BQ25890 [TI]

采用 Maxcharge™ 技术、支持高输入且具有 D+/D- 的 I2C 单节 5A 降压电池充电器;
BQ25890
型号: BQ25890
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 Maxcharge™ 技术、支持高输入且具有 D+/D- 的 I2C 单节 5A 降压电池充电器

电池
文件: 总70页 (文件大小:3078K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
BQ25890/2 MaxChargeTM 技术实现高输入电压和可调电USB On-the-Go  
升压模式I2C 控制型单节电5A 快速充电器  
1 特性  
2 应用  
• 高5A1.5MHz 开关模式降压充电  
智能手机  
平板电脑  
• 便携式网络设备  
2A 充电电流下的充电效率93%3A 充电电  
流下的充电效率91%  
– 针对高电压输入9V 12V进行了优化  
– 低功PFM 模式适合轻负载运行  
USB On-the-Go (OTG)可调输出电压范围4.5V  
5.5V  
3 说明  
BQ25890 BQ25892 是适用于单节锂离子电池和锂  
聚合物电池的高度集成型 5A 开关模式电池充电管理和  
系统电源路径管理器件。此类器件支持高输入电压快速  
充电。低阻抗电源路径对开关模式运行效率进行了优  
化、缩短了电池充电时间并延长了放电阶段的电池使用  
寿命。  
– 具有高2.4A 输出以500kHz 1.5MHz 可  
选频率的升压转换器  
5V (1A) 输出时的升压效率93%  
– 精确的断续模式过流保护  
器件信息  
封装(1)  
• 单个输入USB 输入和可调高电压适配器  
封装尺寸标称值)  
器件型号  
BQ25890  
BQ25892  
– 支3.9V 14V 输入电压范围  
– 输入电流限制100mA 3.25A分辨率为  
50mA),USB2.0USB3.0 标准和高电压  
适配器  
– 通过高14V 的输入电压限制进行最大功率跟  
适用于各类适配器  
WQFN (24)  
4.00mm x 4.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
Input  
3.9Vœ14V at 3A  
– 自动检USB SDPCDPDCP 以及非标准适  
SYS 3.5Vœ4.5V  
(BQ25890)  
• 输入电流优化(ICO)无需过载适配器即可更大  
限度地提高输入功率  
• 充电器输出与电池终端间的电阻补(IRCOMP)  
• 借11mΩ池放MOSFET 实现超高的电池放  
电效率放电电流高9A  
VBUS  
SW  
USB  
Host  
OTG  
5V at 2.4A  
SYS  
Ichg = 5A  
BAT  
I2C Bus  
QON  
REGN  
BQ2589x  
Optional  
• 集ADC用于系统监视  
Host Control  
电压、温度和充电电流)  
TS  
VDC (NVDC) 电源路径管理  
– 无需电池或深度放电的电池即可瞬时启动  
– 电池充电模式下实现理想的二极管运行  
BATFET 控制支持运输模式、唤醒和完全系统复  
简化版原理图  
• 灵活的自主I2C 模式可实现出色的系统性能  
• 高集成度包括所MOSFET、电流感测和环路补偿  
12µA 低电池漏电流支持运输模式  
• 高精度  
±0.5% 充电电压调节  
±5% 充电电流调节  
±7.5% 输入电流调节  
• 安全  
– 用于充电模式和升压模式的电池温度检测  
– 热调节和热关断  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSC86  
 
 
 
 
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
Table of Contents  
9.4 Register Maps...........................................................37  
10 Application and Implementation................................54  
10.1 Application Information........................................... 54  
10.2 Typical Application.................................................. 54  
10.3 System Examples................................................... 58  
11 Power Supply Recommendations..............................59  
12 Layout...........................................................................60  
12.1 Layout Guidelines................................................... 60  
12.2 Layout Example...................................................... 60  
13 Device and Documentation Support..........................61  
13.1 Device Support....................................................... 61  
13.2 接收文档更新通知................................................... 61  
13.3 支持资源..................................................................61  
13.4 Trademarks.............................................................61  
13.5 Electrostatic Discharge Caution..............................61  
13.6 术语表..................................................................... 61  
14 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................4  
6 Device Comparison Table...............................................5  
7 Pin Configuration and Functions...................................6  
8 Specifications.................................................................. 9  
8.1 Absolute Maximum Ratings(1) ....................................9  
8.2 ESD Ratings............................................................... 9  
8.3 Recommended Operating Conditions.........................9  
8.4 Thermal Information..................................................10  
8.5 Electrical Characteristics...........................................10  
8.6 Timing Requirements................................................15  
8.7 Typical Characteristics..............................................16  
9 Detailed Description......................................................18  
9.1 Functional Block Diagram.........................................18  
9.2 Feature Description...................................................19  
9.3 Device Functional Modes..........................................35  
Information.................................................................... 61  
4 Revision History  
Changes from Revision C (May 2018) to Revision D (October 2022)  
Page  
• 删除了整个数据表中WEBENCH.................................................................................................................... 1  
• 在整个数据表中更新了包容性术语......................................................................................................................1  
Changes from Revision B (May 2016) to Revision C (May 2018)  
Page  
• 向数据表添加WEBENCH 链接.......................................................................................................................1  
Added "SW (peak for 10 ns duration)" To the 8.1 ......................................................................................... 9  
Updated the 8.4 values.................................................................................................................................. 9  
Changed VSYS TYP value From: VBAT + 50 mV To: I(SYS) + 150 mV................................................................10  
Changed the title of 8-4 From: Charge Current Accuracy To: I2C Setting ...................................................16  
Changed axis title of 8-8 From: BAT Voltage (V) To: Input Current Limit (mA)............................................ 16  
Changed VVREF to VREGN in 方程2 ..............................................................................................................26  
Changed VREF to VREGN in 9-8 ....................................................................................................................28  
Added sentence to the Battery Monitor secton "In battery only mode, ..".........................................................28  
Changed the Description values of 9-27 From: mV To: mA.........................................................................52  
Changed the Type values of Bits 6 to Bit 0 in 9-29 From: R/W To: R.......................................................... 53  
Added VREF system pullup voltage to 10-1 ................................................................................................. 54  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: BQ25890 BQ25892  
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
Changes from Revision A (June 2015) to Revision B (May 2016)  
Page  
• 添加了“引脚配置和功能”部分、“ESD 等级”表、“特性说明”部分、“器件功能模式”、“应用和实施”  
部分、“电源相关建议”部分、“布局”部分、“器件和文档支持”部分以及“机械、封装和可订购信息”部  
分。.....................................................................................................................................................................1  
Changes from Revision * (March 2015) to Revision A (June 2015)  
Page  
• 在数据表标题中添加了“技术”一词.................................................................................................................. 1  
Deleted text form the OTG pin Description "OTG = High, IINLIM is set to USB500 mode". ..............................6  
Changed the Description of the OTG pin in the Pin Functions table ................................................................. 6  
Changed V(SLEEP) and V(SLEEPZ) Unit From: V To: mV ....................................................................................10  
Added TYP values to IIN(DPM_ACC) in the 8.5 table ...................................................................................... 10  
Deleted D+/D- DETECTION (bq25890) from the 8.6 ..................................................................................15  
Added condition "DCR = 10 m" to 8-1 ......................................................................................................16  
Deleted VCHG_REG and IBAT_REG at Q4 gate Control in the 9.1 ................................................................... 18  
Deleted "SDP_STAT bit is updated to indicate USB100 or other input source" from 9.2.3.3 ......................20  
Changed 9-1, SDP(USB100/USB500) To: SDP (USB500) .........................................................................20  
Deleted USB SDP (USB100) and the OTG Pin column from 9-3 and 9-4 ............................................. 20  
Added text to the 9.2.3.3.2 section: "To implement USB100 in the system...".............................................21  
Deleted section: Plug in USB100 Source ........................................................................................................ 21  
Added text to 9.2.3.4, "After Input Voltage Limit Threshold..." .................................................................... 22  
Changed text in 9.2.4 From: "After DCP type..." To: "After DCP or MaxCharge type" ................................22  
Changed 方程1, From: BATCOMP, VREG + VCLAMP To: BATCOMP, VCLAMP ............................................ 26  
Changed the Description of the INLIM Bits in 9-9 .......................................................................................37  
Changed , Bits 3 to 0, From: Default: 128mA (0011) To: Default: 256mA (0011)............................................. 42  
Changed Bit 1 From: SDP_STAT To: Reserved .............................................................................................. 48  
Changed VIN To: VBUS in 方程6 ...................................................................................................................55  
Changed Input Capacitor To: 10.2.2.2 ........................................................................................................ 55  
Changed ICIN to IPMID in 10.2.2.2 and 方程7 ...........................................................................................55  
Changed "15-V input voltage. 22-μF capacitanc" To: "14-V input voltage. 8.2-μF capacitance" in 10.2.2.2  
..........................................................................................................................................................................55  
Changed Output Capacitor To: 10.2.2.3 ......................................................................................................55  
Changed ICOUT To: ICSYS in 方程8 , Changed 方程9 .............................................................................. 55  
Deleted Graph "Power UP"...............................................................................................................................56  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: BQ25890 BQ25892  
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
5 说明)  
具有充电和系统设置I2C 串行接口使得此器件成为真正的灵活解决方案。  
BQ25890/2 是一款适用于单节锂离子电池和锂聚合物电池的高度集成型 5A 开关模式电池充电管理和系统电源路  
径管理器件。该器件支持高输入电压快速充电适用于各类智能手机、平板电脑和便携式设备。其低阻抗电源路  
径对开关模式运行效率进行了优化、缩短了电池充电时间并延长了放电阶段的电池使用寿命。该器件还集成了输  
入电流优化器 (ICO) 和电阻补偿 (IRCOMP)从而为电池提供最大充电功率。该解决方案在系统和电池之间高度  
集成输入反向阻断 FETRBFETQ1、高侧开关 FETHSFETQ2、低侧开关 FETLSFETQ3以及  
电池 FETBATFETQ4。它还集成了自举二极管以进行高侧栅极驱动和电池监视从而简化系统设计。具有  
充电和系统设置I2C 串行接口使得此器件成为一个真正的灵活解决方案。  
该器件支持多种输入源包括标准 USB 主机端口、USB 充电端口以及兼USB 的可调高电压适配器。为支持通  
过可调高电压适配器进行快速充电BQ25890 提供了 MaxChargeTM 握手支持使用 D+/D– 引脚和 DSEL 引  
来进行 USB 开关控制。此外BQ25890 BQ25892 还提供有相应的接口以支持采用输入电流脉冲协议  
的可调高电压适配器。为了设置默认输入电流限值器件使用内置 USB 接口 (BQ25890) 或者从 USB PHY 器件  
等系统检测电路中获取结果 (BQ25892)。该器件符USB 2.0 USB 3.0 电源规范具有输入电流和电压调节功  
能。此外输入电流优化器 (ICO) 还能够检测输入源未发生过载时的最大功率点。该器件还具有高达 2.4A 的限流  
能力能够VBUS 5V4.5V 5.5V 可调电压USB On-the-Go (OTG) 运行功率额定值规范。  
电源路径管理将系统电压调节为稍稍高于电池电压但是又不会下降到低3.5V 最小系统电压可编程。借助  
于这个特性即使在电池电量完全耗尽或者电池被拆除时系统也能保持运行。当达到输入电流限值或电压限值  
电源路径管理技术自动将充电电流减0。随着系统负载持续增加电源路径将使电池放电直到满足系统电  
源需求。该补充模式操作可防止输入源过载。  
此器件在无需软件控制情况下启动并完成一个充电周期。它自动检测电池电压并通过三个阶段为电池充电预充  
电、恒定电流和恒定电压。在充电周期的末尾当充电电流低于在恒定电压阶段中预设定的限值时充电器自动  
终止。当整个电池下降到低于再充电阈值时充电器将自动启动另外一个充电周期。  
此充电器提供针对电池充电和系统运行的多种安全特性其中包括电池负温度系数热敏电阻监视、充电安全性定  
时器和过压/过流保护。当结温超过 120°C可编程热调节会减小充电电流。STAT 输出报告充电状态和任  
何故障状况。PG (BQ25892) 指示电源是否正常。当故障发生时INT 会立即通知主机。  
该器件还提供了一7 位模数转换器 (ADC)用于监视充电电流和输入/电池/系统VBUSBATSYSTS电  
压。QON 引脚提BATFET 使能/复位控制以使器件退出低功耗出厂模式或完全系统复位功能。  
该器件系列采24 4mm x 4mm2 x 0.75mm WQFN 封装。  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: BQ25890 BQ25892  
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
6 Device Comparison Table  
BQ25890  
BQ25892  
I2C Address  
Charge Mode Frequency  
Boost Mode Frequency  
USB Detection  
6AH (1101010B + R/ W)  
6BH (1101011B + R/ W)  
1.5 MHz  
1.5 MHz  
1.5 MHz (default) / 500 KHz  
1.5 MHz (default) / 500 KHz  
PSEL/OTG  
14 V  
D+/D–  
14 V  
VBUS Overvoltage  
REGN LDO  
6 V  
6 V  
Default Adapter Current Limit  
Default Battery Charge Voltage  
Maximum Charge Current  
Default Charge Current  
Default Pre-charge Current  
Maximum Pre-charge Current  
Maximum Boost Mode Output Current  
Charging Temperature Profile  
Pin 24  
3.25 A  
4.208 V  
5.056 A  
2.048 A  
128 mA  
1.024 A  
2.4A  
3.25 A  
4.208 V  
5.056A  
2.048 A  
128 mA  
1.024A  
2.4A  
JEITA  
DSEL  
STAT  
JEITA  
NC  
Status Output  
STAT, PG  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: BQ25890 BQ25892  
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
7 Pin Configuration and Functions  
23  
22  
20  
19  
24  
21  
VBUS  
D+  
1
2
3
4
5
6
18  
17  
PGND  
PGND  
SYS  
16  
15  
D  
STAT  
SCL  
SYS  
14  
BAT  
BAT  
13  
SDA  
7
8
9
10  
11  
12  
7-1. RTW Package 24-Pin WQFN Top View  
23  
22  
20  
19  
24  
21  
VBUS  
PSEL  
1
2
3
4
5
6
18  
17  
PGND  
PGND  
SYS  
16  
15  
PG  
SYS  
STAT  
SCL  
SDA  
14  
BAT  
BAT  
13  
7
8
9
10  
11  
12  
7-2. RTW Package 24-Pin WQFN Top View  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
BQ25890  
BQ25892  
Charger Input Voltage.  
The internal n-channel reverse block MOSFET (RBFET) is connected between VBUS and PMID with  
VBUS on source. Place a 1-µF ceramic capacitor from VBUS to PGND and place it as close as  
possible to IC.  
VBUS  
1
1
P
Positive line of the USB data line pair.  
D+  
2
AIO  
DI  
D+/D- based USB host/charging port detection. The detection includes data contact detection (DCD),  
primary and secondary detection in BC1.2, and Adjustable high voltage adapter.  
Power source selection input.  
High indicates a USB host source and Low indicates an adapter source.  
PSEL  
2
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: BQ25890 BQ25892  
 
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
BQ25890  
BQ25892  
Negative line of the USB data line pair.  
3
AIO  
D+/D- based USB host/charging port detection. The detection includes data contact detection (DCD),  
primary and secondary detection in BC1.2, and Adjustable high voltage adapter.  
D–  
Open drain active low power good indicator.  
Connect to the pull up rail via 10-kΩresistor. LOW indicates a good input source if the input voltage  
is within VVBUS_OP, above SLEEP mode threshold (VSLEEPZ), and current limit is above IBATSRC(30  
mA).  
PG  
3
4
DO  
DO  
Open drain charge status output to indicate various charger operation.  
Connect to the pull up rail via 10-kΩresistor. LOW indicates charge in progress. HIGH indicates  
charge complete or charge disabled. When any fault condition occurs, STAT pin blinks in 1 Hz.  
The STAT pin function can be disabled when STAT_DIS bit is set.  
STAT  
4
I2C Interface clock.  
Connect SCL to the logic rail through a 10-kΩresistor.  
SCL  
SDA  
5
6
5
6
DI  
I2C Interface data.  
Connect SDA to the logic rail through a 10-kΩresistor.  
DIO  
Open-drain Interrupt Output.  
INT  
OTG  
CE  
7
8
9
7
8
9
DO  
DI  
Connect the INT to a logic rail via 10-kΩresistor. The INT pin sends active low, 256-µs pulse to host  
to report charger device status and fault.  
Active high enable pin during boost mode.  
The boost mode is activated when OTG_CONFIG =1 and OTG pin is high  
Active low Charge Enable pin.  
Battery charging is enabled when CHG_CONFIG = 1 and CE pin = Low. CE pin must be pulled High  
or Low.  
DI  
Input current limit Input. ILIM pin sets the maximum input current and can be used to monitor input  
current  
ILIM pin sets the maximum input current limit by regulating the ILIM voltage at 0.8 V. A resistor is  
connected from ILIM pin to ground to set the maximum limit as IINMAX = KILIM/RILIM . The actual input  
current limit is the lower limit set by ILIM pin (when EN_ILIM bit is high) or IIINLIM register bits. Input  
current limit of less than 500 mA is not support on ILIM pin.  
ILIM  
10  
10  
AI  
ILIM pin can also be used to monitor input current when the voltage is below 0.8 V. The input current  
is proportional to the voltage on ILIM pin and can be calculated by IIN = (KILIM x VILIM) / (RILIM x 0.8)  
The ILIM pin function can be disabled when EN_ILIM bit is 0.  
Temperature qualification voltage input.  
Connect a negative temperature coefficient thermistor. Program temperature window with a resistor  
divider from REGN to TS to GND. Charge suspends when either TS pin is out of range. Recommend  
103AT-2 thermistor.  
TS  
11  
12  
11  
12  
AI  
DI  
BATFET enable/reset control input.  
When BATFET is in ship mode, a logic low of tSHIPMODE (typical 1sec) duration turns on BATFET to  
exit shipping mode. .  
When VBUS is not plugged-in, a logic low of tQON_RST (typical 15sec) duration resets SYS (system  
power) by turning BATFET off for tBATFET_RST (typical 0.3sec) and then re-enable BATFET to provide  
full system power reset.  
QON  
The pin contains an internal pull-up to maintain default high logic  
Battery connection point to the positive terminal of the battery pack.  
The internal BATFET is connected between BAT and SYS. Connect a 10 µF closely to the BAT pin.  
BAT  
SYS  
13,14  
15,16  
13, 14  
15,16  
P
P
System connection point.  
The internal BATFET is connected between BAT and SYS. When the battery falls below the  
minimum system voltage, switch-mode converter keeps SYS above the minimum system voltage.  
Connect a 20 µF closely to the SYS pin.  
Power ground connection for high-current power converter node.  
Internally, PGND is connected to the source of the n-channel LSFET. On PCB layout, connect  
directly to ground connection of input and output capacitors of the charger. A single point connection  
is recommended between power PGND and the analog GND near the IC PGND pin.  
PGND  
17,18  
17,18  
P
Switching node connecting to output inductor.  
SW  
19,20  
21  
19,20  
21  
P
P
Internally SW is connected to the source of the n-channel HSFET and the drain of the n-channel  
LSFET. Connect the 0.047µF bootstrap capacitor from SW to BTST.  
PWM high side driver positive supply.  
Internally, the BTST is connected to the anode of the boost-strap diode. Connect the 0.047 µF  
bootstrap capacitor from SW to BTST.  
BTST  
PWM low side driver positive supply output.  
Internally, REGN is connected to the cathode of the boost-strap diode. Connect a 4.7 µF (10 V  
rating) ceramic capacitor from REGN to analog GND. The capacitor should be placed close to the IC.  
REGN also serves as bias rail of TS pin.  
REGN  
PMID  
22  
23  
22  
23  
P
Connected to the drain of the reverse blocking MOSFET (RBFET) and the drain of HSFET.  
Given the total input capacitance, put 1 µF on VBUS to PGND, and the rest capacitance on PMID to  
PGND.  
DO  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: BQ25890 BQ25892  
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
PIN  
TYPE(1)  
DESCRIPTION  
Open-drain D+/D- multiplexer selection output.  
NAME  
BQ25890  
BQ25892  
Connect the DSEL to a logic rail via 10-Kresistor. The pin is normally float and pull-up by external  
resistor. During 9.2.3.3, the pin drives low to indicate the BQ25890 D+/D- detection is in progress  
and needs to take control of D+, D- signals. When detection is completed, the pin keeps low when  
MaxCharge™ adapter is detected. The pin returns to float and pulls high by external resistor when  
other input source type is detected.  
DSEL  
24  
DO  
NC  
24  
No Connect  
Exposed pad beneath the IC for heat dissipation. Always solder PowerPAD Pad to the board, and  
have vias on the PowerPAD plane star-connecting to PGND and ground plane for high-current power  
converter.  
PowerPAD™  
P
(1) DI (Digital Input), DO (Digital Output), DIO (Digital Input/Output), AI (Analog Input), AO (Analog Output), AIO (Analog Input/Output)  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: BQ25890 BQ25892  
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
8 Specifications  
8.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2  
MAX  
22  
22  
20  
7
VALUE  
V
VBUS (converter not switching)  
PMID (converter not switching)  
V
0.3  
0.3  
0.3  
0.3  
0.3  
2  
STAT  
V
PG (BQ25892)  
DSEL (BQ25890)  
BTST  
V
20  
20  
16  
16  
6
V
V
SW  
V
SW (peak for 10 ns duration)  
BAT, SYS (converter not switching)  
SDA, SCL, INT, OTG, REGN, TS, CE, QON  
PSEL (BQ25892)  
V
Voltage range (with respect to GND)  
3  
V
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
7
V
7
V
7
V
D+, D(BQ25890)  
BTST TO SW  
PGND to GND  
ILIM  
7
V
0.3  
5
V
V
INT, STAT  
6
mA  
mA  
mA  
°C  
°C  
Output sink current  
PG (BQ25892)  
DSEL (BQ25890)  
6
6
150  
150  
Junction temperature  
40  
65  
Storage temperature range, Tstg  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage  
values are with respect to the network ground terminal unless otherwise noted.  
8.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)  
±2000  
V
VESD  
Electrostatic discharge  
Charged device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±250  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
14(1)  
3.25  
5
UNIT  
VIN  
Input voltage  
3.9  
V
A
A
V
IIN  
Input current (VBUS)  
Output current (SW)  
Battery voltage  
ISYS  
VBAT  
4.608  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: BQ25890 BQ25892  
 
 
 
 
 
 
 
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
8.3 Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
5
UNIT  
A
Fast charging current  
Up to 6 (continuos)  
A
IBAT  
Discharging current with internal MOSFET  
9 (peak)  
(Up to 1 sec duration)  
A
TA  
Operating free-air temperature range  
85  
°C  
40  
(1) The inherent switching noise voltage spikes should not exceed the absolute maximum rating on either the BTST or SW pins. A tight  
layout minimizes switching noise.  
8.4 Thermal Information  
BQ25890  
BQ25892  
THERMAL METRIC(1)  
UNIT  
RTW (WQFN)  
24-PINS  
31.8  
27.9  
8.7  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC((op)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJT  
8.7  
ψJB  
RθJC(bot)  
2.0  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
8.5 Electrical Characteristics  
VVBUS_UVLOZ < VVBUS < VACOV and VVBUS > VBAT + VSLEEP, TJ = 40°C to +125°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
QUIESCENT CURRENTS  
VBAT = 4.2 V, V(VBUS) < V(UVLO), leakage  
between BAT and VBUS  
5
µA  
µA  
High-Z mode, no VBUS, BATFET disabled  
(REG09[5]=1), battery monitor disabled, TJ  
85°C  
<
<
12  
32  
23  
IBAT  
Battery discharge current (BAT, SW, SYS) in buck mode  
High-Z mode, no VBUS, BATFET enabled  
(REG09[5]=0), battery monitor disabled, TJ  
85°C  
60  
µA  
V(VBUS)= 5 V, High-Z mode, no battery, battery  
monitor disabled  
15  
25  
1.5  
3
35  
50  
3
µA  
µA  
Input supply current (VBUS) in buck mode when High-Z mode  
is enabled  
I(VBUS_HIZ)  
V(VBUS)= 12 V, High-Z mode, no battery, battery  
monitor disabled  
VBUS > V(UVLO), VBUS > VBAT, converter not  
switching  
mA  
mA  
mA  
mA  
VBUS > V(UVLO), VBUS > VBAT, converter  
switching, VBAT = 3.2 V, ISYS = 0A  
I(VBUS)  
Input supply current (VBUS) in buck mode  
Battery discharge current in boost mode  
VBUS > V(UVLO), VBUS > VBAT, converter  
switching, VBAT = 3.8 V, ISYS = 0 A  
3
VBAT = 4.2 V, boost mode, I(VBUS)= 0 A,  
converter switching  
I(BOOST)  
5
VBUS/BAT POWER UP  
V(VBUS_OP)  
V(VBUS_UVLOZ)  
V(SLEEP)  
VBUS operating range  
3.9  
3.6  
25  
14  
V
V
VBUS for active I2C, no battery  
Sleep mode falling threshold  
Sleep mode rising threshold  
65  
120  
370  
mV  
mV  
V(SLEEPZ)  
130  
250  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: BQ25890 BQ25892  
 
 
 
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
8.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VACOV and VVBUS > VBAT + VSLEEP, TJ = 40°C to +125°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
14  
TYP  
MAX  
14.6  
14  
UNIT  
V
VBUS over-voltage rising threshold  
VBUS over-voltage falling threshold  
Battery for active I2C, no VBUS  
Battery depletion falling threshold  
Battery depletion rising threshold  
Bad adapter detection threshold  
Bad adapter detection current source  
V(ACOV)  
13.5  
2.3  
V
VBAT(UVLOZ)  
VBAT(DPL)  
VBAT(DPLZ)  
V(VBUSMIN)  
I(BADSRC)  
V
2.15  
2.35  
2.5  
2.7  
V
V
3.8  
30  
V
mA  
POWER-PATH MANAGEMENT  
I(SYS) = 0 A, VBAT> VSYS(MIN), BATFET Disabled  
(REG09[5]=1)  
VBAT  
50 mV  
+
V
V
V
V
VSYS  
Typical system regulation voltage  
I(SYS) = 0 A, VBAT< VSYS(MIN), BATFET Disabled  
(REG09[5]=1)  
VSYS(MIN)  
+
150 mV  
VBAT< VSYS(MIN), SYS_MIN = 3.5 V  
(REG03[3:1]=101), ISYS= 0 A  
VSYS(MIN)  
Minimum DC system voltage output  
Maximum DC system voltage output  
3.50  
3.65  
4.40  
VBAT = 4.35 V, SYS_MIN = 3.5V  
(REG03[3:1]=101), ISYS= 0 A  
VSYS(MAX)  
4.42  
27  
27  
38  
44  
39  
47  
24  
28  
TJ = 40°C to +85°C  
TJ = 40°C to +125°C  
TJ = 40°C to +85°C  
TJ = 40°C to +125°C  
TJ = 40°C to +85°C  
TJ = 40°C to +125°C  
BAT discharge current 10 mA  
VBAT rising  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mV  
V
Top reverse blocking MOSFET(RBFET) on-resistance between  
VBUS and PMID  
RON(RBFET)  
RON(HSFET)  
RON(LSFET)  
27  
Top switching MOSFET (HSFET) on-resistance between PMID  
and SW  
27  
16  
Bottom switching MOSFET (LSFET) on-resistance between  
SW and GND  
16  
V(FWD)  
BATFET forward voltage in supplement mode  
Battery good comparator rising threshold  
Battery good comparator falling threshold  
30  
VBAT(GD)  
3.4  
3.55  
100  
3.7  
VBAT(GD_HYST)  
BATTERY CHARGER  
VBAT(REG_RANGE)  
VBAT(REG_STEP)  
VBAT falling  
mV  
Typical charge voltage range  
Typical charge voltage step  
3.840  
4.608  
V
16  
64  
mV  
VBAT = 4.208 V (REG06[7:2]=010111) or  
VBAT = 4.352 V (REG06[7:2]=100000)  
TJ = 40°C to +85°C  
VBAT(REG)  
Charge voltage resolution accuracy  
-0.5%  
0
0.5%  
5056  
I(CHG_REG_RANGE)  
I(CHG_REG_STEP)  
Typical fast charge current regulation range  
Typical fast charge current regulation step  
mA  
mA  
VBAT = 3.1 V or 3.8 V, ICHG = 128 mA  
TJ = 40°C to +85°C  
-20%  
-10%  
-5%  
20%  
10%  
5%  
VBAT= 3.1 V or 3.8 V, ICHG = 256 mA  
TJ = 40°C to +85°C  
I(CHG_REG_ACC)  
Fast charge current regulation accuracy  
VBAT= 3.1 V or 3.8 V, ICHG=1792 mA  
TJ = 40°C to +85°C  
Battery LOWV falling threshold  
Battery LOWV rising threshold  
Fast charge to precharge, BATLOWV  
(REG06[1]) = 1  
2.6  
2.8  
3
2.9  
V
V
VBAT(LOWV)  
Precharge to fast charge, BATLOWV  
(REG06[1])=1  
(Typical 200-mV hysteresis)  
2.8  
64  
3.1  
I(PRECHG_RANGE)  
I(PRECHG_STEP)  
I(PRECHG_ACC)  
I(TERM_RANGE)  
I(TERM_STEP)  
Precharge current range  
1024  
mA  
mA  
Typical precharge current step  
Precharge current accuracy  
Termination current range  
Typical termination current step  
64  
64  
VBAT=2.6 V, IPRECHG = 256 mA  
+10%  
1024  
10%  
64  
mA  
mA  
ITERM = 256 mA, ICHG<= 1344 mA  
TJ = 20°C to +85°C  
12%  
20%  
12%  
20%  
I(TERM_ACC)  
Termination current accuracy  
ITERM = 256 mA, ICHG> 1344 mA  
TJ = 20°C to +85°C  
V(SHORT)  
Battery short voltage  
VBAT falling  
VBAT rising  
VBAT < 2.2 V  
2
200  
100  
V
V(SHORT_HYST)  
I(SHORT)  
Battery short voltage hysteresis  
Battery short current  
mV  
mA  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: BQ25890 BQ25892  
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
8.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VACOV and VVBUS > VBAT + VSLEEP, TJ = 40°C to +125°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VBAT falling, VRECHG (REG06[0]=0) = 0  
VBAT falling, VRECHG (REG06[0]=0) = 1  
VBAT = 4.2 V  
MIN  
TYP  
100  
200  
MAX  
UNIT  
mV  
V(RECHG)  
Recharge threshold below VBATREG  
mV  
IBAT(LOAD)  
ISYS(LOAD)  
Battery discharge load current  
System discharge load current  
15  
30  
mA  
VSYS = 4.2 V  
mA  
TJ = 25°C  
11  
11  
13  
19  
mΩ  
mΩ  
RON(BATFET)  
SYS-BAT MOSFET (BATFET) on-resistance  
TJ = 40°C to +125°C  
INPUT VOLTAGE / CURRENT REGULATION  
VIN(DPM_RANGE)  
VIN(DPM_STEP)  
VIN(DPM_ACC)  
IIN(DPM_RANGE)  
IIN(DPM_STEP)  
IIN(DPM100_ACC)  
Typical Input voltage regulation range  
3.9  
15.3  
V
Typical Input voltage regulation step  
Input voltage regulation accuracy  
Typical Input current regulation range  
Typical Input current regulation step  
100  
mV  
VINDPM = 4.4 V, 9 V  
3%  
3%  
100  
3250  
mA  
mA  
50  
90  
Input current 100-mA regulation accuracy  
VBAT = 5 V, current pulled from SW  
IINLIM (REG00[5:0]) =100 mA  
85  
100  
mA  
USB150, IINLIM (REG00[5:0]) = 150 mA  
USB500, IINLIM (REG00[5:0]) = 500 mA  
USB900, IINLIM (REG00[5:0]) = 900 mA  
Adapter 1.5 A, IINLIM (REG00[5:0]) = 1500 mA  
VSYS = 2.2 V, IINLIM (REG00[5:0])> = 200 mA  
Input current regulation by ILIM pin = 1.5 A  
125  
440  
135  
470  
150  
500  
mA  
mA  
Input current regulation accuracy  
VBAT = 5 V, current pulled from SW  
IIN(DPM_ACC)  
750  
825  
900  
mA  
1300  
1400  
1500  
200  
mA  
IIN(START)  
KILIM  
Input current regulation during system start up  
IINMAX = KILIM/RILIM  
mA  
320  
355  
390  
A x Ω  
D+/D- DETECTION (BQ25890)  
V(0P6_VSRC)  
V(3P3_VSRC)  
V(3p45_VSRC)  
I(10UA_ISRC)  
I(100UA_ISINK)  
I(DPDM_LKG)  
0.5  
3.2  
3.3  
7
0.6  
3.3  
0.7  
3.4  
3.6  
14  
V
V
D+/Dvoltage source (0.6 V)  
D+ voltage source (3.3V)  
For HVDCP detection  
3.45  
10  
V
D+/Dvoltage source (3.45 V)  
D+ connection check current source  
D+/Dcurrent sink (100 µA)  
D+/Dleakage current  
µA  
µA  
µA  
50  
100  
150  
1
D, switch open  
1  
1  
D+, switch open  
1
1.75  
400  
0.8  
µA  
µA  
mV  
V
I(1P6MA_ISINK)  
V(0P4_VTH)  
1.45  
250  
1.60  
D+/Dcurrent sink (1.6 mA)  
D+/Dlow comparator threshold  
D+ low comparator threshold  
V(0P8_VTH)  
V(2P7HI_VTH)  
Internal only  
Internal only  
2.85  
2.35  
2.55  
2.15  
1.6  
3.1  
V
D+/Dcomparator threshold for non-standard adapter  
detection (Divider 1, 3, or 4)  
V(2P7LO_VTH)  
2.55  
2.85  
2.35  
1.85  
2.15  
1.60  
1.05  
1.35  
V
V
V
V
V
V
V
V
D+/Dcomparator threshold for non-standard adapter  
detection (Divider 1, 3, or 4)  
V(2P7_VTH)  
D+/D- comparator threshold for non-standard adapter  
detection (Divider 1, 3, or 4)  
V(2P0HI_VTH)  
V(2P0LO_VTH)  
V(2P0_VTH)  
Internal only  
Internal only  
D+/Dcomparator threshold for non-standard adapter  
detection (Divider 1, 3)  
D+/Dcomparator threshold for non-standard adapter  
detection (Divider 1, 3)  
1.85  
1.35  
0.85  
1.05  
D+/Dcomparator threshold for non-standard adapter  
detection (Divider 1, 3)  
V(1P2HI_VTH)  
V(1P2LO_VTH)  
V(1P2_VTH)  
Internal only  
Internal only  
D+/Dcomparator threshold for non-standard adapter  
detection (Divider 2)  
D+/Dcomparator threshold for non-standard adapter  
detection (Divider 2)  
D+/Dcomparator threshold for non-standard adapter  
detection (Divider 2)  
R(D_DWN)  
V(6P5_VTH)  
14.25  
6.3  
24.8  
6.7  
Dpulldown for connection check  
kΩ  
VBUS comparator threshold  
Internal only  
V
BAT OVERVOLTAGE/CURRENT PROTECTION  
VBAT(OVP)  
Battery over-voltage threshold  
Battery over-voltage hysteresis  
System over-current threshold  
VBAT rising, as percentage of VBAT(REG)  
VBAT falling, as percentage of VBAT(REG)  
104%  
2%  
VBAT(OVP_HYST)  
IBAT(FET_OCP)  
9
A
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: BQ25890 BQ25892  
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
8.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VACOV and VVBUS > VBAT + VSLEEP, TJ = 40°C to +125°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
THERMAL REGULATION AND THERMAL SHUTDOWN  
TREG  
Junction temperature regulation accuracy  
Thermal shutdown rising temperature  
Thermal shutdown hysteresis  
REG08[1:0] = 11  
120  
160  
30  
°C  
°C  
°C  
TSHUT  
Temperature rising  
Temperature falling  
TSHUT(HYS)  
JEITA THERMISTOR COMPARATOR (BUCK MODE)  
T1 (0°C) threshold, charge suspended T1 below this  
temperature.  
V(T1)  
As percentage to V(REGN)  
As percentage to V(REGN)  
As percentage to V(REGN)  
As percentage to V(REGN)  
As percentage to V(REGN)  
As percentage to V(REGN)  
As percentage to V(REGN)  
As percentage to V(REGN)  
72.75%  
67.75%  
44.25v  
73.25%  
1.4%  
73.75%  
68.75%  
45.25%  
34.875%  
Charge back to ICHG/2 (REG04[6:0]) and VREG (REG06[7:2])  
above this temperature.  
V(T1_HYS)  
T2 (10°C) threshold, charge back to ICHG/2 (REG04[6:0]) and  
VREG (REG06[7:2]) below this temperature.  
V(T2)  
68.25%  
1.4%  
Charge back to ICHG (REG04[6:0]) and VREG (REG06[7:2])  
above this temperature.  
V(T2_HYS)  
T3 (45°C) threshold, charge back to ICHG (REG04[6:0]) and  
VREG-200 mV (REG06[7:2]) above this temperature.  
V(T3)  
44.75%  
1%  
Charge back to ICHG (REG04[6:0]) and VREG (REG06[7:2])  
below this temperature.  
V(T3_HYS)  
T5 (60°C) threshold, charge suspended above this  
temperature.  
V(T5)  
33.875%  
34.375%  
1.25%  
Charge back to ICHG (REG04[6:0]) and VREG-200 mV  
(REG06[7:2]) below this temperature.  
V(T5_HYS)  
COLD/HOT THERMISTOR COMPARATOR (BOOST MODE)  
As percentage to VREGN , REG01[5] = 0  
(Approx. -10°C w/ 103AT)  
V(BCOLD0)  
Cold temperature threshold, TS pin voltage rising threshold  
76.5%  
79.5%  
77%  
1%  
77.5%  
80.5%  
V(BCOLD0_HYS)  
V(BCOLD1)  
V(BCOLD1_HYS)  
V(BHOT0)  
V(BHOT0_HYS)  
V(BHOT1)  
V(BHOT1_HYS)  
V(BHOT2)  
Cold temperature threshold, TS pin voltage falling threshold  
Cold temperature threshold 1, TS pin voltage rising threshold  
Cold temperature threshold 1, TS pin voltage falling threshold  
Hot temperature threshold, TS pin voltage falling threshold  
Hot temperature threshold, TS pin voltage rising threshold  
Hot temperature threshold 1, TS pin voltage falling threshold  
Hot temperature threshold 1, TS pin voltage rising threshold  
Hot temperature threshold 2, TS pin voltage falling threshold  
Hot temperature threshold 2, TS pin voltage rising threshold  
As percentage to VREGN REG01[5] = 0  
As percentage to VREGN REG01[5] = 1  
(Approximately 20°C w/ 103AT)  
80%  
As percentage to VREGN REG01[5] = 1  
1%  
As percentage to VREGN REG01[7:6] = 01  
(Approx. 55°C w/ 103AT)  
37.25%  
33.875%  
30.75%  
37.75%  
3%  
38.25%  
34.875%  
31.75%  
As percentage to VREGN REG01[7:6] = 01  
As percentage to VREGN REG01[7:6] = 00  
(Approx. 60°C w/ 103AT)  
34.375%  
3%  
As percentage to VREGN REG01[7:6] = 00  
As percentage to VREGN REG01[7:6] = 10  
(Approx. 65°C w/ 103AT)  
31.25%  
3%  
V(BHOT2_HYS)  
PWM  
As percentage to VREGN REG01[7:6] =10  
FSW  
PWM switching frequency, and digital clock  
Maximum PWM duty cycle  
Oscillator frequency  
1.32  
1.68  
MHz  
DMAX  
97%  
64  
BOOST MODE OPERATION  
V(OTG_REG_RANGE) Typical boost mode regulation voltage range  
V(OTG_REG_STEP)  
4.55  
5.55  
3%  
V
Typical boost mode regulation voltage step  
Boost mode regulation voltage accuracy  
mV  
I(VBUS) = 0 A, BOOSTV=4.998V (REG0A[7:4]  
= 0111)  
V(OTG_REG_ACC)  
3%  
V(OTG_BAT)  
I(OTG)  
Battery voltage exiting boost mode  
BAT falling  
2.6  
0.5  
1.2  
5.8  
2.9  
2.45  
1.65  
V
A
A
V
Typical boost mode output current range  
Boost mode RBFET over-current protection accuracy  
Boost mode over-voltage threshold  
I(OTG_OCP_ACC)  
V(OTG_OVP)  
REGN LDO  
V(REGN)  
BOOST_LIM =1.2 A (REG0A[2:0]=010)  
Rising threshold  
6
REGN LDO output voltage  
REGN LDO current limit  
V(VBUS) = 9 V, I(REGN) = 40 mA  
V(VBUS) = 5 V, I(REGN) = 20 mA  
V(VBUS) = 9 V, V(REGN) = 3.8 V  
5.6  
4.7  
50  
6
6.4  
V
V
4.8  
I(REGN)  
mA  
ANALOG-TO-DIGITAL CONVERTER (ADC)  
RES  
Resolution  
Rising threshold  
7
bits  
V
V(VBUS) > VBAT + V(SLEEP) or OTG mode is  
enabled  
2.304  
4.848  
4.848  
VBAT(RANGE)  
Typical battery voltage range  
V(VBUS) < VBAT + V(SLEEP) and OTG mode is  
disabled  
VSYS_MIN  
V
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: BQ25890 BQ25892  
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
8.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VACOV and VVBUS > VBAT + VSLEEP, TJ = 40°C to +125°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V(BAT_RES)  
Typical battery voltage resolution  
20  
mV  
V(VBUS) > VBAT + V(SLEEP) or OTG mode is  
enabled  
2.304  
4.848  
4.848  
V
V
V(SYS_RANGE)  
Typical system voltage range  
V(VBUS) < VBAT + V(SLEEP) and OTG mode is  
disabled  
VSYS_MIN  
V(SYS_RES)  
Typical system voltage resolution  
Typical VVBUS voltage range  
20  
mV  
V
V(VBUS) > VBAT + V(SLEEP) or OTG mode is  
enabled  
2.6  
15.3  
V(VBUS_RANGE)  
V(VBUS_RES)  
IBAT(RANGE)  
Typical VVBUS voltage resolution  
Typical battery charge current range  
100  
mV  
A
V(VBUS) > VBAT + V(SLEEP) and VBAT  
VBAT(SHORT)  
>
0
6.4  
IBAT(RES)  
Typical battery charge current resolution  
Typical TS voltage range  
50  
mA  
V(TS_RANGE)  
V(TS_RES)  
21%  
80%  
Typical TS voltage resolution  
0.47%  
LOGIC I/O PIN (OTG, CE, PSEL, QON)  
VIH  
Input high threshold level  
1.3  
VIL  
Input low threshold level  
0.4  
1
V
µA  
V
IIN(BIAS)  
High Level Leakage Current  
Pull-up rail 1.8 V  
Battery only mode  
V(VBUS) = 9 V  
BAT  
5.8  
V(QON)  
Internal /QON pull-up  
V
V(VBUS) = 5 V  
4.3  
V
200  
R(QON)  
Internal /QON pull-up resistance  
kΩ  
LOGIC I/O PIN (INT, STAT, PG , DSEL)  
VOL  
Output low threshold level  
High level leakage current  
Sink current = 5 mA, sink current  
Pull-up rail 1.8 V  
0.4  
1
V
IOUT_BIAS  
µA  
I2C INTERFACE (SCL, SDA)  
VIH  
Input high threshold level, SCL and SDA  
Pull-up rail 1.8 V  
1.3  
VIL  
Input low threshold level  
Output low threshold level  
High level leakage current  
Pull-up rail 1.8 V  
0.4  
0.4  
1
V
V
VOL  
IBIAS  
Sink current = 5 mA, sink current  
Pull-up rail 1.8 V  
µA  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: BQ25890 BQ25892  
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
8.6 Timing Requirements  
MIN  
NOM  
MAX UNIT  
VBUS/BAT POWER UP  
tBADSRC  
Bad Adapter detection duration  
30  
msec  
BAT OVER-VOLTAGE PROTECTION  
Battery over-voltage deglitch time to disable  
charge  
tBATOVP  
1
µs  
BATTERY CHARGER  
tRECHG  
Recharge deglitch time  
20  
ms  
CURRENT PULSE CONTROL  
tPUMPX_STOP  
tPUMPX_ON1  
tPUMPX_ON2  
tPUMPX_OFF  
tPUMPX_DLY  
Current pulse control stop pulse  
430  
240  
70  
570  
360  
130  
130  
225  
ms  
ms  
ms  
ms  
ms  
Current pulse control long on pulse  
Current pulse control short on pulse  
Current pulse control off pulse  
70  
Current pulse control stop start delay  
80  
BATTERY MONITOR  
tCONV  
Conversion time  
CONV_RATE(REG02[6]) = 0  
8
1000  
ms  
QON AND SHIPMODE TIMING  
QON low time to turn on BATFET and exit ship  
mode  
tSHIPMODE  
1.25  
2.25  
s
TJ = 10°C to +60°C  
tQON_RST  
tBATFET_RST  
tSM_DLY  
QON low time to enable full system reset  
BATFET off time during full system reset  
Enter ship mode delay  
12  
350  
10  
18  
550  
15  
s
ms  
s
TJ = 10°C to +60°C  
TJ = 10°C to +60°C  
TJ = 10°C to +60°C  
I2C INTERFACE  
fSCL  
SCL clock frequency  
400 kHz  
DIGITAL CLOCK and WATCHDOG TIMER  
fLPDIG  
fDIG  
Digital low power clock  
Digital clock  
REGN LDO disabled  
REGN LDO enabled  
18  
30  
45 kHz  
1320  
1500  
1680 kHz  
WATCHDOG (REG07[5:4])=11,  
REGN LDO disabled  
100  
136  
160  
160  
s
s
tWDT  
Watchdog reset time  
WATCHDOG (REG07[5:4])=11,  
REGN LDO enabled  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: BQ25890 BQ25892  
 
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
8.7 Typical Characteristics  
95%  
94%  
93%  
92%  
91%  
90%  
89%  
88%  
87%  
86%  
85%  
95%  
93%  
91%  
89%  
87%  
85%  
83%  
81%  
79%  
77%  
75%  
VBUS = 5 V  
VBUS = 9 V  
VBUS = 12 V  
VBUS = 5 V  
VBUS = 9 V  
VBUS = 12 V  
0
0.5  
1
System Load Current (A)  
1.5  
2
0
1
2 3  
Charge Current (A)  
4
5
D002  
D001  
8-2. System Light Load Efficiency vs System Light Load  
VBAT = 3.8 V  
DCR = 10 mΩ  
Current  
8-1. Charge Efficiency vs Charge Current  
96%  
94%  
92%  
90%  
88%  
86%  
84%  
82%  
80%  
6%  
5%  
4%  
3%  
2%  
1%  
0
-1%  
-2%  
-3%  
-4%  
VBAT = 3.1 V  
VBAT = 3.8 V  
VBUS = 3.2 V  
VBUS = 3.8 V  
-5%  
-6%  
0.5  
1
1.5  
2
2.5  
3
Charge Current (A)  
3.5  
4
4.5  
5
0
0.5  
1
1.5  
VBUS (A)  
2
2.5  
D005  
D003  
VBUS = 9 V  
8-3. Boost Mode Efficiency vs VBUS Load Current  
8-4. Charge Current Accuracy vs Charge Current I2C Setting  
3.7  
3.68  
3.66  
3.64  
3.62  
3.6  
4.5  
4.45  
4.4  
4.35  
4.3  
4.25  
4.2  
3.58  
3.56  
3.54  
4.15  
4.1  
3.52  
4.05  
VBUS = 5 V  
VBUS = 5 V  
3.5  
4
0
0.5  
1
System Load Current (A)  
1.5  
2
2.5  
3
0
0.5  
1
System Load Current (A)  
1.5  
2
2.5  
3
D006  
D007  
VBAT = 2.9 V  
VBUS = 5 V  
SYSMIN = 3.5 V  
VBAT = 4.2 V  
8-5. SYS Voltage Regulation vs System Load Current  
8-6. SYS Voltage Regulation vs System Load Current  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: BQ25890 BQ25892  
 
 
 
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
8.7 Typical Characteristics (continued)  
4.42  
4.4  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
4.38  
4.36  
4.34  
4.32  
4.3  
4.28  
4.26  
4.24  
4.22  
4.2  
4.18  
4.16  
4.14  
4.12  
4.1  
IINLM = 500 mA  
IINLM = 900 mA  
IINLIM = 1.5 A  
VBUS = 5 V  
VBUS = 12 V  
-60 -40 -20  
0
20 40 60 80 100 120 140150  
Temperature (èC)  
-50  
0
50  
Temperature (èC)  
100  
150  
D009  
D008  
8-8. Input Current Limit vs Temperature  
8-7. BAT Voltage vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: BQ25890 BQ25892  
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
9 Detailed Description  
The device is a highly integrated 5-A siwtch-mode battery charger for single cell Li-Ion and Li-polymer battery. It  
is highly integrated with the input reverse-blocking FET (RBFET, Q1), high-side siwtching FET (HSFET, Q2) ,  
low-side switching FET (LSFET, Q3), and battery FET (BATFET, Q4). The device also integrates the boostrap  
diode for the high-side gate drive.  
9.1 Functional Block Diagram  
VBUS  
RBFET  
PMID  
(Q1)  
VVBUS_UVLOZ  
UVLO  
Q1 Gate  
Control  
V
BATZ +80mV  
SLEEP  
ACOV  
REGN  
BTST  
REGN  
LDO  
EN_HIZ  
V
ACOV  
FBO  
VBUS  
VBUS_OVP_BOOST  
Q2_UCP_BOOST  
V OTG_OVP  
IQ2  
VINDPM  
V
OTG_HSZCP  
SW  
IQ3  
Q3_OCP_BOOST  
HSFET (Q2)  
REGN  
V
CONVERTER  
CONTROL  
IINDPM  
OTG_BAT  
BAT  
BATOVP  
IC TJ  
TREG  
104%xVBAT_REG  
BAT  
I LSFET_UCP  
LSFET (Q3)  
V BAT_REF  
PGND  
UCP  
IQ2  
Q2_OCP  
IQ3  
SYS  
I HSFET_OCP  
ICHG  
VSYSMIN  
EN_HIZ  
EN_CHARGE  
EN_BOOST  
V BTST -VSW  
ICHG_REF  
REFRESH  
VBTST_REFRESH  
SYS  
ICHG  
REF  
DAC  
Q4 Gate  
Control  
IBADSRC  
BATFET  
(Q4)  
BAD_SRC  
IDC  
ILIM  
Converter  
Control State  
Machine  
DSEL (BQ25890)  
IC TJ  
TSHUT  
TSHUT  
BAT  
VQON  
BAT  
D+ (BQ25890)  
Dœ (BQ25890)  
PSEL(BQ25892)  
OTG  
BAT_GD  
Input  
Source  
Detection  
VBATGD  
/QON  
USB  
ICHG  
ADC Control  
Adapter  
VBUS  
BAT  
SYS  
TS  
-VRECHG  
VREG  
BAT  
RECHRG  
ADC  
INT  
ICHG  
TERMINATION  
BATLOWV  
CHARGE  
CONTROL  
STATE  
ITERM  
V BATLOWV  
BAT  
STAT  
BQ25890/892  
MACHINE  
V SHORT  
BAT  
I2C  
Interface  
BATSHORT  
SUSPEND  
/PG(BQ25892)  
Battery  
Sensing  
Thermistor  
TS  
SCL SDA  
CE  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: BQ25890 BQ25892  
 
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
9.2 Feature Description  
9.2.1 Device Power-On-Reset (POR)  
The internal bias circuits are powered from the higher voltage of VBUS and BAT. When VBUS rises above  
VVBUS_UVLOZ or BAT rises above VBAT_UVLOZ , the sleep comparator, battery depletion comparator and BATFET  
driver are active. I2C interface is ready for communication and all the registers are reset to default value. The  
host can access all the registers after POR.  
9.2.2 Device Power Up from Battery without Input Source  
If only battery is present and the voltage is above depletion threshold (VBAT_DPLZ), the BATFET turns on and  
connects battery to system. The REGN LDO stays off to minimize the quiescent current. The low RDS(ON) of  
BATFET and the low quiescent current on BAT minimize the conduction loss and maximize the battery run time.  
The device always monitors the discharge current through BATFET (9.2.6.3). When the system is overloaded  
or shorted (IBAT > IBATFET_OCP), the device turns off BATFET immediately and set BATFET_DIS bit to indicate  
BATFET is disabled until the input source plugs in again or one of the methods describe in 9.2.10.2 is applied  
to re-enable BATFET.  
9.2.3 Device Power Up from Input Source  
When an input source is plugged in, the device checks the input source voltage to turn on REGN LDO and all  
the bias circuits. It detects and sets the input current limit before the buck converter is started when  
AUTO_DPDM_EN bit is set. The power up sequence from input source is as listed:  
1. Power Up REGN LDO  
2. Poor Source Qualification  
3. 9.2.3.3 based on D+/D- (BQ25890) or PSEL (BQ25892) to set default Input Current Limit (IINLIM) register  
and input source type  
4. Input Voltage Limit Threshold Setting (VINDPM threshold)  
5. Converter Power-up  
9.2.3.1 Power Up REGN Regulation (LDO)  
The REGN LDO supplies internal bias circuits as well as the HSFET and LSFET gate drive. The LDO also  
provides bias rail to TS external resistors. The pull-up rail of STAT and PG can be connected to REGN as well.  
The REGN is enabled when all the below conditions are valid.  
1. VBUS above VVBUS_UVLOZ  
2. VBUS above VBAT + VSLEEPZ in buck mode or VBUS below VBAT + VSLEEP in boost mode  
3. After 220 ms delay is completed  
If one of the above conditions is not valid, the device is in high impedance mode (HIZ) with REGN LDO off. The  
device draws less than IVBUS_HIZ from VBUS during HIZ state. The battery powers up the system when the  
device is in HIZ.  
9.2.3.2 Poor Source Qualification  
After REGN LDO powers up, the device checks the current capability of the input source. The input source has  
to meet the following requirements in order to start the buck converter.  
1. VBUS voltage below VACOV  
2. VBUS voltage above VVBUSMIN when pulling IBADSRC (typical 30mA)  
Once the input source passes all the conditions above, the status register bit VBUS_GD is set high and the INT  
pin is pulsed to signal to the host. If the device fails the poor source detection, it repeats poor source  
qualification every 2 seconds.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: BQ25890 BQ25892  
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
9.2.3.3 Input Source Type Detection  
After the VBUS_GD bit is set and REGN LDO is powered, the charger device runs 9.2.3.3 when  
AUTO_DPDM_EN bit is set.  
The BQ25890 follows the USB Battery Charging Specification 1.2 (BC1.2) and to detect input source (SDP/CDP/  
DCP) and non-standard adapter through USB D+/D- lines. In addition, when USB DCP is detected, it initiates  
adjustable high voltage adapter handshake on D+/D-. The device supports MaxCharge™ handshake when  
MAXC_EN or HVDCP_EN is set. The BQ25892 sets input current limit through PSEL and OTG pins.  
After input source type detection, an INT pulse is asserted to the host. In addition, the following registers and pin  
are changed:  
1. Input Current Limit (IINLIM) register is changed to set current limit  
2. PG_STAT bit is set  
3. PG pin goes low (BQ25892)  
The host can over-write IINLIM register to change the input current limit if needed. The charger input current is  
always limited by the lower of IINLIM register or ILIM pin at all-time regardless of Input Current Optimizer (ICO)  
is enable or disabled.  
When AUTO_DPDM_EN is disabled, the 9.2.3.3 is bypassed. The Input Current Limit (IINLIM) register,  
VBUS_STAT, and SPD_STAT bits are unchanged from previous values.  
9.2.3.3.1 D+/DDetection Sets Input Current Limit (BQ25890)  
The BQ25890 contains a D+/Dbased input source detection to set the input current limit automatically. The  
D+/D- detection includes standard USB BC1.2, non-standard adapter, and adjustable high voltage adapter  
detections. When input source is plugged-in, the device starts standard USB BC1.2 detections. The USB BC1.2  
is capable to identify Standard Downstream Port (SDP), Charging Downstream Port (CDP), and Dedicated  
Charging Port (DCP). When the Data Contact Detection (DCD) timer of 500ms is expired, the non-standard  
adapter detection is applied to set the input current limit.  
When DCP is detected, the device initates adjustable high voltage adapter handshake including MaxCharge™,  
etc. The handshake connects combinations of voltage source(s) and/or current sink on D+/D- to signal input  
source to raise output voltage from 5 V to 9 V / 12 V. The adjustable high voltage adapter handshake can be  
disabled by clearing MAXC_EN and/or HVDCP_EN bits.  
Non-Standard Adapter  
(Divider 1: 2.1A)  
(Divider 2: 2A)  
(Divider 3: 1A)  
Non-Standard  
Adapter  
(Divider 4: 2.4A)  
Adapter Plug-in  
or  
EN_DPDM  
USB BC1.2  
Detection  
Ajustable High Voltage Adapter  
Handshake  
SDP (USB500)  
(500mA)  
CDP  
(1.5A)  
MaxCharge™ Apapter  
(1.5A)  
DCP  
(3.25A)  
9-1. USB D+/D- Detection  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: BQ25890 BQ25892  
 
 
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
9-1. Non-Standard Adapter Detection  
NON-STANDARD  
ADAPTER  
D+ THRESHOLD  
D- THRESHOLD  
INPUT CURRENT LIMIT  
Divider 1  
Divider 2  
Divider 3  
Divider 4  
VD+ within V2P7_VTH  
VD+ within V1P2_VTH  
VD+ within V2P0_VTH  
VD+ within V2P7_VTH  
VD- within V2P0_VTH  
VD- within V1P2_VTH  
VD- within V2P7_VTH  
VD- within V2P7_VTH  
2.1A  
2A  
1A  
2.4A  
9-2. Adjustable High Voltage Adapter D+/D- Output Configurations  
ADJUSTABLE HIGH VOLTAGE HANDSHAKE  
D+  
D-  
OUTPUT  
MaxCharge (12V)  
I1P6MA_ISINK  
V3p45_VSRC  
V3p45_VSRC  
I1P6MA_ISINK  
12 V  
MaxCharge (9V)  
9 V  
After the 9.2.3.3 is done, an INT pulse is asserted to the host. In addition, the following registers including  
Input Current Limit register (IINLIM), VBUS_STAT, and SDP_STAT are updated as below:  
9-3. BQ25890 Result  
INPUT CURRENT LIMIT (IINLIM)  
D+/D- DETECTION  
SDP_STAT  
VBUS_STAT  
(1)  
USB SDP (USB500)  
USB CDP  
500 mA  
1.5 A  
3.25 A  
1 A  
1
1
1
1
1
1
1
1
1
001  
010  
011  
110  
110  
110  
110  
100  
101  
USB DCP  
Divider 3  
Divider 1  
2.1 A  
2.4 A  
2 A  
Divider 4  
Divider 2  
MaxCharge  
Unknown Adapter  
1.5 A  
500 mA  
(1) 500 mA current limit for 2 min.  
9.2.3.3.2 PSEL/OTG Pins Set Input Current Limit (BQ25892)  
The BQ25892 has PSEL/OTG interface for input current limit setting to interface with USB PHY. It directly takes  
the USB PHY device output to decide whether the input is USB host or charging port. To implement USB100 in  
the system, the host can enter HiZ mode by setting EN_HIZ bit after 2 min charging with 500 mA input current  
limit.  
9-4. BQ25892 Result  
INPUT CURRENT LIMIT  
INPUT DETECTION  
BAT VOLTAGE  
PSEL PIN  
SDP_STAT  
VBUS_STAT  
(IINLIM)  
500mA  
3.25A  
USB SDP (USB500)  
Adapter  
X
X
High  
Low  
1
1
001  
010  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: BQ25890 BQ25892  
 
 
 
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
9.2.3.3.3 Force Input Current Limit Detection  
In host mode, the host can force the device to run by setting FORCE_DPDM bit. After the detection is  
completed, FORCE_DPDM bit returns to 0 by itself and Input Result is updated.  
9.2.3.4 Input Voltage Limit Threshold Setting (VINDPM Threshold)  
The device supports wide range of input voltage limit (3.9 V 14 V) for high voltage charging and provides two  
methods to set Input Voltage Limit (VINDPM) threshold to facilitate autonomous detection.  
1. Absolute VINDPM (FORCE_VINDPM=1)  
By setting FORCE_VINDPM bit to 1, the VINDPM threshold setting algorithm is disabled. Register VINDPM  
is writable and allows host to set the absolute threshold of VINDPM function.  
2. Relative VINDPM based on VINDPM_OS registers (FORCE_VINDPM=0) (Default)  
When FORCE_VINDPM bit is 0 (default), the VINDPM threshold setting algorithm is enabled. The VINDPM  
register is read only and the charger controls the register by using VINDPM Threshold setting algorithm. The  
algorithm allows a wide range of adapter (VVBUS_OP) to be used with flexible VINDPM threshold.  
After Input Voltage Limit Threshold is set, an INT pulse is generated to signal to the host.  
9.2.3.5 Converter Power-Up  
After the input current limit is set, the converter is enabled and the HSFET and LSFET start switching. If battery  
charging is disabled, BATFET turns off. Otherwise, BATFET stays on to charge the battery.  
The device provides soft-start when system rail is ramped up. When the system rail is below 2.2 V, the input  
current limit is forced to the lower of 200 mA or IINLIM register setting. After the system rises above 2.2 V, the  
device limits input current to the lower value of ILIM pin and IILIM register (ICO_EN = 0) or IDPM_LIM register  
(ICO_EN = 1).  
As a battery charger, the device deploys a highly efficient 1.5 MHz step-down switching regulator. The fixed  
frequency oscillator keeps tight control of the switching frequency under all conditions of input voltage, battery  
voltage, charge current and temperature, simplifying output filter design.  
A type III compensation network allows using ceramic capacitors at the output of the converter. An internal saw-  
tooth ramp is compared to the internal error control signal to vary the duty cycle of the converter. The ramp  
height is proportional to the PMID voltage to cancel out any loop gain variation due to a change in input voltage.  
In order to improve light-load efficiency, the device switches to PFM control at light load when battery is below  
minimum system voltage setting or charging is disabled. During the PFM operation, the switching duty cycle is  
set by the ratio of SYS and VBUS.  
9.2.4 Input Current Optimizer (ICO)  
The device provides innovative Input Current Optimizer (ICO) to identify maximum power point without overload  
the input source. The algorithm automatically identify maximum input current limit of power source without  
entering VINDPM to avoid input source overload.  
This feature is enabled by default (ICO_EN=1) and can be disabled by setting ICO_EN bit to 0. After DCP or  
MaxCharge type input source is detected based on the procedures previously described (9.2.3.3). The  
algorithm runs automatically when ICO_EN bit is set. The algorithm can also be forced to execute by setting  
FORCE_ICO bit regardless of input source type detected.  
The actual input current limit used by the 9.2.6.2 is reported in IDPM_LIM register while Input Current  
Optimizer is enabled (ICO_EN = 1) or set by IINLIM register when the algorithm is disabled (ICO_EN = 0). In  
addition, the current limit is clamped by ILIM pin unless EN_ILIM bit is 0 to disable ILIM pin function.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: BQ25890 BQ25892  
 
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
9.2.5 Boost Mode Operation from Battery  
The device supports boost converter operation to deliver power from the battery to other portable devices  
through USB port. The boost mode output current rating meets the USB On-The-Go 500 mA (BOOST_LIM bits =  
000) output requirement. The maximum output current is up to 2.4 A. The boost operation can be enabled if the  
conditions are valid:  
1. BAT above BATLOWV  
2. VBUS less than BAT+VSLEEP (in sleep mode)  
3. Boost mode operation is enabled (OTG pin HIGH and OTG_CONFIG bit =1)  
4. Voltage at TS (thermistor) pin is within range configured by Boost Mode Temperature Monitor as configured  
by BHOT and BCOLD bits  
5. After 30 ms delay from boost mode enable  
In boost mode, the device employs a 500 KHz or 1.5 MHz (selectable using BOOST_FREQ bit) step-up  
switching regulator based on system requirements. To avoid frequency change during boost mode operations,  
write to boost frequency configuration bit (BOOST_FREQ) is ignored when OTG_CONFIG is set.  
During boost mode, the status register VBUS_STAT bits is set to 111, the VBUS output is 5V by default  
(selectable via BOOSTV register bits) and the output current can reach up to 2.4 A, selected via I2C  
(BOOST_LIM bits). The boost output is maintained when BAT is above VOTG_BAT threshold  
9.2.6 Power Path Management  
The device accommodates a wide range of input sources from USB, wall adapter, to car battery. The device  
provides automatic power path selection to supply the system (SYS) from input source (VBUS), battery (BAT), or  
both.  
9.2.6.1 Narrow VDC Architecture  
The device deploys Narrow VDC architecture (NVDC) with BATFET separating system from battery. The  
minimum system voltage is set by SYS_MIN bits. Even with a fully depleted battery, the system is regulated  
above the minimum system voltage (default 3.5 V).  
When the battery is below minimum system voltage setting, the BATFET operates in linear mode (LDO mode),  
and the system is regulated above the minimum system voltage setting. As the battery voltage rises above the  
minimum system voltage, BATFET is fully on and the voltage difference between the system and battery is the  
VDS of BATFET. The status register VSYS_STAT bit goes high when the system is in minimum system voltage  
regulation.  
4.4  
Minimum System Voltage  
SYS (Charge Disabled)  
SYS (Charge Enabled)  
4.2  
4
3.8  
3.6  
3.4  
2.7  
2.9  
3.1  
3.3  
3.5  
BAT (V)  
3.7  
3.9  
4.1  
4.3  
D011  
9-2. V(SYS) vs V(BAT)  
9.2.6.2 Dynamic Power Management  
To meet maximum current limit in USB spec and avoid over loading the adapter, the device features Dynamic  
Power Management (DPM), which continuously monitors the input current and input voltage. When input source  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: BQ25890 BQ25892  
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
is over-loaded, either the current exceeds the input current limit (IINLIM or IDPM_LIM) or the voltage falls below  
the input voltage limit (VINDPM). The device then reduces the charge current until the input current falls below  
the input current limit and the input voltage rises above the input voltage limit.  
When the charge current is reduced to zero, but the input source is still overloaded, the system voltage starts to  
drop. Once the system voltage falls below the battery voltage, the device automatically enters the 9.2.6.3  
where the BATFET turns on and battery starts discharging so that the system is supported from both the input  
source and battery.  
During DPM mode, the status register bits VDPM_STAT (VINDPM) and/or IDPM_STAT (IINDPM) is/are set high.  
9-3 shows the DPM response with 9V/1.2A adapter, 3.2-V battery, 2.8-A charge current and 3.4-V minimum  
system voltage setting.  
Voltage  
VBUS  
SYS  
BAT  
3.6V  
3.4V  
3.2V  
3.18V  
Current  
4A  
ICHG  
3.2A  
2.8A  
ISYS  
1.2A  
1.0A  
IIN  
0.5A  
-0.6A  
DPM  
DPM  
Supplement  
9-3. DPM Response  
9.2.6.3 Supplement Mode  
When the system voltage falls below the battery voltage, the BATFET turns on and the BATFET gate is  
regulated the gate drive of BATFET so that the minimum BATFET VDS stays at 30 mV when the current is low.  
This prevents oscillation from entering and exiting the 9.2.6.3. As the discharge current increases, the  
BATFET gate is regulated with a higher voltage to reduce RDS(ON) until the BATFET is in full conduction. At this  
point onwards, the BATFET VDS linearly increases with discharge current. 9-4 shows the V-I curve of the  
BATFET gate regulation operation. BATFET turns off to exit 9.2.6.3 when the battery is below battery  
depletion threshold.  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0
5
10 15 20 25 30 35 40 45 50 55  
V(BAT_SYS) (mV)  
D010  
9-4. BATFET V-I Curve  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: BQ25890 BQ25892  
 
 
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
9.2.7 Battery Charging Management  
The device charges 1-cell Li-Ion battery with up to 5-A charge current for high capacity battery. The 11-mΩ  
BATFET improves charging efficiency and minimize the voltage drop during discharging.  
9.2.7.1 Autonomous Charging Cycle  
With battery charging is enabled (CHG_CONFIG bit = 1 and CE pin is low), the device autonomously completes  
a charging cycle without host involvement. The device default charging parameters are listed in 9-5. The host  
can always control the charging operations and optimize the charging parameters by writing to the  
corresponding registers through I2C.  
9-5. Charging Parameter Default Setting  
DEFAULT MODE  
Charging Voltage  
Charging Current  
Pre-charge Current  
Termination Current  
Temperature Profile  
Safety Timer  
BQ25890  
4.208 V  
2.048 A  
128 mA  
256 mA  
JEITA  
BQ25892  
4.208 V  
2.048 A  
128 mA  
256 mA  
JEITA  
12 hour  
12 hour  
A new charge cycle starts when the following conditions are valid:  
Converter starts  
Battery charging is enabled by setting CHG_CONFIG bit, /CE pin is low and ICHG register is not 0 mA  
No thermistor fault on TS pin  
No safety timer fault  
BATFET is not forced to turn off (BATFET_DIS bit = 0)  
The charger device automatically terminates the charging cycle when the charging current is below termination  
threshold, charge voltage is above recharge threshold, and device not in DPM mode or thermal regulation. When  
a full battery voltage is discharged below recharge threshold (threshold selectable via VRECHG bit), the device  
automatically starts a new charging cycle. After the charge is done, either toggle CE pin or CHG_CONFIG bit  
can initiate a new charging cycle.  
The STAT output indicates the charging status of charging (LOW), charging complete or charge disable (HIGH)  
or charging fault (Blinking). The STAT output can be disabled by setting STAT_DIS bit. In addition, the status  
register (CHRG_STAT) indicates the different charging phases: 00-charging disable, 01-precharge, 10-fast  
charge (constant current) and constant voltage mode, 11-charging done. Once a charging cycle is completed, an  
INT is asserted to notify the host.  
9.2.7.2 Battery Charging Profile  
The device charges the battery in three phases: preconditioning, constant current and constant voltage. At the  
beginning of a charging cycle, the device checks the battery voltage and regulates current / voltage.  
9-6. Charging Current Setting  
VBAT  
< 2 V  
CHARGING CURRENT  
REG DEFAULT SETTING  
CHRG_STAT  
IBATSHORT  
01  
01  
10  
IPRECHG  
128 mA  
2048 mA  
2 V 3 V  
> 3 V  
ICHG  
If the charger device is in DPM regulation or thermal regulation during charging, the charging current can be less  
than the programmed value. In this case, termination is temporarily disabled and the charging safety timer is  
counted at half the clock rate.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: BQ25890 BQ25892  
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
Regulation Voltage  
(3.84V t 4.608V)  
Battery Voltage  
Charge Current  
Fast Charge Current  
(128mA-5056mA)  
V
BAT_LOWV (2.8V/3V)  
V
BAT_SHORT (2V)  
I
PRECHARGE (64mA-1024mA)  
TERMINATION (64mA-1024mA)  
BATSHORT (100mA)  
I
I
Fast Charge and Voltage Regulation  
Trickle Charge  
Pre-charge  
Safety Timer  
Expiration  
9-5. Battery Charging Profile  
9.2.7.3 Charging Termination  
The device terminates a charge cycle when the battery voltage is above recharge threshold, and the current is  
below termination current. After the charging cycle is completed, the BATFET turns off. The converter keeps  
running to power the system, and BATFET can turn on again to engage 9.2.6.3.  
When termination occurs, the status register CHRG_STAT is set to 11, and an INT pulse is asserted to the host.  
Termination is temporarily disabled when the charger device is in input current, voltage or thermal regulation.  
Termination can be disabled by writing 0 to EN_TERM bit prior to charge termination.  
9.2.7.4 Resistance Compensation (IRCOMP)  
For high current charging system, resistance between charger output and battery cell terminal such as board  
routing, connector, MOSFETs and sense resistor can force the charging process to move from constant current  
to constant voltage too early and increase charge time. To speed up the charging cycle, the device provides  
resistance compensation (IRCOMP) feature which can extend the constant current charge time to delivery  
maximum power to battery.  
The device allows the host to compensate for the resistance by increasing the voltage regulation set point based  
on actual charge current and the resistance as shown below. For safe operation, the host should set the  
maximum allowed regulation voltage register (VCLAMP) and the minimum resistance compensation (BATCOMP).  
VREG_ACTUAL = VREG + min(ICHRG_ACTUAL x BATCOMP, VCLAMP  
)
(1)  
9.2.7.5 Thermistor Qualification  
9.2.7.5.1 JEITA Guideline Compliance in Charge Mode  
To improve the safety of charging Li-ion batteries, JEITA guideline was released on April 20, 2007. The guideline  
emphasized the importance of avoiding a high charge current and high charge voltage at certain low and high  
temperature ranges.  
The device continuously monitors battery temperature by measuring the voltage between the TS pins and  
ground, typically determined by a negative temperature coefficient thermistor (NTC) and an external voltage  
divider. The device compares this voltage against its internal thresholds to determine if charging is allowed. To  
initiate a charge cycle, the voltage on TS pin must be within the VT1 to VT5 thresholds. If TS voltage exceeds the  
T1T5 range, the controller suspends charging and waits until the battery temperature is within the T1 to T5  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: BQ25890 BQ25892  
 
 
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
range. At cool temperature (T1T2), JEITA recommends the charge current to be reduced to at least half of the  
charge current or lower. At warm temperature (T3T5), JEITA recommends charge voltage below nominal  
charge voltage.  
The device provides flexible voltage/current settings beyond the JEITA requirement. The voltage setting at warm  
temperature (T3T5) can be 200 mV below charge voltage (JEITA_VSET=0). The current setting at cool  
temperature (T1T2) can be further reduced to 20% or 50% of fast charge current (JEITA_ISET bit).  
REGN  
BQ2589x  
RT1  
TS  
RTH  
RT2  
103AT  
9-6. TS Resistor Network  
VREG  
VREG - 200 mV  
9-7. Charging Values  
Assuming a 103AT NTC thermistor on the battery pack as shown in 9-6, the value RT1 and RT2 can be  
determined by using 方程2:  
1
1
æ
ö
VREGN ´RTHCOLD ´RTHHOT  
´
-
VT1 VT5  
ç
÷
è
ø
RT2 =  
V
V
æ
ö
æ
ö
REGN  
REGN  
RTHHOT  
´
-1 - RTHCOLD  
´
ç
-1  
÷
ç
÷
VT5  
VT1  
è
ø
è
ø
VREGN  
VT1  
-1  
RT1=  
1
1
+
RT2 RTHCOLD  
(2)  
Select 0°C to 60°C range for Li-ion or Li-polymer battery,  
RTHT1 = 27.28 kΩ  
RTHT5 = 3.02 kΩ  
RT1 = 5.24 kΩ  
RT2 = 30.31 kΩ  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: BQ25890 BQ25892  
 
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
9.2.7.5.2 Cold/Hot Temperature Window in Boost Mode  
For battery protection during boost mode, the device monitors the battery temperature to be within the VBCOLDx  
to VBHOTx thresholds unless boost mode temperature is disabled by setting BHOT bits to 11. When temperature  
is outside of the temperature thresholds, the boost mode is suspended. Once temperature is within thresholds,  
the boost mode is recovered.  
Temperature Range to  
Boost  
VREGN  
Boost Disable  
V
BCOLDx  
(-  
10ºC / 20ºC)  
Boost Enable  
V
BHOTx  
(55ºC / 60ºC / 65ºC)  
Boost Disable  
AGND  
9-8. TS Pin Thermistor Sense Thresholds in Boost Mode  
9.2.7.6 Charging Safety Timer  
The device has built-in safety timer to prevent extended charging cycle due to abnormal battery conditions. The  
safety timer is 4 hours when the battery is below VBATLOWV threshold. The user can program fast charge safety  
timer through I2C (CHG_TIMER bits). When safety timer expires, the fault register CHRG_FAULT bits are set to  
11 and an INT is asserted to the host. The safety timer feature can be disabled via I2C by setting EN_TIMER bit.  
During input voltage, current or thermal regulation, the safety timer counts at half clock rate as the actual charge  
current is likely to be below the register setting. For example, if the charger is in input current regulation  
(IDPM_STAT = 1) throughout the whole charging cycle, and the safety time is set to 5 hours, the safety timer will  
expire in 10 hours. This half clock rate feature can be disabled by writing 0 to TMR2X_EN bit.  
9.2.8 Battery Monitor  
The device includes a battery monitor to provide measurements of VBUS voltage, battery voltage, system  
voltage, thermistor ratio, and charging current, and charging current based on the device modes of operation.  
The measurements are reported in Battery Monitor Registers (REG0E-REG12). The battery monitor can be  
configured as two conversion modes by using CONV_RATE bit: one-shot conversion (default) and 1 second  
continuous conversion.  
For one-shot conversion (CONV_RATE = 0), the CONV_START bit can be set to start the conversion. During the  
conversion, the CONV_START is set and it is cleared by the device when conversion is completed. The  
conversion result is ready after tCONV (maximum 1 second).  
For continuous conversion (CONV_RATE = 1), the CONV_RATE bit can be set to initiate the conversion. During  
active conversion, the CONV_START is set to indicate conversion is in progress. The battery monitor provides  
conversion result every 1 second automatically. The battery monitor exits continuous conversion mode when  
CONV_RATE is cleared.  
When battery monitor is active, the REGN power is enabled and can increase device quiescent current. In  
battery only mode, the battery monitor is only active when V(BAT) > SYS_MIN setting in REG03.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: BQ25890 BQ25892  
 
 
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
9-7. Battery Monitor Modes of Operation  
MODES OF OPERATION  
PARAMETER  
REGISTER  
CHARGE  
MODE  
DISABLE CHARGE  
BATTERY ONLY  
MODE  
BOOST MODE  
MODE  
Yes  
Battery Voltage (VBAT  
System Voltage (VSYS  
Temperature (TS) Voltage (VTS  
VBUS Voltage (VVBUS  
Charge Current (IBAT  
)
REG0E  
REG0F  
REG10  
REG11  
REG12  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
NA  
Yes  
Yes  
Yes  
NA  
)
Yes  
)
Yes  
)
Yes  
)
NA  
NA  
9.2.9 Status Outputs ( PG, STAT, and INT)  
9.2.9.1 Power Good Indicator ( PG)  
In BQ25892, the PG goes LOW to indicate a good input source when:  
1. VBUS above VVBUS_UVLO  
2. VBUS above battery (not in sleep)  
3. VBUS below VACOV threshold  
4. VBUS above VVBUSMIN (typical 3.8 V) when IBADSRC (typical 30 mA) current is applied (not a poor source)  
5. Completed 9.2.3.3  
9.2.9.2 Charging Status Indicator (STAT)  
The device indicates charging state on the open drain STAT pin. The STAT pin can drive LED as shown in 图  
10-1. The STAT pin function can be disable by setting STAT_DIS bit.  
9-8. STAT Pin State  
CHARGING STATE  
STAT INDICATOR  
LOW  
Charging in progress (including recharge)  
Charging complete  
HIGH  
Sleep mode, charge disable  
HIGH  
Charge suspend (Input overvoltage, TS fault, timer fault, input or system overvoltage).  
Boost Mode suspend (due to TS Fault)  
blinking at 1 Hz  
9.2.9.3 Interrupt to Host (INT)  
In some applications, the host does not always monitor the charger operation. The INT notifies the system on the  
device operation. The following events will generate 256-µs INT pulse.  
USB/adapter source identified (through PSEL or DPDM detection, with OTG pin)  
Good input source detected  
VBUS above battery (not in sleep)  
VBUS below VACOV threshold  
VBUS above VVBUSMIN (typical 3.8 V) when IBADSRC (typical 30 mA) current is applied (not a poor source)  
Input removed  
Charge Complete  
Any FAULT event in REG0C  
When a fault occurs, the charger device sends out INT and keeps the fault state in REG0C until the host reads  
the fault register. Before the host reads REG0C and all the faults are cleared, the charger device would not send  
any INT upon new faults. To read the current fault status, the host has to read REG0C two times consecutively.  
The 1st read reports the pre-existing fault register status and the 2nd read reports the current fault register status.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: BQ25890 BQ25892  
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
9.2.10 BATET (Q4) Control  
9.2.10.1 BATFET Disable Mode (Shipping Mode)  
To extend battery life and minimize power when system is powered off during system idle, shipping, or storage,  
the device can turn off BATFET so that the system voltage is zero to minimize the battery leakage current. When  
the host set BATFET_DIS bit, the charger can turn off BATFET immediately or delay by tSM_DLY as configurated  
by BATFET_DLY bit.  
9.2.10.2 BATFET Enable (Exit Shipping Mode)  
When the BATFET is disabled (in shipping mode) and indicated by setting BATFET_DIS, one of the following  
events can enable BATFET to restore system power:  
1. Plug in adapter  
2. Clear BATFET_DIS bit  
3. Set REG_RST bit to reset all registers including BATFET_DIS bit to default (0)  
4. A logic high to low transition on QON pin with tSHIPMODE deglitch time to enable BATFET to exit shipping  
mode  
9.2.10.3 BATFET Full System Reset  
The BATFET functions as a load switch between battery and system when input source is not plugged-in. By  
changing the state of BATFET from off to on, system connects to SYS can be effectively have a power-on-reset.  
The QON pin supports push-button interface to reset system power without host by change the state of BATFET.  
When the QON pin is driven to logic low for tQON_RST (typical 15 seconds) while input source is not plugged in  
and BATFET is enabled (BATFET_DIS=0), the BATFET is turned off for tBATFET_RST and then it is re-enabled to  
reset system power. This function can be disabled by setting BATFET_RST_EN bit to 0.  
9.2.11 Current Pulse Control Protocol  
The device provides the control to generate the VBUS current pulse protocol to communicate with adjustable  
high voltage adapter in order to signal adapter to increase or decrease output voltage. To enable the interface,  
the EN_PUMPX bit must be set. Then the host can select the increase/decrease voltage pulse by setting one of  
the PUMPX_UP or PUMPX_DN bit (but not both) to start the VBUS current pulse sequence. During the current  
pulse sequence, the PUMPX_UP and PUMPX_DN bits are set to indicate pulse sequence is in progress and the  
device pulses the input current limit between current limit set forth by IINLIM or IDPM_LIM register and the  
100mA current limit (IINDPM100_ACC). When the pulse sequence is completed, the input current limit is returned to  
value set by IINLIM or IDPM_LIM register and the PUMPX_UP or PUMPX_DN bit is cleared. In addition, the  
EN_PUMPX can be cleared during the current pulse sequence to terminate the sequence and force charger to  
return to input current limit as set forth by the IINLIM or IDPM_LIM register immediately. When EN_PUMPX bit is  
low, write to PUMPX_UP and PUMPX_DN bit would be ignored and have no effect on VBUS current limit.  
9.2.12 Input Current Limit on ILIM  
For safe operation, the device has an additional hardware pin on ILIM to limit maximum input current on ILIM pin.  
The input maximum current is set by a resistor from ILIM pin to ground as:  
K
ILIM  
I
=
INMAX  
R
ILIM  
(3)  
The actual input current limit is the lower value between ILIM setting and register setting (IINLIM). For example,  
if the register setting is 111111 for 3.25 A, and ILIM has a 260-Ωresistor (KILIM = 390 max.) to ground for 1.5 A,  
the input current limit is 1.5 A. ILIM pin can be used to set the input current limit rather than the register settings  
when EN_ILIM bit is set. The device regulates ILIM pin at 0.8 V. If ILIM voltage exceeds 0.8 V, the device enters  
input current regulation (refer to 9.2.6.2).  
The ILIM pin can also be used to monitor input current when EN_ILIM is enabled. The voltage on ILIM pin is  
proportional to the input current. ILIM pin can be used to monitor the input current following 方程4:  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: BQ25890 BQ25892  
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
K
x V  
ILIM  
ILIM  
I
=
IN  
R
x 0.8 V  
ILIM  
(4)  
For example, if ILIM pin is set with 260-Ωresistor, and the ILIM voltage is 0.4 V, the actual input current 0.615 A  
- 0.75 A (based on KILM specified). If ILIM pin is open, the input current is limited to zero since ILIM voltage  
floats above 0.8 V. If ILIM pin is short, the input current limit is set by the register.  
The ILIM pin function can be disabled by setting EN_ILIM bit to 0. When the pin is disabled, both input current  
limit function and monitoring function are not available.  
9.2.13 Thermal Regulation and Thermal Shutdown  
9.2.13.1 Thermal Protection in Buck Mode  
The device monitors the internal junction temperature TJ to avoid overheat the chip and limits the IC surface  
temperature in buck mode. When the internal junction temperature exceeds the preset thermal regulation limit  
(TREG bits), the device lowers down the charge current. The wide thermal regulation range from 60°C to 120°C  
allows the user to optimize the system thermal performance.  
During thermal regulation, the actual charging current is usually below the programmed battery charging current.  
Therefore, termination is disabled, the safety timer runs at half the clock rate, and the status register  
THERM_STAT bit goes high.  
Additionally, the device has thermal shutdown to turn off the converter and BATFET when IC surface  
temperature exceeds TSHUT. The fault register CHRG_FAULT is set to 10 and an INT is asserted to the host.  
The BATFET and converter is enabled to recover when IC temperature is below TSHUT_HYS  
.
9.2.13.2 Thermal Protection in Boost Mode  
The device monitors the internal junction temperature to provide thermal shutdown during boost mode. When IC  
surface temperature exceeds TSHUT, the boost mode is disabled (converter is turned off) by setting  
OTG_CONFIG bit low and BATFET is turned off. When IC surface temperature is below TSHUT_HYS, the BATFET  
is enabled automatically to allow system to restore and the host can re-enable OTG_CONFIG bit to recover.  
9.2.14 Voltage and Current Monitoring in Buck and Boost Mode  
9.2.14.1 Voltage and Current Monitoring in Buck Mode  
The device closely monitors the input and system voltage, as well as HSFET current for safe buck and boost  
mode operations.  
9.2.14.1.1 Input Overvoltage (ACOV)  
The input voltage for buck mode operation is VVBUS_OP. If VBUS voltage exceeds VACOV, the device stops  
switching immediately. During input over voltage (ACOV), the fault register CHRG_FAULT bits sets to 01. An INT  
is asserted to the host..  
9.2.14.1.2 System Overvoltage Protection (SYSOVP)  
The charger device clamps the system voltage during load transient so that the components connect to system  
would not be damaged due to high voltage. When SYSOVP is detected, the converter stops immediately to  
clamp the overshoot.  
9.2.14.2 Voltage and Current Monitoring in Boost Mode  
The device closely monitors the VBUS voltage, as well as RBFET and LSFET current to ensure safe boost mode  
operation.  
9.2.14.2.1 VBUS Overcurrent Protection  
The charger device closely monitors the RBFET (Q1), and LSFET (Q3) current to ensure safe boost ode  
operation. During overcurrent condition when output current exceed (IOTG_OCP) the device operates in hiccup  
mode for protection. While in hiccup mode cycle, the device turns off RBFET for tOTG_OCP_OFF (30 ms typical)  
and turns on RBFET for tOTG_OCP_ON (250 µs typical) in an attempt to restart. If the overcurrent condition is  
removed, the boost converter returns to normal operation. When overcurrent condition continues to exist, the  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: BQ25890 BQ25892  
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
device repeats the hiccup cycle until overcurrent condition is removed. When overcurrent condition is detected  
the fault register bit BOOST_FAULT is set high to indicate fault in boost operation. An INT is also asserted to the  
host.  
9.2.14.2.2 Boost Mode Overvoltage Protection  
When the VBUS voltage rises above regulation target and exceeds VOTG_OVP, the device enters overvoltage  
protection which stops switching, clears OTG_CONFIG bit and exits boost mode. During the overvoltage  
duration, the fault register bit (BOOST_FAULT) is set high to indicate fault in boost operation. An INT is also  
asserted to the host.  
9.2.15 Battery Protection  
9.2.15.1 Battery Overvoltage Protection (BATOVP)  
The battery overvoltage limit is clamped at 4% above the battery regulation voltage. When battery over voltage  
occurs, the charger device immediately disables charge. The fault register BAT_FAULT bit goes high and an INT  
is asserted to the host.  
9.2.15.2 Battery Over-Discharge Protection  
When battery is discharged below VBAT_DPL, the BATFET is turned off to protect battery from over discharge. To  
recover from over-discharge, an input source is required at VBUS. When an input source is plugged in, the  
BATFET turns on. Thy is charged with IBATSHORT (typically 100 mA) current when the VBAT < VSHORT, or  
precharge current as set in IPRECHG register when the battery voltage is between VSHORT and VBATLOWV  
.
9.2.15.3 System Overcurrent Protection  
When the system is shorted or significantly overloaded (IBAT > IBATOP) so that its current exceeds the overcurrent  
limit, the device latches off BATFET. 9.2.10.2 can reset the latch-off condition and turn on BATFET.  
9.2.16 Serial Interface  
The device uses I2C compatible interface for flexible charging parameter programming and instantaneous device  
status reporting. I2C is a bi-directional 2-wire serial interface. Only two open-drain bus lines are required: a serial  
data line (SDA) and a serial clock line (SCL). Devices can be considered as hosts or targets when performing  
data transfers. A host is the device which initiates a data transfer on the bus and generates the clock signals to  
permit that transfer. At that time, any device addressed is considered a target.  
The device operates as a target device with address 6AH (BQ25890) and 6BH (BQ25892), receiving control  
inputs from the host device like micro controller or a digital signal processor through REG00-REG14. Register  
read beyond REG14 (0x14) returns 0xFF. The I2C interface supports both standard mode (up to 100 kbits), and  
fast mode (up to 400 kbits). When the bus is free, both lines are HIGH. The SDA and SCL pins are open drain  
and must be connected to the positive supply voltage via a current source or pull-up resistor.  
9.2.16.1 Data Validity  
The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the  
data line can only change when the clock signal on the SCL line is LOW. One clock pulse is generated for each  
data bit transferred.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: BQ25890 BQ25892  
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
SDA  
SCL  
Change  
of data  
allowed  
Data line stable;  
Data valid  
9-9. Bit Transfer on the I2C Bus  
9.2.16.2 START and STOP Conditions  
All transactions begin with a START (S) and can be terminated by a STOP (P). A HIGH to LOW transition on the  
SDA line while SCl is HIGH defines a START condition. A LOW to HIGH transition on the SDA line when the  
SCL is HIGH defines a STOP condition.  
START and STOP conditions are always generated by the host. The bus is considered busy after the START  
condition, and free after the STOP condition.  
SDA  
SCL  
SDA  
SCL  
STOP (P)  
START (S)  
9-10. START and STOP conditions  
9.2.16.3 Byte Format  
Every byte on the SDA line must be 8 bits long. The number of bytes to be transmitted per transfer is  
unrestricted. Each byte has to be followed by an Acknowledge bit. Data is transferred with the Most Significant  
Bit (MSB) first. If a target cannot receive or transmit another complete byte of data until it has performed some  
other function, it can hold the clock line SCL low to force the host into a wait state (clock stretching). Data  
transfer then continues when the target is ready for another byte of data and release the clock line SCL.  
Acknowledgement  
Acknowledgement  
signal from host  
signal from target  
MSB  
SDA  
1
2
7
8
9
1
2
8
9
SCL S or Sr  
START or  
P or Sr  
ACK  
ACK  
STOP or  
Repeate  
d START  
Repeated  
START  
9-11. Data Transfer on the I2C Bus  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: BQ25890 BQ25892  
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
9.2.16.4 Acknowledge (ACK) and Not Acknowledge (NACK)  
The acknowledge takes place after every byte. The acknowledge bit allows the receiver to signal the transmitter  
that the byte was successfully received and another byte may be sent. All clock pulses, including the  
acknowledge 9th clock pulse, are generated by the host.  
The transmitter releases the SDA line during the acknowledge clock pulse so the receiver can pull the SDA line  
LOW and it remains stable LOW during the HIGH period of this clock pulse.  
When SDA remains HIGH during the 9th clock pulse, this is the Not Acknowledge signal. The host can then  
generate either a STOP to abort the transfer or a repeated START to start a new transfer.  
9.2.16.5 Target Address and Data Direction Bit  
After the START, a target address is sent. This address is 7 bits long followed by the eighth bit as a data  
direction bit (bit R/W). A zero indicates a transmission (WRITE) and a one indicates a request for data (READ).  
SDA  
S
8
9
8
9
8
9
P
SCL  
1-7  
1-7  
1-7  
START  
ADDRESS  
R/W ACK  
DATA  
ACK  
DATA  
ACK  
STOP  
9-12. Complete Data Transfer  
9.2.16.6 Single Read and Write  
S
Target Addr  
0
ACK  
Reg Addr  
ACK  
Data to Addr  
ACK  
P
9-13. Single Write  
S
Target Addr  
0
ACK  
Reg Addr  
ACK  
S
Target Addr  
ACK  
1
Data  
NCK  
P
9-14. Single Read  
If the register address is not defined, the charger IC send back NACK and go back to the idle state.  
9.2.16.7 Multi-Read and Multi-Write  
The charger device supports multi-read and multi-write on REG00 through REG14 except REG0C.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: BQ25890 BQ25892  
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
S
Target Addr  
0
ACK  
ACK  
Reg Addr  
Data to Addr  
ACK  
Data to Addr+1 ACK  
Data to Addr+N  
ACK  
P
9-15. Multi-Write  
S
Target Addr  
0
ACK  
Reg Addr  
ACK  
S
Target Addr  
ACK  
1
Data @ Addr  
ACK Data @ Addr+1 ACK  
Data @ Addr+N NCK  
P
9-16. Multi-Read  
REG0C is a fault register. It keeps all the fault information from last read until the host issues a new read. For  
example, if Charge Safety Timer Expiration fault occurs but recovers later, the fault register REG0C reports the  
fault when it is read the first time, but returns to normal when it is read the second time. In order to get the fault  
information at present, the host has to read REG0C for the second time. The only exception is NTC_FAULT  
which always reports the actual condition on the TS pin. In addition, REG0C does not support multi-read and  
multi-write.  
9.3 Device Functional Modes  
9.3.1 Host Mode and Default Mode  
The device is a host controlled charger, but it can operate in default mode without host management. In default  
mode, the device can be used an autonomous charger with no host or while host is in sleep mode. When the  
charger is in default mode, WATCHDOG_FAULT bit is HIGH. When the charger is in host mode,  
WATCHDOG_FAULT bit is LOW.  
After power-on-reset, the device starts in default mode with watchdog timer expired, or default mode. All the  
registers are in the default settings.  
In default mode, the device keeps charging the battery with 12-hour fast charging safety timer. At the end of the  
12-hour, the charging is stopped and the buck converter continues to operate to supply system load. Any write  
command to device transitions the charger from default mode to host mode. All the device parameters can be  
programmed by the host. To keep the device in host mode, the host has to reset the watchdog timer by writing 1  
to WD_RST bit before the watchdog timer expires (WATCHDOG_FAULT bit is set), or disable watchdog timer by  
setting WATCHDOG bits=00.  
When the watchdog timer (WATCHDOG_FAULT bit = 1) is expired, the device returns to default mode and all  
registers are reset to default values except IINLIM, VINDPM, VINDPM_OS, BATFET_RST_EN, BATFET_DLY,  
and BATFET_DIS bits.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: BQ25890 BQ25892  
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
POR  
watchdog timer expired  
Reset registers  
I2C interface enabled  
Host Mode  
Start watchdog timer  
Y
I2C Write?  
Host programs registers  
N
Default Mode  
Reset watchdog timer  
Reset selective registers  
Y
WD_RST bit = 1?  
N
Y
N
I2C Write?  
Y
N
Watchdog Timer  
Expired?  
9-17. Watchdog Timer Flow Chart  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: BQ25890 BQ25892  
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
9.4 Register Maps  
I2C Target Address: 6AH (1101010B + R/ W) (BQ25890)  
I2C Target Address: 6BH (1101011B + R/ W) (BQ25892)  
9.4.1 REG00  
9-18. REG00  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-9. REG00  
Bit  
Field  
Type  
Reset  
Description  
Enable HIZ Mode  
0 Disable (default)  
1 Enable  
by REG_RST  
by Watchdog  
7
EN_HIZ  
R/W  
Enable ILIM Pin  
0 Disable  
1 Enable (default: Enable ILIM pin (1))  
by REG_RST  
by Watchdog  
6
EN_ILIM  
R/W  
5
4
3
2
1
IINLIM[5]  
IINLIM[4]  
IINLIM[3]  
IINLIM[2]  
IINLIM[1]  
R/W  
R/W  
R/W  
R/W  
R/W  
by REG_RST  
by REG_RST  
by REG_RST  
by REG_RST  
by REG_RST  
1600mA  
800mA  
400mA  
200mA  
100mA  
Input Current Limit  
Offset: 100mA  
Range: 100mA (000000) 3.25A (111111)  
Default:0001000 (500mA)  
(Actual input current limit is the lower of I2C or ILIM pin)  
IINLIM bits are changed automaticallly after input source  
type detection is completed  
BQ25890  
USB Host SDP = 500mA  
USB CDP = 1.5A  
USB DCP = 3.25A  
Adjustable High Voltage (MaxCharge) DCP = 1.5A  
Unknown Adapter = 500mA  
Non-Standard Adapter = 1A/2A/2.1A/2.4A  
BQ25892  
0
IINLIM[0]  
R/W  
by REG_RST  
50mA  
PSEL= Hi (USB500) = 500mA  
PSEL= Lo = 3.25A  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: BQ25890 BQ25892  
 
 
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
9.4.2 REG01  
9-19. REG01  
7
0
6
0
5
0
4
3
2
1
1
1
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-10. REG01  
Bit  
Field  
Type  
Reset  
Description  
by REG_RST  
by Watchdog  
Boost Mode Hot Temperature Monitor Threshold  
00 VBHOT1 Threshold (34.75%) (default)  
01 VBHOT0 Threshold (Typ. 37.75%)  
10 VBHOT2 Threshold (Typ. 31.25%)  
11 Disable boost mode thermal protection  
7
BHOT[1]  
R/W  
by REG_RST  
by Watchdog  
6
5
BHOT[0]  
BCOLD  
R/W  
R/W  
Boost Mode Cold Temperature Monitor Threshold  
0 VBCOLD0 Threshold (Typ. 77%) (default)  
1 VBCOLD1 Threshold (Typ. 80%)  
by REG_RST  
by Watchdog  
4
3
2
1
VINDPM_OS[4]  
VINDPM_OS[3]  
VINDPM_OS[2]  
VINDPM_OS[1]  
R/W  
R/W  
R/W  
R/W  
by REG_RST  
by REG_RST  
by REG_RST  
by REG_RST  
1600mV  
800mV  
400mV  
200mV  
Input Voltage Limit Offset  
Default: 600mV (00110)  
Range: 0mV 3100mV  
Minimum VINDPM threshold is clamped at 3.9V  
Maximum VINDPM threshold is clamped at 15.3V  
When VBUS at noLoad is 6V, the VINDPM_OS is used  
to calculate VINDPM threhold  
0
VINDPM_OS[0]  
R/W  
by REG_RST  
100mV  
When VBUS at noLoad is > 6V, the VINDPM_OS multiple  
by 2 is used to calculate VINDPM threshold.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: BQ25890 BQ25892  
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
9.4.3 REG02  
9-20. REG02  
7
0
6
0
5
0
4
3
2
1
1
0
0
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-11. REG02  
Bit  
Field  
Type  
Reset  
Description  
ADC Conversion Start Control  
0 ADC conversion not active (default).  
1 Start ADC Conversion  
This bit is read-only when CONV_RATE = 1. The bit stays high during  
ADC conversion and during input source detection.  
by REG_RST  
by Watchdog  
7
CONV_START  
R/W  
ADC Conversion Rate Selection  
0 One shot ADC conversion (default)  
1 Start 1s Continuous Conversion  
by REG_RST  
by Watchdog  
6
5
4
3
2
1
0
CONV_RATE  
BOOST_FREQ  
ICO_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Boost Mode Frequency Selection  
0 1.5MHz (default)  
Note: Write to this bit is ignored when OTG_CONFIG is enabled.  
by REG_RST  
by Watchdog  
Input Current Optimizer (ICO) Enable  
0 Disable ICO Algorithm  
1 Enable ICO Algorithm (default)  
by REG_RST  
by REG_RST  
by REG_RST  
High Voltage DCP Enable (BQ25890 only)  
0 Disable HVDCP handshake  
1 Enable HVDCP handshake (default)  
HVDCP_EN  
MaxCharge Adapter Enable (BQ25890 only)  
0 Disable MaxCharge handshake  
1 Enable MaxCharge handshake (default)  
MAXC_EN  
Force D+/D- Detection  
0 Not in D+/D- or PSEL detection (default)  
1 Force D+/D- detection  
by REG_RST  
by Watchdog  
FORCE_DPDM  
AUTO_DPDM_EN  
Automatic D+/D- Detection Enable  
0 Disable D+/D- or PSEL detection when VBUS is plugged-in  
1 Enable D+/D- or PEL detection when VBUS is plugged-in (default)  
by REG_RST  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: BQ25890 BQ25892  
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
9.4.4 REG03  
9-21. REG03  
7
0
6
0
5
0
4
3
2
0
1
1
0
0
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-12. REG03  
Bit  
Field  
Type  
Reset  
Description  
Battery Load (IBATLOAD) Enable  
0 Disabled (default)  
1 Enabled  
by REG_RST  
by Watchdog  
7
BAT_LOADEN  
R/W  
I2C Watchdog Timer Reset  
0 Normal (default)  
1 Reset (Back to 0 after timer reset)  
by REG_RST  
by Watchdog  
6
5
4
WD_RST  
R/W  
R/W  
R/W  
Boost (OTG) Mode Configuration  
0 OTG Disable (default)  
1 OTG Enable  
by REG_RST  
by Watchdog  
OTG_CONFIG  
CHG_CONFIG  
Charge Enable Configuration  
0 - Charge Disable  
1- Charge Enable (default)  
by REG_RST  
by Watchdog  
3
2
1
SYS_MIN[2]  
SYS_MIN[1]  
SYS_MIN[02]  
R/W  
R/W  
R/W  
by REG_RST  
by REG_RST  
by REG_RST  
0.4V  
0.2V  
0.1V  
Minimum System Voltage Limit  
Offset: 3.0V  
Range 3.0V-3.7V  
Default: 3.5V (101)  
by REG_RST  
by Watchdog  
0
Reserved  
R/W  
Reserved (default = 0)  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: BQ25890 BQ25892  
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
9.4.5 REG04  
9-22. REG04  
7
0
6
0
5
1
4
3
2
0
1
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-13. REG04  
Bit  
Field  
Type  
Reset  
Description  
Current pulse control Enable  
0 - Disable Current pulse control (default)  
1- Enable Current pulse control (PUMPX_UP and PUMPX_DN)  
4096mA  
by Software  
by Watchdog  
7
EN_PUMPX  
R/W  
by Software  
by Watchdog  
6
5
4
3
2
1
0
ICHG[6]  
ICHG[5]  
ICHG[4]  
ICHG[3]  
ICHG[2]  
ICHG[1]  
ICHG[0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
by Software  
by Watchdog  
2048mA  
Fast Charge Current Limit  
Offset: 0mA  
by Software  
by Watchdog  
1024mA  
512mA  
256mA  
128mA  
64mA  
Range: 0mA (0000000) 5056mA (1001111)  
Default: 2048mA (0100000)  
Note:  
ICHG=000000 (0mA) disables charge  
ICHG > 1001111 (5056mA) is clamped to register value  
1001111 (5056mA)  
by Software  
by Watchdog  
by Software  
by Watchdog  
by Software  
by Watchdog  
by Software  
by Watchdog  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: BQ25890 BQ25892  
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
9.4.6 REG05  
9-23. REG05  
7
0
6
0
5
0
4
3
2
0
1
1
0
1
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-14. REG05  
Bit  
Field  
Type  
Reset  
Description  
by Software  
by Watchdog  
7
IPRECHG[3]  
R/W  
512mA  
256mA  
128mA  
64mA  
by Software  
by Watchdog  
Precharge Current Limit  
Offset: 64mA  
Range: 64mA 1024mA  
Default: 128mA (0001)  
6
5
4
3
2
1
0
IPRECHG[2]  
IPRECHG[1]  
IPRECHG[0]  
ITERM[3]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
by Software  
by Watchdog  
by Software  
by Watchdog  
by Software  
by Watchdog  
512mA  
256mA  
128mA  
64mA  
by Software  
by Watchdog  
Termination Current Limit  
Offset: 64mA  
Range: 64mA 1024mA  
Default: 256mA (0011)  
ITERM[2]  
by Software  
by Watchdog  
ITERM[1]  
by Software  
by Watchdog  
ITERM[0]  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: BQ25890 BQ25892  
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
9.4.7 REG06  
9-24. REG06  
7
0
6
1
5
0
4
3
2
1
1
1
0
0
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-15. REG06  
Bit  
Field  
Type  
Reset  
Description  
by Software  
by Watchdog  
7
VREG[5]  
R/W  
512mV  
256mV  
128mV  
64mV  
by Software  
by Watchdog  
6
5
4
3
2
VREG[4]  
VREG[3]  
VREG[2]  
VREG[1]  
VREG[0]  
R/W  
R/W  
R/W  
R/W  
R/W  
Charge Voltage Limit  
Offset: 3.840V  
Range: 3.840V 4.608V (110000)  
Default: 4.208V (010111)  
Note:  
by Software  
by Watchdog  
by Software  
by Watchdog  
VREG > 110000 (4.608V) is clamped to register value  
110000 (4.608V)  
by Software  
by Watchdog  
32mV  
by Software  
by Watchdog  
16mV  
Battery Precharge to Fast Charge Threshold  
0 2.8V  
1 3.0V (default)  
by Software  
by Watchdog  
1
0
BATLOWV  
VRECHG  
R/W  
R/W  
Battery Recharge Threshold Offset  
(below Charge Voltage Limit)  
0 100mV (VRECHG) below VREG (REG06[7:2]) (default)  
1 200mV (VRECHG) below VREG (REG06[7:2])  
by Software  
by Watchdog  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: BQ25890 BQ25892  
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
9.4.8 REG07  
9-25. REG07  
7
1
6
0
5
0
4
3
2
1
1
0
0
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-16. REG07  
Bit  
Field  
Type  
Reset  
Description  
Charging Termination Enable  
0 Disable  
1 Enable (default)  
by Software  
by Watchdog  
7
EN_TERM  
R/W  
STAT Pin Disable  
0 Enable STAT pin function (default)  
1 Disable STAT pin function  
by Software  
by Watchdog  
6
STAT_DIS  
R/W  
by Software  
by Watchdog  
I2C Watchdog Timer Setting  
00 Disable watchdog timer  
01 40s (default)  
10 80s  
5
4
WATCHDOG[1]  
WATCHDOG[0]  
R/W  
R/W  
by Software  
by Watchdog  
11 160s  
Charging Safety Timer Enable  
0 Disable  
1 Enable (default)  
by Software  
by Watchdog  
3
EN_TIMER  
R/W  
by Software  
by Watchdog  
Fast Charge Timer Setting  
00 5 hrs  
01 8 hrs  
10 12 hrs (default)  
11 20 hrs  
2
1
CHG_TIMER[1]  
CHG_TIMER[0]  
R/W  
R/W  
by Software  
by Watchdog  
JEITA Low Temperature Current Setting  
0 50% of ICHG (REG04[6:0])  
1 20% of ICHG (REG04[6:0]) (default)  
by Software  
by Watchdog  
0
JEITA_ISET (0C-10C)  
R/W  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: BQ25890 BQ25892  
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
9.4.9 REG08  
9-26. REG08  
7
0
6
0
5
0
4
3
2
0
1
1
0
1
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-17. REG08  
Bit  
Field  
Type  
Reset  
Description  
by Software  
by Watchdog  
7
BAT_COMP[2]  
R/W  
80mΩ  
40mΩ  
20mΩ  
128mV  
64mV  
32mV  
IR Compensation Resistor Setting  
Range: 0 140mΩ  
Default: 0(000) (i.e. Disable IRComp)  
by Software  
by Watchdog  
6
5
4
3
2
1
BAT_COMP[1]  
BAT_COMP[0]  
VCLAMP[2]  
VCLAMP[1]  
VCLAMP[0]  
TREG[1]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
by Software  
by Watchdog  
by Software  
by Watchdog  
IR Compensation Voltage Clamp  
above VREG (REG06[7:2])  
Offset: 0mV  
Range: 0-224mV  
Default: 0mV (000)  
by Software  
by Watchdog  
by Software  
by Watchdog  
by Software  
by Watchdog  
Thermal Regulation Threshold  
00 60°C  
01 80°C  
10 100°C  
11 120°C (default)  
by Software  
by Watchdog  
0
TREG[0]  
R/W  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: BQ25890 BQ25892  
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
9.4.10 REG09  
9-27. REG09  
7
0
6
1
5
0
4
3
2
1
1
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-18. REG09  
Bit  
Field  
Type  
Reset  
Description  
Force Start Input Current Optimizer (ICO)  
0 Do not force ICO (default)  
1 Force ICO  
by Software  
by Watchdog  
7
FORCE_ICO  
R/W  
Note:  
This bit is can only be set only and always returns to 0 after ICO starts  
Safety Timer Setting during DPM or Thermal Regulation  
0 Safety timer not slowed by 2X during input DPM or thermal  
regulation  
1 Safety timer slowed by 2X during input DPM or thermal regulation  
(default)  
by Software  
by Watchdog  
6
TMR2X_EN  
R/W  
Force BATFET off to enable ship mode  
0 Allow BATFET turn on (default)  
1 Force BATFET off  
5
4
BATFET_DIS  
R/W  
R/W  
by Software  
JEITA High Temperature Voltage Setting  
0 Set Charge Voltage to VREG-200mV during JEITA hig temperature  
(default)  
by Software  
by Watchdog  
JEITA_VSET (45C-60C)  
1 Set Charge Voltage to VREG during JEITA high temperature  
BATFET turn off delay control  
3
2
BATFET_DLY  
R/W  
R/W  
by Software  
by Software  
0 BATFET turn off immediately when BATFET_DIS bit is set (default)  
1 BATFET turn off delay by tSM_DLY when BATFET_DIS bit is set  
BATFET full system reset enable  
0 Disable BATFET full system reset  
1 Enable BATFET full system reset (default)  
BATFET_RST_EN  
Current pulse control voltage up enable  
0 Disable (default)  
by Software  
by Watchdog  
1 Enable  
Note:  
1
0
PUMPX_UP  
PUMPX_DN  
R/W  
R/W  
This bit is can only be set when EN_PUMPX bit is set and returns to 0  
after current pulse control sequence is completed  
Current pulse control voltage down enable  
0 Disable (default)  
1 Enable  
Note:  
by Software  
by Watchdog  
This bit is can only be set when EN_PUMPX bit is set and returns to 0  
after current pulse control sequence is completed  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: BQ25890 BQ25892  
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
9.4.11 REG0A  
9-28. REG0A  
7
0
6
1
5
1
4
3
2
0
1
1
0
1
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-19. REG0A  
Bit  
Field  
Type  
Reset  
Description  
by Software  
by Watchdog  
7
BOOSTV[3]  
R/W  
512mV  
Boost Mode Voltage Regulation  
Offset: 4.55V  
Range: 4.55V 5.51V  
Default:4.998V(0111)  
by Software  
by Watchdog  
6
5
4
BOOSTV[2]  
BOOSTV[1]  
BOOSTV[0]  
R/W  
R/W  
R/W  
256mV  
128mV  
64mV  
by Software  
by Software  
by Watchdog  
by Software  
by Watchdog  
3
2
1
Reserved  
R/W  
R/W  
R/W  
Reserved (default = 0)  
by Software  
by Watchdog  
000: 0.5A  
001: 0.75A  
010: 1.2A  
BOOST_LIM[2]  
BOOST_LIM[1]  
by Software  
by Watchdog  
011: 1.4A  
Boost Mode Current Limit  
Default: 1.4A (011)  
100: 1.65A  
101: 1.875A  
110: 2.15A  
111: 2.45A  
by Software  
by Watchdog  
0
BOOST_LIM[0]  
R/W  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: BQ25890 BQ25892  
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
9.4.12 REG0B  
9-29. REG0B  
7
x
6
x
5
x
4
3
2
x
1
x
0
x
x
x
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-20. REG0B  
Bit  
7
Field  
Type  
R
Reset  
Description  
VBUS_STAT[2]  
VBUS_STAT[1]  
N/A  
VBUS Status register  
BQ25890  
000: No Input 001: USB Host SDP  
010: USB CDP (1.5A)  
6
R
N/A  
011: USB DCP (3.25A)  
100: Adjustable High Voltage DCP (MaxCharge) (1.5A)  
101: Unknown Adapter (500mA)  
110: Non-Standard Adapter (1A/2A/2.1A/2.4A)  
111: OTG  
BQ25892  
5
VBUS_STAT[0]  
R
N/A  
000: No Input  
001: USB Host SDP  
010: Adapter (3.25A)  
111: OTG  
Note: Software current limit is reported in IINLIM register  
4
3
CHRG_STAT[1]  
CHRG_STAT[0]  
R
R
N/A  
N/A  
Charging Status  
00 Not Charging  
01 Pre-charge ( < VBATLOWV  
10 Fast Charging  
)
11 Charge Termination Done  
Power Good Status  
0 Not Power Good  
1 Power Good  
2
1
0
PG_STAT  
Reserved  
R
R
N/A  
N/A  
Reserved: Always reads 0  
VSYS Regulation Status  
0 Not in VSYSMIN regulation (BAT > VSYSMIN)  
1 In VSYSMIN regulation (BAT < VSYSMIN)  
VSYS_STAT  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: BQ25890 BQ25892  
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
9.4.13 REG0C  
9-30. REG0C  
7
x
6
x
5
x
4
3
2
x
1
x
0
x
x
x
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-21. REG0C  
Bit  
Field  
Type  
Reset  
Description  
Watchdog Fault Status  
7
WATCHDOG_FAULT  
R
N/A  
Status 0 Normal  
1- Watchdog timer expiration  
Boost Mode Fault Status  
0 Normal  
6
5
BOOST_FAULT  
CHRG_FAULT[1]  
R
R
N/A  
N/A  
1 VBUS overloaded in OTG, or VBUS OVP, or battery is too low in  
boost mode  
Charge Fault Status  
00 Normal  
01 Input fault (VBUS > VACOV or VBAT < VBUS < VVBUSMIN(typical  
3.8V) )  
4
CHRG_FAULT[0]  
R
N/A  
10 - Thermal shutdown  
11 Charge Safety Timer Expiration  
Battery Fault Status  
3
BAT_FAULT  
R
N/A  
0 Normal  
1 BATOVP (VBAT > VBATOVP  
)
2
1
NTC_FAULT[2]  
NTC_FAULT[1]  
R
R
N/A  
N/A  
NTC Fault Status  
Buck Mode:  
000 Normal  
010 TS Warm  
011 TS Cool  
101 TS Cold  
110 TS Hot  
Boost Mode:  
0
NTC_FAULT[0]  
R
N/A  
000 Normal  
101 TS Cold  
110 TS Hot  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: BQ25890 BQ25892  
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
9.4.14 REG0D  
9-31. REG0D  
7
0
6
0
5
0
4
3
2
0
1
1
0
0
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-22. REG0D  
Bit  
Field  
Type  
Reset  
Description  
VINDPM Threshold Setting Method  
7
FORCE_VINDPM  
R/W  
by Software  
0 Run Relative VINDPM Threshold (default)  
1 Run Absolute VINDPM Threshold  
6
5
4
3
2
1
0
VINDPM[6]  
VINDPM[5]  
VINDPM[4]  
VINDPM[3]  
VINDPM[2]  
VINDPM[1]  
VINDPM[0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
by Software  
by Software  
by Software  
by Software  
by Software  
by Software  
by Software  
6400mV  
3200mV  
1600mV  
800mV  
400mV  
200mV  
100mV  
Absolute VINDPM Threshold  
Offset: 2.6V  
Range: 3.9V (0001101) 15.3V (1111111)  
Default: 4.4V (0010010)  
Note:  
Value < 0001101 is clamped to 3.9V (0001101)  
Register is read only when FORCE_VINDPM=0 and can be  
written by internal control based on relative VINDPM  
threshold setting  
Register can be read/write when FORCE_VINDPM = 1  
9.4.15 REG0E  
9-32. REG0E  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-23. REG0E  
Bit  
Field  
Type  
Reset  
Description  
Thermal Regulation Status  
0 Normal  
7
THERM_STAT  
R
N/A  
1 In Thermal Regulation  
6
5
4
3
2
1
0
BATV[6]  
BATV[5]  
BATV[4]  
BATV[3]  
BATV[2]  
BATV[1]  
BATV[0]  
R
R
R
R
R
R
R
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
1280mV  
640mV  
ADC conversion of Battery Voltage (VBAT  
Offset: 2.304V  
Range: 2.304V (0000000) 4.848V (1111111)  
)
320mV  
160mV  
80mV  
40mV  
20mV  
Default: 2.304V (0000000)  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: BQ25890 BQ25892  
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
9.4.16 REG0F  
9-33. REG0F  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-24. REG0F  
Bit  
7
Field  
Type  
R
Reset  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Description  
Reserved  
SYSV[6]  
SYSV[5]  
SYSV[4]  
SYSV[3]  
SYSV[2]  
SYSV[1]  
SYSV[0]  
Reserved: Always reads 0  
1280mV  
6
R
5
R
640mV  
ADDC conversion of System Voltage (VSYS  
Offset: 2.304V  
Range: 2.304V (0000000) 4.848V (1111111)  
)
4
R
320mV  
160mV  
80mV  
40mV  
20mV  
3
R
2
R
Default: 2.304V (0000000)  
1
R
0
R
9.4.17 REG10  
9-34. REG10  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-25. REG10  
Bit  
7
Field  
Type  
R
Reset  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Description  
Reserved  
TSPCT[6]  
TSPCT[5]  
TSPCT[4]  
TSPCT[3]  
TSPCT[2]  
TSPCT[1]  
TSPCT[0]  
Reserved: Always reads 0  
29.76%  
6
R
5
R
14.88%  
ADC conversion of TS Voltage (TS) as percentage of REGN  
Offset: 21%  
Range 21% (0000000) 80% (1111111)  
Default: 21% (0000000)  
4
R
7.44%  
3.72%  
1.86%  
0.93%  
0.465%  
3
R
2
R
1
R
0
R
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: BQ25890 BQ25892  
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
9.4.18 REG11  
9-35. REG11  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-26. REG11  
Bit  
Field  
Type  
Reset  
Description  
VBUS Good Status  
7
VBUS_GD  
R
N/A  
0 Not VBUS attached  
1 VBUS Attached  
6
5
4
3
2
1
0
VBUSV[6]  
VBUSV[5]  
VBUSV[4]  
VBUSV[3]  
VBUSV[2]  
VBUSV[1]  
VBUSV[0]  
R
R
R
R
R
R
R
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
6400mV  
3200mV  
ADC conversion of VBUS voltage (VBUS  
Offset: 2.6V  
Range 2.6V (0000000) 15.3V (1111111)  
)
1600mV  
800mV  
400mV  
200mV  
100mV  
Default: 2.6V (0000000)  
9.4.19 REG12  
9-36. REG12  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-27. REG12  
Bit  
7
Field  
Type  
R
Reset  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Description  
Unused  
Always reads 0  
3200mA  
6
ICHGR[6]  
ICHGR[5]  
ICHGR[4]  
ICHGR[3]  
ICHGR[2]  
ICHGR[1]  
ICHGR[0]  
R
5
R
1600mA  
800mA  
400mA  
200mA  
100mA  
50mA  
ADC conversion of Charge Current (IBAT) when VBAT >  
VBATSHORT  
Offset: 0mA  
Range 0mA (0000000) 6350mA (1111111)  
Default: 0mA (0000000)  
4
R
3
R
2
R
Note:  
1
R
This register returns 0000000 for VBAT < VBATSHORT  
0
R
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: BQ25890 BQ25892  
 
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
9.4.20 REG13  
9-37. REG13  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-28. REG13  
Bit  
Field  
Type  
Reset  
Description  
VINDPM Status  
0 Not in VINDPM  
1 VINDPM  
7
VDPM_STAT  
R
N/A  
IINDPM Status  
0 Not in IINDPM  
1 IINDPM  
6
IDPM_STAT  
R
N/A  
5
4
3
2
1
0
IDPM_LIM[5]  
IDPM_LIM[4]  
IDPM_LIM[3]  
IDPM_LIM[2]  
IDPM_LIM[1]  
IDPM_LIM[0]  
R
R
R
R
R
R
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
1600mA  
800mA  
Input Current Limit in effect while Input Current Optimizer  
(ICO) is enabled  
Offset: 100mA (default)  
400mA  
200mA  
100mA  
50mA  
Range 100mA (0000000) 3.25mA (1111111)  
9.4.21 REG14  
9-38. REG14  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
0
R/W  
R/W  
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-29. REG14  
Bit  
Field  
Type  
Reset  
Description  
Register Reset  
0 Keep current register setting (default)  
7
REG_RST  
R/W  
N/A  
1 Reset to default register value and reset safety timer  
Note:  
Reset to 0 after register reset is completed  
Input Current Optimizer (ICO) Status  
0 Optimization is in progress  
6
ICO_OPTIMIZED  
R
N/A  
1 Maximum Input Current Detected  
5
4
3
PN[2]  
PN[1]  
PN[0]  
R
R
R
N/A  
N/A  
N/A  
Device Configuration  
011: BQ25890  
000: BQ25892  
Temperature Profile  
1- JEITA (default)  
2
TS_PROFILE  
R
N/A  
1
0
DEV_REV[1]  
DEV_REV[0]  
R
R
N/A  
N/A  
Device Revision: 01  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: BQ25890 BQ25892  
 
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
10 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Application Information  
A typical application consists of the device configured as an I2C controlled power path management device and  
a single cell battery charger for Li-Ion and Li-polymer batteries used in a wide range of smartphones and other  
portable devices. It integrates an input reverse-block FET (RBFET, Q1), high-side switching FET (HSFET, Q2),  
low-side switching FET (LSFET, Q3), and BATFET (Q4) between the system and battery. The device also  
integrates a bootstrap diode for the high-side gate drive.  
10.2 Typical Application  
Input  
3.9Vœ14V at 3A  
OTG  
5V at 2.4A  
1H  
SYS 3.5Vœ4.5V  
10F 10F  
VBUS  
PMID  
SW  
1F  
8.2F  
47nF  
SYS  
Optional  
10YQ  
BTST  
REGN  
DSEL  
D+  
USB  
4.7F  
D-  
PGND  
SYS  
260Q  
SYS  
ILIM  
Ichg=5A  
10uF  
BAT  
VREF  
QON  
2.2YQ  
STAT  
SDA  
10YQ 10YQ 10YQ  
Host  
Optional  
REGN  
SCL  
INT  
OTG  
5.23YQ  
TS  
/CE  
30.1YQ  
10YQ  
BQ25890  
10-1. BQ25890 with D+/D- Interface and USB On-The-Go (OTG)  
10.2.1 Design Requirements  
For this design example, use the parameters shown in 10-1.  
10-1. Design Parameter  
PARAMETERS  
Input voltage range  
Input current limit  
VALUES  
3.9 V to 14 V  
1.5 A  
Fast charge current  
Output voltage  
5000 mA  
4.352 V  
VREF system pullup voltage  
1.8 V - 3.3 V  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: BQ25890 BQ25892  
 
 
 
 
 
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
10.2.2 Detailed Design Procedure  
10.2.2.1 Inductor Selection  
The device has 1.5 MHz switching frequency to allow the use of small inductor and capacitor values. The  
Inductor saturation current should be higher than the charging current (ICHG) plus half the ripple current (IRIPPLE):  
I
³ I  
CHG  
+ (1/2) I  
RIPPLE  
BAT  
(5)  
The inductor ripple current depends on input voltage (VBUS), duty cycle (D = VBAT/VVBUS), switching frequency  
(fs) and inductance (L):  
V
x D x (1-D)  
BUS  
I
=
RIPPLE  
f s x L  
(6)  
The maximum inductor ripple current happens with D = 0.5 or close to 0.5. Usually inductor ripple is designed in  
the range of (2040%) maximum charging current as a trade-off between inductor size and efficiency for a  
practical design.  
10.2.2.2 Buck Input Capacitor  
Input capacitor should have enough ripple current rating to absorb input switching ripple current. The worst case  
RMS ripple current is half of the charging current when duty cycle is 0.5. If the converter does not operate at  
50% duty cycle, then the worst case capacitor RMS current IPMID occurs where the duty cycle is closest to 50%  
and can be estimated by 方程7:  
I
= I x D x (1 - D)  
CHG  
PMID  
(7)  
Low ESR ceramic capacitor such as X7R or X5R is preferred for input decoupling capacitor and should be  
placed to the drain of the high side MOSFET and source of the low side MOSFET as close as possible. Voltage  
rating of the capacitor must be higher than normal input voltage level. 25 V rating or higher capacitor is preferred  
for up to 14-V input voltage. 8.2-μF capacitance is suggested for typical of 3 A 5 A charging current.  
10.2.2.3 System Output Capacitor  
Output capacitor also should have enough ripple current rating to absorb output switching ripple current. The  
output capacitor RMS current ICOUT is given:  
I
RIPPLE  
I
=
» 0.29 x I  
RIPPLE  
CSYS  
2 x  
3
(8)  
The output capacitor voltage ripple can be calculated as follows:  
æ
ö
÷
÷
÷
V
V
SYS  
SYS  
ç
DV  
=
ç1-  
O
ç
ç
è
2
÷
ø
V
BUS  
8 LC  
SYS  
f s  
(9)  
At certain input/output voltage and switching frequency, the voltage ripple can be reduced by increasing the  
output filter LC. The charger device has internal loop compensator. To get good loop stability, 1-µH and minimum  
of 20-µF output capacitor is recommended. The preferred ceramic capacitor is 6V or higher rating, X7R or X5R.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: BQ25890 BQ25892  
 
 
 
 
 
 
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
10.2.3 Application Curves  
VBAT = 3.2 V  
10-3. Power Up with Charge Enabled  
10-2. Power Up with Charge Disabled  
VBUS = 5 V  
VBUS = 12 V  
10-4. Charge Enable  
10-5. Charge Disable  
VBUS = 5 V  
IIN = 3 A  
Charge Disable  
VBUS = 9 V  
ICHG = 2 A  
IIN = 1.5 A  
VBAT = 3.8 V  
ISYS = 0 A - 4 A  
10-6. Input Current DPM Response without  
Battery  
10-7. Load Transient During Supplement Mode  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: BQ25890 BQ25892  
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
VBUS = 12 V  
VBAT = 3.8 V  
ICHG = 3 A  
VBUS = 9V  
No Battery  
ISYS = 10 mA,  
Charge Disable  
10-8. PWM Switching Waveform  
10-9. PFM Switching Waveform  
VBAT = 3.8 V  
ILOAD = 1 A  
VBAT = 3.8 V  
ILOAD = 0 A - 1 A  
10-10. Boost Mode Switching Waveform  
10-11. Boost Mode Load Transient  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: BQ25890 BQ25892  
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
10.3 System Examples  
Input  
3.9Vœ14V at 3A  
OTG  
5V at 2.4A  
SYS 3.5Vœ4.5V  
1H  
VBUS  
PMID  
SW  
1F  
8.2F  
47nF  
USB  
10F 10F  
BTST  
REGN  
4.7F  
PSEL  
ILIM  
PHY  
PGND  
SYS  
260Q  
SYS  
SYS  
Ichg=5A  
10uF  
BAT  
VREF  
QON  
2.2YQ  
2.2YQ  
STAT  
/PG  
10YQ 10YQ 10YQ  
Host  
Optional  
REGN  
SDA  
SCL  
INT  
OTG  
/CE  
5.23YQ  
TS  
10YQ  
30.1YQ  
BQ25892  
10-12. BQ25892 with PSEL Interface and USB On-The-Go (OTG)  
Input  
3.9Vœ14V at 3A  
OTG  
5V at 2.4A  
1H  
SYS 3.5Vœ4.5V  
10F 10F  
VBUS  
PMID  
SW  
1F  
8.2F  
47nF  
USB  
BTST  
REGN  
4.7F  
PSEL  
ILIM  
PHY  
PGND  
SYS  
260Q  
SYS  
SYS  
Ichg=5A  
10uF  
BAT  
VREF  
QON  
2.2YQ  
2.2YQ  
STAT  
/PG  
10YQ 10YQ 10YQ  
Host  
Optional  
REGN  
SDA  
SCL  
INT  
OTG  
/CE  
10YQ  
TS  
10YQ  
BQ25892  
10-13. BQ25892 with PSEL Interface and USB On-The-Go (OTG) No Thermistor Connections  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: BQ25890 BQ25892  
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
11 Power Supply Recommendations  
In order to provide an output voltage on SYS, the device requires a power supply between 3.9 V and 14 V input  
with at least 100-mA current rating connected to VBUS or a single-cell Li-Ion battery with voltage > VBATUVLO  
connected to BAT. The source current rating needs to be at least 3 A in order for the buck converter of the  
charger to provide maximum output power to SYS.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: BQ25890 BQ25892  
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
The switching node rise and fall times should be minimized for minimum switching loss. Proper layout of the  
components to minimize high frequency current path loop (see 12-1) is important to prevent electrical and  
magnetic field radiation and high frequency resonant problems. Here is a PCB layout priority list for proper  
layout. Layout PCB according to this specific order is essential.  
1. Place input capacitor as close as possible to PMID pin and GND pin connections and use shortest copper  
trace connection or GND plane.  
2. Place inductor input terminal to SW pin as close as possible. Minimize the copper area of this trace to lower  
electrical and magnetic field radiation but make the trace wide enough to carry the charging current. Do not  
use multiple layers in parallel for this connection. Minimize parasitic capacitance from this area to any other  
trace or plane.  
3. Put output capacitor near to the inductor and the IC. Ground connections need to be tied to the IC ground  
with a short copper trace connection or GND plane.  
4. Route analog ground separately from power ground. Connect analog ground and connect power ground  
separately. Connect analog ground and power ground together using power pad as the single ground  
connection point. Or using a 0Ωresistor to tie analog ground to power ground.  
5. Use single ground connection to tie charger power ground to charger analog ground. Just beneath the IC.  
Use ground copper pour but avoid power pins to reduce inductive and capacitive noise coupling.  
6. Decoupling capacitors should be placed next to the IC pins and make trace connection as short as possible.  
7. It is critical that the exposed power pad on the backside of the IC package be soldered to the PCB ground.  
Ensure that there are sufficient thermal vias directly under the IC, connecting to the ground plane on the  
other layers.  
8. The via size and number should be enough for a given current path.  
See the EVM design for the recommended component placement with trace and via locations. For the VQFN  
information, refer to Quad Flatpack No-Lead Logic Packages Application Report and QFN and SON PCB  
Attachment Application Report.  
12.2 Layout Example  
12-1. High Frequency Current Path  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: BQ25890 BQ25892  
 
 
 
 
BQ25890, BQ25892  
ZHCSDI4D MARCH 2015 REVISED OCTOBER 2022  
www.ti.com.cn  
13 Device and Documentation Support  
13.1 Device Support  
13.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
13.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
13.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
13.4 Trademarks  
PowerPADand TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
13.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: BQ25890 BQ25892  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ25890RTWR  
BQ25890RTWT  
BQ25892RTWR  
BQ25892RTWT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
RTW  
RTW  
RTW  
RTW  
24  
24  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
BQ25890  
NIPDAU  
NIPDAU  
NIPDAU  
BQ25890  
BQ25892  
BQ25892  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ25890RTWR  
BQ25890RTWT  
BQ25892RTWR  
BQ25892RTWT  
BQ25892RTWT  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
RTW  
RTW  
RTW  
RTW  
RTW  
24  
24  
24  
24  
24  
3000  
250  
330.0  
180.0  
330.0  
180.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
1.15  
1.15  
1.15  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Q2  
3000  
250  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ25890RTWR  
BQ25890RTWT  
BQ25892RTWR  
BQ25892RTWT  
BQ25892RTWT  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
RTW  
RTW  
RTW  
RTW  
RTW  
24  
24  
24  
24  
24  
3000  
250  
367.0  
210.0  
367.0  
210.0  
210.0  
367.0  
185.0  
367.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RTW 24  
4 x 4, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224801/A  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY