BQ25882 [TI]

采用 WCSP 封装、具有电源路径且适用于 USB 输入的 I2C 2 节 2A 升压电池充电器;
BQ25882
型号: BQ25882
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 WCSP 封装、具有电源路径且适用于 USB 输入的 I2C 2 节 2A 升压电池充电器

电池
文件: 总86页 (文件大小:1746K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
适用于 USB 输入的 BQ25882 I2C 控制型 2 2A 升压模式电池充电器  
1 特性  
高集成度包括所有 MOSFET、电流检测和环路补偿  
高精度  
1
高效的 2A1.5MHz 开关模式升压充电器  
±0.4% 充电电压调节  
±7.5% 充电电流调节  
±7.5% 输入电流调节  
7.6V 电池、充电电流为 1A 的情况下,充电  
效率为 92.5%  
针对 USB 输入和 2 节锂离子电池输出进行了优  
安全  
用于轻负载运行的可选低功耗 PFM 模式(具有  
无声选项)  
在充电和 OTG 降压模式下的电池温度检测  
热调节和热关断  
USB On-the-Go (OTG),可调输出电压范围为  
4.5V 5.5V  
2 应用  
具有高达 2A 输出的降压转换器  
5V1A 输出的情况下,效率为 94.5%  
精确的恒定电流 (CC) 限制  
输出短路保护  
无线扬声器  
数码相机(DSCDVC)  
移动打印机  
平板电脑  
用于轻负载运行的可选低功耗 PFM 模式(具有  
无声选项)  
电子销售终端 (ePOS)  
便携式电子设备  
单输入,支持 USB 输入适配器  
支持 3.9V 6.2V 的输入电压范围,绝对最大  
输入电压额定值为 20V  
3 说明  
BQ25882 是高度集成的 2A 开关模式电池充电管理和  
系统电源路径管理器件,适用于两节锂离子电池和锂聚  
合物电池。具有充电和系统设置的 I2C 串行接口使得此  
器件成为真正的灵活解决方案。  
输入电流限制(500mA 3.3A,精度为 100-  
mA),支持 USB2.0USB3.0 标准适配器  
通过高达 5.5V 的输入电压限制进行最大功率跟  
器件信息(1)  
自动检测 USB SDPCDPDCP 以及非标准  
适配器  
器件型号  
BQ25882  
封装  
封装尺寸(标称值)  
2.10 x 2.10 mm2  
输入电流优化器 (ICO),无需过载适配器即可最大  
限度地提高输入功率  
DSBGA (25)  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
采用 15m电池放电 MOSFET,具有较高的电池  
放电效率  
简化原理图  
集成 ADC,用于系统监视(总线电压和电流、电池  
电压、充电电流、系统电压以及 NTC 和裸片温  
度)  
BQ25882  
SYSTEM  
USB  
VBUS  
PMID  
SYS  
BAT  
VDC (NVDC) 电源路径管理  
无需电池或深度放电的电池即可瞬时启动  
电池充电模式下实现理想的二极管运行  
灵活的自主和 I2C 模式,可实现最优系统性能  
SW  
BATP  
BATN  
I2C Bus  
Host  
Host  
Control  
GND  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSE40  
 
 
 
 
 
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 34  
8.5 Register Maps ........................................................ 35  
Application and Implementation ........................ 68  
9.1 Application Information............................................ 68  
9.2 Typical Application .................................................. 68  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 7  
7.5 Electrical Characteristics........................................... 7  
7.6 Timing Requirements.............................................. 11  
7.7 Typical Characteristics............................................ 13  
Detailed Description ............................................ 16  
8.1 Overview ................................................................. 16  
8.2 Functional Block Diagram ....................................... 16  
8.3 Feature Description................................................. 17  
9
10 Power Supply Recommendations ..................... 74  
11 Layout................................................................... 75  
11.1 Layout Guidelines ................................................. 75  
11.2 Layout Example .................................................... 76  
12 器件和文档支持 ..................................................... 77  
12.1 器件支持 ............................................................... 77  
12.2 文档支持................................................................ 77  
12.3 接收文档更新通知 ................................................. 77  
12.4 社区资源................................................................ 77  
12.5 ....................................................................... 77  
12.6 静电放电警告......................................................... 77  
12.7 Glossary................................................................ 77  
13 机械、封装和可订购信息....................................... 78  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (December 2018) to Revision C  
Page  
Added Device Comparison Table section .............................................................................................................................. 3  
Changes from Revision A (August 2018) to Revision B  
Page  
已删除 bq25880 references from Functional Block Diagram .............................................................................................. 17  
已添加 ADC is enabled to list of conditions to enable buck operation in Buck Mode Operation from Battery (OTG)  
section .................................................................................................................................................................................. 20  
Changes from Original (February 2018) to Revision A  
Page  
已更改 将预告信息更改为生产数据.................................................................................................................................... 1  
2
版权 © 2018–2019, Texas Instruments Incorporated  
 
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
5 Device Comparison Table  
Table 1. Device Comparison  
PRT NUMBER  
VBUS Operating Range  
USB Detection  
Power Path  
BQ25882  
BQ25883  
3.9 to 6.2 V  
D+/D-  
BQ25886  
4.3 to 6.2 V  
D+/D-  
BQ25887  
3.9 to 6.2 V  
PSEL  
3.9 to 6.2 V  
D+/D-  
Yes  
Yes  
Yes  
No  
Cell Balancing  
OTG  
No  
Up to 2 A  
Yes  
No  
No  
Yes  
Up to 2 A  
Yes  
Up to 2 A  
No  
No OTG  
Yes  
16 bit ADC  
Control Interface  
Status Pin  
I2C  
I2C  
Standalone  
STAS, /PG  
4x4 QFN-24  
I2C  
/PG  
STAT, /PG  
4x4 QFN-24  
STAT, /PG  
4x4 QFN-24  
Package  
2.1x2.1 WCSP-25  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
6 Pin Configuration and Functions  
YFF (I2C controlled)  
25-Pin DSBGA  
Top View  
1
2
3
4
5
A
B
C
D
E
VBUS  
VBUS  
D+  
PMID  
GND  
SW  
SW  
PMID  
GND  
INT  
ILIM  
TS  
SYS  
BAT  
SYS  
BAT  
PG  
Dœ  
SCL  
SDA  
REGN  
BATN  
BTST  
BATP  
CE  
Top View = Xray through a soldered down part with A1 starting in upper left corner  
Pin Functions  
PIN  
I/O DESCRIPTION  
NO.  
NAME  
C4  
C5  
E4  
E5  
Battery Power Connection – The internal BATFET is connected between SYS and BAT. Connect a  
10µF ceramic capacitor closely to the BAT pin and GND.  
BAT  
P
BATN  
BATP  
AI Negative Battery Sense Terminal – Kelvin connect as close as possible to negative battery terminal  
AI Positive Battery Sense Terminal – Kelvin connect as close as possible to positive battery terminal  
PWM High-side Driver Supply – Internally, BTST is connected to the cathode of the boot-strap diode.  
Connect a 0.047µF bootstrap capacitor from SW to BTST.  
BTST  
CE  
D5  
E1  
C1  
D1  
P
Active Low Charge Enable Pin – Battery charging is enabled when EN_CHG bit is 1 and CE pin is  
LOW. CE pin must be pulled HIGH or LOW, do not leave floating.  
DI  
Positive USB data line – D+/D– based USB host/charging port detection. The detection includes data  
contact detection (DCD) and secondary detection in BC1.2.  
D+  
AIO  
Negative USB data line – D+/D– based USB host/charging port detection. The detection includes  
data contact detection (DCD) and secondary detection in BC1.2.  
D–  
AIO  
A3  
B3  
GND  
Ground Return  
Input Current Limit – ILIM pin sets the maximum input current and can be used to monitor input  
current. IINDPM loop regulates ILIM pin voltage at 0.8 V. When ILIM pin is less than 0.8 V, the input  
current limit can be calculated by IIN = KILIM x VILIM / (RILIM x 0.8 V). A resistor connected from ILIM  
pin to ground sets the current limit as IINMAX = KILIM / RILIM. The actual input current limit is the lower  
limit set by ILIM pin (when EN_ILIM bit is HIGH) or IINDPM register bits. Input current limit less than  
500mA is not supported on ILIM pin. The ILIM pin function can be disabled when EN_ILIM bit is 0.  
ILIM  
D3  
AI  
Open Drain Active Low Interrupt Output – Connect /INT to the logic rail via a 10-kresistor. The  
INT pin sends active low, 256-µs pulse to the host to report charger device status and fault.  
INT  
PG  
C3  
C2  
DO  
Open Drain Active Low Power Good Indicator – Connect to the pull up rail via 10-kresistor. LOW  
DO indicates a good input source if the input voltage is within VVBUS_OP, and can provide more than  
IPOORSRC.  
A2  
B2  
Blocking MOSFET Connection – Given the total input capacitance, place 1µF on VBUS, and the rest  
on PMID, as close to the IC as possible. Typical value: 10µF ceramic capacitor  
PMID  
P
4
Copyright © 2018–2019, Texas Instruments Incorporated  
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
Pin Functions (continued)  
PIN  
I/O DESCRIPTION  
NAME  
NO.  
Gate Drive Supply – Bias supply for internal MOSFETs driver and IC. Bypass REGN to GND with a  
4.7µF ceramic capacitor.  
REGN  
D4  
P
SCL  
SDA  
D2  
E2  
A4  
A5  
B4  
DI I2C Interface Clock – Connect SCL to the logic rail through a 10-kresistor.  
DIO I2C Interface Data – Connect SDA to the logic rail through a 10-kresistor.  
SW  
P
P
Inductor Connection – Connect to the switched side of the external inductor.  
System Connection – The internal BATFET is connected between SYS and BAT. When the battery  
falls below the minimum system voltage, switch-mode converter keeps SYS above the minimum  
system voltage. Connect a 44µF ceramic capacitor closely to the SYS pin and GND.  
SYS  
B5  
Temperature Qualification Voltage – Connect a negative temperature coefficient thermistor. Program  
TS  
E3  
AI temperature window with a resistor divider from REGN to TS to GND. Charge suspends when TS pin  
is out of range. Recommend 103AT-2 thermistor.  
A1  
B1  
Input Supply – VBUS is connected to the external DC supply. Bypass VBUS to GND with at least 1µF  
ceramic capacitor, placed as close to the IC as possible.  
VBUS  
P
Copyright © 2018–2019, Texas Instruments Incorporated  
5
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
MAX  
20  
UNIT  
V
VBUS (converter not switching)  
PMID (converter not switching)  
BAT, SYS (converter not switching)  
SW  
–0.3  
8.5  
12  
V
–0.3  
–0.6(2)  
V
13  
V
BTST  
–0.3  
19  
V
Voltage Range (with respect to GND unless  
otherwise specified)  
BATP  
–0.3  
12  
V
BATN, REGN, SDA, SCL, INT, CE, TS, D+,  
D–, PG  
–0.3  
6
V
ILIM  
–0.3  
–0.3  
–0.3  
5
6
V
V
BTST to SW  
SYS to BAT  
8.5  
6
V
Output Sink Current  
INT, PG  
mA  
°C  
°C  
Junction Temperature, TJ  
Storage temperature, Tstg  
–40  
–40  
150  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) –2V for 50ns  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V
V(ESD)  
Electrostatic discharge  
Charged device model (CDM), per JEDEC specification  
JESD22-C101(2)  
±250  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
6.2  
3.3  
2.2  
9.2(1)  
4
UNIT  
V
VVBUS  
IVBUS  
IBAT  
Input voltage  
3.9  
Average input current (VBUS)  
Average charge current (BAT)  
Battery voltage (BATP - BATN)  
RMS discharging current with internal MOSFET  
Peak discharging current with internal MOSFET  
Operating free-air temperature  
A
A
VBAT  
V
IBAT_RMS  
IBAT_PK  
TA  
A
8
A
–40  
85  
°C  
(1) The inherent switching noise voltage spikes should not exceed the absolute maximum rating on SW pins. A tight layout minimizes  
switching noise.  
6
Copyright © 2018–2019, Texas Instruments Incorporated  
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
7.4 Thermal Information  
over operating free-air temperature range (unless otherwise noted)  
BQ25882  
THERMAL METRIC(1)  
YFF (DSBGA)  
UNIT  
25-BALL  
24  
RΘJA  
Junction-to-ambient thermal resistance (EVM(2)  
)
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
(1)  
RΘJA  
Junction-to-ambient thermal resistance (JEDEC  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
)
64.4  
0.4  
RΘJC(top)  
RΘJB  
14.8  
0.2  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
14.9  
N/A  
RΘJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) Measured on 35µm thick copper, 4-layer board.  
7.5 Electrical Characteristics  
VVBUS_UVLOZ < VVBUS < VVBUS_OV, TJ = -40°C to+125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
QUIESCENT CURRENTS  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VBAT = 9 V, No VBUS, SCL, SDA = 0 V  
or 1.8 V, ADC Disabled, TJ = 25  
11.5  
11.5  
30  
14 µA  
20 µA  
35 µA  
40 µA  
Battery discharge current (BATP,  
BAT, SYS)  
IBAT  
VBAT = 9 V, No VBUS, SCL, SDA = 0 V  
or 1.8 V, ADC Disabled, TJ < 85℃  
VBUS = 5 V, High-Z Mode, no battery,  
ADC Disabled, TJ = 25℃  
IVBUS_HIZ  
Input supply current (VBUS) in HIZ  
Input supply current (VBUS)  
VBUS = 5 V, High-Z Mode, no battery,  
ADC Disabled, TJ < 85℃  
30  
VBUS = 5 V, VBAT = 7.6 V, converter not  
switching  
1.5  
3
3
mA  
mA  
mA  
IVBUS  
VBUS = 5 V, VBAT = 7.6 V, converter  
switching, ISYS = 0A  
VBAT = 8.4 V, OTG Buck Mode,  
IVBUS = 0A, converter switching  
Battery discharge current in OTG  
mode  
IBAT_OTG  
3
VBUS/VBAT POWER UP  
VVBUS_OP  
VBUS operating range  
VBUS rising for active I2C, no battery VBUS rising  
3.9  
6.2  
3.6  
V
V
VVBUS_UVLOZ  
VVBUS_PRESENT  
3.3  
VBUS rising  
VBUS rising  
VBUS falling  
VBAT rising  
3.65  
3.9  
V
VBUS over-voltage rising threshold  
VBUS over-voltage falling threshold  
Battery for active I2C  
6.2  
5.9  
3.7  
6.6  
V
VVBUS_OV  
6.4  
V
VBAT_UVLOZ  
VPOORSRC  
4.0  
3.7  
15  
4.335  
V
Bad adapter detection threshold  
Bad adapter detection current source  
V
IPOORSRC  
mA  
POWER-PATH  
ISYS = 0A, VBAT = 8.80 V >  
VSYS  
Typical System Regulation Voltage  
SYS_MIN[3:0], Charge Disabled (EN_CHG  
= 0). Offset above VBAT  
100  
mV  
ISYS = 0A, VBAT < SYS_MIN[3:0],  
Charge Disabled (EN_CHG = 0). Offset  
above SYS_MIN  
VSYS  
Typical System Regulation Voltage  
System Regulation Voltage  
200  
7.2  
mV  
V
VBAT < SYS_MIN[3:0] = 1010, Charge  
Disabled (EN_CHG = 0)  
VSYS_MIN  
7
TJ = 25°C  
25  
25  
36 mΩ  
52 mΩ  
Blocking MOSFET on-resistance  
between VBUS and PMID (QB)  
RON_QBLK (Q1)  
TJ = – 40°C - 125°C  
Copyright © 2018–2019, Texas Instruments Incorporated  
7
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OV, TJ = -40°C to+125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
High-side switching MOSFET on-  
resistance between SW and SYS  
(Q2)  
TJ = 25°C  
30  
40 mΩ  
RON_QHS (Q2)  
TJ = – 40°C - 125°C  
TJ = 25°C  
30  
40  
40  
55 mΩ  
59 mΩ  
80 mΩ  
Low-side switching MOSFET on-  
resistance between SW and GND  
(Q3)  
RON_QLS (Q3)  
TJ = – 40°C - 125°C  
BATTERY CHARGER  
Typical charge voltage regulation  
VREG_RANGE  
VREG_STEP  
6.8  
9.2  
V
range  
Typical charge voltage step  
10  
mV  
V
VREG = 8.40 V, TJ = – 40°C - 85°C  
VREG = 8.70 V, TJ = – 40°C - 85°C  
VREG = 8.80 V, TJ = – 40°C - 85°C  
8.3664  
8.6652  
8.7648  
0
8.4 8.4336  
8.7 8.7348  
8.8 8.8352  
VREG_ACC  
Charge voltage accuracy  
V
V
ICHG_RANGE  
ICHG_STEP  
Charge current regulation range  
Charge current regulation step  
2200 mA  
mA  
50  
ICHG = 250 mA, VBAT = 6.2 V or 7.6 V,  
TJ = – 20°C - 85°C  
-25  
-10  
25  
10  
%
%
%
Fast Charge current regulation  
accuracy  
ICHG = 500 mA, VBAT = 6.2 V or 7.6 V,  
TJ = – 20°C - 85°C  
ICHG_ACC  
ICHG = 1000 mA, VBAT = 6.2 V or 7.6 V,  
TJ = – 20°C - 85°C  
-7.5  
50  
7.5  
IPRECHG_RANGE  
IPRECHG_STEP  
Precharge current range  
800 mA  
mA  
Typical precharge current step  
50  
50  
VBAT = 5.2 V, IPRECHG = 200 mA,  
TJ = – 20°C - 85°C  
IPRECHG_ACC  
Precharge current accuracy  
-20  
50  
20  
%
ITERM_RANGE  
ITERM_STEP  
Termination current range  
800 mA  
mA  
Typical termination current step  
ICHG = 1.5A, ITERM = 50 mA,  
TJ = – 40°C - 85°C  
-40  
40  
%
ITERM_ACC  
Termination current accuracy  
ICHG = 1.5A, ITERM = 150 mA,  
TJ = – 40°C - 85°C  
-20  
4.1  
20  
%
V
VBAT_SHORT  
Short Battery Voltage rising threshold VBAT rising  
to start pre-charging  
4.4  
4.0  
4.7  
VBAT_SHORT_HYS  
Short Battery Voltage falling  
threshold to stop pre-charging  
VBAT falling  
3.7  
4.3  
V
Short Battery Voltage trickle charging  
current  
IBAT_SHORT  
VBAT < 4.4 V  
100  
6
mA  
V
VBAT LOWV Rising threshold to  
start fast-charging  
VBAT rising, VBATLOW = 6.0 V  
VBAT falling, VBATLOW = 6.0 V  
5.7  
5.3  
6.3  
5.9  
VBAT_LOWV  
VBAT LOWV Falling threshold to  
stop fast-charging  
5.6  
V
VBAT falling, VRECHG[1:0] = 01  
VBAT falling, VRECHG[1:0] = 10  
TJ = 25°C  
200  
300  
15  
mV  
mV  
VRECHG  
Recharge threshold below VREG  
18 mΩ  
26 mΩ  
MOSFET on-resistance between  
SYS and BAT (Q4)  
RON_QBAT (Q4)  
TJ = – 40°C - 125°C  
15  
VBAT = 8 V, VBUS = 5 V, EN_HIZ = 1,  
ADC Disabled  
RBATP  
RBATN  
BATP Input resistance  
BATN Input resistance  
2.7  
2.7  
MΩ  
MΩ  
VBAT = 8 V, VBUS = 5 V, EN_HIZ = 1,  
ADC Disabled  
INPUT VOLTAGE / CURRENT REGULATION  
VINDPM_RANGE Input voltage regulation range  
3.9  
5.5  
V
8
Copyright © 2018–2019, Texas Instruments Incorporated  
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OV, TJ = -40°C to+125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
100  
3.9  
MAX UNIT  
VINDPM_STEP  
VINDPM  
Input voltage regulation step  
mV  
VINDPM = 3.9 V  
3.783  
4.268  
500  
4.017  
4.532  
V
V
Input voltage limit  
VINDPM = 4.4 V  
4.4  
IINDPM_RANGE  
IINDPM_STEP  
Input current regulation range  
Input current regulation step  
3300 mA  
mA  
100  
470  
IINDPM = 500 mA  
IINDPM = 900 mA  
IINDPM = 2500 mA  
IINDPM = 3000 mA  
445  
765  
500 mA  
900 mA  
2500 mA  
3000 mA  
832.5  
IINDPM_ACC  
Input current regulation limit  
2125 2312.5  
2550  
2775  
IINMAX = KILIM/RILIM, Input Current  
regulation by ILIM pin = 1.5A  
A x  
Ω
KILIM  
1000  
1085  
1170  
D+/D- DETECTION  
VD+D-_600MVSRC  
ID+_10UASRC  
D+/D- Voltage Source (600 mV)  
D+ Current Source (10 µA)  
D+/D- Current Sink (100 µA)  
500  
7
600  
10  
700 mV  
14 µA  
ID+D-_100UASNK  
50  
100  
150 µA  
D+/D- Comparator Threshold for  
Secondary Detection  
VD+D-_0P325  
250  
400 mV  
D+Comparator Threshold for Data  
Contact Detection  
VD+_0P8  
RD-_19K  
800 mV  
D- Resistor to Ground (19 k)  
14.25  
1.05  
24.8 kΩ  
D+/D- Threshold for Non-standard  
adapter  
VD+D-_1P2  
1.35  
2.15  
V
V
D+/D- Threshold for Non-standard  
adapter  
VD+D-_2P0  
1.85  
D+/D- Threshold for Non-standard  
adapter  
VD+D-_2P8  
ID+D-_LKG  
2.55  
-1  
2.85  
1
V
D+/D- Leakage Current  
HiZ  
µA  
BATTERY OVER-VOLTAGE PROTECTION  
Battery over-voltage rising threshold VBAT rising, as percentage of VREG  
Battery over-voltage falling threshold VBAT falling, as percentage of VREG  
103  
101  
104  
102  
105  
103  
%
%
VBAT_OVP  
THERMAL REGULATION AND THERMAL SHUTDOWN  
Junction temperature regulation  
accuracy  
TREG  
TREG = 120°C  
120  
°C  
Thermal Shutdown Rising threshold  
TSHUT  
Temperature Increasing  
150  
120  
°C  
°C  
Thermal Shutdown Falling threshold Temperature Decreasing  
JEITA THERMISTOR COMPARATOR (BOOST MODE)  
T1 (0°C) threshold, Charge  
suspended below this temperature.  
VT1  
As Percentage to REGN  
As Percentage to REGN  
72.75  
67.75  
73.25  
1.3  
73.75  
68.75  
%
%
Charge re-enabled to ICHG/2 and  
VREG above this temperature  
VT1_HYS  
T2 (10°C) threshold, Charge back to  
ICHG/2 and VREG below this  
temperature  
VT2  
As Percentage to REGN  
As Percentage to REGN  
As Percentage to REGN  
As Percentage to REGN  
68.25  
1.3  
%
%
%
%
Charge back to ICHG and VREG  
above this temperature  
VT2_HYS  
T3 (45°C) threshold, Charge back to  
ICHG and 8.1 V above this  
temperature.  
VT3  
44.25  
44.75  
1
45.25  
Charge back to ICHG and VREG  
below this temperature  
VT3_HYS  
Copyright © 2018–2019, Texas Instruments Incorporated  
9
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
MAX UNIT  
Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OV, TJ = -40°C to+125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
As Percentage to REGN  
As Percentage to REGN  
MIN  
TYP  
T5 (60°C) threshold, charge  
suspended above this temperature.  
VT5  
33.875 34.375 34.875  
1.3  
%
%
Charge back to ICHG and 8.1 V  
below this temperature  
VT5_HYS  
COLD/HOT THERMISTOR COMPARATOR (OTG BUCK MODE)  
Cold Temperature Threshold 0, TS  
pin Voltage Rising Threshold  
As Percentage to REGN, BCOLD = 0  
(Approx. – 10°C w/ 103AT)  
VBCOLD0  
76.5  
79.5  
77  
77.5  
80.5  
%
%
%
%
%
%
%
%
%
%
Cold Temperature Threshold 0, TS  
pin Voltage Falling Threshold  
VBCOLD0_HYS  
VBCOLD1  
VBCOLD1_HYS  
VBHOT0  
VBHOT0_HYS  
VBHOT1  
VBHOT1_HYS  
VBHOT2  
As Percentage to REGN  
1
80  
Cold Temperature Threshold 1, TS  
pin Voltage Rising Threshold  
As Percentage to REGN, BCOLD = 1  
(Approx. – 20°C w/ 103AT)  
Cold Temperature Threshold 1, TS  
pin Voltage Falling Threshold  
As Percentage to REGN  
1
Hot Temperature Threshold 0, TS pin As Percentage to REGN, BHOT[1:0] = 01  
Voltage Falling Threshold  
37.25  
37.75  
3
38.25  
(Approx. 55°C w/ 103AT)  
Hot Temperature Threshold 0, TS pin  
Voltage Rising Threshold  
As Percentage to REGN  
Hot Temperature Threshold 1, TS pin As Percentage to REGN, BHOT[1:0] = 00  
Voltage falling Threshold  
33.875 34.375 34.875  
3
(Approx. 60°C w/ 103AT)  
Hot Temperature Threshold 1, TS pin  
Voltage rising Threshold  
As Percentage to REGN  
Hot Temperature Threshold 2, TS pin As Percentage to REGN, BHOT[1:0] = 10  
Voltage falling Threshold  
30.75  
31.25  
3
31.75  
(Approx. 65°C w/ 103AT)  
Hot Temperature Threshold 2, TS pin  
Voltage rising Threshold  
VBHOT1_HY2  
As Percentage to REGN  
BOOST MODE CONVERTER  
FSW  
PWM switching frequency  
Oscillator frequency  
BAT falling  
1.35  
1.5  
6
1.65 MHz  
OTG BUCK MODE CONVERTER  
VOTG_BAT  
Battery voltage exiting OTG mode  
5.85  
4.5  
6.15  
5.5  
V
V
Typical OTG Buck mode voltage  
regulation range  
VOTG_RANGE  
Typical OTG Buck mode voltage  
regulation step  
VOTG_STEP  
VOTG_ACC  
IOTG_RANGE  
IOTG_STEP  
IOTG_ACC  
100  
mV  
%
OTG Buck mode voltage regulation  
accuracy  
IVBUS = 0A, OTG_VLIM = 5 V  
-3  
3
2
Typical OTG Buck mode current  
regulation range  
0.5  
A
Typical OTG Buck mode current  
regulation step  
100  
-7.5  
6
mA  
%
OTG Buck mode current regulation  
accuracy  
OTG_ILIM = 1A  
-15  
5.8  
0.05  
OTG Buck mode over-voltage  
threshold  
VOTG_OVP  
V
REGN LDO  
VREGN  
REGN LDO output voltage  
REGN LDO current limit  
VVBUS = 5 V, IREGN = 20 mA  
VVBUS = 5 V, VREGN = 3.8 V  
4.7  
50  
4.8  
V
IREGN  
mA  
Analog-to-Digital Converter (ADC)  
ADC_SAMPLE[1:0] = 00  
ADC_SAMPLE[1:0] = 01  
ADC_SAMPLE[1:0] = 10  
ADC_SAMPLE[1:0] = 11  
24  
12  
6
ms  
ms  
ms  
ms  
tADC_CONV  
Conversion time, each measurement  
3
10  
Copyright © 2018–2019, Texas Instruments Incorporated  
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OV, TJ = -40°C to+125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
ADC_SAMPLE[1:0] = 00  
MIN  
14  
TYP  
15  
MAX UNIT  
bits  
bits  
bits  
bits  
ADC_SAMPLE[1:0] = 01  
ADC_SAMPLE[1:0] = 10  
ADC_SAMPLE[1:0] = 11  
13  
14  
ADCRES  
Effective resolution  
12  
13  
10  
11  
ADC MEASUREMENT RANGES AND LSB  
IBUS_ADC_RANGE  
IBUS_ADC_LSB  
IBAT_ADC_RANGE  
IBAT_ADC_LSB  
ADC BUS current range  
ADC BUS current LSB  
ADC BAT current range  
ADC BAT current LSB  
ADC BUS voltage range  
ADC BUS voltage LSB  
ADC SYS voltage range  
ADC SYS voltage LSB  
ADC BAT voltage range  
ADC BAT voltage LSB  
ADC TS voltage range  
ADC TS voltage LSB  
0
0
4
4
A
mA  
A
1
1
mA  
V
VBUS_ADC_RANGE  
VBUS_ADC_LSB  
VSYS_ADC_RANGE  
VSYS_ADC_LSB  
VBAT_ADC_RANGE  
VBAT_ADC_LSB  
VTS_ADC_RANGE  
VTS_ADC_LSB  
0
6.5  
10  
10  
80  
1
mV  
V
0
1
1
mV  
V
0
mV  
%
20  
0
0.098  
1
%
VTDIE_ADC_RANGE  
VTDIE_ADC_LSB  
ADC Die temperature range  
ADC Die temperature LSB  
150 °C  
°C  
I2C INTERFACE (SCL, SDA)  
Input high threshold level, SDA and  
SCL  
VIH  
Pull-up rail 1.8 V  
1.3  
1.3  
V
VIL  
Input low threshold level  
Output low threshold level  
High level leakage current  
Pull-up rail 1.8 V  
Sink current = 5 mA  
Pull-up rail 1.8 V  
0.4  
0.4  
1
V
V
VOL  
IBIAS  
µA  
LOGIC I/O PIN (/CE, PSEL)  
VIH  
Input high threshold level  
V
V
VIL  
Input low threshold level  
High level leakage current  
0.4  
1
IIN_BIAS  
Pull-up rail 1.8 V  
µA  
LOGIC O PIN (/INT, /PG, STAT)  
VOL  
Output low threshold level  
High level leakage current  
Sink current = 5 mA  
Pull-up rail 1.8 V  
0.4  
1
V
IOUT_BIAS  
µA  
7.6 Timing Requirements  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
VBUS/BAT POWER UP  
VBUS rising above VBUS_OV threshold to  
converter turn off  
tVBUS_OV  
VBUS OVP reaction time  
Bad adapter detection duration  
200  
30  
ns  
tPOORSRC  
BATTERY CHARGER  
ms  
tTERM_DGL  
Deglitch time for charge termination  
Charge current falling below ITERM  
250  
250  
ms  
ms  
BAT voltage falling below VRECHG = 100  
mV  
tRECGH_DGL  
Deglitch time for recharge threshold  
Deglitch time for battery over-voltage  
to disable charge  
tBAT_OVP_DGL  
1
µs  
tTOP_OFF  
tSAFETY  
Typical Top-Off Timer Accuracy  
Charge Safety Timer Accuracy  
TOP_OFF_TIMER[1:0] = 30 min  
CHG_TIMER[1:0] = 12 hours  
24  
30  
12  
36 min  
10.8  
13.2 hr  
Copyright © 2018–2019, Texas Instruments Incorporated  
11  
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Timing Requirements (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
I2C INTERFACE  
fSCL  
SCL clock frequency  
1000 kHZ  
DIGITAL CLOCK AND WATCHDOG TIMER  
fLPDIG  
fDIG  
Digital low power clock  
Digital clock  
REGN LDO disabled  
18  
30  
45 kHZ  
REGN LDO enabled  
1.35  
1.5  
1.65 MHz  
WATCHDOG[1:0] = 160 s, REGN LDO  
disabled  
tWDT  
tWDT  
Watchdog Reset time  
Watchdog Reset time  
100  
136  
160  
160  
sec  
sec  
WATCHDOG[1:0] = 160 s, REGN LDO  
enabled  
12  
版权 © 2018–2019, Texas Instruments Incorporated  
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
7.7 Typical Characteristics  
CVBUS = 1µF, CPMID= 10µF, CSYS = 44µF, CBAT = 10µF, L = 1uH (DFE252012F-1R0) (unless otherwise specified)  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
VBAT = 7.6V  
VBAT = 8.0V  
VBAT = 7.6V  
VBAT = 8.0V  
0
0.2 0.4 0.6 0.8  
1
Charge Current (A)  
1.2 1.4 1.6 1.8  
2
2
1
0
0.2 0.4 0.6 0.8  
1
Charge Current (A)  
1.2 1.4 1.6 1.8  
2
VBUS = 5V  
1. Charge Efficiency vs. Charge Current  
VBUS = 5V  
L = 1µH (IHLP2525CZ-01)  
2. Charge Efficiency vs. Charge Current  
95  
90  
85  
80  
75  
70  
65  
60  
55  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
PFM En, OOA En  
PFM En, OOA Dis  
PFM Dis  
PFM En, OOA En  
PFM En, OOA Dis  
PFM Dis  
0.01  
0.020.03 0.05  
0.1  
0.2 0.3 0.5 0.7  
IBUS (A)  
1
0.01  
0.020.03 0.05  
0.1  
0.2 0.3 0.5 0.7  
IBUS (A)  
1
2
VBUS = 5.0V  
VBAT = 7.6V  
VBUS = 5.0V  
VBAT = 7.6V L = 1µH (IHLP2525CZ-01)  
3. OTG Efficiency vs. VBUS Output Current  
4. OTG Efficiency vs. VBUS Output Current  
95  
90  
85  
80  
75  
70  
65  
60  
55  
15  
12.5  
10  
VBAT = 6.6V  
VBAT = 7.6V  
7.5  
5
2.5  
0
-2.5  
-5  
-7.5  
-10  
-12.5  
-15  
PFM En, OOA En  
PFM En, OOA Dis  
PFM Dis  
0.01  
0.02 0.03 0.050.07 0.1  
0.2 0.3  
0.5 0.7  
0
0.2 0.4 0.6 0.8 1  
ICHG Setting (A)  
1.2 1.4 1.6 1.8  
2
System Current (A)  
VBUS = 5V  
VBAT = 8.4V  
VBUS = 5V  
5. System Efficiency vs. System Current  
6. Charge Current Accuracy vs. ICHG Setting  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
CVBUS = 1µF, CPMID= 10µF, CSYS = 44µF, CBAT = 10µF, L = 1uH (DFE252012F-1R0) (unless otherwise specified)  
0.4  
250  
225  
200  
175  
150  
125  
100  
75  
-40èC  
0èC  
25èC  
85èC  
0.3  
0.2  
0.1  
0.0  
-0.1  
-0.2  
-0.3  
-0.4  
50  
25  
0
6.75 7.00 7.25 7.50 7.75 8.00 8.25 8.50 8.75 9.00 9.25  
VREG Setting (V)  
1
1.2  
1.4 1.6  
System Current (A)  
1.8  
2
VBUS = 5V  
VBUS = 5V  
VBAT = 6V,  
SYSMIN = 7V  
EN_CHG = 0  
8. SYSMIN Load Regulation  
7. Battery Voltage Accuracy vs. VREG Setting  
8.50  
3.0  
2.5  
-40èC  
0èC  
25èC  
85èC  
8.49  
8.48  
8.47  
8.46  
8.45  
8.44  
8.43  
8.42  
8.41  
8.40  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
0.3  
0.4  
0.5  
0.6 0.7  
System Current (A)  
0.8  
0.9  
1
4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5  
OTG_VLIM Setting(V)  
VBUS = 5V  
VBAT = 8.4V  
EN_CHG = 0  
VBAT = 8.0V  
9. System Load Regulation After Charge Done  
10. OTG VBUS Regulation vs. OTG_VLIM Setting  
0
-1  
3.0  
-40èC  
25èC  
85èC  
-40èC  
0èC  
25èC  
85èC  
2.5  
2.0  
-2  
-3  
1.5  
-4  
-5  
1.0  
-6  
-7  
0.5  
0.0  
-8  
-9  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-10  
-11  
-12  
-13  
-14  
-15  
0.4  
VBAT = 8.0V  
11. OTG IBUS Limit vs. OTG_ILIM Setting  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
6.0  
6.3  
6.6  
6.9  
7.2  
VBAT Voltage (V)  
7.5  
7.8  
8.1  
8.4  
8.7  
OTG_ILIM Setting (A)  
VBUS = 5.1V  
IBUS = 1A  
12. OTG Voltage Regulation vs. VBAT Voltage  
14  
版权 © 2018–2019, Texas Instruments Incorporated  
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
Typical Characteristics (接下页)  
CVBUS = 1µF, CPMID= 10µF, CSYS = 44µF, CBAT = 10µF, L = 1uH (DFE252012F-1R0) (unless otherwise specified)  
0
-1  
3.0  
Temp = -40èC  
Temp = -20èC  
Temp = 25èC  
Temp = 85èC  
Temp = -40èC  
Temp = 0èC  
Temp = 25èC  
Temp = 85èC  
2.5  
-2  
-3  
2.0  
1.5  
-4  
-5  
1.0  
-6  
-7  
0.5  
0.0  
-8  
-9  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-10  
-11  
-12  
-13  
-14  
-15  
0.6  
0.8  
1.0  
1.2 1.4  
VBUS Current (A)  
1.6  
1.8  
2.0  
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3  
IINDPM Setting (A)  
VBUS = 5.1V  
VBAT = 8.0V  
VBUS = 5.0V  
VBAT = 7.6V  
13. OTG Voltage Regulation vs. OTG BUS Current  
14. Input Current Limit Accuracy vs. IINDPM Setting  
0.2  
3.0  
2.5  
TREG = 60èC  
TREG = 80èC  
TREG = 100èC  
TREG = 120èC  
VBAT = 6.6V  
VBAT = 7.6V  
2.0  
0.15  
0.1  
1.5  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
0.05  
0
-0.05  
3.8  
4.0  
4.2  
4.4  
4.6  
VINDPM Setting (V)  
4.8  
5.0  
5.2  
5.4  
5.6  
40  
60  
80  
100  
120  
140  
160  
180  
Die Temperature (èC)  
VBAT = 7.6V  
VBUS = 5V  
VBAT = 7.6V  
ICHG = 150mA  
15. Input Voltage Limit Accuracy vs. VINDPM Setting  
16. TREG Profiles  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
ICHG = 0.5A  
ICHG = 1.0A  
ICHG = 1.8A  
90 95 100 105 110 115 120 125 130 135 140 145 150  
Die Temperature (èC)  
VBUS = 5V  
VBAT = 7.6V  
ICHG = 1A, 1.5A, 2.2A  
17. Max Current Temperature Profile  
版权 © 2018–2019, Texas Instruments Incorporated  
15  
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The device is a highly integrated 2-A switch-mode battery charger for dual cell Li-Ion and Li-polymer battery. It  
integrates the input blocking FET (Q1, QBLK), high-side switching FET (Q2, QHS), low-side switching FET (Q3,  
QLS), and battery FET (Q4, QBAT). The device also integrates the boot-strap diode for high-side gate drive.  
8.2 Functional Block Diagram  
VBUS  
PMID  
VVBUS_UVLOZ  
QBLK  
(Q1)  
+
UVLO  
QBLK  
CONTROL  
REGN  
BTST  
REGN  
REGN  
LDO  
EN_HIZ  
+
VBUS_OVP  
VVBUS_OV  
VO,REF  
SYS  
VVBUS  
OTG_OVP  
VOTG  
VVBUS  
+
VOTG_OVP  
QHS  
(Q2)  
+
OTG_Q2_OCP  
+
IQ2  
VVBUS  
SYS  
+
+
+
IHSOCP  
VMIN_SYS  
VINDPM  
+
SW  
BAT_OVP  
BATSNS  
VBAT_OVP  
IIN  
BATSNS  
VBAT_REG  
+
+
+
QLS  
(Q3)  
REGN  
DC-DC  
CONTROL  
IINDPM  
IC_TJ  
TREG  
ICHG  
GND  
ICHG_REG  
EN_CHARGE  
IQ3  
+
+
Q3_OCP  
GND  
EN_HIZ  
ILSOCP  
EN_OTG  
VBTST œ VSW  
REFRESH  
VBTST_REFRESH  
VPOORSRC  
CONVERTER  
CONTROL  
STATE  
+
+
POORSRC  
TSHUT  
VVBUS  
REF  
DAC  
IC_TJ  
TSHUT  
MACHINE  
SYS  
ILIM  
D+  
IBUS  
ICHG  
VBUS  
VBAT  
VSYS  
VTS  
ICHG  
QBAT  
(Q4)  
ADC  
VBAT_REG  
ICHG_REG  
USB  
DETECTION  
QBAT  
CONTROL  
Dœ  
/PG  
/INT  
TDIE  
VREG - VRECHG  
BATSNS  
RECHRG  
+
+
BAT  
ICHG  
ITERM  
BATP  
TERMINATION  
BATLOWV  
BATSNS  
BATSNS  
AMP  
CHARGE  
CONTROL  
STATE  
VBAT_LOWV  
BATSNS  
+
+
MACHINE  
BATN  
TS  
BQ25882  
VBAT_UVLOZ  
BATSNS  
BATUVLO  
BATTERY  
SENSING  
THERMISTOR  
VTS  
I2C  
INTERFACE  
TS_SUSPEND  
/CE  
SCL  
SDA  
16  
版权 © 2018–2019, Texas Instruments Incorporated  
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
8.3 Feature Description  
8.3.1 Device Power-On-Reset  
The internal bias circuits are powered from either VBAT or VBUS. When VBUS rises above VVBUS_UVLOZ or BAT  
rises above VBAT_UVLOZ, the BATFET driver is active. I2C interface is ready for communication and all the  
registers are reset to default value. The host can access all the registers after POR.  
8.3.2 Device Power Up from Battery without Input Source  
If only battery is present and the voltage is above UVLO threshold (VBAT_UVLOZ), the BATFET turns on and  
connects battery to system. The REGN LDO stays off to minimize the quiescent current. The low RDS(ON) of  
BATFET and the low quiescent current on BAT minimize the conduction loss and maximize the battery run time.  
The device always monitors discharge current through BATFET (Supplement Mode).  
8.3.3 Device Power Up from Input Source  
When an input source is plugged in, the device checks the input source voltage to turn on REGN LDO and all the  
bias circuits. It detects and sets the input current limit before the boost converter is started. The power up  
sequence from input source is as listed:  
1. Poor Source Qualification  
2. Input Source Type Detection based on D+/D– to set default Input Current Limit (IINDPM) register and input  
source type  
3. Power Up REGN LDO  
4. Converter Power-up  
8.3.3.1 Poor Source Qualification  
After valid VBUS is plugged in, the device checks the current capability of the input source. The input source has  
to meet the following requirements in order to start the boost converter.  
1. VBUS voltage below VVBUS_OVP  
2. VBUS voltage above VPOORSRC when pulling IPOORSRC  
If VBUS_OVP is detected (condition 1 above), the device automatically retries detection once the over-voltage  
fault goes away . If a poor source is detected (condition 2 above), the device repeats poor source qualification  
routine every 2 seconds. After 7 consecutive failures, the device sets EN_HIZ = 1, and goes to HIZ mode. The  
battery powers up the system when the device is in HIZ. Adapter re-plugin and/or EN_HIZ bit toggle is required  
to restart device operation. The EN_HIZ bit is cleared automatically when the adapter is plugged in.  
8.3.3.2 Input Source Type Detection  
After the input source is qualified, the charger device runs Input Source Type Detection when AUTO_INDET_EN  
bit is set.  
The BQ25882 follows the USB Battery Charging Specification 1.2 (BC1.2) to detect input source  
(SDP/CDP/DCP) and non-standard adapter through USB D+/D- lines. After input source type detection, the  
following registers and pins are changed:  
1. Input Current Limit (IINDPM) register is changed to set current limit  
2. Input Voltage Limit (VINDPM) register is changed to set default limit (if EN_VINDPM_RST = 1, otherwise  
VINDPM value remains unchanged)  
3. VBUS_STAT bits change to reflect the detected source  
4. INT pin pulses to notify the host  
5. PG pin is pulled LOW, and PG_STAT bit is set to '1'  
After detection is completed, the host can over-write IINDPM or VINDPM registers to change the input current, or  
input voltage limit if needed. The charger input current is always limited by the lower of IINDPM register or ILIM  
pin at all-times regardless of Input Current Optimizer (ICO) setting.  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
When AUTO_INDET_EN is disabled, the Input Source Type Detection is bypassed, and the Input Current Limit  
(IINDPM) register remains unchanged from previous value. When EN_VINDPM_RST is disabled, the Input  
Voltage Limit (VINDPM) register remains unchanged from previous value.  
8.3.3.2.1 D+/D– Detection Sets Input Current Limit  
The BQ25882 contains a D+/D- based input source detection to program the input current limit. The D+/D-  
detection has three major steps: Data Contact Detect (DCD), Primary Detection, and Secondary Detection.  
Unknown/1000mA  
Unknown/500mA or ILIM  
Divider 1/2.1A  
Divider 3/1.0A  
Divider 4/2.4A  
Non-Standard  
Adapter  
Data Detection  
Contact  
(DCD)  
Adapter Plug-in  
or  
FORCE_INDET  
Secondary  
Detection  
VBUS  
Detection  
Primary  
Detection  
DCP  
(3000mA)  
USB BC1.2 Standard  
CDP  
(1500mA)  
SDP  
(500mA)  
18. D+/D– Detection Flow  
2. Non-Standard Adapter Detection  
NON-STANDARD  
D+ THRESHOLD  
D– THRESHOLD  
INPUT CURRENT LIMIT  
ADAPTER  
Divider 1  
VD+ within VD+D-_2P8  
VD+ within VD+D-_2P0  
VD+ within VD+D-_2P8  
VD+ = 1 MΩ to 0 V  
VD– within VD+D-_2P0  
VD– within VD+D-_2P8  
VD– within VD+D-_2P8  
VD- = 3.3 V  
2.1 A  
1 A  
Divider 3  
Divider 4  
2.4 A  
1.0 A  
Unknown 2  
After the Input Source Type Detection is done, an INT pulse is asserted to the host. In addition, the following  
registers including Input Current Limit register (IINDPM), and VBUS_STAT are updated as below:  
3. Input Current Limit Setting from D+/D– Detection  
D+/D– DETECTION  
USB SDP (USB500)  
USB CDP  
INPUT CURRENT LIMIT (IINDPM)  
VBUS_STAT  
001  
500 mA  
1.5 A  
010  
USB DCP  
3.0 A  
011  
Divider 3  
1 A  
110  
Divider 1  
2.1 A  
110  
Divider 4  
2.4 A  
110  
Unknown 5-V Adapter (1)  
Unknown 5-V Adapter (2)  
500 mA  
1000 mA  
101  
101  
8.3.3.2.2 Force Input Current Limit Detection  
In host mode, the host can force the device to run Input Current Limit Detection by setting FORCE_INDET bit.  
After the detection is completed, FORCE_INDET bit returns to 0 by itself and Input Result is updated. After the  
detection is completed, the input current limit (IINDPM), and the VBUS_STAT bits may be changed by the device  
due to the detection result.  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
8.3.3.3 Power up REGN Regulator (LDO)  
The REGN LDO supplies internal bias circuits as well as the HSFET and LSFET gate drive. The LDO also  
provides bias rail to TS external resistors. The pull-up rail of /PG can be connected to REGN as well. The REGN  
is enabled when all the below conditions are valid.  
1. VBUS above VVBUS_UVLOZ in boost mode or VBUS below VVBUS_UVLOZ in buck mode  
2. Poor Source Qualification detects a valid input source  
3. Input Source Type Detection completes and sets appropriate input current limit  
4. After 220 ms delay is complete  
If one of the above conditions is not valid, the device is in high impedance mode (HIZ) with REGN LDO off. The  
device draws less than IVBUS_HIZ from VBUS during HIZ state. The battery powers up the system when the  
device is in HIZ.  
8.3.3.4 Converter Power Up  
After the input current limit is set, the PG pin is pulled LOW, the PG_STAT and VBUS_STAT bits are changed,  
and the converter is enabled, allowing the HSFET and LSFET to start switching. If battery charging is disabled,  
BATFET turns off. Otherwise, BATFET stays on to charge the battery. The device provides soft-start when  
system rail is ramped up.  
Before charging begins, the battery discharge source (IBAT_DISCHG) is enabled automatically to detect the  
presence of battery. The host can enable IBAT_DISCHG via the EN_BAT_DISCHG bit at any point during  
operation, including in Battery Only or HIZ modes.  
As a battery charger, the device deploys a highly efficient 1.5-MHz step-up switching regulator. The fixed  
frequency oscillator keeps tight control of the switching frequency under all conditions of input voltage, battery  
voltage, charge current and temperature, simplifying filter design.  
In order to improve light-load efficiency, the device switches to PFM control at light load when battery is below  
minimum system voltage setting or charging is disabled. During the PFM operation, the switching duty cycle is  
set by the ratio of SYS and VBUS. PFM operation may be disabled by the host using the PFM_DIS bit. PFM  
operation also includes an out-of-audio (OOA) feature to prevent the converter from switching within the audible  
range (< 20 kHz) at no load conditions. This feature may be disabled by the host using the PFM_OOA_DIS bit.  
8.3.4 Input Current Optimizer (ICO)  
The device provides innovative Input Current Optimizer (ICO) to identify maximum power point without  
overloading the input source. The algorithm automatically identifies maximum input current limit of a power  
source without staying in VINDPM to avoid input source overload.  
This feature is enabled by default (EN_ICO=1) and can be disabled by setting EN_ICO bit to 0. After DCP type  
input source is detected based on the procedures describe above (Input Source Type Detection), the algorithm  
runs automatically when EN_ICO bit is set. The algorithm can also be forced to execute by setting FORCE_ICO  
bit regardless of input source type detected (EN_ICO = 1 is required for FORCE_ICO to work).  
4. Input Current Optimizer Automatic Operation  
AUTOMATIC START ICO  
ALGORITHM WHEN EN_ICO = 1  
DEVICE  
INPUT SOURCE  
INPUT CURRENT LIMIT (IINDPM)  
USB SDP (USB500)  
USB CDP  
500mA  
1.5A  
Disable  
Disable  
Enable  
Disable  
Disable  
Disable  
Disable  
Disable  
USB DCP  
3.0A  
Divider 3  
1A  
BQ25882 (D+/D–)  
Divider 1  
2.1A  
Divider 4  
2.4A  
Unknown 5V Adapter (1)  
Unknown 5V Adapter (2)  
500mA  
1000mA  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
The actual input current limit used by the Dynamic Power Management is reported in ICO_ILIM register while  
Input Current Optimizer is enabled (EN_ICO = 1) or set by IINDPM register when the algorithm is disabled  
(EN_ICO = 0). In addition, the current limit is clamped by ILIM pin unless EN_ILIM bit is 0 to disable ILIM pin  
function.  
When the algorithm is enabled, it runs continuously to adjust input current limit of Dynamic Power Management  
(IINDPM) using ICO_ILIM register until ICO_STAT[1:0] and ICO_FLAG bits are set (the ICO_FLAG bit indicates  
any change in ICO_STAT[1:0] bits). The algorithm operates depending on battery voltage:  
1. When battery voltage is below SYS_MIN, the algorithm starts ICO_ILIM register with IINDPM which is the  
maximum input current limit allowed by system  
2. When battery voltage is above SYS_MIN, the algorithm starts ICO_ILIM register with 500 mA which is the  
minimum input current limit to minimize adapter overload  
When optimal input current is identified, the ICO_STAT[1:0] and ICO_FLAG bits are set to indicate input current  
limit in ICO_ILIM register would not be changed until the algorithm is forced to run by the following event (these  
events also reset the ICO_STAT[1:0] bits to '01'):  
1. A new input source is plugged-in, or EN_HIZ bit is toggled  
2. IINDPM register is changed  
3. VINDPM register is changed  
4. FORCE_ICO bit is set to 1  
5. VBUS_OVP event  
8.3.5 Buck Mode Operation from Battery (OTG)  
The device supports buck converter operation to deliver power from the battery to other portable devices through  
USB port. The buck mode output current rating meets the USB On-The-Go 500-mA (OTG_ILIM bits = 000)  
output requirement. The maximum output current is up to 2.0 A. The buck operation can be enabled if the  
following conditions are valid:  
1. BAT above VOTG_BAT  
2. VBUS less than VVBUS_PRESENT  
3. ADC is enabled  
4. Buck mode operation is enabled (EN_OTG = 1)  
5. Voltage at TS (thermistor) pin is within range configured by Buck Mode Temperature Monitor as configured  
by BHOT and BCOLD register bits  
In buck mode, the device employs 1.5-MHz step-down switching regulator based on system requirements.  
During buck mode, the status register VBUS_STAT bits are set to 111, the VBUS output is 5.1 V by default  
(selectable via OTG_VLIM register bits) and the output current can reach up to 2.0 A, selected via I2C  
(OTG_ILIM bits). The buck output is maintained when BAT is above VOTG_BAT threshold, and VBUS is above  
VVBUS_PRESENT threshold.  
In order to improve light-load efficiency, the device switches to PFM control at light load. During the PFM  
operation, the switching duty cycle is set by the ratio of SYS and VBUS. PFM operation may be disabled by the  
host using the PFM_DIS bit. PFM operation also includes an out-of-audio (OOA) feature to prevent the converter  
from switching within the audible range (< 20 kHz) at no load conditions. This feature may be disabled by the  
host using the PFM_OOA_DIS bit.  
8.3.6 Power Path Management  
The device accommodates a wide range of input sources from USB, to wall adapter, to power bank. The device  
provides automatic power path selection to supply the system (SYS) from input source (VBUS), battery (BAT), or  
both.  
8.3.6.1 Narrow VDC Architecture  
The device deploys Narrow VDC architecture (NVDC) with BATFET separating system from battery. The  
minimum system voltage is set by SYS_MIN bits. Even with a fully depleted battery, the system is regulated  
above the minimum system voltage (default 7.0 V).  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
When the battery is below minimum system voltage setting, the BATFET operates in linear mode (LDO mode),  
and the system is typically 200 mV above the minimum system voltage setting. As the battery voltage rises  
above the minimum system voltage, BATFET is fully on and the voltage difference between the system and  
battery is the VDS of BATFET.  
When the battery charging is disabled and VBAT is above minimum system voltage setting or charging is  
terminated, the system is always regulated at typically 100 mV above battery voltage. The status register  
VSYS_STAT bit goes high when the system is in minimum system voltage regulation.  
9.0  
8.6  
Charge Enabled  
8.2  
7.8  
Charge Disabled  
7.4  
7.0  
Minimum System Voltage  
6.6  
6.2  
5.4  
5.8 6.2 6.6 7.0 7.4 7.8 8.2 8.6  
BAT (V)  
19. System Voltage vs. Battery Voltage  
8.3.6.2 Dynamic Power Management  
To meet maximum current limit in USB spec and avoid over loading the adapter, the device features Dynamic  
Power Management (DPM), which continuously monitors the input current and input voltage. When input source  
is over-loaded, either the current exceeds the input current limit (IINDPM or ICO_ILIM or ILIM pin setting) or the  
voltage falls below the input voltage limit (VINDPM). The device then reduces the charge current until the input  
current falls below the input current limit and the input voltage rises above the input voltage limit.  
When the charge current is reduced to zero, but the input source is still overloaded, the system voltage starts to  
drop. Once the system voltage falls below the battery voltage, the device automatically enters the Supplement  
Mode where the BATFET turns on and battery starts discharging so that the system is supported from both the  
input source and battery.  
During DPM mode, the status register bits VINDPM_STAT (VINDPM) and/or IINDPM_STAT (IINDPM) go high.  
The figure shows the DPM response with 5-V/3-A adapter, 6.4-V battery, 1.5-A charge current and 6.8-V  
minimum system voltage setting.  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
 
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
VSYS  
7.0V  
6.8V  
VBAT  
6.4V  
6.0V  
VBUS  
5.0V  
4.0V  
3A  
IBUS  
2A  
IBAT  
1A  
ISYS  
0A  
-1A  
DPM  
CC  
DPM  
CC  
Supplement  
20. DPM Response  
8.3.6.3 Supplement Mode  
When the voltage falls below the battery voltage, the BATFET turns on.  
As the discharge current increases, the BATFET gate is regulated with a higher voltage to reduce RDSON until the  
BATFET is in full conduction. At this point onwards, the BATFET VDS linearly increases with discharge current.  
The figure shows the V-I curve of the BATFET gate regulation operation. BATFET turns off to exit Supplement  
Mode when the battery is below battery depletion threshold (VBAT_DPL).  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
0
0.5  
1
1.5  
2
2.5  
IBAT (A)  
3
3.5  
4
4.5  
5
D001  
21. BATFET I-V Curve  
8.3.7 Battery Charging Management  
The device charges 2-cell Li-Ion battery with up to 2.2-A charge current for high capacity battery. The low RDS(ON)  
BATFET improves charging efficiency and minimize the voltage drop during discharging.  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
8.3.7.1 Autonomous Charging Cycle  
When battery charging is enabled (EN_CHG bit =1 and /CE pin is LOW), the device autonomously completes a  
charging cycle without host involvement. The device default charging parameters are listed in the table below.  
The host can always control the charging operation and optimize the charging parameters by writing to the  
corresponding registers through I2C.  
5. Charging Parameter Default Settings  
DEFAULT MODE  
Charging Voltage  
Charging Current  
Pre-Charge Current  
Termination Current  
Temperature Profile  
Safety Timer  
BQ25882  
8.4 V  
1.00 A  
150 mA  
150 mA  
JEITA  
12 hours  
A new charge cycle starts when the following conditions are valid:  
Converter starts  
Battery charging is enabled by I2C register bit (EN_CHG = 1 and CE pin is LOW and ICHG register is not 0  
mA)  
No thermistor fault on TS  
No safety timer fault  
The charger device automatically terminates the charging cycle when the charging current is below termination  
threshold, charge voltage is above recharge threshold, and device is not in DPM mode or thermal regulation.  
When a full battery voltage is discharged below recharge threshold (threshold selectable via VRECHG[1:0] bits),  
the device automatically starts a new charging cycle. After the charge is done, toggle either CE pin or EN_CHG  
bit can initiate a new charging cycle.  
The status register (CHRG_STAT) indicates the different charging phases as:  
000 – Not Charging  
001 – Trickle Charge (VBAT < VBAT_SHORT  
010 – Pre-charge (VBAT_SHORT < VBAT < VBAT_LOWV  
011 – Fast-charge (CC mode)  
100 – Taper Charge (CV mode)  
101 – Top-off Timer Active Charging  
110 – Charge Termination Done  
)
)
When the charger transitions to any of these states, including when charge cycle is completed, an INT is  
asserted to notify the host.  
8.3.7.2 Battery Charging Profile  
The device charges the battery in five phases: trickle charge, pre-charge, constant current, constant voltage, and  
top-off trickle charging (optional). At the beginning of a charging cycle, the device checks the battery voltage and  
regulates current/voltage accordingly.  
6. Default Charging Current Setting  
VBAT  
< VBAT_SHORT  
CHARGING CURRENT  
IBAT_SHORT  
REGISTER DEFAULT SETTING  
CHRG_STAT  
100 mA  
150 mA  
1500 mA  
001  
010  
011  
VBAT_SHORT to VBAT_LOWV  
> VBAT_LOWV  
IPRECHG  
ICHG  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
If the charger device is in DPM regulation or thermal regulation during charging, the actual charging current will  
be less than the programmed value. In this case, termination is temporarily disabled and the charging safety  
timer is counted at half the clock rate, as explained in the Charging Safety Timer section.  
Regulation Voltage  
VREG[7:0]  
Battery Voltage  
Charge Current  
ICHG[5:0]  
Charge Current  
VBATLOWV  
VBAT_SHORT  
IPRECHG[3:0]  
ITERM[3:0]  
IBAT_SHORT  
Trickle Charge  
001  
Pre-charge  
010  
Fast-Charge  
CC  
Taper-Charge  
CV  
Top-off Timer  
(optional)  
CHRG_STAT[2:0]  
011  
101  
110  
100  
Precharge Timer  
(2hrs)  
Safety Timer  
CHG_TIMER[1:0]  
22. Battery Charging Profile  
8.3.7.3 Charging Termination  
The device terminates a charge cycle when the battery voltage is above recharge threshold, and the current is  
below termination current. After the charging cycle is completed, the BATFET turns off. The converter keeps  
running to power the system, and BATFET can turn on again to engage Supplement Mode.  
When termination occurs, the status register CHRG_STAT is set to 110, and an INT pulse is asserted to the  
host. Termination is temporarily disabled when the charger device is in input current, voltage or thermal  
regulation. Termination can be permanently disabled by writing 0 to EN_TERM bit prior to charge termination.  
At low termination currents (50 mA to100 mA), due to the comparator offset, the actual termination current may  
be up to 40% higher than the termination target. In order to compensate for comparator offset, a programmable  
top-off timer (default disabled) can be applied after termination is detected. The top-off timer will follow safety  
timer constraints, such that if safety timer is suspended, so will the top-off timer. Similarly, if safety timer is  
doubled, so will the top-off timer. CHRG_STAT reports whether the top off timer is active via the 101 code. Once  
the Top-Off timer expires, the CHRG_STAT register is set to 110 and an INT pulse is asserted to the host.  
Top-off timer gets reset (set to 0 and counting resumes when appropriate) for any of the following conditions:  
1. Charge disable to enable  
2. Termination status low to high  
3. REG_RST register bit is set (disables top-off timer)  
The top-off timer settings are read in once termination is detected by the charger. Programming a top-off timer  
value after termination will have no effect until a new charge cycle is initiated. An INT is asserted to the host  
when entering top-off timer segment as well as when top-off timer expires. All charge cycle related INT pulses  
(including top-off timer INT pulses) can be masked by CHRG_MASK bit.  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
8.3.7.4 Thermistor Qualification  
The charger device provides a single thermistor input for battery temperature monitor.  
8.3.7.4.1 JEITA Guideline Compliance in Charge Mode  
To improve the safety of charging Li-ion batteries, JEITA guideline was released on April 20, 2007. The guideline  
emphasized the importance of avoiding a high charge current and high charge voltage at certain low and high  
temperature ranges.  
To initiate a charge cycle, the voltage on TS pin must be within the VT1 to VT5 thresholds. If TS voltage exceeds  
the T1-T5 range, the controller suspends charging and waits until the battery temperature is within the T1 to T5  
range. At cool temperature (T1-T2), JEITA recommends the charge current to be reduced to half of the charge  
current or lower. At warm temperature (T3-T5), JEITA recommends charge voltage less than 4.1 V / cell.  
The charger provides flexible voltage/current settings beyond the JEITA requirement. The voltage setting at  
warm temperature (T3-T5) can be VREG, 8.0 V, 8.3 V, or charge suspend (configured by JEITA_VSET [1:0]).  
The fast charge current setting at warm temperature (T3-T5) can be 100%, or 40% of fast charge current, ICHG  
(configured by JEITA_ISETH). The fast charge current setting at cool temperature (T1-T2) can be 100%, 40%, or  
20% of fast charge current, ICHG, or charge suspend (configured by JEITA_ISETC[1:0]). Whenever the charger  
detects "warm" or "cool" temperature, TERMINATION is automatically disabled regardless of JEITA_VSET,  
JEITA_ISETH and JEITA_ISETC register bit settings.  
REGN  
TS  
BQ2588x  
23. TS Resistor Network  
ISETC=11  
VSET =11  
ISETH=1  
100%  
VREG  
80%  
60%  
40%  
20%  
VSET =10  
VSET = 01  
8.3V  
8.0V  
ISETC=10  
ISETC=01  
ISETC=00  
ISETH=0  
VSET = 00  
T1  
0°C  
T2  
10°C  
T3  
45°C  
T5  
60°C  
T1  
0°C  
T2  
10°C  
T3  
45°C  
T5  
60°C  
TS Temperature  
TS Temperature  
24. TS Charging Values  
Assuming a 103AT NTC thermistor on the battery pack as shown above, the value of RT1 and RT2 can be  
determined by:  
1
1
VREGN ì RTHCOLD ì RTHHOT  
ì
-
«
÷
VT1 VT5  
RT2 =  
V
V
REGN  
REGN  
RTHHOT  
ì
-1 - RTHCOLD  
ì
-1  
«
÷
÷
VT5  
VT1  
«
(1)  
25  
版权 © 2018–2019, Texas Instruments Incorporated  
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
VREGN  
-1  
VT1  
RT1=  
1
1
+
RT2 RTHCOLD  
(2)  
Select 0°C to 60°C range for Li-ion or Li-polymer battery:  
RTHT1 = 27.28 kΩ  
RTHT5 = 3.02 kΩ  
RT1 = 5.24 kΩ  
RT2 = 30.31 kΩ  
8.3.7.4.2 Cold/Hot Temperature Window in OTG Buck Mode  
For battery protection during OTG buck mode, the device monitors the battery temperature to be within the  
VBCOLD to VBHOT thresholds. When temperature is outside of the temperature thresholds, the OTG mode is  
suspended. In addition, VBUS_STAT bits are set to 000 and corresponding TS_STAT is reported. Once  
temperature returns within thresholds, the OTG mode is recovered and TS_STAT is cleared.  
Temperature Range for OTG Buck Mode  
VREGN  
Buck Disable  
VBCOLDx  
(œ10°C / œ20°C)  
Buck Enable  
VBHOTx  
(55°C / 60°C / 65°C)  
Buck Disable  
GND  
25. TS Pin Thermistor Sense Threshold in OTG Buck Mode  
8.3.7.5 Charging Safety Timer  
The device has built-in safety timer to prevent extended charging cycle due to abnormal battery conditions. The  
user can program fast charge safety timer through I2C (CHG_TIMER bits). When safety timer expires, the fault  
register TMR_STAT bit is set to 1, and an INT pulse is asserted to the host. The safety timer feature can be  
disabled by clearing EN_TIMER bit.  
During input voltage, current or thermal regulation, the safety timer counts at half clock rate as the actual charge  
current is likely to be below the register setting. For example, if the charger is in input current regulation  
(IINDPM_STAT=1) throughout the whole charging cycle, and the safety timer is set to 5 hours, then the timer will  
expire in 10 hours. This half clock rate feature can be disabled by setting TMR2X_EN = 0. Changing the  
TMR2X_EN bit while the device is running has no effect on the safety timer count, other than forcing the timer to  
count at half the rate under the conditions dictated above.  
During faults which disable charging, or supplement mode, timer is suspended. Since the timer is not counting in  
this state, the TMR2X_EN bit has no effect. Once the fault goes away, safety timer resumes. If the charging  
cycle is stopped and started again, the timer gets reset (toggle CE pin or EN_CHG bit restarts the timer).  
The safety timer is reset for the following events:  
1. Charging cycle stop and restart (toggle CE pin, EN_CHG bit, or charged battery falls below recharge  
threshold)  
2. BAT voltage changes from pre-charge to fast-charge or vice versa (in host-mode or default mode)  
26  
版权 © 2018–2019, Texas Instruments Incorporated  
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
The precharge safety timer (fixed 2hr counter that runs when VBAT < VBAT_SHORT), follows the same rules as the  
fast-charge safety timer in terms of getting suspended, reset, and counting at half-rate when TMR2X_EN is set.  
8.3.8 Integrated 16-Bit ADC for Monitoring  
The device includes a 16-bit ADC to monitor critical system information based on the device’s modes of  
operation. The control of the ADC is done through the ADC Control Register (Address = 15h) [reset = 30h]  
register. The ADC_EN bit provides the ability to enable and disable the ADC to conserve power. The ADC_RATE  
bit allows continuous conversion or one-shot behavior. After a 1-shot conversion finishes, the ADC_EN bit is  
cleared, and must be re-asserted to start a new conversion.  
To enable the ADC, the ADC_EN bit must be set to ‘1’. The ADC is allowed to operate if either the  
VVBUS>VVBUS_UVLOZ or VBAT>VBAT_UVLOZ is valid. If no adapter is present, and the VBAT is less than VBAT_UVLOZ  
,
the device will not perform an ADC measurement, nor update the ADC read-back values in REG17 through  
REG24. Additionally, the device will immediately reset ADC_EN bit without sending any interrupt. The same will  
happen if the ADC is enabled when all ADC channels are disabled. It is recommended to read back ADC_EN  
after setting it to '1' to ensure ADC is running a conversion. If the charger changes mode (for example, if adapter  
is connected, EN_HIZ goes to '1', or EN_OTG goes to '1') while an ADC conversion is running, the conversion is  
interrupted. Once the mode change is complete, the ADC resumes conversion, starting with the channel where it  
was interrupted.  
The ADC_SAMPLE bits control the sample speed of the ADC, with conversion time of tADC_CONV. The integrated  
ADC has two rate conversion options: a 1-shot mode and a continuous conversion mode set by the ADC_RATE  
bit. By default, all ADC parameters will be converted in 1-shot or continuous conversion mode unless disabled in  
the ADC Function Disable Register (Address = 16h) [reset = 00h]. If an ADC parameter is disabled by setting the  
corresponding bit in REG16, then the read-back value in the corresponding register will be from the last valid  
ADC conversion or the default POR value (all zeros if no conversions have taken place). If an ADC parameter is  
disabled in the middle of an ADC measurement cycle, the device will finish the conversion of that parameter, but  
will not convert the parameter starting the next conversion cycle. Even though no conversion takes place when  
all ADC measurement parameters are disabled, the ADC circuitry is active and ready to begin conversion as  
soon as one of the bits in the ADC Function Disable register is set to ‘0’. If all channels are disabled in 1-shot  
conversion mode, the ADC_EN bit is cleared.  
The ADC_DONE_STAT and ADC_DONE_FLAG bits signal when a conversion is complete in 1-shot mode only.  
This event produces an INT pulse, which can be masked with ADC_DONE_MASK. During continuous  
conversion mode, the ADC_DONE_STAT bit has no meaning and will be '0'. The ADC_DONE_FLAG bit will  
remain unchanged in continuous conversion mode.  
ADC conversion operates independently of the faults present in the device. ADC conversion will continue even  
after a fault has occurred (such as one that causes the power stage to be disabled), and the host must set  
ADC_EN = ‘0’ to disable the ADC. ADC conversion is interrupted upon adapter plug-in, and will only resume until  
after Input Source Type Detection is complete. ADC readings are only valid for DC states and not for transients.  
When host writes ADC_EN = 0, the ADC stops immediately, and ADC measurement values correspond to last  
valid ADC reading.  
If the host wants to exit ADC more gracefully, it is possible to do either of the following:  
1. Write ADC_RATE to one-shot, and the ADC will stop at the end of a complete cycle of conversions, or  
2. Disable all ADC conversion channels, and the ADC will stop at the end of the current measurement.  
8.3.9 Status Outputs (PG, and INT)  
8.3.9.1 Power Good Indicator (PG)  
The PG_STAT bit goes HIGH and the PG pin goes LOW to indicate a good input source when:  
1. VBUS above VVBUS_UVLOZ  
2. VBUS below VVBUS_OV threshold  
3. VBUS above VPOORSRC when IPOORSRC current is applied (not a poor source)  
4. Input Source Type Detection is completed  
版权 © 2018–2019, Texas Instruments Incorporated  
27  
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.3.9.2 Interrupt to Host (INT)  
In some applications, the host does not always monitor the charger operation. The INT pin notifies the system  
host on the device operation. By default, the following events will generate an active-low, 256-µs INT pulse.  
1. Good input source detected  
VVBUS < VVBUS_OV threshold  
VVBUS > VPOORSRC when IPOORSRC current is applied (not a poor source)  
2. VBUS_STAT changes state (VBUS_STAT any bit change)  
3. Good input source removed  
4. Entering IINDPM regulation  
5. Entering VINDPM regulation  
6. Entering IC junction temperature regulation (TREG)  
7. I2C Watchdog timer expired  
At initial power up, this INT gets asserted to signal I2C is ready for communication  
8. Charger status changes state (CHRG_STAT value change), including Charge Complete  
9. TS_STAT changes state (TS_STAT any bit change)  
10. VBUS overvoltage detected (VBUS_OVP)  
11. Junction temperature shutdown (TSHUT)  
12. Battery overvoltage detected (BATOVP)  
13. Charge safety timer expired  
14. A rising edge on any of the *_STAT bits  
Each one of these INT sources can be masked off to prevent INT pulses from being sent out when they occur.  
Three bits exist for each one of these events:  
The STAT bit holds the current status of each INT source  
The FLAG bit holds information on which source produced an INT, regardless of the current status  
The MASK bit is used to prevent the device from sending out INT for each particular event  
When one of the above conditions occurs (a rising edge on any of the *_STAT bits), the device sends out an INT  
pulse and keeps track of which source generated the INT via the FLAG registers. The FLAG register bits are  
automatically reset to zero after the host reads them, and a new edge on STAT bit is required to re-assert the  
FLAG.  
28  
版权 © 2018–2019, Texas Instruments Incorporated  
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
IINDPM_STAT  
IINDPM_FLAG  
TREG_STAT  
TREG_FLAG  
INT  
I2C Flag Read  
26. INT Generation Behavior Example  
8.3.10 Input Current Limit on ILIM Pin  
For safe operation, the device has an additional hardware pin on ILIM to limit maximum input current. The  
maximum input current is set by a resistor from ILIM pin to ground as:  
KILIM  
=
I
INMAX  
RILIM  
(3)  
The actual input current limit is the lower value between ILIM pin setting and register setting (IINDPM). For  
example, if the register setting is 3.3 A (0x1C), and ILIM has a 820-resistor to ground, the input current limit is  
1.43 A (KILIM = 1170 max). ILIM pin can be used to set the input current limit rather than the register settings  
when EN_ILIM bit is set. The device regulates ILIM pin at 0.8 V. If ILIM voltage exceeds 0.8 V, the device enters  
input current regulation (refer to Dynamic Power Management section). Entering IINDPM through ILIM pin sets  
the IINDPM_STAT and FLAG bits, and produces an interrupt to host. The interrupt can be masked via the  
IINDPM_MASK bit.  
The ILIM pin can also be used to monitor input current when EN_ILIM is set and the device is not in ILIM  
regulation. The voltage on ILIM pin is proportional to the input current. ILIM can be used to monitor input current  
with the following relationship:  
K
ìV  
ì0.8V  
ILIM  
ILIM  
I
=
IN  
R
ILIM  
(4)  
For example, if ILIM pin is set with 820-Ω resistor, and the ILIM voltage 0.5 V, the actual input current is 0.762 A  
to 0.892 A (based on KILIM specified). If ILIM pin is open, the input current is limited to zero since ILIM voltage  
floats above 0.8 V. If ILIM pin is shorted, the input current limit is set by the register.  
The ILIM pin function can be disabled by setting the EN_ILIM bit to 0. When the pin is disabled, both input  
current limit function and monitoring function are not available.  
版权 © 2018–2019, Texas Instruments Incorporated  
29  
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.3.11 Voltage and Current Monitoring  
The device closely monitors the input and system voltage, as well as internal FET currents for safe boost and  
buck mode operation.  
8.3.11.1 Voltage and Current Monitoring in Boost Mode  
8.3.11.1.1 Input Over-voltage Protection  
The valid input voltage range for boost mode operation is VVBUS_OP. If VBUS voltage exceeds VVBUS_OV, the  
device stops switching immediately to protect the power FETs. During input over-voltage, an INT pulse is  
asserted to signal the host, and the VBUS_OVP_STAT and VBUS_OVP_FLAG fault registers get set. The  
device automatically starts switching again when the over-voltage condition goes away.  
8.3.11.1.2 Input Under-Voltage Protection  
The valid input voltage range for boost mode operation is VVBUS_OP. If VBUS voltage falls below VPOORSRC during  
operation, the device stops switching. During input under-voltage, an INT pulse is asserted to signal the host,  
and the PG_STAT bit gets cleared. The PG_FLAG bit will get set to signal this event. The device automatically  
attempts to restart switching when the under-voltage condition goes away.  
8.3.11.1.3 System Over-Voltage Protection  
The charger device clamps the system voltage during load transient so that the components connect to system  
would not be damaged due to high voltage. SYSOVP threshold is 350 mV above system regulation voltage.  
Upon SYSOVP, converter stops immediately to clamp the overshoot.  
8.3.11.1.4 System Over-Current Protection  
The charger device continually monitors and compares VBUS to VSYS to protect against a system short-circuit  
event. In the event that VSYS drops to within 250 mV of VBUS during operation, and the input current exceeds  
IINDPM threshold, a short circuit event is flagged and the converter stops switching. The SYS_SHORT_FLAG bit  
is set and an INT pulse is asserted to the host. The device attempts to recover from this condition automatically.  
8.3.11.2 Voltage and Current Monitoring in OTG Buck Mode  
The device closely monitors the VBUS voltage, as well as RBFET (Q1, QBLK) and LSFET (Q3, QLS) current to  
ensure safe buck mode operation.  
8.3.11.2.1 VBUS Over-Voltage Protection  
When the VBUS voltage rises above regulation target and exceeds VOTG_OVP, the device enters over-voltage  
protection which stops switching, clears the EN_OTG bit and exits buck mode. During the over-voltage duration,  
the OTG_STAT and OTG_FLAG bits are set high to indicate a fault in buck mode operation. An INT is also  
asserted to the host.  
8.3.11.2.2 VBUS Over-Current Protection  
The device monitors output current to provide output short protection. The OTG buck mode has built-in constant  
current regulation to allow OTG to adapt to various types of loads. If short circuit is detected on VBUS, the OTG  
turns off and OTG is disabled with EN_OTG bit cleared. In addition OTG_STAT and OTG_FLAG bits are set high  
to indicate the fault, and an INT is asserted to the host.  
8.3.12 Thermal Regulation and Thermal Shutdown  
8.3.12.1 Thermal Protection in Boost Mode  
The device monitors internal junction temperature, TJ, to avoid overheating and limits the IC surface temperature  
in boost mode. When the internal junction temperature exceeds the preset thermal regulation limit (TREG bits),  
the device reduces charge current. A wide thermal regulation range from 60°C to 120°C allows optimization for  
the system thermal performance.  
During thermal regulation, the actual charging current is usually below the programmed value in ICHG registers.  
Therefore, termination is disabled, the safety timer runs at half the clock rate, the status register TREG_STAT bit  
goes high, and an INT is asserted to the host.  
30  
版权 © 2018–2019, Texas Instruments Incorporated  
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
Additionally, the device has thermal shutdown to turn off the converter when IC surface temperature exceeds  
TSHUT. The fault register bits TSHUT_STAT and TSHUT_FLAG are set and an INT pulse is asserted to the host.  
The converter turns back on when IC temperature is below TSHUT_HYS  
.
8.3.12.2 Thermal Protection in OTG Buck Mode  
The device monitors the internal junction temperature to provide thermal shutdown during OTG buck mode.  
When IC surface temperature exceeds TSHUT, the buck mode is disabled (converter is turned off) by setting  
EN_OTG bit low. The fault register bits TSHUT_STAT and TSHUT_FLAG are set and an INT pulse is asserted  
to the host. When IC surface temperature is below TSHUT_HYS (typ. 30°C), the host can set EN_OTG bit to '1' to  
recover.  
8.3.13 Battery Protection  
8.3.13.1 Battery Overvoltage Protection (BATOVP)  
The battery over-voltage limit is clamped at 4% above the battery regulation voltage while charging. When  
battery overvoltage occurs, the charger device immediately disables charge. The fault register BATOVP_STAT  
bit goes high and an INT pulse is asserted to signal the host.  
8.3.13.2 Battery Over-Discharge Protection  
When the battery is discharged below VBAT_UVLOZ, the BATFET is turned off to protect battery from over-  
discharge. To recover from over-discharge, an input source is required at VBUS. When an input source is  
plugged in, the BATFET turns on. The battery is charged with IBAT_SHORT current when the VBAT < VBAT_SHORT, or  
pre-charge current as set in IPRECHG registers when the battery voltage is between VBAT_SHORT and VBAT_LOWV  
.
8.3.14 Serial Interface  
The device uses I2C compatible interface for flexible charging parameter programming and instantaneous device  
status reporting. I2C is a bi-directional 2-wire serial interface. Only two open-drain bus lines are required: a serial  
data line (SDA), and a serial clock line (SCL). Devices can be considered as masters or slaves when performing  
data transfers. A master is a device which initiates a data transfer on the bus and generates the clock signals to  
permit that transfer. At that time, any device addressed is considered a slave.  
The device operates as a slave device with address 0x6B, receiving control inputs from the master device like  
micro-controller or digital signal processor through REG00 – REG25. Register read beyond REG25 (0x25),  
returns 0xFF. The I2C interface supports both standard mode (up to 100 kbits/s), and fast mode (up to 400  
kbits/s). When the bus is free, both lines are HIGH. The SDA and SCL pins are open drain and must be  
connected to the positive supply voltage via a current source or pull-up resistor.  
8.3.14.1 Data Validity  
The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the  
data line can only change when the clock signal on SCL line is LOW. One clock pulse is generated for each data  
bit transferred.  
SDA  
SCL  
Data line stable;  
Data valid  
Change of  
data allowed  
27. Bit Transfers on the I2C bus  
版权 © 2018–2019, Texas Instruments Incorporated  
31  
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.3.14.2 START and STOP Conditions  
All transactions begin with a START (S) and are terminated with a STOP (P). A HIGH to LOW transition on the  
SDA line while SCL is HIGH defines a START condition. A LOW to HIGH transition on the SDA line when the  
SCL is HIGH defines a STOP condition.  
START and STOP conditions are always generated by the master. The bus is considered busy after the START  
condition, and free after the STOP condition.  
SDA  
SCL  
SDA  
SCL  
STOP (P)  
28. START and STOP Conditions on the I2C Bus  
START (S)  
8.3.14.3 Byte Format  
Every byte on the SDA line must be 8 bits long. The number of bytes to be transmitted per transfer is  
unrestricted. Each byte has to be followed by an ACKNOWLEDGE (ACK) bit. Data is transferred with the Most  
Significant Bit (MSB) first. If a slave cannot receive or transmit another complete byte of data until it has  
performed some other function, it can hold the SCL line low to force the master into a wait state (clock  
stretching). Data transfer then continues when the slave is ready for another byte of data and releases the SCL  
line.  
Acknowledgeme  
nt signal from  
Acknowledgement  
signal from slave  
receiver  
MSB  
SDA  
1
2
7
8
9
1
2
8
9
SCL S or Sr  
START or  
P or Sr  
ACK  
ACK  
STOP or  
Repeate  
d START  
Repeated  
START  
29. Data Transfer on the I2C Bus  
8.3.14.4 Acknowledge (ACK) and Not Acknowledge (NACK)  
The ACK signaling takes place after byte. The ACK bit allows the receiver to signal the transmitter that the byte  
was successfully received and another byte may be sent. All clock pulses, including the acknowledge 9th clock  
pulse, are generated by the master.  
The transmitter releases the SDA line during the acknowledge clock pulse so the receiver can pull the SDA line  
LOW and it remains stable LOW during the HIGH period of this 9th clock pulse.  
A NACK is signaled when the SDA line remains HIGH during the 9th clock pulse. The master can then generate  
either a STOP to abort the transfer or a repeated START to start a new transfer.  
8.3.14.5 Slave Address and Data Direction Bit  
After the START signal, a slave address is sent. This address is 7 bits long, followed by the 8 bit as a data  
direction bit (bit R/W). A zero indicates a transmission (WRITE) and a one indicates a request for data (READ).  
The device 7-bit address is defined as 1101 011' (0x6B) by default. The address bit arrangement is shown  
below.  
32  
版权 © 2018–2019, Texas Instruments Incorporated  
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
Slave Address  
1
1
0
1
0
1
1
R/W  
30. 7-Bit Addressing (0x6B)  
SDA  
SCL  
S
8
9
8
9
8
9
P
1-7  
1-7  
1-7  
DATA  
START  
ADDRESS  
R/W ACK  
DATA  
ACK  
ACK  
STOP  
31. Complete Data Transfer on the I2C Bus  
8.3.14.6 Single Write and Read  
32. Single Write  
33. Single Read  
If the register address is not defined, the charger IC sends back NACK and returns to the idle state.  
8.3.14.7 Multi-Write and Multi-Read  
The charger device supports multi-read and multi-write of all registers.  
34. Multi-Write  
版权 © 2018–2019, Texas Instruments Incorporated  
33  
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
35. Multi-Read  
8.4 Device Functional Modes  
8.4.1 Host Mode and Default Mode  
The device is a host controlled charger, but it can operate in default mode without host management. In default  
mode, the device can be used as an autonomous charger with no host or while host is in sleep mode. When the  
charger is in default mode, WD_STAT bit is HIGH. When the charger is in host mode, WD_STAT bit is LOW.  
After power-on-reset, the device starts in default mode with watchdog timer expired, or default mode. All the  
registers are in the default settings.  
In default mode, the device keeps charging the battery with default 10-hour fast charging safety timer. At the end  
of the 10-hour, the charging is stopped and the boost converter continues to operate to supply system load.  
A write to any I2C register transitions the charger from default mode to host mode, and initiates the watchdog  
timer. All the device parameters can be programmed by the host. To keep the device in host mode, the host has  
to reset the watchdog timer by writing 1 to WD_RST bit before the watchdog timer expires (WD_STAT bit is set),  
or disable watchdog timer by setting WATCHDOG bits = 00.  
When the watchdog timer (WD_STAT bit = 1) is expired, the device returns to default mode and all registers are  
reset to default values except as detailed in the Register Maps section.  
POR  
watchdog timer expired  
Reset registers  
I2C interface enabled  
Host Mode  
Start watchdog timer  
Host programs registers  
Y
I2C Write?  
N
Default Mode  
Reset watchdog timer  
Reset selective registers  
Y
N
WD_RST bit = 1?  
N
N
Y
Y
I2C Write?  
Watchdog Timer  
Expired?  
36. Watchdog Timer Flow Chart  
34  
版权 © 2018–2019, Texas Instruments Incorporated  
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
8.5 Register Maps  
Default I2C Slave Address: 0x6B (1101 011B + R/W)  
7. I2C Registers  
Address  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
Access Type  
Acronym  
REG00  
REG01  
REG02  
REG03  
REG04  
REG05  
REG06  
REG07  
REG08  
REG09  
REG0A  
REG0h  
REG0C  
REG0D  
REG0E  
REG0F  
REG10  
REG11  
REG12  
REG13  
REG14  
REG15  
REG16  
REG17  
REG18  
REG19  
REG1A  
REG1B  
REG1C  
REG1D  
REG1E  
REG1F  
REG20  
REG21  
REG22  
REG23  
REG24  
REG25  
Register Name  
Section  
Go  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Battery Voltage Limit  
Charge Current Limit  
Input Voltage Limit  
Input Current Limit  
Go  
Go  
Go  
Precharge and Termination Control  
Charger Control 1  
Charger Control 2  
Charger Control 3  
Charger Control 4  
OTG Control  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
ICO Current Limit  
Charger Status 1  
Charger Status 2  
NTC Status  
R
R
R
R
FAULT Status  
Charger Flag 1  
Charger Flag 2  
Fault Flag  
R
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R
Charger Mask 1  
Charger Mask 2  
Fault Mask  
ADC Control  
ADC Function Disable  
IBUS ADC1  
R
IBUS ADC0  
R
ICHG ADC1  
R
ICHG ADC0  
R
VBUS ADC1  
R
VBUS ADC0  
R
VBAT ADC1  
R
VBAT ADC0  
R
VSYS ADC1  
R
VSYS ADC0  
R
TS ADC1  
R
TS ADC0  
R
TDIE ADC1  
R
TDIE ADC0  
R/W  
Part Information  
Complex bit access types are encoded to fit into small table cells. 8 shows the codes that are used for access  
types in this section.  
版权 © 2018–2019, Texas Instruments Incorporated  
35  
 
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8. I2C Access Type Codes  
ACCESS TYPE CODE  
Read Type  
DESCRIPTION  
R
R
Read  
Write Type  
W
W
Write  
Reset Value  
-n  
Value after reset  
Undefined value  
-X  
36  
版权 © 2018–2019, Texas Instruments Incorporated  
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
8.5.1 Battery Voltage Regulation Limit Register (Address = 00h) [reset = A0h]  
REG00 is shown in 37 and described in 9.  
Return to Summary Table.  
37. REG00 Register  
Bit  
7
1
6
0
5
1
4
0
3
0
2
0
1
0
0
0
Reset  
Field  
VREG[7:0]  
9. REG00 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
VREG[7]  
VREG[6]  
VREG[5]  
VREG[4]  
VREG[3]  
VREG[2]  
VREG[1]  
VREG[0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
1280 mV  
640 mV  
320 mV  
160 mV  
80 mV  
Charge voltage limit  
Offset: 6.80 V  
Range: 6.80 V to 9.20 V  
Default 8.40 V  
Yes  
Yes  
Yes  
Yes  
Yes  
40 mV  
Yes  
20 mV  
Yes  
10 mV  
版权 © 2018–2019, Texas Instruments Incorporated  
37  
 
 
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.5.2 Charger Current Limit Register (Address = 01h) [reset = 54h]  
REG01 is shown in 38 and described in 10.  
Return to Summary Table.  
38. REG01 Register  
Bit  
7
0
6
1
5
0
4
1
3
0
2
1
1
0
0
0
Reset  
Field  
EN_HIZ  
EN_ILIM  
ICHG[5:0]  
10. REG01 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
EN_HIZ  
R/W  
Yes  
Yes  
Enable HIZ Mode:  
0 – Disable (default)  
1 – Enable  
6
EN_ILIM  
R/W  
Yes  
Yes  
Enable ILIM Pin Function:  
0 – Disable  
1 – Enable (default)  
5
4
3
2
1
0
ICHG[5]  
ICHG[4]  
ICHG[3]  
ICHG[2]  
ICHG[1]  
ICHG[0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
1600 mA  
800 mA  
400 mA  
200 mA  
100 mA  
50 mA  
Fast Charge Current Limit  
Offset: 0 mA  
Range: 100 mA – 2200 mA  
Default: 1000 mA  
Note: ICHG > 2.2 A (2Ch) clamped to 2.2 A. ICHG < 100 mA (01h)  
clamped at 100 mA  
38  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
8.5.3 Input Voltage Limit Register (Address = 02h) [reset = 85h]  
REG02 is shown in 39 and described in 11.  
Return to Summary Table.  
39. REG02 Register  
Bit  
7
1
6
0
5
4
0
3
0
2
1
0
0
1
Reset  
Field  
0
1
EN_VINDPM_  
RST  
EN_BAT_  
DISCHG  
PFM_OOA_DIS  
VINDPM[4:0]  
11. REG02 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
EN_VINDPM_RST  
R/W  
Yes  
Yes  
Enable VINDPM automatic reset upon adapter plugin:  
0 – Disable VINDPM reset when adapter is plugged in  
1 – Enable VINDPM reset when adapter is plugged in (VINDPM resets to default  
value after Input Source Type Detection)  
6
5
EN_BAT_DISCHG  
PFM_OOA_DIS  
R/W  
R/W  
Yes  
Yes  
Yes  
No  
Enable BAT pin discharge load (IBAT_DISCHG):  
0 – Disable load (Default)  
1 – Enable BAT discharge load  
PFM Out-of-Audio (OOA) Mode Disable:  
0 – Out-of-audio mode enabled while in converter is in PFM (Default)  
1 – Out-of-audio mode disabled while in converter is in PFM  
4
3
2
1
0
VINDPM[4]  
VINDPM[3]  
VINDPM[2]  
VINDPM[1]  
VINDPM[0]  
R/W  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
1600 mV  
800 mV  
400 mV  
200 mV  
100 mV  
Absolute Input Voltage Limit:  
Offset: 3.9 V  
Range: 3.9 V – 5.5 V  
Default: 4.4 V  
Note: VINDPM > 5.5 V (10h) clamped to 5.5 V. VINDPM register is  
reset upon adapter plug-in if EN_VINDPM_RST = 1.  
版权 © 2018–2019, Texas Instruments Incorporated  
39  
 
 
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.5.4 Input Current Limit Register (Address = 03h) [reset = 39h]  
REG03 is shown in 40 and described in 12.  
Return to Summary Table.  
40. REG03 Register  
Bit  
7
6
5
1
4
1
3
1
2
1
0
0
1
Reset  
Field  
0
0
0
FORCE_ICO  
FORCE_INDET  
EN_ICO  
IINDPM[4:0]  
12. REG03 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
FORCE_ICO  
R/W  
Yes  
Yes  
Force Start Input Current Optimizer (ICO):  
0 – Do not force ICO (default)  
1 – Force ICO start  
Note: This bit can only be set and always returns 0 after ICO starts. This bit only  
valid when EN_ICO = 1  
6
5
FORCE_INDET  
EN_ICO  
R/W  
R/W  
Yes  
Yes  
Yes  
No  
Force D+/D– Detection:  
0 – Not in D+/D– detection (default)  
1 – Force D+/D– detection  
Input Current Optimization (ICO) Algorithm Control:  
0 – Disable ICO  
1 – Enable ICO (default)  
4
3
2
1
0
IINDPM[4]  
IINDPM[3]  
IINDPM[2]  
IINDPM[1]  
IINDPM[0]  
R/W  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
1600 mA  
800 mA  
400 mA  
200 mA  
100 mA  
Input Current Limit:  
Offset: 500 mA  
Range: 500 mA – 3300 mA  
Default: 3000 mA  
Note: IINDPM > 3300 mA (1Ch) clamped to 3300 mA. Actual input  
current limit is lower of I2C or ILIM pin.  
40  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
8.5.5 Precharge and Termination Current Limit Register (Address = 04h) [reset = 22h]  
REG04 is shown in 41 and described in 13.  
Return to Summary Table.  
41. REG04 Register  
Bit  
7
0
6
0
5
1
4
0
3
0
2
0
1
1
0
0
Reset  
Field  
IPRECHG[3:0]  
ITERM[3:0]  
13. REG04 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
IPRECHG[3]  
IPRECHG[2]  
IPRECHG[1]  
IPRECHG[0]  
ITERM[3]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
400 mA  
200 mA  
100 mA  
50 mA  
Precharge Current Limit:  
Offset: 50 mA  
Range: 50 mA – 800 mA  
Default: 150 mA  
Yes  
Yes  
Yes  
Yes  
400 mA  
200 mA  
100 mA  
50 mA  
Termination Current Limit:  
Offset: 50 mA  
Range: 50 mA – 800 mA  
Default: 150 mA  
ITERM[2]  
Yes  
ITERM[1]  
Yes  
ITERM[0]  
Yes  
版权 © 2018–2019, Texas Instruments Incorporated  
41  
 
 
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.5.6 Charger Control 1 Register (Address = 05h) [reset = 9Dh]  
REG05 is shown in 42 and described in 14.  
Return to Summary Table.  
42. REG05 Register  
Bit  
7
1
6
5
0
4
1
3
2
1
1
0
0
Reset  
Field  
0
1
1
EN_TERM  
RESERVED  
WATCHDOG[1:0]  
EN_TIMER  
CHG_TIMER[1:0]  
TMR2X_EN  
14. REG05 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
EN_TERM  
R/W  
Yes  
Yes  
Termination Control:  
0 – Disable termination  
1 – Enable termination (default)  
6
5
4
RESERVED  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Reserved bit always reads 0  
WATCHDOG[1]  
WATCHDOG[0]  
I2C Watchdog Timer Settings:  
00 – Disable WD Timer  
01 – 40s (default)  
10 – 80s  
11 – 160s  
3
EN_TIMER  
R/W  
Yes  
Yes  
Charging Safety Timer Enable  
0 – Disable  
1 – Enable (Default)  
2
1
CHG_TIMER[1]  
CHG_TIMER[0]  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Fast Charge Timer Setting  
00 – 5 hrs  
01 – 8 hrs  
10 – 12 hrs (Default)  
11 – 20 hrs  
0
TMR2X_EN  
R/W  
Yes  
Yes  
Safety Timer during DPM or TREG  
0 – Safety timer always count normally  
1 – Safety timer slowed by 2X during input DPM or TREG (Default)  
System Note: When the WATCHDOG bits are changed (writing the same value does not change WATCHDOG  
bit), the internal counter is reset. The same applies for the CHG_TIMER bits. Only changing the value in the  
register will reset the CHG_TIMER  
42  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
8.5.7 Charger Control 2 Register (Address = 06h) [reset = 7Dh]  
REG06 is shown in 43 and described in 15.  
Return to Summary Table.  
43. REG06 Register  
Bit  
7
0
6
1
5
1
4
1
3
1
2
1
1
0
0
1
Reset  
Field  
EN_OTG  
AUTO_INDET_  
EN  
TREG[1:0]  
EN_CHG  
BATLOWV  
VRECHG[1:0]  
15. REG06 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
EN_OTG  
R/W  
Yes  
Yes  
Buck (OTG) Mode control:  
0 – Disable OTG (default)  
1 – Enable OTG  
Note: If EN_OTG and EN_CHG are set simultaneously, EN_CHG takes priority  
6
AUTO_INDET_EN  
R/W  
Yes  
Yes  
Automatic Input Source Detection Enable:  
0 – Disable D+/D– detection when VBUS plugs in  
1 – Enable D+/D– detection when VBUS plugs in (default)  
5
4
TREG[1]  
TREG[0]  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Thermal Regulation Threshold  
00 – 60°C  
01 – 80°C  
10 – 100°C  
11 – 120°C (Default)  
3
2
EN_CHG  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Charger Enable Configuration  
0 – Charge Disable  
1 – Charge Enable (default)  
Note: If EN_OTG and EN_CHG are set simultaneously, EN_CHG takes priority  
BATLOWV  
Battery precharge to fast-charge threshold:  
0 – 5.6 V  
1 – 6.0 V (default)  
1
0
VRECHG[1]  
VRECHG[0]  
R/W  
R/W  
Yes  
Yes  
No  
No  
200 mV  
100 mV  
Battery Recharge Threshold Offset (below VREG):  
Offset: 100 mV  
Range: 100 mV – 400 mV  
Default: 200 mV  
版权 © 2018–2019, Texas Instruments Incorporated  
43  
 
 
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.5.8 Charger Control 3 Register (Address = 07h) [reset = 0Ah]  
REG07 is shown in 44 and described in 16.  
Return to Summary Table.  
44. REG07 Register  
Bit  
7
0
6
0
5
0
4
0
3
1
2
0
1
1
0
0
Reset  
Field  
PFM_DIS  
WD_RST  
TOPOFF_TIMER[1:0]  
SYS_MIN[3:0]  
16. REG07 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
PFM_DIS  
R/W  
Yes  
No  
PFM Mode Disable control:  
0 – Enable PFM operation (default)  
1 – Disable PFM operation  
6
WD_RST  
R/W  
Yes  
Yes  
I2C Watchdog Timer Reset:  
0 – Normal  
1 – Reset (Bit goes back to 0 after timer reset)  
5
4
TOPOFF_TIMER[1]  
TOPOFF_TIMER[0]  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Top-off Timer Control :  
00 – Disabled (default)  
01 – 15 mins  
10 – 30 mins  
11 – 45 mins  
3
2
1
0
SYS_MIN[3]  
SYS_MIN[2]  
SYS_MIN[2]  
SYS_MIN[0]  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
800 mV  
400 mV  
200 mV  
100 mV  
Minimum System Voltage Limit  
Offset: 6.0 V  
Range: 6.0 V – 7.5 V  
Default: 7.0 V  
44  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
8.5.9 Charger Control 4 Register (Address = 08h) [reset = 0Dh]  
REG08 is shown in 45 and described in 17.  
Return to Summary Table.  
45. REG08 Register  
Bit  
7
0
6
0
5
0
4
0
3
1
2
1
0
0
1
Reset  
Field  
1
BHOT[1:0]  
BCOLD  
JEITA_VSET[1:0]  
JEITA_ISETH  
JEITA_ISETC[1:0]  
17. REG08 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
BHOT[1]  
BHOT[0]  
R/W  
R/W  
Yes  
Yes  
Yes  
OTG Mode TS HOT Temperature Threshold:  
00 – VBHOT1 threshold (34.75%) (default)  
01 – VBHOT0 threshold (37.75%)  
Yes  
10 – VBHOT2 threshold (31.25%)  
11 – Disable OTG mode thermal protection  
5
BCOLD  
R/W  
Yes  
Yes  
OTG Mode TS COLD Temperature Threshold:  
0 – VBCOLD0 threshold (77%) (default)  
1 – VBCOLD1 threshold (80%)  
4
3
JEITA_VSET[1]  
JEITA_VSET[0]  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
JEITA High Temp. (45°C – 60°C) Voltage Setting:  
00 – Charge Suspend  
01 – Set VREG to 8.0 V (default)  
10 – Set VREG to 8.3 V  
11 – VREG unchanged  
2
JEITA_ISETH  
R/W  
Yes  
Yes  
JEITA High Temp. (45°C – 60°C) Current Setting (percentage with respect to  
ICHG REG01[5:0]):  
0 – 40% of ICHG  
1 – 100% of ICHG (default)  
1
0
JEITA_ISETC[1]  
JEITA_ISETC[0]  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
JEITA Low Temp. (0°C – 10°C) Current Setting (percentage with respect to  
ICHG REG01[5:0]):  
00 – Charge Suspend  
01 – 20% of ICHG (default)  
10 – 40% of ICHG  
11 – 100% of ICHG  
版权 © 2018–2019, Texas Instruments Incorporated  
45  
 
 
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.5.10 OTG Control Register (Address = 09h) [reset = F6h]  
REG09 is shown in 46 and described in 18.  
Return to Summary Table.  
46. REG09 Register  
Bit  
7
1
6
1
5
1
4
1
3
0
2
1
1
1
0
0
Reset  
Field  
OTG_ILIM[3:0]  
OTG_VLIM[3:0]  
18. REG09 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
OTG_ILIM[3]  
OTG_ILIM[2]  
OTG_ILIM[1]  
OTG_ILIM[0]  
OTG_VLIM[3]  
OTG_VLIM[2]  
OTG_VLIM[1]  
OTG_VLIM[0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
800 mA  
400 mA  
200 mA  
100 mA  
800 mV  
400 mV  
200 mV  
100 mV  
Buck (OTG) Mode Current Limit:  
Offset: 0.5 A  
Range: 0.5 A – 2.0 A  
Default: 2 A  
Yes  
Yes  
Yes  
Yes  
Buck (OTG) Mode Regulation Voltage:  
Offset: 4.5 V  
Range: 4.5 V – 5.5 V  
Default: 5.1 V  
Yes  
Yes  
Note: Values above 5.5 V (Ah) will be clamped to 5.5 V  
Yes  
46  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
8.5.11 ICO Current Limit Register (Address = 0Ah) [reset = XXh]  
REG0A is shown in 47 and described in 19.  
Return to Summary Table.  
47. REG0A Register  
Bit  
7
6
5
4
3
2
1
0
Reset  
Field  
0
0
0
X
X
X
X
X
RESERVED  
RESERVED  
RESERVED  
ICO_ILIM[4:0]  
19. REG0A Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
RESERVED  
RESERVED  
RESERVED  
ICO_ILIM[4]  
ICO_ILIM[3]  
ICO_ILIM[2]  
ICO_ILIM[1]  
ICO_ILIM[0]  
R
R
R
R
R
R
R
R
No  
No  
No  
No  
No  
No  
No  
No  
No  
Reserved bit always reads 0  
Reserved bit always reads 0  
Reserved bit always reads 0  
No  
No  
No  
No  
No  
No  
No  
1600 mA  
800 mA  
400 mA  
200 mA  
100 mA  
Input Current Limit when ICO is enabled:  
Offset: 500 mA  
Range: 500 mA – 3300 mA  
版权 © 2018–2019, Texas Instruments Incorporated  
47  
 
 
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.5.12 Charger Status 1 Register (Address = 0Bh) [reset = XXh]  
REG0B is shown in 48 and described in 20.  
Return to Summary Table.  
48. REG0B Register  
Bit  
7
6
5
4
3
X
2
1
0
Reset  
Field  
X
X
X
X
X
X
X
ADC_DONE_  
STAT  
IINDPM_STAT VINDPM_STAT  
TREG_STAT  
WD_STAT  
CHRG_STAT[2:0]  
20. REG0B Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
ADC_DONE_STAT  
R
No  
No  
ADC Conversion Status (in one-shot mode only):  
0 – Conversion not complete  
1 – Conversion complete  
Note: Always reads 0 in continuous mode  
6
5
4
3
IINDPM_STAT  
VINDPM_STAT  
TREG_STAT  
WD_STAT  
R
R
R
R
No  
No  
No  
No  
No  
No  
No  
No  
IINDPM Status:  
0 – Normal  
1 – In IINDPM Regulation (ILIM pin or IINDPM register)  
VINDPM Status:  
0 – Normal  
1 – In VINDPM Regulation  
IC Thermal regulation Status:  
0 – Normal  
1 – In Thermal Regulation  
I2C Watchdog Timer Status bit:  
0 – Normal  
1 – WD Timer expired  
2
1
0
CHRG_STAT[2]  
CHRG_STAT[1]  
CHRG_STAT[0]  
R
R
R
No  
No  
No  
No  
No  
No  
Charge Status bits:  
000 – Not Charging  
001 – Trickle Charge (VBAT < VBAT_SHORT)  
010 – Pre-charge (VBAT_SHORT < VBAT < VBAT_LOWV)  
011 – Fast-charge (CC mode)  
100 – Taper Charge (CV mode)  
101 – Top-off Timer Charging  
110 – Charge Termination Done  
111 – Reserved  
48  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
8.5.13 Charger Status 2 Register (Address = 0Ch) [reset = XXh]  
REG0C is shown in 49 and described in 21.  
Return to Summary Table.  
49. REG0C Register  
Bit  
7
X
6
5
4
3
2
1
0
Reset  
Field  
X
X
X
0
X
X
X
PG_STAT  
VBUS_STAT[2:0]  
RESERVED  
ICO_STAT[1]  
ICO_STAT[0]  
VSYS_STAT  
21. REG0C Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
PG_STAT  
R
No  
No  
Power Good Status:  
0 – Not Power Good  
1 – Power Good  
6
5
4
VBUS_STAT[2]  
VBUS_STAT[1]  
VBUS_STAT[0]  
R
R
R
No  
No  
No  
No  
No  
No  
VBUS Detection Status  
000 – No Input  
001 – USB Host SDP  
010 – USB CDP (1.5 A)  
011 – USB DCP (3.0 A)  
100 – POORSRC detected 7 consecutive times  
101 – Unknown Adapter (500 mA)  
110 – Non-standard Adapter (1 A/2 A/2.1 A/2.4 A)  
111 – OTG  
3
2
1
RESERVED  
ICO_STAT[1]  
ICO_STAT[0]  
R
R
R
No  
No  
No  
No  
No  
No  
Reserved bit always reads 0  
Input Current Optimizer (ICO) Status:  
00 – ICO Disabled  
01 – ICO Optimization is in progress  
10 – Maximum input current detected  
11 – Reserved  
0
VSYS_STAT  
R
No  
No  
VSYS Regulation Status:  
0 – Not in SYS_MIN regulation (BAT > VSYS_MIN)  
1 – In SYS_MIN regulation (BAT < VSYS_MIN)  
版权 © 2018–2019, Texas Instruments Incorporated  
49  
 
 
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.5.14 NTC Status Register (Address = 0Dh) [reset = 0Xh]  
REG0D is shown in 50 and described in 22.  
Return to Summary Table.  
50. REG0D Register  
Bit  
7
6
5
4
3
2
1
0
Reset  
Field  
0
0
0
0
0
X
X
X
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
TS_STAT[2:0]  
22. REG0D Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
TS_STAT[2]  
TS_STAT[1]  
TS_STAT[0]  
R
R
R
R
R
R
R
R
No  
No  
No  
No  
No  
No  
No  
No  
No  
Reserved bit always reads 0  
Reserved bit always reads 0  
Reserved bit always reads 0  
Reserved bit always reads 0  
Reserved bit always reads 0  
No  
No  
No  
No  
No  
No  
No  
NTC (TS) Status:  
000 – Normal  
010 – TS Warm  
011 – TS Cool  
101 – TS Cold  
110 – TS Hot  
50  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
8.5.15 FAULT Status Register (Address = 0Eh) [reset = XXh]  
REG0E is shown in 51 and described in 23.  
Return to Summary Table.  
51. REG0E Register  
Bit  
7
6
5
4
X
3
2
1
0
Reset  
Field  
X
X
X
0
0
0
0
VBUS_OVP_  
STAT  
TSHUT_STAT BATOVP_STAT  
TMR_STAT  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
23. REG0E Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
VBUS_OVP_STAT  
TSHUT_STAT  
BATOVP_STAT  
TMR_STAT  
R
No  
No  
No  
No  
No  
Input overvoltage Status:  
0 – Normal  
1 – Device in overvoltage protection  
6
5
4
R
R
R
No  
No  
No  
IC Temperature shutdown Status:  
0 – Normal  
1 – Device in thermal shutdown protection  
Battery over-voltage Status:  
0 – Normal  
1 – BATOVP (VBAT > VBATOVP)  
Charge Safety timer Status:  
0 – Normal  
1 – Charge Safety timer expired  
3
2
1
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R
R
R
R
No  
No  
No  
No  
No  
No  
No  
No  
Reserved bit always reads 0  
Reserved bit always reads 0  
Reserved bit always reads 0  
Reserved bit always reads 0  
版权 © 2018–2019, Texas Instruments Incorporated  
51  
 
 
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.5.16 Charger Flag 1 Register (Address = 0Fh) [reset = 00h]  
REG0F is shown in 52 and described in 24.  
Return to Summary Table.  
52. REG0F Register  
Bit  
7
0
6
0
5
0
4
3
0
2
1
0
Reset  
Field  
0
0
0
0
ADC_DONE_  
FLAG  
IINDPM_FLAG VINDPM_FLAG  
TREG_FLAG  
WD_FLAG  
RESERVED  
RESERVED  
CHRG_FLAG  
24. REG0F Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
ADC_DONE_FLAG  
R
Yes  
No  
ADC Conversion Flag (only 1-shot mode):  
0 – Conversion not complete  
1 – Conversion complete  
Note: Always reads 0 in continuos mode  
6
5
4
3
IINDPM_FLAG  
VINDPM_FLAG  
TREG_FLAG  
WD_FLAG  
R
R
R
R
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
IINDPM Regulation INT Flag:  
0 – Normal  
1 – IINDPM signal rising edge detected  
VINDPM regulation INT Flag:  
0 – Normal  
1 – VINDPM signal rising edge detected  
IC Temperature Regulation INT Flag:  
0 – Normal  
1 – TREG signal rising edge detected  
I2C Watchdog INT Flag:  
0 – Normal  
1 – WD_STAT signal rising edge detected  
2
1
0
RESERVED  
RESERVED  
CHRG_FLAG  
R
R
R
Yes  
Yes  
Yes  
No  
No  
No  
Reserved bit always reads 0  
Reserved bit always reads 0  
Charge Status INT Flag:  
0 – Normal  
1 – CHRG_STAT[2:0] bits changed (transition to any state)  
52  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
8.5.17 Charger Flag 2 Register (Address = 10h) [reset = 00h]  
REG10 is shown in 53 and described in 25.  
Return to Summary Table.  
53. REG10 Register  
Bit  
7
0
6
5
4
3
2
0
1
0
Reset  
Field  
0
0
0
0
0
0
PG_FLAG  
RESERVED  
RESERVED  
VBUS_FLAG  
RESERVED  
TS_FLAG  
ICO_FLAG  
VSYS_FLAG  
25. REG10 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
PG_FLAG  
R
Yes  
No  
Power Good INT Flag:  
0 – Normal  
1 – PG signal toggle detected  
6
5
4
RESERVED  
RESERVED  
VBUS_FLAG  
R
R
R
Yes  
Yes  
Yes  
No  
No  
No  
Reserved bit always reads 0  
Reserved bit always reads 0  
VBUS Status INT Flag:  
0 – Normal  
1 – VBUS_STAT[2:0] bits changed (transition to any state)  
3
2
RESERVED  
TS_FLAG  
R
R
Yes  
Yes  
No  
No  
Reserved bit always reads 0  
TS Status INT Flag:  
0 – Normal  
1 – TS_STAT[2:0] bits changed (transition to any state)  
1
0
ICO_FLAG  
R
R
Yes  
Yes  
No  
No  
Input Current Optimizer (ICO) INT Flag:  
0 – Normal  
1 – ICO_STAT[1:0] changed (transition to any state)  
VSYS_FLAG  
VSYS Regulation INT Flag:  
0 – Normal  
1 – Entered or exited SYS_MIN regulation  
版权 © 2018–2019, Texas Instruments Incorporated  
53  
 
 
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.5.18 FAULT Flag Register (Address = 11h) [reset = 00h]  
REG11 is shown in 54 and described in 26.  
Return to Summary Table.  
54. REG11 Register  
Bit  
7
0
6
0
5
0
4
3
0
2
1
0
Reset  
Field  
0
0
0
0
VBUS_OVP_  
FLAG  
TSHUT_FLAG BATOVP_FLAG  
TMR_FLAG  
SYS_SHORT_  
FLAG  
RESERVED  
RESERVED  
OTG_FLAG  
26. REG11 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
VBUS_OVP_FLAG  
R
Yes  
No  
No  
No  
No  
No  
Input over-voltage INT Flag:  
0 – Normal  
1 – Entered VBUS_OVP Fault  
6
5
4
3
TSHUT_FLAG  
R
R
R
R
Yes  
Yes  
Yes  
Yes  
IC Temperature shutdown INT Flag:  
0 – Normal  
1 – Entered TSHUT Fault  
BATOVP_FLAG  
TMR_FLAG  
Battery over-voltage INT Flag:  
0 – Normal  
1 – Entered BATOVP Fault  
Charge Safety timer Fault INT Flag:  
0 – Normal  
1 – Charge Safety timer expired rising edge detected  
SYS_SHORT_FLAG  
System Short INT Flag:  
0 – Normal  
1 – Stopped switching due to boost converter overload  
2
1
0
RESERVED  
RESERVED  
OTG_FLAG  
R
R
R
Yes  
Yes  
Yes  
No  
No  
No  
Reserved bit always reads 0  
Reserved bit always reads 0  
OTG Buck Mode Fault INT Flag:  
0 – Normal  
1 – VBUS overloaded in OTG, or VBUS OVP, or battery below VOTG_BAT  
54  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
8.5.19 Charger Mask 1 Register (Address = 12h) [reset = 00h]  
REG12 is shown in 55 and described in 27.  
Return to Summary Table.  
55. REG12 Register  
Bit  
7
0
6
0
5
0
4
0
3
2
1
0
Reset  
Field  
0
0
0
0
ADC_DONE_  
MASK  
IINDPM_MASK VINDPM_MASK TREG_MASK  
WD_MASK  
RESERVED  
RESERVED  
CHRG_MASK  
27. REG12 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
ADC_DONE_MASK  
IINDPM_MASK  
VINDPM_MASK  
TREG_MASK  
R/W  
Yes  
No  
No  
No  
No  
No  
ADC Conversion INT Mask Flag (only 1-shot mode)  
0 – ADC_DONE does produce INT pulse  
1 – ADC_DONE does produce not INT pulse  
6
5
4
3
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
IINDPM Regulation INT Mask  
0 – IINDPM entry produces INT pulse  
1 – IINDPM entry does not produce INT pulse  
VINDPM Regulation INT Mask  
0 – VINDPM entry produces INT pulse  
1 – VINDPM entry not produce INT pulse  
IC Temperature Regulation INT Mask  
0 – TREG entry produces INT pulse  
1 – TREG entry produce INT pulse  
WD_MASK  
I2C Watchdog Timer INT Mask  
0 – WD_STAT rising edge produces INT pulse  
1 – WD_STAT rising edge does not produce INT  
2
1
0
RESERVED  
RESERVED  
CHRG_MASK  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
No  
No  
No  
Reserved bit always reads 0  
Reserved bit always reads 0  
Charge Status INT Mask  
0 – CHRG_STAT[2:0] bit change produces INT  
1 – CHRG_STAT[2:0] bit change does not produce INT pulse  
版权 © 2018–2019, Texas Instruments Incorporated  
55  
 
 
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.5.20 Charger Mask 2 Register (Address = 13h) [reset = 00h]  
REG13 is shown in 56 and described in 28.  
Return to Summary Table.  
56. REG13 Register  
Bit  
7
0
6
5
4
3
2
0
1
0
Reset  
Field  
0
0
0
0
0
0
PG_MASK  
RESERVED  
RESERVED  
VBUS_MASK  
RESERVED  
TS_MASK  
ICO_MASK  
VSYS_MASK  
28. REG13 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
PG_MASK  
R/W  
Yes  
No  
Power Good INT Mask:  
0 – PG toggle produces INT pulse  
1 – PG toggle does not produce INT pulse  
6
5
4
RESERVED  
RESERVED  
VBUS_MASK  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
No  
No  
No  
Reserved bit always reads 0  
Reserved bit always reads 0  
VBUS Status INT Mask:  
0 – VBUS_STAT[2:0] bit change produces INT  
1 – VBUS_STAT[2:0] bit change does not produces INT  
3
2
RESERVED  
TS_MASK  
R/W  
R/W  
Yes  
Yes  
No  
No  
Reserved bit always reads 0  
TS Status INT Mask:  
0 – TS_STAT[2:0] bit change produces INT  
1 – TS_STAT[2:0] bit change does not produces INT pulse  
1
0
ICO_MASK  
R/W  
R/W  
Yes  
Yes  
No  
No  
Input Current Optimizer (ICO) INT Mask:  
0 – ICO_STAT rising edge produces INT  
1 – ICO_STAT rising edge does not produce INT  
VSYS_MASK  
VSYS Regulation INT Mask:  
0 – Entering or exiting SYS_MIN produces INT  
1 – Entering or exiting SYS_MIN does not produce INT  
56  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
8.5.21 FAULT Mask Register (Address = 14h) [reset = 00h]  
REG14 is shown in 57 and described in 29.  
Return to Summary Table.  
57. REG14 Register  
Bit  
7
0
6
0
5
0
4
3
0
2
1
0
Reset  
Field  
0
0
0
0
VBUS_OVP_  
MASK  
TSHUT_MASK BATOVP_MAS  
K
TMR_MASK  
SYS_SHORT_  
MASK  
RESERVED  
RESERVED  
OTG_MASK  
29. REG14 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
VBUS_OVP_MASK  
R/W  
Yes  
No  
No  
No  
No  
No  
Input over-voltage INT Mask:  
0 – VBUS_OVP rising edge produces INT pulse  
1 – VBUS_OVP rising edge does not produce INT pulse  
6
5
4
3
TSHUT_MASK  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Thermal Shutdown INT Mask:  
0 – TSHUT rising edge produces INT pulse  
1 – TSHUT rising edge does not produce INT pulse  
BATOVP_MASK  
TMR_MASK  
Battery overvoltage INT Mask:  
0 – BATOVP rising edge produces INT pulse  
1 – BATOVP rising edge does not produce INT pulse  
Charge Safety Timer Fault INT Mask:  
0 – Timer expired rising edge produces INT pulse  
1 – Timer expired rising edge does not produce INT pulse  
SYS_SHORT_MASK  
System Short Fault INT Mask:  
0 – System short rising edge produces INT pulse  
1 – System short rising edge does not produce INT pulse  
2
1
0
RESERVED  
RESERVED  
OTG_MASK  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
No  
No  
No  
Reserved bit always reads 0  
Reserved bit always reads 0  
OTG Buck Mode Fault INT Mask:  
0 – OTG_STAT event produces INT  
1 – OTG_STAT event does not produce INT  
版权 © 2018–2019, Texas Instruments Incorporated  
57  
 
 
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.5.22 ADC Control Register (Address = 15h) [reset = 30h]  
REG15 is shown in 58 and described in 30.  
Return to Summary Table.  
58. REG15 Register  
Bit  
7
0
6
5
1
4
1
3
2
1
0
Reset  
Field  
0
0
0
0
0
ADC_EN  
ADC_RATE  
ADC_SAMPLE[1:0]  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
30. REG15 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
ADC_EN  
R/W  
Yes  
Yes  
ADC Control:  
0 – Disable ADC (default)  
1 – Enable ADC  
6
ADC_RATE  
R/W  
Yes  
No  
0 – Continuous conversion (default)  
1 – One-shot conversion  
5
4
ADC_SAMPLE[1]  
ADC_SAMPLE[0]  
R/W  
R/W  
Yes  
Yes  
No  
No  
Sample Speed of ADC:  
00 – 15-bit effective resolution  
01 – 14-bit effective resolution  
10 – 13-bit effective resolution  
11 – 12-bit effective resolution (default)  
3
2
1
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
Reserved bit always reads 0  
Reserved bit always reads 0  
Reserved bit always reads 0  
Reserved bit always reads 0  
58  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
8.5.23 ADC Function Disable Register (Address = 16h) [reset = 00h]  
REG16 is shown in 59 and described in 31.  
Return to Summary Table.  
59. REG16 Register  
Bit  
7
6
0
5
0
4
0
3
0
2
1
0
Reset  
Field  
0
0
0
0
IBUS_ADC_DIS  
ICHG_ADC_  
DIS  
VBUS_ADC_  
DIS  
VBAT_ADC_  
DIS  
VSYS_ADC_  
DIS  
TS_ADC_DIS  
RESERVED  
TDIE_ADC_DIS  
31. REG16 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
IBUS_ADC_DIS  
ICHG_ADC_DIS  
VBUS_ADC_DIS  
VBAT_ADC_DIS  
VSYS_ADC_DIS  
TS_ADC_DIS  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Yes  
No  
No  
No  
No  
No  
No  
0 – Enable conversion  
1 – Disable conversion  
Yes  
Yes  
Yes  
Yes  
Yes  
0 – Enable conversion  
1 – Disable conversion  
0 – Enable conversion  
1 – Disable conversion  
0 – Enable conversion  
1 – Disable conversion  
0 – Enable conversion  
1 – Disable conversion  
0 – Enable conversion  
1 – Disable conversion  
1
0
RESERVED  
R/W  
R/W  
Yes  
Yes  
No  
No  
Reserved bit always reads 0  
TDIE_ADC_DIS  
0 – Enable conversion  
1 – Disable conversion  
版权 © 2018–2019, Texas Instruments Incorporated  
59  
 
 
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.5.24 IBUS ADC 1 Register (Address = 17h) [reset = 00h]  
REG17 is shown in 60 and described in 32.  
Return to Summary Table.  
60. REG17 Register  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset  
Field  
IBUS_ADC[15:8]  
32. REG17 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
IBUS_ADC[15]  
IBUS_ADC[14]  
IBUS_ADC[13]  
IBUS_ADC[12]  
IBUS_ADC[11]  
IBUS_ADC[10]  
IBUS_ADC[9]  
IBUS_ADC[8]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
Sign bit: overall results reported in two's complement.  
Yes  
16384 mA  
8192 mA  
4096 mA  
Yes  
Yes  
Yes  
2048 mA  
1024 mA  
512 mA  
256 mA  
VBUS Current Reading (positive current flows into VBUS pin,  
negative current flows out ot VBUS pin):  
Range: 0 A – 4 A  
Yes  
Yes  
Yes  
8.5.25 IBUS ADC 0 Register (Address = 18h) [reset = 00h]  
REG18 is shown in 61 and described in 33.  
Return to Summary Table.  
61. REG18 Register  
Bit  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
Reset  
Field  
0
0
IBUS_ADC[7:0]  
33. REG18 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
IBUS_ADC[7]  
IBUS_ADC[6]  
IBUS_ADC[5]  
IBUS_ADC[4]  
IBUS_ADC[3]  
IBUS_ADC[2]  
IBUS_ADC[1]  
IBUS_ADC[0]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
128 mA  
64 mA  
32 mA  
16 mA  
8 mA  
VBUS Current Reading (positive current flows into VBUS pin,  
negative current flows out ot VBUS pin):  
Range: 0 A – 4 A  
Yes  
Yes  
Yes  
Yes  
Yes  
4 mA  
Yes  
2 mA  
Yes  
1 mA  
60  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
8.5.26 ICHG ADC 1 Register (Address = 19h) [reset = 00h]  
REG19 is shown in 62 and described in 34.  
Return to Summary Table.  
62. REG19 Register  
Bit  
7
6
0
5
0
4
0
3
2
0
1
0
0
0
Reset  
Field  
0
0
RESERVED  
ICHG_ADC[14:8]  
34. REG19 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
RESERVED  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
Reserved register always reads 0.  
ICHG_ADC[14]  
ICHG_ADC[13]  
ICHG_ADC[12]  
ICHG_ADC[11]  
ICHG_ADC[10]  
ICHG_ADC[9]  
ICHG_ADC[8]  
Yes  
16384 mA  
8192 mA  
4096 mA  
Yes  
Yes  
Yes  
2048 mA  
1024 mA  
512 mA  
256 mA  
Charge Current Reading:  
Range: 0 A – 4 A  
Yes  
Yes  
Yes  
8.5.27 ICHG ADC 0 Register (Address = 1Ah) [reset = 00h]  
REG1A is shown in 63 and described in 35.  
Return to Summary Table.  
63. REG1A Register  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset  
Field  
ICHG_ADC[7:0]  
35. REG1A Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
ICHG_ADC[7]  
ICHG_ADC[6]  
ICHG_ADC[5]  
ICHG_ADC[4]  
ICHG_ADC[3]  
ICHG_ADC[2]  
ICHG_ADC[1]  
ICHG_ADC[0]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
128 mA  
64 mA  
32 mA  
16 mA  
8 mA  
Charge Current Reading:  
Range: 0 A – 4 A  
Yes  
Yes  
Yes  
Yes  
Yes  
4 mA  
Yes  
2 mA  
Yes  
1 mA  
版权 © 2018–2019, Texas Instruments Incorporated  
61  
 
 
 
 
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.5.28 VBUS ADC 1 Register (Address = 1Bh) [reset = 00h]  
REG1B is shown in 64 and described in 36.  
Return to Summary Table.  
64. REG1B Register  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset  
Field  
VBUS_ADC[15:8]  
36. REG1B Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
VBUS_ADC[15]  
VBUS_ADC[14]  
VBUS_ADC[13]  
VBUS_ADC[12]  
VBUS_ADC[11]  
VBUS_ADC[10]  
VBUS_ADC[9]  
VBUS_ADC[8]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
Sign bit: overall results reported in two's complement.  
16384 mV  
Yes  
Yes  
8192 mV  
4096 mV  
2048 mV  
1024 mV  
512 mV  
VBUS Voltage reading  
Range: 0 V – 10 V  
Yes  
Yes  
Yes  
Yes  
Yes  
256 mV  
8.5.29 VBUS ADC 0 Register (Address = 1Ch) [reset = 00h]  
REG1C is shown in 65 and described in 37.  
Return to Summary Table.  
65. REG1C Register  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset  
Field  
VBUS_ADC[7:0]  
37. REG1C Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
VBUS_ADC[7]  
VBUS_ADC[6]  
VBUS_ADC[5]  
VBUS_ADC[4]  
VBUS_ADC[3]  
VBUS_ADC[2]  
VBUS_ADC[1]  
VBUS_ADC[0]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
128 mV  
64 mV  
32 mV  
16 mV  
8 mV  
VBUS Voltage Reading:  
Range: 0 V – 10 V  
Yes  
Yes  
Yes  
Yes  
Yes  
4 mV  
Yes  
2 mV  
Yes  
1 mV  
62  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
8.5.30 VBAT ADC 1 Register (Address = 1Dh) [reset = 00h]  
REG1D is shown in 66 and described in 38.  
Return to Summary Table.  
66. REG1D Register  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset  
Field  
VBAT_ADC[15:8]  
38. REG1D Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
VBAT_ADC[15]  
VBAT_ADC[14]  
VBAT_ADC[13]  
VBAT_ADC[12]  
VBAT_ADC[11]  
VBAT_ADC[10]  
VBAT_ADC[9]  
VBAT_ADC[8]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
Sign bit: overall results reported in two's complement.  
16384 mV  
Yes  
Yes  
8192 mV  
4096 mV  
2048 mV  
1024 mV  
512 mV  
VBAT Voltage reading:  
Range: 0 V – 10 V  
Yes  
Yes  
Yes  
Yes  
Yes  
256 mV  
8.5.31 VBAT ADC 0 Register (Address = 1Eh) [reset = 00h]  
REG1E is shown in 67 and described in 39.  
Return to Summary Table.  
67. REG1E Register  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset  
Field  
VBAT_ADC[7:0]  
39. REG1E Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
VBAT_ADC[7]  
VBAT_ADC[6]  
VBAT_ADC[5]  
VBAT_ADC[4]  
VBAT_ADC[3]  
VBAT_ADC[2]  
VBAT_ADC[1]  
VBAT_ADC[0]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
128 mV  
64 mV  
32 mV  
16 mV  
8 mV  
VBAT Voltage reading:  
Range: 0 V – 10 V  
Yes  
Yes  
Yes  
Yes  
Yes  
4 mV  
Yes  
2 mV  
Yes  
1 mV  
版权 © 2018–2019, Texas Instruments Incorporated  
63  
 
 
 
 
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.5.32 VSYS ADC 1 Register (Address = 1Fh) [reset = 00h]  
REG1F is shown in 68 and described in 40.  
Return to Summary Table.  
68. REG1F Register  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset  
Field  
VSYS_ADC[15:8]  
40. REG1F Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
VSYS_ADC[15]  
VSYS_ADC[14]  
VSYS_ADC[13]  
VSYS_ADC[12]  
VSYS_ADC[11]  
VSYS_ADC[10]  
VSYS_ADC[9]  
VSYS_ADC[8]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
Sign bit: overall results reported in two's complement.  
16384 mV  
Yes  
Yes  
8192 mV  
4096 mV  
2048 mV  
1024 mV  
512 mV  
VSYS Voltage reading:  
Range: 0 V – 10 V  
Yes  
Yes  
Yes  
Yes  
Yes  
256 mV  
8.5.33 VSYS ADC 0 Register (Address = 20h) [reset = 00h]  
REG20 is shown in 69 and described in 41.  
Return to Summary Table.  
69. REG20 Register  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset  
Field  
VSYS_ADC[7:0]  
41. REG20 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
VSYS_ADC[7]  
VSYS_ADC[6]  
VSYS_ADC[5]  
VSYS_ADC[4]  
VSYS_ADC[3]  
VSYS_ADC[2]  
VSYS_ADC[1]  
VSYS_ADC[0]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
128 mV  
64 mV  
32 mV  
16 mV  
8 mV  
VSYS Voltage reading:  
Range: 0 V – 10 V  
Yes  
Yes  
Yes  
Yes  
Yes  
4 mV  
Yes  
2 mV  
Yes  
1 mV  
64  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
8.5.34 TS ADC 1 Register (Address = 21h) [reset = 00h]  
REG21 is shown in 70 and described in 42.  
Return to Summary Table.  
70. REG21 Register  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset  
Field  
TS_ADC[15:8]  
42. REG21 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
Sign bit: overall results reported in two's complement.  
7
6
5
4
3
2
1
0
TS_ADC[15]  
TS_ADC[14]  
TS_ADC[13]  
TS_ADC[12]  
TS_ADC[11]  
TS_ADC[10]  
TS_ADC[9]  
TS_ADC[8]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
50.0%  
25.0%  
TS as percentage of REGN reading:  
Range: 0% – 94.9%  
Yes  
8.5.35 TS ADC 0 Register (Address = 22h) [reset = 00h]  
REG22 is shown in 71 and described in 43.  
Return to Summary Table.  
71. REG22 Register  
Bit  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
Reset  
Field  
0
0
TS_ADC[7:0]  
43. REG22 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
TS_ADC[7]  
TS_ADC[6]  
TS_ADC[5]  
TS_ADC[4]  
TS_ADC[3]  
TS_ADC[2]  
TS_ADC[1]  
TS_ADC[0]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
12.50%  
6.25%  
TS as percentage of REGN reading:  
Range: 0% – 94.9%  
Yes  
Yes  
3.125%  
1.563%  
0.781%  
0.391%  
0.195%  
0.098%  
Yes  
Yes  
Yes  
Yes  
Yes  
版权 © 2018–2019, Texas Instruments Incorporated  
65  
 
 
 
 
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.5.36 TDIE ADC 1 Register (Address = 23h) [reset = 00h]  
REG23 is shown in 72 and described in 44.  
Return to Summary Table.  
72. REG23 Register  
Bit  
7
6
0
5
0
4
0
3
2
0
1
0
0
0
Reset  
Field  
0
0
RESERVED  
TDIE_ADC[14:8]  
44. REG23 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
RESERVED  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
Reserved bit always reads 0  
TDIE_ADC[14]  
TDIE_ADC[13]  
TDIE_ADC[12]  
TDIE_ADC[11]  
TDIE_ADC[10]  
TDIE_ADC[9]  
TDIE_ADC[8]  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
128°C  
TDIE (IC Temperature) reading:  
Range: 0°C – 128°C  
8.5.37 TDIE ADC 0 Register (Address = 24h) [reset = 00h]  
REG24 is shown in 73 and described in 45.  
Return to Summary Table.  
73. REG24 Register  
Bit  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
Reset  
Field  
0
0
TDIE_ADC[7:0]  
45. REG24 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
TDIE_ADC[7]  
TDIE_ADC[6]  
TDIE_ADC[5]  
TDIE_ADC[4]  
TDIE_ADC[3]  
TDIE_ADC[2]  
TDIE_ADC[1]  
TDIE_ADC[0]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
64°C  
32°C  
16°C  
8°C  
TDIE (IC Temperature) reading:  
Range: 0°C – 128°C  
Yes  
Yes  
Yes  
Yes  
4°C  
Yes  
2°C  
Yes  
1°C  
Yes  
0.5°C  
66  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
8.5.38 Part Information Register (Address = 25h) [reset = 11h]  
REG25 is shown in 74 and described in 46.  
Return to Summary Table.  
74. REG25 Register  
Bit  
7
0
6
0
5
0
4
1
3
0
2
0
1
0
1
Reset  
Field  
0
REG_RST  
PN[3:0]  
DEV_REV[2:0]  
46. REG25 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
REG_RST  
R
Yes  
No  
Register Reset:  
0 – Keep current register settings  
1 – Reset to default register value and reset safety timer (bit resets to 0 after  
register reset is complete)  
6
5
4
3
2
1
0
PN[3]  
R
R
R
R
R
R
R
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
No  
0010: BQ25882  
PN[2]  
PN[1]  
PN[0]  
DEV_REV[2]  
DEV_REV[1]  
DEV_REV[0]  
Device revision: 001  
版权 © 2018–2019, Texas Instruments Incorporated  
67  
 
 
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
A typical application consists of the device configured as an I2C controlled power path management device and a  
dual-cell battery charger for Li-Ion and Li-polymer batteries used in a wide range of smartphones and other  
portable devices. It integrates an input blocking FET (QBLK, Q1), high-side switching FET (QHS, Q2), low-side  
switching FET (QLS, Q3), and battery FET (QBAT, Q4) between system and battery. The device also integrates  
a bootstrap diode for the high-side gate drive.  
9.2 Typical Application  
VBUS  
/PG  
1 µF  
ILIM  
360  
PMID  
SYSTEM  
Load  
7V to 8.8V  
SYS  
10 µF  
47 nF  
4.7 µF  
1 µH  
2 x 22 µF  
SW  
BAT  
BTST  
10 µF  
REGN  
BATP  
REGN  
D+  
USB  
Port  
Dœ  
VREF  
TS  
SDA  
SCL  
/INT  
/CE  
Host  
BATN  
GND  
BQ25882  
75. BQ25882 Typical Application Diagram  
9.2.1 Design Requirements  
For this design example, use the parameters shown in the table below.  
68  
版权 © 2018–2019, Texas Instruments Incorporated  
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
Typical Application (接下页)  
47. Design Parameters  
PARAMETER  
VALUE  
3.9 V to 6.2 V  
3.0 A  
VBUS voltage range  
Input current limit (IINDPM[4:0])  
Fast charge current limit (ICHG[5:0])  
Minimum system voltage (SYS_MIN[3:0])  
Cell regulation voltage (VREG[7:0])  
1.5 A  
7.0 V  
8.7 V  
9.2.2 Detailed Design Procedure  
9.2.2.1 Inductor Selection  
The device has 1.5-MHz switching frequency to allow the use of small inductor and capacitor values. The  
inductor saturation current should be higher than the input current (IIN) plus half the ripple current (IRIPPLE):  
I
RIPPLE  
ISAT í IIN +  
2
(5)  
The inductor ripple current (IRIPPLE) depends on input voltage (VVBUS), duty cycle (D = 1 – VBUS/VBAT), switching  
frequency (fSW) and inductance (L):  
V
BUS ì(VSYS-VBUS  
)
IRIPPLE  
=
VSYS ì fSW ì L  
(6)  
The maximum inductor ripple current happens in the vicinity of D = 0.5. Usually inductor ripple is designed in the  
range of (20 – 40%) maximum charging current as a trade-off between inductor size and efficiency for a practical  
design.  
9.2.2.2 Input (VBUS / PMID) Capacitor  
Input capacitor should have enough ripple current rating to absorb input switching ripple current. The worst case  
RMS ripple current occurs when duty cycle is 0.5. If the converter does not operate at 50% duty cycle, then the  
worst case capacitor RMS current IPMID occurs where the duty cycle is closest to 50% and can be estimated by  
I
RIPPLE  
IPMID  
=
ö 0.29ì IRIPPLE  
2ì 3  
(7)  
Low ESR ceramic capacitor such as X7R or X5R is preferred for input decoupling capacitor and should be  
placed close to the PMID and GND pins of the IC. Voltage rating of the capacitor must be higher than normal  
input voltage level. 25-V rating or higher capacitor is preferred for up to 5-V input voltage. 10-μF capacitor is  
suggested for up to 3.3-A input current.  
9.2.2.3 Output (VSYS) Capacitor  
SYS capacitor is the boost converter output capacitor and should also have enough ripple current rating to  
absorb output switching ripple current. The output capacitor RMS current ICSYS is given:  
D
ICSYS, rms = IOUT ì  
1- D  
(8)  
The output capacitor voltage ripple is a function of the boost output current (IOUT), and can be calculated as  
follows:  
I
OUT ì D  
DVSYS  
=
f
SW ìCSYS  
(9)  
69  
版权 © 2018–2019, Texas Instruments Incorporated  
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Low ESR ceramic capacitor such as X7R or X5R is preferred for SYS decoupling capacitor and should be placed  
close to the SYS and GND pins of the IC. Voltage rating of the capacitor must be higher than normal output  
voltage level. 16-V rating or higher capacitor is preferred. 40-μF capacitor is suggested for up to 2.2-A boost  
converter output current.  
70  
版权 © 2018–2019, Texas Instruments Incorporated  
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
9.2.3 Application Curves  
CVBUS = 1µF, CPMID= 10µF, CBAT = 10µF, CSYS = 44µF, L = DFE252012F-1R0 (1µH) (unless otherwise specified)  
VBUS = 5V  
VBAT = 6.0V  
VBUS = 5V  
VBAT = 6.0V  
ICHG = 1A  
76. Adapter Power Up With Charge Enabled  
77. Adapter Power Up With Charge Enabled  
VBUS = 5V  
VBAT = 7.4V  
ICHG = 1A  
VBUS = 5V  
VBAT = 7.4V  
ICHG = 1A  
78. Charge Enable  
79. Charge Disable  
VBUS = 5V  
VBAT = Open  
Charge enabled  
VBUS = 5V  
VBAT = Open  
Charge disabled  
80. Adapter Plug-in with No Battery  
81. Adapter Plug-in with No Dead Battery  
版权 © 2018–2019, Texas Instruments Incorporated  
71  
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
CVBUS = 1µF, CPMID= 10µF, CBAT = 10µF, CSYS = 44µF, L = DFE252012F-1R0 (1µH) (unless otherwise specified)  
VBAT = 7.6V  
VBUS = 5.1V  
No IBUS load  
VBAT = 7.6V  
Adapter removed  
with EN_OTG = 1  
RBUS = 25Ω  
83. Buck Mode Startup After Adapter Removal  
82. Buck Mode (OTG) Startup  
VBAT = 7.6V  
VBUS = 5.1V  
IBUS = 1A  
VBAT = 7.6V  
VBUS = 5.1V  
IBUS = 0mA  
84. Buck Mode (OTG) PWM Switching  
85. Buck Mode (OTG) PFM Switching  
VBUS = 5V  
VBAT = 7.6V  
ICHG = 1A  
VBUS = 5V  
VBAT = 8.4V  
Charge disabled  
86. Boost Mode PWM Switching  
87. Boost Mode PFM Switching  
72  
版权 © 2018–2019, Texas Instruments Incorporated  
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
CVBUS = 1µF, CPMID= 10µF, CBAT = 10µF, CSYS = 44µF, L = DFE252012F-1R0 (1µH) (unless otherwise specified)  
VBUS = 5V  
VBAT = 8.7V  
Charge disabled  
DCP Adapter  
VBAT = 8.0V  
Charge enabled  
88. SYSMIN Transient Response  
89. VINDPM Transient Response  
IBUS  
DCP Adapter  
VBAT = 8.0V  
Charge enabled  
VBAT = 7.6V  
VBUS = 5.1V  
90. IINDPM Transient Response  
91. Buck Mode (OTG) Load Transient Response  
版权 © 2018–2019, Texas Instruments Incorporated  
73  
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
10 Power Supply Recommendations  
In order to provide an output voltage on SYS, the device requires a power supply between 3.9 V and 6.2 V input  
with at least 500-mA current rating connected to VBUS or a dual-cell Li-Ion battery with voltage > VBAT_UVLO  
connected to BAT. The source current rating needs to be at least 3.3 A in order for the boost converter of the  
charger to provide maximum output power to SYS.  
74  
版权 © 2018–2019, Texas Instruments Incorporated  
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
11 Layout  
11.1 Layout Guidelines  
The switching node rise and fall times should be minimized for minimum switching loss. Proper layout of the  
components to minimize high frequency current path loops is important to prevent electrical and magnetic field  
radiation and high frequency resonant problems. Here is a PCB layout priority list for proper layout. Layout PCB  
according to this specific order is essential.  
1. Place SYS and BAT output capacitor as close to SYS, BAT and GND bumps as possible. Ground  
connections need to be tied to the IC ground with a short copper trace connection or GND plane.  
2. Place PMID input capacitor as close as possible to PMID bumps and GND bumps and use shortest copper  
trace connection or GND plane.  
3. Place inductor input terminal to SW bumps as close as possible. Minimize the copper area of this trace to  
lower electrical and magnetic field radiation but make the trace wide enough to carry the input current.  
Minimize parasitic capacitance from this area to any other trace or plane.  
4. Decoupling capacitors should be placed next to the IC and make trace connection as short as possible.  
5. Ensure that there are sufficient thermal vias directly under bumps of the power FETs, connecting to copper  
on other layers.  
6. Via size and number should be enough for a given current path.  
7. Route BATP and BATN away from switching nodes such as SW.  
Refer to the EVM design and the Layout Example below for the recommended component placement with  
trace and via locations.  
版权 © 2018–2019, Texas Instruments Incorporated  
75  
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
11.2 Layout Example  
GND  
GND  
GND  
BTST  
PMID  
SW  
PMID  
PMID  
/PG  
GND  
GND  
/INT  
ILIM  
TS  
SW  
SYS  
BAT  
SW  
SYS  
VBUS  
VBUS  
VBUS  
SYS  
BAT  
D+  
D-  
BAT  
REG  
N
SCL  
BTST  
BATP  
/CE  
SDA  
BATN  
GND  
REGN  
92. PCB Layout Example  
76  
版权 © 2018–2019, Texas Instruments Incorporated  
BQ25882  
www.ti.com.cn  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
12 器件和文档支持  
12.1 器件支持  
12.1.1 第三方产品免责声明  
12.1.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
12.2 文档支持  
12.2.1 相关文档  
请参阅如下相关文档:  
BQ2588x 升压电池充电器评估模块用户指南》  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2018–2019, Texas Instruments Incorporated  
77  
BQ25882  
ZHCSJ56C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
78  
版权 © 2018–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ25882YFFR  
BQ25882YFFT  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YFF  
YFF  
25  
25  
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
BQ25882  
BQ25882  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Dec-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ25882YFFR  
BQ25882YFFT  
DSBGA  
DSBGA  
YFF  
YFF  
25  
25  
3000  
250  
180.0  
180.0  
8.4  
8.4  
2.28  
2.28  
2.28  
2.28  
0.73  
0.73  
4.0  
4.0  
8.0  
8.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Dec-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ25882YFFR  
BQ25882YFFT  
DSBGA  
DSBGA  
YFF  
YFF  
25  
25  
3000  
250  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
YFF0025  
DSBGA - 0.625 mm max height  
S
C
A
L
E
6
.
0
0
0
DIE SIZE BALL GRID ARRAY  
B
E
A
BUMP A1  
CORNER  
D
C
0.625 MAX  
SEATING PLANE  
0.05 C  
BALL TYP  
0.30  
0.12  
1.6 TYP  
SYMM  
E
D
D: Max = 2.135 mm, Min =2.075 mm  
E: Max = 2.135 mm, Min =2.075 mm  
SYMM  
1.6  
C
B
A
TYP  
0.4 TYP  
3
4
5
1
2
0.3  
0.2  
25X  
0.4 TYP  
0.015  
C A B  
4223786/A 06/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YFF0025  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
3
25X ( 0.23)  
(0.4) TYP  
1
2
4
5
A
B
SYMM  
C
D
E
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:25X  
0.05 MAX  
(
0.23)  
0.05 MIN  
(
0.23)  
METAL  
SOLDER MASK  
OPENING  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
EXPOSED METAL  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4223786/A 06/2017  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFF0025  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
25X ( 0.25)  
(R0.05) TYP  
3
1
2
4
5
A
B
C
(0.4) TYP  
METAL  
TYP  
SYMM  
D
E
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4223786/A 06/2017  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY