments Incorporated  
40. Application Diagram  
9.2.1 Design Requirements  
DESIGN PARAMETER  
EXAMPLE VALUE  
3.5 V < Adapter Voltage < 24 V  
3.2 A for 65 W adapter  
Input Voltage(1)  
(1)  
Input Current Limit  
Battery Charge Voltage(2)  
8400 mV for 2s battery  
(1) Refer to adapter specification for settings for Input Voltage and Input Current Limit.  
(2) Refer to battery specification for settings.  
版权 © 2017–2018, Texas Instruments Incorporated  
65  
 
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
Typical Application (接下页)  
DESIGN PARAMETER  
Battery Charge Current(2)  
Minimum System Voltage(2)  
EXAMPLE VALUE  
3072 mA for 2s battery  
6144 mV for 2s battery  
9.2.2 Detailed Design Procedure  
The parameters are configurable using the evaluation software. The simplified application circuit (see 40, as  
the application diagram) shows the minimum component requirements. Inductor, capacitor, and MOSFET  
selection are explained in the rest of this section. Refer to the EVM user's guide (SLUUBG6) for the complete  
application schematic.  
9.2.2.1 ACP-ACN Input Filter  
The bq25700A has average current mode control. The input current sensing through ACP/ACN is critical to  
recover inductor current ripple. Parasitic inductance on board will generate high frequency ringing on ACP-ACN  
which overwhelms converter sensed inductor current information, so it is difficult to manage parasitic inductance  
created based on different PCB layout. Bigger parasitic inductance will generate bigger sense current ringing  
which will cause the average current control loop to go into oscillation.  
For real system board condition, we suggest to use below circuit design to get best result and filter noise induced  
from different PCB parasitic factor. With time constant of filter from 47 nsec to 200 nsec, the filtering on ringing is  
effective and in the meantime, the delay of on the sensed signal is small and therefore poses no concern for  
average current mode control.  
RAC  
Q1  
4~6x10uF  
(0805)  
1nF+10nF  
(0402)  
RACN  
RACP  
10ohm  
10ohm  
CDIFF  
Open  
CACN  
CACP  
15nF  
15nF  
ACP  
ACN  
HIDRV1  
bq2570x  
Copyright © 2017, Texas Instruments Incorporated  
41. ACN-ACP Input Filter  
9.2.2.2 Inductor Selection  
The bq25700A has two selectable fixed switching frequency. Higher switching frequency allows the use of  
smaller inductor and capacitor values. Inductor saturation current should be higher than the charging current  
(ICHG) plus half the ripple current (IRIPPLE):  
ISAT ³ ICHG + (1/2) IRIPPLE  
(3)  
The inductor ripple current in buck operation depends on input voltage (VIN), duty cycle (DBUCK = VOUT/VIN),  
switching frequency (fS) and inductance (L):  
V
´ D ´ (1 - D)  
IN  
IRIPPLE_BUCK  
=
fS ´ L  
(4)  
66  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
During boost operation, the duty cycle is:  
DBOOST = 1 – (VIN/VBAT  
)
and the ripple current is:  
IRIPPLE_BOOST = (VIN × DBOOST) / (fS × L)  
The maximum inductor ripple current happens with D = 0.5 or close to 0.5. For example, the battery charging  
voltage range is from 9 V to 12.6 V for 3-cell battery pack. For 20-V adapter voltage, 10-V battery voltage gives  
the maximum inductor ripple current. Another example is 4-cell battery, the battery voltage range is from 12 V to  
16.8 V, and 12-V battery voltage gives the maximum inductor ripple current.  
Usually inductor ripple is designed in the range of (20 – 40%) maximum charging current as a trade-off between  
inductor size and efficiency for a practical design.  
9.2.2.3 Input Capacitor  
Input capacitor should have enough ripple current rating to absorb input switching ripple current. The worst case  
RMS ripple current is half of the charging current when duty cycle is 0.5 in buck mode. If the converter does not  
operate at 50% duty cycle, then the worst case capacitor RMS current occurs where the duty cycle is closest to  
50% and can be estimated by 公式 5:  
ICIN = ICHG  
´
D × (1 - D)  
(5)  
Low ESR ceramic capacitor such as X7R or X5R is preferred for input decoupling capacitor and should be  
placed to the drain of the high side MOSFET and source of the low side MOSFET as close as possible. Voltage  
rating of the capacitor must be higher than normal input voltage level. 25 V rating or higher capacitor is preferred  
for 19 V - 20 V input voltage. Minimum 4 - 6 pcs of 10-µF 0805 size capacitor is suggested for 45 - 65 W adapter  
design.  
Ceramic capacitors show a dc-bias effect. This effect reduces the effective capacitance when a dc-bias voltage is  
applied across a ceramic capacitor, as on the input capacitor of a charger. The effect may lead to a significant  
capacitance drop, especially for high input voltages and small capacitor packages. See the manufacturer's  
datasheet about the performance with a dc bias voltage applied. It may be necessary to choose a higher voltage  
rating or nominal capacitance value in order to get the required value at the operating point.  
9.2.2.4 Output Capacitor  
Output capacitor also should have enough ripple current rating to absorb output switching ripple current. In buck  
mode the output capacitor RMS current is given:  
To get good loop stability, the resonant frequency of the output inductor and output capacitor should be designed  
between 10 kHz and 20 kHz. The preferred ceramic capacitor is 25-V X7R or X5R for output capacitor. Minimum  
6 pcs of 10-µF 0805 size capacitor is suggested to be placed by the inductor. Place the capacitors after Q4  
drain. Place minimum 10 µF after the charge current sense resistor for best stability.  
Ceramic capacitors show a dc-bias effect. This effect reduces the effective capacitance when a dc-bias voltage is  
applied across a ceramic capacitor, as on the output capacitor of a charger. The effect may lead to a significant  
capacitance drop, especially for high output voltages and small capacitor packages. See the manufacturer's data  
sheet about the performance with a dc bias voltage applied. It may be necessary to choose a higher voltage  
rating or nominal capacitance value in order to get the required value at the operating point.  
9.2.2.5 Power MOSFETs Selection  
Four external N-channel MOSFETs are used for a synchronous switching battery charger. The gate drivers are  
internally integrated into the IC with 6 V of gate drive voltage. 30 V or higher voltage rating MOSFETs are  
preferred for 19 V - 20 V input voltage.  
Figure-of-merit (FOM) is usually used for selecting proper MOSFET based on a tradeoff between the conduction  
loss and switching loss. For the top side MOSFET, FOM is defined as the product of a MOSFET's on-resistance,  
RDS(ON), and the gate-to-drain charge, QGD. For the bottom side MOSFET, FOM is defined as the product of the  
MOSFET's on-resistance, RDS(ON), and the total gate charge, QG.  
FOMtop = RDS(on) x QGD; FOMbottom = RDS(on) x QG  
(6)  
The lower the FOM value, the lower the total power loss. Usually lower RDS(ON) has higher cost with the same  
package size.  
版权 © 2017–2018, Texas Instruments Incorporated  
67  
 
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
The top-side MOSFET loss includes conduction loss and switching loss. It is a function of duty cycle  
(D=VOUT/VIN), charging current (ICHG), MOSFET's on-resistance (RDS(ON)), input voltage (VIN), switching frequency  
(fS), turn on time (ton) and turn off time (toff):  
1
2
= D ´ ICHG ´ RDS(on)  
P
+
´ V ´ ICHG ´ (ton + toff ) ´ fs  
IN  
top  
2
(7)  
The first item represents the conduction loss. Usually MOSFET RDS(ON) increases by 50% with 100°C junction  
temperature rise. The second term represents the switching loss. The MOSFET turn-on and turn-off times are  
given by:  
QSW  
QSW  
ton  
=
, toff =  
Ion  
Ioff  
(8)  
where Qsw is the switching charge, Ion is the turn-on gate driving current and Ioff is the turn-off gate driving  
current. If the switching charge is not given in MOSFET datasheet, it can be estimated by gate-to-drain charge  
(QGD) and gate-to-source charge (QGS):  
1
QSW = QGD  
+
´ QGS  
2
(9)  
Gate driving current can be estimated by REGN voltage (VREGN), MOSFET plateau voltage (Vplt), total turn-on  
gate resistance (Ron) and turn-off gate resistance (Roff) of the gate driver:  
VREGN - Vplt  
Vplt  
Ion  
=
, Ioff =  
Ron  
Roff  
(10)  
The conduction loss of the bottom-side MOSFET is calculated with the following equation when it operates in  
synchronous continuous conduction mode:  
Pbottom = (1 - D) x ICHG 2 x RDS(on)  
(11)  
When charger operates in non-synchronous mode, the bottom-side MOSFET is off. As a result all the  
freewheeling current goes through the body-diode of the bottom-side MOSFET. The body diode power loss  
depends on its forward voltage drop (VF), non-synchronous mode charging current (INONSYNC), and duty cycle (D).  
PD = VF x INONSYNC x (1 - D)  
(12)  
The maximum charging current in non-synchronous mode can be up to 0.25 A for a 10-mΩ charging current  
sensing resistor or 0.5 A if battery voltage is below 2.5 V. The minimum duty cycle happens at lowest battery  
voltage. Choose the bottom-side MOSFET with either an internal Schottky or body diode capable of carrying the  
maximum non-synchronous mode charging current.  
9.2.3 Application Curves  
CH1: VBUS  
CH2: VDDA  
CH1: VBUS  
CH2: VDDA  
CH3: CHRG_OK  
CH3: CHRG_OK  
CH4: VSYS  
CH4: VSYS  
2-cell without battery  
2-cell without battery  
42. Power Up from 20 V  
43. Power Up from 5 V  
68  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
CH1: VBUS  
CH1: VBUS  
CH2: SW1  
CH2: SW1  
CH3: SW2  
CH3: SW2  
CH4: VSYS with 9Vos  
CH4: IL  
3-cell VBAT = 10 V  
VBUS 5 V to 20 V  
44. Power Off from 12 V  
45. System Regulation  
CH2: SW1  
CH1: HIDRV1  
CH2: SW1  
CH3: LODRV1  
CH3: SW2  
CH4: IL  
CH1: IL  
VBUS = 20 V, VSYS = 10 V, ISYS = 200 mA  
46. PFM Operation  
47. PWM Operation  
CH2: SW2  
CH2: SW1  
CH3: SW2  
CH1: HIDRV2  
CH3: LODRV2  
CH4: IL  
CH4: IL  
VBUS = 5 V, VBAT = 10 V  
VBUS = 12 V, VBAT = 12 V  
49. Switching During Buck Boost Mode  
48. Switching During Boost Mode  
版权 © 2017–2018, Texas Instruments Incorporated  
69  
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
CH1: VSYS  
CH2: IIN  
CH1: VSYS  
CH2: IIN  
CH3: ISYS  
CH3: ISYS  
VBUS = 12 V/3.3 A, 3-cell, VSYS = 9 V, Without battery  
VBUS = 9 V/3.3 A, 3-cell, VSYS = 9 V, Without battery  
50. System Regulation in Buck Mode  
51. System Regulation in Buck Boost Mode  
CH1: VSYS  
CH2: IIN  
CH2: IIN  
CH3: ISYS  
CH4: IBAT  
CH3: ISYS  
VBUS = 5 V/3.3 A, 3-cell, VSYS = 9 V, Without battery  
VBUS = 20 V/3.3 V, VBAT = 7.5 V  
52. System Regulation in Boost Mode  
53. Input Current Regulation in Buck Mode  
CH2:IIN  
CH1: EN_OTG  
CH2: VBUS  
CH3:ISYS  
CH4:IBAT  
VBUS = 5 V/3.3 V, VBAT = 7.5 V  
VBUS = 5 V  
54. Input Current in Boost Mode  
55. OTG Power Up from 8 V Battery  
70  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
CH1: SCL  
CH1: SCL  
CH2: VBUS  
CH2: VBUS  
CH3: SW2  
CH3: SW2  
VBAT = 10 V, VBUS 5 V to 20 V, IOTG = 500 mA  
56. OTG Voltage Ramp Up  
57. OTG Power Off  
CH2: VBUS  
CH3: IVBUS  
VBAT = 10 V, VBUS = 20 V  
58. OTG Load Transient  
版权 © 2017–2018, Texas Instruments Incorporated  
71  
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
10 Power Supply Recommendations  
The valid adapter range is from 3.5 V (VVBUS_CONVEN) to 24 V (ACOV) with at least 500-mA current rating. When  
CHRG_OK goes HIGH, the system is powered from adapter through the charger. When adapter is removed, the  
system is connected to battery through BATFET. Typically the battery depletion threshold should be greater than  
the minimum system voltage so that the battery capacity can be fully utilized for maximum battery life.  
72  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
11 Layout  
11.1 Layout Guidelines  
The switching node rise and fall times should be minimized for minimum switching loss. Proper layout of the  
components to minimize high frequency current path loop (see Layout Example section) is important to prevent  
electrical and magnetic field radiation and high frequency resonant problems. Here is a PCB layout priority list for  
proper layout. Layout PCB according to this specific order is essential.  
1. Place the input capacitor as close as possible to the supply of the switching MOSFET and ground  
connections. Use a short copper trace connection. These parts must be placed on the same layer of PCB  
using vias to make this connection.  
2. The device must be placed close to the gate pins of the switching MOSFET. Keep the gate drive signal  
traces short for a clean MOSFET drive. The device can be placed on the other side of the PCB of switching  
MOSFETs.  
3. Place an inductor input pin as close as possible to the output pin of the switching MOSFET. Minimize the  
copper area of this trace to lower electrical and magnetic field radiation but make the trace wide enough to  
carry the charging current. Do not use multiple layers in parallel for this connection. Minimize parasitic  
capacitance from this area to any other trace or plane.  
4. The charging current sensing resistor should be placed right next to the inductor output. Route the sense  
leads connected across the sensing resistor back to the device in same layer, close to each other (minimize  
loop area) and do not route the sense leads through a high-current path (see 60 for Kelvin connection for  
best current accuracy). Place a decoupling capacitor on these traces next to the device.  
5. Place an output capacitor next to the sensing resistor output and ground.  
6. Output capacitor ground connections must be tied to the same copper that connects to the input capacitor  
ground before connecting to system ground.  
7. Use a single ground connection to tie the charger power ground to the charger analog ground. Just beneath  
the device, use analog ground copper pour but avoid power pins to reduce inductive and capacitive noise  
coupling.  
8. Route analog ground separately from power ground. Connect analog ground and connect power ground  
separately. Connect analog ground and power ground together using power pad as the single ground  
connection point. Or using a 0-Ω resistor to tie analog ground to power ground (power pad should tie to  
analog ground in this case if possible).  
9. Decoupling capacitors must be placed next to the device pins. Make trace connection as short as possible.  
10. It is critical that the exposed power pad on the backside of the device package be soldered to the PCB  
ground.  
11. The via size and number should be enough for a given current path. See the EVM design (SLUUBG6) for  
the recommended component placement with trace and via locations. For WQFN information, see SLUA271.  
11.2 Layout Example  
11.2.1 Layout Consideration of Current Path  
R1  
L1  
VBAT  
PHASE  
High  
Frequency  
Current  
Path  
VIN  
BAT  
GND  
C2  
C1  
59. High Frequency Current Path  
版权 © 2017–2018, Texas Instruments Incorporated  
73  
 
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
Layout Example (接下页)  
11.2.2 Layout Consideration of Short Circuit Protection  
Charge Current Direction  
RSNS  
To Inductor  
To Capacitor and battery  
Current Sensing Direction  
To SRP and SRN pin  
60. Sensing Resistor PCB Layout  
74  
版权 © 2017–2018, Texas Instruments Incorporated  
bq25700A  
www.ti.com.cn  
ZHCSGD7A MAY 2017REVISED MAY 2018  
12 器件和文档支持  
12.1 器件支持  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
12.2 文档支持  
12.2.1 相关文档  
请参阅如下相关文档:  
半导体和集成电路封装热指标 应用报告 SPRA953  
bq2570x 评估模块 用户指南SLUUBG6  
QFN/SON PCB 连接 应用报告 SLUA271  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
版权 © 2017–2018, Texas Instruments Incorporated  
75  
bq25700A  
ZHCSGD7A MAY 2017REVISED MAY 2018  
www.ti.com.cn  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
76  
版权 © 2017–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ25700ARSNR  
BQ25700ARSNT  
ACTIVE  
QFN  
QFN  
RSN  
32  
32  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
BQ  
25700A  
ACTIVE  
RSN  
NIPDAU  
BQ  
25700A  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Jun-2018  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ25700ARSNR  
BQ25700ARSNT  
QFN  
QFN  
RSN  
RSN  
32  
32  
3000  
250  
330.0  
180.0  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Jun-2018  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ25700ARSNR  
BQ25700ARSNT  
QFN  
QFN  
RSN  
RSN  
32  
32  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY