BQ25790YBGR [TI]

集成式、NVDC、5A、1 至 4 节开关模式降压/升压电池充电器 | YBG | 56 | -40 to 85;
BQ25790YBGR
型号: BQ25790YBGR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

集成式、NVDC、5A、1 至 4 节开关模式降压/升压电池充电器 | YBG | 56 | -40 to 85

电池 开关
文件: 总133页 (文件大小:2116K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
BQ25790  
SLUSDF9 JUNE 2020  
BQ25790 I2C Controlled, 1-4 Cell, 5-A Buck-Boost Battery Charger with Dual-Input  
Selector and USB PD 3.0 OTG Output  
1 Features  
Package  
56-Pin 2.9mm × 3.3mm WCSP  
1
High efficient synchronous Switch Mode buck-  
boost charger for 1-4 cell battery  
2 Applications  
750-kHz and 1.5-MHz Programmable  
switching frequencies  
Smartphone, Tablet, Drone  
Wireless speaker, Digital Camera  
Mobile printer, Electronic point of sales (EPOS)  
Efficiency optimized for charging 2s battery,  
96.5% efficiency with 9-V input and 94.5%  
efficiency with 15-V input at 3-A ICHG  
3 Description  
Charging current up to 5 A with 10-mA  
resolution  
The BQ25790 is a fully integrated switch-mode buck-  
boost charger for 1-4 cell Li-ion battery and Li-  
polymer battery. The integration includes 4 switching  
MOSFETs (Q1, Q2, Q3, Q4), input and charging  
current sensing circuits, the battery FET (QBAT) and  
all the loop compensation of the buck-boost  
converter. It provides high power density and design  
flexibility to charge batteries across the full input  
voltage range for USB Type-C™ and USB power  
delivery (USB-PD) applications such as smart phone,  
tablet and other portable devices.  
Support wide range of input sources  
3.6-V to 24-V Wide input operating voltage  
range with 30-V absolute maximum rating  
Maximum power tracking with VINDPM up to  
22 V and IINDPM up to 3.3 A  
Detect USB BC1.2, SDP, CDP, DCP, HVDCP  
and non-standard adapters  
Dual-input power mux controller for source  
selection  
Device Information(1)  
High level integration  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
2.90 x 3.30 mm2  
Four switching MOSFETs and BATFET  
Input current and charging current sensing  
BQ25790  
DSBGA (56)  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Narrow-VDC (NVDC) Power Path management  
Power USB port from battery (USB OTG)  
2.8-V to 22-V OTG output voltage with 10-mV  
resolution to support USB-PD PPS  
Simplified Schematic  
VBUS  
SW1  
PMID  
OTG Output current regulation up to 3.32 A  
with 40-mA resolution  
USB  
Flexible autonomous and I2C mode for optimal  
system performance  
Integrated 16-bit ADC for voltage, current and  
temperature monitor  
SYSTEM LOAD  
SYS  
Low battery quiescent current  
SW2  
Typical 21-µA at battery only operation  
BAT  
Typical 600 nA in Charger Shutdown Mode  
High accuracy  
I2C Bus  
BATP  
BATN  
±0.5% Charge voltage regulation for 2s battery  
±5% Charge current regulation  
BQ25790  
Host  
1s~4s  
Battery  
Host  
Control  
±5% Input current regulation  
GND  
Safety  
Thermal regulation and thermal shutdown  
Input/battery OVP and OCP  
Converter MOSFETs OCP  
Charging safety timer  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
Table of Contents  
8.4 Device Functional Modes........................................ 45  
8.5 Register Map........................................................... 46  
Application and Implementation ...................... 115  
9.1 Application Information.......................................... 115  
9.2 Typical Application ................................................ 116  
1
2
3
4
5
6
7
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Description (continued)......................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 7  
7.1 Absolute Maximum Ratings ...................................... 7  
7.2 ESD Ratings.............................................................. 7  
7.3 Recommended Operating Conditions....................... 7  
7.4 Thermal Information.................................................. 8  
7.5 Electrical Characteristics........................................... 8  
7.6 Timing Requirements.............................................. 16  
7.7 Typical Characteristics............................................ 17  
Detailed Description ............................................ 19  
8.1 Overview ................................................................. 19  
8.2 Functional Block Diagram ....................................... 20  
8.3 Feature Description................................................. 21  
9
10 Power Supply Recommendations ................... 123  
11 Layout................................................................. 124  
11.1 Layout Guidelines ............................................... 124  
12 Device and Documentation Support ............... 125  
12.1 Device Support .................................................. 125  
12.2 Documentation Support ...................................... 125  
12.3 Receiving Notification of Documentation  
Updates.................................................................. 125  
12.4 Support Resources ............................................. 125  
12.5 Trademarks......................................................... 125  
12.6 Electrostatic Discharge Caution.......................... 125  
12.7 Glossary.............................................................. 125  
8
13 Mechanical, Packaging, and Orderable  
Information ......................................................... 126  
4 Revision History  
DATE  
REVISION  
NOTES  
June  
*
Initial release.  
2
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
 
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
5 Description (continued)  
The charger supports the narrow VDC power path management, in which the system is regulated at a voltage  
slightly higher than the battery voltage, but not drop below the minimum system voltage. The system keeps  
operating even when the battery is completely discharged or removed. When load power exceeds input source  
rating, the battery gets into supplement mode and prevents the input source from being overloaded and the  
system from crashing.  
The device charges a battery from a wide range of the input sources including legacy USB adapter to high  
voltage USB PD adapter and traditional barrel adapter. The charger automatically sets converter to be buck,  
boost or buck-boost configurations based on input voltage and battery voltage without the host control. The dual  
input source selector manages the power flowing from two different input sources. The inputs selection is  
controlled by the host through I2C with default source #1 (VAC1) as the primary input and the source #2 (VAC2)  
as the secondary input.  
To support fast charging using adjustable high voltage adapter, the device provides D+/D- handshake. The  
device is compliant with USB 2.0 and USB 3.0 power delivery specification with input current and voltage  
regulation. In addition, the Input Current Optimizer (ICO) allows the detection of maximum power point of an  
unknown input source.  
Besides the I2C host controlled charging mode, this charger also supports autonomous charging mode. After  
power up, the charging is enabled with default register settings. The device can complete a charging cycle  
without any software engagements. It detects battery voltage and charges the battery in different phases: trickle  
charging, pre-charging, constant current (CC) charging and constant voltage (CV) charging. At the end of the  
charging cycle, the charger automatically terminates when the charge current is below a pre-set limit (termination  
current) in the constant voltage phase. When the full battery falls below the recharge threshold, the charger will  
automatically start another charging cycle.  
In the absence of input sources, this device supports USB On-the-Go (OTG) function, discharging battery to  
generate an adjustable 2.8V~22V voltage on VBUS with 10mV step size, which is compliant to the USB PD 3.0  
specification defined programmable power supply (PPS) feature.  
The charger provides various safety features for battery charging and system operations, including battery  
temperature negative thermistor monitoring, trickle charge, pre-charge and fast charge timers and over-  
voltage/over-current protections on battery and input. The thermal regulation reduces charge current when the  
junction temperature exceeds a programmable threshold. The STAT output of the device reports the charging  
status and any fault conditions. The PG output indicates if a good power source is present. The INT pin  
immediately notifies host when fault occurs.  
The device also provides a 16-bit analog-to-digital converter (ADC) for monitoring charge current and  
input/battery/system (VAC, VBUS, BAT, SYS, TS) voltages.  
It is available in a 56-pin 2.9mm × 3.3mm WCSP package.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: BQ25790  
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
6 Pin Configuration and Functions  
YBG Package  
56-Pin DSBGA  
Top View  
1
2
3
4
5
6
7
VBUS  
PMID  
SW1  
SW1  
SW1  
SW1  
SW1  
D-  
GND  
GND  
GND  
GND  
GND  
ILIM_HIZ  
CE  
SW2  
SYS  
BAT  
A
B
C
D
E
F
VBUS  
VBUS  
BTST1  
REGN  
STAT  
VAC2  
VAC1  
PMID  
SW2  
SW2  
SW2  
SW2  
PROG  
INT  
SYS  
BAT  
PMID  
SYS  
BAT  
PMID  
SYS  
BAT  
PMID  
SYS  
BAT  
D+  
SDRV  
BATN  
IBAT  
BTST2  
BATP  
TS  
G
H
ACDRV2  
QON  
ACDRV1  
PG  
SCL  
SDA  
Top View = Xray through a soldered down part with A1 starting in upper left corner  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
A1  
B1  
C1  
A2  
B2  
C2  
D2  
E2  
A3  
B3  
C3  
D3  
E3  
Charger Input Voltage – The power input terminal of the charger. An input current sensing circuit is  
connected between VBUS and PMID. The recommended capacitor at VBUS is one piece of 10μF  
ceramic capacitor.  
VBUS  
P
Q1 MOSFET Drain Connection – An internal N-channel high side MOSFET (Q1) is connected  
between PMID and SW1 with drain on PMID and source on SW1. Place a 0.1μF ceramic capacitor  
from PMID to power GND as close as possible to the charger IC. The recommended capacitors at  
PMID are 3 piece of 10μF and one piece of 0.1μF ceramic capacitors.  
PMID  
SW1  
P
P
Buck Side Half Bridge Switching Node  
4
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
A4  
B4  
C4  
D4  
E4  
A5  
B5  
C5  
D5  
E5  
A6  
B6  
C6  
D6  
E6  
A7  
B7  
C7  
D7  
E7  
GND  
P
Ground Return  
SW2  
SYS  
BAT  
P
P
P
Boost Side Half Bridge Switching Node  
The Charger Output Voltage to System – The internal N-channel high side MOSFET (Q4) is  
connected between SYS and SW2 with drain on SYS and source on SW2. Place a 0.1μF ceramic  
capacitor from SYS to power GND as close as possible to the charger IC. The recommended  
capacitors at SYS are 5 piece of 10μF and one piece of 0.1μF ceramic capacitors.  
The Battery Charging Power Connection – Connect to the positive terminal of the battery pack. The  
internal charging current sensing circuit is connected between SYS and BAT. The recommended  
capacitors at BAT are 2 piece of 10μF ceramic capacitors.  
Input High Side Power MOSFET Gate Driver Power Supply – Connect a 10V or higher rating, 47nF  
ceramic capacitor between SW1 and BTST1 as the bootstrap capacitor for driving high side switching  
MOSFET (Q1).  
BTST1  
REGN  
BTST2  
D1  
E1  
F7  
P
P
P
The Charger Internal Linear Regulator Output – It is supplied from either VBUS or BAT dependent  
on which voltage is higher. Connect a 10V, 4.7μF ceramic capacitor from REGN to power ground. The  
REGN LDO output is used for the internal MOSFETs gate driving voltage and the voltage bias for TS  
pin resistor divider.  
Output High Side Power MOSFET Gate Driver Power Supply – Connect a 10V or higher rating,  
47nF ceramic capacitor between SW2 and BTST2 as the bootstrap capacitor for driving high side  
switching MOSFET (Q4).  
Input FETs Driver Pin 1 – The charge pump output to drive the port #1 input N-channel MOSFET  
(ACFET1) and the reverse blocking N-channel MOSFET (RBFET1). The charger turns on the back-to-  
back MOSFETs by increasing the ACDRV1 voltage 5V above the common drain connection of the  
ACFET1 and RBFET1 when the turn-on condition is met. Tie ACDRV1 to GND if no ACFET1 and  
RBFET1 installed.  
ACDRV1  
VAC1  
H2  
H1  
G2  
P
P
P
VAC1 Input Detection – When a voltage between 3.6V and 24V apply on VAC1, it represents a valid  
input is plugged in port 1. Connect to VBUS if the ACFET1 and RBFET1 are not installed.  
Input FETs Driver Pin 2 – The charge pump output to drive the port #2 input N-channel MOSFET  
(ACFET2) and the reverse blocking N-channel MOSFET (RBFET2). The charger turns on the back-to-  
back MOSFETs by increasing the ACDRV2 voltage 5V above the common drain connection of the  
ACFET2 and RBFET2 when the turn-on condition is met. Tie ACDRV2 to GND if no ACFET2 and  
RBFET2 installed.  
ACDRV2  
VAC2 Input Detection – When a voltage between 3.6V and 24V is applied on VAC2, it represents a  
valid input being plugged in port #2. Connect to VBUS if the ACFET2 and RBFET2 are not present.  
VAC2  
STAT  
G1  
F1  
P
Open Drain Charge Status Output – It indicates various charger operations. Connect to the pull up  
rail via 10kΩ resistor. LOW indicates charging in progress. HIGH indicates charging completed or  
charging disabled. When any fault condition occurs, STAT pin blinks at 1Hz. The STAT pin function  
can be disabled when DIS_STAT bit is set to 1.  
DO  
DO  
Open Drain Active Low Power Good Indicator – Connected to the pull up rail via 10kΩ resistor.  
LOW indicates a good input source if the VBUS voltage is above 3.6V and below 24V.  
PG  
D+  
H3  
F2  
Positive Line of the USB Data Line Pair – D+/D- based USB host/charging port detection. The  
AIO detection includes data contact detection (DCD), primary and secondary detection in BC1.2, and the  
adjustable high voltage adapter.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: BQ25790  
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Negative Line of the USB Data Line Pair – D+/D- based USB host/charging port detection. The  
D-  
F3  
AIO detection includes data contact detection (DCD), primary and secondary detection in BC1.2, and the  
adjustable high voltage adapter.  
External N-channel Ship FET (SFET) Gate Driver Output – The driver pin of the external ship FET.  
The ship FET is always turned on when the ship mode is disabled, and it keeps off when the charger is  
in ship mode or shutdown mode. Connect a 0402 / 50V / 1nF ceramic capacitor from SDRV to GND  
when the ship FET is not used.  
SDRV  
QON  
F6  
P
Ship FET Enable or System Power Reset Control Input – When the device is in ship mode or in the  
shutdown mode, the SDRV turns off the external ship FET to minimize the battery leakage current. A  
logic low on this pin with tSM_EXIT duration turns on ship FET to force the device exit the ship mode. A  
logic low on this pin with tRST duration resets system power by turning off the ship FET for tRST_SFET  
(also set the charger in HIZ mode when VBUS is high) and then turning on ship FET (also disable the  
charger HIZ mode) to provide full system power reset. During tRST_SFET when the ship FET is off, the  
charger applies a 30mA discharging current on SYS to discharge system voltage. The pin contains an  
internal pull-up to maintain default high logic.  
G3  
F5  
DI  
Charger POR Default Settings Program – At power up, the charger detects the resistance tied to  
PROG pin to determine the default switching frequency and the default battery charging profile. The  
surface mount resistor with ±1% or ±2% tolerance is recommended. Please refer to more details in the  
PROG  
DI  
section of PROG Pin Configuration.  
SCL  
SDA  
H4  
H5  
DI I2C Interface Clock – Connect SCL to the logic rail through a 10kΩ resistor.  
DIO I2C Interface Data – Connect SDA to the logic rail through a 10kΩ resistor.  
Open Drain Interrupt Output. – Connect the INT pin to a logic rail via a 10kΩ resistor. The INT pin  
sends an active low, 256μs pulse to the host to report the charger device status and faults.  
INT  
G5  
DO  
Input Current Limit Setting and HIZ Mode Control Pin – Program ILIM_HIZ voltage by connecting a  
resistor divider from pull up rail to ILIM_HIZ pin to ground. The pin voltage is calculated as: V(ILIM_HIZ)  
=
1V + 800mΩ × IINDPM, in which IINDPM is the target input current. The input current limit used by the  
charger is the lower setting of ILIM_HIZ pin and the IINDPM register. When the pin voltage is below  
0.75V, the buck-boost converter enters non-switching mode with REGN on. When the pin voltage is  
above 1V, the converter resumes switching.  
ILIM_HIZ  
F4  
AI  
Charging Current Sensing Output – A current source output pin with the output current value as a  
ratio of charging current. The typical ratio is 25μA output current when the charging current is 1A. The  
IBAT  
H6  
AO recommended application case is connecting this pin to GND through a 10kΩ resistor, in order to  
achieve a 250 mV/A voltage to charging current gain. The maximum voltage at this pin is clamped at  
3.3V.  
Active Low Charge Enable Pin – Battery charging is enabled when EN_CHG bit is 1 and CE pin is  
LOW. CE pin must be pulled HIGH or LOW, do not leave floating.  
CE  
G4  
G7  
G6  
DI  
Positive Input for Battery Voltage Sensing – Connect to the positive terminal of battery pack. Place  
100Ω series resistance between this pin and the battery positive terminal.  
BATP  
BATN  
P
Negative Input for Battery Voltage Sensing – Connect to the negative terminal of battery pack.  
Place 100Ω series resistance between this pin and the battery negative terminal.  
AI  
Temperature Qualification Voltage Input – Connect a negative temperature coefficient thermistor.  
AI Program temperature window with a resistor divider from REGN to TS to GND. Charge suspends  
when TS pin voltage is out of range. Recommend a 103AT-2 10kΩ thermistor.  
TS  
H7  
6
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
-2  
MAX  
30  
30  
30  
32  
23  
20  
29  
26  
30  
23  
UNIT  
V
VAC1, VAC2  
VBUS (converter not switching)  
PMID (converter not switching)  
ACDRV1, ACDRV2, BTST1  
SYS (converter not switching)  
-2  
V
-0.3  
V
-0.3  
V
-0.3  
V
Voltage range (with  
respect to GND)  
BATP, BAT  
BTST2  
SDRV  
-0.3  
V
-0.3  
V
-0.3  
V
SW1  
-2 (50ns)  
-2 (50ns)  
V
SW2  
V
PG, QON, D+, D-, CE, STAT, SCL, SDA, INT, ILIM_HIZ,  
PROG, TS, REGN, IBAT, BATN  
-0.3  
6
V
Output Sink Current  
Differential Voltage  
INT, STAT  
6
6
mA  
V
BTST1-SW1, BTST2-SW2  
PMID-VBUS  
-0.3  
-0.3  
-0.3  
-0.3  
-40  
6
V
SYS-BAT  
16  
6
V
SDRV-BAT  
V
TJ  
Junction temperature  
Storage temperature  
150  
150  
°C  
°C  
Tstg  
-55  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101, all  
pins(2)  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
24  
18.8  
3.3  
5
UNIT  
V
VVBUS  
VBAT  
IVBUS  
ISW  
Input voltage  
3.6  
Battery voltage  
V
Input current  
A
Output current (SW)  
A
Fast charging current  
RMS discharge current (continuously)  
Peak discharge current (up to 1 sec)  
Ambient temperature  
5
A
IBAT  
6
A
10  
85  
125  
A
TA  
-40  
-40  
°C  
°C  
µF  
µF  
µF  
TJ  
Junction temperature  
CVBUS  
CPMID  
CSYS  
Effective VBUS capacitance  
Effective PMID capacitance  
Effective SYS capacitance  
2
4
6
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: BQ25790  
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
CBAT  
Effective BAT capacitance  
3
µF  
7.4 Thermal Information  
BQ25790  
THERMAL METRIC(1)  
YBG (DSBGA)  
UNIT  
56-BALL  
46.1  
0.2  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
9.5  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ΨJB  
9.3  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
QUIESCENT CURRENTS  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Quiescent battery current (BATP,  
BAT, SYS) when the charger is in  
the battery only mode, battery  
FET is enabled, ADC is disabled  
VBAT = 8V, No VBUS, BATFET is  
enabled, I2C enabled, ADC disabled,  
system is powered by battery.  
IQ_BAT_ON  
21  
24 µA  
Quiescent battery current (BATP) VBAT = 8V, No VBUS, I2C enabled, ADC  
when the charger is in ship mode. disabled, in ship mode.  
IQ_BAT_OFF  
12  
16 µA  
0.7 µA  
Shutdown battery current (BATP)  
VBAT = 8V, No VBUS, I2C disabled,  
when charger is in shut down  
ADC disabled, in shut down mode.  
mode.  
ISD_BAT  
0.6  
VBUS = 15V, VBAT = 8V, charge  
disabled, converter switching, ISYS = 0A,  
3
mA  
OOA disabled  
IQ_VBUS  
ISD_VBUS  
IQ_OTG  
Quiescent input current (VBUS)  
VBUS = 15V, VBAT = 8V, charge  
disabled, converter switching, ISYS = 0A,  
OOA enabled  
5
354  
3
mA  
µA  
Shutdown input current (VBUS) in VBUS = 5V, HIZ mode, no battery, ADC  
HIZ  
disabled, ACDRV disabled  
VBAT = 8V, VBUS = 5V, OTG mode  
enabled, converter switching, IVBUS = 0A,  
OOA disabled  
mA  
Quiescent battery current (BATP,  
BAT, SYS) in OTG  
VBAT = 8V, VBUS = 5V, OTG mode  
enabled, converter switching, IVBUS = 0A,  
OOA enabled  
5
mA  
VBUS / VBAT SUPPLY  
VAC present rising threshold to  
3.4  
3.2  
3.5  
V
V
turnon the ACFET-RBFET  
VVAC_PRESENT  
For both VAC1 and VAC2  
VAC present falling threshold to  
turnoff the ACFET-RBFET  
3.1  
8
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VAC overvoltage rising threshold,  
when VAC_OVP[1:0]=00  
25.2  
26  
26.8  
V
VAC overvoltage falling  
threshold, when  
VAC_OVP[1:0]=00  
24.4  
21.1  
20.6  
11.6  
11.2  
6.7  
25.2  
21.7  
21.2  
12  
26.0  
V
VAC overvoltage rising  
threshold, when  
VAC_OVP[1:0]=01  
22.3  
21.8  
12.4  
12.0  
7.3  
V
V
V
V
V
V
VAC overvoltage falling  
threshold, when  
VAC_OVP[1:0]=01  
VVAC_OVP  
For both VAC1 and VAC2  
VAC overvoltage rising  
threshold, when  
VAC_OVP[1:0]=10  
VAC overvoltage falling  
threshold, when  
VAC_OVP[1:0]=10  
11.6  
7
VAC overvoltage rising  
threshold, when  
VAC_OVP[1:0]=11  
VAC overvoltage falling  
threshold, when  
6.5  
6.8  
7.1  
VAC_OVP[1:0]=11  
VVBUS_OP  
VBUS operating range  
3.6  
24  
V
V
VBUS rising for active I2C, no  
battery  
VVBUS_UVLOZ  
VBUS rising  
VBUS falling  
3.25  
3.4  
3.2  
3.55  
VBUS falling to turnoff I2C, no  
battery  
VVBUS_UVLO  
3.05  
3.35  
V
VVBUS_PRESENT  
VVBUS_PRESENTZ  
VVBUS_OVP  
VBUS to start switching  
VBUS to stop switching  
VBUS rising  
VBUS falling  
3.3  
3.1  
3.4  
3.2  
3.5  
3.3  
V
V
V
VBUS overvoltage rising threshold VBUS rising  
25.2  
25.7  
26.2  
VBUS overvoltage falling  
VBUS falling  
VVBUS_OVPZ  
24.0  
24.4  
24.8  
V
threshold  
IBUS_OCP  
IBUS over-current rising threshold  
IBUS over-current falling threshold  
7.0  
6.5  
8.0  
7.5  
9.0  
8.5  
A
A
IBUS_OCPZ  
VBAT rising, when the charger is in ship  
mode  
3.25  
2.50  
3.05  
2.30  
2.7  
3.40  
2.60  
3.20  
2.40  
2.8  
3.55  
2.71  
3.31  
2.50  
2.9  
V
V
V
V
V
BAT voltage for active I2C and  
turning on BATFET, no VBUS, no  
VAC  
VBAT_UVLOZ  
VBAT rising, when the charger is in  
normal mode  
VBAT falling, when the charger is in ship  
mode  
BAT voltage to turn off I2C and  
BATFET, no VBUS, no VAC  
VBAT_UVLO  
VBAT falling, when the charger is in  
normal mode  
BAT voltage rising threshold to  
enable OTG mode  
VBAT_OTG  
VBAT rising  
BAT voltage falling threshold to  
disable OTG mode  
VBAT_OTGZ  
VPOORSRC  
VPOORSRC  
VBAT falling  
2.4  
3.3  
2.5  
3.4  
2.6  
3.5  
V
V
Bad adapter detection threshold  
VBUS falling  
Bad adapter detection threshold  
hysteresis  
VBUS rising above VPOORSRC  
150  
200  
250 mV  
mA  
Bad adapter detection current  
source  
IPOORSRC  
30  
POWER-PATH MANAGEMENT  
System voltage regulation range,  
measured on SYS  
VSYSMAX_REG_RNG  
3.2  
19  
V
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: BQ25790  
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
MAX UNIT  
Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VBAT = 16.8V (4s default)  
MIN  
16.82  
12.62  
8.44  
TYP  
17.00  
12.80  
8.60  
17.25  
13.04  
8.77  
V
V
V
V
System voltage regulation  
accuracy (when VBAT>VSYSMIN,  
charging disabled, PFM disabled)  
VBAT = 12.6V (3s default)  
VBAT = 8.4V (2s default)  
VBAT = 4.2V (1s default)  
VSYSMAX_REG_ACC  
4.268  
4.40  
4.550  
VSYSMIN regulation range,  
measured on SYS  
VSYSMIN_REG_RNG  
2.5  
16  
V
VSYSMIN_REG_STEP VSYSMIN regulation step size  
250  
12.2  
9.2  
mV  
V
4s battery  
3s battery  
2s battery  
1s battery  
11.9  
9.0  
12.5  
9.4  
V
System voltage regulation  
VSYSMIN_REG_ACC  
accuracy (when VBAT<VSYSMIN  
)
7.12  
3.5  
7.2  
7.32  
3.9  
V
3.7  
V
As a percentage of the system regulation  
voltage, to turnoff the converter.  
VSYS overvoltage rising threshold  
VSYS overvoltage falling threshold  
105.5  
95.5  
2.1  
110.0  
100  
112.3  
102  
%
%
V
VSYS_OVP  
As a percentage of the system regulation  
voltage, to re-enable the converter.  
VSYS short voltage falling  
threshold  
VSYS_SHORT  
2.2  
2.3  
BATTERY CHARGER  
Typical charge voltage regulation  
VREG_RANGE  
VREG_STEP  
3
18.8  
V
range  
Typical charge voltage step  
10  
mV  
%
VREG = 16.8V  
VREG = 12.6V  
VREG = 8.4V  
VREG = 4.2V  
-0.8  
-1.0  
-0.4  
-0.6  
0.4  
0.5  
0.5  
0.8  
%
Charge voltage accuracy, TJ =  
–40°C - 85°C  
VREG_ACC  
%
%
Typical charge current regulation  
range  
ICHG_RANGE  
ICHG_STEP  
0.05  
5
A
Typical charge current regulation  
step  
10  
mA  
ICHG = 2A; VBAT=8V  
-2  
-2  
8
8
%
%
%
%
%
%
Typical boost mode PWM charge  
ICHG_ACC  
current accuracy, VBUS < VBAT, ICHG = 1A; VBAT=8V  
TJ = –40°C - 85°C  
ICHG = 0.5A; VBAT=8V  
-7.5  
-5.5  
-5  
7.5  
2.5  
5
ICHG = 4A; VBAT=8V  
Typical buck mode PWM charge  
ICHG_ACC  
current accuracy, VBUS > VBAT, ICHG = 1A; VBAT=8V  
TJ = –40°C - 85°C  
ICHG = 0.5A; VBAT=8V  
-7.5  
40  
7.5  
IPRECHG_RANGE  
IPRECHG_STEP  
Typical pre-charge current range  
2000 mA  
mA  
Typical pre-charge current step  
40  
Typical LDO mode charge current IPRECHG = 480mA, VBAT = 6.5V  
-8  
-20  
-35  
-4.5  
-20  
-30  
-5  
8
20  
35  
3.5  
20  
30  
5
%
%
%
%
%
%
%
%
accuracy when VBATP-VBATN  
IPRECHG = 200mA, VBAT = 6.5V  
below VSYSMIN, VBUS < VBAT, TJ  
IPRECHG_ACC  
IPRECHG = 120mA, VBAT = 6.5V  
= –40°C - 85°C  
Typical LDO mode charge current IPRECHG = 1000mA, VBAT = 6.5V  
accuracy when VBATP-VBATN  
IPRECHG = 200mA, VBAT = 6.5V  
below VSYSMIN, VBUS > VBAT, TJ  
IPRECHG_ACC  
IPRECHG = 120mA, VBAT = 6.5V  
= –40°C - 85°C  
IBAT pin current sensing accuracy IBAT = 4A, VBAT = 8V  
with 25µA/A gain. The accuracy is  
applied to forward charging mode  
IBAT = 1A, VBAT = 8V  
-10  
10  
IBAT_ACC  
for charging current sensing, TJ =  
IBAT = 0.5A, VBAT = 8V  
–40°C - 85°C  
-20  
40  
20  
%
ITERM_RANGE  
Typical termination current range  
1000 mA  
10  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ITERM_STEP  
ITERM_ACC  
Typical termination current step  
40  
mA  
ITERM = 120mA  
-20  
-14  
20  
14  
%
%
Termination current accuracy, TJ =  
–40°C - 85°C  
ITERM = 480mA  
Battery short voltage rising  
threshold to start pre-charge  
VBAT_SHORTZ  
VBAT rising  
2.25  
V
Battery short voltage falling  
threshold to stop pre-charge  
VBAT_SHORT  
IBAT_SHORT  
VBAT falling  
2.06  
100  
15  
V
mA  
%
Battery trickle charging current  
VBAT < VBAT_SHORTZ  
VBAT_LOWV=15%VREG,  
VBAT_LOWV_1:0=00  
13  
61.5  
67.0  
71.0  
17  
64.5  
69.0  
74.0  
VBAT_LOWV=62.2%VREG,  
VBAT_LOWV_1:0=01  
63.0  
68.0  
72.5  
1.4  
%
%
Battery voltage rising threshold to  
start fast-charge, as percentage of  
VREG  
VBAT_LOWV_RISE  
VBAT_LOWV=66.7%VREG,  
VBAT_LOWV_1:0=10  
VBAT_LOWV=71.4%VREG,  
VBAT_LOWV_1:0=11  
%
Battery voltage threshold to stop  
fast-charge hysteresis  
VBAT falling, as percentage of  
VREG, VBAT_LOWV_1:0=11  
VBAT_LOWV_HYS  
%
VBAT falling, VRECHG=0011,  
VREG=8.4V  
200  
400  
mV  
mV  
VRECHG  
Battery recharge threshold  
VBAT falling, VRECHG=0111,  
VREG=16.8V  
BATFET  
MOSFET on resistance from SYS  
to BAT  
RBATFET  
Tj = -40°C-85°C  
8
9.69 mΩ  
BATTERY PROTECTIONS  
VBAT rising, as percentage of VREG  
VBAT falling, as percentage of VREG  
103  
101  
104  
102  
105  
103  
%
%
Battery over-voltage threshold,  
when battery connected.  
VBAT_OVP  
VBAT falling, to clamp the charging  
current as trickle charging current.  
2.06  
2.25  
11.4  
V
V
A
VBAT_SHORT  
Battery short voltage  
VBAT rising, to release the trickle  
charging current clamp  
Battery discharging over-current  
rising threshold  
IBAT_OCP  
9.3  
3.6  
INPUT VOLTAGE / CURRENT REGULATION  
Typical input voltage regulation  
range  
VINDPM_RANGE  
VINDPM_STEP  
22  
V
Typical input voltage regulation  
step  
100  
mV  
VINDPM=18.6V  
VINDPM=4.3V  
-2  
-3  
-5  
2
3
5
%
%
%
VINDPM_ACC  
Input voltage regulation accuracy VINDPM=10.6V  
Typical input current regulation  
range  
IINDPM_RANGE  
IINDPM_STEP  
0.1  
3.3  
A
Typical input current regulation  
step  
10  
mA  
IINDPM = 500mA, VBUS=9V  
IINDPM = 1000mA, VBUS=9V  
IINDPM = 2000mA, VBUS=9V  
IINDPM = 3000mA, VBUS=9V  
415  
880  
460  
940  
500 mA  
1000 mA  
1960 mA  
2920 mA  
IINDPM_ACC  
Input current regulation accuracy  
1800  
2720  
1880  
2820  
Voltage range for input current  
regultion at ILIM_HIZ pin  
VILIM_REG_RNG  
1
4
V
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: BQ25790  
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VILIM_HIZ = 4V  
MIN  
TYP  
MAX UNIT  
ILEAK_ILIM  
ILIM_HIZ pin leakage current  
-1.5  
1.5 µA  
D+ / D- DETECTION  
VD+ _600MVSRC  
ID+_10UASRC  
D+ voltage source (600 mV)  
D+ current source (10 µA)  
D+ current sink (100 µA)  
500  
7
600  
10  
700 mV  
14 µA  
VD+ = 200 mV,  
VD+ = 500 mV,  
ID+_100UASNK  
50  
90  
150 µA  
D+ comparator threshold for  
Secondary Detection  
VD+_0P325  
VD+_0P8  
D+ pin rising  
250  
775  
400 mV  
925 mV  
D+ comparator threshold for Data  
Contact Detection  
D+ pin rising  
850  
ID+_LKG  
Leakage current into D+  
D- voltage source (600 mV)  
D- current sink (100 µA)  
D+ pin is in HiZ mode  
-1  
500  
50  
1
µA  
VD-_600MVSRC  
ID-_100UASNK  
600  
90  
700 mV  
150 µA  
VD- = 500 mV,  
D- comparator threshold for  
Primary Detection  
VD-_0P325  
ID-_LKG  
D- pin rising  
250  
-1  
400 mV  
Leakage current into D-  
HiZ mode  
1
µA  
V
D+ comparator threshold for non-  
standard adapter  
VD+ _2p8  
(combined VD+_2p8_hi and VD+_2p8_lo  
)
2.55  
2.85  
D- comparator threshold for non-  
standard adapter  
VD- _2p8  
VD+ _2p0  
VD- _2p0  
VD+ _1p2  
VD- _1p2  
(combined VD-_2p8_hi and VD-_2p8_lo)  
2.55  
1.85  
1.85  
1.05  
1.05  
2.85  
2.15  
2.15  
1.35  
1.35  
V
V
V
V
V
D+ comparator threshold for non-  
standard adapter  
(combined VD+_2p0_hi and VD+_2p0_lo  
(combined VD-_2p0_hi and VD-_2p0_lo  
(combined VD+_1p2_hi and VD+_1p2_lo  
)
D- comparator threshold for non-  
standard adapter  
)
D+ comparator threshold for non-  
standard adapter  
)
D- comparator threshold for non-  
standard adapter  
(combined VD-_1p2_hi and VD-_1p2_lo  
)
THERMAL REGULATION AND THERMAL SHUTDOWN  
TREG = 120°C  
TREG = 100°C  
TREG = 80°C  
TREG = 60°C  
120  
100  
80  
°C  
°C  
°C  
°C  
Junction temperature regulation  
accuracy  
TREG  
60  
Temperature Increasing (TSHUT[1:0]=00)  
Temperature Increasing (TSHUT[1:0]=01)  
Temperature Increasing (TSHUT[1:0]=10)  
Temperature Increasing (TSHUT[1:0]=11)  
130  
110  
100  
65  
150  
130  
120  
85  
170 °C  
150 °C  
140 °C  
105 °C  
Thermal Shutdown Rising  
Threshold  
TSHUT  
Thermal Shutdown Falling  
TSHUT_HYS  
Hysteresis  
Temperature Decreasing by TSHUT_HYS  
30  
°C  
JEITA THERMISTOR COMPARATOR (CHARGE MODE)  
T1 comparator rising threshold,  
VT1_RISE  
charge suspended above this  
voltage.  
As Percentage to VREGN (0°C w/ 103AT)  
As Percentage to VREGN (3°C w/ 103AT)  
72.4  
71.5  
73.3  
72  
74.2  
72.5  
%
%
T1 comparator falling threshold.  
charge re-enabled below this  
voltage.  
VT1_FALL  
12  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
As Percentage to VREGN, JEITA_T2=5°C  
w/ 103AT  
70.6  
71.1  
71.6  
68.9  
66.0  
62.9  
70.3  
67.6  
64.7  
61.6  
50.2  
46.6  
43.0  
39.5  
48.9  
45.3  
41.7  
38.2  
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
As Percentage to VREGN  
,
67.9  
65.0  
61.9  
69.3  
66.6  
63.7  
60.6  
49.2  
45.6  
42.0  
38.5  
47.9  
44.3  
40.7  
37.2  
68.4  
65.5  
62.4  
69.8  
67.1  
64.2  
61.1  
49.7  
46.1  
42.5  
39  
JEITA_T2=10°C w/ 103AT  
VT2_RISE  
VT2_FALL  
VT3_RISE  
VT3_FALL  
T2 comparator rising threshold.  
As Percentage to VREGN  
,
JEITA_T2=15°C w/ 103AT  
As Percentage to VREGN  
,
JEITA_T2=20°C w/ 103AT  
As Percentage to VREGN, JEITA_T2=5°C  
w/ 103AT  
As Percentage to VREGN  
,
JEITA_T2=10°C w/ 103AT  
T2 comparator falling threshold.  
T3 comparator rising threshold.  
T3 comparator falling threshold.  
As Percentage to VREGN  
,
JEITA_T2=15°C w/ 103AT  
As Percentage to VREGN  
,
JEITA_T2=20°C w/ 103AT  
As Percentage to VREGN  
,
JEITA_T3=40°C w/ 103AT  
As Percentage to VREGN  
,
JEITA_T3=45°C w/ 103AT  
As Percentage to VREGN  
,
JEITA_T3=50°C w/ 103AT  
As Percentage to VREGN  
,
JEITA_T3=55°C w/ 103AT  
As Percentage to VREGN  
,
48.4  
44.8  
41.2  
37.7  
JEITA_T3=40°C w/ 103AT  
As Percentage to VREGN  
,
JEITA_T3=45°C w/ 103AT  
As Percentage to VREGN  
,
JEITA_T3=50°C w/ 103AT  
As Percentage to VREGN  
,
JEITA_T3=55°C w/ 103AT  
T5 comparator falling threshold,  
charge suspended below this  
voltage.  
As Percentage to VREGN (60°C w/  
103AT)  
VT5_FALL  
33.7  
35  
34.2  
35.5  
34.7  
36  
%
%
T5 comparator rising threshold.  
charge is re-enabled above this  
voltage.  
As Percentage to VREGN (58°C w/  
103AT)  
VT5_RISE  
COLD / HOT THERMISTOR COMPARATOR (OTG MODE)  
As Percentage to VREGN (–20°C w/  
79.5  
76.6  
78.2  
75.3  
37.2  
33.9  
30.8  
80.0  
77.1  
78.7  
75.8  
37.7  
34.4  
31.3  
80.5  
77.6  
79.2  
76.3  
38.2  
34.9  
31.8  
%
%
%
%
%
%
%
103AT)  
TCOLD comparator rising  
threshold.  
VBCOLD_RISE  
As Percentage to VREGN (–10°C w/  
103AT)  
As Percentage to VREGN (–20°C w/  
103AT)  
TCOLD comparator falling  
threshold.  
VBCOLD_FALL  
As Percentage to VREGN (–10°C w/  
103AT)  
As Percentage to VREGN, (55°C w/  
103AT)  
THOT comparator falling  
threshold.  
As Percentage to VREGN, (60°C w/  
103AT)  
VBHOT_FALL  
As Percentage to VREGN, (65°C w/  
103AT)  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: BQ25790  
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
MAX UNIT  
Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
As Percentage to VREGN, (55°C w/  
103AT)  
38.8  
39.3  
39.8  
36.2  
33.0  
%
%
%
As Percentage to VREGN, (60°C w/  
103AT)  
VBHOT_RISE  
THOT comparator rising threshold.  
35.2  
32.0  
35.7  
32.5  
As Percentage to VREGN, (65°C w/  
103AT)  
SWITCHING CONVERTER  
1.3  
1.5  
1.7 MHz  
850 kHz  
FSW  
PWM switching frequency  
650  
750  
SENSE RESISTANCE and MOSFET Rdson  
VBUS to PMID input sensing  
resistance  
RSNS  
Tj = -40°C-85°C  
Tj = -40°C-85°C  
6
mΩ  
mΩ  
Buck high-side switching MOSFET  
turnon resistance between PMID  
and SW1  
RQ1_ON  
RQ2_ON  
RQ3_ON  
RQ4_ON  
20  
Buck low-side switching MOSFET  
turnon resistance between SW1  
and PGND  
Tj = -40°C-85°C  
Tj = -40°C-85°C  
Tj = -40°C-85°C  
30  
22  
13  
mΩ  
mΩ  
mΩ  
Boost low-side switching MOSFET  
turnon resistance between SW2  
and PGND  
Boost high-side switching  
MOSFET turnon resistance  
between SW2 and SYS  
OTG MODE CONVERTER  
Typical OTG mode voltage  
regulation range  
VOTG_RANGE  
VOTG_STEP  
VOTG_ACC  
IOTG_RANGE  
IOTG_STEP  
2.8  
22  
V
mV  
%
Typical OTG mode voltage  
regulation step  
10  
40  
OTG mode voltage regulation  
accuracy  
IBUS = 0A, VOTG = 5V, 12V, 20V  
-3  
3
Typical OTG mode current  
regulation range  
0.12  
3.32  
A
Typical OTG mode current  
regulation step  
mA  
IOTG = 3.0A  
IOTG = 1.52A  
IOTG = 0.52A  
-2.2  
-5  
2.2  
3
%
%
%
OTG mode current regulation  
accuracy  
IOTG_ACC  
-15  
8
OTG mode under voltage falling  
threshold  
VOTG_UVP  
2.1  
104  
90  
2.2  
113  
98  
3
2.3  
120  
104  
3.2  
V
%
%
A
OTG mode overvoltage rising  
threshold  
As percentage of VOTG regulation, OTG  
mode OOA disabled.  
VOTG_OVP  
OTG mode overvoltage falling  
threshold  
As percentage of VOTG regulation  
IBAT_REG_1:0 = 00, VBAT=8V,  
VOTG=9V  
2.8  
3.8  
4.8  
Battery current regulation in OTG IBAT_REG_1:0 = 01, VBAT=8V,  
mode  
IOTG_BAT  
4
4.2  
A
VOTG=9V  
IBAT_REG_1:0 = 10, VBAT=8V,  
VOTG=9V  
5
5.3  
A
REGN LDO  
VVBUS = 5V, IREGN = 20mA  
VVBUS = 15V, IREGN = 20mA  
4.6  
4.8  
4.8  
5
5
V
V
VREGN  
REGN LDO output voltage  
5.2  
14  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IREGN  
REGN LDO current limit  
VVBUS = 5V, VREGN = 4.5V  
30  
mA  
I2C INTERFACE (SCL, SDA)  
VIH_SDA  
VIL_SDA  
VOL_SDA  
IBIAS_SDA  
VIH_SCL  
VIL_SCL  
Input high threshold level, SDA  
Pull up rail 1.8V  
Pull up rail 1.8V  
Sink current = 5mA  
Pull up rail 1.8V  
Pull up rail 1.8V  
Pull up rail 1.8V  
Sink current = 5mA  
Pull up rail 1.8V  
1.3  
1.3  
V
Input low threshold level  
Output low threshold level  
High-level leakage current  
Input high threshold level, SDA  
Input low threshold level  
Output low threshold level  
High-level leakage current  
0.4  
0.4  
1
V
V
µA  
V
0.4  
0.4  
1
V
VOL_SCL  
IBIAS_SCL  
LOGIC I PIN (CE, ILIM_HIZ, QON)  
VIH_CE Input high threshold level, CE  
VIL_CE  
V
µA  
1.3  
1.3  
V
V
Input low threshold level, CE  
High-level leakage current, CE  
Input high threshold level, QON  
Input low threshold level, QON  
Internal QON pull up  
0.4  
1
IIN_BIAS_CE  
VIH_QON  
VIL_QON  
VQON  
Pull up rail 1.8V  
µA  
V
0.4  
V
QON is pulled up internally  
3.2  
V
RQON  
Internal QON pull up resistance  
200  
kΩ  
Input high threshold level,  
ILIM_HIZ  
VIH_ILIM_HIZ  
VIL_ILIM_HIZ  
1
V
V
Input low threshold level,  
ILIM_HIZ  
0.75  
LOGIC O PIN (INT, PG, STAT)  
VOL_INT  
Output low threshold level, INT pin Sink current = 5mA  
0.4  
1
V
High-level leakage current, INT  
pin  
IOUT_BIAS_INT  
Pull up rail 1.8V  
µA  
VOL_PG  
Output low threshold level, PG pin Sink current = 5mA  
High-level leakage current, PG pin Pull up rail 1.8V  
0.4  
1
V
IOUT_BIAS_PG  
µA  
Output low threshold level, STAT  
VOL_STAT  
Sink current = 5mA  
pin  
0.4  
1
V
High-level leakage current, STAT  
IOUT_BIAS_STAT  
Pull up rail 1.8V  
pin  
µA  
ADC MEASUREMENT ACCURACY AND PERFORMANCE  
ADC_SAMPLE[1:0] = 00  
24  
12  
6
ms  
ms  
ms  
ms  
bits  
bits  
bits  
bits  
ADC_SAMPLE[1:0] = 01  
ADC_SAMPLE[1:0] = 10  
ADC_SAMPLE[1:0] = 11  
ADC_SAMPLE[1:0] = 00  
ADC_SAMPLE[1:0] = 01  
ADC_SAMPLE[1:0] = 10  
ADC_SAMPLE[1:0] = 11  
Conversion-time, Each  
Measurement  
tADC_CONV  
3
14  
13  
12  
10  
15  
14  
13  
11  
ADCRES  
Effective Resolution  
ADC MEASUREMENT RANGE AND LSB  
Range  
LSB  
0
0
0
5
30  
30  
A
mA  
V
ADC Bus Current Reading (both  
forward and OTG)  
IBUS_ADC  
VBUS_ADC  
VAC_ADC  
1
1
1
Range  
LSB  
ADC Bus Voltage Reading  
mV  
V
Range  
LSB  
ADC VAC Voltage Reading  
mV  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: BQ25790  
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
MAX UNIT  
Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
Range  
LSB  
0
20  
V
mV  
V
VBAT_ADC  
VSYS_ADC  
IBAT_ADC  
TS_ADC  
ADC BAT Voltage Reading  
1
Range  
LSB  
0
0
24  
ADC SYS Voltage Reading  
ADC BAT Current Reading  
ADC TS Voltage Reading  
ADC Die Temperature Reading  
1
mV  
A
Range  
LSB  
8
1
mA  
%
Range  
LSB  
0
99.9  
0.098  
0.5  
%
Range  
LSB  
-40  
150 °C  
°C  
TDIE_ADC  
7.6 Timing Requirements  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
BATTERY CHARGER  
12  
24  
36  
15  
30  
45  
18 min  
36 min  
54 min  
tTOP_OFF  
Typical top-off timer accuracy  
Charge safety timer in trickle  
charge  
tSAFETY_TRKCHG  
tSAFETY_PRECHG  
0.9  
1.8  
1
2
1.1 hr  
2.2 hr  
5.5 hr  
8.8 hr  
13.2 hr  
26.4 hr  
Charge safety timer in pre-  
charge, PRECHG_TMR = 1hr  
Charge safety timer accuracy,  
CHG_TMR = 5hr  
4.5  
5
Charge safety timer accuracy,  
CHG_TMR = 8hr  
7.2  
8
tSAFETY  
Charge safety timer accuracy,  
CHG_TMR = 12hr  
10.8  
21.6  
12  
24  
Charge safety timer accuracy,  
CHG_TMR = 24hr  
THERMAL SHUTDOWN  
I2C INTERFACE  
fSCL  
SCL clock frequency  
1000 kHZ  
WATCHDOG TIMER  
Watchdog Reset time (EN_HIZ =  
1, WATCHDOG = 160s)  
tLP_WDT  
tWDT  
100  
136  
160  
160  
s
s
Watchdog Reset time (EN_HIZ =  
0, WATCHDOG = 160s)  
16  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
7.7 Typical Characteristics  
CVBUS = 2*10µF, CPMID= 3*10µF, CSYS = 5*10µF, CBAT = 2*10µF, L1 = 1µH (SPM6530T-1R0M120) and L2 = 2.2µH (WE-  
LHMI-74437346022)  
100  
95  
90  
85  
80  
75  
70  
100  
95  
90  
85  
80  
75  
70  
VBUS = 5V  
VBUS = 9V  
VBUS = 15V  
VBUS = 20V  
VBUS = 5V  
VBUS = 9V  
VBUS = 15V  
VBUS = 20V  
0
0.5  
1
1.5  
Charging Current (A)  
VBAT = 8V, Fsw = 1.5MHz with L1 = 1µH, PFM disabled  
2
2.5  
3
3.5  
4
0
0.5  
1
1.5  
Charging Current (A)  
VBAT = 12V, Fsw = 1.5MHz with L1 = 1µH, PFM disabled  
2
2.5  
3
3.5  
4
Figure 1. 2s Battery Charge Efficiency vs. Charge Current  
Figure 2. 3s Battery Charge Efficiency vs. Charge Current  
100  
100  
95  
90  
85  
95  
90  
85  
80  
80  
VOTG = 5V  
VOTG = 9V  
VBUS = 5V  
VBUS = 9V  
75  
75  
VOTG = 15V  
VOTG = 20V  
VBUS = 15V  
VBUS = 20V  
70  
70  
0
0.5  
1
1.5  
Charging Current (A)  
VBAT = 16V, Fsw = 1.5MHz with L1 = 1µH, PFM disabled  
2
2.5  
3
3.5  
4
0
0.5  
1
1.5  
OTG Output Current (A)  
VBAT = 8.4V, Fsw = 1.5MHz with L1 = 1µH, PFM disabled  
2
2.5 3  
Figure 3. 4s Battery Charge Efficiency vs. Charge Current  
Figure 4. 2s Battery OTG Efficiency vs. OTG Current  
100  
100  
95  
90  
85  
95  
90  
85  
80  
75  
70  
80  
VOTG = 5V  
VOTG = 5V  
VOTG = 9V  
VOTG = 15V  
VOTG = 20V  
VOTG = 9V  
VOTG = 15V  
VOTG = 20V  
75  
70  
0
0.5  
1
OTG Output Current (A)  
1.5  
2
2.5  
3
0
0.5  
1
OTG Output Current (A)  
1.5  
2
2.5  
3
VBAT = 12.6V, Fsw = 1.5MHz with L1 = 1µH, PFM disabled  
VBAT = 16.8V, Fsw = 1.5MHz with L1 = 1µH, PFM disabled  
Figure 5. 3s Battery OTG Efficiency vs. OTG Current  
Figure 6. 4s Battery OTG Efficiency vs. OTG Current  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: BQ25790  
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
Typical Characteristics (continued)  
CVBUS = 2*10µF, CPMID= 3*10µF, CSYS = 5*10µF, CBAT = 2*10µF, L1 = 1µH (SPM6530T-1R0M120) and L2 = 2.2µH (WE-  
LHMI-74437346022)  
100  
95  
90  
85  
80  
75  
70  
100  
95  
90  
85  
80  
75  
70  
VOTG = 5V  
VOTG = 9V  
VOTG = 15V  
VOTG = 20V  
VBUS = 5V  
VBUS = 9V  
VBUS = 15V  
0
0.5  
1
1.5  
Charging Current (A)  
VBAT = 8V, Fsw = 750kHz with L2 = 2.2µH, PFM disabled  
2
2.5  
3
3.5  
4
0
0.5  
1
OTG Output Current (A)  
1.5  
2
2.5  
3
VBAT = 8.4V, Fsw = 750kHz with L2 = 2.2µH, PFM disabled  
Figure 7. 2s Battery Charge Efficiency vs. Charge Current  
Figure 8. 2s Battery OTG Efficiency vs. OTG Current  
0
3
-3  
-6  
2
1
-9  
0
-12  
-1  
-2  
-3  
VBUS = 5V  
VBUS = 9V  
VBUS = 15V  
-15  
-18  
0
0.5  
1
1.5  
IINDPM Register Setting (A)  
VBAT = 8V, Fsw = 1.5MHz with L1 = 1µH  
2
2.5  
3
3.5  
2
4
6
8
10  
12  
14  
16  
VINDPM Register Setting (V)  
18  
20  
22  
VBAT = 8V, Fsw = 1.5MHz with L1 = 1µH  
Figure 9. Input Current Regulation (IINDPM) Accuracy  
Figure 10. Input Voltage Regulation (VINDPM) Accuracy  
0.8  
3
PFM enabled  
PFM disabled  
2
1
0.6  
0.4  
0.2  
0
0
-1  
-2  
-3  
2
4
6
8
VOTG Register Setting (V)  
10  
12  
14  
16  
18  
20  
22  
2
4
6
8
10 12  
VBAT (V)  
14  
16  
18  
20  
VBAT = 8.4V, Fsw = 1.5MHz with L1 = 1µH  
VBUS = 9V, Fsw = 1.5MHz with L1 = 1µH,  
ISYS = 0A, Charge Disabled  
Figure 12. Offset Voltage of SYS Regulation above VBAT  
Figure 11. OTG Voltage Regulation (VOTG) Accuracy  
18  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8 Detailed Description  
8.1 Overview  
The BQ25790 is a fully integrated switch-mode buck-boost charger for 1 cell ~ 4 cell Li-ion battery and Li-  
polymer battery. For compact design and minimum components count, the charger integrates the 4 switching  
MOSFETs (Q1, Q2, Q3, Q4), input and charging current sensing circuits, the battery FET (BATFET) and all the  
loop compensation of the buck-boost converter. It provides high power density and design flexibility to charge  
batteries across the full input voltage range for USB Type-C™ and USB-PD applications such as smart phone,  
tablet and other portable devices.  
The charger supports narrow VDC (NVDC) power path management, in which the system is regulated at a  
voltage slightly higher than the battery voltage, but not drop below the minimum system voltage. The system  
keeps operating even when the battery is completely discharged or removed. When load power exceeds the  
input source rating, the battery gets into supplement mode and prevents the input source from being overloaded  
and the system from crashing.  
The device charges a battery from a wide range of the input sources including legacy USB adapter to high  
voltage USB-PD adapter and traditional barrel adapter. The charger seamlessly transits among buck, boost or  
buck-boost configurations based on input voltage and battery voltage without the host control. The optional dual-  
input source selector manages the power flowing from two different input sources. The host controls the input  
source selection through I2C with prioritizing the first available input source.  
To support fast charging using adjustable high voltage adapter (HVDCP), the device provides D+/D- handshake.  
The device is compliant with USB 2.0 and USB 3.0 power delivery specification with input current and voltage  
regulation. In addition, the Input Current Optimizer (ICO) allows the detection of maximum power point of an  
unknown input source.  
Besides the I2C host controlled charging mode, BQ25790 also supports autonomous charging mode. After power  
up, the charging is defaulted enabled with all the registers default settings. The device can complete a charging  
cycle without any software engagements. It detects battery voltage and charges the battery in different phases:  
trickle charging, pre-charging, constant current (CC) charging and constant voltage (CV) charging. At the end of  
the charging cycle, the charger automatically terminates when the charge current is below a pre-set limit  
(termination current) in the constant voltage phase. When the full battery falls below the recharge threshold, the  
charger will automatically start another charging cycle.  
In the absence of input sources, BQ25790 supports USB On-the-Go (OTG) function, discharging the battery to  
generate an adjustable 2.8V~22V voltage on VBUS with 10mV step size. This is compliant with the USB PD 3.0  
specification defined PPS feature.  
The charger provides various safety features for battery charging and system operations, including battery  
temperature negative thermistor (NTC) monitoring, trickle charge, pre-charge and fast charge timers and over-  
voltage/over-current protections on the battery and the charger power input pin. The thermal regulation reduces  
charge current when the die temperature exceeds a programmable threshold. The STAT output of the device  
reports the charging status and any fault conditions. The PG output indicates if a good power source is present.  
The INT pin immediately notifies host when fault occurs.  
The device also provides a 16-bit analog-to-digital converter (ADC) for monitoring charge current and  
input/battery/system voltages, the TS pin voltage and the die temperature. It is available in a WCSP 2.9mm x  
3.3mm 56 pin package.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: BQ25790  
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
8.2 Functional Block Diagram  
SW2  
BTST2  
PMID  
SW1  
BTST1  
REGN  
VBUS  
VVBUS_UVLOZ  
+
UVLO  
SYS  
PMID  
Q1  
+
REGN  
Q4  
REGN  
LDO  
VVBUS_OV  
EN_HIZ  
VBUS_OVP  
VOTG  
VO,REF  
VVBUS  
+
VVBUS  
SYS  
VSYSMIN  
+
+
+
Q2  
Q3  
REGN  
REGN  
VINDPM  
+
IIN  
BATSNS  
VBAT_REG  
+
+
IINDPM  
GND  
IC_TJ  
TREG  
ICHG  
ICHG_REG  
EN_CHARGE  
EN_OTG  
IQ1  
Q1_OCP  
+
+
+
+
IQ1_OCP  
GND  
EN_HIZ  
IQ2  
Q2_OCP  
Q3_OCP  
IQ2_OCP  
IQ3  
DC-DC  
CONTROL  
IQ3_OCP  
VVBUS  
OTG_OVP  
+
+
+
+
+
VOTG_OVP  
IQ4  
Q4_OCP  
CONVERTER  
CONTROL  
STATE  
IQ4_OCP  
VPOORSRC  
VOTG_UVP  
VVBUS  
+
+
POORSRC  
TSHUT  
OTG_UVP  
IBUS_OCP  
REF DAC  
VVBUS  
MACHINE  
ILIM_HIZ  
PROG  
VVBUS  
IC_TJ  
TSHUT  
IBUS  
VBUS_OVP  
+
+
VVBUS_OVP  
IBUS_OCP  
IBUS  
ICHG  
VBUS  
VAC1  
VAC2  
VBAT  
VSYS  
VTS  
BATSNS  
VBAT_OVP  
VBAT_OVP  
VSYS  
SYS_OVP  
VSYS_OVP  
D+  
VSYS_SHORT  
VSYS  
SYS_SHORT  
ADC  
USB  
DETECTION  
VBTST2-VSW2  
VBTST1-VSW1  
Dœ  
REFRESH2  
REFRESH1  
+
+
VBTST2_REFRESH  
VBTST1_REFRESH  
TDIE  
VD+  
VD-  
TS  
VTS  
/PG  
BATTERY  
SENSING  
THERMISTOR  
SYS  
TS_SUSPEND  
RECHRG  
IBAT  
VREG - VRECHG  
ICHG  
+
+
+
+
+
BATSNS  
BATFET  
ICHG  
ITERM  
STAT  
TERMINATION  
SYSMIN_REG  
BATUVLO  
VBAT_REG  
ICHG_REG  
BATFET  
CONTROL  
CHARGE  
CONTROL  
STATE  
VSYSMIN  
BATSNS  
BAT  
BQ25790  
Block Diagram  
MACHINE  
VBAT_UVLOZ  
BATSNS  
BATP  
/INT  
VBAT_SHORT  
BATSNS  
BAT_SHORT  
BATSNS  
BATSNS  
AMP  
SFET  
CONTROL  
BATN  
SDRV  
I2C  
INTERFACE  
CHARGE  
PUMP  
SCL  
SDA  
MUX  
CONTROL  
INPUT SELECTOR  
BAT  
VAC1 VAC2  
ACDRV1 ACDRV2  
/CE  
/QON  
20  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8.3 Feature Description  
8.3.1 Device Power-On-Reset  
The internal bias circuits are powered from the higher voltage, whichever VVBUS or VBAT through an integrated  
power selector. The valid voltage to power up the device has to be greater than either VVBUS_UVLOZ or VBAT_UVLOZ  
thresholds. When VVBUS < VVBUS_UVLOZ, VBAT < VBAT_UVLOZ and a voltage higher than VAC_PRESENT is present at  
either VAC1 or VAC2, the device will be powered from VAC1 or VAC2, depending on which comes first.  
Typically 5 ms after a valid voltage is first present at either VBAT, VBUS or VAC1 / VAC2, the charger wakes up,  
starts the ACFET-RBFET detection, reading the resistance at PROG pin, then configures the charger power on  
reset (POR) register setting accordingly. Approximately 20ms after input voltage presence, the I2C registers  
become accessible to the host.  
8.3.2 PROG Pin Configuration  
At POR, the charger detect the PROG pin pull down resistance, then sets the charger default POR switching  
frequency and the battery cell count. Please follow the resistance list in the table below to set the desired POR  
switching frequency and battery cell count. The surface mount resistor with ±1% or ±2% tolerance is  
recommended.  
Table 1. PROG Pin Resistance to Set Default Switching Frequency and Battery Cell Count  
SWITCHING FREQUENCY  
1.5 MHz  
CELL COUNT  
TYPICAL RESISTANCE AT PROG PIN  
1s  
1s  
2s  
2s  
3s  
3s  
4s  
4s  
3.0 kΩ  
4.7 kΩ  
750 kHz  
1.5 MHz  
6.04 kΩ  
8.2 kΩ  
750 kHz  
1.5 MHz  
10.5 kΩ  
13.7 kΩ  
17.4 kΩ  
27.0 kΩ  
750 kHz  
1.5 MHz  
750 kHz  
Some of the charging parameters default values are determined by the battery cell count identified by PROG pin  
configuration, which are summarized in the table below.  
Table 2. Charging Parameters Dependent on Battery Cell Count  
CELL (REG0x0A[7:6])  
ICHG (REG0x03/04)  
VSYSMIN (REG0x00[5:0])  
VREG (REG0x01/02)  
VREG Range  
1s  
2 A  
2s  
2 A  
3s  
1 A  
4s  
1 A  
3.5 V  
7 V  
9 V  
12 V  
4.2 V  
8.4 V  
12.6 V  
16.8 V  
14 V - 18.8 V  
3 V - 4.99 V  
5 V - 9.99 V  
10 V - 13.99 V  
After POR, the host can program the ICHG and VSYSMIN registers to any values within the ranges defined in  
the register tables. However, when programming the battery charging voltage (VREG), the host must ensure the  
VREG value falling into the right range associated with the CELL register (REG0x0A[7:6]) setting defined in the  
table above. When the CELL register is changed, the ICHG, VSYSMIN and VREG registers are reset to the POR  
default values associated with the CELL setting.  
For example, if the PROG pin resistance is a 2s battery configuration, the default POR CELL, ICHG, VSYSMIN  
and VREG settings will be 2s, 2 A, 7 V and 8.4 V respectively. After POR, the host can change ICHG and  
VSYSMIN to any other values, and change VREG to any other values between 5V and 9.99V. With the CELL  
bits stay at 2s battery configuration, when REG_RST bit or watchdog timer expired, the registers are reset to  
default values with ICGH, VSYSMIN and VREG automatically return to 2A, 7V, 8.4V respectively.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: BQ25790  
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
When the CELL register is 2s battery configuration, any write out of the range of VREG (5 V - 9.99 V) is ignored  
by the charger. If VREG needs to be programmed out of the 5 V - 9.9 V range, like 11 V, the CELL bits have to  
be changed to 3s setting. The ICHG, VSYSMIN and VREG registers are reset to the 3s POR default values first,  
which are 1 A, 9 V and 12.6 V. After that, the host can program VREG in the range of 10 V - 13.99 V. In addition,  
when the CELL setting is changed to 3s, ICHG, VSYSMIN and VREG return to 1 A, 9 V and 12.6 V, when the  
registers are reset to the default values by REG_RST bit or the watchdog timer expiration.  
8.3.3 Dual-Input Power Mux  
The BQ25790 has two ACDRV drivers to control two optional sets of back-to-back power N-FETs, selecting and  
managing the power from two different input sources. In the POR sequence, the charger detects whether the  
ACFETs-RBFETs are present, then updates the ACRB1_STAT or ACRB2_STAT status bits accordingly. The  
ACFET1-RBFET1 or ACFET2-RBFET2 can be controlled by setting the register bit EN_ACDRV1 or  
EN_ACDRV2. If the external ACFET-RBFET is not present, then tie VAC1 / VAC2 to VBUS and connect  
ACDRV1 / ACDRV2 to GND. The power MUX drivers support three different application cases, which are  
elaborated in detail below.  
8.3.3.1 VBUS Input Only  
In this scenario, only single input is connected to VBUS directly, no back-to-back power MOSFETs are required.  
VAC1 and VAC2 are recommended to be shorted to VBUS. Both ACDRV1 and ACDRV2 need to be pulled down  
to GND, as shown in the figure below.  
ACDRV2  
VAC2  
VBUS  
PMID  
VBUS  
ACDRV1  
VAC1  
Figure 13. Single Input Connected to VBUS Directly Without ACFET-RBFET  
At POR, the charger detects no ACFETs-RBFETs are present by sensing that the ACDRV1 and ACDRV2  
pins both shorted to GND.  
The charger updates the status bits ACRB1_STAT and ACRB2_STAT to 0, and locks EN_ACDRV1 = 0 and  
EN_ACDRV2 = 0.  
VAC1 and VAC2 are connected to VBUS directly. The ACDRV1 and ACDRV2 pins always stay low.  
8.3.3.2 One ACFET-RBFET  
In this configuration, only ACFET1-RBFET1 is present, ACFET2-RBFET2 is not. VAC1 is tied to the drain of  
ACFET1, ACDRV1 is connected to the gate of ACFET1. VAC2 is shorted to VBUS, ACDRV2 is pulled down to  
GND. This structure is illustrated in the figure below, which is able to support either single input (one from VAC1  
to VBUS through ACFET1-RBFET1, or one to VBUS directly) or dual-input (one from VAC1 to VBUS through  
ACFET1-RBFET1, the other one connected to VBUS directly) applications.  
22  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
VRX  
Wireless Charging  
ACDRV2  
VAC2  
PMID  
VBUS  
VIN1  
ACFET1  
RBFET1  
ACDRV1  
VAC1  
Figure 14. One ACFET-RBFET Structure Supporting One Input at VAC1 and/or One Input at VBUS  
At POR, the charger detects only ACFET1-RBFET1 presented, updates ACRB1_STAT to 1 and keeps  
ACRB2_STAT as 0.  
The charger locks the register bit EN_ACDRV2 at 0, and the ACDRV2 pin will always stay low.  
When a valid input is presented at VAC1, the charger will set EN_ACDRV1 = 1 and turn ACFET1-RBFET1  
on.  
To swap from the input at VAC1 to the input at VBUS, the host has to turn off the ACFET1-RBFET1 first by  
setting DIS_ACDRV=1 (forcing EN_ACDRV1 = 0), then enable the other input source which is connected to  
VBUS directly.  
In contrast, to swap from the input at VBUS to the input at VAC1, the host has to disable the input source  
connected to VBUS first, then turn on the ACFET1-RBFET1 by setting DIS_ACDRV = 0.  
8.3.3.3 Two ACFETs-RBFETs  
In this scenario, both ACFET1-RBFET1 and ACFET2-RBFET2 are present. VAC1 / VAC2 is tied to the drain of  
ACFET1 / ACFET2, ACDRV1 / ACDRV2 is connected to the gate of ACFET1 / ACFET2. This structure is  
developed to support dual-input connected at VA1 and VAC2.  
RBFET2  
ACFET2  
VIN2  
VIN1  
ACDRV2  
VAC2  
PMID  
VBUS  
ACFET1  
RBFET1  
ACDRV1  
VAC1  
Figure 15. Two ACFETs-RBFETs Structure Supporting One Input at VAC1 and One Input at VAC2  
At POR, the charger detects both ACFET1-RBFET1 and ACFET2-RBFET2 presented, then updates  
ACRB1_STAT and ACRB2_STAT to 1.  
EN_ACDRV1 and EN_ACDRV2 are programmable in this case.  
The ACDRV turns on the ACFET-RBFET of the port with a valid input presented first. The other ACFET-  
RBFET stays off, even if there is an adapter being plugged in later.  
Programming EN_ACDRV1 = 1, EN_ACDRV2 = 1 at the same time to turn on both ACFET1-RBFET1 and  
ACFET2-RBFET2 is not allowed, which will be ignored by the charger.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: BQ25790  
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
Assuming two valid voltages are presented at VAC1 and VAC2, ACFET1-RBFET1 turns on, connecting the  
input source at VAC1 to VBUS. If the voltage at VAC1 becomes invalid because of VAC_UVLO, VAC_OV or  
IBUS_OC, the charger swaps the input from VAC1 to VAC2, by turning off ACFET1-RBFET1 and then turning  
on ACFET2-RBFET2, without any host engagement. Swapping the input from VAC1 to VAC2 also can be  
controlled by the host. For example, to swap VAC1 to VAC2, the host can program REG0x13[7:6]  
(EN_ACDRV2, EN_ACDRV1) from 01b to 10b. The same control logic is applied to the input swapping from  
VAC2 to VAC1.  
The waveforms below show the charger input transition from VAC1 to VAC2 when VAC1 is disconnected. At the  
beginning, VAC1 = 8V and VAC2 = 5V are both present. When VAC1 = 8V is gone, the charger accomplishes  
the input source auto transition from VAC1 to VAC2 without host control.  
Powered by VAC1  
Powered by VAC2  
SW1  
Figure 16. Input Source Auto Transition from VAC1 to VAC2 when VAC1 is Gone  
When VAC2 has been connected, even if VAC1 is re-plugged in again later, the charger still stays connecting  
VAC2 as the input source, which is illustrated as the waveforms below. The host has to be involved to swap the  
input source from VAC2 back to VAC1 if necessary.  
SW1  
Powered by VAC2  
Figure 17. VAC1 Re-Plugged in When VAC2 Connected as the Charger Input  
Some other critical notes for the application of this dual input power MUX are list below:  
The register bits, EN_ACDRV1 and EN_ACDRV2, are not only to control the turning on / off of ACFETs-  
24  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
RBFETs but also to indicate the on / off status of the FETs.  
The charger also provides the fault protection by turning ACFETs-RBFETs off, such as VAC_OVP and  
IBUS_OCP.  
With only one valid input presented at either VAC1 or VAC2, the ACFET1-RBFET1 and ACFET2-RBFET2  
can not be both turned off by setting REG0x13[7:6] = 00b, because the charger is always trying to connect  
the only one input voltage available to power the charger. At this condition, the host has to set DIS_ACDRV =  
1 to force both two ACFETs-RBFETs off. With two input sources presented at both VAC1 and VAC2, the host  
can turn of the two ACFETs-RBFETs by setting either REG0x13[7:6] = 00 or DIS_ACDRV = 1.  
In the transition from one input to the other one, after one ACFET-RBFET is turned off, the other one turns on  
until the VBUS voltage drops lower than VBUS_PRESENT. The converter stops switching for a short time period.  
When no battery presented or battery depleted, the system output would fall. The user has to be aware of this  
and avoid the input source swap when the battery voltage is too low.  
8.3.4 Device Power Up from Battery without Input Source  
If only battery is present and the voltage is above UVLO threshold (VBAT_UVLOZ), the BATFET turns on and  
connects the battery to the system through the internal BATFET. The REGN LDO stays off to minimize the  
quiescent current. The low RDS(ON) of BATFET and the low quiescent current on BAT minimize the conduction  
loss and maximize the battery run time. The device always monitors discharge current through the BATFET.  
8.3.5 Device Power Up from Input Source  
When an input source is present at VBUS, the device checks the input source voltage to turn on REGN LDO and  
all the bias circuits. It detects and sets the input current limit before the buck-boost converter is started. The  
power up sequence from input source is as listed below:  
1. Power Up REGN LDO  
2. Poor Source Qualification  
3. Set the Input Current Limit based on ILIM_HIZ pin voltage, and set the POR default VINDPM according to  
the VBUS open circuit voltage.  
4. Input Source Type Detection based on D+/D- to set default Input Current Limit (IINDPM) register and input  
source type  
5. Converter Power-up  
8.3.5.1 Power Up REGN LDO  
When the device is powered up from VBUS, the LDO is turned on when VVBUS_PRESENT < VBUS < VVBUS_OVP  
.
When the device is powered up from battery only condition, the LDO is turned on at either one of the condition  
list below:  
The charger is operated in the OTG mode  
VBAT is higher than 3.2V, and ADC TS channel is on (ADC_EN = 1 and TS_ADC_DIS = 0)  
The REGN LDO supplies internal bias circuits and the MOSFETs gate drivers. The pull-up rails of ILIM_HIZ, TS,  
and STAT can be connected to REGN. The INT pin pull-up rail is recommended to be an external 1.8V or 3.3V  
voltage source, rather than REGN, because at battery only condition, the REGN might not be available. Except  
the charger related pull up rails, the REGN is not recommended to source any other external circuit. The REGN  
has to power the internal MOSFETs gate drivers, which is very critical for the charger normal operation.  
8.3.5.2 Poor Source Qualification  
After the REGN LDO powers up, the device checks the current capability of the input source. The input source  
has to meet the following requirements in order to move forward to the next power on steps.  
1. VBUS voltage below VVBUS_OVP  
2. VBUS voltage above VPOORSRC when pulling IPOORSRC (typical 30 mA)  
Once the conditions are met, the status register bit PG_STAT is set high and the INT pin is pulsed to signal the  
host. The PG pin goes LOW.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: BQ25790  
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
If VBUS_OVP is detected (condition 1 above), the device automatically retries detection once the over-voltage  
fault goes away. If a poor source is detected (when pulling IPOORSRC, the VBUS voltage drops below VPOORSRC),  
the device repeats poor source qualification routine every 2 seconds. After 7 consecutive failures, the device sets  
EN_HIZ = 1 and goes to HIZ mode. The battery must have enough charge to power the system while the device  
is in HIZ. Adapter re-plugin or EN_HIZ bit toggle is required when the input source can be used to power the  
device. The EN_HIZ bit is cleared automatically when the adapter is plugged in. Whenever the VBUS voltage  
does not meet either condition 1 or condition 2, it means the input source is not qualified anymore, the PG pin  
goes HIGH and the PG_STAT bit goes low, at the same time, an INT pulse will be asserted and PG_FLAG will  
be set to 1, if PG_MASK = 0.  
8.3.5.3 Input Source Type Detection  
After the input source is qualified, the charger device runs Input Source Type Detection if AUTO_INDET_EN bit  
is set (default enabled).  
The charger follows the USB Battery Charging Specification 1.2 (BC1.2) to detect SDP/CDP/DCP/HVDC input  
sources and the non-standard adapters through the USB D+/D- lines. After BC1.2 detection is completed, the  
BC1.2_DONE_STAT bit is set to 1, an INT pulse and BC1.2_DONE_FLAG are asserted if BC1.2_DONE_MASK  
= 0. In addition, when USB DCP is detected, the charger initiates adjustable high voltage adapter handshake on  
D+/D- if HVDCP detection is enabled by the host. The input type might be changed after HVDCP detection is  
completed.  
After input source type detection, the following registers are changed:  
1. Input Current Limit (IINDPM) register is changed to set current limit  
2. VBUS_STAT bits change to reflect the detected source  
After detection is completed, the host can over-write IINDPM registers to change the input current limit if  
necessary. The charger input current is limited by the lower of IINDPM register or ILIM_HIZ pin (when  
EN_EXTILIM = 1) regardless of Input Current Optimizer (ICO) setting. When AUTO_INDET_EN is disabled, the  
Input Source Type Detection is bypassed, and the Input Current Limit (IINDPM) register remains unchanged from  
its previous value.  
8.3.5.3.1 D+/D– Detection Sets Input Current Limit  
The device contains a D+/D- based input source detection to set the input current limit. The D+/D- detection has  
four major steps: Data Contact Detect (DCD), Primary Detection, Secondary Detection and High Voltage  
(HVDCP) detection.  
The D+/D- Primary Detection includes standard USB BC1.2 and non-standard adapters. When an input source is  
plugged in, the device starts standard USB BC1.2 detection first. The USB BC1.2 is capable of identifying  
Standard Downstream Port (SDP), Charging Downstream Port (CDP) and Dedicated Charging Port (DCP). The  
non-standard detection is used to distinguish vendor specific adapters based on their unique dividers on the  
D+/D- pins. The secondary detection is used to distinguish two types of charging ports, CDP and DCP.  
A CDP usually requires the portable device (such as smart phone, tablet) to send back an enumeration within 2.5  
seconds of CDP plug-in. Otherwise, the port will power cycle back to SDP even the D+/D- detection indicates  
CDP.  
Divider 1: 2.1A  
Non-Standard  
Adapter  
Divider 2: 3A  
Divider 3: 1A  
Divider 4: 2.4A  
DCP  
(3.25A)  
Adapter Plug-in  
or  
FORCE_INDET  
Data Detection  
Contact  
DCP/CDP  
Primary Detection  
(PD)  
Secondary  
Detection  
HVDCP  
Detection  
VBUS Detection  
(DCD)  
USB BC1.2 Standard  
SDP  
(500mA)  
CDP  
(1.5A)  
HVDCP  
(1.5A)  
Figure 18. D+/D– Detection Flow  
26  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
Table 3. Non-Standard Adapter Detection  
NON-STANDARD  
D+ THRESHOLD  
D– THRESHOLD  
INPUT CURRENT LIMIT  
ADAPTER  
Divider 1  
Divider 3  
Divider 4  
Unknown  
VD+ within V2P8_VTH  
VD+ within V2P0_VTH  
VD+ within V2P8_VTH  
VD+ = 1 MΩ to 0 V  
VD– within V2P0_VTH  
VD– within V2P8_VTH  
VD– within V2P8_VTH  
VD- = 3.3 V  
2.1 A  
1 A  
2.4 A  
3.0 A  
When a Dedicated Charging Port (DCP) is detected, the charger initiates two high voltage adapter (HVDCP)  
handshakes to enable the corresponding adapter to output a higher voltage for fast charging. The HVDCP  
detection can be enabled by setting EN_HVDCP=1 and then setting either EN_9V=1 to increase the input  
voltage to 9V or EN_12V=1 to increase the input voltage to 12V. When EN_12V and EN_9V are both set to 1,  
the charger starts 12V first.  
After the Input Source Type Detection is done, the DPDM_STAT bit is set to 0, an INT pulse and  
DPDM_DONE_FLAG are asserted if DPDM_DONE_MASK = 0. In addition, the Input Current Limit register  
(IINDPM), and VBUS_STAT registars are updated as below:  
Table 4. Input Current Limit Setting from D+/D– Detection  
D+/D– DETECTION  
USB SDP  
INPUT CURRENT LIMIT (IINDPM)  
VBUS_STAT_3:0  
0001  
500 mA  
1.5 A  
3.25 A  
1.5A  
USB CDP  
0010  
USB DCP  
0011  
Adjustable High Voltage DCP (HVDCP)  
Unknown Adapter  
0100  
3 A  
0101  
Non-Standard Adapter, Divider 3  
Non-Standard Adapter, Divider 1  
Non-Standard Adapter, Divider 4  
1 A  
0110  
2.1 A  
2.4 A  
0110  
0110  
8.3.5.3.2 Force Input Current Limit Detection  
In host mode, the host can force the device to run Input Current Limit Detection by setting FORCE_INDET bit to  
1. After the detection is completed, FORCE_INDET bit automatically returns to 0 and Input Source Result is  
updated. After the detection is completed, the input current limit (IINDPM), and the VBUS_STAT bits may be  
changed by the device according to the detection result.  
8.3.5.3.3 Connector Fault Detection  
The host can apply different status on D+ pin including HIZ, 0V, 0.6V, 1.2V, 2.0V, 2.7V, 3.3V or "short to D-", and  
different status on D- pin including HIZ, 0.6V, 1.2V, 2.0V, 2.7V or 3.3V. The device also provides ADC readings  
of the D+ and D- pin voltages. The host can use the information to determine if connector is normal or in any  
faults. The voltage values are set using the DPLUS_DAC and DMINUS_DAC register. The D+/D- pins are only  
applied at the VAC1 input source. If the DPLUS_DAC or DMINUS_DAC are programmed when the adapter is  
plugged in and the D+/D- detection is in process, the device will ignore the register programming.  
8.3.5.4 Input Current Optimizer (ICO)  
The device provides Input Current Optimizer (ICO) to identify maximum power point in order to avoid overloading  
the input source. The algorithm automatically identifies maximum input current limit of an unknown power source  
and sets the charger IINDPM register properly, in order to prevent from entering the charger input voltage  
(VINDPM) regulation. This feature is disabled by default at POR (EN_ICO = 0) and only activates when EN_ICO  
bit is set to 1.  
After DCP type input source is detected based on the procedures describe above (Input Source Type Detection),  
the algorithm runs automatically if EN_ICO bit is set. The algorithm can also be forced to execute by setting  
FORCE_ICO bit regardless of input source type detected. Please note that EN_ICO = 1 is required for  
FORCE_ICO to work.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: BQ25790  
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
The actual input current limit used by the Dynamic Power Management is reported in the ICO_ILIM register  
whether set by ICO if enabled or IINDPM register if not. In addition, the current limit is clamped by ILIM pin  
unless EN_EXT_ILIM bit is 0 to disable ILIM_HIZ pin function.  
When the algorithm is enabled, it runs one time and then waits for the system load plus battery charge current to  
pull enough input current to force the charger into VINDPM. The algorithm adjusts the actual input current limit as  
shown in the ICO_ILIM until the ICO_STAT[1:0] and ICO_FLAG bits are set (the ICO_FLAG bit indicates any  
change in ICO_STAT[1:0] bits). The algorithm operates depending on battery voltage:  
1. When the battery voltage is below VSYSMIN, the algorithm starts ICO_ILIM register with IINDPM which is  
the maximum input current limit allowed by system  
2. When the battery voltage is above VSYSMIN, the algorithm starts ICO_ILIM register with 500 mA which is  
the minimum input current limit to minimize adapter overload  
Once the optimal input current is identified, the ICO_STAT[1:0] and ICO_FLAG bits are set. The actual input  
current is reported in the ICO_ILIM register and does change unless the algorithm is triggered again by the  
following events :  
1. A new input source is plugged-in, or EN_HIZ bit is toggled  
2. IINDPM register is changed  
3. VINDPM register is changed  
4. FORCE_ICO bit is set to 1  
5. VBUS_OVP event  
These events also reset the ICO_STAT[1:0] bits to 01  
8.3.5.5 Default VINDPM Setting  
In the POR sequence, right after the D+/D- detection, the charger initiates ADC reading on the VBUS pin voltage  
without any load current (VBUS at no load condition, VBUS0) before the converter starts switching. The default  
VINDPM threshold is set to be VBUS0 - 1.4 V (VBUS0 >= 7 V) or VBUS0 - 0.7V (VBUS0 < 7 V).  
If the converter already starts switching, the VBUS0 measurement can be performed by setting the register bit  
FORCE_VINDPM_DET=1. The force VINDPM detection only can be done when VSYS_STAT = 0 (VBAT >  
VSYSMIN). To measure the VBUS0 when the converter is running, the charger suspends charging (if enabled)  
and the converter stops switching. Then the ADC measures the VBUS voltage without any input load current and  
update the VINDPM register bit. After the VINDPM register bit is reset, the FORCE_VINDPM_DET bit returns to  
0 automatically. If VSYS_STAT = 1 (VBAT < VSYSMIN), VBUS0 measurement does not start, the  
FORCE_WINDPM_DET bit resets to 0 and the VINDPM register retains its current value. The host must ensure  
there is a battery presence prior to force VINDPM detection by setting FORCE_VINDPDM_DET bit to allow  
system to be supported by the battery during detection.  
When the measured VBUS0 is too low, for example 3.6V, or too high, for example 25V, the calculated VINDPM  
based on the equation list above is out of the VINDPM register range, and then the changer sets the VINDPM  
register to be the minimal value (3.6V) or maximum (22V) value.  
8.3.5.6 Device HIZ State  
The charger enters HIZ mode when EN_HIZ bit is set to 1. The HIZ mode refers to a charger state, in which the  
REGN LDO is off, and the converter stops switching even if the adapter is present. Similar to the battery only  
condition, the charger is in a low quiescent current mode, turns off the ADC and turns on the BATFET to support  
the system load.  
Some of the faults like VBUS_OVP, VSYS_OVP, VBAT_OVP and OTG_OVP, force only the converter to stop  
switching but keep the REGN on. While some of the faults like VSYS_SHORT and IBUS_OCP, force the charger  
into HIZ mode by setting EN_HIZ=1. More details could be found in the fault protection section.  
28  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8.3.5.7 ILIM_HIZ Pin  
At POR, before the charger converter starts switching, the charger ADC reads the ILIM_HIZ pin voltage, and  
calculates the input current limit (ILIM) set by this ILIM_HIZ pin, according to the equation VILIM_HIZ = 1V + 800  
mΩ × ILIM. The ILIM_HIZ pin sets a high clamp for the IINDPM register. If the IINDPM setting from the D+/D-  
detection or the POR default 3A IINDPM setting is higher than the ILIM clamp, the IINDPM register stays at this  
ILIM clamp. In addition, the host cannot program the IINDPM register to any values higher than this ILIM clamp  
after POR, unless the register bit EN_EXTILIM is set to 0.  
The ILIM_HIZ pin can be biased from an resistor voltage divider that can be tied to either the REGN or the other  
external voltage source. For both the forward charging mode and the OTG mode, when the ILIM_HIZ pin is  
pulled lower than 0.75V, the charger stops switching and REGN stays on. The charger resumes switching if the  
ILIM_HIZ pin voltage becomes higher than 1V.  
If the ADC reads the ILIM_HIZ pin voltage is lower than 1.08V (1V + 800 mΩ × 100 mA), the charger considers  
the ILIM clamp to be 100mA, which is the minimal setting of the IINDPM register.  
8.3.5.8 IBAT Pin for Battery Current Sensing  
BQ25790 provides a high-accuracy battery charging / discharging current sensing pin, IBAT. It outputs a 25 µA  
current when the battery charging / discharging current is 1 A. The IBAT pin output is valid when either VBUS or  
VBAT voltage is higher than its own ULVO voltage, and EN_IBAT register bit is set to 1. The IBAT pin only  
provides the battery charging current in forward charging mode and the battery discharging current at battery  
only condition or OTG mode. When the charger is operated in forward charging mode, the output of the IBAT pin  
becomes zero when the battery is turning into the supplement mode.  
8.3.5.9 Buck-Boost Converter Operation  
The charger employs a synchronous buck-boost converter that allows charging the 1s to 4s battery from a legacy  
5V USB input source, HVDCP and USB-PD power sources. The charger operates in buck, buck-boost or boost  
mode based on different input voltage and output voltage combinations. The converter can operate  
uninterruptedly and continuously across the Buck, Buck-boost and Boost three different operating states.  
8.3.5.9.1 Pulse Frequency Modulation (PFM)  
In order to improve converter light-load efficiency, the device switches to PFM control at light load condition. The  
effective switching frequency decreases accordingly as load current decreases. The PFM operation can be  
disabled by setting PFM_FWD_DIS = 1, the converter stays at the PWM mode switching frequency and go to  
DCM operation at light load condition. The minimum effective switching frequency in PFM can be limited to 25  
kHz to eliminate the audible noise concern if the out of audio (OOA) feature is enabled by setting  
DIS_FWD_OOA = 0. The host can disable the OOA by setting DIS_FWD_OOA = 1, which may result in the  
converter effective switching frequency dropping below 25 kHz at extremely light load.  
8.3.6 USB On-The-Go (OTG)  
8.3.6.1 OTG Mode to Power External Devices  
The device supports the OTG operation to deliver power from the battery to other external devices through the  
USB ports. The OTG voltage regulation is set in VOTG[10:0] register bits. The OTG current regulation is set in  
IOTG[6:0] register bits. To enable the OTG operation, the following conditions have to be valid:  
The battery voltage is higher than VBAT_OTG rising threshold, and not trigger the VBAT_OVP protection.  
The VBUS is below VVBUS_UVLO  
The voltage at TS pin is within the range configured by BHOT and BCOLD register bits  
.
If the ACFET1-RBFET1 and the ACFET2-RBFET2 are not detected (ACRB1_STAT = 0 and ACRB2_STAT = 0)  
at POR, the converter starts up with typical 5ms delay after the EN_OTG bit is set to 1, then the VBUS voltage  
ramps up to the VOTG register setting.  
The following cases explain the charger OTG mode behaviors when the ACFET1-RBFET1 or/and ACFET2-  
RBFET2 are present.  
If only ACRB1_STAT=1 OR only ACRB2_STAT = 1, which means only one input ACFET-RBFET is present,  
the converter stays in the non-switching mode after the EN_OTG bit is set, until the host writes EN_ACDRV1  
= 1 (when only ACRB1_STAT = 1) or EN_ACDRV2 = 1 (when only ACRB2_STAT = 1). The converter starts  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: BQ25790  
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
up with 5ms delay after the EN_ACDRV1 or EN_ACDRV2 bit is set to 1, then VBUS voltage ramps up to the  
VOTG register setting.  
If both ACRB1_STAT = 1 AND ACRB2_STAT = 1, which means two input ACFET-RBFET are present, the  
converter stays in the non-switching mode after the EN_OTG bit is set, until the host writes either  
EN_ACDRV1 = 1 or EN_ACDRV2 = 1. The converter starts up with 5ms delay after the EN_ACDRV1 or  
EN_ACDRV2 bit is set to 1, then VBUS voltage ramps up to the VOTG register setting.  
Regardless of ACRB1_STAT and ACRB2_STAT, if DIS_ACDRV = 1, the ACDRV is disabled. The converter  
starts up with 5ms delay after the EN_OTG bit is set to 1, then VBUS voltage ramps up to the VOTG register  
setting. The operation is the same as that when ACFET1-RBFET1 and ACFET2-RBFET2 are not detected.  
For swapping the OTG output from port 1 to port 2, assuming EN_ACDRV2 is already 0, the host has to set  
EN_ACDRV1 = 0 to turn off ACFET1_RBFET1 first, which causes the converter to stop switching and VBUS  
to drop below VBUS_PRESENT. The host sets EN_ACDRV2 = 1, the converter starts switching again and  
ACDRV2 turns on ACFET2-RBFET2, which allows VBUS to ramp up. The similar procedure can be applied  
to the case of swapping the OTG output from port 2 to port 1.  
In OTG mode, the converter PFM operation can be disabled by setting PFM_OTG_DIS = 1 and the OOA can be  
disabled by setting DIS_OTG_OOA = 1.  
USB2  
ACFET2  
ACFET1  
RBFET2  
RBFET1  
VBUS  
SW1  
PMID  
SYS  
BAT  
USB1  
SW2  
I2C Bus  
BATP  
BATN  
Host  
Battery  
Host  
Control  
GND  
Figure 19. The Simplified Application Diagram for the OTG Mode Operation  
The simplified application diagram for the OTG mode operation is shown as the figure above, in which the power  
flow is illustrated by the blue arrows.  
The charger is also monitoring the battery discharging current in OTG mode. When IBAT rises higher than the  
IBAT_REG[1:0] register setting, the charger reduces the OTG output current and prioritizes the system load  
current if there is any. The IBAT_REG_STAT bit is set to 1 and an INT pulse is asserted and the  
IBAT_REG_FLAG is set to 1, if IBAT_REG_MASK = 0. If the OTG output current is decreased to zero and the  
system load pulls even more current, the charger can no longer limit the battery discharging current.  
30  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8.3.7 Power Path Management  
The device accommodates a wide range of input voltage range from 3.6V to 24V covering the legacy 5V USB  
input, HVDCP, USB-PD input and the wall adapter. The device provides automatic power path selection to  
supply the system (SYS) from input source (VBUS), battery (BAT) or both.  
8.3.7.1 Narrow VDC Architecture  
The device deploys Narrow VDC architecture (NVDC) with BATFET separating system from battery. The  
minimum system voltage is set by VSYSMIN bits. Even with a fully depleted battery, the system is regulated  
above the minimum system voltages. The default minimum system voltage at POR is determined according to  
different battery cell settings.  
The NVDC architecture also provides the charging termination when the battery is fully charged. By turning off  
the BATFET, the adapter power is prioritized to support the system, which avoid the battery being continuously  
charged and discharged by the system load even if the adapter is present. This is very important to keep the  
battery in a healthy condition and extend the battery life time.  
When the battery voltage is below the minimum system voltage setting, the BATFET operates in linear mode  
(LDO mode), and the system is regulated at around 200 mV above the minimum system voltage setting. As the  
battery voltage rises above the minimum system voltage, the BATFET is fully on and the voltage difference  
between the system and battery is the Rdson of BATFET multiplied by the charging current. When battery  
charging is disabled and VBAT is above the minimum system voltage setting or charging is terminated, the  
system is always regulated at typically 200mV (PFM disabled) or typical 600mV (PFM enabled) above battery  
voltage. The status register VSYS_STAT bit goes high when the system is in minimum system voltage  
regulation.  
9.0  
8.6  
Charge Enabled  
8.2  
7.8  
Charge Disabled  
7.4  
7.0  
Minimum System Voltage  
6.6  
6.2  
5.4 5.8 6.2 6.6 7.0 7.4 7.8 8.2 8.6  
BAT (V)  
Figure 20. Typical System Voltage vs Battery Voltage for a 2S Battery Configuration  
8.3.7.2 Dynamic Power Management  
To meet the maximum current limit in USB spec and avoid over loading the adapter, the device features  
Dynamic Power Management (DPM), which continuously monitors the input current and input voltage. When the  
input power at the VBUS pin is too low to support the load from SYS pin and the battery charge current from BAT  
pin, the charger engages either IINDPM to limit its current or VINDPM to prevent further reduction in VBUS pin  
voltage.  
When the system voltage is regulated at VSYSMIN, the charger could be in trickle charge, pre-charge or fast  
charge stages, the SYS voltage drops lower than VSYSMIN, the VSYSMIN loop takes over and reduces the  
trickle charge, pre-charge or fast charge current, so that the SYS voltage remains at the VSYSMIN level.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: BQ25790  
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
If the charge current falls to zero, but the input source is still overloaded, the SYS voltage will drop. Once the  
SYS voltage falls below the battery voltage, the device automatically enters Supplement Mode in which the  
BATFET turns on. The battery starts discharging so that the system is supported from both the input source and  
battery. In supplement mode, the battery FET is operated in ideal diode mode in which the charger regulates the  
battery FET gate voltage to keep the BATFET minimum VDS to approximately 25 mV when the current is low.  
This prevents SYS voltage oscillations from entering and exiting the supplement mode. As the discharge current  
increases, the charger regulates the BATFET gate to a higher voltage, in order to reduce the battery FET RDSON  
until the MOSFET is in full turn-on stage. At this point onwards, the VDS of the battery FET linearly increase with  
the discharge current. The figure below shows the V-I curve of the BATFET gate regulation operation. The  
BATFET turns off to exit Supplement Mode when the battery is below battery depletion threshold.  
45  
40  
35  
30  
25  
20  
1
1.5  
2
2.5  
3
IBAT (A)  
3.5  
4
4.5  
5
Figure 21. BATFET I-V Curve  
During DPM mode, the status register bits VINDPM_STAT (VINDPM) and/or IINDPM_STAT (IINDPM) go high.  
The figure below shows the DPM response with 5V/3A adapter, 6.4V battery, 1.5A charge current and 6.8V  
minimum system voltage setting.  
VSYS  
7.0V  
6.8V  
VBAT  
6.4V  
6.0V  
VBUS  
5.0V  
4.0V  
3A  
IBUS  
2A  
IBAT  
1A  
ISYS  
0A  
-1A  
DPM  
CC  
DPM  
CC  
Supplement  
Figure 22. DPM Response  
32  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8.3.8 Battery Charging Management  
BQ25790 charges 1S~4S Li-Ion batteries with up to 5A charge current for high capacity cells. The battery  
charging in different stages is controlled by the integrated BATFET. The low RDS(ON) BATFET improves charging  
efficiency and minimizes the voltage drop during discharging.  
8.3.8.1 Autonomous Charging Cycle  
When battery charging is enabled (EN_CHG bit =1 and CE pin is LOW), the device autonomously completes a  
charging cycle without host involvement. The device default charging parameters are listed in the table below.  
The host can always control the charging operation and optimize the charging parameters by writing to the  
corresponding registers through I2C.  
Table 5. Charging Parameter Default Settings  
DEFAULT MODE  
Charging voltage  
BQ25790  
4.2 V (1S), 8.4 V (2S), 12.6 V (3S), 16.8 V (4S)  
Recharging voltage threshold  
Fast charge current  
200 mV  
2 A (1S and 2S), 1 A (3S and 4S)  
Pre-charge current  
120 mA  
100 mA  
200 mA  
JEITA  
Trickle charge current  
Termination current  
Temperature profile  
Fast charge safety timer  
Pre charge safety Timer  
Trickle charge safety Timer  
12 hours  
2 hours  
1 hour  
A new charge cycle starts when the following conditions are valid:  
Converter starts up  
Battery charging is enabled by setting register bit EN_CHG = 1 and keeping CE pin LOW  
No thermistor fault on TS pin  
No safety timer fault  
The charger automatically terminates the charging cycle when the charging current is below termination  
threshold, charge voltage is above recharge threshold, and the device is not in DPM mode or thermal regulation.  
When a fully charged battery voltage is discharged below recharge threshold (threshold selectable via  
VRECHG[1:0] bits), the device automatically starts a new charging cycle. After the charging terminates, toggling  
either CE pin or EN_CHG bit initiates a new charging cycle.  
The STAT output indicates the charging status of: charging (LOW), charging complete or charging disabled  
(HIGH) or charging fault (Blinking). The STAT output can be disabled by setting DIS_STAT = 1. In addition, the  
status register (CHG_STAT) indicates the different charging phases as:  
000 – Not Charging  
001 – Trickle Charge (VBAT < VBAT_SHORTZ  
)
010 – Pre-charge (VBAT_SHORTZ < VBAT < VBAT_LOWV  
011 – Fast Charge (CC mode)  
100 – Taper Charge (CV mode)  
101 – Reserved  
110 – Top-off Timer Active Charging  
111 – Charge Termination Done  
)
When the charger transitions to any of these states, including when the charge cycle completes, an INT is  
asserted to notify the host.  
8.3.8.2 Battery Charging Profile  
The device charges the battery in five phases: trickle charge, pre-charge, constant current, constant voltage, and  
top-off trickle charging (optional). At the beginning of a charging cycle, the device checks the battery voltage and  
regulates current/voltage accordingly.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: BQ25790  
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
Table 6. Default Charging Current Setting  
VBAT  
CHARGING CURRENT  
IBAT_SHORT  
REGISTER DEFAULT SETTING  
CHRG_STAT  
< VBAT_SHORT  
VBAT_SHORTZ to VBAT_LOWV  
100 mA  
120 mA  
001  
010  
IPRECHG  
2 A (1S and 2S)  
1 A (3S and 4S)  
> VBAT_LOWV  
ICHG  
011  
If the charger is in DPM regulation or thermal regulation during charging, the actual charging current is less than  
the programmed value. In this case, termination is temporarily disabled and the charging safety timer is counted  
at half the clock rate, as explained in Charging Safety Timer.  
The BATFET LDO operation can be disabled by setting DIS_LDO = 1. At this condition, the pre-charge current  
and fast charge current are both regulated by the buck-boost converter PWM current regulation loop. The SYS is  
not regulated at VSYSMIN any more when the LDO mode is disabled at the low battery voltage condition. When  
in trickle charge, setting DIS_LDO = 1 does not affect IBAT_SHORT or VSYSMIN operation.  
VBAT_LOWV is the battery voltage threshold for the transition from pre-charge to fast charge. It is defined as a ratio  
of battery voltage regulation limit (VREG). The VBAT_SHORTZ is the battery voltage threshold for the transition from  
trickle charge to pre-charge, which is fixed value 2.2V.  
Regulation Voltage  
VREG[10:0]  
Battery Voltage  
Charge Current  
ICHG[8:0]  
Charge Current  
VSYSMIN  
VBAT_LOWV  
VBAT_SHORTZ  
IPRECHG[5:0]  
ITERM[4:0]  
Trickle Charge  
001  
Pre-charge  
010  
Fast-Charge  
CC  
Taper-Charge  
CV  
Top-off Timer  
(optional)  
CHG_STAT[2:0]  
011  
110  
111  
100  
Safety Timer  
CHG_TMR[1:0]  
Pre-charge  
Timer  
(2hrs or 0.5hr)  
Trickle charge  
Timer  
(1hr fixed)  
Figure 23. Battery Charging Profile  
8.3.8.3 Charging Termination  
The device terminates a charge cycle when the battery voltage is above the recharge threshold, the converter is  
operated in the battery constant voltage regulation loop and the current is below the termination current. After the  
charging cycle is completed, the BATFET turns off. The converter keeps running to power the system and the  
BATFET can turn on again if the supplement mode is triggered.  
34  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
When termination is done, the status register CHG_STAT is set to 111 and an INT pulse is asserted to the host.  
Termination is temporarily disabled when the charger device is in input current (IINDPM), input voltage  
(VINDPM) or thermal (TREG) regulation. Termination can be permanently disabled by writing 0 to EN_TERM bit  
prior to charging termination. Writing 0 to EN_TERM when the termination already occurred or in the top-off  
charging stage does not disable termination, until the next charging cycle has been restarted. If termination is  
reenabled by setting EN_TERM = 1 during the current charge cycle, the change is applied immediately to the  
current charging cycle.  
At low termination currents (like 40mA to 160mA), due to the comparator offset, the actual termination current  
may be up to 20%~40% higher than the termination target. In order to compensate for the comparator offset, a  
programmable top-off timer (default disabled) can be activated after termination is detected. Whlie the top-off  
timer is running, the device continues to charge the battery in constant voltage mode (BATFET stays on) until the  
top-off time expires. The top-off timer follows safety timer constraints, such that if the safety timer is suspended,  
so is the top-off timer. And if the safety timer is doubled, so is the top-off timer. CHG_STAT reports whether the  
top off timer is active via the 110 code. Once the top-off timer expires, the CHG_STAT register is set to 111 and  
an INT pulse is asserted to the host.  
The top-off timer gets reset (set to 0 and counting resumes when appropriate) for any of the following conditions:  
1. Charge disable to enable  
2. Termination status low to high  
3. REG_RST register bit is set (disables top-off timer)  
Once the charger detects termination, the charger reads the top-off timer (TOPOFF_TMR) settings.  
Programming the top-off timer value after termination has no effect unless a recharge cycle is initiated. The top-  
off timer only starts to count when the charger's termination criteria are met. If EN_TERM = 0, the charger never  
terminates charging, so the top-off timer does not start counting, even if it is enabled. An INT is asserted to the  
host when the top-off timer starts counting as well as when the top-off timer expires. All charge cycle related INT  
pulses (including top-off timer INT pulse) can be masked by CHG_MASK bit.  
8.3.8.4 Charging Safety Timer  
The device has a built-in safety timer to prevent an extended charging cycle due to abnormal battery conditions.  
The user can program the fast charge safety timer through I2C (CHG_TMR bits). When the fast charge safety  
timer expires, the fault register CHG_TMR_STAT bit is set to 1, and an INT pulse is asserted to the host. The  
trickle charge timer is fixed 1 hour. The pre-charge safety timer is adjustable 2 hours (POR default) or 0.5 hour.  
The fast charging timer POR default setting is 12 hours.  
The trickle charge, pre-charge and fast charge safety timers can be disabled by setting EN_TRICHG_TMR,  
EN_PRECHG_TMR or EN_CHG_TMR bit to 0. Each charging safety timer can be enabled anytime regardless of  
the current charging state. Each timer restarts counting when it is enabled. As soon as each charging stage is  
initiated, the associated safety timer starts to count, which is illustrated in the battery charging profile chart shown  
in the section Battery Charging Profile.  
During input voltage, current or thermal regulation, the safety timer counts at half-clock rate as the actual charge  
current is likely to be below the register setting. For example, if the charger is in input current regulation  
(IINDPM_STAT = 1) throughout the whole charging cycle, and the safety timer is set to 5 hours, then the timer  
will expire in 10 hours. This half-clock rate feature can be disabled by setting TMR2X_EN = 0. If the host  
disables the half-clock rate while the charger is already running at half-clock rate, the charger keeps running at  
the half-clock rate and the half-clock rate is not disabled until the charger exit the voltage, current or thermal  
regulation.  
During faults which disable charging, or supplement mode, the timer is suspended. Since the timer is not  
counting in this state, the TMR2X_EN bit has no effect. Once the fault goes away, the safety timer resumes. If  
the charging cycle is stopped and started, the timer resets. The pre-charge safety timer and the trickle charge  
safety timer follow the same rules as the fast charge safety timer in terms of getting suspended, reset and  
counting at half-rate when TMR2X_EN is set.  
The fast charge timer is reset at the following events:  
1. Charging cycle stop and restart (toggle CE pin, EN_CHG bit, or charged battery falls below recharge  
threshold after termination)  
2. BAT voltage changes from pre-charge to fast-charge or vice versa (in host-mode or default mode)  
3. A change of the value of CHG_TMR[1:0] register bits  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: BQ25790  
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
The pre-charge timer is reset at the following events:  
1. Charging cycle stop and restart (toggle CE pin, EN_CHG bit, or charged battery falls below recharge  
threshold)  
2. BAT voltage changes from trickle charge to pre-charge or vice versa, pre-charge to fast charge or vice versa  
(in host-mode or default mode)  
3. A change of the value of PRECHG_TMR register bit.  
The trickle charge timer is reset at the following events:  
1. Charging cycle stop and restart (toggle CE pin, EN_CHG bit, or charged battery falls below recharge  
threshold)  
2. BAT voltage changes from trickle charge to pre-charge or vice versa (in host-mode or default mode)  
8.3.8.5 Thermistor Qualification  
The charger device provides a single thermistor input for battery temperature monitoring.  
8.3.8.5.1 JEITA Guideline Compliance in Charge Mode  
To improve the safety of charging Li-ion batteries, the JEITA guideline was released on April 20, 2007. The  
guideline emphasized the importance of avoiding a high charge current and high charge voltage at certain low  
and high temperature ranges.  
To initiate a charge cycle, the voltage on the TS pin must be within the VT1 to VT5 thresholds. If TS voltage  
exceeds the VT1-VT5 range, the controller suspends charging and waits until the battery temperature is within  
the T1 to T5 range. At cool temperature T1-T2, JEITA recommends to reduce the charge current to be lower  
than half of the charge current at normal temperature T2-T3. The charger register bits JEITA_ISETC[1:0] provide  
the charge current programmability at T1-T2, to be 20%, 40% or 100% of the charge current in the T2-T3  
temperature range or charge suspend. At warm temperature T3-T5, JEITA recommends charge voltage less than  
4.1V / cell. The charger register bits JEITA_VSET[2:0] provide the charge voltage programmability at T3-T5, to  
be with a voltage offset less than charge voltage in the T2-T3 temperature range or charge suspend.  
Charging termination is still enabled (when EN_TERM = 1) at cool temperature T1-T2 and warm temperature T3-  
T5. The termination current remains the same in all different temperature ranges. In normal operation, battery  
charging terminates when the charge current is lower than the termination current, the battery voltage is higher  
than the battery recharge voltage and the charger is in the battery voltage CV regulation loop. When the  
temperature enters the T1-T2 or T3-T5 ranges, the charge current may reduce to 20% or 40% of that in the T2-  
T3 range, which might be lower than the termination current setting. If at this moment, the battery voltage is  
already higher than the battery recharge voltage and the charger is in the battery voltage CV regulation loop, the  
charger terminates charge.  
In warm T3-T5 temperature range, the battery voltage regulation value become lower than that in the T2-T3  
temperature range. If the battery voltage is already very close to the T2-T3 regulation value, the JEITA warm  
automatic regulation voltage reduction might cause a battery over-voltage (VBAT_OVP) fault.  
In cool T1-T2 temperature range or warm T3-T5 temperature range, the charge current is different from that at  
the normal T2-T3 temperature range , the safety timer must be adjusted accordingly. The safety timer is  
suspended when the charge is suspended, and runs at half of the clock rate when the charge current is reduced  
to 20% or 40%, but stays the same when the charge current is unchanged.  
One typical JEITA charging values are shown as the figure below, in which the blue real line is the default setting  
and the red dash line is the programmable options.  
36  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
programmable  
VREG - offset  
programmable  
programmable  
100%  
VREG  
offset = 0mV, 100mV, 200mV,  
300mV, 400mV, 600mV or 800mV  
80%  
60%  
40%  
20%  
T1  
T2  
T3  
T5  
T1  
T2  
T3  
T5  
TS Temperature  
TS Temperature  
Figure 24. TS Charging Values  
The NTC monitoring on the battery temperature can be ignored by the charger if TS_IGNORE = 1. When the TS  
pin feedback is ignored, the charger considers the TS is always good for charging and OTG modes. The  
TS_STAT including TS_COLD_STAT, TS_COOL_STAT, TS_WARM_STAT and TS_HOT_STAT, always report  
000 with TS_IGNORE = 1.  
When TS_IGNORE = 0, the charger adjusts the charging profile based on the TS pin feedback information.  
When the battery temperature jumps from one temperature range to the other one, the associated TS status bits  
are updated accordingly. The TS flag bits are set for the temperature range for which the TS voltage is reporting,  
and an INT pulse is asserted to alert the host if TS_MASK is low. The FLAG and INT pulse can be individually  
masked by properly setting the associated mask bit, to prevent the INT pulse from alerting the host of battery  
temperature range changes.  
The typical TS resistor network is illustrated in the figure below.  
REGN  
10 k  
TS  
BQ2579x  
Figure 25. TS Resistor Network  
Assuming a 103AT NTC thermistor on the battery pack as shown above, the value of TSR1 and TSR2 can be  
determined by:  
(1)  
(2)  
The BQ25790 provides the comparators with fixed thresholds for VT1 and VT5, and the comparators with  
programmable thresholds for VT2 and VT3. The thresholds for VT2 and VT3 are controlled by TS_COOL[1:0]  
and TS_WARM[1:0]. This programmability gives more flexibility for the configuration of the JEITA profile. Select  
T1=0°C and T5=60°C for Li-ion or Li-polymer battery, the RT1 and RT2 are calculated to be 5.24KΩ and  
30.31KΩ respectively.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: BQ25790  
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
8.3.8.5.2 Cold/Hot Temperature Window in OTG Mode  
For battery protection during OTG mode, the device monitors the battery temperature to be within the VBCOLD  
to VBHOT thresholds. When RT1 is 5.24 KΩ and RT2 is 31.31 KΩ, TBCOLD default is -10°C and TBHOT default  
is 60°C. When the temperature is outside of this range, OTG mode is suspended, the converter stops switching.  
The charger waits in OTG mode (EN_OTG = 1). In addition, the VBUS_STAT bits are set to 000 and the  
corresponding TS_COLD_STAT or TS_HOT_STAT is reported. Once temperature returns to the normal  
temperature range, OTG mode is recovered and TS stauts bit is cleared. During TS fault, REGN still stays on.  
Temperature Range for OTG Mode  
VREGN  
OTG suspended  
VBCOLDx  
(œ10°C / œ20°C)  
OTG is ongoing  
VBHOTx  
(55°C / 60°C / 65°C)  
OTG suspended  
GND  
Figure 26. TS Pin Thermistor Sense Threshold in OTG Mode  
8.3.9 Integrated 16-Bit ADC for Monitoring  
The integrated 16-bit ADC in the device allows the user to get critical system information for optimizing the  
behavior of the charger. The ADC control is through the ADC Control register. The ADC_EN bit provides the  
ability to enable and disable the ADC in order to conserve power dissipation. The ADC_RATE bit allows  
continuous conversion or one-shot behavior. After a 1-shot conversion finishes, the ADC_EN bit is cleared, and  
must be re-asserted to start a new conversion. The ADC_AVG bit enables or disables (default) averaging.  
ADC_AVG_INIT starts average using the existing (default) or using a new ADC value.  
To enable the ADC, the ADC_EN bit must be set to 1. The ADC is allowed to operate if either the VAC > 3.4 V or  
VBUS > 3.4 V or VBAT > 2.9 V is valid. If ADC_EN is set to 1 before VAC1/VAC2, VBUS or VBAT reaches its  
valid threshold, then the ADC conversion is postponed until one of the power supplies reaches the threshold. If  
the charger is in HIZ mode, the ADC still can be enabled by setting ADC_EN = 1. At battery only condition, if the  
TS_ADC channel is enable, the ADC only works when battery voltage is higher than 3.2V, otherwise, the ADC  
works when the battery voltage is higher than 2.9V.  
The ADC_SAMPLE bits control the ADC sample speed, with conversion times of tADC_CONV. If the host changes  
the sample speed in the middle of an ADC conversion, the ADC conversion stops the channel being converted,  
and that channel is reconverted at the new rate. At that point, some of the ADC register values might have been  
converted with one sample rate and others with a different sample rate.  
By default, all ADC channels are enabled with 1-shot or continuous conversion mode unless the channel is  
disabled in the ADC_Function_Disable_0 or ADC_Function_Disable_1 register. If an ADC channel is disabled by  
setting the corresponding register bit, then the value in that register is from the last valid ADC conversion or the  
default POR value (all zeros if no conversions have been taken place). If an ADC channel is disabled in the  
middle of an ADC measurement cycle, the device finishes the conversion of that channel, but not convert the  
channel at the next conversion cycle. Even though no conversion takes place when all ADC channels are  
disabled, the ADC circuitry is active and ready to begin conversion as soon as one of the bits in the  
ADC_Function_Disable_0 or ADC_Function_Disable_1 register is set to 0.  
The ADC_DONE_STAT and ADC_DONE_FLAG bits are set when a conversion is complete in 1-shot mode only.  
This event produces an INT pulse, which can be masked with ADC_DONE_MASK. During continuous  
conversion mode, the ADC_DONE_STAT and ADC_DONE_FLAG bits have no meaning and remain 0.  
38  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
ADC conversion operates independently of the faults present in the device. ADC conversion continues even after  
a fault has occurred (such as one that causes the power stage to be disabled) and the host must set ADC_EN =  
0 to disable the ADC. ADC conversion is interrupted upon adapter plug-in and resumes after Input Source Type  
Detection default VINDPM setting are complete. ADC readings are only valid for DC states and not for transients.  
Enabling ADC does not require to bring up REGN, however, when the ADC TS channel is enabled, the charger  
will turn on the REGN to bias the TS pin. For the ICHG channel, the ADC is able to read the battery pre-charge  
and fast charge current in forward charging mode when the adapter is present. It also can read the battery  
discharging current in battery only mode, OTG mode. When the charger is in trickle charge, supplement mode or  
charge disabled, the ICHG ADC reading is zero. In battery only mode, the battery current sensing amplifier  
(CSA) default turns off to minimize the quiescent current. Setting EN_IBAT = 1 is necessary to enable the CSA  
so that the ADC can read back the battery current information.  
If the host wants to exit the ADC more gracefully, it is possible to do either of the following:  
1. Write ADC_RATE to one-shot in order to force the ADC to stop at the end of a complete cycle of conversions  
2. Disable all ADC conversion channels so that the ADC stops at the end of the current measurement.  
8.3.10 Status Outputs (PG, STAT, and INT)  
8.3.10.1 Power Good Indicator (PG)  
The PG pin goes low and the power good status register is set to 1 once a good input source is qualified. The  
PG_STAT and PG_FLAG change to 1 to indicate a good input source. An INT is asserted low to alert the host  
unless masked by PG_MASK when the following conditions are met:  
1. VBUS above VVBUS_UVLOZ  
2. VBUS below VVBUS_OVP threshold  
3. VBUS above VPOORSRC (typical 3.4 V) when IPOORSRC (typical 30 mA) current is applied (not a poor source)  
8.3.10.2 Charging Status Indicator (STAT Pin)  
The device indicates charging state on the open drain STAT pin. The STAT pin can drive LED. The STAT pin  
function can be disabled via the DIS_STAT bit.  
Table 7. STAT Pin State  
CHARGING STATE  
STAT INDICATOR  
Charging in progress (including recharge and charging in top-off  
timer)  
LOW  
Charging complete  
HIZ mode, charge disable  
HIGH  
HIGH  
Battery only mode and OTG mode  
HIGH  
Charge suspend (A fault condition which disable charging)  
Blinking at 1 Hz  
8.3.10.3 Interrupt to Host (INT)  
In some applications, the host does not always monitor charger operation. The INT pin notifies the system host  
on the device operation. By default, the following events generate an active-low, 256µs INT pulse.  
1. Good input source detected  
VVBUS < VVBUS_OVP threshold  
VVBUS > VPOORSRC (typical 3.4 V) when IPOORSRC (typical 30 mA) current is applied (not a poor source)  
2. VBUS_STAT changes state (VBUS_STAT any bit change)  
3. Good input source removed  
4. Entering IINDPM regulation  
5. Entering VINDPM regulation  
6. Entering IC junction temperature regulation (TREG)  
7. I2C Watchdog timer expired  
At initial power up, this INT gets asserted to signal I2C is ready for communication  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: BQ25790  
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
8. Charger status changes state (CHRG_STAT value change), including Charge Complete  
9. TS_STAT changes state (TS_STAT any bit change)  
10. VBUS over-voltage detected (VBUS_OVP)  
11. VAC over-voltage detected (VAC_OVP for VAC1 or VAC2)  
12. Junction temperature shutdown (TSHUT)  
13. Battery over-voltage detected (BATOVP)  
14. System over-voltage detected (VSYS_OVP)  
15. IBUS over-current detected (IBUS_OCP)  
16. IBAT over-current detected (IBAT_OCP)  
17. Charge safety timer expired, including trickle charge and pre-charge and fast charge safety timer expired  
18. A rising edge on any of the other *_STAT bits  
Each one of these INT sources can be masked off to prevent INT pulses from being sent out when they occur.  
Three bits exist for each one of these events:  
The STAT bit holds the current status of each INT source  
The FLAG bit holds information on which source produced an INT, regardless of the current status  
The MASK bit is used to prevent the device from sending out INT for each particular event  
When one of the above conditions occurs (a rising edge on any of the *_STAT bits), the device sends out an INT  
pulse and keeps track of which source generated the INT via the FLAG registers. The FLAG register bits are  
automatically reset to zero after the host reads them, and a new edge on STAT bit is required to re-assert the  
FLAG.  
IINDPM_STAT  
IINDPM_FLAG  
TREG_STAT  
TREG_FLAG  
INT  
I2C Flag Read  
Figure 27. INT Generation Behavior Example  
8.3.11 Ship FET Control  
The charger provides an N-FET driving pin (SDRV) to control an external ship FET. When this ship FET is off, it  
removes leakage current from the battery to the system. The ship FET is controlled by the SDRV_CTRL[1:0]  
register bits, to support the shutdown mode, ship mode and the system power reset.  
IDLE Mode when SDRV_CTRL[1:0] = 00, POR default. The external ship FET is fully on, I2C is enabled. The  
internal BATFET status is determined by the charging status. This mode could be for adapter present forward  
mode, OTG mode or battery only condition.  
40  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
Shutdown Mode when SDRV_CTRL[1:0] = 01. The ship FET and the internal BATFET are both off. The I2C  
is disabled. The charger is totally shutdown and can only be woken up by an adapter plug-in. This mode is  
only for the battery only condition.  
Ship Mode when SDRV_CTRL[1:0] = 10. The ship FET and the internal BATFET are both off. The I2C is still  
enabled. The charger can be woken up by setting SDRV_CTRL[1:0] back to 00, or pulling the QON pin low,  
or an adapter plug-in. This mode is only for the battery only condition.  
System Power Reset when SDRV_CTRL[1:0] = 11. The ship FET is turned off for typical 350ms to reset the  
system power (converter goes to HIZ mode if VBUS is high), then the ship FET is fully turned on again. The  
BATFET keeps the status unchanged during the system power reset. After the reset is done,  
SDRV_CTRL[1:0] goes back to 00.  
When the host changes SDRV_CTRL[1:0] from 00 to the other values, the charger turns off the ship FET  
immediately or delays by tSM_DLY as configured by SDRV_DLY bit. The application diagram when the battery is  
connected to the charger through an external ship FET is illustrated in the figure below.  
Q4  
SYS  
SYSTEM LOAD  
SW2  
Q3  
BTST2  
STAT  
BATFET  
REGN  
BAT  
Ship FET  
SDRV  
CE  
100  
BQ25790  
PG  
BATP  
TS  
REGN  
SDA  
SCL  
INT  
Host  
QON  
IBAT  
BATN  
100ꢀ  
Figure 28. The Application Diagram for the External Ship FET  
8.3.11.1 Shutdown Mode  
To further reduce battery leakage current, the host can shut down the charger by setting the register bits  
SDRV_CTRL[1:0] to 01. In this mode, the I2C is disabled and the charger is totally shut down. The device can  
only be woken up by plugging in an adapter.  
After the SDRV_CTRL[1:0] is set to 01, the external ship FET turns off either immediately or after waiting for 10s  
as configured by SDRV_DLY register bit. When VBUS is high because of an adapter being present or the OTG  
mode being enable, SDRV_CTRL[1:0] will be reset to 00 if the host writes it to 01.  
When the device exits shutdown mode, the SDRV_CTRL bits are reset to the POR default values (00).  
8.3.11.2 Ship Mode  
To extend battery life and minimize the system power loss when system is powered off during idle, shipping or  
storage, the device can turn off BATFET and external ship FET to minimize the battery leakage current. The ship  
mode is enabled when the host sets SDRV_CTRL[1:0] to 10. The I2C is still enabled, but the charger system  
clock slows down to minimize the device quiescent current.  
After the SDRV_CTRL[1:0] is set to 10, the external ship FET is turned off either immediately or after waiting 10  
seconds as configured by SDRV_DLY register bit. When VBUS is high because of an adapter being present or  
OTG mode being enabled, SDRV_CTRL[1:0] automatically resets to 00 if the host writes it to 10.  
The ship mode is disabled by one of the following events. The charger turns on ship FET and internal BATFET to  
reconnect the battery to the system, SDRV_CTRL bits are reset to the POR default values (00).  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: BQ25790  
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
Plug in an adapter  
Set SDRV_CTRL[1:0] = 00  
Set REG_RST = 1, to reset all the registers including SDRV_CTRL bits back to default (00)  
A logic low of tSM_EXIT (typical 1s or 15ms programmed by WKUP_DLY bit) duration on QON pin  
8.3.11.3 System Power Reset  
The host can reset the system power by:  
Set the register bits SDRV_CTRL[1:0] to 11  
A logic low of tRST (typical 10s) duration on QON pin  
When the system power reset is enabled, the device turns off the ship FET and also sets the charger in HIZ  
mode if VBUS is high for tRST_SFET (typical 350ms), then turns on the ship FET and also disable the charger HIZ  
mode to provide full system power reset. When the SFET is off for tRST_SFET, the charger applies a typical 30mA  
sink current on SYS to discharge system voltage down.  
No matter the charger is at battery only condition or in the forward charging mode with adapter present, the  
charger resets the system power when the SDRV_CTRL[1:0] bits are set to 11 or the QON pin is pulled low for  
tRST duration.  
8.3.12 Protections  
8.3.12.1 Voltage and Current Monitoring  
The device closely monitors the input, system and battery voltage and current, as well as internal FET currents  
for safe converter operation. The charger provides the faults protection list below:  
VAC Over-voltage Protection (VAC_OVP)  
VBUS Over-voltage Protection (VBUS_OVP)  
VBUS Under-voltage Protection (POORSRC)  
System Over-voltage Protection (VSYS_OVP)  
System Short Protection (VSYS_SHORT)  
Battery Over-voltage Protection (VBAT_OVP)  
Battery Over-current Protection (IBAT_OCP)  
Input Over-current Protection (IBUS_OCP)  
OTG Over-voltage Protection (OTG_OVP)  
OTG Under-voltage Protection (OTG_UVP)  
8.3.12.2 Thermal Regulation and Thermal Shutdown  
The device monitors its internal junction temperature (TJ) to avoid overheating and to limit the IC surface  
temperature. When the internal junction temperature exceeds the preset thermal regulation limit (TREG bits), the  
device reduces the charge current or OTG output current to maintain the junction temperature at the thermal  
regulation limit. A wide thermal regulation range from 60°C to 120°C allows optimization of the system thermal  
performance. During thermal regulation, the actual charging current is usually below the programmed value in  
the ICHG registers. Therefore, termination is disabled, the fast charging safety timer runs at half the clock rate,  
the status register TREG_STAT bit goes high, TREG_FLAG bit is set to 1, and an INT is asserted to alert host  
unless TREG_MASK is set to 1.  
Additionally, the device has thermal shutdown to turn off the converter when the IC junction temperature exceeds  
the TSHUT threshold. The fault register bits TSHUT_STAT and TSHUT_FLAG are set and an INT pulse is  
asserted to the host, unless TSHUT_MASK is set to 1. The BATFET and the converter resumes normal  
operation when the IC die temperature decreases lower than TSHUT threshold by TSHUT_HYS  
.
8.3.13 Serial Interface  
The device uses I2C compatible interface for flexible charging parameter programming and instantaneous device  
status reporting. I2C is a bi-directional 2-wire serial interface. Only two open-drain bus lines are required: a serial  
data line (SDA), and a serial clock line (SCL). Devices can be considered as masters or slaves when performing  
data transfers. A master is a device which initiates a data transfer on the bus and generates the clock signals to  
permit that transfer. At that time, any device addressed is considered a slave.  
42  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
The device operates as a slave device with address 0x6B, receiving control inputs from the master device like  
micro-controller or digital signal processor through REG00 – REG25. Register read beyond REG25 (0x25),  
returns 0xFF. The I2C interface supports both standard mode (up to 100 kbits/s), and fast mode (up to 400  
kbits/s). When the bus is free, both lines are HIGH. The SDA and SCL pins are open drain and must be  
connected to the positive supply voltage via a current source or pull-up resistor.  
8.3.13.1 Data Validity  
The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the  
data line can only change when the clock signal on SCL line is LOW. One clock pulse is generated for each data  
bit transferred.  
SDA  
SCL  
Data line stable;  
Data valid  
Change of  
data allowed  
Figure 29. Bit Transfers on the I2C Bus  
8.3.13.2 START and STOP Conditions  
All transactions begin with a START (S) and are terminated with a STOP (P). A HIGH to LOW transition on the  
SDA line while SCL is HIGH defines a START condition. A LOW to HIGH transition on the SDA line when the  
SCL is HIGH defines a STOP condition.  
START and STOP conditions are always generated by the master. The bus is considered busy after the START  
condition, and free after the STOP condition.  
SDA  
SCL  
SDA  
SCL  
STOP (P)  
Figure 30. START and STOP Conditions on the I2C Bus  
START (S)  
8.3.13.3 Byte Format  
Every byte on the SDA line must be 8 bits long. The number of bytes to be transmitted per transfer is  
unrestricted. Each byte has to be followed by an ACKNOWLEDGE (ACK) bit. Data is transferred with the Most  
Significant Bit (MSB) first. If a slave cannot receive or transmit another complete byte of data until it has  
performed some other function, it can hold the SCL line low to force the master into a wait state (clock  
stretching). Data transfer then continues when the slave is ready for another byte of data and releases the SCL  
line.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: BQ25790  
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
Acknowledgeme  
nt signal from  
receiver  
Acknowledgement  
signal from slave  
MSB  
1
SDA  
2
7
8
9
1
2
8
9
SCL S or Sr  
P or Sr  
ACK  
ACK  
START or  
Repeated  
START  
STOP or  
Repeate  
d START  
Figure 31. Data Transfer on the I2C Bus  
8.3.13.4 Acknowledge (ACK) and Not Acknowledge (NACK)  
The ACK signaling takes place after byte. The ACK bit allows the receiver to signal the transmitter that the byte  
was successfully received and another byte may be sent. All clock pulses, including the acknowledge 9th clock  
pulse, are generated by the master.  
The transmitter releases the SDA line during the acknowledge clock pulse so the receiver can pull the SDA line  
LOW and it remains stable LOW during the HIGH period of this 9th clock pulse.  
A NACK is signaled when the SDA line remains HIGH during the 9th clock pulse. The master can then generate  
either a STOP to abort the transfer or a repeated START to start a new transfer.  
8.3.13.5 Slave Address and Data Direction Bit  
After the START signal, a slave address is sent. This address is 7 bits long, followed by the 8 bit as a data  
direction bit (bit R/W). A zero indicates a transmission (WRITE) and a one indicates a request for data (READ).  
The device 7-bit address is defined as 1101 011' (0x6B) by default. The address bit arrangement is shown  
below.  
Slave Address  
1
1
0
1
0
1
1
R/W  
Figure 32. 7-Bit Addressing (0x6B)  
SDA  
SCL  
S
8
9
8
9
8
9
P
1-7  
1-7  
1-7  
DATA  
START  
ADDRESS  
R/W ACK  
DATA  
ACK  
ACK  
STOP  
Figure 33. Complete Data Transfer on the I2C Bus  
8.3.13.6 Single Write and Read  
Figure 34. Single Write  
44  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
Figure 35. Single Read  
If the register address is not defined, the charger IC sends back NACK and returns to the idle state.  
8.3.13.7 Multi-Write and Multi-Read  
The charger device supports multi-read and multi-write of all registers.  
Figure 36. Multi-Write  
Figure 37. Multi-Read  
8.4 Device Functional Modes  
8.4.1 Host Mode and Default Mode  
The device is a host controlled charger, but it can operate in default mode without host management. In default  
mode, the device can be used as an autonomous charger with no host or while host is in sleep mode. When the  
charger is in default mode, WD_STAT bit becomes HIGH, WD_FLAG is set to 1, and an INT is asserted low to  
alert the host (unless masked by WD_MASK). The WD_FLAG bit would read as 1 upon the first read and then 0  
upon subsequent reads. When the charger is in host mode, WD_STAT bit is LOW.  
After power-on-reset, the device starts in default mode with watchdog timer expired, or default mode. All the  
registers are in the default settings.  
In default mode, the device keeps charging the battery with default 1-hour trickle charging safety timer, 2-hour  
pre-charging safety timer and the 12-hour fast charging safety timer. At the end of the 1-hour or 2-hour or 12-  
hour timer expired, the charging is stopped and the buck-boost converter continues to operate to supply system  
load.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: BQ25790  
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
Device Functional Modes (continued)  
A write to any I2C register transitions the charger from default mode to host mode, and initiates the watchdog  
timer. All the device parameters can be programmed by the host. To keep the device in host mode, the host has  
to reset the watchdog timer by writing 1 to WD_RST bit before the watchdog timer expires (WD_STAT bit is set),  
or disable watchdog timer by setting WATCHDOG bits = 00.  
When the watchdog timer is expired, the device returns to default mode and all registers are reset to default  
values except the ones described as detailed in the Register Map section. The Watchdog timer will be reset on  
any write if the watchdog timer has expired. When watchdog timer expires, WD_STAT and WD_FLAG is set to 1,  
and an INT is asserted low to alert the host (unless masked by WD_MASK).  
Reset  
Selective  
Registers  
Default Mode  
WD_STAT=1  
POR  
I2C Write  
Reset  
Watchdog  
Timer  
Yes  
Host Mode  
WD_STAT=0  
I2C Write to  
WD_RST  
No  
Watchdog Timer Expired?  
Yes  
No  
Figure 38. Watchdog Timer Flow Chart  
8.4.2 Register Bit Reset  
Beside the register reset by the watchdog timer in the default mode, the register and the timer could be reset to  
the default value by writing the REG_RST bit to 1. The register bits, which can be reset by the REG_RST bit, are  
noted in the Register Map section. After the register reset, the REG_RST bit will go back from 1 to 0  
automatically.  
The register reset by the REG_RST bit will not initiate the ACFET-RBFET detection, which is only done at the  
charger first time POR. It will not repeat the open-circuit adapter measurements for the default VINDPM setting,  
which in only done when an adapter is plugged in. In addition, if the charger is in the process of forced ICO, the  
forced open-circuit adapter measurements or the forced D+/D- detection, set the REG_RST to 1 will terminate all  
of these processes, because reset the register to default values will set FORCE_ICO, FORCE_INDET and  
FORCE_VINDPM_DET bits to 0.  
8.5 Register Map  
46  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
Register Map (continued)  
8.5.1 I2C Registers  
Table 8 lists the I2C registers. All register offset addresses not listed in Table 8 should be considered as  
reserved locations and the register contents should not be modified.  
Table 8. I2C Registers  
Offset  
Acronym  
Register Name  
Section  
0h  
REG00_Minimal_System_Voltage Minimal System Voltage  
REG00_Minimal_System_Voltage  
Register (Offset = 0h) [reset = X]  
1h  
3h  
REG01_Charge_Voltage_Limit  
REG03_Charge_Current_Limit  
REG05_Input_Voltage_Limit  
REG06_Input_Current_Limit  
REG08_Precharge_Control  
REG09_Termination_Control  
REG0A_Re-charge_Control  
REG0B_VOTG_regulation  
REG0D_IOTG_regulation  
REG0E_Timer_Control  
Charge Voltage Limit  
Charge Current Limit  
Input Voltage Limit  
Input Current Limit  
Precharge Control  
Termination Control  
Re-charge Control  
VOTG regulation  
IOTG regulation  
Timer Control  
REG01_Charge_Voltage_Limit Register  
(Offset = 1h) [reset = X]  
REG03_Charge_Current_Limit Register  
(Offset = 3h) [reset = X]  
5h  
REG05_Input_Voltage_Limit Register  
(Offset = 5h) [reset = 24h]  
6h  
REG06_Input_Current_Limit Register  
(Offset = 6h) [reset = 12Ch]  
8h  
REG08_Precharge_Control Register  
(Offset = 8h) [reset = C3h]  
9h  
REG09_Termination_Control Register  
(Offset = 9h) [reset = 5h]  
Ah  
REG0A_Re-charge_Control Register  
(Offset = Ah) [reset = X]  
Bh  
REG0B_VOTG_regulation Register  
(Offset = Bh) [reset = DCh]  
Dh  
REG0D_IOTG_regulation Register  
(Offset = Dh) [reset = 4Bh]  
Eh  
REG0E_Timer_Control Register (Offset  
= Eh) [reset = 3Dh]  
Fh  
REG0F_Charger_Control_0  
REG10_Charger_Control_1  
REG11_Charger_Control_2  
REG12_Charger_Control_3  
REG13_Charger_Control_4  
REG14_Charger_Control_5  
REG15_Reserved  
Charger Control 0  
Charger Control 1  
Charger Control 2  
Charger Control 3  
Charger Control 4  
Charger Control 5  
Reserved  
REG0F_Charger_Control_0 Register  
(Offset = Fh) [reset = A2h]  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Bh  
1Ch  
1Dh  
REG10_Charger_Control_1 Register  
(Offset = 10h) [reset = 85h]  
REG11_Charger_Control_2 Register  
(Offset = 11h) [reset = 40h]  
REG12_Charger_Control_3 Register  
(Offset = 12h) [reset = 0h]  
REG13_Charger_Control_4 Register  
(Offset = 13h) [reset = X]  
REG14_Charger_Control_5 Register  
(Offset = 14h) [reset = 16h]  
REG15_Reserved Register (Offset =  
15h) [reset = 00h]  
REG16_Temperature_Control  
REG17_NTC_Control_0  
Temperature Control  
NTC Control 0  
REG16_Temperature_Control Register  
(Offset = 16h) [reset = C0h]  
REG17_NTC_Control_0 Register (Offset  
= 17h) [reset = 7Ah]  
REG18_NTC_Control_1  
NTC Control 1  
REG18_NTC_Control_1 Register (Offset  
= 18h) [reset = 54h]  
REG19_ICO_Current_Limit  
REG1B_Charger_Status_0  
REG1C_Charger_Status_1  
REG1D_Charger_Status_2  
ICO Current Limit  
Charger Status 0  
Charger Status 1  
Charger Status 2  
REG19_ICO_Current_Limit Register  
(Offset = 19h) [reset = 0h]  
REG1B_Charger_Status_0 Register  
(Offset = 1Bh) [reset = 0h]  
REG1C_Charger_Status_1 Register  
(Offset = 1Ch) [reset = 0h]  
REG1D_Charger_Status_2 Register  
(Offset = 1Dh) [reset = 0h]  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Links: BQ25790  
 
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
Table 8. I2C Registers (continued)  
Offset  
Acronym  
Register Name  
Section  
1Eh  
REG1E_Charger_Status_3  
REG1F_Charger_Status_4  
REG20_FAULT_Status_0  
REG21_FAULT_Status_1  
REG22_Charger_Flag_0  
REG23_Charger_Flag_1  
REG24_Charger_Flag_2  
REG25_Charger_Flag_3  
REG26_FAULT_Flag_0  
REG27_FAULT_Flag_1  
REG28_Charger_Mask_0  
REG29_Charger_Mask_1  
REG2A_Charger_Mask_2  
REG2B_Charger_Mask_3  
REG2C_FAULT_Mask_0  
REG2D_FAULT_Mask_1  
REG2E_ADC_Control  
Charger Status 3  
REG1E_Charger_Status_3 Register  
(Offset = 1Eh) [reset = 0h]  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
33h  
35h  
37h  
39h  
3Bh  
3Dh  
3Fh  
41h  
Charger Status 4  
FAULT Status 0  
FAULT Status 1  
Charger Flag 0  
Charger Flag 1  
Charger Flag 2  
Charger Flag 3  
FAULT Flag 0  
FAULT Flag 1  
Charger Mask 0  
Charger Mask 1  
Charger Mask 2  
Charger Mask 3  
FAULT Mask 0  
FAULT Mask 1  
ADC Control  
REG1F_Charger_Status_4 Register  
(Offset = 1Fh) [reset = 0h]  
REG20_FAULT_Status_0 Register  
(Offset = 20h) [reset = 0h]  
REG21_FAULT_Status_1 Register  
(Offset = 21h) [reset = 0h]  
REG22_Charger_Flag_0 Register  
(Offset = 22h) [reset = 0h]  
REG23_Charger_Flag_1 Register  
(Offset = 23h) [reset = 0h]  
REG24_Charger_Flag_2 Register  
(Offset = 24h) [reset = 0h]  
REG25_Charger_Flag_3 Register  
(Offset = 25h) [reset = 0h]  
REG26_FAULT_Flag_0 Register (Offset  
= 26h) [reset = 0h]  
REG27_FAULT_Flag_1 Register (Offset  
= 27h) [reset = 0h]  
REG28_Charger_Mask_0 Register  
(Offset = 28h) [reset = 0h]  
REG29_Charger_Mask_1 Register  
(Offset = 29h) [reset = 0h]  
REG2A_Charger_Mask_2 Register  
(Offset = 2Ah) [reset = 0h]  
REG2B_Charger_Mask_3 Register  
(Offset = 2Bh) [reset = 0h]  
REG2C_FAULT_Mask_0 Register  
(Offset = 2Ch) [reset = 0h]  
REG2D_FAULT_Mask_1 Register  
(Offset = 2Dh) [reset = 0h]  
REG2E_ADC_Control Register (Offset =  
2Eh) [reset = 30h]  
REG2F_ADC_Function_Disable_0 ADC Function Disable 0  
REG30_ADC_Function_Disable_1 ADC Function Disable 1  
REG2F_ADC_Function_Disable_0  
Register (Offset = 2Fh) [reset = 0h]  
REG30_ADC_Function_Disable_1  
Register (Offset = 30h) [reset = 0h]  
REG31_IBUS_ADC  
REG33_IBAT_ADC  
REG35_VBUS_ADC  
REG37_VAC1_ADC  
REG39_VAC2_ADC  
REG3B_VBAT_ADC  
REG3D_VSYS_ADC  
REG3F_TS_ADC  
IBUS ADC  
IBAT ADC  
VBUS ADC  
VAC1 ADC  
VAC2 ADC  
VBAT ADC  
VSYS ADC  
TS ADC  
REG31_IBUS_ADC Register (Offset =  
31h) [reset = 0h]  
REG33_IBAT_ADC Register (Offset =  
33h) [reset = 0h]  
REG35_VBUS_ADC Register (Offset =  
35h) [reset = 0h]  
REG37_VAC1_ADC Register (Offset =  
37h) [reset = 0h]  
REG39_VAC2_ADC Register (Offset =  
39h) [reset = 0h]  
REG3B_VBAT_ADC Register (Offset =  
3Bh) [reset = 0h]  
REG3D_VSYS_ADC Register (Offset =  
3Dh) [reset = 0h]  
REG3F_TS_ADC Register (Offset =  
3Fh) [reset = 0h]  
REG41_TDIE_ADC  
TDIE_ADC  
REG41_TDIE_ADC Register (Offset =  
41h) [reset = 0h]  
48  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
Table 8. I2C Registers (continued)  
Offset  
Acronym  
Register Name  
Section  
43h  
REG43_D+_ADC  
D+ ADC  
REG43_D+_ADC Register (Offset =  
43h) [reset = 0h]  
45h  
47h  
48h  
REG45_D-_ADC  
D- ADC  
REG45_D-_ADC Register (Offset = 45h)  
[reset = 0h]  
REG47_DPDM_Driver  
REG48_Part_Information  
DPDM Driver  
Part Information  
REG47_DPDM_Driver Register (Offset  
= 47h) [reset = 0h]  
REG48_Part_Information Register  
(Offset = 48h) [reset = 0h]  
Complex bit access types are encoded to fit into small table cells. Table 9 shows the codes that are used for  
access types in this section.  
Table 9. I2C Access Type Codes  
Access Type Code  
Read Type  
Description  
R
R
Read  
Write Type  
W
W
Write  
Others  
Range  
The register bits are only valid in this  
defined range.  
Clamped Low  
Clamped High  
Any write on the register lower than the  
minimal value of the valid range, will be  
ignored by the charger  
Any write on the register higher than the  
maximum value of the valid range, will be  
ignored by the charger  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Links: BQ25790  
 
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
8.5.1.1 REG00_Minimal_System_Voltage Register (Offset = 0h) [reset = X]  
REG00_Minimal_System_Voltage is shown in Figure 39 and described in Table 10.  
Return to the Summary Table.  
Minimal System Voltage  
Figure 39. REG00_Minimal_System_Voltage Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
VSYSMIN_5:0  
R/W-X  
Table 10. REG00_Minimal_System_Voltage Register Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Notes  
Description  
RESERVED  
VSYSMIN_5:0  
RESERVED  
X
Reset by:  
Minimal System Voltage:  
REG_RST  
During POR, the device reads the resistance tie to  
PROG pin, to identify the default battery cell count and  
determine the default power on VSYSMIN list below:  
1s: 3.5V  
2s: 7V  
3s: 9V  
4s: 12V  
Type : RW  
Range : 2500mV-16000mV  
Fixed Offset : 2500mV  
Bit Step Size : 250mV  
Clamped High  
50  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
 
 
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8.5.1.2 REG01_Charge_Voltage_Limit Register (Offset = 1h) [reset = X]  
REG01_Charge_Voltage_Limit is shown in Figure 40 and described in Table 11.  
Return to the Summary Table.  
Charge Voltage Limit  
Figure 40. REG01_Charge_Voltage_Limit Register  
15  
7
14  
6
13  
12  
11  
10  
9
8
0
RESERVED  
R-0h  
VREG_10:0  
R/W-X  
5
4
3
2
1
VREG_10:0  
R/W-X  
Table 11. REG01_Charge_Voltage_Limit Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0h  
Notes  
Description  
15-11  
10-0  
RESERVED  
VREG_10:0  
RESERVED  
R/W  
X
Reset by:  
Battery Voltage Limit:  
REG_RST  
During POR, the device reads the resistance tie to  
PROG pin, to identify the default battery cell count and  
determine the default power-on battery voltage  
regulation limit:  
1s: 4.2V  
2s: 8.4V  
3s: 12.6V  
4s: 16.8V  
Type : RW  
Range : 3000mV-18800mV  
Fixed Offset : 0mV  
Bit Step Size : 10mV  
Clamped Low  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Links: BQ25790  
 
 
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
8.5.1.3 REG03_Charge_Current_Limit Register (Offset = 3h) [reset = X]  
REG03_Charge_Current_Limit is shown in Figure 41 and described in Table 12.  
Return to the Summary Table.  
Charge Current Limit  
Figure 41. REG03_Charge_Current_Limit Register  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
RESERVED  
R-0h  
ICHG_8:0  
R/W-X  
5
4
3
2
0
ICHG_8:0  
R/W-X  
Table 12. REG03_Charge_Current_Limit Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0h  
Notes  
Description  
15-9  
8-0  
RESERVED  
ICHG_8:0  
RESERVED  
R/W  
X
Reset by:  
Charge Current Limit  
WATCHDOG  
REG_RST  
During POR, the device reads the resistance tie to  
PROG pin, to identify the default battery cell count and  
determine the default power-on battery charging  
current:  
1s and 2s: 2A  
3s and 4s: 1A  
Type : RW  
Range : 50mA-5000mA  
Fixed Offset : 0mA  
Bit Step Size : 10mA  
Clamped Low  
52  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
 
 
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8.5.1.4 REG05_Input_Voltage_Limit Register (Offset = 5h) [reset = 24h]  
REG05_Input_Voltage_Limit is shown in Figure 42 and described in Table 13.  
Return to the Summary Table.  
Input Voltage Limit  
Figure 42. REG05_Input_Voltage_Limit Register  
7
6
5
4
3
2
1
0
VINDPM_7:0  
R/W-24h  
Table 13. REG05_Input_Voltage_Limit Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
VINDPM_7:0  
R/W  
24h  
Absolute VINDPM Threshold  
VINDPM register is reset to 3600mV upon adapter unplugged and it  
is set to the value based on the VBUS measurement when the  
adapter plugs in. It is not reset by the REG_RST and the  
WATCHDOG  
Type : RW  
POR: 3600mV (24h)  
Range : 3600mV-22000mV  
Fixed Offset : 0mV  
Bit Step Size : 100mV  
Clamped Low  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Links: BQ25790  
 
 
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
8.5.1.5 REG06_Input_Current_Limit Register (Offset = 6h) [reset = 12Ch]  
REG06_Input_Current_Limit is shown in Figure 43 and described in Table 14.  
Return to the Summary Table.  
Input Current Limit  
Figure 43. REG06_Input_Current_Limit Register  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
RESERVED  
R-0h  
IINDPM_8:0  
R/W-12Ch  
5
4
3
2
0
IINDPM_8:0  
R/W-12Ch  
Table 14. REG06_Input_Current_Limit Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0h  
Notes  
Description  
15-9  
8-0  
RESERVED  
IINDPM_8:0  
RESERVED  
R/W  
12Ch  
Reset by:  
REG_RST  
Based on D+/D- detection results:  
USB SDP = 500mA  
USB CDP = 1.5A  
USB DCP = 3.25A  
Adjustable High Voltage DCP = 1.5A  
Unknown Adapter = 3A  
Non-Standard Adapter = 1A/2A/2.1A/2.4A  
Type : RW  
POR: 3000mA (12Ch)  
Range : 100mA-3300mA  
Fixed Offset : 0mA  
Bit Step Size : 10mA  
Clamped Low  
54  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
 
 
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8.5.1.6 REG08_Precharge_Control Register (Offset = 8h) [reset = C3h]  
REG08_Precharge_Control is shown in Figure 44 and described in Table 15.  
Return to the Summary Table.  
Precharge Control  
Figure 44. REG08_Precharge_Control Register  
7
6
5
4
3
2
1
0
VBAT_LOWV_1:0  
R/W-3h  
IPRECHG_5:0  
R/W-3h  
Table 15. REG08_Precharge_Control Register Field Descriptions  
Bit  
Field  
VBAT_LOWV_1:0  
Type  
Reset  
Notes  
Description  
7-6  
R/W  
3h  
Reset by:  
REG_RST  
Battery voltage thresholds for the transition from  
precharge to fast charge, which is defined as a ratio of  
battery regulation limit (VREG)  
Type : RW  
POR: 11b  
0h = 15%*VREG  
1h = 62.2%*VREG  
2h = 66.7%*VREG  
3h = 71.4%*VREG  
5-0  
IPRECHG_5:0  
R/W  
3h  
Reset by:  
WATCHDOG  
REG_RST  
Precharge current limit  
Type : RW  
POR: 120mA (3h)  
Range : 40mA-2000mA  
Fixed Offset : 0mA  
Bit Step Size : 40mA  
Clamped Low  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Links: BQ25790  
 
 
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
8.5.1.7 REG09_Termination_Control Register (Offset = 9h) [reset = 5h]  
REG09_Termination_Control is shown in Figure 45 and described in Table 16.  
Return to the Summary Table.  
Termination Control  
Figure 45. REG09_Termination_Control Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
REG_RST  
R/W-0h  
RESERVED  
R/W-0h  
ITERM_4:0  
R/W-5h  
Table 16. REG09_Termination_Control Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Notes  
Description  
RESERVED  
REG_RST  
RESERVED  
6
R/W  
0h  
Reset registers to default values and reset timer  
Type : RW  
POR: 0b  
0h = Not reset  
1h = Reset  
5
RESERVED  
ITERM_4:0  
R/W  
R/W  
0h  
5h  
RESERVED  
4-0  
Reset by:  
WATCHDOG  
REG_RST  
Termination current  
Type : RW  
POR: 200mA (5h)  
Range : 40mA-1000mA  
Fixed Offset : 0mA  
Bit Step Size : 40mA  
Clamped Low  
56  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
 
 
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8.5.1.8 REG0A_Re-charge_Control Register (Offset = Ah) [reset = X]  
REG0A_Re-charge_Control is shown in Figure 46 and described in Table 17.  
Return to the Summary Table.  
Re-charge Control  
Figure 46. REG0A_Re-charge_Control Register  
7
6
5
4
3
2
1
0
CELL_1:0  
R/W-X  
TRECHG_1:0  
R/W-2h  
VRECHG_3:0  
R/W-3h  
Table 17. REG0A_Re-charge_Control Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7-6  
CELL_1:0  
R/W  
X
At POR, the charger reads the PROG pin resistance to  
determine the battery cell count and update this CELL  
bits accordingly.  
Type : RW  
0h = 1s  
1h = 2s  
2h = 3s  
3h = 4s  
5-4  
TRECHG_1:0  
R/W  
2h  
Reset by:  
WATCHDOG  
REG_RST  
Battery recharge deglich time  
Type : RW  
POR: 10b  
0h = 64ms  
1h = 256ms  
2h = 1024ms (default)  
3h = 2048ms  
3-0  
VRECHG_3:0  
R/W  
3h  
Reset by:  
WATCHDOG  
REG_RST  
Battery Recharge Threshold Offset (Below VREG)  
Type : RW  
POR: 200mV (3h)  
Range : 50mV-800mV  
Fixed Offset : 50mV  
Bit Step Size : 50mV  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
Product Folder Links: BQ25790  
 
 
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
8.5.1.9 REG0B_VOTG_regulation Register (Offset = Bh) [reset = DCh]  
REG0B_VOTG_regulation is shown in Figure 47 and described in Table 18.  
Return to the Summary Table.  
VOTG regulation  
Figure 47. REG0B_VOTG_regulation Register  
15  
7
14  
6
13  
12  
11  
10  
9
8
0
RESERVED  
R-0h  
VOTG_10:0  
R/W-DCh  
5
4
3
2
1
VOTG_10:0  
R/W-DCh  
Table 18. REG0B_VOTG_regulation Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0h  
Notes  
Description  
15-11  
10-0  
RESERVED  
VOTG_10:0  
RESERVED  
R/W  
DCh  
Reset by:  
WATCHDOG  
REG_RST  
OTG mode regulation voltage  
Type : RW  
POR: 5000mV (DCh)  
Range : 2800mV-22000mV  
Fixed Offset : 2800mV  
Bit Step Size : 10mV  
Clamped High  
58  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
 
 
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8.5.1.10 REG0D_IOTG_regulation Register (Offset = Dh) [reset = 4Bh]  
REG0D_IOTG_regulation is shown in Figure 48 and described in Table 19.  
Return to the Summary Table.  
IOTG regulation  
Figure 48. REG0D_IOTG_regulation Register  
7
6
5
4
3
2
1
0
PRECHG_TMR  
R/W-0h  
IOTG_6:0  
R/W-4Bh  
Table 19. REG0D_IOTG_regulation Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
PRECHG_TMR  
R/W  
0h  
Reset by:  
WATCHDOG  
REG_RST  
Pre-charge safety timer setting  
Type : RW  
POR: 0b  
0h = 2 hrs (default)  
1h = 0.5 hrs  
6-0  
IOTG_6:0  
R/W  
4Bh  
Reset by:  
WATCHDOG  
REG_RST  
OTG current limit  
Type : RW  
POR: 3000mA (4Bh)  
Range : 120mA-3320mA  
Fixed Offset : 0mA  
Bit Step Size : 40mA  
Clamped Low  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
Product Folder Links: BQ25790  
 
 
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
8.5.1.11 REG0E_Timer_Control Register (Offset = Eh) [reset = 3Dh]  
REG0E_Timer_Control is shown in Figure 49 and described in Table 20.  
Return to the Summary Table.  
Timer Control  
Figure 49. REG0E_Timer_Control Register  
7
6
5
4
3
2
1
0
TOPOFF_TMR_1:0  
EN_TRICHG_T EN_PRECHG_ EN_CHG_TMR  
CHG_TMR_1:0  
R/W-2h  
TMR2X_EN  
MR  
TMR  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
Table 20. REG0E_Timer_Control Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7-6  
TOPOFF_TMR_1:0 R/W  
0h  
Reset by:  
WATCHDOG  
REG_RST  
Top-off timer control  
Type : RW  
POR: 00b  
0h = Disabled (default)  
1h = 15 mins  
2h = 30 mins  
3h = 45 mins  
5
4
EN_TRICHG_TMR  
R/W  
1h  
1h  
1h  
2h  
Reset by:  
WATCHDOG  
REG_RST  
Enable trickle charge timer (fixed as 1hr)  
Type : RW  
POR: 1b  
0h = Disabled  
1h = Enabled (default)  
EN_PRECHG_TMR R/W  
Reset by:  
WATCHDOG  
REG_RST  
Enable pre-charge timer  
Type : RW  
POR: 1b  
0h = Disabled  
1h = Enabled (default)  
3
EN_CHG_TMR  
CHG_TMR_1:0  
R/W  
R/W  
Reset by:  
WATCHDOG  
REG_RST  
Enable fast charge timer  
Type : RW  
POR: 1b  
0h = Disabled  
1h = Enabled (default)  
2-1  
Reset by:  
WATCHDOG  
REG_RST  
Fast charge timer setting  
Type : RW  
POR: 10b  
0h = 5 hrs  
1h = 8 hrs  
2h = 12 hrs (default)  
3h = 24 hrs  
0
TMR2X_EN  
R/W  
1h  
Reset by:  
WATCHDOG  
REG_RST  
TMR2X_EN  
Type : RW  
POR: 1b  
0h = Trickle charge, pre-charge and fast charge timer  
NOT slowed by 2X during input DPM or thermal  
regulation.  
1h = Trickle charge, pre-charge and fast charge timer  
slowed by 2X during input DPM or thermal regulation  
(default)  
60  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
 
 
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8.5.1.12 REG0F_Charger_Control_0 Register (Offset = Fh) [reset = A2h]  
REG0F_Charger_Control_0 is shown in Figure 50 and described in Table 21.  
Return to the Summary Table.  
Charger Control 0  
Figure 50. REG0F_Charger_Control_0 Register  
7
6
5
4
3
2
1
0
EN_AUTO_IBA FORCE_IBATD  
EN_CHG  
EN_ICO  
FORCE_ICO  
EN_HIZ  
EN_TERM  
RESERVED  
TDIS  
IS  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-1h  
R-0h  
Table 21. REG0F_Charger_Control_0 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Notes  
Description  
EN_AUTO_IBATDIS R/W  
1h  
Reset by:  
Enable the auto battery discharging during the battery  
OVP fault  
Type : RW  
POR: 1b  
REG_RST  
0h = The charger will NOT apply a discharging current  
on BAT during battery OVP  
1h = The charger will apply a discharging current on  
BAT during battery OVP  
6
FORCE_IBATDIS  
R/W  
0h  
Reset by:  
Force a battery discharging current  
REG_RST  
Type : RW  
POR: 0b  
0h = IDLE (default)  
1h = Force the charger to apply a discharging current  
on BAT regardless the battery OVP status  
5
4
3
EN_CHG  
EN_ICO  
R/W  
R/W  
R/W  
1h  
0h  
0h  
Reset by:  
WATCHDOG  
REG_RST  
Charger Enable Configuration  
Type : RW  
POR: 1b  
0h = Charge Disable  
1h = Charge Enable (default)  
Reset by:  
REG_RST  
Input Current Optimizer (ICO) Enable  
Type : RW  
POR: 0b  
0h = Disable ICO (default)  
1h = Enable ICO  
FORCE_ICO  
Reset by:  
WATCHDOG  
REG_RST  
Force start input current optimizer (ICO)  
Note: This bit can only be set and returns 0 after ICO  
starts. This bit only valid when EN_ICO = 1  
Type : RW  
POR: 0b  
0h = Do NOT force ICO (Default)  
1h = Force ICO start  
2
1
EN_HIZ  
R/W  
R/W  
0h  
1h  
Reset by:  
REG_RST  
Enable HIZ mode.  
This bit will be also reset to 0, when the adapter is  
plugged in at VBUS.  
Type : RW  
POR: 0b  
0h = Disable (default)  
1h = Enable  
EN_TERM  
Reset by:  
WATCHDOG  
REG_RST  
Enable termination  
Type : RW  
POR: 1b  
0h = Disable  
1h = Enable (default)  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
61  
Product Folder Links: BQ25790  
 
 
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
Table 21. REG0F_Charger_Control_0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Notes  
Description  
0
RESERVED  
R
0h  
Reserved  
62  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8.5.1.13 REG10_Charger_Control_1 Register (Offset = 10h) [reset = 85h]  
REG10_Charger_Control_1 is shown in Figure 51 and described in Table 22.  
Return to the Summary Table.  
Charger Control 1  
Figure 51. REG10_Charger_Control_1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
VAC_OVP_1:0  
R/W-3h  
WD_RST  
R/W-0h  
WATCHDOG_2:0  
R/W-5h  
Table 22. REG10_Charger_Control_1 Register Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
R
Reset  
0h  
Notes  
Description  
RESERVED  
Reserved  
VAC_OVP_1:0  
R/W  
3h  
Reset by:  
REG_RST  
VAC_OVP thresholds  
Type : RW  
POR: 11b  
0h = 26V  
1h = 22V  
2h = 12V  
3h = 7V (default)  
3
WD_RST  
R/W  
R/W  
0h  
5h  
Reset by:  
WATCHDOG  
REG_RST  
I2C watch dog timer reset  
Type : RW  
POR: 0b  
0h = Normal (default)  
1h = Reset (this bit goes back to 0 after timer resets)  
2-0  
WATCHDOG_2:0  
Reset by:  
REG_RST  
Watchdog timer settings  
Type : RW  
POR: 101b  
0h = Disable  
1h = 0.5s  
2h = 1s  
3h = 2s  
4h = 20s  
5h = 40s (default)  
6h = 80s  
7h = 160s  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
63  
Product Folder Links: BQ25790  
 
 
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
8.5.1.14 REG11_Charger_Control_2 Register (Offset = 11h) [reset = 40h]  
REG11_Charger_Control_2 is shown in Figure 52 and described in Table 23.  
Return to the Summary Table.  
Charger Control 2  
Figure 52. REG11_Charger_Control_2 Register  
7
6
5
4
3
2
1
0
FORCE_INDET AUTO_INDET_  
EN  
EN_12V  
EN_9V  
HVDCP_EN  
SDRV_CTRL_1:0  
SDRV_DLY  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 23. REG11_Charger_Control_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
6
FORCE_INDET  
R/W  
0h  
Reset by:  
WATCHDOG  
REG_RST  
Force D+/D- detection  
Type : RW  
POR: 0b  
0h = Do NOT force D+/D- detection (default)  
1h = Force D+/D- algorithm, when D+/D- detection is  
done, this bit will be reset to 0  
AUTO_INDET_EN  
R/W  
1h  
Reset by:  
Automatic D+/D- Detection Enable  
WATCHDOG  
REG_RST  
Type : RW  
POR: 1b  
0h = Disable D+/D- detection when VBUS is plugged-  
in  
1h = Enable D+/D- detection when VBUS is plugged-in  
(default)  
5
4
EN_12V  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
Reset by:  
REG_RST  
EN_12V HVDC  
Type : RW  
POR: 0b  
0h = Disable 12V mode in HVDCP (default)  
1h = Enable 12V mode in HVDCP  
EN_9V  
Reset by:  
REG_RST  
EN_9V HVDC  
Type : RW  
POR: 0b  
0h = Disable 9V mode in HVDCP (default)  
1h = Enable 9V mode in HVDCP  
3
HVDCP_EN  
SDRV_CTRL_1:0  
Reset by:  
REG_RST  
High voltage DCP enable.  
Type : RW  
POR: 0b  
0h = Disable HVDCP handshake (default)  
1h = Enable HVDCP handshake  
2-1  
Reset by:  
SFET control  
REG_RST  
The external ship FET control logic to force the device  
enter different modes.  
Type : RW  
POR: 00b  
0h = IDLE (default)  
1h = Shutdown Mode  
2h = Ship Mode  
3h = System Power Reset  
0
SDRV_DLY  
R/W  
0h  
Reset by:  
Delay time added to the taking action in bit [2:1] of the  
SFET control  
Type : RW  
POR: 0b  
REG_RST  
0h = Add 10s delay time (default)  
1h = Do NOT add 10s delay time  
64  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
 
 
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8.5.1.15 REG12_Charger_Control_3 Register (Offset = 12h) [reset = 0h]  
REG12_Charger_Control_3 is shown in Figure 53 and described in Table 24.  
Return to the Summary Table.  
Charger Control 3  
Figure 53. REG12_Charger_Control_3 Register  
7
6
5
4
3
2
1
0
DIS_ACDRV  
EN_OTG  
PFM_OTG_DIS PFM_FWD_DI  
S
WKUP_DLY  
DIS_LDO  
DIS_OTG_OO DIS_FWD_OO  
A
A
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 24. REG12_Charger_Control_3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
DIS_ACDRV  
R/W  
0h  
When this bit is set, the charger will force both  
EN_ACDRV1=0 and EN_ACDRV2=0  
Type : RW  
POR: 0b  
6
5
4
3
EN_OTG  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
Reset by:  
WATCHDOG  
REG_RST  
OTG mode control  
Type : RW  
POR: 0b  
0h = OTG Disable (default)  
1h = OTG Enable  
PFM_OTG_DIS  
PFM_FWD_DIS  
WKUP_DLY  
Reset by:  
WATCHDOG  
REG_RST  
Disable PFM in OTG mode  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
Reset by:  
REG_RST  
Disable PFM in forward mode  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
Reset by:  
When wake up the device from ship mode, how much  
time (tSM_EXIT) is required to pull low the QON pin.  
REG_RST  
Type : RW  
POR: 0b  
0h = 1s (Default)  
1h = 15ms  
2
1
0
DIS_LDO  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Reset by:  
WATCHDOG  
REG_RST  
Disable BATFET LDO mode in pre-charge stage.  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
DIS_OTG_OOA  
DIS_FWD_OOA  
Reset by:  
WATCHDOG  
REG_RST  
Disable OOA in OTG mode  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
Reset by:  
REG_RST  
Disable OOA in forward mode  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
65  
Product Folder Links: BQ25790  
 
 
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
8.5.1.16 REG13_Charger_Control_4 Register (Offset = 13h) [reset = X]  
REG13_Charger_Control_4 is shown in Figure 54 and described in Table 25.  
Return to the Summary Table.  
Charger Control 4  
Figure 54. REG13_Charger_Control_4 Register  
7
6
5
4
3
2
1
0
EN_ACDRV2  
EN_ACDRV1  
PWM_FREQ  
DIS_STAT  
DIS_VSYS_SH DIS_VOTG_UV FORCE_VINDP EN_IBUS_OCP  
ORT  
P
M_DET  
R/W-0h  
R/W-0h  
R/W-X  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-1h  
Table 25. REG13_Charger_Control_4 Register Field Descriptions  
Bit  
Field  
EN_ACDRV2  
Type  
Reset  
Notes  
Description  
7
R/W  
0h  
External ACFET2-RBFET2 gate driver control  
At POR, if the charger detects that there is no  
ACFET2-RBFET2 populated, this bit will be locked at  
0
Type : RW  
POR: 0b  
0h = turn off (default)  
1h = turn on  
6
EN_ACDRV1  
R/W  
0h  
External ACFET1-RBFET1 gate driver control  
At POR, if the charger detects that there is no  
ACFET1-RBFET1 populated, this bit will be locked at  
0
Type : RW  
POR: 0b  
0h = turn off (default)  
1h = turn on  
5
4
3
2
PWM_FREQ  
DIS_STAT  
R/W  
R/W  
X
Switching frequency selection, this bit POR default  
value is based on the PROG pin strapping.  
Type : RW  
0h = 1.5 MHz  
1h = 750 kHz  
0h  
0h  
0h  
Reset by:  
WATCHDOG  
REG_RST  
Disable the STAT pin output  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
DIS_VSYS_SHORT R/W  
Reset by:  
REG_RST  
Disable forward mode VSYS short hiccup protection.  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
DIS_VOTG_UVP  
R/W  
Reset by:  
Disable OTG mode VOTG UVP hiccup protection.  
REG_RST  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
66  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
 
 
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
Table 25. REG13_Charger_Control_4 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Notes  
Description  
1
FORCE_VINDPM_D R/W  
ET  
0h  
Reset by:  
REG_RST  
Force VINDPM detection  
Note: only when VBAT>VSYSMIN, this bit can be set  
to 1. Once the VINDPM auto detection is done, this  
bits returns to 0.  
Type : RW  
POR: 0b  
0h = Do NOT force VINDPM detection (default)  
1h = Force the converter stop switching, and ADC  
measures the VBUS voltage without input current,  
then the charger updates the VINDPM register  
accordingly.  
0
EN_IBUS_OCP  
R/W  
1h  
Reset by:  
Enable IBUS_OCP in forward mode  
REG_RST  
Type : RW  
POR: 1b  
0h = Disable  
1h = Enable (default)  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
67  
Product Folder Links: BQ25790  
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
8.5.1.17 REG14_Charger_Control_5 Register (Offset = 14h) [reset = 16h]  
REG14_Charger_Control_5 is shown in Figure 55 and described in Table 26.  
Return to the Summary Table.  
Charger Control 5  
Figure 55. REG14_Charger_Control_5 Register  
7
6
5
4
3
2
1
0
SFET_PRESE  
NT  
RESERVED  
EN_IBAT  
IBAT_REG_1:0  
R/W-2h  
EN_IINDPM  
EN_EXTILIM  
EN_BATOC  
R/W-0h  
R-0h  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-0h  
Table 26. REG14_Charger_Control_5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
SFET_PRESENT  
R/W  
0h  
The user has to set this bit based on whether a ship  
FET is populated or not. The POR default value is 0,  
which means the charger does not support all the  
features associated with the ship FET. The register  
bits list below all are locked at 0.  
EN_BATOC=0  
FORCE_SFET_OFF=0  
SDRV_CTRL=00  
When this bit is set to 1, the register bits list above  
become programmable, and the charger can support  
the features associated with the ship FET  
Type : RW  
POR: 0b  
0h = No ship FET populated  
1h = Ship FET populated  
Reserved  
6
5
RESERVED  
EN_IBAT  
R
0h  
0h  
R/W  
Reset by:  
WATCHDOG  
REG_RST  
IBAT pin output enable  
Type : RW  
POR: 0b  
0h = IBAT pin output is disabled (default)  
1h = IBAT pin output is enable  
4-3  
IBAT_REG_1:0  
R/W  
2h  
Reset by:  
Battery discharging current regulation in OTG mode  
WATCHDOG  
REG_RST  
Type : RW  
POR: 10b  
0h = 3A  
1h = 4A  
2h = 5A (default)  
3h = Disable  
2
1
EN_IINDPM  
EN_EXTILIM  
R/W  
R/W  
1h  
1h  
Reset by:  
WATCHDOG  
REG_RST  
Enable the internal IINDPM register input current  
regulation  
Type : RW  
POR: 1b  
0h = Disable  
1h = Enable (default)  
Reset by:  
Enable the external ILIM_HIZ pin input current  
regulation  
Type : RW  
POR: 1b  
REG_RST  
0h = Disable  
1h = Enable (default)  
68  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
 
 
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
Table 26. REG14_Charger_Control_5 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Notes  
Description  
0
EN_BATOC  
R/W  
0h  
Reset by:  
Enable the battery discharging current OCP  
WATCHDOG  
REG_RST  
Type : RW  
POR: 0b  
0h = Disable (default)  
1h = Enable  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
69  
Product Folder Links: BQ25790  
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
8.5.1.18 REG15_Reserved Register (Offset = 15h) [reset = 00h]  
REG15_Reserved is shown in Figure 56 and described in Table 27.  
Return to the Summary Table.  
Reserved Register  
Figure 56. REG15_Reserved Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
Table 27. REG15_Reserved Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7-0  
RESERVED  
R
0h  
Reserved  
70  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
 
 
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8.5.1.19 REG16_Temperature_Control Register (Offset = 16h) [reset = C0h]  
REG16_Temperature_Control is shown in Figure 57 and described in Table 28.  
Return to the Summary Table.  
Temperature Control  
Figure 57. REG16_Temperature_Control Register  
7
6
5
4
3
2
1
0
TREG_1:0  
R/W-3h  
TSHUT_1:0  
R/W-0h  
VBUS_PD_EN VAC1_PD_EN VAC2_PD_EN  
R/W-0h R/W-0h R/W-0h  
RESERVED  
R-0h  
Table 28. REG16_Temperature_Control Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7-6  
TREG_1:0  
R/W  
3h  
Reset by:  
WATCHDOG  
REG_RST  
Thermal regulation thresholds.  
Type : RW  
POR: 11b  
0h = 60°C  
1h = 80°C  
2h = 100°C  
3h = 120°C (default)  
5-4  
TSHUT_1:0  
R/W  
0h  
Reset by:  
WATCHDOG  
REG_RST  
Thermal shutdown thresholds.  
Type : RW  
POR: 00b  
0h = 150°C (default)  
1h = 130°C  
2h = 120°C  
3h = 85°C  
3
2
1
0
VBUS_PD_EN  
VAC1_PD_EN  
VAC2_PD_EN  
RESERVED  
R/W  
R/W  
R/W  
R
0h  
0h  
0h  
0h  
Reset by:  
REG_RST  
Enable VBUS pull down resistor (6k Ohm)  
Type : RW  
POR: 0b  
0h = Disable (default)  
1h = Enable  
Reset by:  
REG_RST  
Enable VAC1 pull down resistor  
Type : RW  
POR: 0b  
0h = Disable (default)  
1h = Enable  
Reset by:  
REG_RST  
Enable VAC2 pull down resistor  
Type : RW  
POR: 0b  
0h = Disable (default)  
1h = Enable  
Reserved  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
71  
Product Folder Links: BQ25790  
 
 
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
8.5.1.20 REG17_NTC_Control_0 Register (Offset = 17h) [reset = 7Ah]  
REG17_NTC_Control_0 is shown in Figure 58 and described in Table 29.  
Return to the Summary Table.  
NTC Control 0  
Figure 58. REG17_NTC_Control_0 Register  
7
6
5
4
3
2
1
0
JEITA_VSET_2:0  
R/W-3h  
JEITA_ISETH_1:0  
R/W-3h  
JEITA_ISETC_1:0  
R/W-1h  
RESERVED  
R-0h  
Table 29. REG17_NTC_Control_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7-5  
JEITA_VSET_2:0  
R/W  
3h  
Reset by:  
JEITA high temperature range (TWARN – THOT)  
charge voltage setting  
Type : RW  
WATCHDOG  
REG_RST  
POR: 011b  
0h = Charge Suspend  
1h = Set VREG to VREG-800mV  
2h = Set VREG to VREG-600mV  
3h = Set VREG to VREG-400mV (default)  
4h = Set VREG to VREG-300mV  
5h = Set VREG to VREG-200mV  
6h = Set VREG to VREG-100mV  
7h = VREG unchanged  
4-3  
2-1  
0
JEITA_ISETH_1:0  
JEITA_ISETC_1:0  
RESERVED  
R/W  
R/W  
R
3h  
1h  
0h  
Reset by:  
WATCHDOG  
REG_RST  
JEITA high temperature range (TWARN – THOT)  
charge current setting  
Type : RW  
POR: 11b  
0h = Charge Suspend  
1h = Set ICHG to 20%* ICHG  
2h = Set ICHG to 40%* ICHG  
3h = ICHG unchanged (default)  
Reset by:  
WATCHDOG  
REG_RST  
JEITA low temperature range (TCOLD – TCOOL)  
charge current setting  
Type : RW  
POR: 01b  
0h = Charge Suspend  
1h = Set ICHG to 20%* ICHG (default)  
2h = Set ICHG to 40%* ICHG  
3h = ICHG unchanged  
Reserved  
72  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
 
 
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8.5.1.21 REG18_NTC_Control_1 Register (Offset = 18h) [reset = 54h]  
REG18_NTC_Control_1 is shown in Figure 59 and described in Table 30.  
Return to the Summary Table.  
NTC Control 1  
Figure 59. REG18_NTC_Control_1 Register  
7
6
5
4
3
2
1
0
TS_COOL_1:0  
R/W-1h  
TS_WARM_1:0  
R/W-1h  
BHOT_1:0  
R/W-1h  
BCOLD  
R/W-0h  
TS_IGNORE  
R/W-0h  
Table 30. REG18_NTC_Control_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7-6  
TS_COOL_1:0  
TS_WARM_1:0  
BHOT_1:0  
R/W  
1h  
Reset by:  
WATCHDOG  
REG_RST  
JEITA VT2 comparator voltage rising thresholds as a  
percentage of REGN. The corresponding temperature  
in the brackets is achieved when a 103AT NTC  
thermistor is used, RT1=5.24kΩ and RT2=30.31kΩ.  
Type : RW  
POR: 01b  
0h = 71.1% (5°C)  
1h = 68.4% (default) (10°C)  
2h = 65.5% (15°C)  
3h = 62.4% (20°C)  
5-4  
R/W  
1h  
Reset by:  
WATCHDOG  
REG_RST  
JEITA VT3 comparator voltage falling thresholds as a  
percentage of REGN. The corresponding temperature  
in the brackets is achieved when a 103AT NTC  
thermistor is used, RT1=5.24kΩ and RT2=30.31kΩ.  
Type : RW  
POR: 01b  
0h = 48.4% (40°C)  
1h = 44.8% (default) (45°C)  
2h = 41.2% (50°C)  
3h = 37.7% (55°C)  
3-2  
R/W  
1h  
Reset by:  
OTG mode TS HOT temperature threshold  
WATCHDOG  
REG_RST  
Type : RW  
POR: 01b  
0h = 55°C  
1h = 60°C (default)  
2h = 65°C  
3h = Disable  
1
0
BCOLD  
R/W  
R/W  
0h  
0h  
Reset by:  
WATCHDOG  
REG_RST  
OTG mode TS COLD temperature threshold  
Type : RW  
POR: 0b  
0h = -10°C (default)  
1h = -20°C  
TS_IGNORE  
Reset by:  
WATCHDOG  
REG_RST  
Ignore the TS feedback, the charger considers the TS  
is always good to allow the charging and OTG modes,  
all the four TS status bits always stay at 0000 to report  
the normal condition.  
Type : RW  
POR: 0b  
0h = NOT ignore (Default)  
1h = Ignore  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
73  
Product Folder Links: BQ25790  
 
 
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
8.5.1.22 REG19_ICO_Current_Limit Register (Offset = 19h) [reset = 0h]  
REG19_ICO_Current_Limit is shown in Figure 60 and described in Table 31.  
Return to the Summary Table.  
ICO Current Limit  
Figure 60. REG19_ICO_Current_Limit Register  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
RESERVED  
R-0h  
ICO_ILIM_8:0  
R-0h  
5
4
3
2
0
ICO_ILIM_8:0  
R-0h  
Table 31. REG19_ICO_Current_Limit Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-9  
8-0  
RESERVED  
R
0h  
RESERVED  
ICO_ILIM_8:0  
R
0h  
Input Current Limit obtained from ICO or ILIM_HIZ pin setting  
Type : R  
POR: 0mA (0h)  
Range : 100mA-3300mA  
Fixed Offset : 0mA  
Bit Step Size : 10mA  
Clamped Low  
74  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
 
 
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8.5.1.23 REG1B_Charger_Status_0 Register (Offset = 1Bh) [reset = 0h]  
REG1B_Charger_Status_0 is shown in Figure 61 and described in Table 32.  
Return to the Summary Table.  
Charger Status 0  
Figure 61. REG1B_Charger_Status_0 Register  
7
6
5
4
3
2
1
0
IINDPM_STAT VINDPM_STAT  
WD_STAT  
POORSRC_ST  
AT  
PG_STAT  
AC2_PRESEN AC1_PRESEN VBUS_PRESE  
T_STAT  
T_STAT  
NT_STAT  
R-0h R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 32. REG1B_Charger_Status_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
2
1
IINDPM_STAT  
R
0h  
IINDPM status (forward mode) or IOTG status (OTG mode)  
Type : R  
POR: 0b  
0h = Normal  
1h = In IINDPM regulation or IOTG regulation  
VINDPM_STAT  
WD_STAT  
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
VINDPM status (forward mode) or VOTG status (OTG mode)  
Type : R  
POR: 0b  
0h = Normal  
1h = In VINDPM regulation or VOTG regualtion  
I2C watch dog timer status  
Type : R  
POR: 0b  
0h = Normal  
1h = WD timer expired  
POORSRC_STAT  
Poor source detection status  
Type : R  
POR: 0b  
0h = Normal  
1h = Weak adaptor detected  
PG_STAT  
Power Good Status  
Type : R  
POR: 0b  
0h = NOT in power good status  
1h = Power good  
AC2_PRESENT_STAT  
AC1_PRESENT_STAT  
VAC2 insert status  
Type : R  
POR: 0b  
0h = VAC2 NOT present  
1h = VAC2 present (above present threshold)  
VAC1 insert status  
Type : R  
POR: 0b  
0h = VAC1 NOT present  
1h = VAC1 present (above present threshold)  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
75  
Product Folder Links: BQ25790  
 
 
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
Table 32. REG1B_Charger_Status_0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
VBUS_PRESENT_STAT  
R
0h  
VBUS present status  
Type : R  
POR: 0b  
0h = VBUS NOT present  
1h = VBUS present (above present threshold)  
76  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8.5.1.24 REG1C_Charger_Status_1 Register (Offset = 1Ch) [reset = 0h]  
REG1C_Charger_Status_1 is shown in Figure 62 and described in Table 33.  
Return to the Summary Table.  
Charger Status 1  
Figure 62. REG1C_Charger_Status_1 Register  
7
6
5
4
3
2
1
0
CHG_STAT_2:0  
VBUS_STAT_3:0  
BC1.2_DONE_  
STAT  
R-0h  
R-0h  
R-0h  
Table 33. REG1C_Charger_Status_1 Register Field Descriptions  
Bit  
7-5  
Field  
Type  
Reset  
Description  
CHG_STAT_2:0  
R
0h  
Charge Status bits  
Type : R  
POR: 000b  
0h = Not Charging  
1h = Trickle Charge  
2h = Pre-charge  
3h = Fast charge (CC mode)  
4h = Taper Charge (CV mode)  
5h = Reserved  
6h = Top-off Timer Active Charging  
7h = Charge Termination Done  
4-1  
VBUS_STAT_3:0  
R
0h  
VBUS status bits  
0h: No Input or BHOT or BCOLD in OTG mode  
1h: USB SDP (500mA)  
2h: USB CDP (1.5A)  
3h: USB DCP (3.25A)  
4h: Adjustable High Voltage DCP (HVDCP) (1.5A)  
5h: Unknown adaptor (3A)  
6h: Non-Standard Adapter (1A/2A/2.1A/2.4A)  
7h: In OTG mode  
8h: Not qualified adaptor  
9h: Reserved  
Ah: Reserved  
Bh: Device directly powered from VBUS  
Ch: Reserved  
Dh: Reserved  
Eh: Reserved  
Fh: Reserved  
Type : R  
POR: 0h  
0
BC1.2_DONE_STAT  
R
0h  
BC1.2 status bit  
Type : R  
POR: 0b  
0h = BC1.2 or non-standard detection NOT complete  
1h = BC1.2 or non-standard detection complete  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
77  
Product Folder Links: BQ25790  
 
 
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
8.5.1.25 REG1D_Charger_Status_2 Register (Offset = 1Dh) [reset = 0h]  
REG1D_Charger_Status_2 is shown in Figure 63 and described in Table 34.  
Return to the Summary Table.  
Charger Status 2  
Figure 63. REG1D_Charger_Status_2 Register  
7
6
5
4
3
2
1
0
ICO_STAT_1:0  
R-0h  
RESERVED  
TREG_STAT  
DPDM_STAT  
VBAT_PRESE  
NT_STAT  
R-0h  
R-0h  
R-0h  
R-0h  
Table 34. REG1D_Charger_Status_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
ICO_STAT_1:0  
R
0h  
Input Current Optimizer (ICO) status  
Type : R  
POR: 00b  
0h = ICO disabled  
1h = ICO optimization in progress  
2h = Maximum input current detected  
3h = Reserved  
5-3  
2
RESERVED  
TREG_STAT  
R
R
0h  
0h  
RESERVED  
IC thermal regulation status  
Type : R  
POR: 0b  
0h = Normal  
1h = Device in thermal regulation  
1
0
DPDM_STAT  
R
R
0h  
0h  
D+/D- detection status bits  
Type : R  
POR: 0b  
0h = The D+/D- detection is NOT started yet, or the detection is  
done  
1h = The D+/D- detection is ongoing  
VBAT_PRESENT_STAT  
Battery present status (VBAT > VBAT_UVLOZ  
)
Type : R  
POR: 0b  
0h = VBAT NOT present  
1h = VBAT present  
78  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
 
 
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8.5.1.26 REG1E_Charger_Status_3 Register (Offset = 1Eh) [reset = 0h]  
REG1E_Charger_Status_3 is shown in Figure 64 and described in Table 35.  
Return to the Summary Table.  
Charger Status 3  
Figure 64. REG1E_Charger_Status_3 Register  
7
6
5
4
3
2
1
0
ACRB2_STAT ACRB1_STAT ADC_DONE_S  
TAT  
VSYS_STAT  
CHG_TMR_ST TRICHG_TMR_ PRECHG_TMR  
RESERVED  
AT  
STAT  
_STAT  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 35. REG1E_Charger_Status_3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
2
1
0
ACRB2_STAT  
R
0h  
The ACFET2-RBFET2 status  
Type : R  
POR: 0b  
0h = ACFET2-RBFET2 is NOT placed  
1h = ACFET2-RBFET2 is placed  
ACRB1_STAT  
R
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
The ACFET1-RBFET1 status  
Type : R  
POR: 0b  
0h = ACFET1-RBFET1 is NOT placed  
1h = ACFET1-RBFET1 is placed  
ADC_DONE_STAT  
VSYS_STAT  
ADC Conversion Status (in one-shot mode only)  
Type : R  
POR: 0b  
0h = Conversion NOT complete  
1h = Conversion complete  
VSYS Regulation Status (forward mode)  
Type : R  
POR: 0b  
0h = Not in VSYSMIN regulation (VBAT > VSYSMIN  
)
1h = In VSYSMIN regulation (VBAT < VSYSMIN  
)
CHG_TMR_STAT  
TRICHG_TMR_STAT  
PRECHG_TMR_STAT  
RESERVED  
Fast charge timer status  
Type : R  
POR: 0b  
0h = Normal  
1h = Safety timer expired  
Trickle charge timer status  
Type : R  
POR: 0b  
0h = Normal  
1h = Safety timer expired  
Pre-charge timer status  
Type : R  
POR: 0b  
0h = Normal  
1h = Safety timer expired  
RESERVED  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
79  
Product Folder Links: BQ25790  
 
 
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
8.5.1.27 REG1F_Charger_Status_4 Register (Offset = 1Fh) [reset = 0h]  
REG1F_Charger_Status_4 is shown in Figure 65 and described in Table 36.  
Return to the Summary Table.  
Charger Status 4  
Figure 65. REG1F_Charger_Status_4 Register  
7
6
5
4
3
2
1
0
RESERVED  
VBATOTG_LO TS_COLD_STA TS_COOL_ST TS_WARM_ST TS_HOT_STAT  
W_STAT  
T
AT  
AT  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 36. REG1F_Charger_Status_4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4
RESERVED  
R
0h  
RESERVED  
VBATOTG_LOW_STAT  
R
0h  
The battery voltage is too low to enable OTG mode.  
Type : R  
POR: 0b  
0h = The battery voltage is high enough to enable the OTG  
operation  
1h = The battery volage is too low to enable the OTG operation  
3
2
1
0
TS_COLD_STAT  
TS_COOL_STAT  
TS_WARM_STAT  
TS_HOT_STAT  
R
R
R
R
0h  
0h  
0h  
0h  
The TS temperature is in the cold range, lower than T1.  
Type : R  
POR: 0b  
0h = TS status is NOT in cold range  
1h = TS status is in cold range  
The TS temperature is in the cool range, between T1 and T2.  
Type : R  
POR: 0b  
0h = TS status is NOT in cool range  
1h = TS status is in cool range  
The TS temperature is in the warm range, between T3 and T5.  
Type : R  
POR: 0b  
0h = TS status is NOT in warm range  
1h = TS status is in warm range  
The TS temperature is in the hot range, higher than T5.  
Type : R  
POR: 0b  
0h = TS status is NOT in hot range  
1h = TS status is in hot range  
80  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
 
 
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8.5.1.28 REG20_FAULT_Status_0 Register (Offset = 20h) [reset = 0h]  
REG20_FAULT_Status_0 is shown in Figure 66 and described in Table 37.  
Return to the Summary Table.  
FAULT Status 0  
Figure 66. REG20_FAULT_Status_0 Register  
7
6
5
4
3
2
1
0
IBAT_REG_ST VBUS_OVP_S VBAT_OVP_ST IBUS_OCP_ST IBAT_OCP_ST CONV_OCP_S VAC2_OVP_ST VAC1_OVP_ST  
AT  
TAT  
AT  
AT  
AT  
TAT  
AT  
AT  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 37. REG20_FAULT_Status_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
2
1
IBAT_REG_STAT  
VBUS_OVP_STAT  
VBAT_OVP_STAT  
IBUS_OCP_STAT  
IBAT_OCP_STAT  
CONV_OCP_STAT  
VAC2_OVP_STAT  
R
0h  
IBAT regulation status  
Type : R  
POR: 0b  
0h = Normal  
1h = Device in battery discharging current regulation  
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
VBUS over-voltage status  
Type : R  
POR: 0b  
0h = Normal  
1h = Device in over voltage protection  
VBAT over-voltage status  
Type : R  
POR: 0b  
0h = Normal  
1h = Device in over voltage protection  
IBUS over-current status  
Type : R  
POR: 0b  
0h = Normal  
1h = Device in over current protection  
IBAT over-current status  
Type : R  
POR: 0b  
0h = Normal  
1h = Device in over current protection  
Converter over current status  
Type : R  
POR: 0b  
0h = Normal  
1h = Converter in over current protection  
VAC2 over-voltage status  
Type : R  
POR: 0b  
0h = Normal  
1h = Device in over voltage protection  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
81  
Product Folder Links: BQ25790  
 
 
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
Table 37. REG20_FAULT_Status_0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
VAC1_OVP_STAT  
R
0h  
VAC1 over-voltage status  
Type : R  
POR: 0b  
0h = Normal  
1h = Device in over voltage protection  
82  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8.5.1.29 REG21_FAULT_Status_1 Register (Offset = 21h) [reset = 0h]  
REG21_FAULT_Status_1 is shown in Figure 67 and described in Table 38.  
Return to the Summary Table.  
FAULT Status 1  
Figure 67. REG21_FAULT_Status_1 Register  
7
6
5
4
3
2
1
0
VSYS_SHORT VSYS_OVP_S OTG_OVP_ST OTG_UVP_ST  
RESERVED  
TSHUT_STAT  
RESERVED  
R-0h  
_STAT  
TAT  
AT  
AT  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 38. REG21_FAULT_Status_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
VSYS_SHORT_STAT  
VSYS_OVP_STAT  
OTG_OVP_STAT  
OTG_UVP_STAT  
R
0h  
VSYS short circuit status  
Type : R  
POR: 0b  
0h = Normal  
1h = Device in SYS short circuit protection  
6
5
4
R
R
R
0h  
0h  
0h  
VSYS over-voltage status  
Type : R  
POR: 0b  
0h = Normal  
1h = Device in SYS over-voltage protection  
OTG over voltage status  
Type : R  
POR: 0b  
0h = Normal  
1h = Device in OTG over-voltage  
OTG under voltage status.  
Type : R  
POR: 0b  
0h = Normal  
1h = Device in OTG under voltage  
3
2
RESERVED  
R
R
0h  
0h  
RESERVED  
TSHUT_STAT  
IC temperature shutdown status  
Type : R  
POR: 0b  
0h = Normal  
1h = Device in thermal shutdown protection  
1-0  
RESERVED  
R
0h  
RESERVED  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
83  
Product Folder Links: BQ25790  
 
 
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
8.5.1.30 REG22_Charger_Flag_0 Register (Offset = 22h) [reset = 0h]  
REG22_Charger_Flag_0 is shown in Figure 68 and described in Table 39.  
Return to the Summary Table.  
Charger Flag 0  
Figure 68. REG22_Charger_Flag_0 Register  
7
6
5
4
3
2
1
0
IINDPM_FLAG VINDPM_FLAG  
WD_FLAG  
POORSRC_FL  
AG  
PG_FLAG  
AC2_PRESEN AC1_PRESEN VBUS_PRESE  
T_FLAG  
T_FLAG  
NT_FLAG  
R-0h R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 39. REG22_Charger_Flag_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
IINDPM_FLAG  
VINDPM_FLAG  
WD_FLAG  
R
0h  
IINDPM / IOTG flag  
Type : R  
POR: 0b  
0h = Normal  
1h = IINDPM / IOTG signal rising edge detected  
R
R
R
R
0h  
0h  
0h  
0h  
VINDPM / VOTG Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = VINDPM / VOTG regulation signal rising edge detected  
I2C watchdog timer flag  
Type : R  
POR: 0b  
0h = Normal  
1h = WD timer signal rising edge detected  
POORSRC_FLAG  
Poor source detection flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Poor source status rising edge detected  
PG_FLAG  
Power good flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Any change in PG_STAT even (adapter good qualification  
or adapter good going away)  
2
1
AC2_PRESENT_FLAG  
AC1_PRESENT_FLAG  
R
R
0h  
0h  
VAC2 present flag  
Type : R  
POR: 0b  
0h = Normal  
1h = VAC2 present status changed  
VAC1 present flag  
Type : R  
POR: 0b  
0h = Normal  
1h = VAC1 present status changed  
84  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
 
 
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
Table 39. REG22_Charger_Flag_0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
VBUS_PRESENT_FLAG  
R
0h  
VBUS present flag  
Type : R  
POR: 0b  
0h = Normal  
1h = VBUS present status changed  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
85  
Product Folder Links: BQ25790  
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
8.5.1.31 REG23_Charger_Flag_1 Register (Offset = 23h) [reset = 0h]  
REG23_Charger_Flag_1 is shown in Figure 69 and described in Table 40.  
Return to the Summary Table.  
Charger Flag 1  
Figure 69. REG23_Charger_Flag_1 Register  
7
6
5
4
3
2
1
0
CHG_FLAG  
ICO_FLAG  
RESERVED  
VBUS_FLAG  
RESERVED  
TREG_FLAG  
VBAT_PRESE BC1.2_DONE_  
NT_FLAG  
FLAG  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 40. REG23_Charger_Flag_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CHG_FLAG  
R
0h  
Charge status flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Charge status changed  
6
ICO_FLAG  
R
0h  
ICO status flag  
Type : R  
POR: 0b  
0h = Normal  
1h = ICO status changed  
5
4
RESERVED  
VBUS_FLAG  
R
R
0h  
0h  
RESERVED  
VBUS status flag  
Type : R  
POR: 0b  
0h = Normal  
1h = VBUS status changed  
3
2
RESERVED  
TREG_FLAG  
R
R
0h  
0h  
RESERVED  
IC thermal regulation flag  
Type : R  
POR: 0b  
0h = Normal  
1h = TREG signal rising threshold detected  
1
0
VBAT_PRESENT_FLAG  
BC1.2_DONE_FLAG  
R
R
0h  
0h  
VBAT present flag  
Type : R  
POR: 0b  
0h = Normal  
1h = VBAT present status changed  
BC1.2 status Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = BC1.2 detection status changed  
86  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
 
 
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8.5.1.32 REG24_Charger_Flag_2 Register (Offset = 24h) [reset = 0h]  
REG24_Charger_Flag_2 is shown in Figure 70 and described in Table 41.  
Return to the Summary Table.  
Charger Flag 2  
Figure 70. REG24_Charger_Flag_2 Register  
7
6
5
4
3
2
1
0
RESERVED  
DPDM_DONE_ ADC_DONE_F  
VSYS_FLAG  
CHG_TMR_FL TRICHG_TMR_ PRECHG_TMR TOPOFF_TMR  
FLAG  
LAG  
AG  
FLAG  
_FLAG  
_FLAG  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 41. REG24_Charger_Flag_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESERVED  
R
0h  
RESERVED  
6
5
4
3
2
1
0
DPDM_DONE_FLAG  
R
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
D+/D- detection is done flag.  
Type : R  
POR: 0b  
0h = D+/D- detection is NOT started or still ongoing  
1h = D+/D- detection is completed  
ADC_DONE_FLAG  
VSYS_FLAG  
ADC conversion flag (only in one-shot mode)  
Type : R  
POR: 0b  
0h = Conversion NOT completed  
1h = Conversion completed  
VSYSMIN regulation flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Entered or existed VSYSMIN regulation  
CHG_TMR_FLAG  
TRICHG_TMR_FLAG  
PRECHG_TMR_FLAG  
TOPOFF_TMR_FLAG  
Fast charge timer flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Fast charge timer expired rising edge detected  
Trickle charge timer flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Trickle charger timer expired rising edge detected  
Pre-charge timer flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Pre-charge timer expired rising edge detected  
Top off timer flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Top off timer expired rising edge detected  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
87  
Product Folder Links: BQ25790  
 
 
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
8.5.1.33 REG25_Charger_Flag_3 Register (Offset = 25h) [reset = 0h]  
REG25_Charger_Flag_3 is shown in Figure 71 and described in Table 42.  
Return to the Summary Table.  
Charger Flag 3  
Figure 71. REG25_Charger_Flag_3 Register  
7
6
5
4
3
2
1
0
RESERVED  
VBATOTG_LO TS_COLD_FLA TS_COOL_FLA TS_WARM_FL TS_HOT_FLAG  
W_FLAG  
G
G
AG  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 42. REG25_Charger_Flag_3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4
RESERVED  
R
0h  
RESERVED  
VBATOTG_LOW_FLAG  
TS_COLD_FLAG  
TS_COOL_FLAG  
TS_WARM_FLAG  
TS_HOT_FLAG  
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
VBAT too low to enable OTG flag  
Type : R  
POR: 0b  
0h = Normal  
1h = VBAT falls below the threshold to enable the OTG mode  
3
2
1
0
TS cold temperature flag  
Type : R  
POR: 0b  
0h = Normal  
1h = TS across cold temperature (T1) is detected  
TS cool temperature flag  
Type : R  
POR: 0b  
0h = Normal  
1h = TS across cool temperature (T2) is detected  
TS warm temperature flag  
Type : R  
POR: 0b  
0h = Normal  
1h = TS across warm temperature (T3) is detected  
TS hot temperature flag  
Type : R  
POR: 0b  
0h = Normal  
1h = TS across hot temperature (T5) is detected  
88  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
 
 
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8.5.1.34 REG26_FAULT_Flag_0 Register (Offset = 26h) [reset = 0h]  
REG26_FAULT_Flag_0 is shown in Figure 72 and described in Table 43.  
Return to the Summary Table.  
FAULT Flag 0  
Figure 72. REG26_FAULT_Flag_0 Register  
7
6
5
4
3
2
1
0
IBAT_REG_FL VBUS_OVP_FL VBAT_OVP_FL IBUS_OCP_FL IBAT_OCP_FL CONV_OCP_F VAC2_OVP_FL VAC1_OVP_FL  
AG  
AG  
AG  
AG  
AG  
LAG  
AG  
AG  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 43. REG26_FAULT_Flag_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
2
1
IBAT_REG_FLAG  
VBUS_OVP_FLAG  
VBAT_OVP_FLAG  
IBUS_OCP_FLAG  
IBAT_OCP_FLAG  
CONV_OCP_FLAG  
VAC2_OVP_FLAG  
R
0h  
IBAT regulation flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Enter or exit IBAT regulation  
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
VBUS over-voltage flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Enter VBUS OVP  
VBAT over-voltage flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Enter VBAT OVP  
IBUS over-current flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Enter IBUS OCP  
IBAT over-current flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Enter discharged OCP  
Converter over-current flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Enter converter OCP  
VAC2 over-voltage flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Enter VAC2 OVP  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
89  
Product Folder Links: BQ25790  
 
 
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
Table 43. REG26_FAULT_Flag_0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
VAC1_OVP_FLAG  
R
0h  
VAC1 over-voltage flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Enter VAC1 OVP  
90  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8.5.1.35 REG27_FAULT_Flag_1 Register (Offset = 27h) [reset = 0h]  
REG27_FAULT_Flag_1 is shown in Figure 73 and described in Table 44.  
Return to the Summary Table.  
FAULT Flag 1  
Figure 73. REG27_FAULT_Flag_1 Register  
7
6
5
4
3
2
1
0
VSYS_SHORT VSYS_OVP_FL OTG_OVP_FL OTG_UVP_FL  
RESERVED  
TSHUT_FLAG  
RESERVED  
R-0h  
_FLAG  
AG  
AG  
AG  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 44. REG27_FAULT_Flag_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
VSYS_SHORT_FLAG  
VSYS_OVP_FLAG  
OTG_OVP_FLAG  
OTG_UVP_FLAG  
R
0h  
VSYS short circuit flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Stop switching due to system short  
6
5
4
R
R
R
0h  
0h  
0h  
VSYS over-voltage flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Stop switching due to system over-voltage  
OTG over-voltage flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Stop OTG due to VBUS over voltage  
OTG under-voltage flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Stop OTG due to VBUS under-voltage  
3
2
RESERVED  
R
R
0h  
0h  
RESERVED  
TSHUT_FLAG  
IC thermal shutdown flag  
Type : R  
POR: 0b  
0h = Normal  
1h = TS shutdown signal rising threshold detected  
1-0  
RESERVED  
R
0h  
RESERVED  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
91  
Product Folder Links: BQ25790  
 
 
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
8.5.1.36 REG28_Charger_Mask_0 Register (Offset = 28h) [reset = 0h]  
REG28_Charger_Mask_0 is shown in Figure 74 and described in Table 45.  
Return to the Summary Table.  
Charger Mask 0  
Figure 74. REG28_Charger_Mask_0 Register  
7
6
5
4
3
2
1
0
IINDPM_MASK VINDPM_MAS  
K
WD_MASK  
POORSRC_MA  
SK  
PG_MASK  
AC2_PRESEN AC1_PRESEN VBUS_PRESE  
T_MASK  
T_MASK  
NT_MASK  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 45. REG28_Charger_Mask_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
6
5
IINDPM_MASK  
VINDPM_MASK  
WD_MASK  
R/W  
0h  
Reset by:  
REG_RST  
IINDPM / IOTG mask flag  
Type : RW  
POR: 0b  
0h = Enter IINDPM / IOTG does produce INT pulse  
1h = Enter IINDPM / IOTG does NOT produce INT  
pulse  
R/W  
R/W  
0h  
0h  
Reset by:  
REG_RST  
VINDPM / VOTG mask flag  
Type : RW  
POR: 0b  
0h = Enter VINDPM / VOTG does produce INT pulse  
1h = Enter VINDPM / VOTG does NOT produce INT  
pulse  
Reset by:  
REG_RST  
I2C watch dog timer mask flag  
Type : RW  
POR: 0b  
0h = I2C watch dog timer expired does produce INT  
pulse  
1h = I2C watch dog timer expired does NOT produce  
INT pulse  
4
3
2
POORSRC_MASK  
PG_MASK  
R/W  
R/W  
0h  
0h  
0h  
Reset by:  
REG_RST  
Poor source detection mask flag  
Type : RW  
POR: 0b  
0h = Poor source detected does produce INT  
1h = Poor source detected does NOT produce INT  
Reset by:  
REG_RST  
Power Good mask flag  
Type : RW  
POR: 0b  
0h = PG toggle does produce INT  
1h = PG toggle does NOT produce INT  
AC2_PRESENT_MA R/W  
SK  
Reset by:  
REG_RST  
VAC2 present mask flag  
Type : RW  
POR: 0b  
0h = VAC2 present status change does produce INT  
1h = VAC2 present status change does NOT produce  
INT  
1
AC1_PRESENT_MA R/W  
SK  
0h  
Reset by:  
REG_RST  
VAC1 present mask flag  
Type : RW  
POR: 0b  
0h = VAC1 present status change does produce INT  
1h = VAC1 present status change does NOT produce  
INT  
92  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
 
 
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
Table 45. REG28_Charger_Mask_0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Notes  
Description  
0
VBUS_PRESENT_  
MASK  
R/W  
0h  
Reset by:  
REG_RST  
VBUS present mask flag  
Type : RW  
POR: 0b  
0h = VBUS present status change does produce INT  
1h = VBUS present status change does NOT produce  
INT  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
93  
Product Folder Links: BQ25790  
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
8.5.1.37 REG29_Charger_Mask_1 Register (Offset = 29h) [reset = 0h]  
REG29_Charger_Mask_1 is shown in Figure 75 and described in Table 46.  
Return to the Summary Table.  
Charger Mask 1  
Figure 75. REG29_Charger_Mask_1 Register  
7
6
5
4
3
2
1
0
CHG_MASK  
ICO_MASK  
RESERVED  
VBUS_MASK  
RESERVED  
TREG_MASK  
VBAT_PRESE BC1.2_DONE_  
NT_MASK  
MASK  
R/W-0h  
R/W-0h  
R-0h  
R/W-0h  
R-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 46. REG29_Charger_Mask_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
CHG_MASK  
ICO_MASK  
R/W  
0h  
Reset by:  
REG_RST  
Charge status mask flag  
Type : RW  
POR: 0b  
0h = Charging status change does produce INT  
1h = Charging status change does NOT produce INT  
6
R/W  
0h  
Reset by:  
REG_RST  
ICO status mask flag  
Type : RW  
POR: 0b  
0h = ICO status change does produce INT  
1h = ICO status change does NOT produce INT  
RESERVED  
5
4
RESERVED  
R
0h  
0h  
VBUS_MASK  
R/W  
Reset by:  
REG_RST  
VBUS status mask flag  
Type : RW  
POR: 0b  
0h = VBUS status change does produce INT  
1h = VBUS status change does NOT produce INT  
RESERVED  
3
2
RESERVED  
R
0h  
0h  
TREG_MASK  
R/W  
Reset by:  
REG_RST  
IC thermal regulation mask flag  
Type : RW  
POR: 0b  
0h = entering TREG does produce INT  
1h = entering TREG does NOT produce INT  
1
0
VBAT_PRESENT_M R/W  
ASK  
0h  
0h  
Reset by:  
REG_RST  
VBAT present mask flag  
Type : RW  
POR: 0b  
0h = VBAT present status change does produce INT  
1h = VBAT present status change does NOT produce  
INT  
BC1.2_DONE_MAS R/W  
K
Reset by:  
REG_RST  
BC1.2 status mask flag  
Type : RW  
POR: 0b  
0h = BC1.2 status change does produce INT  
1h = BC1.2 status change does NOT produce INT  
94  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
 
 
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8.5.1.38 REG2A_Charger_Mask_2 Register (Offset = 2Ah) [reset = 0h]  
REG2A_Charger_Mask_2 is shown in Figure 76 and described in Table 47.  
Return to the Summary Table.  
Charger Mask 2  
Figure 76. REG2A_Charger_Mask_2 Register  
7
6
5
4
3
2
1
0
RESERVED  
DPDM_DONE_ ADC_DONE_M VSYS_MASK CHG_TMR_MA TRICHG_TMR_ PRECHG_TMR TOPOFF_TMR  
MASK  
ASK  
SK  
MASK  
_MASK  
_MASK  
R-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 47. REG2A_Charger_Mask_2 Register Field Descriptions  
Bit  
7
Field  
RESERVED  
Type  
Reset  
0h  
Notes  
Description  
R
RESERVED  
6
DPDM_DONE_MAS R/W  
K
0h  
Reset by:  
REG_RST  
D+/D- detection is done mask flag  
Type : RW  
POR: 0b  
0h = D+/D- detection done does produce INT pulse  
1h = D+/D- detection done does NOT produce INT  
pulse  
5
4
ADC_DONE_MASK R/W  
0h  
0h  
Reset by:  
REG_RST  
ADC conversion mask flag (only in one-shot mode)  
Type : RW  
POR: 0b  
0h = ADC conversion done does produce INT pulse  
1h = ADC conversion done does NOT produce INT  
pulse  
VSYS_MASK  
R/W  
R/W  
Reset by:  
REG_RST  
VSYS min regulation mask flag  
Type : RW  
POR: 0b  
0h = enter or exit VSYSMIN regulation does produce  
INT pulse  
1h = enter or exit VSYSMIN regulation does NOT  
produce INT pulse  
3
2
CHG_TMR_MASK  
0h  
0h  
Reset by:  
REG_RST  
Fast charge timer mask flag  
Type : RW  
POR: 0b  
0h = Fast charge timer expire does produce INT  
1h = Fast charge timer expire does NOT produce INT  
TRICHG_TMR_MAS R/W  
K
Reset by:  
REG_RST  
Trickle charge timer mask flag  
Type : RW  
POR: 0b  
0h = Trickle charge timer expire does produce INT  
1h = Trickle charge timer expire does NOT produce  
INT  
1
0
PRECHG_TMR_MA R/W  
SK  
0h  
0h  
Reset by:  
REG_RST  
Pre-charge timer mask flag  
Type : RW  
POR: 0b  
0h = Pre-charge timer expire does produce INT  
1h = Pre-charge timer expire does NOT produce INT  
TOPOFF_TMR_MA R/W  
SK  
Reset by:  
REG_RST  
Top off timer mask flag  
Type : RW  
POR: 0b  
0h = Top off timer expire does produce INT  
1h = Top off timer expire does NOT produce INT  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
95  
Product Folder Links: BQ25790  
 
 
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
8.5.1.39 REG2B_Charger_Mask_3 Register (Offset = 2Bh) [reset = 0h]  
REG2B_Charger_Mask_3 is shown in Figure 77 and described in Table 48.  
Return to the Summary Table.  
Charger Mask 3  
Figure 77. REG2B_Charger_Mask_3 Register  
7
6
5
4
3
2
1
0
RESERVED  
VBATOTG_LO TS_COLD_MA TS_COOL_MA TS_WARM_MA TS_HOT_MAS  
W_MASK  
SK  
SK  
SK  
K
R-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 48. REG2B_Charger_Mask_3 Register Field Descriptions  
Bit  
7-5  
4
Field  
Type  
Reset  
0h  
Notes  
Description  
RESERVED  
R
RESERVED  
VBATOTG_LOW_M R/W  
ASK  
0h  
Reset by:  
WATCHDOG  
REG_RST  
VBAT too low to enable OTG mask  
Type : RW  
POR: 0b  
0h = VBAT falling below the threshold to enable the  
OTG mode, does produce INT  
1h = VBAT falling below the threshold to enable the  
OTG mode, does NOT produce INT  
3
2
1
0
TS_COLD_MASK  
TS_COOL_MASK  
TS_WARM_MASK  
TS_HOT_MASK  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
Reset by:  
WATCHDOG  
REG_RST  
TS cold temperature interrupt mask  
Type : RW  
POR: 0b  
0h = TS across cold temperature (T1) does produce  
INT  
1h = TS across cold temperature (T1) does NOT  
produce INT  
Reset by:  
WATCHDOG  
REG_RST  
TS cool temperature interrupt mask  
Type : RW  
POR: 0b  
0h = TS across cool temperature (T2) does produce  
INT  
1h = TS across cool temperature (T2) does NOT  
produce INT  
Reset by:  
WATCHDOG  
REG_RST  
TS warm temperature interrupt mask  
Type : RW  
POR: 0b  
0h = TS across warm temperature (T3) does produce  
INT  
1h = TS across warm temperature (T3) does NOT  
produce INT  
Reset by:  
TS hot temperature interrupt mask  
WATCHDOG  
REG_RST  
Type : RW  
POR: 0b  
0h = TS across hot temperature (T5) does produce  
INT  
1h = TS across hot temperature (T5) does NOT  
produce INT  
96  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
 
 
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8.5.1.40 REG2C_FAULT_Mask_0 Register (Offset = 2Ch) [reset = 0h]  
REG2C_FAULT_Mask_0 is shown in Figure 78 and described in Table 49.  
Return to the Summary Table.  
FAULT Mask 0  
Figure 78. REG2C_FAULT_Mask_0 Register  
7
6
5
4
3
2
1
0
IBAT_REG_MA VBUS_OVP_M VBAT_OVP_M IBUS_OCP_MA IBAT_OCP_MA CONV_OCP_M VAC2_OVP_M VAC1_OVP_M  
SK  
ASK  
ASK  
SK  
SK  
ASK  
ASK  
ASK  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 49. REG2C_FAULT_Mask_0 Register Field Descriptions  
Bit  
Field  
IBAT_REG_MASK  
Type  
Reset  
Notes  
Description  
7
R/W  
0h  
Reset by:  
REG_RST  
IBAT regulation mask flag  
Type : RW  
POR: 0b  
0h = enter or exit IBAT regulation does produce INT  
1h = enter or exit IBAT regulation does NOT produce  
INT  
6
5
4
3
2
1
0
VBUS_OVP_MASK R/W  
VBAT_OVP_MASK R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Reset by:  
REG_RST  
VBUS over-voltage mask flag  
Type : RW  
POR: 0b  
0h = entering VBUS OVP does produce INT  
1h = entering VBUS OVP does NOT produce INT  
Reset by:  
REG_RST  
VBAT over-voltage mask flag  
Type : RW  
POR: 0b  
0h = entering VBAT OVP does produce INT  
1h = entering VBAT OVP does NOT produce INT  
IBUS_OCP_MASK  
IBAT_OCP_MASK  
R/W  
R/W  
Reset by:  
REG_RST  
IBUS over-current mask flag  
Type : RW  
POR: 0b  
0h = IBUS OCP fault does produce INT  
1h = IBUS OCP fault does NOT produce INT  
Reset by:  
REG_RST  
IBAT over-current mask flag  
Type : RW  
POR: 0b  
0h = IBAT OCP fault does produce INT  
1h = IBAT OCP fault does NOT produce INT  
CONV_OCP_MASK R/W  
VAC2_OVP_MASK R/W  
VAC1_OVP_MASK R/W  
Reset by:  
REG_RST  
Converter over-current mask flag  
Type : RW  
POR: 0b  
0h = Converter OCP fault does produce INT  
1h = Converter OCP fault does NOT produce INT  
Reset by:  
REG_RST  
VAC2 over-voltage mask flag  
Type : RW  
POR: 0b  
0h = entering VAC2 OVP does produce INT  
1h = entering VAC2 OVP does NOT produce INT  
Reset by:  
REG_RST  
VAC1 over-voltage mask flag  
Type : RW  
POR: 0b  
0h = entering VAC1 OVP does produce INT  
1h = entering VAC1 OVP does NOT produce INT  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
97  
Product Folder Links: BQ25790  
 
 
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
8.5.1.41 REG2D_FAULT_Mask_1 Register (Offset = 2Dh) [reset = 0h]  
REG2D_FAULT_Mask_1 is shown in Figure 79 and described in Table 50.  
Return to the Summary Table.  
FAULT Mask 1  
Figure 79. REG2D_FAULT_Mask_1 Register  
7
6
5
4
3
2
1
0
VSYS_SHORT VSYS_OVP_M OTG_OVP_MA OTG_UVP_MA  
RESERVED  
TSHUT_MASK  
RESERVED  
R-0h  
_MASK  
ASK  
SK  
SK  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 50. REG2D_FAULT_Mask_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
6
5
VSYS_SHORT_MA R/W  
SK  
0h  
Reset by:  
REG_RST  
VSYS short circuit mask flag  
Type : RW  
POR: 0b  
0h = System short fault does produce INT  
1h = System short fault does NOT produce INT  
VSYS_OVP_MASK R/W  
0h  
0h  
Reset by:  
REG_RST  
VSYS over-voltage mask flag  
Type : RW  
POR: 0b  
0h = System over-voltage fault does produce INT  
1h = System over-voltage fault does NOT produce INT  
OTG_OVP_MASK  
OTG_UVP_MASK  
R/W  
R/W  
Reset by:  
REG_RST  
OTG over-voltage mask flag  
Type : RW  
POR: 0b  
0h = OTG VBUS over-voltage fault does produce INT  
1h = OTG VBUS over-voltage fault does NOT produce  
INT  
4
0h  
Reset by:  
REG_RST  
OTG under-voltage mask flag  
Type : RW  
POR: 0b  
0h = OTG VBUS under voltage fault does produce INT  
1h  
= OTG VBUS under voltage fault does NOT  
produce INT  
3
2
RESERVED  
R/W  
R/W  
0h  
0h  
RESERVED  
TSHUT_MASK  
Reset by:  
REG_RST  
IC thermal shutdown mask flag  
Type : RW  
POR: 0b  
0h = TSHUT does produce INT  
1h = TSHUT does NOT produce INT  
RESERVED  
1-0  
RESERVED  
R
0h  
98  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
 
 
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8.5.1.42 REG2E_ADC_Control Register (Offset = 2Eh) [reset = 30h]  
REG2E_ADC_Control is shown in Figure 80 and described in Table 51.  
Return to the Summary Table.  
ADC Control  
Figure 80. REG2E_ADC_Control Register  
7
6
5
4
3
2
1
0
ADC_EN  
ADC_RATE  
ADC_SAMPLE_1:0  
ADC_AVG  
ADC_AVG_INI  
T
RESERVED  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-3h  
R/W-0h  
R/W-0h  
Table 51. REG2E_ADC_Control Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
ADC_EN  
R/W  
0h  
Reset by:  
WATCHDOG  
REG_RST  
ADC Control  
Type : RW  
POR: 0b  
0h = Disable  
1h = Enable  
6
ADC_RATE  
R/W  
0h  
3h  
Reset by:  
REG_RST  
ADC conversion rate control  
Type : RW  
POR: 0b  
0h = Continuous conversion  
1h = One shot conversion  
5-4  
ADC_SAMPLE_1:0 R/W  
Reset by:  
REG_RST  
ADC sample speed  
Type : RW  
POR: 11b  
0h = 15 bit effective resolution  
1h = 14 bit effective resolution  
2h = 13 bit effective resolution  
3h = 12 bit effective resolution  
3
2
ADC_AVG  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Reset by:  
REG_RST  
ADC average control  
Type : RW  
POR: 0b  
0h = Single value  
1h = Running average  
ADC_AVG_INIT  
RESERVED  
Reset by:  
REG_RST  
ADC average initial value control  
Type : RW  
POR: 0b  
0h = Start average using the existing register value  
1h = Start average using a new ADC conversion  
RESERVED  
1-0  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
99  
Product Folder Links: BQ25790  
 
 
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
8.5.1.43 REG2F_ADC_Function_Disable_0 Register (Offset = 2Fh) [reset = 0h]  
REG2F_ADC_Function_Disable_0 is shown in Figure 81 and described in Table 52.  
Return to the Summary Table.  
ADC Function Disable 0  
Figure 81. REG2F_ADC_Function_Disable_0 Register  
7
6
5
4
3
2
1
0
IBUS_ADC_DI IBAT_ADC_DIS VBUS_ADC_DI VBAT_ADC_DI VSYS_ADC_DI TS_ADC_DIS  
TDIE_ADC_DI  
S
RESERVED  
S
S
S
S
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R-0h  
Table 52. REG2F_ADC_Function_Disable_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
6
5
4
3
2
1
0
IBUS_ADC_DIS  
IBAT_ADC_DIS  
VBUS_ADC_DIS  
VBAT_ADC_DIS  
VSYS_ADC_DIS  
TS_ADC_DIS  
R/W  
0h  
Reset by:  
REG_RST  
IBUS ADC control  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Reset by:  
REG_RST  
IBAT ADC control  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
Reset by:  
REG_RST  
VBUS ADC control  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
Reset by:  
REG_RST  
VBAT ADC control  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
Reset by:  
REG_RST  
VSYS ADC control  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
Reset by:  
REG_RST  
TS ADC control  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
TDIE_ADC_DIS  
RESERVED  
Reset by:  
REG_RST  
TDIE ADC control  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
RESERVED  
100  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
 
 
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8.5.1.44 REG30_ADC_Function_Disable_1 Register (Offset = 30h) [reset = 0h]  
REG30_ADC_Function_Disable_1 is shown in Figure 82 and described in Table 53.  
Return to the Summary Table.  
ADC Function Disable 1  
Figure 82. REG30_ADC_Function_Disable_1 Register  
7
6
5
4
3
2
1
0
DP_ADC_DIS  
DM_ADC_DIS VAC2_ADC_DI VAC1_ADC_DI  
RESERVED  
R-0h  
S
S
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 53. REG30_ADC_Function_Disable_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
DP_ADC_DIS  
DM_ADC_DIS  
VAC2_ADC_DIS  
VAC1_ADC_DIS  
RESERVED  
R/W  
0h  
Reset by:  
REG_RST  
D+ ADC Control  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
6
5
R/W  
R/W  
R/W  
R
0h  
0h  
0h  
0h  
Reset by:  
REG_RST  
D- ADC Control  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
Reset by:  
REG_RST  
VAC2 ADC Control  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
4
Reset by:  
REG_RST  
VAC1 ADC Control  
Type : RW  
POR: 0b  
0h = Enable (Default)  
1h = Disable  
3-0  
RESERVED  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
101  
Product Folder Links: BQ25790  
 
 
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
8.5.1.45 REG31_IBUS_ADC Register (Offset = 31h) [reset = 0h]  
REG31_IBUS_ADC is shown in Figure 83 and described in Table 54.  
Return to the Summary Table.  
IBUS ADC  
Figure 83. REG31_IBUS_ADC Register  
15  
7
14  
6
13  
12  
IBUS_ADC_15:0  
R-0h  
11  
10  
9
1
8
0
5
4
3
2
IBUS_ADC_15:0  
R-0h  
Table 54. REG31_IBUS_ADC Register Field Descriptions  
Bit  
15-0  
Field  
IBUS_ADC_15:0  
Type  
Reset  
Description  
R
0h  
IBUS ADC reading  
Reported in 2 's Complement.  
When the current is flowing from VBUS to PMID, IBUS ADC reports  
positive value, and when the current is flowing from PMID to VBUS,  
IBUS ADC reports negative value.  
Type : R  
POR: 0mA (0h)  
Range : 0mA-5000mA  
Fixed Offset : 0mA  
Bit Step Size : 1mA  
102  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
 
 
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8.5.1.46 REG33_IBAT_ADC Register (Offset = 33h) [reset = 0h]  
REG33_IBAT_ADC is shown in Figure 84 and described in Table 55.  
Return to the Summary Table.  
IBAT ADC  
Figure 84. REG33_IBAT_ADC Register  
15  
7
14  
6
13  
12  
IBAT_ADC_15:0  
R-0h  
11  
10  
9
1
8
0
5
4
3
2
IBAT_ADC_15:0  
R-0h  
Table 55. REG33_IBAT_ADC Register Field Descriptions  
Bit  
15-0  
Field  
IBAT_ADC_15:0  
Type  
Reset  
Description  
R
0h  
IBAT ADC reading  
Reported in 2 's Complement.  
The IBAT ADC reports positive value for the battery charging  
current, and negative value for the battery discharging current.  
Type : R  
POR: 0mA (0h)  
Range : 0mA-8000mA  
Fixed Offset : 0mA  
Bit Step Size : 1mA  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
103  
Product Folder Links: BQ25790  
 
 
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
8.5.1.47 REG35_VBUS_ADC Register (Offset = 35h) [reset = 0h]  
REG35_VBUS_ADC is shown in Figure 85 and described in Table 56.  
Return to the Summary Table.  
VBUS ADC  
Figure 85. REG35_VBUS_ADC Register  
15  
7
14  
6
13  
12  
VBUS_ADC_15:0  
R-0h  
11  
10  
9
1
8
0
5
4
3
2
VBUS_ADC_15:0  
R-0h  
Table 56. REG35_VBUS_ADC Register Field Descriptions  
Bit  
15-0  
Field  
VBUS_ADC_15:0  
Type  
Reset  
Description  
R
0h  
VBUS ADC reading  
Reported in 2 's Complement.  
Type : R  
POR: 0mV (0h)  
Range : 0mV-30000mV  
Fixed Offset : 0mV  
Bit Step Size : 1mV  
104  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
 
 
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8.5.1.48 REG37_VAC1_ADC Register (Offset = 37h) [reset = 0h]  
REG37_VAC1_ADC is shown in Figure 86 and described in Table 57.  
Return to the Summary Table.  
VAC1 ADC  
Figure 86. REG37_VAC1_ADC Register  
15  
7
14  
6
13  
12  
VAC1_ADC_15:0  
R-0h  
11  
10  
9
1
8
0
5
4
3
2
VAC1_ADC_15:0  
R-0h  
Table 57. REG37_VAC1_ADC Register Field Descriptions  
Bit  
15-0  
Field  
VAC1_ADC_15:0  
Type  
Reset  
Description  
R
0h  
VAC1 ADC reading  
Reported in 2 's Complement.  
Type : R  
POR: 0mV (0h)  
Range : 0mV-30000mV  
Fixed Offset : 0mV  
Bit Step Size : 1mV  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
105  
Product Folder Links: BQ25790  
 
 
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
8.5.1.49 REG39_VAC2_ADC Register (Offset = 39h) [reset = 0h]  
REG39_VAC2_ADC is shown in Figure 87 and described in Table 58.  
Return to the Summary Table.  
VAC2 ADC  
Figure 87. REG39_VAC2_ADC Register  
15  
7
14  
6
13  
12  
VAC2_ADC_15:0  
R-0h  
11  
10  
9
1
8
0
5
4
3
2
VAC2_ADC_15:0  
R-0h  
Table 58. REG39_VAC2_ADC Register Field Descriptions  
Bit  
15-0  
Field  
VAC2_ADC_15:0  
Type  
Reset  
Description  
R
0h  
VAC2 ADC reading  
Reported in 2 's Complement.  
Type : R  
POR: 0mV (0h)  
Range : 0mV-30000mV  
Fixed Offset : 0mV  
Bit Step Size : 1mV  
106  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
 
 
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8.5.1.50 REG3B_VBAT_ADC Register (Offset = 3Bh) [reset = 0h]  
REG3B_VBAT_ADC is shown in Figure 88 and described in Table 59.  
Return to the Summary Table.  
VBAT ADC  
Figure 88. REG3B_VBAT_ADC Register  
15  
7
14  
6
13  
12  
VBAT_ADC_15:0  
R-0h  
11  
10  
9
1
8
0
5
4
3
2
VBAT_ADC_15:0  
R-0h  
Table 59. REG3B_VBAT_ADC Register Field Descriptions  
Bit  
15-0  
Field  
VBAT_ADC_15:0  
Type  
Reset  
Description  
R
0h  
The battery differential sensing voltage (VBATP - VBATN) ADC  
reading  
Reported in 2 's Complement.  
Type : R  
POR: 0mV (0h)  
Range : 0mV-20000mV  
Fixed Offset : 0mV  
Bit Step Size : 1mV  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
107  
Product Folder Links: BQ25790  
 
 
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
8.5.1.51 REG3D_VSYS_ADC Register (Offset = 3Dh) [reset = 0h]  
REG3D_VSYS_ADC is shown in Figure 89 and described in Table 60.  
Return to the Summary Table.  
VSYS ADC  
Figure 89. REG3D_VSYS_ADC Register  
15  
7
14  
6
13  
12  
VSYS_ADC_15:0  
R-0h  
11  
10  
9
1
8
0
5
4
3
2
VSYS_ADC_15:0  
R-0h  
Table 60. REG3D_VSYS_ADC Register Field Descriptions  
Bit  
15-0  
Field  
VSYS_ADC_15:0  
Type  
Reset  
Description  
R
0h  
VSYS ADC reading  
Reported in 2 's Complement.  
Type : R  
POR: 0mV (0h)  
Range : 0mV-24000mV  
Fixed Offset : 0mV  
Bit Step Size : 1mV  
108  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
 
 
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8.5.1.52 REG3F_TS_ADC Register (Offset = 3Fh) [reset = 0h]  
REG3F_TS_ADC is shown in Figure 90 and described in Table 61.  
Return to the Summary Table.  
TS ADC  
Figure 90. REG3F_TS_ADC Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
TS_ADC_15:0  
R-0h  
4
3
TS_ADC_15:0  
R-0h  
Table 61. REG3F_TS_ADC Register Field Descriptions  
Bit  
15-0  
Field  
TS_ADC_15:0  
Type  
Reset  
Description  
R
0h  
TS ADC reading  
Type : R  
POR: 0% (0h)  
Range : 0%-99.9023%  
Fixed Offset : 0%  
Bit Step Size : 0.0976563%  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
109  
Product Folder Links: BQ25790  
 
 
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
8.5.1.53 REG41_TDIE_ADC Register (Offset = 41h) [reset = 0h]  
REG41_TDIE_ADC is shown in Figure 91 and described in Table 62.  
Return to the Summary Table.  
TDIE_ADC  
Figure 91. REG41_TDIE_ADC Register  
15  
7
14  
6
13  
12  
TDIE_ADC_15:0  
R-0h  
11  
10  
9
1
8
0
5
4
3
2
TDIE_ADC_15:0  
R-0h  
Table 62. REG41_TDIE_ADC Register Field Descriptions  
Bit  
15-0  
Field  
TDIE_ADC_15:0  
Type  
Reset  
Description  
R
0h  
TDIE ADC reading  
Reported in 2 's Complement.  
Type : R  
POR: 0°C (0h)  
Range : -40°C-150°C  
Fixed Offset : 0°C  
Bit Step Size : 0.5°C  
110  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
 
 
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8.5.1.54 REG43_D+_ADC Register (Offset = 43h) [reset = 0h]  
REG43_D+_ADC is shown in Figure 92 and described in Table 63.  
Return to the Summary Table.  
D+ ADC  
Figure 92. REG43_D+_ADC Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
D+_ADC_15:0  
R-0h  
4
3
D+_ADC_15:0  
R-0h  
Table 63. REG43_D+_ADC Register Field Descriptions  
Bit  
15-0  
Field  
D+_ADC_15:0  
Type  
Reset  
Description  
R
0h  
D+ ADC reading  
Type : R  
POR: 0mV (0h)  
Range : 0mV-3600mV  
Fixed Offset : 0mV  
Bit Step Size : 1mV  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
111  
Product Folder Links: BQ25790  
 
 
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
8.5.1.55 REG45_D-_ADC Register (Offset = 45h) [reset = 0h]  
REG45_D-_ADC is shown in Figure 93 and described in Table 64.  
Return to the Summary Table.  
D- ADC  
Figure 93. REG45_D-_ADC Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
D-_ADC_15:0  
R-0h  
4
3
D-_ADC_15:0  
R-0h  
Table 64. REG45_D-_ADC Register Field Descriptions  
Bit  
15-0  
Field  
D-_ADC_15:0  
Type  
Reset  
Description  
R
0h  
D- ADC reading  
Type : R  
POR: 0mV (0h)  
Range : 0mV-3600mV  
Fixed Offset : 0mV  
Bit Step Size : 1mV  
112  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
 
 
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
8.5.1.56 REG47_DPDM_Driver Register (Offset = 47h) [reset = 0h]  
REG47_DPDM_Driver is shown in Figure 94 and described in Table 65.  
Return to the Summary Table.  
DPDM Driver  
Figure 94. REG47_DPDM_Driver Register  
7
6
5
4
3
2
1
0
DPLUS_DAC_2:0  
R/W-0h  
DMINUS_DAC_2:0  
R/W-0h  
RESERVED  
R/W-0h  
Table 65. REG47_DPDM_Driver Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-2  
1-0  
DPLUS_DAC_2:0  
R/W  
0h  
D+ Output Driver  
Type : RW  
POR: 000b  
0h = HIZ  
1h = 0  
2h = 0.6V  
3h = 1.2V  
4h = 2.0V  
5h = 2.7V  
6h = 3.3V  
7h = D+/D- Short  
DMINUS_DAC_2:0  
R/W  
0h  
D- Output Driver  
Type : RW  
POR: 000b  
0h = HIZ  
1h = 0  
2h = 0.6V  
3h = 1.2V  
4h = 2.0V  
5h = 2.7V  
6h = 3.3V  
7h = reserved  
RESERVED  
R/W  
0h  
RESERVED  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
113  
Product Folder Links: BQ25790  
 
 
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
8.5.1.57 REG48_Part_Information Register (Offset = 48h) [reset = 0h]  
REG48_Part_Information is shown in Figure 95 and described in Table 66.  
Return to the Summary Table.  
Part Information  
Figure 95. REG48_Part_Information Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
PN_2:0  
R-0h  
DEV_REV_2:0  
R-0h  
Table 66. REG48_Part_Information Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-3  
RESERVED  
PN_2:0  
R
0h  
RESERVED  
R
0h  
Device Part number  
0h = BQ25790.  
All the other options are reserved  
Type : R  
POR: 000b  
2-0  
DEV_REV_2:0  
R
0h  
Device Revision  
Type : R  
POR: 001b  
114  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
 
 
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
A typical application consists of the device configured as an I2C controlled power path management device and a  
multi-cell battery charger for Li-Ion and Li-polymer batteries used in a wide range of smartphones and other  
portable devices. It integrates all the four switching MOSFETs (Q1 to Q4) for the buck-boost converter, and the  
battery FET (BATFET) between system and battery. The device also integrates the input current sensing and  
charging current sensing circuitries, the bootstrap diode for the high-side gate driving and the dual-input power  
mux for the power sources selection.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
115  
Product Folder Links: BQ25790  
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
9.2 Typical Application  
Optional  
VIN2  
2 × 10 µF  
0.1 µF  
ACDRV2  
VAC2  
PMID  
VBUS  
VIN1  
1 × 0.1 µF and 3 × 10 µF  
0.1 µF  
ACDRV1  
VAC1  
REGN  
6.04 k  
PROG  
ILIM_HIZ  
GND  
127 kꢀ  
D+  
D-  
USB  
100 kꢀ  
BTST1  
47 nF  
Q1  
SW1  
REGN  
1.0 µH  
Q2  
4.7 µF  
SYSTEM  
LOAD  
Q4  
SYS  
2.5V to 19.4V  
SW2  
47 nF  
1 × 0.1 µF and 5 × 10 µF  
Q3  
BTST2  
STAT  
BATFET  
REGN  
Optional  
BAT  
2.2 kꢀ  
SDRV  
CE  
100ꢀ  
2 × 10 µF  
BQ25790  
PG  
BATP  
TS  
REGN  
SDA  
SCL  
INT  
5.24 kꢀ  
10 kꢀ  
Host  
30.31 kꢀ  
QON  
IBAT  
BATN  
100ꢀ  
Figure 96. BQ25790 Application Diagram with Two Input Sources and Ship FET  
116  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
Typical Application (continued)  
ACDRV2  
VAC2  
2 × 10 µF  
PMID  
VBUS  
VIN1  
1 × 0.1 µF and 3 × 10 µF  
0.1 µF  
ACDRV1  
VAC1  
REGN  
6.04 k  
PROG  
ILIM_HIZ  
GND  
127 kꢀ  
100 kꢀ  
D+  
D-  
USB  
BTST1  
47 nF  
Q1  
SW1  
REGN  
1.0 µH  
4.7 µF  
47 nF  
Q2  
SYSTEM  
LOAD  
Q4  
SYS  
2.5V to 19.4V  
SW2  
1 × 0.1 µF and 5 × 10 µF  
Q3  
BTST2  
STAT  
BATFET  
REGN  
BAT  
SDRV  
2.2 kꢀ  
1 nF  
CE  
100ꢀ  
2 × 10 µF  
PG  
BATP  
TS  
BQ25790  
REGN  
SDA  
SCL  
INT  
5.24 kꢀ  
Host  
10 kꢀ  
30.31 kꢀ  
QON  
IBAT  
BATN  
100ꢀ  
Figure 97. BQ25790 Application Diagram with Single Input Source and No Ship FET  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
117  
Product Folder Links: BQ25790  
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
Typical Application (continued)  
9.2.1 Design Requirements  
For this design example, use the parameters shown in the table below.  
Table 67. Design Parameters  
PARAMETER  
VALUE  
5 V to 20 V  
3.0 A  
VBUS voltage range  
Input current limit (IINDPM[8:0])  
Fast charge current limit (ICHG[8:0])  
Minimum system voltage (VSYS_MIN[5:0])  
Battery regulation voltage (VREG[10:0])  
3.0 A  
7.0 V  
8.4 V  
9.2.2 Detailed Design Procedure  
9.2.2.1 Inductor Selection  
The device has 1.5 MHz switching frequency to allow the use of small inductor (1µH) and capacitor values. It  
also provide the 750kHz switching frequency to achieve higher efficiency for the applications which have enough  
design space to accommodate the larger inductor (2.2 µH) and capacitors. Please note that the 1.5 MHz  
switching frequency only works with the 1µH inductor and the 750 kHz switching frequency only works with the  
2.2µH inductor.  
Because the converter might be either operated in the buck mode or the boost mode, so the inductor current is  
equal to either the charging current or the input current. The inductor saturation current should be higher than the  
larger value of the input current (IIN) or the charging current (ICHG) plus half the ripple current (IRIPPLE):  
(3)  
The inductor ripple current (IRIPPLE) depends on the input voltage (VBUS), the output voltage (VSYS), the switching  
frequency (FSW) and the inductance (L). The inductor current ripples for buck mode and boost mode are  
calculated with equations (4) and (5), respectively:  
(4)  
(5)  
The inductor current ripple in the buck mode is usually larger than that in the boost mode, since the voltage-  
second applied on the inductor is larger. The maximum inductor current ripple in the buck mode happens in the  
vicinity of D = VSYS / VBUS = 0.5. The SYS voltage is approximately 8V for the 2s battery configuration, so the  
worst case for the inductor ripples is with the 15V or 20V input voltage.  
9.2.2.2 Input (VBUS / PMID) Capacitor  
In the buck mode operation, the input current is discontinuous, which dominates the input RMS ripple current and  
input voltage ripple. The input capacitors should have enough ripple current rating to absorb the input AC current  
and have large enough capacitance to maintain the small input voltage ripple. For the buck mode operation, the  
input RMS ripple current is calculated by the equation (6) and the input voltage ripple is calculated by the  
equation (7), where D = VSYS / VBUS  
.
(6)  
(7)  
118  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
The worst case input RMS ripple current and input voltage ripple both occur at 0.5 duty cycle condition. The SYS  
voltage is approximately 8V for the 2s battery configuration, so the worst case is when 15V to 20V VBUS  
condition. Low ESR ceramic capacitor such as X7R or X5R is preferred for the input decoupling capacitor and  
should be placed close to the PMID and GND pins of the IC. The voltage rating of the capacitor must be higher  
than the normal input voltage level. The capacitor with 25V or higher voltage rating is preferred for up to 20V  
input voltage. 1*0.1 μF + 3*10 μF capacitors are suggested for up to 3.3-A input current limit.  
9.2.2.3 Output (VSYS) Capacitor  
In the boost mode operation, the output current is discontinuous, which dominates the output RMS ripple current  
and output voltage ripple. The output capacitors should have enough ripple current rating to absorb the output  
AC current and have large enough capacitance to maintain the small output voltage ripple. For the boost mode  
operation, the output RMS ripple current is calculated by the equation (8) and the output voltage ripple is  
calculated by the equation (9), where D = (1 - VBUS / VSYS).  
(8)  
(9)  
The worst case output RMS ripple current and output voltage ripple both occur at the lowest VBUS input voltage.  
The SYS voltage is approximately 8V for the 2s battery configuration, so the worst case is 5V VBUS condition.  
Low ESR ceramic capacitor such as X7R or X5R is preferred for the output decoupling capacitor and should be  
placed close to the SYS and GND pins of the IC. The voltage rating of the capacitor must be higher than the  
normal input voltage level. The capacitor with 16V or higher voltage rating is preferred for the 2s battery  
configuration. 1*0.1 μF + 5*10 μF capacitors are suggested for up to 5A charging current.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
119  
Product Folder Links: BQ25790  
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
9.2.3 Application Curves  
CVBUS = 2*10µF, CPMID= 3*10µF, CSYS = 5*10µF, CBAT = 2*10µF, L1 = 1µH (SPM6530T-1R0M120), Fsw = 1.5MHz.  
VAC1 = VBUS = 5V  
VBAT = 8V  
VAC1 = VBUS = 5V  
VBAT = 8V  
Figure 98. ACFET1-RBFET1 Turns on at Power Up  
Figure 99. Power Up from VAC1 with Charge Enabled  
VBUS = 5V  
VBAT = 8V  
ICHG = 1A  
VBUS = 5V  
VBAT = 8V  
ICHG = 1A  
Figure 100. Charge Enable  
Figure 101. Charge Disable  
VBUS = 5V  
VBAT = 8V  
ICHG = 1A  
VBUS = 8V  
VBAT = 8V  
ICHG = 1A  
Figure 102. Boost Charging Mode PWM Operation  
Figure 103. Buck-Boost Charging Mode PWM Operation  
120  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
CVBUS = 2*10µF, CPMID= 3*10µF, CSYS = 5*10µF, CBAT = 2*10µF, L1 = 1µH (SPM6530T-1R0M120), Fsw = 1.5MHz.  
VBUS = 15V  
VBAT = 8V  
ICHG = 0A  
VBUS = 15V  
VBAT = 8V  
ICHG = 1.5A  
Figure 105. Buck Mode PFM with OOA  
Figure 104. Buck Charging Mode PWM Operation  
VBUS = 15V  
VBAT = 8V  
ICHG = 0A  
VBAT = 8V  
VOTG = 5V  
IBUS = 0A  
Figure 106. Buck Mode PFM without OOA  
Figure 107. OTG Startup at No Load  
VBUS = 15V  
VBAT = 8V  
Charge disabled  
VBAT = 8V  
VOTG = 5V  
IBUS = 500mA  
Figure 109. VSYS Load Transient Response  
Figure 108. OTG Startup at 500-mA Load  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
121  
Product Folder Links: BQ25790  
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
CVBUS = 2*10µF, CPMID= 3*10µF, CSYS = 5*10µF, CBAT = 2*10µF, L1 = 1µH (SPM6530T-1R0M120), Fsw = 1.5MHz.  
VBAT = 8V  
VOTG = 5V  
VBUS = 5V  
VBAT = 8V  
Charge enabled  
Figure 111. VOTG Load Transient Response  
Figure 110. IINDPM Transient Response  
122  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
10 Power Supply Recommendations  
In order to provide an output voltage on SYS, the device requires a power supply between 3.6 V and 24 V input  
with recommended >500mA current rating connected to VBUS or a 1s to 4s Li-Ion battery with voltage higher  
than VBAT_UVLO connected to BAT. The source current rating needs to be at least 3A for the buck-boost converter  
of the charger to provide maximum output power to SYS.  
The charger does not support the testing condition when the battery connection is floating. The BAT pin has to  
be connected to a real battery or some devices which can emulate the battery, like the battery emulator or bulk  
capacitors. When the BAT pin is floating, please disable charge by setting EN_CHG to 0 or pulling low the EC  
pin. Otherwise, the voltage overshoot at SYS might trigger the SYSOVP protection periodically.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
123  
Product Folder Links: BQ25790  
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
11 Layout  
11.1 Layout Guidelines  
The switching nodes rising and falling times should be minimized for minimum switching loss. Proper layout of  
the components to minimize the high frequency current path loops (shown in the figure below) is important to  
prevent the electrical and magnetic field radiation and the high frequency resonant problems. Here is a PCB  
layout priority list for proper layout. Layout PCB according to this specific order is essential.  
1. Place the SYS output capacitors as close to SYS and GND bumps as possible. Place a 0.1 µF small size  
(such as 0402 or 0201) capacitor closer than the other 10 µF capacitors. Ground connections need to be tied  
to the IC ground with a short copper trace connection or GND plane.  
2. Place the PMID input capacitors as close to PMID and GND bumps as possible. Place a 0.1 µF small size  
(such as 0402 or 0201) capacitor closer than the other 10 µF capacitors. Ground connections need to be tied  
to the IC ground with a short copper trace connection or GND plane.  
3. The connection from SYS/PMID to the 0.1 µF has to be routed on the top layer of the PCB, the returning  
back to GND also has to be in the top layer. Keep the whole routing loop as small as possible.  
4. Place the inductor input terminal to SW1 bumps and the inductor output terminal to SW2 bumps as close as  
possible. Minimize the copper area of this trace to lower electrical and magnetic field radiation but make the  
trace wide enough to carry the inductor current. Minimize parasitic capacitance from this area to any other  
trace or plane.  
5. Place the BAT capacitors close to BAT and GND bumps, place the VBUS capacitors close to VBUS and  
GND bumps  
6. The REGN decoupling capacitor and the bootstrap capacitors should be placed next to the IC and make  
trace connection as short as possible.  
7. Ensure that there are sufficient thermal vias directly under bumps of the power MOSFETs, connecting to  
copper on other layers.  
8. Via size and number should be enough for a given current path.  
9. Route BATP and BATN away from switching nodes such as SW1 and SW2.  
Refer to the EVM design and more information in the BQ25790EVM (BMS027) Evaluation Module User's  
Guide for the recommended component placement with trace and via locations.  
+
+
œ
Figure 112. Buck-Boost Converter High Frequency Current Path  
124  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
BQ25790  
www.ti.com  
SLUSDF9 JUNE 2020  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Third-Party Products Disclaimer  
12.1.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation see the following:  
BQ25790EVM (BMS027) Evaluation Module User's Guide  
12.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.4 Support Resources  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.5 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
125  
Product Folder Links: BQ25790  
BQ25790  
SLUSDF9 JUNE 2020  
www.ti.com  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
126  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: BQ25790  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ25790YBGR  
ACTIVE  
DSBGA  
YBG  
56  
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
-40 to 85  
BQ25790  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-Jun-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ25790YBGR  
DSBGA  
YBG  
56  
3000  
330.0  
12.4  
3.08  
3.5  
0.7  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-Jun-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
DSBGA YBG 56  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 35.0  
BQ25790YBGR  
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
YBG0056-C01  
DSBGA - 0.5 mm max height  
SCALE 4.000  
DIE SIZE BALL GRID ARRAY  
2.917  
2.877  
A
B
BALL A1  
CORNER  
3.337  
3.297  
C
0.5 MAX  
SEATING PLANE  
0.05 C  
0.20  
0.14  
BALL TYP  
2.4 TYP  
SYMM  
H
G
F
E
D
C
2.8  
TYP  
SYMM  
B
A
0.4 TYP  
0.27  
1
3
4
5
6
7
2
56X  
0.23  
0.015  
C A B  
0.4 TYP  
4226147/A 08/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YBG0056-C01  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
3
56X ( 0.23)  
1
4
5
6
7
2
A
(0.4) TYP  
B
C
D
E
F
SYMM  
G
H
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 25X  
0.05 MIN  
0.05 MAX  
METAL UNDER  
SOLDER MASK  
(
0.23)  
METAL  
(
0.23)  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4226147/A 08/2020  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YBG0056-C01  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
3
(R0.05) TYP  
56X ( 0.25)  
1
4
5
6
7
2
A
(0.4) TYP  
B
C
METAL  
TYP  
D
E
F
SYMM  
G
H
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE: 25X  
4226147/A 08/2020  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY