BQ25883RGET [TI]

采用 WQFN 封装、具有电源路径且适用于 USB 输入的 I2C 2 节 2A 升压电池充电器 | RGE | 24 | -40 to 85;
BQ25883RGET
型号: BQ25883RGET
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 WQFN 封装、具有电源路径且适用于 USB 输入的 I2C 2 节 2A 升压电池充电器 | RGE | 24 | -40 to 85

电池
文件: 总86页 (文件大小:3739K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
BQ25883 2-Cell, 2-A Boost-Mode Battery Charger With Power Path, USB On-The-Go Boost  
(OTG) For USB Input  
1 Features  
High accuracy  
±0.5% Charge voltage regulation  
±5% Charge current regulation  
±7.5% Input current regulation  
1
High-efficiency 2-A, 1.5MHz switch mode boost  
charger  
93.4% Charge efficiency at 5V adapter, 7.6-V  
battery, 1-A charge  
Safety  
Optimized for USB input and 2-cell Li-Ion  
battery  
Battery temperature sensing in charge and  
OTG buck mode  
Selectable low power PFM mode for light load  
operation  
Thermal regulation and thermal shutdown  
Single input to support USB input adapters  
2 Applications  
Supports 3.9 V – 6.2 V input voltage range  
with 20-V absolute maximum input voltage  
rating  
Bluetooth speaker  
EPOS Printer  
Portable POS  
Input current limit (500 mA to 3.3 A with 100-  
mA resolution) to support USB2.0, USB3.0  
standard adapters  
Wireless security camera  
3 Description  
Maximum power tracking by input voltage limit  
up-to 5.5 V  
The BQ25883 is a highly-integrated 2-A boost switch-  
mode battery charge management and system power  
path management device for 2-cell (2s) Li-Ion and Li-  
polymer battery. The BQ25883 has I2C control with  
OTG and power path.  
Integrated USB D+/D- auto-detect USB SDP,  
CDP, DCP, and non-standard adapters  
Power path management and I2C control  
Highest battery discharge efficiency with 17m  
battery discharge MOSFET  
Device Information(1)  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
Narrow VDC (NVDC) power path management  
BQ25883  
VQFN (24)  
4.00 mm x 4.00 mm  
Instant-on system on with no battery or  
deeply discharged battery  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Ideal diode operation in battery supplement  
mode  
Simplified Schematic  
USB on-the-go (OTG) with adjustable output from  
4.5V to 5.5V  
VREF  
5V @ 3A  
STAT  
VBUS  
ILIM  
Buck converter with up-to 2 A output  
94% Efficiency at 5 V, 1 A output  
PMID  
SYSTEM  
LOAD  
6.0V to 8.8V  
ICHG=2A  
SYS  
BAT  
SW  
Accurate constant current (CC) regulation and  
output short protection  
BTST  
REGN  
Selectable low power PFM mode for light load  
operation with out-of-audio option  
VREGN  
D+  
USB  
Host  
Input current optimizer (ICO) to maximize input  
power without overloading adapters  
Dœ  
VREF  
TS  
SDA  
`
Integrated 16-bit ADC for system monitoring (BUS  
voltage and current, each cell voltage, charge  
current, SYS voltage, and NTC and die  
temperature)  
SCL  
INT  
PG  
BQ25883  
CE  
GND  
High integration includes all MOSFETs, current  
sensing and loop compensation  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
 
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
Table of Contents  
8.4 Device Functional Modes........................................ 34  
8.5 Register Maps ........................................................ 35  
Application and Implementation ........................ 68  
9.1 Application Information............................................ 68  
9.2 Typical Application .................................................. 68  
1
2
3
4
5
6
7
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 7  
7.6 Timing Requirements.............................................. 11  
7.7 Typical Characteristics............................................ 13  
Detailed Description ............................................ 16  
8.1 Overview ................................................................. 16  
8.2 Functional Block Diagram ....................................... 16  
8.3 Feature Description................................................. 17  
9
10 Power Supply Recommendations ..................... 74  
11 Layout................................................................... 74  
11.1 Layout Guidelines ................................................. 74  
11.2 Layout Example .................................................... 75  
12 Device and Documentation Support ................. 76  
12.1 Device Support .................................................... 76  
12.2 Documentation Support ........................................ 76  
12.3 Receiving Notification of Documentation Updates 76  
12.4 Community Resources.......................................... 76  
12.5 Trademarks........................................................... 76  
12.6 Electrostatic Discharge Caution............................ 76  
12.7 Glossary................................................................ 76  
8
13 Mechanical, Packaging, and Orderable  
Information ........................................................... 77  
4 Revision History  
Changes from Original (February 2019) to Revision A  
Page  
Changed from Advance Information to Production Data ....................................................................................................... 1  
2
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
 
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
5 Device Comparison Table  
Table 1. Device Comparison  
PART NUMBER  
VBUS Operating Range  
USB Detection  
Power Path  
BQ25882  
BQ25883  
3.9 to 6.2 V  
D+/D-  
BQ25886  
4.3 to 6.2 V  
D+/D-  
BQ25887  
3.9 to 6.2 V  
PSEL  
3.9 to 6.2 V  
D+/D-  
Yes  
Yes  
Yes  
No  
Cell Balancing  
OTG  
No  
No  
No  
Yes  
Up to 2 A  
Yes  
Up to 2 A  
Yes  
Up to 2 A  
No  
No OTG  
Yes  
16 bit ADC  
Control Interface  
Status Pin  
I2C  
I2C  
Standalone  
STAT, /PG  
4x4 QFN-24  
I2C  
/PG  
STAT, /PG  
4x4 QFN-24  
STAT, /PG  
4x4 QFN-24  
Package  
2.1x2.1 WCSP-25  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: BQ25883  
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
6 Pin Configuration and Functions  
RGE Package  
24-Pin VQFN  
Top View  
24  
23  
22  
21  
20  
19  
1
18  
17  
16  
15  
14  
13  
SW  
SW  
SYS  
SYS  
D-  
2
STAT  
3
CE  
BQ25883  
RGE, 4x4  
4
SDA  
5
BAT  
BAT  
SCL  
6
INT  
7
8
9
10  
11  
12  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Positive USB data line – D+/D– based USB host/charging port detection. The detection includes  
data contact detection (DCD) and secondary detection in BC1.2.  
D+  
24  
AIO  
AIO  
Negative USB data line – D+/D– based USB host/charging port detection. The detection includes  
data contact detection (DCD) and secondary detection in BC1.2.  
D–  
1
2
3
Open drain charge status indicator – Connect to the pull-up rail via 10-kresistor. LOW indicates  
charge in progress. HIGH indicates charge complete or charge disabled. When any fault occurs, the  
STAT pin blinks at 1Hz. The STAT function can be disabled when the STAT_DIS bit is set.  
STAT  
CE  
DO  
DI  
Active Low Charge Enable Pin – Battery charging is enabled when EN_CHG bit is 1 and CE pin is  
LOW. CE pin is internally pulled low with 900k-Ω resistor.  
SDA  
SCL  
4
5
DIO  
DI  
I2C Interface Data – Connect SDA to the pull up rail through a 10-kresistor.  
I2C Interface Clock – Connect SCL to the pull up rail through a 10-kresistor.  
Open drain active Interrupt Output – Connect INT to the pull up rail via a 10-kresistor. The INT  
pin sends active low, 256-µs pulse to the host to report charger device status and fault.  
INT  
6
DO  
Temperature Qualification Voltage – Connect a negative temperature coefficient thermistor.  
Program temperature window with a resistor divider from REGN to TS to GND. Charge suspends  
when TS pin is out of range. Recommend 103AT-2 thermistor.  
TS  
7
AI  
4
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Input Current Limit (IINDPM) – ILIM pin sets the maximum input current and can be used to  
monitor input current. IINDPM loop regulates ILIM pin voltage at 0.8V. When ILIM pin is less than  
0.8V, the input current can be calculated by IIN = KILIM x VILIM / (RILIM x 0.8V). A resistor  
connected from ILIM pin to ground sets the input current limit as maximum (IINMAX = KILIM /  
RILIM). When ILIM pin is short to GND, the input current limit is set to maximum by ILIM. The actual  
input current limit is the lower limit set by ILIM pin (when EN_ILIM bit is HIGH) or IINDPM register  
bits. Input current limit less than 500mA is not supported on ILIM pin. The ILIM pin function can be  
disabled when EN_ILIM bit is 0. If ILIM pin is not used, pull this pin to GND.Do not float this pin.  
ILIM  
8
AI  
Open drain active low power good indicator – Connect to the pull up rail via 10-kresistor. LOW  
indicates a good input source if the input voltage is within VVBUS_OP (3.9 V), and can provide more  
than IPOORSRC (30 mA).  
PG  
9
DO  
Gate Drive Supply – Bias supply for internal MOSFETs driver and IC. Bypass REGN to GND with a  
4.7-µF ceramic capacitor. REGN current limit is 50 mA.  
REGN  
BTST  
BAT  
11  
12  
P
P
P
PWM High-side Driver Supply – Internally, BTST is connected to the cathode of the boot-strap  
diode. Connect a 47nF bootstrap capacitor from SW to BTST.  
Battery Power Connection – Connect minimum recommended 10-µF capacitance after derating  
closely to the BAT pin and GND.  
13, 14  
System Connection – The internal BATFET is connected between SYS and BAT. When the battery  
falls below the minimum system voltage, the switch-mode converter keeps SYS above the minimum  
system voltage. Connect a 2x22-µF capacitance after derating closely to the SYS pin and PGND.  
SYS  
15, 16  
P
SW  
17, 18  
19, 20,  
P
Inductor Connection – Connect to the switched side of the external inductor.  
GND  
Ground Return  
Blocking MOSFET Connection – The minimum recommended total input low-ESR capacitance on  
VBUS and PMID, after applied derating, is 10 uF. At least 1-uF is recommended at VBUS with the  
remainder at PMID. Typical value for PMID is 10 uF.  
PMID  
21, 22  
P
Input Supply – VBUS is connected to the external DC supply. Bypass VBUS to GND with at least 1-  
µF ceramic capacitor, placed as close to the IC as possible.  
VBUS  
NC  
23  
10  
P
No Connect – Leave these pins floating or tie to ground.  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: BQ25883  
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
MIN  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
MAX  
20  
8.5  
12  
13  
19  
6
UNIT  
V
VBUS (converter not switching)  
PMID (converter not switching)  
BAT, SYS (converter not switching)  
SW  
V
V
V
Voltage Range (with respect to GND unless otherwise  
specified)  
BTST  
V
REGN, STAT, /PG, TS  
ILIM  
V
5
V
BTST to SW  
6
V
D+, D-, /CE, SDA, SCL, /INT  
6
V
Output Sink Current  
/INT, STAT, /PG  
6
mA  
°C  
°C  
Junction Temperature, TJ  
Storage temperature, Tstg  
–40  
–40  
150  
150  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101(2)  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
3.3  
2.2  
5
UNIT  
IVBUS  
Average input current (VBUS)  
A
A
A
IBAT  
Average charge current (IBAT)  
IBAT_RMS  
RMS discharging current with internal MOSFET  
9 (up to  
1us)  
IBAT_PK  
Peak discharging current with internal MOSFET  
A
VBAT  
TA  
Battery Voltage  
9.2(1)  
V
Operating free-air temperature range  
-40  
85  
°C  
(1) The inherent switching noise voltage spikes should not exceed the absolute maximum rating on SW pin. A tight layout minimizes  
switching noise.  
7.4 Thermal Information  
over operating free-air temperature range (unless otherwise noted)  
BQ25883  
THERMAL METRIC(1)  
RGE (VQFN)  
24-PIN  
32.4  
UNIT  
RΘJA  
RΘJC(top)  
RΘJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
26.7  
10.7  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.4  
ΨJB  
10.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
Thermal Information (continued)  
over operating free-air temperature range (unless otherwise noted)  
BQ25883  
THERMAL METRIC(1)  
RGE (VQFN)  
24-PIN  
UNIT  
RΘ JC(bot)  
Junction-to-case (bottom) thermal resistance  
3.7  
°C/W  
7.5 Electrical Characteristics  
VVBUS_UVLO_RISING< VVBUS < VVBUS_OV, TJ = -40°C to+125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
QUIESCENT CURRENTS  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VBAT = 9 V, No VBUS, SCL, SDA = 0 V  
or 1.8 V, TJ=25C, ADC Disabled  
12  
12  
30  
30  
1.5  
3
14 µA  
20 µA  
38 µA  
48 µA  
IBAT  
Battery discharge current (BAT)  
Input supply current (VBUS) in HIZ  
Input supply current (VBUS)  
VBAT = 9 V, No VBUS, SCL, SDA = 0 V  
or 1.8 V, TJ < 85C, ADC Disabled  
VBUS = 5 V, High-Z Mode, no battery,  
ADC Disabled, 25  
IVBUS_HIZ  
VBUS = 5 V, High-Z Mode, no battery,  
ADC Disabled, <85℃  
VBUS = 5 V, VBAT = 7.6 V, converter not  
switching  
3
mA  
mA  
mA  
IVBUS  
VBUS = 5 V, VBAT = 7.6 V, converter  
switching, ISYS = 0A  
Battery discharge current in OTG  
mode  
VBAT = 8.4 V, OTG Buck Mode, IVBUS  
0A, converter switching  
=
IBAT_OTG  
3
VBUS/VBAT POWER UP  
VVBUS_OP VBUS operating range  
VVBUS_UVLO_RISING VBUS rising for active I2C, no battery VBUS rising  
3.9  
6.2  
3.68  
6.6  
V
V
3.3  
VBUS over-voltage rising threshold  
VBUS over-voltage falling threshold  
Battery for active I2C  
VBUS rising  
6.2  
5.9  
3.7  
V
VVBUS_OV  
VBUS falling  
6.4  
V
VBAT_UVLO_RISING  
VBAT rising  
4
3.7  
15  
4.42  
V
VPOORSRC_FALLING Bad adapter detection threshold  
VBUS falling below VPOORSRC_FALLING  
V
IPOORSRC  
Bad adapter detection current source  
mA  
POWER-PATH  
ISYS = 0A, VBAT = 8.80 V >  
SYS_MIN[3:0], Charge Disabled (EN_CHG  
= 0)  
VBAT+0.  
1
V
VSYS  
Typical System Regulation Voltage  
System Regulation Voltage  
VSYS_  
MIN+0.  
2
ISYS = 0A, VBAT < SYS_MIN[3:0],  
Charge Disabled (EN_CHG = 0)  
V
V
VBAT < SYS_MIN[3:0] = 0010, Charge  
Disabled (EN_CHG = 0)  
VSYS_MIN  
6.2  
6.8  
6.4  
BATTERY CHARGER  
Typical charge voltage regulation  
range  
VREG_RANGE  
9.2  
V
VREG_STEP  
VREG_ACC  
ICHG_RANGE  
ICHG_STEP  
Typical charge voltage step  
Charge voltage  
10  
mV  
V
VREG = 8.40 V, TJ = 0°C to 85°C,  
8.35  
100  
8.4  
8.44  
Charge current regulation range  
Charge current regulation step  
2200 mA  
mA  
50  
Fast Charge current regulation  
accuracy  
ICHG = 1000 mA, VBAT = 6.2 V or 7.6 V,  
TJ = 0°C to 85°C  
ICHG_ACC  
ICHG_ACC  
-7.5  
-15  
7.5  
15  
%
%
Fast Charge current regulation  
accuracy  
ICHG = 500mA, VBAT = 6.2 V or 7.6 V, TJ  
= 0°C to 85°C  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: BQ25883  
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
Electrical Characteristics (continued)  
VVBUS_UVLO_RISING< VVBUS < VVBUS_OV, TJ = -40°C to+125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
-25  
50  
TYP  
MAX UNIT  
Fast Charge current regulation  
accuracy  
ICHG = 250 mA, VBAT = 6.2 V or 7.6 V,  
TJ = 0°C to 85°C  
ICHG_ACC  
25  
%
IPRECHG_RANGE  
IPRECHG_STEP  
Precharge current range  
800 mA  
mA  
Typical precharge current step  
50  
VBAT = 5.2 V, IPRECHG = 200 mA, TJ =  
25°C  
170  
237 mA  
245 mA  
IPRECHG_ACC  
Precharge current accuracy  
VBAT = 5.2 V, IPRECHG = 200 mA, TJ =  
0°C to 85°C  
150  
50  
ITERM_RANGE  
ITERM_STEP  
Termination current range  
800 mA  
mA  
Typical termination current step  
50  
ICHG = 1.5A, ITERM = 150 mA, TJ = 25°C  
143  
120  
45  
157 mA  
ICHG = 1.5A, ITERM = 150 mA, TJ = 0°C  
to 85°C  
180 mA  
60 mA  
75 mA  
ITERM_ACC  
Termination current accuracy  
ICHG = 1.5A, ITERM = 50 mA, TJ = 25°C  
ICHG = 1.5A, ITERM = 50 mA, TJ = 0°C to  
85°C  
22  
Short Battery Voltage rising threshold  
to start pre-charging  
VBAT_SHORT_RISING  
VBAT rising  
VBAT falling  
VBAT < 4.4 V  
4.1  
3.7  
4.4  
4
4.7  
4.3  
V
V
Short Battery Voltage falling  
threshold to stop pre-charging  
VBAT_SHORT_FALLIN  
G
Low Battery Voltage trickle charging  
current  
IBAT_SHORT  
100  
mA  
VBAT rising, VBATLOWV = 6.0 V  
VBAT rising, VBATLOW = 5.6 V  
VBAT falling, VBATLOW = 5.6 V  
VBAT falling, VBATLOWV = 6.0 V  
VBAT falling, VRECHG[1:0] = 01  
VBAT falling, VRECHG[1:0] = 10  
TJ = 25°C  
5.7  
5.3  
4.9  
5.3  
6
5.6  
5.2  
5.6  
200  
300  
32  
6.3  
5.9  
5.5  
5.9  
V
V
VBAT LOWV Rising threshold to  
start fast-charging  
VBAT_LOWV_RISING  
V
VBAT LOWV Falling threshold to  
stop fast-charging  
VBAT_LOWV_FALLING  
V
mV  
mV  
VRECHG  
Recharge threshold below VREG  
High-side switching MOSFET on-  
resistance between SW and  
SYS (Q2)  
34.2 mΩ  
46.5 mΩ  
45.8 mΩ  
62.9 mΩ  
RON_QHS (Q2)  
TJ = – 40°C to 125°C  
TJ = 25°C  
32  
42  
42  
Low-side switching MOSFET on-  
resistance between SW and GND  
(Q3)  
RON_QLS (Q3)  
TJ = – 40°C to 125°C  
TJ = 25°C  
18  
18  
18.8 mΩ  
22.5 mΩ  
16 mA  
MOSFET on-resistance between  
SYS and BAT (Q4)  
RON_QBAT (Q4)  
IBAT_DISCHG  
TJ = – 40°C - 85°C  
BAT Discharge current source  
VBAT = 8V, EN_BAT_DISCHG = 1  
8
11.5  
INPUT VOLTAGE / CURRENT REGULATION  
VINDPM_RANGE  
VINDPM_STEP  
Input voltage regulation range  
Input voltage regulation step  
3.9  
5.5  
V
mV  
V
100  
3.9  
4.4  
VINDPM = 3.9 V  
VINDPM = 4.4 V  
3.783  
4.268  
500  
4.017  
4.532  
VINDPM  
Input voltage limit  
V
IINDPM_RANGE  
IINDPM_STEP  
Input current regulation range  
Input current regulation step  
3300 mA  
mA  
100  
469  
IINDPM = 500 mA  
IINDPM = 900 mA  
IINDPM = 2500 mA  
IINDPM = 3000 mA  
438  
765  
500 mA  
900 mA  
2500 mA  
3000 mA  
832  
IINDPM_ACC  
Input current regulation limit  
IINMAX = KILIM/RILIM  
2125  
2550  
2312  
2775  
A x  
Ω
KILIM  
Input Current regulation by ILIM pin = 1.5A  
1012  
1098  
1185  
8
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
Electrical Characteristics (continued)  
VVBUS_UVLO_RISING< VVBUS < VVBUS_OV, TJ = -40°C to+125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
33  
MAX UNIT  
36.8 mΩ  
50.9 mΩ  
TJ = 25°C  
Blocking MOSFET on-resistance  
between VBUS and PMID (QBLK)  
RON_QBLK (Q1)  
TJ = – 40°C to 125°C  
33  
D + /D- DETECTION  
VD+D-_600MVSRC  
ID+_10UASRC  
D+/D- Voltage Source (600 mV)  
D+ Current Source (10 µA)  
D+/D- Current Sink (100 µA)  
500  
7
600  
10  
700 mV  
14 µA  
VD + = 200 mV,  
VD + = 500 mV,  
ID+D-_100UASNK  
50  
100  
150 µA  
D+/D- Comparator Threshold for  
Secondary Detection  
VD+D-_0P325  
RD-_19K  
D + pin Rising  
VD- = 500 mV,  
D + pin Rising  
250  
400 mV  
24.8 kΩ  
800 mV  
D- Resistor to Ground (19 k)  
14.25  
D+ Comparator Threshold for Data  
Contact Detection  
VD+_0P8  
D+/D- Threshold for Non-standard  
adapter  
VD+D-_1P2  
VD+D-_2P0  
VD+D-_2P8  
ID+D-_LKG  
1.05  
1.85  
1.35  
2.15  
V
V
D+/D- Comparator Threshold for  
Non-standard adapter  
D+/D- Threshold for Non-standard  
adapter  
2.55  
-1  
2.85  
1
V
D+/D- Leakage Current  
HiZ  
µA  
BATTERY OVER-VOLTAGE PROTECTION  
VBAT_OVP_RISING  
VBAT_OVP_FALLING  
Battery over-voltage rising threshold VBAT rising, as percentage of VREG  
Battery over-voltage falling threshold VBAT falling, as percentage of VREG  
102.5  
101  
104  
102  
105  
%
%
103.3  
THERMAL REGULATION AND THERMAL SHUTDOWN  
Junction temperature regulation  
accuracy  
TREG  
TREG = 120°C  
120  
°C  
Thermal Shutdown Rising threshold  
TSHUT_RISING  
Temperature Increasing  
150  
120  
°C  
°C  
Thermal Shutdown Falling threshold Temperature Decreasing  
JEITA THERMISTOR COMPARATOR (BOOST MODE)  
TS pin voltage rising. T1 (0°C)  
VT1  
threshold, Charge suspended below As Percentage to REGN  
this temperature.  
72.75  
67.75  
44.25  
73.25  
1.3  
73.75  
68.75  
45.25  
%
%
%
%
%
%
%
%
TS pin voltage falling. Charge re-  
enabled to ICHG/2 and VREG above As Percentage to REGN  
this temperature  
VT1_HYS  
TS pin voltage rising. T2 (10°C)  
threshold, charge set to ICHG/2 and As Percentage to REGN  
VREG below this temperature  
VT2  
68.25  
1.2  
TS pin voltage falling. Charge set to  
VT2_HYS  
ICHG and VREG above this  
temperature  
As Percentage to REGN  
As Percentage to REGN  
As Percentage to REGN  
TS pin voltage falling. T3 (45°C)  
threshold, charge set to ICHG and  
8.1 V above this temperature.  
VT3  
44.75  
1
TS pin voltage rising. Charge set to  
ICHG and VREG below this  
temperature  
VT3_HYS  
TS pin voltage falling. T5 (60°C)  
threshold, charge suspended above As Percentage to REGN  
this temperature.  
VT5  
33.875 34.375 34.875  
1.35  
TS pin voltage rising. Charge set to  
VT5_HYS  
ICHG and 8.1 V below this  
temperature  
As Percentage to REGN  
COLD/HOT THERMISTOR COMPARATOR (OTG BUCK MODE)  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: BQ25883  
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
Electrical Characteristics (continued)  
VVBUS_UVLO_RISING< VVBUS < VVBUS_OV, TJ = -40°C to+125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Cold Temperature Threshold 0, TS  
pin Voltage Rising Threshold  
As Percentage to REGN, BCOLD = 0  
(Approx. – 10°C w/ 103AT)  
VBCOLD0  
76.5  
77  
77.5  
%
%
%
%
%
%
%
%
%
%
Cold Temperature Threshold 0, TS  
pin Voltage Falling Threshold  
VBCOLD0_HYS  
VBCOLD1  
VBCOLD1_HYS  
VBHOT0  
VBHOT0_HYS  
VBHOT1  
VBHOT1_HYS  
VBHOT2  
As Percentage to REGN  
1
80  
Cold Temperature Threshold 1, TS  
pin Voltage Rising Threshold  
As Percentage to REGN, BCOLD = 1  
(Approx. – 20°C w/ 103AT)  
79.5  
80.5  
Cold Temperature Threshold 1, TS  
pin Voltage Falling Threshold  
As Percentage to REGN  
1
Hot Temperature Threshold 0, TS pin As Percentage to REGN, BHOT[1:0] = 01  
Voltage Falling Threshold  
37.25  
37.75  
3
38.25  
(Approx. 55°C w/ 103AT)  
Hot Temperature Threshold 0, TS pin  
Voltage Rising Threshold  
As Percentage to REGN  
Hot Temperature Threshold 1, TS pin As Percentage to REGN, BHOT[1:0] = 00  
Voltage falling Threshold  
33.875 34.375 34.875  
3
(Approx. 60°C w/ 103AT)  
Hot Temperature Threshold 1, TS pin  
Voltage rising Threshold  
As Percentage to REGN  
Hot Temperature Threshold 2, TS pin As Percentage to REGN, BHOT[1:0] = 10  
Voltage falling Threshold  
30.75  
31.25  
3
31.75  
(Approx. 65°C w/ 103AT)  
Hot Temperature Threshold 2, TS pin  
Voltage rising Threshold  
VBHOT2_HY2  
As Percentage to REGN  
BOOST MODE CONVERTER  
FSW  
PWM switching frequency  
Oscillator frequency  
VBAT falling  
1.35  
1.5  
6
1.65 MHz  
OTG BUCK MODE CONVERTER  
VOTG_BAT  
Battery voltage exiting OTG mode  
5.85  
4.5  
6.15  
5.5  
V
V
Typical OTG Buck mode voltage  
regulation range  
VOTG_RANGE  
Typical OTG Buck mode voltage  
regulation step  
VOTG_STEP  
VOTG_ACC  
IOTG_RANGE  
IOTG_STEP  
IOTG_ACC  
100  
mV  
%
OTG Buck mode voltage regulation  
accuracy  
IVBUS = 0A, OTG_VLIM = 5.1 V  
-3  
3
2
Typical OTG Buck mode current  
regulation range  
0.5  
A
Typical OTG Buck mode current  
regulation step  
100  
-7.5  
6
mA  
%
OTG Buck mode current regulation  
accuracy  
OTG_ILIM = 1A  
-15  
5.8  
0
OTG Buck mode over-voltage  
threshold  
VOTG_OVP  
V
REGN LDO  
VREGN  
REGN LDO output voltage  
REGN LDO current limit  
VVBUS = 5 V, IREGN = 20 mA  
VVBUS = 5 V, VREGN = 3.8 V  
4.7  
50  
4.8  
5.15  
V
IREGN  
mA  
Analog-to-Digital Converter (ADC)  
ADC_SAMPLE[1:0] = 11  
ADC_SAMPLE[1:0] = 10  
ADC_SAMPLE[1:0] = 01  
ADC_SAMPLE[1:0] = 00  
ADC_SAMPLE[1:0] = 11  
ADC_SAMPLE[1:0] = 10  
ADC_SAMPLE[1:0] = 01  
ADC_SAMPLE[1:0] = 00  
24  
12  
6
ms  
ms  
ms  
ms  
bits  
bits  
bits  
bits  
tADC_CONV  
Conversion time, each measurement  
3
14  
13  
12  
10  
15  
14  
13  
12  
ADCRES  
Effective resolution  
ADC MEASUREMENT RANGES AND LSB  
10  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
Electrical Characteristics (continued)  
VVBUS_UVLO_RISING< VVBUS < VVBUS_OV, TJ = -40°C to+125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IBUS_ADC_RANGE  
IBUS_ADC_LSB  
IBAT_ADC_RANGE  
IBAT_ADC_LSB  
ADC BUS current range  
ADC BUS current LSB  
ADC BAT current range  
ADC BAT current LSB  
ADC BUS voltage range  
ADC BUS voltage LSB  
ADC SYS voltage range  
ADC SYS voltage LSB  
ADC BAT voltage range  
ADC BAT voltage LSB  
ADC TS voltage range  
ADC TS voltage LSB  
ADC Die temperature range  
ADC Die temperature LSB  
0
4
A
mA  
A
1
0
0
4
1
1
mA  
V
VBUS_ADC_RANGE  
VBUS_ADC_LSB  
VSYS_ADC_RANGE  
VSYS_ADC_LSB  
VBAT_ADC_RANGE  
VBAT_ADC_LSB  
VTS_ADC_RANGE  
VTS_ADC_LSB  
6.5  
10  
10  
80  
mV  
V
0
1
mV  
V
0
1
mV  
%
20  
0
0.098  
0.5  
%
VTDIE_ADC_RANGE  
VTDIE_ADC_LSB  
I2C INTERFACE (SCL, SDA)  
150 °C  
°C  
Input high threshold level, SDA and  
SCL  
VIH  
Pull-up rail 1.8 V  
1.3  
1.3  
V
VIL  
Input low threshold level  
Output low threshold level  
High level leakage current  
Pull-up rail 1.8 V  
Sink current = 5 mA  
Pull-up rail 1.8 V  
0.4  
0.4  
1
V
V
VOL  
IBIAS  
uA  
LOGIC I/O PIN (/CE)  
VIH_CEZ  
Input high threshold level, /CE  
Input low threshold level, /CE  
High level leakage current, /CE  
V
V
VIL_CEZ  
0.4  
IIN_BIAS_CEZ  
Pull-up rail 1.8 V  
2.5 uA  
LOGIC O PIN (/INT, /PG, STAT)  
VOL  
Output low threshold level  
High level leakage current  
Sink current = 5 mA  
Pull-up rail 1.8 V  
0.4  
1
V
IOUT_BIAS  
µA  
7.6 Timing Requirements  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
VBUS/BAT POWER UP  
VBUS rising above VBUS_OV threshold to  
converter turn off  
tVBUS_OV  
VBUS OVP reaction time  
Bad adapter detection duration  
200  
30  
ns  
tPOORSRC  
BATTERY CHARGER  
ms  
tTERM_DGL  
Deglitch time for charge termination  
Charge current falling below ITERM  
250  
250  
ms  
ms  
BAT voltage falling below VRECHG = 100  
mV  
tRECGH_DGL  
Deglitch time for recharge threshold  
Deglitch time for battery over-voltage  
to disable charge  
tBAT_OVP_DGL  
1
µs  
tTOP_OFF  
tSAFETY  
I2C INTERFACE  
fSCL  
Typical Top-Off Timer Accuracy  
Charge Safety Timer Accuracy  
TOP_OFF_TIMER = 30 min  
CHG_TIMER = 12 hours  
24  
30  
12  
36 min  
10.8  
13.2 hr  
SCL clock frequency  
Data set-up time  
1000 kHZ  
ns  
tSU_STA  
tHD_DAT  
trDA  
10  
0
Data hold time  
70 ns  
80 ns  
Rise time of SDA signal  
10  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: BQ25883  
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
Timing Requirements (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
tfDA  
Fall time of SDA signal  
10  
80 ns  
DIGITAL CLOCK AND WATCHDOG TIMER  
fLPDIG  
fDIG  
Digital low power clock  
Digital clock  
REGN LDO disabled  
18  
30  
45 kHZ  
REGN LDO enabled  
1.35  
1.5  
1.65 MHz  
12  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
7.7 Typical Characteristics  
CVBUS = 1µF, CPMID= 10µF, CSYS= 44µF, CBAT = 10µF, L = 1µH ( IHLP2525CZER1R0k01) (unless otherwise specified)  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
100  
95  
90  
85  
80  
75  
70  
65  
60  
VBAT = 7.6 V  
VBAT = 8 V  
PFM En, OOA En  
PFM En, OOA Dis  
PFM Dis  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
0.01  
0.02 0.03 0.050.07 0.1  
0.2 0.3  
0.5 0.7  
1
Charge Current (A)  
System Current (A)  
D021  
D022  
VBUS = 5 V  
VBUS = 5 V  
VBAT = 8.4 V  
Figure 1. Charge Efficiency vs Charge Current  
Figure 2. System Efficiency vs System Current  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
10  
7.5  
5
2.5  
0
-2.5  
-5  
PFM En, OOA En  
PFM En, OOA Dis  
PFM Dis  
-7.5  
-10  
VBAT = 6.6 V  
VBAT = 7.6 V  
0.01  
OTG_VLIM = 5 V  
Figure 3. OTG Efficiency vs VBUS Output Current  
0.020.03 0.05  
0.1  
IBUS (A)  
0.2 0.3 0.5 0.7  
1
2
0.2  
VBUS = 5 V  
Figure 4. Charge Current Accuracy vs ICHG Setting  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6 1.7  
ICHG Setting (A)  
D023  
D034  
VBAT = 7.6 V  
225  
200  
175  
150  
125  
100  
75  
8.58  
8.57  
8.56  
8.55  
8.54  
8.53  
8.52  
8.51  
8.50  
8.49  
8.48  
8.47  
8.46  
8.45  
50  
25  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
System Current (A)  
System Current (A)  
D026  
D027  
VBUS = 5 V  
VBAT = 6 V  
SYS_MIN = 7 V  
VBUS = 5 V  
VBAT = 8.4 V  
EN_CHG = 0  
EN_CHG = 0  
Figure 5. SYSMIN Load Regulation  
Figure 6. System Load Regulation After Charge Done  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: BQ25883  
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
Typical Characteristics (continued)  
CVBUS = 1µF, CPMID= 10µF, CSYS= 44µF, CBAT = 10µF, L = 1µH ( IHLP2525CZER1R0k01) (unless otherwise specified)  
0
-1  
2
1.5  
1
-40èC  
25èC  
85èC  
-40èC  
25èC  
85èC  
-2  
-3  
-4  
-5  
0.5  
0
-6  
-7  
-8  
-0.5  
-1  
-9  
-10  
-11  
-12  
-13  
-14  
-1.5  
-2  
4.5 4.6 4.7 4.8 4.9  
5
5.1 5.2 5.3 5.4 5.5  
0.4  
VBAT = 8 V  
Figure 8. OTG IBUS Limit vs OTG_ILIM Setting  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
OTG_VLIM Setting (V)  
OTG_ILIM Setting (A)  
D028  
D029  
VBAT = 7.6 V  
Figure 7. OTG VBUS Regulation vs OTG_VLIM Setting  
3.0  
3.0  
2.5  
-40èC  
0èC  
25èC  
85èC  
-40èC  
0èC  
25èC  
85èC  
2.5  
2.0  
2.0  
1.5  
1.5  
1.0  
1.0  
0.5  
0.5  
0.0  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
6
6.3  
6.6  
6.9  
7.2  
7.5  
7.8  
8.1  
8.4  
8.7  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
VBAT Voltage (V)  
VBUS Current (A)  
D030  
D031  
VOTG = 5.1 V  
VOTG = 5.1 V  
VBAT = 8 V  
Figure 9. OTG Voltage Regulation vs VBAT Voltage  
Figure 10. OTG Voltage Regulation vs OTG BUS Current  
3.0  
0
-1  
-2  
-3  
-4  
-40èC  
-20èC  
25èC  
85èC  
VBAT = 6.6 V  
VBAT = 7.6 V  
2.5  
2.0  
1.5  
-5  
1.0  
-6  
-7  
-8  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-9  
-10  
-11  
-12  
-13  
-14  
-15  
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3  
IINDPM Setting (A)  
3.8  
4.0  
4.2  
4.4  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
VINDPM Setting (V)  
D032  
D033  
VBUS = 5 V  
VBAT = 7.6 V  
TA = 25°C  
Figure 11. Input Current Limit Accuracy vs IINDPM Setting  
Figure 12. Input Voltage Limit Accuracy vs VINDPM Setting  
14  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
Typical Characteristics (continued)  
CVBUS = 1µF, CPMID= 10µF, CSYS= 44µF, CBAT = 10µF, L = 1µH ( IHLP2525CZER1R0k01) (unless otherwise specified)  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.15  
ICHG = 0.5A  
ICHG = 1.0A  
ICHG = 1.4A  
TREG = 60°C  
TREG = 80°C  
TREG = 100°C  
TREG = 120°C  
0.1  
0.05  
0
-0.05  
50  
60  
70  
80  
90 100 110 120 130 140 150  
Die Temperature (°C)  
90  
95  
100  
105  
110  
115  
120  
125  
130  
Die Temperature (°C)  
D014  
D015  
VBUS = 5V  
VBAT = 7.6V  
Figure 13. TREG Profiles  
ICHG = 100mA  
VBUS = 5V  
VBAT = 7.6V  
ICHG = 0.5A, 1.0A, 1.4A  
Figure 14. Max Current Temperature Profile  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: BQ25883  
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The BQ25883 device is a highly integrated 2-A switch-mode battery charger for 2s Li-Ion and Li-Polymer battery.  
It integrates the input blocking FET (Q1, QBLK), high-side switching FET (Q2, QHS), low-side switching FET  
(Q3, QLS), and battery FET (Q4, QBAT). The device also integrates the boot-strap diode for high-side gate drive.  
8.2 Functional Block Diagram  
VBUS  
PMID  
VVBUS_UVLO_RISING  
QBLK  
(Q1)  
+
+
UVLO  
QBLK  
CONTROL  
REGN  
BTST  
REGN  
REGN  
LDO  
EN_HIZ  
VBUS_OVP  
VVBUS_OV  
VO,REF  
SYS  
OTG_OVP(1)  
VVBUS  
+
VOTG_OVP  
QHS  
(Q2)  
OTG_Q2_OCP(1)  
+
IQ2  
IHSOCP  
VVBUS  
VINDPM  
SYS  
+
+
+
VSYSMIN  
+
SW  
BAT_OVP  
BAT  
IIN  
BAT  
+
+
+
QLS  
(Q3)  
VBAT_OVP  
REGN  
DC-DC  
CONTROL  
VBAT_REG  
IINDPM  
IC_TJ  
TREG  
ICHG  
GND  
ICHG_REG  
EN_CHARGE  
IQ3  
+
+
Q3_OCP  
GND  
EN_HIZ  
ILSOCP  
EN_OTG  
VBTST œ VSW  
REFRESH  
SYS  
VBTST_REFRESH  
VPOORSRC  
CONVERTER  
CONTROL  
STATE  
+
+
POORSRC  
VVBUS  
REF  
DAC  
IC_TJ  
TSHUT  
MACHINE  
TSHUT  
ICHG  
ILIM  
IBUS  
ICHG  
VBUS  
VBAT  
VSYS  
VTS  
QBAT  
(Q4)  
D-  
VBAT_REG  
ICHG_REG  
QBAT  
CONTROL  
D+  
ADC  
USB  
DETECTION  
PG  
BAT  
TDIE  
VREG - VRECHG  
RECHRG  
+
BAT  
ICHG  
ITERM  
STAT  
TERMINATION  
BATLOWV  
+
+
CHARGE  
CONTROL  
STATE  
VBAT_LOWV  
BAT  
MACHINE  
INT  
VBAT_UVLO_RISING  
BATUVLO  
+
BAT  
BATTERY  
SENSING  
VTS  
I2C  
INTERFACE  
TS_SUSPEND  
TS  
THERMISTOR  
SCL  
SDA  
CE  
16  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
8.3 Feature Description  
8.3.1 Device Power-On-Reset  
The internal bias circuits are powered from either VBAT or VBUS when it rises above VVBUS_UVLO_RISING or  
VBAT_UVLO_RISING. When VBUS rises above VVBUS_UVLO_RISING or BAT rises above VBAT_UVLO_RISING, the BATFET  
driver is active. I2C interface is ready for communication and all the registers are reset to default value. The host  
can access all the registers after POR.  
8.3.2 Device Power Up from Battery without Input Source  
If only the battery is present and the voltage is above UVLO threshold (VBAT_UVLO_RISING), the BATFET turns on  
and connects battery to system. The REGN LDO stays off to minimize the quiescent current. The low RDS(ON) of  
BATFET and the low quiescent current on BAT minimize the conduction loss and maximize the battery run time.  
8.3.3 Device Power Up from Input Source  
When an input source is plugged in, the device checks the input source voltage to turn on REGN LDO and all the  
bias circuits. It detects and sets the input current limit before the boost converter is started. The power up  
sequence from input source is as listed:  
1. Poor Source Qualification  
2. Input Source Type Detection based on D+/D– to set default Input Current Limit (IINDPM) register and input  
source type  
3. Power Up REGN LDO  
4. Converter Power-up  
8.3.3.1 Poor Source Qualification  
After REGN LDO powers up, the device checks the current capability of the input source. The input source has  
to meet the following requirements in order to start the boost converter.  
1. VBUS voltage below VVBUS_OVP  
2. VBUS voltage above VPOORSRC when pulling IPOORSRC (typical 30mA)  
If VBUS_OVP is detected (condition 1 above), the device automatically retries detection once the over-voltage fault  
goes away. If a poor source is detected (condition 2 above), the device repeats poor source qualification routine  
every 2 seconds. After 7 consecutive failures, the device goes to HIZ mode. The battery powers up the system  
when the device is in HIZ. On BQ25883 adapter re-plugin and/or EN_HIZ bit toggle is required to restart device  
operation. The EN_HIZ bit is cleared automatically when the adapter is plugged in. If the fault is not removed, the  
part will enter HIZ mode again after the 7 consecutive failures.  
8.3.3.2 Input Source Type Detection  
After input source is qualified, the charger device runs input source type detection.  
The BQ25883 follows the USB Battery Charging Specification 1.2 (BC1.2) to detect input source  
(SDP/CDP/DCP) and non-standard adapter through USB D+/D- lines. After input source type detection, the  
following registers and pins are changed:  
1. Input Current Limit (IINDPM) register is changed to set current limit  
2. Input Voltage Limit (VINDPM) register is changed to set default limit (if EN_VINDPM_RST = 1, otherwise  
VINDPM value remains unchanged)  
3. VBUS_STAT bits change to reflect the detected source  
4. INT pin pulses to notify the host  
5. PG pin is pulled LOW, and PG_STAT bit is set to '1'  
After detection is completed, the host can over-write IINDPM or VINDPM registers to change the input current, or  
input voltage limit if needed. The charger input current is always limited by the lower of IINDPM register , ILIM  
pin, or Input Current Optimizer (ICO) setting when ICO is enabled.  
When AUTO_INDET_EN is disabled, the Input Source Type Detection is bypassed, and the Input Current Limit  
(IINDPM) register remains unchanged from previous value. When EN_VINDPM_RST is disabled, the Input  
Voltage Limit (VINDPM) register remains unchanged from previous value.  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: BQ25883  
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
Feature Description (continued)  
8.3.3.2.1 D+/D– Detection Sets Input Current Limit  
The BQ25883 contains a D+/D- based input source detection to program the input current limit. The D+/D-  
detection has three major steps: Data Contact Detect (DCD), Primary Detection, and Secondary Detection.  
Unknown/500mA  
Divider 3/1A  
Divider 1/2.1A  
Divider 4/2.4A  
Non-Standard  
Adapter  
Data Detection  
Contact  
Adapter Plug-in  
or  
FORCE_INDET  
Secondary  
Detection  
Primary  
Detection  
DCP  
(3000mA)  
VBUS Detection  
(DCD)  
USB BC1.2 Standard  
CDP  
SDP  
(1500mA)  
(500mA)  
Figure 15. D+/D- Detection Flow  
Table 2. Non-Standard Adapter Detection  
NON-STANDARD  
ADAPTER  
D+ THRESHOLD  
D– THRESHOLD  
INPUT CURRENT LIMIT  
Divider 1  
Divider 3  
Divider 4  
VD+ within V2P8_VTH  
VD+ within V2P0_VTH  
VD+ within V2P8_VTH  
VD– within V2P0_VTH  
VD– within V2P8_VTH  
VD– within V2P8_VTH  
2.1A  
1A  
2.4A  
After the Input Source Type Detection is done, an INT pulse is asserted to the host. In addition, the following  
registers including Input Current Limit register (IINDPM), and VBUS_STAT are updated as below:  
Table 3. Input Current Limit Setting from D+/D– Detection  
D+/D– DETECTION  
USB SDP (USB500)  
USB CDP  
INPUT CURRENT LIMIT (IINDPM)  
VBUS_STAT  
001  
500mA  
1.5A  
3.0A  
1A  
010  
USB DCP  
011  
Divider 3  
110  
Divider 1  
2.1A  
2.4A  
500mA  
110  
Divider 4  
110  
Unknown 5V Adapter  
101  
8.3.3.2.2 Force Input Current Limit Detection  
In host mode, the host can force the device to run Input Current Limit Detection by setting FORCE_INDET bit.  
After the detection is completed, FORCE_INDET bit returns to 0 by itself and input result is updated.  
8.3.3.3 Power Up REGN Regulator (LDO)  
The REGN LDO supplies internal bias circuits as well as the QHS and QLS gate drive. The LDO also provides  
bias rail to TS external resistors. The pull-up rail of STAT and PG can be connected to REGN as well. The  
REGN is enabled when all the below conditions are valid.  
1. VBUS above VVBUS_UVLO_RISING in boost mode or VBUS below VVBUS_UVLO_RISING in buck mode  
2. Poor Source Qualification detects a valid input source  
3. Input Source Type Detection completes and sets appropriate input current limit  
18  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
4. After 220 ms delay is complete  
If one of the above conditions is not valid, the device is in high impedance mode (HIZ) with REGN LDO off. The  
device draws less than IVBUS_HIZ from VBUS during HIZ state. The battery powers up the system when the device  
is in HIZ.  
8.3.3.4 Converter Power Up  
After the input current limit is set, the PG pin is pulled LOW, the PG_STAT and VBUS_STAT bits are changed,  
and the converter is enabled, allowing the HSFET and LSFET to start switching. If battery charging is disabled,  
BATFET turns off. Otherwise, BATFET stays on to charge the battery. The device provides soft-start when is  
ramped up.  
Before charging begins, the battery discharge source (IBAT_DISCHG) is enabled automatically to detect the  
presence of battery. The host can enable IBAT_DISCHG via the EN_BAT_DISCHG bit at any point during  
operation, including in Battery Only or HIZ modes.  
As a battery charger, the device deploys a highly efficient 1.5 MHz boost switching regulator. The fixed frequency  
oscillator keeps tight control of the switching frequency under all conditions of input voltage, battery voltage,  
charge current and temperature, simplifying output filter design.  
In order to improve light-load efficiency, the device switches to PFM (Pulse Frequency Modulation) control at light  
load when battery is below minimum system voltage setting or charging is disabled. During the PFM operation,  
the switching duty cycle is set by the ratio of SYS and VBUS.  
8.3.4 Input Current Optimizer (ICO)  
The device provides innovative Input Current Optimizer (ICO) to identify maximum power point without  
overloading the input source. The algorithm automatically identifies maximum input current limit of a power  
source without staying in VINDPM to avoid input source overload.  
On BQ25883, this feature is enabled by default (EN_ICO=1) and can be disabled by setting EN_ICO bit to 0.  
After DCP type input source is detected based on the procedures describe above (Input Source Type Detection).  
The algorithm runs automatically when EN_ICO bit is set. The algorithm can also be forced to execute by setting  
FORCE_ICO bit regardless of input source type detected .  
Table 4. Input Current Optimizer Automatic Operation  
AUTOMATIC START ICO  
ALGORITHM WHEN EN_ICO =  
1
INPUT CURRENT LIMIT  
DEVICE  
INPUT SOURCE  
(IINDPM)  
USB SDP (USB500)  
USB CDP  
500mA  
1.5A  
3.0A  
1A  
Disable  
Disable  
Enable  
Disable  
Disable  
Disable  
Disable  
USB DCP  
BQ25883 (D+/D–)  
Divider 3  
Divider 1  
2.1A  
2.4A  
500mA  
Divider 4  
Unknown 5V Adapter  
The actual input current limit used by the Dynamic Power Management is reported in ICO_ILIM register while  
Input Current Optimizer is enabled (EN_ICO = 1) or set by IINDPM register when the algorithm is disabled  
(EN_ICO=0). In addition, the current limit is clamped by ILIM pin unless EN_ILIM bit is 0 to disable ILIM pin  
function.  
When the algorithm is enabled, it runs continuously to adjust input current limit of Dynamic Power Management  
(IINDPM) using ICO_ILIM register until ICO_STAT[1:0] and ICO_FLAG bits are set (the ICO_FLAG bit indicates  
any change in ICO_STAT[1:0] bits). The algorithm operates depending on battery voltage:  
1. When voltage at BAT pin is below SYS_MIN, the algorithm starts ICO_ILIM register with IINDPM which is the  
maximum input current limit allowed by system  
2. When voltage at BAT is above SYS_MIN, the algorithm starts ICO_ILIM register with 500mA which is the  
minimum input current limit to minimize adapter overload  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: BQ25883  
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
When optimal input current is identified, the ICO_STAT[1:0] and ICO_FLAG bits are set to indicate input current  
limit in ICO_ILIM register would not be changed until the algorithm is forced to run by the following event (these  
events also reset the ICO_STAT[1:0] bits to '01'):  
1. A new input source is plugged-in, or EN_HIZ bit is toggled  
2. IINDPM register is changed  
3. VINDPM register is changed  
4. FORCE_ICO bit is set to 1  
5. VBUS_OVP event  
8.3.5 Buck Mode Operation from Battery (OTG)  
The device supports buck converter operation to deliver power from the battery to other portable devices through  
USB port. The buck mode output current rating meets the USB On-The-Go 500 mA (OTG_ILIM bits = 000)  
output requirement. The maximum output current is up to 2.0 A. The buck operation can be enabled if the  
following conditions are valid:  
1. BAT above VOTG_BAT  
2. VBUS less than VVBUS_PRESENT  
3. ADC is enabled  
4. Buck mode operation is enabled (EN_OTG = 1 and EN_CHG = 0)  
5. Voltage at TS (thermistor) pin is within range configured by Buck Mode Temperature Monitor as configured  
by BHOT and BCOLD register bits  
6. After 30 ms delay from buck mode enable  
In buck mode, the device employs 1.5 MHz step-down switching regulator based on system requirements.  
During buck mode, the status register VBUS_STAT bits are set to 111, the VBUS output is 5.1V by default  
(selectable via OTG_VLIM register bits) and the output current can reach up to 2.0 A, selected via I2C  
(OTG_ILIM bits). The buck output is maintained when BAT is above VOTG_BAT threshold, and VBUS is above  
VVBUS_PRESENT threshold. After OTG startup, the ADC maybe disabled.  
8.3.6 Power Path Management  
The device accommodates a wide range of input sources from USB, to wall adapter, to power bank. The device  
provides automatic power path selection to supply the system (SYS) from input source (VBUS), battery (BAT), or  
both.  
8.3.6.1 Narrow VDC Architecture  
The device deploys Narrow VDC architecture (NVDC) with BATFET separating system from battery. The  
minimum system voltage is set by SYS_MIN bits. Even with a fully depleted battery, the system is regulated  
above the minimum system voltage (default 6.2V ).  
When the battery is below minimum system voltage setting, the BATFET operates in linear mode (LDO mode),  
and the system is typically 200mV above the minimum system voltage setting. As the battery voltage rises above  
the minimum system voltage, BATFET is fully on and the voltage difference between the system and battery is  
the VDS of BATFET.  
When the battery charging is disabled and VBAT is above minimum system voltage setting or charging is  
terminated, the system is always regulated at typically 50mV above battery voltage. The status register  
VSYS_STAT bit goes high when the system is in minimum system voltage regulation.  
20  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
9.0  
8.6  
8.2  
Charge Enabled  
7.8  
7.4  
7.0  
Charge Disabled  
Minimum System Voltage  
6.6  
6.2  
5.4  
5.8 6.2 6.6 7.0 7.4 7.8 8.2 8.6  
BAT (V)  
Figure 16. System Voltage vs. Battery Voltage  
8.3.6.2 Dynamic Power Management  
To meet the maximum current limit in the USB spec and avoid over loading the adapter, the device features  
Dynamic Power Management (DPM), which continuously monitors the input current and input voltage. When  
input source is over-loaded, either the current exceeds the input current limit (IINDPM or ICO_ILIM or ILIM pin  
setting) or the voltage falls below the input voltage limit (VINDPM). The device then reduces the charge current  
until the input current falls below the input current limit and the input voltage rises above the input voltage limit.  
When the charge current is reduced to zero, but the input source is still overloaded, the system voltage starts to  
drop. Once the system voltage falls below the battery voltage, the device automatically enters the Supplement  
Mode where the BATFET turns on and battery starts discharging so that the system is supported from both the  
input source and battery.  
During DPM mode, the status register bits VINDPM_STAT (VINDPM) and/or IINDPM_STAT (IINDPM) go high.  
The figure shows the DPM response with 5V/3A adapter, 6.4V battery, 1.5A charge current and 6.8V minimum  
system voltage setting.  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: BQ25883  
 
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
VSYS  
7.0V  
6.8V  
VBAT  
6.4V  
6.0V  
VBUS  
5.0V  
4.0V  
3A  
IBUS  
2A  
IBAT  
1A  
ISYS  
0A  
-1A  
DPM  
CC  
DPM  
CC  
Supplement  
Figure 17. DPM Response  
8.3.6.3 Supplement Mode  
When the voltage falls below the battery voltage, the BATFET turns on.  
As the discharge current increases, the BATFET gate is regulated with a higher voltage to reduce RDSON until the  
BATFET is in full conduction. At this point onwards, the BATFET VDS linearly increases with discharge current.  
The figure shows the V-I curve of the BATFET gate regulation operation. BATFET turns off to exit Supplement  
Mode when the battery is below battery depletion threshold (VBAT_UVLO_RISING).  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
IBAT(A)  
D001  
Figure 18. BATFET I-V Curve  
22  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
8.3.7 Battery Charging Management  
The BQ25883 charges 2-cell Li-Ion battery with up to 2.2-A charge current for high capacity battery. The low  
RDS(ON) BATFET improves charging efficiency and minimize the voltage drop during discharging.  
8.3.7.1 Autonomous Charging Cycle  
When battery charging is enabled (EN_CHG bit =1 and CE pin is LOW; ), the device autonomously completes a  
charging cycle without host involvement. The device default charging parameters are listed in Table below. On  
BQ25883, the host can always control the charging operation and optimize the charging parameters by writing to  
the corresponding registers through I2C.  
Table 5. Charging Parameter Default Settings  
DEFAULT MODE  
Charging Voltage  
Charging Current  
Pre-Charge Current  
Termination Current  
Temperature Profile  
Safety Timer  
BQ25883  
8.40 V  
1.50 A  
150 mA  
150 mA  
JEITA  
12 hours  
Disabled  
Topoff Timer  
A new charge cycle starts when the following conditions are valid:  
1. Converter starts  
2. Battery charging is enabled by I2C register bit (EN_CHG = 1 and CE pin is LOW and ICHG register is not 0  
mA)  
3. No thermistor fault on TS  
4. No safety timer fault  
The charger device automatically terminates the charging cycle when the charging current is below termination  
threshold, charge voltage is above recharge threshold, and device is not in DPM mode or thermal regulation.  
When a full battery voltage is discharged below recharge threshold (threshold selectable via VRECHG[1:0] bits  
on BQ25883), the device automatically starts a new charging cycle. After the charge is done, either toggle CE  
pin or EN_CHG bit can initiate a new charging cycle.  
The STAT output indicates the charging status of: charging (LOW), charging complete or charge disable (HIGH)  
or charging fault (Blinking). If no battery is connected, the STAT pin blinks as capacitance connected at BAT  
charges, discharges, then recharges. The STAT output can be disabled by setting STAT_DIS bit. In addition, the  
status register (CHRG_STAT) indicates the different charging phases as:  
000 – Not Charging  
001 – Trickle Charge (VBAT < VBAT_SHORT  
010 – Pre-charge (VBAT_SHORT < VBAT < VBAT_LOWV  
011 – Fast-charge (CC mode)  
100 – Taper Charge (CV mode)  
101 – Top-off Timer Charging  
110 – Charge Termination Done  
)
)
8.3.7.2 Battery Charging Profile  
The device charges the battery in five phases: trickle charge, pre-charge, constant current, constant voltage, and  
top-off timer charging. At the beginning of a charging cycle, the device checks the battery voltage and regulates  
current/voltage accordingly.  
Table 6. Default Charging Current Setting  
VBAT  
CHARGING CURRENT  
IBAT_SHORT  
REGISTER DEFAULT SETTING  
CHRG_STAT  
< VBAT_SHORT  
100 mA  
150 mA  
001  
010  
VBAT_SHORT – VBAT_LOWV  
IPRECHG  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: BQ25883  
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
Table 6. Default Charging Current Setting (continued)  
VBAT  
CHARGING CURRENT  
REGISTER DEFAULT SETTING  
CHRG_STAT  
011  
> VBAT_LOWV  
ICHG  
1500 mA  
If the charger device is in DPM regulation or thermal regulation during charging, the actual charging current will  
be less than the programmed value. In this case, termination is temporarily disabled and the charging safety  
timer is counted at half the clock rate, as explained in the Charging Safety Timer section.  
Regulation Voltage  
VREG[7:0]  
Battery Voltage  
Charge Current  
ICHG[5:0]  
Charge Current  
VBATLOWV  
VBAT_SHORT  
IPRECHG[3:0]  
ITERM[3:0]  
IBAT_SHORT  
Trickle Charge  
001  
Pre-charge  
010  
Fast-Charge  
CC  
Taper-Charge  
CV  
Top-off Timer  
(optional)  
CHRG_STAT[2:0]  
011  
101  
110  
100  
Precharge Timer  
(2hrs)  
Safety Timer  
CHG_TIMER[1:0]  
Figure 19. Battery Charging Profile  
8.3.7.3 Charging Termination  
The device terminates a charge cycle when the battery voltage is above recharge threshold, and the current is  
below termination current. After the charging cycle is completed, the BATFET turns off. The converter keeps  
running to power the system, and BATFET can turn on again to engage Supplement Mode.  
When termination occurs, the STAT pin goes HIGH (charge current will continue to taper if top-off timer is  
enabled), status register CHRG_STAT is set to 110, and an INT pulse is asserted to the host. Termination is  
temporarily disabled when the charger device is in input current, voltage or thermal regulation. Termination can  
be permanently disabled by writing 0 to EN_TERM bit prior to charge termination.  
At low termination currents (50mA-100mA), due to the comparator offset, the actual termination current may be  
up to 20% higher than the termination target. In order to compensate for comparator offset, a programmable top-  
off timer (default disabled) can be applied after termination is detected.The top-off timer will follow safety timer  
constraints, such that if safety timer is suspended, so will the top-off timer. Similarly, if safety timer is doubled, so  
will the top-off timer. CHRG_STAT reports whether the top off timer is active via the 101 code. Once the Top-Off  
timer expires, the CHRG_STAT register is set to 110 and an INT pulse is asserted to the host.  
Top-off timer gets reset (set to 0 and counting resumes when appropriate) for any of the following conditions:  
24  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
1. Charge disable to enable  
2. Termination status low to high  
3. REG_RST register bit is set (disables top-off timer)  
The top-off timer settings are read in once termination is detected by the charger. Programming a top-off timer  
value after termination will have no effect unless a recharge cycle is initiated. An INT is asserted to the host  
when entering top-off timer segment as well as when top-off timer expires. All charge cycle related INT pulses  
(including top-off timer INT pulses) can be masked by CHRG_MASK bit.  
8.3.7.4 Thermistor Qualification  
The charger device provides a single thermistor input for battery temperature monitor.  
8.3.7.4.1 JEITA Guideline Compliance in Charge Mode  
To improve the safety of charging Li-ion batteries, JEITA guideline was released on April 20, 2007. The guideline  
emphasized the importance of avoiding a high charge current and high charge voltage at certain low and high  
temperature ranges.  
To initiate a charge cycle, the voltage on TS pin must be within the VT1 to VT5 thresholds. If TS voltage exceeds  
the T1-T5 range, the controller suspends charging and waits until the battery temperature is within the T1 to T5  
range. At cool temperature (T1-T2), JEITA recommends the charge current to be reduced to half of the charge  
current or lower. At warm temperature (T3-T5), JEITA recommends charge voltage less than 4.1V / cell.  
On BQ25883, the charger provides flexible voltage/current settings beyond the JEITA requirement. The voltage  
setting at warm temperature (T3-T5) can be VREG, 8.0V, 8.3V, or charge suspend (configured by JEITA_VSET  
[1:0]). The fast charge current setting at warm temperature (T3-T5) can be 100%, or 40% of fast charge current,  
ICHG (configured by JEITA_ISETH). The fast charge current setting at cool temperature (T1-T2) can be 100%,  
40%, or 20% of fast charge current, ICHG, or charge suspend (configured by JEITA_ISETC[1:0]). Whenever the  
charger detects "warm" or "cool" temperature, termination is automatically disabled regardless of JEITA_VSET,  
JEITA_ISETH and JEITA_ISETC register bit settings.  
REGN  
TS  
BQ2588x  
Figure 20. TS Resistor Network  
ISETC=11  
VSET =11  
ISETH=1  
100%  
VREG  
80%  
60%  
40%  
20%  
VSET =10  
VSET = 01  
8.3V  
8.0V  
ISETC=10  
ISETC=01  
ISETC=00  
ISETH=0  
VSET = 00  
T1  
0°C  
T2  
10°C  
T3  
45°C  
T5  
60°C  
T1  
0°C  
T2  
10°C  
T3  
45°C  
T5  
60°C  
TS Temperature  
TS Temperature  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: BQ25883  
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
Figure 21. TS Charging Values  
Assuming a 103AT NTC (Negative Temperature Coefficient) thermistor on the battery pack as shown above, the  
value of RT1 and RT2 can be determined by:  
«
÷
1
1
RNTC,T1 ì RNTC,T 5  
ì
-
VT 5 VT1  
RT2 =  
RT1=  
«
«
÷
1
1
RNTC,T1  
ì
-1 - R  
ì
-1  
÷
NTC,T 5  
VT1  
VT 5  
(1)  
(2)  
1
-1  
VT1  
1
1
+
RT 2 RNTC,T1  
Select 0°C to 60°C range for Li-ion or Li-polymer battery:  
RNTC,T1 = 27.28kΩ  
RNTC,T5 = 3.02kΩ  
RT1 = 5.24kΩ  
RT2 = 30.31kΩ  
8.3.7.4.2 Cold/Hot Temperature Window in OTG Buck Mode  
For battery protection during OTG buck mode, the device monitors the battery temperature to be within the  
VBCOLD to VBHOT thresholds. When temperature is outside of the temperature thresholds, the OTG mode is  
suspended. In addition, VBUS_STAT bits are set to 000 and corresponding TS_STAT is reported. Once  
temperature returns within thresholds, the OTG mode is recovered and TS_STAT is cleared.  
Temperature Range for OTG Buck Mode  
VREGN  
Buck Disable  
VBCOLDx  
(œ10°C / œ20°C)  
Buck Enable  
VBHOTx  
(55°C / 60°C / 65°C)  
Buck Disable  
GND  
Figure 22. TS Pin Thermistor Sense Threshold in OTG Buck Mode  
26  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
8.3.7.5 Charging Safety Timer  
The device has built-in safety timer to prevent extended charging cycle due to abnormal battery conditions. The  
user can program fast charge safety timer through I2C (CHG_TIMER bits). When safety timer expires, the fault  
register TMR_STAT bit is set to 1, and an INT pulse is asserted to the host. The safety timer feature can be  
disabled by clearing EN_TIMER bit.  
During input voltage, current or thermal regulation, the safety timer counts at half clock rate as the actual charge  
current is likely to be below the register setting. For example, if the charger is in input current regulation  
(IINDPM_STAT=1) throughout the whole charging cycle, and the safety timer is set to 12 hours, then the timer  
will expire in 24 hours. This half clock rate feature can be disabled by setting TMR2X_EN = 0. Changing the  
TMR2X_EN bit while the device is running has no effect on the safety timer count, other than forcing the timer to  
count at half the rate under the conditions dictated above.  
During faults which disable charging, or supplement mode, timer is suspended. Since the timer is not counting in  
this state, the TMR2X_EN bit has no effect. Once the fault goes away, safety timer resumes. If the charging  
cycle is stopped and started again, the timer gets reset (toggle CE pin or EN_CHG bit restarts the timer).  
The safety timer is reset for the following events:  
1. Charging cycle stop and restart (toggle CE pin, EN_CHG bit, or charged battery falls below recharge  
threshold).  
2. BAT voltage changes from pre-charge to fast-charge or vice versa (in host-mode or default mode).  
The precharge safety timer (fixed 2hr counter that runs when VBAT < VBAT_LOWV), follows the same rules as the  
fast-charge safety timer in terms of getting suspended, reset, and counting at half-rate when TMR2X_EN is set.  
8.3.8 Integrated 16-Bit ADC for Monitoring  
The device includes a 16-bit ADC to monitor critical system information based on the device’s modes of  
operation. The control of the ADC is done through the ADC Control Register (Address = 15h) [reset = 30h]. The  
ADC_EN bit provides the ability to enable and disable the ADC to conserve power. The ADC_RATE bit allows  
continuous conversion or one-shot behavior. After a one-shot conversion finishes, the ADC_EN bit is cleared,  
and must be re-asserted to start a new conversion.  
To enable the ADC, the ADC_EN bit must be set to ‘1’. The ADC is allowed to operate if either the  
VVBUS>VVBUS_UVLO_RISING or VBAT>VBAT_UVLO_RISING is valid. If no adapter is present, and the VBAT is less than  
VBAT_UVLO_RISING, the device will not perform an ADC measurement, nor update the ADC read-back values in  
REG17 through REG24. Additionally, the device will immediately reset ADC_EN bit without sending any interrupt.  
The same will happen if the ADC is enabled when all ADC channels are disabled. It is recommended to read  
back ADC_EN after setting it to '1' to ensure ADC is running a conversion. If the charger changes mode (for  
example, if adapter is connected, EN_HIZ goes to '1', or EN_OTG goes to '1') while an ADC conversion is  
running, the conversion is interrupted. Once the mode change is complete, the ADC resumes conversion,  
starting with the channel where it was interrupted. When device is in HIZ mode, ADC conversion can still be  
enabled through I2C. In HIZ mode, device power up internally to start ADC convertion and turn back down when  
ADC conversion is completed.  
When TS_ADC conversion performs in battery only mode, the REGN is powered and extra battery current would  
be drawn. Battery current can be kept low by disabling the TS_ADC conversion in battery only mode.  
The integrated ADC has two rate conversion options: a one-shot mode and a continuous conversion mode set by  
the ADC_RATE bit. By default, all ADC parameters will be converted in one-shot or continuous conversion mode  
unless disabled in the ADC Function Disable Register (Address = 16h) [reset = 00h]. If an ADC parameter is  
disabled by setting the corresponding bit in REG16, then the read-back value in the corresponding register will  
be from the last valid ADC conversion or the default POR value (all zeros if no conversions have taken place). If  
an ADC parameter is disabled in the middle of an ADC measurement cycle, the device will finish the conversion  
of that parameter, but will not convert the parameter starting the next conversion cycle. Even though no  
conversion takes place when all ADC measurement parameters are disabled, the ADC circuitry is active and  
ready to begin conversion as soon as one of the bits in the ADC Function Disable register is set to ‘0’. If all  
channels are disabled in one-shot conversion mode, the ADC_EN bit is cleared.  
The ADC_DONE_STAT and ADC_DONE_FLAG bits signal when a conversion is completed in one-shot mode  
only. This event produces an INT pulse, which can be masked with ADC_DONE_MASK. During continuous  
conversion mode, the ADC_DONE_STAT bit has no meaning and will be '0'. The ADC_DONE_FLAG bit will  
remain unchanged in continuous conversion mode.  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: BQ25883  
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
ADC conversion operates independently of the faults present in the device. ADC conversion will continue even  
after a fault has occurred (such as one that causes the power stage to be disabled), and the host must set  
ADC_EN = ‘0’ to disable the ADC. ADC conversion is interrupted upon adapter plug-in, and will only resume until  
after Input Source Type Detection is complete. ADC readings are only valid for DC states and not for transients.  
When host writes ADC_EN=0, the ADC stops immediately, and ADC measurement values correspond to last  
valid ADC reading.  
A recommended method to exit ADC conversion is described below:  
1. Write ADC_RATE to one-shot, and the ADC will stop at the end of a complete cycle of conversions, or  
2. Disable all ADC conversion channels, and the ADC will stop at the end of the current measurement.  
8.3.9 Status Outputs  
8.3.9.1 Power Good Indicator (PG)  
The PG_STAT bit goes HIGH and open drain PG pin goes low to indicate a good input source when:  
1. VBUS above VVBUS_UVLO_RISING  
2. VBUS below VVBUS_OV threshold  
3. VBUS above VPOORSRC (typ. 3.7 V) when IPOORSRC (typ. 30 mA) current is applied (not a poor source)  
4. Input Source Type Detection is completed  
8.3.9.2 Charging Status Indicator (STAT)  
The device indicates charging state on the open drain STAT pin. The STAT pin can drive LED.  
Table 7. STAT Pin State  
CHARGING STATE  
STAT INDICATOR  
Charging in progress (including trickle charge, pre-charge, fast-  
charge, recharge)  
LOW  
Charging complete (including top-off)  
Sleep mode, charge disable  
HIGH  
HIGH  
Charge suspend (Input over-voltage, TS fault, timer fault or battery  
over-voltage)  
Blinking at 1Hz  
OTG Buck Mode suspend (due to TS fault)  
8.3.9.3 Interrupt to Host  
In some applications, the host does not always monitor the charger operation. The INT pin notifies the system  
host on the device operation. By default, the following events will generate an active-low, 256µs INT pulse.  
1. Good input source detected  
VVBUS < VVBUS_OV threshold  
VVBUS > VPOORSRC (typ. 3.7 V) when IPOORSRC (typ. 30 mA) current is applied (not a poor source)  
2. VBUS_STAT changes state (VBUS_STAT any bit change)  
3. Good input source removed  
4. Entering IINDPM regulation  
5. Entering VINDPM regulation  
6. Entering IC junction temperature regulation (TREG)  
7. I2C Watchdog timer expired  
At initial power up, this INT gets asserted to signal I2C is ready for communication  
8. Charger status changes state (CHRG_STAT value change), including Charge Complete  
9. TS_STAT changes state (TS_STAT any bit change)  
10. VBUS over-voltage detected (VBUS_OVP)  
11. Junction temperature shutdown (TSHUT)  
12. Battery over-voltage detected (BATOVP)  
28  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
13. Charge safety timer expired  
14. A rising edge on any of the *_STAT bits  
Each one of these INT sources can be masked off to prevent INT pulses from being sent out when they occur.  
Three bits exist for each one of these events:  
The STAT bit holds the current status of each INT source  
The FLAG bit holds information on which source produced an INT, regardless of the current status  
The MASK bit is used to prevent the device from sending out INT for each particular event  
When one of the above conditions occurs (a rising edge on any of the *_STAT bits), the device sends out an INT  
pulse and keeps track of which source generated the INT via the FLAG registers. The FLAG register bits are  
automatically reset to zero after the host reads them, and a new edge on STAT bit is required to re-assert the  
FLAG.  
IINDPM_STAT  
IINDPM_FLAG  
TREG_STAT  
TREG_FLAG  
INT  
I2C Flag Read  
Figure 23. INT Generation Behavior Example  
8.3.10 Input Current Limit on ILIM Pin  
For safe operation, the BQ2588x has an additional hardware pin on ILIM to limit maximum input current. The  
maximum input current is set by a resistor from ILIM pin to ground as:  
KILIM  
=
I
INMAX  
RILIM  
(3)  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: BQ25883  
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
The actual input current limit is the lower value between ILIM pin setting and register setting (IINDPM). For  
example, if the register setting is 3.3A (0x1C), and ILIM has a 820-resistor (KILIM = 1276 max) to ground for  
1.55A, the input current limit is 1.55A. ILIM pin can be used to set the input current limit rather than the register  
settings when EN_ILIM bit is set. The device regulates ILIM pin at 0.8V. If ILIM voltage exceeds 0.8V, the device  
enters input current regulation (Refer to Dynamic Power Management section). Entering IINDPM through ILIM  
pin sets the IINDPM_STAT and FLAG bits, and produces and interrupt to host. The interrupt can be masked via  
the IINDPM_MASK bit.  
The ILIM pin can also be used to monitor input current when EN_ILIM is set. The voltage on ILIM pin is  
proportional to the input current. ILIM can be used to monitor input current with the following relationship:  
KILIM ìVILIM  
RILIM ì0.8V  
IIN  
=
(4)  
For example, if ILIM pin is set with 820-Ω resistor, and the ILIM voltage 0.5V, the actual input current is 0.795A to  
0.973A. If ILIM pin is open, the input current is limited to zero since ILIM voltage floats above 0.8V. If ILIM pin is  
shorted, the input current limit is set by the register.  
The ILIM pin function can be disabled by setting the EN_ILIM bit to 0. When the pin is disabled, both input  
current limit function and monitoring function are not available.  
8.3.11 Voltage and Current Monitoring  
The device closely monitors the input voltage and system voltage, as well as internal FET currents for safe boost  
and buck mode operation.  
8.3.11.1 Voltage and Current Monitoring in Boost Mode  
8.3.11.1.1 Input Over-Voltage Protection  
The valid input voltage range for boost mode operation is VVBUS_OP. If VBUS voltage exceeds VVBUS_OV, the  
device stops switching immediately to protect the power FETs. During input over-voltage, an INT pulse is  
asserted to signal the host, and the VBUS_OVP_STAT and VBUS_OVP_FLAG fault registers get set. The  
device automatically starts switching again when the over-voltage condition goes away.  
8.3.11.1.2 Input Under-Voltage Protection  
The valid input voltage range for boost mode operation is VVBUS_OP. If VBUS voltage falls below VPOORSRC during  
operation, the device stops switching. During input under-voltage, an INT pulse is asserted to signal the host,  
and the PG_STAT bit gets cleared. The PG_FLAG bit will get set to signal this event. The device automatically  
attempts to restart switching when the under-voltage condition goes away.  
8.3.11.1.3 System Over-Voltage Protection  
The charger device clamps the system voltage during load transient so that the components connect to system  
would not be damaged due to high voltage. SYSOVP threshold is 350 mV above system regulation voltage.  
Upon SYSOVP, converter stops immediately to clamp the overshoot.  
8.3.11.1.4 System Over-Current Protection  
The charger device continually monitors and compares VBUS to VSYS to protect against a system short-circuit  
event. In the event that VSYS drops to within 250 mV of VBUS during operation, a short circuit event is flagged  
and the converter stops switching. The SYS_SHORT_FLAG or SNS_SHORT_FLAG bit is set and an INT pulse  
is asserted to the host. The device attempts to recover from this condition automatically.  
8.3.11.2 Voltage and Current Monitoring in OTG Buck Mode  
The device closely monitors the VBUS voltage, as well as RBFET (Q1, QBLK) and LSFET (Q3, QLS) current to  
ensure safe buck mode operation.  
8.3.11.2.1 VBUS Over-voltage Protection  
When the VBUS voltage rises above regulation target and exceeds VOTG_OVP, the device enters over-voltage  
protection which stops switching, clears the EN_OTG bit and exits buck mode. During the over-voltage duration,  
the OTG_FLAG bits are set high to indicate a fault in buck mode operation. An INT is also asserted to the host.  
30  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
8.3.11.2.2 VBUS Over-Current Protection  
The device monitors output current to provide output short protection. The OTG buck mode has built-in constant  
current regulation to allow OTG to adapt to various types of loads. If short circuit is detected on VBUS, the OTG  
turns off and retries 7 times. If the retries are not successful, OTG is disabled with EN_OTG bit cleared. In  
addition OTG_FLAG bits are set high to indicate the fault, and an INT is asserted to the host.  
8.3.12 Thermal Regulation and Thermal Shutdown  
8.3.12.1 Thermal Protection in Boost Mode  
The device monitors internal junction temperature, TJ, to avoid overheating and limits the IC surface temperature  
in boost mode. When the internal junction temperature exceeds the preset thermal regulation limit (TREG bits),  
the device reduces charge current. A wide thermal regulation range from 60°C to 120°C allows optimization for  
the system thermal performance.  
During thermal regulation, the actual charging current is usually below the programmed value in ICHG registers.  
Therefore, termination is disabled, the safety timer runs at half the clock rate, the status register TREG_STAT bit  
goes high, and an INT is asserted to the host.  
Additionally, the device has thermal shutdown to turn off the converter when IC surface temperature exceeds  
TSHUT. The fault register bits TSHUT_STAT and TSHUT_FLAG are set and an INT pulse is asserted to the host.  
The converter turns back on when IC temperature is below TSHUT_HYS  
.
8.3.12.2 Thermal Protection in OTG Buck Mode  
The BQ2588x monitors the internal junction temperature to provide thermal shutdown during OTG buck mode.  
8.3.13 Battery Protection  
8.3.13.1 Battery Over-Voltage Protection (BATOVP)  
The battery over-voltage limit is clamped at 4% above the battery regulation voltage while charging. When  
battery over-voltage occurs, the charger device immediately disables charge. The fault register BATOVP_STAT  
bit goes high and an INT pulse is asserted to signal the host. The battery regulation voltage can be changed by  
JEITA_VSET bits and battery temperature, but BATOVP set point will not change.  
8.3.13.2 Battery Over-Discharge Protection  
When the battery is discharged below VBAT_SHORT_HYS, the BATFET is turned off to protect battery from over-  
discharge. To recover from over-discharge, an input source is required at VBUS. When an input source is  
plugged in, the BATFET turns on. The battery is charged with IBAT_SHORT current when the VBAT < VBAT_SHORT, or  
pre-charge current as set in IPRECHG registers when the battery voltage is between VBAT_SHORT and VBAT_LOWV  
.
8.3.14 Serial Interface  
The device uses I2C compatible interface for flexible charging parameter programming and instantaneous device  
status reporting. I2C is a bi-directional 2-wire serial interface. Only two open-drain bus lines are required: a serial  
data line (SDA), and a serial clock line (SCL). Devices can be considered as masters or slaves when performing  
data transfers. A master is a device which initiates a data transfer on the bus and generates the clock signals to  
permit that transfer. At that time, any device addressed is considered a slave.  
The device operates as a slave device with address 0x6B, receiving control inputs from the master device like  
micro-controller or digital signal processor through REG00 – REG25. Register read beyond REG25 (0x25),  
returns 0xFF. The I2C interface supports both standard mode (up to 100kbits/s), and fast mode (up to  
400kbits/s). When the bus is free, both lines are HIGH. The SDA and SCL pins are open drain and must be  
connected to the positive supply voltage via a current source or pull-up resistor.  
8.3.14.1 Data Validity  
The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the  
data line can only change when the clock signal on SCL line is LOW. One clock pulse is generated for each data  
bit transferred.  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: BQ25883  
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
SDA  
SCL  
Data line stable;  
Data valid  
Change of  
data allowed  
Figure 24. Bit Transfers on the I2C bus  
8.3.14.2 START and STOP Conditions  
All transactions begin with a START (S) and are terminated with a STOP (P). A HIGH to LOW transition on the  
SDA line while SCL is HIGH defines a START condition. A LOW to HIGH transition on the SDA line when the  
SCL is HIGH defines a STOP condition.  
START and STOP conditions are always generated by the master. The bus is considered busy after the START  
condition, and free after the STOP condition.  
SDA  
SCL  
SDA  
SCL  
STOP (P)  
Figure 25. START and STOP conditions on the I2C bus  
START (S)  
8.3.14.3 Byte Format  
Every byte on the SDA line must be 8 bits long. The number of bytes to be transmitted per transfer is  
unrestricted. Each byte has to be followed by an ACKNOWLEDGE (ACK) bit. Data is transferred with the Most  
Significant Bit (MSB) first. If a slave cannot receive or transmit another complete byte of data until it has  
performed some other function, it can hold the SCL line low to force the master into a wait state (clock  
stretching). Data transfer then continues when the slave is ready for another byte of data and releases the SCL  
line.  
32  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
Acknowledgeme  
nt signal from  
receiver  
Acknowledgement  
signal from slave  
MSB  
1
SDA  
2
7
8
9
1
2
8
9
SCL S or Sr  
P or Sr  
ACK  
ACK  
START or  
Repeated  
START  
STOP or  
Repeate  
d START  
Figure 26. Data Transfer on the I2C Bus  
8.3.14.4 Acknowledge (ACK) and Not Acknowledge (NACK)  
The ACK signaling takes place after byte. The ACK bit allows the receiver to signal the transmitter that the byte  
was successfully received and another byte may be sent. All clock pulses, including the acknowledge 9th clock  
pulse, are generated by the master.  
The transmitter releases the SDA line during the acknowledge clock pulse so the receiver can pull the SDA line  
LOW and it remains stable LOW during the HIGH period of this 9th clock pulse.  
A NACK is signaled when the SDA line remains HIGH during the 9th clock pulse. The master can then generate  
either a STOP to abort the transfer or a repeated START to start a new transfer.  
8.3.14.5 Slave Address and Data Direction Bit  
After the START signal, a slave address is sent. This address is 7 bits long, followed by the 8 bit as a data  
direction bit (bit R/W). A zero indicates a transmission (WRITE) and a one indicates a request for data (READ).  
The device 7-bit address is defined as 1101 011' (0x6B) by default. The address bit arrangement is shown  
below.  
Slave Address  
1
1
0
1
0
1
1
R/W  
Figure 27. 7-Bit Addressing (0x6B)  
SDA  
SCL  
S
8
9
8
9
8
9
P
1-7  
1-7  
1-7  
DATA  
START  
ADDRESS  
R/W ACK  
DATA  
ACK  
ACK  
STOP  
Figure 28. Complete Data Transfer on the I2C Bus  
8.3.14.6 Single Write and Read  
Figure 29. Single Write  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: BQ25883  
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
Figure 30. Single Read  
If the register address is not defined, the charger IC sends back NACK and returns to the idle state.  
8.3.14.7 Multi-Write and Multi-Read  
The charger device supports multi-read and multi-write of all registers.  
Figure 31. Multi-Write  
Figure 32. Multi-Read  
8.4 Device Functional Modes  
8.4.1 Host Mode and Default Mode  
The BQ2588x is a host controlled charger, but it can operate in default mode without host management. In  
default mode, the device can be used as an autonomous charger with no host or while host is in sleep mode.  
When the charger is in default mode, WD_STAT bit is HIGH. When the charger is in host mode, WD_STAT bit is  
LOW.  
After power-on-reset, the device starts in default mode with watchdog timer expired, or default mode. All the  
registers are in the default settings.  
In default mode, the device keeps charging the battery with default 12-hour fast charging safety timer. At the end  
of the 12-hour, the charging is stopped and the boost converter continues to operate to supply system load.  
A I2C write to the registers transitions the charger from default mode to host mode and watchdog timer is reset.  
All the device parameters can be programmed by the host. To keep the device in host mode, the host has to  
reset the watchdog timer by writing 1 to WD_RST bit before the watchdog timer expires (WD_STAT bit is set), or  
disable watchdog timer by setting WATCHDOG bits=00.  
34  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
Device Functional Modes (continued)  
When the watchdog timer (WD_STAT bit = 1) is expired, the device returns to default mode and all registers are  
reset to default values except as detailed in the Register Maps section. The Watchdog timer will be reset on any  
write if the watchdog timer has expired.  
POR  
watchdog timer expired  
Reset registers  
I2C interface enabled  
Host Mode  
Y
I2C Write?  
N
Start watchdog timer  
Host programs registers  
Default Mode  
Reset watchdog timer  
Reset selective registers  
Y
N
WD_RST bit = 1?  
N
N
Y
Y
I2C Write?  
Watchdog Timer  
Expired?  
Figure 33. Watchdog Timer Flow Chart  
8.5 Register Maps  
Default I2C Slave Address: 0x6B (1101 011B + R/W)  
Table 8. I2C Registers  
Address  
00h  
Access Type  
Acronym  
REG00  
REG01  
REG02  
REG03  
REG04  
REG05  
REG06  
REG07  
REG08  
REG09  
REG0A  
REG0B  
REG0C  
REG0D  
REG0E  
Register Name  
Section  
Go  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Battery Voltage Limit  
Charge Current Limit  
Input Voltage Limit  
Input Current Limit  
Precharge and Termination Control  
Charger Control 1  
Charger Control 2  
Charger Control 3  
Charger Control 4  
OTG Control  
01h  
Go  
02h  
Go  
03h  
Go  
04h  
Go  
05h  
Go  
06h  
Go  
07h  
Go  
08h  
Go  
09h  
Go  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
ICO Current Limit  
Charger Status 1  
Charger Status 2  
NTC Status  
Go  
R
Go  
R
Go  
R
Go  
R
FAULT Status  
Go  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: BQ25883  
 
 
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
Table 8. I2C Registers (continued)  
Address  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
Access Type  
Acronym  
REG0F  
REG10  
REG11  
REG12  
REG13  
REG14  
REG15  
REG16  
REG17  
REG18  
REG19  
REG1A  
REG1B  
REG1C  
REG1D  
REG1E  
REG1F  
REG20  
REG21  
REG22  
REG23  
REG24  
REG25  
Register Name  
Charger Flag 1  
Charger Flag 2  
Fault Flag  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
R
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R
Charger Mask 1  
Charger Mask 2  
Fault Mask  
ADC Control  
ADC Function Disable  
IBUS ADC1  
R
IBUS ADC0  
R
ICHG ADC1  
ICHG ADC0  
VBUS ADC1  
VBUS ADC0  
VBAT ADC1  
VBAT ADC0  
VSYS ADC1  
VSYS ADC0  
TS ADC1  
R
R
R
R
R
R
R
R
R
TS ADC0  
R
TDIE ADC1  
R
TDIE ADC0  
R/W  
Part Information  
Complex bit access types are encoded to fit into small table cells. Table 9 shows the codes that are used for  
access types in this section.  
Table 9. I2C Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
Write Type  
W
W
Write  
Reset Value  
-n  
Value after reset  
Undefined value  
-X  
36  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
 
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
8.5.1 Battery Voltage Regulation Limit Register (Address = 00h) [reset = A0h]  
REG00 is shown in Figure 34 and described in Table 10.  
Return to Summary Table.  
Figure 34. REG00 Register  
Bit  
7
6
5
4
3
2
1
0
Reset  
Field  
A0h  
VREG[7:0]  
Table 10. REG00 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
VREG[7]  
VREG[6]  
VREG[5]  
VREG[4]  
VREG[3]  
VREG[2]  
VREG[1]  
VREG[0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
1280 mV  
640 mV  
320 mV  
160 mV  
80 mV  
Battery Charge voltage limit  
Offset: 6.80 V  
Range: 6.80 V to 9.20 V  
Default 8.40 V  
Yes  
Yes  
Yes  
Yes  
Yes  
40 mV  
Yes  
20 mV  
Yes  
10 mV  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: BQ25883  
 
 
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
8.5.2 Charger Current Limit Register (Address = 01h) [reset = 5Eh]  
REG01 is shown in Figure 35 and described in Table 11.  
Return to Summary Table.  
Figure 35. REG01 Register  
Bit  
7
0h  
6
1h  
5
4
3
2
1
0
Reset  
Field  
1Eh  
EN_HIZ  
EN_ILIM  
ICHG[5:0]  
Table 11. REG01 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
EN_HIZ  
R/W  
Yes  
Yes  
Enable HIZ Mode:  
0 – Disable (default)  
1 – Enable  
6
EN_ILIM  
R/W  
Yes  
Yes  
Enable ILIM Pin Function:  
0 – Disable  
1 – Enable (default)  
5
4
3
2
1
0
ICHG[5]  
ICHG[4]  
ICHG[3]  
ICHG[2]  
ICHG[1]  
ICHG[0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
1600 mA  
800 mA  
400 mA  
200 mA  
100 mA  
50 mA  
Fast Charge Current Limit  
Offset: 100 mA  
Range: 100mA – 2200mA  
Default 1500 mA  
Note: ICHG > 2.2A (2Ch) clamped to 2.2A. ICHG < 100mA (01h)  
clamped at 100mA  
38  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
 
 
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
8.5.3 Input Voltage Limit Register (Address = 02h) [reset = 84h]  
REG02 is shown in Figure 36 and described in Table 12.  
Return to Summary Table.  
Figure 36. REG02 Register  
Bit  
7
6
5
4
3
2
1
0
Reset  
Field  
1h  
0h  
0h  
04h  
EN_VINDPM_R EN_BAT_DISC PFM_OOA_DIS  
ST HG  
VINDPM[4:0]  
Table 12. REG02 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
EN_VINDPM_RST  
R/W  
Yes  
Yes  
Enable VINDPM automatic reset upon adapter plugin:  
0 – Disable VINDPM reset when adapter is plugged in  
1 – Enable VINDPM reset when adapter is plugged in (VINDPM resets to default  
value after Input Source Type Detection) (Default)  
6
5
EN_BAT_DISCHG  
PFM_OOA_DIS  
R/W  
R/W  
Yes  
Yes  
Yes  
No  
Enable BAT pin discharge load (IBAT_DISCHG):  
0 – Disable load (Default)  
1 – Enable BAT discharge load  
PFM Out-of-Audio (OOA) Mode Disable:  
0 – Out-of-audio mode enabled while converter is in PFM (Default)  
1 – Out-of-audio mode disabled while converter is in PFM  
4
3
2
1
0
VINDPM[4]  
VINDPM[3]  
VINDPM[2]  
VINDPM[1]  
VINDPM[0]  
R/W  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
1600 mV  
800 mV  
400 mV  
200 mV  
100 mV  
Absolute Input Voltage Limit:  
Offset: 3.9 V  
Range: 3.9V – 5.5V  
Default: 4.3 V  
Note: VINDPM > 5.5V (10h) clamped to 5.5V. VINDPM register is  
reset upon adapter plug-in if EN_VINDPM_RST = 1.  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: BQ25883  
 
 
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
8.5.4 Input Current Limit Register (Address = 03h) [reset = 39h ]  
REG03 is shown in Figure 37 and described in Table 13.  
Return to Summary Table.  
Figure 37. REG03 Register  
Bit  
7
0h  
6
0h  
5
1h  
4
3
2
1
0
Reset  
Field  
19h  
FORCE_ICO  
FORCE_INDET  
EN_ICO  
IINDPM[4:0]  
Table 13. REG03 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
FORCE_ICO  
R/W  
Yes  
Yes  
Force Start Input Current Optimizer (ICO):  
0 – Do not force ICO (default)  
1 – Force ICO start  
Note: This bit can only be set and always returns 0 after ICO starts. This bit only  
valid when EN_ICO = 1.  
6
5
FORCE_INDET  
EN_ICO  
R/W  
R/W  
Yes  
Yes  
Yes  
No  
Force D+/D– Detection:  
0 – Not in D+/D– detection (default)  
1 – Force D+/D– detection  
Input Current Optimization (ICO) Algorithm Control:  
0 – Disable ICO  
1 – Enable ICO (default)  
4
3
2
1
0
IINDPM[4]  
IINDPM[3]  
IINDPM[2]  
IINDPM[1]  
IINDPM[0]  
R/W  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
1600 mA  
800 mA  
400 mA  
200 mA  
100 mA  
Input Current Limit:  
Offset: 500 mA  
Range: 500mA – 3300mA  
Default: 3000mA  
Note: IINDPM > 3300 mA (1Ch) clamped to 3300mA. Actual input  
current limit is lower of I2C, ICO_ILIM,ILIM pin or D+/D-.  
40  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
 
 
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
8.5.5 Precharge and Termination Current Limit Register (Address = 04h) [reset = 22h]  
REG04 is shown in Figure 38 and described in Table 14.  
Return to Summary Table.  
Figure 38. REG04 Register  
Bit  
7
6
5
4
3
2
1
0
Reset  
Field  
2h  
2h  
IPRECHG[3:0]  
ITERM[3:0]  
Table 14. REG04 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
IPRECHG[3]  
IPRECHG[2]  
IPRECHG[1]  
IPRECHG[0]  
ITERM[3]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
400 mA  
200 mA  
100 mA  
50 mA  
Precharge Current Limit:  
Offset: 50 mA  
Range: 50mA – 800mA  
Default: 150mA  
Yes  
Yes  
Yes  
Yes  
400 mA  
200 mA  
100 mA  
50 mA  
Termination Current Limit:  
Offset: 50 mA  
Range: 50mA – 800mA  
Default: 150mA  
ITERM[2]  
Yes  
ITERM[1]  
Yes  
ITERM[0]  
Yes  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: BQ25883  
 
 
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
8.5.6 Charger Control 1 Register (Address = 05h) [reset = 9Dh]  
REG05 is shown in Figure 39 and described in Table 15.  
Return to Summary Table.  
Figure 39. REG05 Register  
Bit  
7
1h  
6
0h  
5
4
3
1h  
2
1
0
1h  
Reset  
Field  
1h  
WATCHDOG[1:0]  
2h  
CHG_TIMER[1:0]  
EN_TERM  
STAT_DIS  
EN_TIMER  
TMR2X_EN  
Table 15. REG05 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
EN_TERM  
R/W  
Yes  
Yes  
Termination Control:  
0 – Disable termination  
1 – Enable termination (default)  
6
STAT_DIS  
R/W  
Yes  
Yes  
STAT Pin Disable:  
0 – Enable STAT pin function (default)  
1 – Disable STAT pin function  
5
4
WATCHDOG[1]  
WATCHDOG[0]  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
I2C Watchdog Timer Settings:  
00 – Disable WD Timer  
01 – 40s (default)  
10 – 80s  
11 – 160s  
3
EN_TIMER  
R/W  
Yes  
Yes  
Charging Safety Timer Enable  
0 – Disable  
1 – Enable (Default)  
2
1
CHG_TIMER[1]  
CHG_TIMER[0]  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Fast Charge Timer Setting  
00 – 5 hrs  
01 – 8 hrs  
10 – 12 hrs (Default)  
11 – 20 hrs  
0
TMR2X_EN  
R/W  
Yes  
Yes  
Safety Timer during DPM or TREG  
0 – Safety timer always count normally  
1 – Safety timer slowed by 2X during input DPM or TREG (Default)  
42  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
 
 
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
8.5.7 Charger Control 2 Register (Address = 06h) [reset = 7Dh]  
REG06 is shown in Figure 40 and described in Table 16.  
Return to Summary Table.  
Figure 40. REG06 Register  
Bit  
7
0h  
6
5
4
3
1h  
2
1h  
1
0
Reset  
Field  
1h  
3h  
0h  
EN_OTG  
AUTO_INDET_  
EN  
TREG[1:0]  
EN_CHG  
BATLOWV  
VRECHG[1:0]  
Table 16. REG06 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
EN_OTG  
R/W  
Yes  
Yes  
Buck (OTG) Mode control:  
0 – Disable OTG (default)  
1 – Enable OTG  
Note: If EN_OTG and EN_CHG are set simultaneously, EN_CHG takes priority  
6
AUTO_INDET_EN  
R/W  
Yes  
Yes  
Automatic D+/D– Detection Enable:  
0 – Disable D+/D–L detection when VBUS plugs in  
1 – Enable D+/D– detection when VBUS plugs in (default)  
5
4
TREG[1]  
TREG[0]  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Thermal Regulation Threshold  
00 – 60°C  
01 – 80°C  
10 – 100°C  
11 – 120°C (Default)  
3
2
EN_CHG  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Charger Enable Configuration  
0 – Charge Disable  
1 – Charge Enable (default)  
Note: If EN_OTG and EN_CHG are set simultaneously, EN_CHG takes priority  
BATLOWV  
Battery precharge to fast-charge threshold:  
0 – 5.6V  
1 – 6.0V (default)  
1
0
VRECHG[1]  
VRECHG[0]  
R/W  
R/W  
Yes  
Yes  
No  
No  
200 mV  
100 mV  
Battery Recharge Threshold Offset (below VREG):  
Offset: 100mV  
Range: 100mV – 400mV  
Default: 200mV  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: BQ25883  
 
 
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
8.5.8 Charger Control 3 Register (Address = 07h) [reset = 02h]  
REG07 is shown in Figure 41 and described in Table 17.  
Return to Summary Table.  
Figure 41. REG07 Register  
Bit  
Reset  
Field  
7
0h  
6
0h  
5
4
3
2
1
0
0h  
TOPOFF_TIMER[1:0]  
2h  
PFM_DIS  
WD_RST  
SYS_MIN[3:0]  
Table 17. REG07 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
PFM_DIS  
R/W  
Yes  
No  
PFM Mode Disable control:  
0 – Enable PFM operation (default)  
1 – Disable PFM operation  
6
WD_RST  
R/W  
Yes  
Yes  
I2C Watchdog Timer Reset:  
0 – Normal  
1 – Reset (Bit goes back to 0 after timer reset)  
5
4
TOPOFF_TIMER[1]  
TOPOFF_TIMER[0]  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Top-off Timer Control :  
00 – Disabled (default)  
01 – 15 mins  
10 – 30 mins  
11 – 45 mins  
3
2
1
0
SYS_MIN[3]  
SYS_MIN[2]  
SYS_MIN[2]  
SYS_MIN[0]  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
800 mV  
400 mV  
200 mV  
100 mV  
Minimum System Voltage Limit  
Offset: 6.0 V  
Range: 6.0 V – 7.5V  
Default: 6.2 V  
44  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
 
 
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
8.5.9 Charger Control 4 Register (Address = 08h) [reset = 0Dh]  
REG08 is shown in Figure 42 and described in Table 18.  
Return to Summary Table.  
Figure 42. REG08 Register  
Bit  
7
6
5
0h  
4
3
2
1h  
1
0
Reset  
Field  
0h  
1h  
JEITA_VSET[1:0]  
1h  
JEITA_ISETC[1:0]  
BHOT[1:0]  
BCOLD  
JEITA_ISETH  
Table 18. REG08 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
BHOT[1]  
BHOT[0]  
R/W  
R/W  
Yes  
Yes  
Yes  
OTG Mode TS HOT Temperature Threshold:  
00 – VBHOT1 threshold (34.75%) (default)  
01 – VBHOT0 threshold (37.75%)  
Yes  
10 – VBHOT2 threshold (31.25%)  
11 – Disable OTG mode thermal protection  
5
BCOLD  
R/W  
Yes  
Yes  
OTG Mode TS COLD Temperature Threshold:  
0 – VBCOLD0 threshold (77%) (default)  
1 – VBCOLD1 threshold (80%)  
4
3
JEITA_VSET[1]  
JEITA_VSET[0]  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
JEITA High Temp. (45C – 60C) Voltage Setting:  
00 – Charge Suspend  
01 – Set VREG to 8.0V (default)  
10 – Set VREG to 8.3V  
11 – VREG unchanged  
2
JEITA_ISETH  
R/W  
Yes  
Yes  
JEITA High Temp. (45C – 60C) Current Setting (percentage with respect to  
ICHG REG01[5:0]):  
0 – 40% of ICHG  
1 – 100% of ICHG (default)  
1
0
JEITA_ISETC[1]  
JEITA_ISETC[0]  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
JEITA Low Temp. (0C – 10C) Current Setting (percentage with respect to ICHG  
REG01[5:0]):  
00 – Charge Suspend  
01 – 20% of ICHG (default)  
10 – 40% of ICHG  
11 – 100% of ICHG  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: BQ25883  
 
 
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
8.5.10 OTG Control Register (Address = 09h) [reset = F6h]  
REG09 is shown in Figure 43 and described in Table 19.  
Return to Summary Table.  
Figure 43. REG09 Register  
Bit  
7
6
5
4
3
2
1
0
Reset  
Field  
Fh  
6h  
OTG_ILIM[3:0]  
OTG_VLIM[3:0]  
Table 19. REG09 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
OTG_ILIM[3]  
OTG_ILIM[2]  
OTG_ILIM[1]  
OTG_ILIM[0]  
OTG_VLIM[3]  
OTG_VLIM[2]  
OTG_VLIM[1]  
OTG_VLIM[0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
800 mA  
400 mA  
200 mA  
100 mA  
800 mV  
400 mV  
200 mV  
100 mV  
Buck (OTG) Mode Current Limit:  
Offset: 0.5A  
Range: 0.5A – 2.0A  
Default: 2.0A  
Yes  
Yes  
Yes  
Yes  
Buck (OTG) Mode Regulation Voltage:  
Offset: 4.5V  
Range: 4.5V – 5.5V  
Default: 5.1V  
Yes  
Yes  
Note: Values above 5.5V (Ah) will be clamped to 5.5V  
Yes  
46  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
 
 
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
8.5.11 ICO Current Limit in Use Register (Address = 0Ah) [reset = XXh]  
REG0A is shown in Figure 44 and described in Table 20.  
Return to Summary Table.  
Figure 44. REG0A Register  
Bit  
7
6
5
4
3
2
1
0
Reset  
Field  
0
0
0
X
X
X
X
X
RESERVED  
RESERVED  
RESERVED  
ICO_ILIM[4:0]  
Table 20. REG0A Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
RESERVED  
RESERVED  
RESERVED  
ICO_ILIM[4]  
ICO_ILIM[3]  
ICO_ILIM[2]  
ICO_ILIM[1]  
ICO_ILIM[0]  
R
R
R
R
R
R
R
R
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
Reserved bit always reads 0  
Reserved bit always reads 0  
Reserved bit always reads 0  
1600 mA  
800 mA  
400 mA  
200 mA  
100 mA  
Input Current Limit in use when ICO is enabled:  
Offset: 500 mA  
Range: 500mA – 3300mA  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Links: BQ25883  
 
 
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
8.5.12 Charger Status 1 Register (Address = 0Bh) [reset = XXh]  
REG0B is shown in Figure 45 and described in Table 21.  
Return to Summary Table.  
Figure 45. REG0B Register  
Bit  
7
X
6
5
4
3
X
2
1
0
Reset  
Field  
X
X
X
X
X
X
Reserved  
IINDPM_STAT VINDPM_STAT  
TREG_STAT  
WD_STAT  
CHRG_STAT[2:0]  
Table 21. REG0B Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
Reserved  
R
R
No  
No  
No  
No  
Reserved bit always reads 0  
IINDPM_STAT  
VINDPM_STAT  
TREG_STAT  
WD_STAT  
IINDPM Status:  
0 – Normal  
1 – In IINDPM Regulation (ILIM pin or IINDPM register)  
5
4
3
R
R
R
No  
No  
No  
No  
No  
No  
VINDPM Status:  
0 – Normal  
1 – In VINDPM Regulation  
IC Thermal regulation Status:  
0 – Normal  
1 – In Thermal Regulation  
I2C Watchdog Timer Status bit:  
0 – Normal  
1 – WD Timer expired  
2
1
0
CHRG_STAT[2]  
CHRG_STAT[1]  
CHRG_STAT[0]  
R
R
R
No  
No  
No  
No  
No  
No  
Charge Status bits:  
000 – Not Charging  
001 – Trickle Charge (VBAT < VBAT_SHORT)  
010 – Pre-charge (VBAT_UVLO_RISING < VBAT < VBAT_LOWV)  
011 – Fast-charge (CC mode)  
100 – Taper Charge (CV mode)  
101 – Top-off Timer Charging  
110 – Charge Termination Done  
111 – Reserved  
48  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
 
 
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
8.5.13 Charger Status 2 Register (Address = 0Ch) [reset = XXh]  
REG0C is shown in Figure 46 and described in Table 22.  
Return to Summary Table.  
Figure 46. REG0C Register  
Bit  
7
X
6
5
4
3
2
1
0
Reset  
Field  
X
X
X
0
X
X
X
PG_STAT  
VBUS_STAT[2:0]  
RESERVED  
ICO_STAT[1]  
ICO_STAT[0]  
VSYS_STAT  
Table 22. REG0C Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
PG_STAT  
R
No  
No  
Power Good Status:  
0 – Not Power Good  
1 – Power Good  
6
5
4
VBUS_STAT[2]  
VBUS_STAT[1]  
VBUS_STAT[0]  
R
R
R
No  
No  
No  
No  
No  
No  
VBUS Detection Status  
000 – No Input  
001 – USB Host SDP  
010 - USB CDP (1.5 A)  
011 – Adapter (3.0A)  
100 – POORSRC detected 7 consecutive times  
101 - Unknown Adapter (500 mA)  
110 - Non-standard Adapter (1 A/2 A/2.1 A/2.4 A)  
111 – OTG  
3
2
1
RESERVED  
ICO_STAT[1]  
ICO_STAT[0]  
R
R
R
No  
No  
No  
No  
No  
No  
Reserved bit always reads 0h  
Input Current Optimizer (ICO) Status:  
00 – ICO Disabled  
01 – ICO Optimization is in progress  
10 – Maximum input current detected  
11 – Reserved  
0
VSYS_STAT  
R
No  
No  
VSYS Regulation Status:  
0 – Not in SYS_MIN regulation (BAT > VSYS_MIN)  
1 – In SYS_MIN regulation (BAT < VSYS_MIN)  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Links: BQ25883  
 
 
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
8.5.14 NTC Status Register (Address = 0Dh) [reset = 0Xh]  
REG0D is shown in Figure 47 and described in Table 23.  
Return to Summary Table.  
Figure 47. REG0D Register  
Bit  
7
0
6
0
5
4
3
2
1
0
Reset  
Field  
0
0
0
X
X
X
RESERVED  
RESERVED  
RESERVED  
RESERVED  
TS_STAT[2:0]  
Table 23. REG0D Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
TS_STAT[2]  
TS_STAT[1]  
TS_STAT[0]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
Yes  
Yes  
Yes  
Yes  
No  
NTC (TS) Status:  
000 – Normal  
010 – TS Warm  
011 – TS Cool  
101 – TS Cold  
110 – TS Hot  
No  
No  
50  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
 
 
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
8.5.15 FAULT Status Register (Address = 0Eh) [reset = XXh]  
REG0E is shown in Figure 48 and described in Table 24.  
Return to Summary Table.  
Figure 48. REG0E Register  
Bit  
7
6
5
4
X
3
2
1
0
X
Reset  
Field  
X
X
X
0
0
0
VBUS_OVP_ST TSHUT_STAT BATOVP_STAT  
AT  
TMR_STAT  
RESERVED  
RESERVED  
RESERVED  
Reserved  
Table 24. REG0E Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
VBUS_OVP_STAT  
R
No  
No  
No  
No  
No  
Input over-voltage Status:  
0 – Normal  
1 – Device in over-voltage protection  
TSHUT_STAT  
BATOVP_STAT  
TMR_STAT  
R
R
R
No  
No  
No  
IC Temperature shutdown Status:  
0 – Normal  
1 – Device in thermal shutdown protection  
Battery over-voltage Status:  
0 – Normal  
1 – BATOVP (VBAT > VBATOVP)  
Charge Safety timer Status:  
0 – Normal  
1 – Charge Safety timer expired  
3
2
1
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R
R
R
R
No  
No  
No  
No  
No  
No  
No  
No  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Links: BQ25883  
 
 
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
8.5.16 Charger Flag 1 Register (Address = 0Fh) [reset = 00h]  
REG0F is shown in Figure 49 and described in Table 25.  
Return to Summary Table.  
Figure 49. REG0F Register  
Bit  
7
0
6
0
5
0
4
3
0
2
1
0
Reset  
Field  
0
0
0
0
Reserved  
IINDPM_FLAG VINDPM_FLAG  
TREG_FLAG  
WD_FLAG  
RESERVED  
RESERVED  
CHRG_FLAG  
Table 25. REG0F Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
Reserved  
R
R
Yes  
No  
No  
Reserved bit always reads 0  
IINDPM_FLAG  
VINDPM_FLAG  
TREG_FLAG  
WD_FLAG  
Yes  
IINDPM Regulation INT Flag:  
0 – Normal  
1 – IINDPM signal rising edge detected  
5
4
3
R
R
R
Yes  
Yes  
Yes  
No  
No  
No  
VINDPM regulation INT Flag:  
0 – Normal  
1 – VINDPM signal rising edge detected  
IC Temperature Regulation INT Flag:  
0 – Normal  
1 – TREG signal rising edge detected  
I2C Watchdog INT Flag:  
0 – Normal  
1 – WD_STAT signal rising edge detected  
2
1
0
RESERVED  
RESERVED  
CHRG_FLAG  
R
R
R
Yes  
Yes  
Yes  
No  
No  
No  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
Charge Status INT Flag:  
0 – Normal  
1 – CHRG_STAT[2:0] bits changed (transition to any state)  
52  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
 
 
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
8.5.17 Charger Flag 2 Register (Address = 10h) [reset = 00h]  
REG10 is shown in Figure 50 and described in Table 26.  
Return to Summary Table.  
Figure 50. REG10 Register  
Bit  
7
0
6
5
4
3
2
0
1
0
Reset  
Field  
0
0
0
0
0
0
PG_FLAG  
RESERVED  
RESERVED  
VBUS_FLAG  
RESERVED  
TS_FLAG  
ICO_FLAG  
VSYS_FLAG  
Table 26. REG10 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
PG_FLAG  
R
Yes  
No  
Power Good INT Flag:  
0 – Normal  
1 – PG signal toggle detected  
6
5
4
RESERVED  
RESERVED  
VBUS_FLAG  
R
R
R
Yes  
Yes  
Yes  
No  
No  
No  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
VBUS Status INT Flag:  
0 – Normal  
1 – VBUS_STAT[2:0] bits changed (transition to any state)  
3
2
RESERVED  
TS_FLAG  
R
R
Yes  
Yes  
No  
No  
Reserved bit always reads 0h  
TS Status INT Flag:  
0 – Normal  
1 – TS_STAT[2:0] bits changed (transition to any state)  
1
0
ICO_FLAG  
R
R
Yes  
Yes  
No  
No  
Input Current Optimizer (ICO) INT Flag:  
0 – Normal  
1 – ICO_STAT[1:0] changed (transition to any state)  
VSYS_FLAG  
VSYS Regulation INT Flag:  
0 – Normal  
1 – Entered or exited SYS_MIN regulation  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Links: BQ25883  
 
 
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
8.5.18 FAULT Flag Register (Address = 11h) [reset = 00h]  
REG11 is shown in Figure 51 and described in Table 27.  
Return to Summary Table.  
Figure 51. REG11 Register  
Bit  
7
0
6
0
5
0
4
3
2
1
0
Reset  
Field  
0
0
0
0
0
VBUS_OVP_FL TSHUT_FLAG BATOVP_FLAG  
AG  
TMR_FLAG  
RESERVED  
RESERVED  
RESERVED  
OTG_FLAG  
Table 27. REG11 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
VBUS_OVP_FLAG  
R
Yes  
No  
No  
No  
No  
Input over-voltage INT Flag:  
0 – Normal  
1 – Entered VBUS_OVP Fault  
TSHUT_FLAG  
BATOVP_FLAG  
TMR_FLAG  
R
R
R
Yes  
Yes  
Yes  
IC Temperature shutdown INT Flag:  
0 – Normal  
1 – Entered TSHUT Fault  
Battery over-voltage INT Flag:  
0 – Normal  
1 – Entered BATOVP Fault  
Charge Safety timer Fault INT Flag:  
0 – Normal  
1 – Charge Safety timer expired rising edge detected  
3
2
1
0
RESERVED  
RESERVED  
RESERVED  
OTG_FLAG  
R
R
R
R
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
Reserved bit always reads 0  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
OTG Buck Mode Fault INT Flag:  
0 – Normal  
1 – Entered OTG_STAT (OTG Fault)  
54  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
 
 
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
8.5.19 Charger Mask 1 Register (Address = 12h) [reset = 00h]  
REG12 is shown in Figure 52 and described in Table 28.  
Return to Summary Table.  
Figure 52. REG12 Register  
Bit  
7
0
6
0
5
0
4
0
3
2
1
0
Reset  
Field  
0
0
0
0
ADC_DONE_M IINDPM_MASK VINDPM_MASK TREG_MASK  
ASK  
WD_MASK  
RESERVED  
RESERVED  
CHRG_MASK  
Table 28. REG12 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
ADC_DONE_MASK  
R/W  
Yes  
No  
No  
No  
No  
No  
ADC Conversion INT Mask Flag (only one-shot mode)  
0 – ADC_DONE does produce INT pulse  
1 – ADC_DONE does produce not INT pulseReserved bit always reads 0  
IINDPM_MASK  
VINDPM_MASK  
TREG_MASK  
WD_MASK  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
IINDPM Regulation INT Mask  
0 – IINDPM entry produces INT pulse  
1 – IINDPM entry does not produce INT pulse  
VINDPM Regulation INT Mask  
0 – VINDPM entry produces INT pulse  
1 – VINDPM entry not produce INT pulse  
IC Temperature Regulation INT Mask  
0 – TREG entry produces INT pulse  
1 – TREG entry produce INT pulse  
I2C Watchdog Timer INT Mask  
0 – WD_STAT rising edge produces INT pulse  
1 – WD_STAT rising edge does not produce INT  
2
1
0
RESERVED  
RESERVED  
CHRG_MASK  
R
Yes  
Yes  
Yes  
No  
No  
No  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
R
R/W  
Charge Status INT Mask  
0 – CHRG_STAT[2:0] bit change produces INT  
1 – CHRG_STAT[2:0] bit change does not produce INT pulse  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Links: BQ25883  
 
 
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
8.5.20 Charger Mask 2 Register (Address = 13h) [reset = 00h]  
REG13 is shown in Figure 53 and described in Table 29.  
Return to Summary Table.  
Figure 53. REG13 Register  
Bit  
7
0
6
5
4
3
2
0
1
0
Reset  
Field  
0
0
0
0
0
0
PG_MASK  
RESERVED  
RESERVED  
VBUS_MASK  
RESERVED  
TS_MASK  
ICO_MASK  
VSYS_MASK  
Table 29. REG13 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
PG_MASK  
R/W  
Yes  
No  
Power Good INT Mask:  
0 – PG toggle produces INT pulse  
1 – PG toggle does not produce INT pulse  
6
5
4
RESERVED  
RESERVED  
VBUS_MASK  
R
Yes  
Yes  
Yes  
No  
No  
No  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
R
R/W  
VBUS Status INT Mask:  
0 – VBUS_STAT[2:0] bit change produces INT  
1 – VBUS_STAT[2:0] bit change does not produces INT  
3
2
RESERVED  
TS_MASK  
R
Yes  
Yes  
No  
No  
Reserved bit always reads 0h  
R/W  
TS Status INT Mask:  
0 – TS_STAT[2:0] bit change produces INT  
1 – TS_STAT[2:0] bit change does not produces INT pulse  
1
0
ICO_MASK  
R/W  
R/W  
Yes  
Yes  
No  
No  
Input Current Optimizer (ICO) INT Mask:  
0 – ICO_STAT rising edge produces INT  
1 – ICO_STAT rising edge does not produce INT  
VSYS_MASK  
VSYS Regulation INT Mask:  
0 – Entering or exiting SYS_MIN produces INT  
1 – Entering or exiting SYS_MIN does not produce INT  
56  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
 
 
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
8.5.21 FAULT Mask Register (Address = 14h) [reset = 00h]  
REG14 is shown in Figure 54 and described in Table 30.  
Return to Summary Table.  
Figure 54. REG14 Register  
Bit  
7
0
6
0
5
0
4
3
0
2
1
0
Reset  
Field  
0
0
0
0
VBUS_OVP_M TSHUT_MASK BATOVP_MAS  
ASK  
TMR_MASK  
SYS_SHORT_  
MASK  
RESERVED  
RESERVED  
OTG_MASK  
K
Table 30. REG14 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
VBUS_OVP_MASK  
R/W  
Yes  
No  
No  
No  
No  
No  
Input over-voltage INT Mask:  
0 – VBUS_OVP rising edge produces INT pulse  
1 – VBUS_OVP rising edge does not produce INT pulse  
6
5
4
3
TSHUT_MASK  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Thermal Shutdown INT Mask:  
0 – TSHUT rising edge produces INT pulse  
1 – TSHUT rising edge does not produce INT pulse  
BATOVP_MASK  
TMR_MASK  
Battery overvoltage INT Mask:  
0 – BATOVP rising edge produces INT pulse  
1 – BATOVP rising edge does not produce INT pulse  
Charge Safety Timer Fault INT Mask:  
0 – Timer expired rising edge produces INT pulse  
1 – Timer expired rising edge does not produce INT pulse  
SYS_SHORT_MASK  
System Short Fault INT Mask:  
0 – System short rising edge produces INT pulse  
1 – System short rising edge does not produce INT pulse  
2
1
0
RESERVED  
RESERVED  
OTG_MASK  
R
Yes  
Yes  
Yes  
No  
No  
No  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
R
R/W  
OTG Buck Mode Fault INT Mask:  
0 – OTG_STAT event produces INT  
1 – OTG_STAT event does not produce INT  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
Product Folder Links: BQ25883  
 
 
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
8.5.22 ADC Control Register (Address = 15h) [reset = 30h]  
REG15 is shown in Figure 55 and described in Table 31.  
Return to Summary Table.  
Figure 55. REG15 Register  
Bit  
7
0
6
5
1
4
1
3
2
1
0
Reset  
Field  
0
0
0
0
0
ADC_EN  
ADC_RATE  
ADC_SAMPLE[1:0]  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Table 31. REG15 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
ADC_EN  
R/W  
Yes  
Yes  
ADC Control:  
0 – Disable ADC  
1 – Enable ADC  
6
ADC_RATE  
R/W  
Yes  
No  
0 – Continuous conversion  
1 – One-shot conversion  
5
4
ADC_SAMPLE[1]  
ADC_SAMPLE[0]  
R/W  
R/W  
Yes  
Yes  
No  
No  
Sample Speed of ADC:  
00 – 15 bit effective resolution  
01 – 14 bit effective resolution  
10 – 13 bit effective resolution  
11 – 12 bit effective resolution  
3
2
1
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R
R
R
R
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
Reserved bit always reads 0h  
58  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
 
 
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
8.5.23 ADC Function Disable Register (Address = 16h) [reset = 00h]  
REG16 is shown in Figure 56 and described in Table 32.  
Return to Summary Table.  
Figure 56. REG16 Register  
Bit  
7
0
6
0
5
0
4
0
3
0
2
1
1
0
Reset  
Field  
0
0
IBUS_ADC_DIS ICHG_ADC_DI VBUS_ADC_DI VBAT_ADC_DI VSYS_ADC_DI  
TS_ADC_DIS  
Reserved  
TDIE_ADC_DIS  
S
S
S
S
Table 32. REG16 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
IBUS_ADC_DIS  
R/W  
Yes  
No  
No  
No  
No  
No  
No  
0 – Enable conversion  
1 – Disable conversion  
ICHG_ADC_DIS  
VBUS_ADC_DIS  
VBAT_ADC_DIS  
VSYS_ADC_DIS  
TS_ADC_DIS  
R/W  
R/W  
R/W  
R/W  
R/W  
Yes  
Yes  
Yes  
Yes  
Yes  
0 – Enable conversion  
1 – Disable conversion  
0 – Enable conversion  
1 – Disable conversion  
0 – Enable conversion  
1 – Disable conversion  
0 – Enable conversion  
1 – Disable conversion  
0 – Enable conversion  
1 – Disable conversion  
1
0
RESERVED  
R
Yes  
Yes  
No  
No  
Reserved bit always reads 1h  
TDIE_ADC_DIS  
R/W  
0 – Enable conversion  
1 – Disable conversion  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
Product Folder Links: BQ25883  
 
 
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
8.5.24 IBUS ADC 1 Register (Address = 17h) [reset = 00h]  
REG17 is shown in Figure 57 and described in Table 33.  
Return to Summary Table.  
Figure 57. REG17 Register  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset  
Field  
IBUS_ADC[15:8]  
Table 33. REG17 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
IBUS_ADC[15]  
IBUS_ADC[14]  
IBUS_ADC[13]  
IBUS_ADC[12]  
IBUS_ADC[11]  
IBUS_ADC[10]  
IBUS_ADC[9]  
IBUS_ADC[8]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
Sign bit: overall results reported in two's complement.  
Yes  
16384 mA  
8192 mA  
4096 mA  
Yes  
Yes  
Yes  
2048 mA  
1024 mA  
512 mA  
256 mA  
VBUS Current Reading (positive current flows into VBUS pin,  
negative current flows out ot VBUS pin):  
Range: 0A – 4A  
Yes  
Yes  
Yes  
8.5.25 IBUS ADC 0 Register (Address = 18h) [reset = 00h]  
REG18 is shown in Figure 58 and described in Table 34.  
Return to Summary Table.  
Figure 58. REG18 Register  
Bit  
7
0
6
0
5
4
3
2
0
1
0
0
0
Reset  
Field  
0
0
0
IBUS_ADC[7:0]  
Table 34. REG18 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
IBUS_ADC[7]  
IBUS_ADC[6]  
IBUS_ADC[5]  
IBUS_ADC[4]  
IBUS_ADC[3]  
IBUS_ADC[2]  
IBUS_ADC[1]  
IBUS_ADC[0]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
128 mA  
64 mA  
32 mA  
16 mA  
8 mA  
VBUS Current Reading (positive current flows into VBUS pin,  
negative current flows out ot VBUS pin):  
Range: 0A – 4A  
Yes  
Yes  
Yes  
Yes  
Yes  
4 mA  
Yes  
2 mA  
Yes  
1 mA  
60  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
 
 
 
 
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
8.5.26 ICHG ADC 1 Register (Address = 19h) [reset = 00h]  
REG19 is shown in Figure 59 and described in Table 35.  
Return to Summary Table.  
Figure 59. REG19 Register  
Bit  
7
6
0
5
0
4
0
3
2
0
1
0
0
0
Reset  
Field  
0
0
RESERVED  
ICHG_ADC[14:8]  
Table 35. REG19 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
Reserved  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
Reserved register always reads 0h.  
ICHG_ADC[14]  
ICHG_ADC[13]  
ICHG_ADC[12]  
ICHG_ADC[11]  
ICHG_ADC[10]  
ICHG_ADC[9]  
ICHG_ADC[8]  
Yes  
16384 mA  
8192 mA  
4096 mA  
Yes  
Yes  
Yes  
2048 mA  
1024 mA  
512 mA  
256 mA  
Charge Current Reading:  
Range: 0A – 4A  
Yes  
Yes  
Yes  
8.5.27 ICHG ADC 0 Register (Address = 1Ah) [reset = 00h]  
REG1A is shown in Figure 60 and described in Table 36.  
Return to Summary Table.  
Figure 60. REG1A Register  
Bit  
7
0
6
0
5
4
3
2
0
1
0
0
0
Reset  
Field  
0
0
0
ICHG_ADC[7:0]  
Table 36. REG1A Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
ICHG_ADC[7]  
ICHG_ADC[6]  
ICHG_ADC[5]  
ICHG_ADC[4]  
ICHG_ADC[3]  
ICHG_ADC[2]  
ICHG_ADC[1]  
ICHG_ADC[0]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
128 mA  
64 mA  
32 mA  
16 mA  
8 mA  
Charge Current Reading:  
Range: 0A – 4A  
Yes  
Yes  
Yes  
Yes  
Yes  
4 mA  
Yes  
2 mA  
Yes  
1 mA  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
61  
Product Folder Links: BQ25883  
 
 
 
 
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
8.5.28 VBUS ADC 1 Register (Address = 1Bh) [reset = 00h]  
REG1B is shown in Figure 61 and described in Table 37.  
Return to Summary Table.  
Figure 61. REG1B Register  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset  
Field  
VBUS_ADC[15:8]  
Table 37. REG1B Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
VBUS_ADC[15]  
VBUS_ADC[14]  
VBUS_ADC[13]  
VBUS_ADC[12]  
VBUS_ADC[11]  
VBUS_ADC[10]  
VBUS_ADC[9]  
VBUS_ADC[8]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
Sign bit: overall results reported in two's complement.  
16384 mV  
Yes  
Yes  
8192 mV  
4096 mV  
2048 mV  
1024 mV  
512 mV  
VBUS Voltage reading  
Range: 0V – 10V  
Yes  
Yes  
Yes  
Yes  
Yes  
256 mV  
8.5.29 VBUS ADC 0 Register (Address = 1Ch) [reset = 00h]  
REG1C is shown in Figure 62 and described in Table 38.  
Return to Summary Table.  
Figure 62. REG1C Register  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset  
Field  
VBUS_ADC[7:0]  
Table 38. REG1C Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
VBUS_ADC[7]  
VBUS_ADC[6]  
VBUS_ADC[5]  
VBUS_ADC[4]  
VBUS_ADC[3]  
VBUS_ADC[2]  
VBUS_ADC[1]  
VBUS_ADC[0]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
128 mV  
64 mV  
32 mV  
16 mV  
8 mV  
VBUS Voltage Reading:  
Range: 0V – 10V  
Yes  
Yes  
Yes  
Yes  
Yes  
4 mV  
Yes  
2 mV  
Yes  
1 mV  
62  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
 
 
 
 
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
8.5.30 VBAT ADC 1 Register (Address = 1Dh) [reset = 00h]  
REG1D is shown in Figure 63 and described in Table 39.  
Return to Summary Table.  
Figure 63. REG1D Register  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset  
Field  
VBAT_ADC[15:8]  
Table 39. REG1D Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
VBAT_ADC[15]  
VBAT_ADC[14]  
VBAT_ADC[13]  
VBAT_ADC[12]  
VBAT_ADC[11]  
VBAT_ADC[10]  
VBAT_ADC[9]  
VBAT_ADC[8]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
Sign bit: overall results reported in two's complement.  
16384 mV  
Yes  
Yes  
8192 mV  
4096 mV  
2048 mV  
1024 mV  
512 mV  
VBAT Voltage reading:  
Range: 0V – 10V  
Yes  
Yes  
Yes  
Yes  
Yes  
256 mV  
8.5.31 VBAT ADC 0 Register (Address = 1Eh) [reset = 00h]  
REG1E is shown in Figure 64 and described in Table 40.  
Return to Summary Table.  
Figure 64. REG1E Register  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset  
Field  
VBAT_ADC[7:0]  
Table 40. REG1E Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
VBAT_ADC[7]  
VBAT_ADC[6]  
VBAT_ADC[5]  
VBAT_ADC[4]  
VBAT_ADC[3]  
VBAT_ADC[2]  
VBAT_ADC[1]  
VBAT_ADC[0]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
128 mV  
64 mV  
32 mV  
16 mV  
8 mV  
VBAT Voltage reading:  
Range: 0V – 10V  
Yes  
Yes  
Yes  
Yes  
Yes  
4 mV  
Yes  
2 mV  
Yes  
1 mV  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
63  
Product Folder Links: BQ25883  
 
 
 
 
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
8.5.32 VSYS ADC 1 Register (Address = 1Fh) [reset = 00h]  
REG1F is shown in Figure 65 and described in Table 41.  
Return to Summary Table.  
Figure 65. REG1F Register  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset  
Field  
VSYS_ADC[15:8]  
Table 41. REG1F Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
VSYS_ADC[15]  
VSYS_ADC[14]  
VSYS_ADC[13]  
VSYS_ADC[12]  
VSYS_ADC[11]  
VSYS_ADC[10]  
VSYS_ADC[9]  
VSYS_ADC[8]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
Sign bit: overall results reported in two's complement.  
16384 mV VSYS Voltage reading:  
Yes  
Range: 0V – 10V  
Yes  
8192 mV  
Yes  
4096 mV  
2048 mV  
1024 mV  
512 mV  
256 mV  
Yes  
Yes  
Yes  
Yes  
8.5.33 VSYS ADC 0 Register (Address = 20h) [reset = 00h]  
REG20 is shown in Figure 66 and described in Table 42.  
Return to Summary Table.  
Figure 66. REG20 Register  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset  
Field  
VSYS_ADC[7:0]  
Table 42. REG20 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
VSYS_ADC[7]  
VSYS_ADC[6]  
VSYS_ADC[5]  
VSYS_ADC[4]  
VSYS_ADC[3]  
VSYS_ADC[2]  
VSYS_ADC[1]  
VSYS_ADC[0]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
128 mV  
64 mV  
32 mV  
16 mV  
8 mV  
VSYS Voltage reading:  
Range: 0V – 10V  
Yes  
Yes  
Yes  
Yes  
Yes  
4 mV  
Yes  
2 mV  
Yes  
1 mV  
64  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
 
 
 
 
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
8.5.34 TS ADC 1 Register (Address = 21h) [reset = 00h]  
REG21 is shown in Figure 67 and described in Table 43.  
Return to Summary Table.  
Figure 67. REG21 Register  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset  
Field  
TS_ADC[15:8]  
Table 43. REG21 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
Sign bit: overall results reported in two's complement.  
7
6
5
4
3
2
1
0
TS_ADC[15]  
TS_ADC[14]  
TS_ADC[13]  
TS_ADC[12]  
TS_ADC[11]  
TS_ADC[10]  
TS_ADC[9]  
TS_ADC[8]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
50.0 %  
25.0 %  
TS as percentage of REGN reading:  
Range: 0% – 94.9%  
Yes  
8.5.35 TS ADC 0 Register (Address = 22h) [reset = 00h]  
REG22 is shown in Figure 68 and described in Table 44.  
Return to Summary Table.  
Figure 68. REG22 Register  
Bit  
7
0
6
0
5
4
3
2
0
1
0
0
0
Reset  
Field  
0
0
0
TS_ADC[7:0]  
Table 44. REG22 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
TS_ADC[7]  
TS_ADC[6]  
TS_ADC[5]  
TS_ADC[4]  
TS_ADC[3]  
TS_ADC[2]  
TS_ADC[1]  
TS_ADC[0]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
12.50 %  
6.25 %  
TS as percentage of REGN reading:  
Range: 0% – 94.9%  
Yes  
Yes  
3.125 %  
1.563 %  
0.781 %  
0.391 %  
0.195 %  
0.098 %  
Yes  
Yes  
Yes  
Yes  
Yes  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
65  
Product Folder Links: BQ25883  
 
 
 
 
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
8.5.36 TDIE ADC 1 Register (Address = 23h) [reset = 00h]  
REG23 is shown in Figure 69 and described in Table 45.  
Return to Summary Table.  
Figure 69. REG23 Register  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reset  
Field  
TDIE_ADC[15:8]  
Table 45. REG23 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
Sign bit: overall results reported in two's complement.  
7
6
5
4
3
2
1
0
TDIE_ADC[15]  
TDIE_ADC[14]  
TDIE_ADC[13]  
TDIE_ADC[12]  
TDIE_ADC[11]  
TDIE_ADC[10]  
TDIE_ADC[9]  
TDIE_ADC[8]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
128 °C  
TDIE (IC Temperature) reading:  
Range: 0°C – 128°C  
8.5.37 TDIE ADC 0 Register (Address = 24h) [reset = 00h]  
REG24 is shown in Figure 70 and described in Table 46.  
Return to Summary Table.  
Figure 70. REG24 Register  
Bit  
7
0
6
0
5
4
3
2
0
1
0
0
0
Reset  
Field  
0
0
0
TDIE_ADC[7:0]  
Table 46. REG24 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
6
5
4
3
2
1
0
TDIE_ADC[7]  
TDIE_ADC[6]  
TDIE_ADC[5]  
TDIE_ADC[4]  
TDIE_ADC[3]  
TDIE_ADC[2]  
TDIE_ADC[1]  
TDIE_ADC[0]  
R
R
R
R
R
R
R
R
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
64 °C  
32 °C  
16 °C  
8 °C  
TDIE (IC Temperature) reading:  
Range: 0°C – 128°C  
Yes  
Yes  
Yes  
Yes  
4°C  
Yes  
2 °C  
Yes  
1 °C  
Yes  
0.5 °C  
66  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
 
 
 
 
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
8.5.38 Part Information Register (Address = 25h) [reset = 18h]  
REG25 is shown in Figure 71 and described in Table 47.  
Return to Summary Table.  
Figure 71. REG25 Register  
Bit  
7
0
6
0
5
0
4
1
3
1
2
0
1
0
0
Reset  
Field  
0
REG_RST  
PN[3:0]  
DEV_REV[2:0]  
Table 47. REG25 Register Field Descriptions  
Reset by  
REG_RST  
Reset by  
WATCHDOG  
Bit  
Field  
Type  
Description  
7
REG_RST  
R/W  
Yes  
No  
Register Reset:  
0 – Keep current register settings  
1 – Reset to default register value and reset safety timer (bit resets to 0 after  
register reset is complete)  
6
5
4
3
2
1
0
PN[3]  
R
R
R
R
R
R
R
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
No  
0011: BQ25883  
PN[2]  
PN[1]  
PN[0]  
DEV_REV[2]  
DEV_REV[1]  
DEV_REV[0]  
Device revision: 001  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
67  
Product Folder Links: BQ25883  
 
 
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
A typical application consists of the BQ25883 configured as an I2C controlled power path management device  
and a 2s battery charger for Li-Ion and Li-polymer batteries used in a wide range of portable devices. It  
integrates an input blocking FET (QBLK, Q1), high-side switching FET (QHS, Q2), low-side switching FET (QLS,  
Q3), and battery FET (QBAT, Q4) between system and battery. The device also integrates a bootstrap diode for  
the high-side gate drive.  
9.2 Typical Application  
5V @ 3A  
VBUS  
PMID  
10K VREF  
STAT  
ILIM  
1 F  
Q1  
383  
10 F  
Q2  
SYSTEM  
LOAD  
1H  
6.4V to 8.8V  
ICHG=2A  
10 F  
SYS  
SW  
47nF  
44F  
BTST  
Q4  
BAT  
4.7F  
REGN  
Q3  
VREGN  
D+  
USB  
Host  
Dœ  
VREF  
TS  
SDA  
`
SCL  
INT  
PG  
BQ25883  
CE  
GND  
Figure 72. BQ25883 (I2C, OTG, and Power Path) Typical Application Diagram  
68  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
Typical Application (continued)  
9.2.1 Design Requirements  
For this design example, use the parameters shown in the table below.  
Table 48. Design Parameters  
PARAMETER  
VALUE  
3.9 V to 6.2 V  
2.4 A  
VBUS voltage range  
Input current limit (IINDPM[4:0])  
Fast charge current limit (ICHG[5:0])  
Minimum System Voltage (SYS_MIN[3:0])  
Battery Regulation Voltage (VREG[7:0])  
1.5 A  
6.2 V  
8.4 V  
9.2.2 Detailed Design Procedure  
9.2.2.1 Inductor Selection  
The device has 1.5MHz switching frequency to allow the use of small inductor and capacitor values. The inductor  
saturation current should be higher than the input current (IIN) plus half the ripple current (IRIPPLE):  
I
RIPPLE  
ISAT í IIN +  
2
(5)  
The inductor ripple current (IRIPPLE) depends on input voltage (VVBUS), duty cycle (D = VBAT/VBUS), switching  
frequency (fSW) and inductance (L):  
V
BUS ì(VSYS-VBUS)  
IRIPPLE  
=
VSYS ì fSW ì L  
(6)  
The maximum inductor ripple current happens in the vicinity of D = 0.5. Usually inductor ripple is designed in the  
range of (20 – 40%) maximum charging current as a trade-off between inductor size and efficiency for a practical  
design.  
9.2.2.2 Input (VBUS / PMID) Capacitor  
Input capacitor should have enough ripple current rating to absorb input switching ripple current. The worst case  
RMS ripple current occurs when duty cycle is 0.5. If the converter does not operate at 50% duty cycle, then the  
worst case capacitor RMS current IPMID occurs where the duty cycle is closest to 50% and can be estimated by  
I
RIPPLE  
IPMID  
=
ö 0.29ì IRIPPLE  
2ì 3  
(7)  
Low ESR ceramic capacitor such as X7R or X5R is preferred for input decoupling capacitor and should be  
placed close to the PMID and GND pins of the IC. Voltage rating of the capacitor must be higher than normal  
input voltage level. 25-V rating or higher capacitor is preferred for up to 5-V input voltage. 10-μF capacitor is  
suggested for up to 3.3-A input current.  
9.2.2.3 Output (VSYS) Capacitor  
SYS capacitor is the boost converter output capacitor and should also have enough ripple current rating to  
absorb output switching ripple current. The output capacitor RMS current ICOUT is given:  
D
ICSYS, rms = IOUT ì  
1- D  
(8)  
The output capacitor voltage ripple is a function of the boost output current (IOUT), and can be calculated as  
follows:  
I
OUT ì D  
DVSYS  
=
f
SW ìCSYS  
(9)  
69  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: BQ25883  
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
Low ESR ceramic capacitor such as X7R or X5R is preferred for SYS decoupling capacitor and should be placed  
close to theSYS and GND pins of the IC. Voltage rating of the capacitor must be higher than normal output  
voltage level. 16-V rating or higher capacitor is preferred. 44-μF capacitor is suggested for up to 2.2-A boost  
converter output current.  
70  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
9.2.3 Application Curves  
CVBUS = 1µF, CPMID= 10µF, CBAT = 10µF, CSYS = 44µF, L = DFE252012F-1R0 (1µH) (unless otherwise specified)  
VBUS = 5V  
VBAT = 6.0V  
ICHG = 1A  
VBUS = 5V  
VBAT = 7.4V  
ICHG = 1A  
Figure 73. Adapter Power Up with Charge Enabled  
Figure 74. Charge Enable  
VBUS = 5V  
VBAT = Open  
Charge enabled  
VBUS = 5V  
VBAT = 7.4V  
ICHG = 1A  
Figure 76. Adapter Plug-in with No Battery  
Figure 75. Charge Disabled  
VBUS = 5V  
VBAT = Open  
Charge disabled  
VBAT = 7.6V  
VBUS = 5.1V  
No IBUS load  
Figure 77. Adapter Plug-in with No Battery Charge  
Disabled  
Figure 78. Buck Mode (OTG) Startup  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
71  
Product Folder Links: BQ25883  
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
CVBUS = 1µF, CPMID= 10µF, CBAT = 10µF, CSYS = 44µF, L = DFE252012F-1R0 (1µH) (unless otherwise specified)  
VBAT = 7.6V  
Adapter removed  
with EN_OTG = 1  
RBUS = 25Ω  
VBAT = 7.6V  
VBUS = 5.1V  
IBUS = 1A  
Figure 80. Buck Mode (OTG) PWM Switching  
Figure 79. Buck Mode Startup After Adapter Removal  
VBAT = 7.6V  
VBUS = 5.1V  
IBUS = 0mA  
VBUS = 5V  
VBAT = 7.6V  
ICHG = 1A  
Figure 81. Buck Mode (OTG) PFM Switching  
Figure 82. Boost Mode PWM Switching  
VBUS = 5V  
VBAT = 8.4V  
Charge disabled  
VBUS = 5V  
VBAT = 8.4V  
Charge disabled  
Figure 83. Boost Mode PFM Switching  
Figure 84. System Load Transient Response  
72  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
CVBUS = 1µF, CPMID= 10µF, CBAT = 10µF, CSYS = 44µF, L = DFE252012F-1R0 (1µH) (unless otherwise specified)  
DCP Adapter  
VBAT = 8.0V  
Charge enabled  
DCP Adapter  
VBAT = 8.0V  
Charge enabled  
Figure 85. VINDPM Transient Response  
Figure 86. IINDPM Transient Response  
VBAT = 7.6V  
VBUS = 5.1V  
Figure 87. Buck Mode (OTG) Load Transient Response  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
73  
Product Folder Links: BQ25883  
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
10 Power Supply Recommendations  
In order to provide an output voltage on SYS, the device requires a power supply between 3.9 V and 6.2 V input  
with at least 500-mA current rating connected to VBUS or a 2s Li-Ion battery with voltage > VBAT_UVLO  
connected to BAT The source current rating needs to be at least 3-A in order for the boost converter of the  
charger to provide maximum output power to SYS.  
11 Layout  
11.1 Layout Guidelines  
The switching node rise and fall times should be minimized for minimum switching loss. Proper layout of the  
components to minimize high frequency current path loops is important to prevent electrical and magnetic field  
radiation and high frequency resonant problems. Here is a PCB layout priority list for proper layout. Layout PCB  
according to this specific order is essential.  
1. Put SYS output capacitor as close to SYS and GND pins as possible. Ground connections need to be tied to  
the IC ground with a short copper trace connection or GND plane.  
2. Place PMID input capacitor as close as possible to PMID pins and PGND pins and use shortest copper trace  
connection or GND plane.  
3. Place inductor input terminal to SW pins as close as possible. Minimize the copper area of this trace to lower  
electrical and magnetic field radiation but make the trace wide enough to carry the input current. Minimize  
parasitic capacitance from this area to any other trace or plane.  
4. Decoupling capacitors should be placed on the same side of and next to the IC and make trace connection  
as short as possible.  
5. Route analog ground separately from power ground. Connect analog ground and connect power ground  
separately. Connect analog ground and power ground together using thermal pad as the single ground  
connection point. Or using a 0-Ω resistor to tie analog ground to power ground.  
6. It is critical that the exposed thermal pad on the backside of the device package be soldered to the PCB  
ground. Ensure that there are sufficient thermal vias directly under the IC, connecting to the ground plane on  
the other layers.  
7. Via size and number should be enough for a given current path.  
Refer to the EVM design and the Layout Example below for the recommended component placement with trace  
and via locations.  
74  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
11.2 Layout Example  
Figure 88. PCB Layout Example  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
75  
Product Folder Links: BQ25883  
BQ25883  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
www.ti.com  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation see the following:  
BQ2588x EVM User's Guide (SLUUBU6)  
12.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.4 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.5 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
76  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: BQ25883  
BQ25883  
www.ti.com  
SLUSDL3A FEBRUARY 2019REVISED APRIL 2019  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
77  
Product Folder Links: BQ25883  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ25883RGER  
BQ25883RGET  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGE  
RGE  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
BQ25883  
BQ25883  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Apr-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ25883RGER  
BQ25883RGET  
VQFN  
VQFN  
RGE  
RGE  
24  
24  
3000  
250  
330.0  
180.0  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Apr-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ25883RGER  
BQ25883RGET  
VQFN  
VQFN  
RGE  
RGE  
24  
24  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGE 24  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4204104/H  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
A
4.1  
3.9  
B
4.1  
3.9  
PIN 1 INDEX AREA  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
ꢀꢀꢀꢀꢁꢂꢃ“ꢄꢂꢅ  
(0.2) TYP  
2X 2.5  
12  
7
20X 0.5  
6
13  
25  
2X  
SYMM  
2.5  
1
18  
0.30  
PIN 1 ID  
(OPTIONAL)  
24X  
0.18  
24  
19  
0.1  
0.05  
C A B  
C
SYMM  
0.48  
0.28  
24X  
4219016 / A 08/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.825)  
2.7)  
(
24  
19  
24X (0.58)  
24X (0.24)  
1
18  
20X (0.5)  
25  
SYMM  
(3.825)  
2X  
(1.1)  
ꢆ‘ꢄꢂꢁꢇꢀ9,$  
TYP  
6
13  
(R0.05)  
7
12  
2X(1.1)  
SYMM  
LAND PATTERN EXAMPLE  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219016 / A 08/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271).  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.825)  
4X ( 1.188)  
24  
19  
24X (0.58)  
24X (0.24)  
1
18  
20X (0.5)  
SYMM  
(3.825)  
(0.694)  
TYP  
6
13  
25  
(R0.05) TYP  
METAL  
TYP  
7
12  
(0.694)  
TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
78% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4219016 / A 08/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY