BQ25960 [TI]

具有旁路模式和双输入选择器的 I2C 控制型单节 8A 开关电容并联电池充电器;
BQ25960
型号: BQ25960
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有旁路模式和双输入选择器的 I2C 控制型单节 8A 开关电容并联电池充电器

电池 开关
文件: 总75页 (文件大小:2200K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BQ25960  
ZHCSNF1 FEBRUARY 2021  
具有集成旁路模式和双输入选择器BQ25960 I2C 控制型、单8A 开关电容  
并联电池充电器  
1 特性  
2 应用  
• 峰值效率98.1% 的开关电容并联充电器支8A  
快速充电  
智能手机  
平板电脑  
• 正在申请专利的两相开关电容架构经优化可实现超  
高效率  
3 说明  
BQ25960 是一款峰值效率为 98.1% 8A 电池充电解  
决方案采用开关电容结构适用于 1 节锂离子电  
池。开关电容结构允许电缆电流为充电电流的一半从  
而减少电缆功率损耗并限制温度上升。两相结构可提高  
充电效率并降低输入和输出电容要求。当与 BQ2561x  
BQ2589x 等主充电器一起使用时系统可在恒定电  
(CC) 和恒定电压 (CV) 模式下实现从涓流充电到终  
端的完整充电周期。  
– 输入电压是电池电压2 倍  
– 输出电流是输入电流2 倍  
– 减少输入电缆的功率损耗  
• 集成5A 旁路模式快速充电  
21mRdson 充电路径电阻支5A 输入5A 输  
出充电电流  
• 用于在快速充电USB On-The-Go (OTG)/TX  
模式期间选择输入源的双输入电源多路复用控制器  
• 支持宽输入电压范围  
BQ25960 通过内部 MOSFET 支持 5A 旁路模式充电  
以前称为电池开关模式充电。旁路模式充电路径中  
Rdson 21mΩ,用于大电流操作。集成的旁路模式  
可向后兼容 5V 快速充电适配器从而为 1 节电池充  
电。  
– 高12.75V 的工作输入电压  
– 带可选外ACFET 时最40V 输入电压不带  
ACFET 时最20V 输入电压  
• 通过双通道同BQ25960 运行实现并联充电充  
电电流最高可13A  
• 可实现安全运行的集成可编程保护功能  
– 输入过压保(BUSOVP) 和电池过压保护  
(BATOVP)  
该器件通过集成多路复用控制和驱动器支持外部 N-  
FET 的双输入配置。它还允许无需外部 N-FET 的单输  
入或N-FET。  
器件信息  
– 输入过流保(BUSOCP) 和电池过流保护  
(BATOCP)  
– 输出过压保(VOUTOVP)  
器件型号(1)  
BQ25960  
封装尺寸标称值)  
封装  
DSBGA (36)  
2.55mm x 2.55mm  
– 输入欠流保(BUSUCP) 和输入反向电流保护  
(BUSRCP) 可检测适配器断开并防止升压  
– 电池和连接器温度监控TSBAT_FLT 和  
TSBUS_FLT)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
Phone  
BQ25960  
(Parallel charger)  
– 接点过热保(TDIE_FLT)  
VOUT  
SC Phase  
#1  
• 用于系统优化的可编程设置  
– 中断和中断屏蔽  
SC Phase  
#2  
Adapter  
SW  
VBUS  
SYSTEM  
AC/DC  
Converter  
ADC 读数和配置  
– 用于主机控制的警报功能  
VBUS  
D+/D-  
SYS  
BAT  
Main charger  
D+/D-  
• 用于电压、电流和温度监控的集16 ADC  
Host + PD Controller  
CC1/ CC2  
PD Controller  
I2C  
AP  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSE08  
 
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
Table of Contents  
9.4 Programming............................................................ 28  
9.5 Register Maps...........................................................31  
10 Application and Implementation................................61  
10.1 Application Information........................................... 61  
10.2 Typical Application.................................................. 61  
11 Power Supply Recommendations..............................67  
12 Layout...........................................................................68  
12.1 Layout Guidelines................................................... 68  
12.2 Layout Example...................................................... 68  
13 Device and Documentation Support..........................69  
13.1 Device Support....................................................... 69  
13.2 Documentation Support.......................................... 69  
13.3 接收文档更新通知................................................... 69  
13.4 支持资源..................................................................69  
13.5 Trademarks.............................................................69  
13.6 静电放电警告.......................................................... 69  
13.7 术语表..................................................................... 69  
14 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Description (continued).................................................. 3  
6 Device Comparison Table...............................................4  
7 Pin Configuration and Functions...................................5  
8 Specifications.................................................................. 7  
8.1 Absolute Maximum Ratings ....................................... 7  
8.2 ESD Ratings .............................................................. 7  
8.3 Recommended Operating Conditions ........................7  
8.4 Thermal Information ...................................................8  
8.5 Electrical Characteristics ............................................8  
8.6 Timing Requirements ...............................................12  
8.7 Typical Characteristics..............................................13  
9 Detailed Description......................................................14  
9.1 Overview...................................................................14  
9.2 Functional Block Diagram.........................................15  
9.3 Feature Description...................................................16  
Information.................................................................... 70  
4 Revision History  
DATE  
REVISION  
NOTES  
February 2021  
*
Initial release.  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: BQ25960  
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
5 Description (continued)  
The device integrates all the necessary protection features to support safe charging, including input overvoltage  
and overcurrent protection, output overvoltage and overcurrent protection, input undercurrent and reverse-  
current protection, temperature sensing for the battery and cable, and junction overtemperature protection in  
both Switched Cap and Bypass Mode.  
The device includes a 16-bit analog-to-digital converter (ADC) to provide VAC voltage, bus voltage, bus current,  
output voltage, battery voltage, battery current, input connector temperature, battery temperature, junction  
temperature, and other calculated measurements needed to manage the charging of the battery from the  
adapter, or wireless input, or power bank.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: BQ25960  
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
6 Device Comparison Table  
6-1. Device Comparison  
FUNCTION  
Package  
BQ25960  
BQ25970  
BQ25968  
BQ25980  
YBG-36  
6.5 mm2  
1 cell  
YFF-56  
YFF-56  
YFF-80  
Die size  
9.5 mm2  
9.5 mm2  
1 cell  
13.2 mm2  
2 cell  
Battery  
1 cell  
Input MUX control  
Dual input power MUX  
control  
Single OVPFET  
Single OVPFET  
Dual input power MUX  
control  
Bypass Mode  
Yes  
8 A  
No  
No  
Yes  
8 A  
Recommended 8-A  
charging current  
8 A  
6 A  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: BQ25960  
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
7 Pin Configuration and Functions  
1
2
3
4
5
6
PMID  
VOUT  
GND  
CFL1  
CFL1  
CFH1  
VBUS  
A
B
C
D
E
F
CFH1  
CFH2  
CFH2  
GND  
GND  
VOUT  
VOUT  
VOUT  
PMID  
PMID  
VBUS  
VBUS  
CFL2  
SRN_  
SYNCIN  
/INT  
SCL  
SDA  
CDRVH  
CFL2  
TSBAT_  
SYNCOUT  
BATN_  
SRP  
CDRVL_  
ADDRMS  
VAC2  
VAC1  
TSBUS  
REGN  
ACDRV1  
BATP  
ACDRV2  
7-1. YBG Package - BQ25960 36-Pin DSBGA Top View  
7-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NO.  
NAME  
Input FETs Driver Pin 1 - The charge pump output to drive the port #1 input N-channel  
MOSFET (ACFET1) and the reverse blocking N-channel MOSFET (RBFET1). ACDRV1  
voltage becomes 5 V above the common drain connection of the ACFET1 and RBFET1, when  
the turn-on condition is met. If ACFET1 and RBFET1 are not used, connect ACDRV1 to  
ground.  
F3  
ACDRV1  
ACDRV2  
P
Input FETs Driver Pin 2 -The charge pump output to drive the port #2 input N-channel  
MOSFET (ACFET2) and the reverse blocking N-channel MOSFET (RBFET2). ACDRV2  
voltage becomes 5 V above the common drain connection of the ACFET2 and RBFET2, when  
the turn-on condition is met. If ACFET2 and RBFET2 are not used, connect ACDRV2 to  
ground.  
F2  
E6  
P
Negative input for battery voltage sensing and positive input for battery current  
sensing- Connect to negative terminal of battery pack. It is also used for battery current  
sensing. Place RSNS (2 mor 5 m) between BATN_SRP and SRN_SYNCIN. Short  
BATN_SRP to SRN_SYNCIN together and place 100-Ωseries resistance between pin and  
negative terminal if RSNS is not being used.  
BATN_SRP  
AI  
Positive input for battery voltage sensing - Connect to positive terminal of battery pack.  
Place 100-Ωseries resistance between pin and positive terminal.  
F6  
D1  
BATP  
AI  
Charge pump for gate drive - Connect a 0.22-µF cap between CDRVH and  
CDRVL_ADDRMS.  
CDRVH  
AIO  
Charge pump for gate drive - Connect a 0.22-µF cap between CDRVH and  
CDRVL_ADDRMS. During Power ON Reset (POR), this pin is used to assign the address of  
the device and the mode of the device as Standalone, Primary, or Secondary.  
E1  
CDRVL_ADDRMS  
AIO  
Switched cap flying cap connection -Connect 1 to 3 22-µF caps in parallel between this pin  
and CFL1.  
A4, B4  
C4, D4  
A2, B2  
CFH1  
CFH2  
CFL1  
P
P
P
Switched cap flying cap connection -Connect 1 to 3 22-µF caps in parallel between this pin  
and CFL2.  
Switched cap flying cap connection -Connect 1 to 3 22-µF caps in parallel between this pin  
and CFH1.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: BQ25960  
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
7-1. Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NO.  
NAME  
Switched cap flying cap connection -Connect 1 to 3 22-µF caps in parallel between this pin  
and CFH2.  
C2, D2  
CFL2  
P
DO  
P
Open drain, active low interrupt output - Pull up to voltage with 10-kresistor. Normally  
D5  
INT  
GND  
PMID  
high, the device asserts low to report status and faults. INT is pulsed low for tINT  
.
A1, B1,  
C1  
Ground return  
A5, B5,  
C5  
P
Input to the switched cap power stage -Connect 10-µF cap to PMID.  
Charger internal LDO output - Connect a 4.7-µF cap between this pin and GND. When in  
Primary/Secondary Mode, connect through 1-kΩresistor to the TSBAT_SYNCOUT and  
SRN_SYNCIN pins. Do not use REGN for any other function.  
F1  
REGN  
AO  
I2C interface clock - Pull up to 3.3 V with 10-kresistor.  
I2C interface data - Pull up to 3.3 V with 10-kresistor.  
E5  
F5  
SCL  
SDA  
DI  
DIO  
Negative input for battery current sensing - Place RSNS (2 mor 5 m) between  
SRN_SYNCIN and SRP. Short to SRP and SRN_SYNCIN together if not used. If configured  
as a secondary for dual charger configuration, this pin functions as SYNCIN, and connect to  
TSBAT_SYNCOUT of Primary, and connect a 1-kΩpullup resistor to REGN.  
D6  
SRN_SYNCIN  
AI  
AI  
Battery temperature voltage input and Primary Mode SYNCOUT - Requires external  
resistor divider, NTC, and voltage reference. See the TSBAT section for choosing the resister  
divider values. If the device is in Primary Mode, connect this pin to SRN_SYNCIN of the  
Secondary device.  
E4  
F4  
TSBAT_SYNCOUT  
BUS temperature voltage input - Requires external resistor divider, NTC, and voltage  
reference. See the TSBUS section for choosing the resister divider values.  
TSBUS  
VBUS  
VOUT  
AI  
P
A6, B6,  
C6  
Device power input - Connect 1-µF capacitor from VBUS to GND.  
Device power output - Connect 22-µF capacitor from VOUT to GND.  
A3, B3,  
C3, D3  
P
E3  
E2  
VAC1  
VAC2  
AI  
AI  
VAC1 input detection - Connected to VBUS if ACFET1 and RBFET1 are not used.  
VAC2 input detection - Connected to VBUS if ACFET2 and RBFET2 are not used.  
(1) Type: P = Power , AIO = Analog Input/Output , AI = Analog Input, DO = Digital Output, AO = Analog Output, DIO = Digital Input/Output  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: BQ25960  
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
2  
MAX  
40  
20  
20  
30  
7
UNIT  
V
VAC1, VAC2 (converter not switching)  
VBUS (converter not switching)  
PMID (converter not switching)  
ACDRV1, ACDRV2  
V
2  
V
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
V
CFL1, CFL2  
V
Voltage  
CFH1 to VOUT, CFH2 to VOUT  
7
V
VOUT  
7
V
BATP, BATN_SRP  
6
V
INT, SDA, SCL, CDRVL_ADDRMS, SRN_SYNCIN,  
TSBAT_SYNCOUT, TSBUS  
6
V
0.3  
0.3  
CDRVH  
20  
6
V
Output Sink Current  
INT  
mA  
°C  
°C  
TJ  
Junction temperature  
Storage temperature  
150  
150  
40  
55  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
8.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101, all  
pins(2)  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
12  
12  
12  
6
UNIT  
V
VAC1, VAC2  
Input voltage at VAC1 and VAC2  
Input voltage at VBUS  
VBUS  
V
PMID  
Input voltage at PMID  
V
PMID-CFH1, PMID-CFH2  
Voltage across QCH1, QCH2  
Voltage across QDH1, QDH2  
Voltage across QCL1, QCL2  
Voltage across QDL1, QDL2  
Charging current  
V
CFH1-VOUT, CFH2-VOUT  
6
V
VOUT-CFL1, VOUT-CFL2  
6
V
CFL1, CFL2  
ICHG  
TA  
6
V
8
A
Ambient temperature  
85  
120  
°C  
°C  
µF  
µF  
µF  
40  
40  
6.6  
0.2  
2
TJ  
Junction temperature  
CCFLY  
CVBUS  
CPMID  
Effective CFLY capacitance  
Effective VBUS capacitance  
Effective PMID capacitance  
20  
1
10  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: BQ25960  
 
 
 
 
 
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
8.3 Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2
NOM  
10  
MAX  
UNIT  
µF  
COUT  
CREGN  
CDRV  
Effective VOUT capacitance  
Effective REGN capacitance  
Effective DRV capacitance  
1
4.7  
µF  
44  
220  
nF  
8.4 Thermal Information  
BQ25960  
THERMAL METRIC(1)  
YBG (DSBGA)  
UNIT  
36 PINS  
54.8  
0.2  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance (JEDEC(1)  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
)
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
12  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.1  
11.9  
ΨJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
8.5 Electrical Characteristics  
VBUS=8V, VOUT=4V, TJ= -40°C to +85°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
QUIESCENT CURRENTS  
ADC disabled, charge disabled,  
VBUS, VAC1, and VAC2 not present,  
VBAT=4V  
12  
20 µA  
IQ_BAT  
Quiescent battery current  
Quiescent VAC current  
ADC enabled (slowest mode), charge  
disabled, VBUS, VAC1, and VAC2  
not present, VBAT=4V  
480  
750 µA  
ADC disabled, charge disabled,  
ACDRV disabled, EN_HIZ=1, VAC1  
or VAC2 =8V  
90  
µA  
µA  
IQ_VAC  
ADC enabled, charge disabled,  
ACDRV enabled, VAC1 or VAC2= 8V  
660  
INTERNAL THRESHOLD  
VAC rising threshold for active  
I2C, no VOUT, no VBUS  
VVACUVLOZ  
VAC1 or VAC2 rising  
VAC1 or VAC2 falling  
VAC1 or VAC2 rising  
VAC1 or VAC2 falling  
VBUS rising  
3.24  
3.05  
3.3  
3.4  
3.2  
3.4  
3.2  
3.4  
2.8  
3.6  
3.4  
V
V
V
V
V
V
VAC falling threshold for I2C stop  
working  
VVACUVLO  
VAC rising threshold to turn on  
ACFET-RBFET  
3.5  
VVACPRESENT  
VAC falling threshold to turn off  
ACFET-RBFET  
3.1  
3.3  
VBUS rising threshold for active  
I2C, no VOUT, no VAC  
VVBUSUVLOZ  
VVBUSUVLO  
3.24  
2.65  
3.6  
VBUS falling threshold for I2C  
stop working  
VBUS falling  
2.95  
VBUS rising threshold to allow  
user set CHG_EN =1  
VBUS rising  
VBUS falling  
3.3  
3.1  
3.4  
3.2  
3.5  
3.3  
V
V
VVBUSPRESENT  
VBUS falling  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: BQ25960  
 
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
8.5 Electrical Characteristics (continued)  
VBUS=8V, VOUT=4V, TJ= -40°C to +85°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VOUT rising threshold for active  
VVOUTUVLOZ  
VVOUTUVLO  
VOUT rising  
2.48  
2.6  
2.72  
2.55  
V
V
I2C, no VAC, no VBUS  
VOUT falling threshold for I2C  
stop working  
VOUT falling  
2.25  
2.4  
VOUT rising to threshold allow  
user set CHG_EN =1  
VOUT rising  
VOUT falling  
3.0  
2.9  
3.1  
3.0  
3.2  
3.1  
V
V
VVOUTPRESENT  
VOUT falling  
RESISTANCE  
RON_BLK  
RON_CH1  
RON_DH1  
RON_CL1  
RON_DL1  
RON_CH2  
RON_DH2  
RON_CL2  
RON_DL2  
RVBUS_PD  
VBUS to PMID resistance  
PMID to CFH1 resistance  
CFH1 to VOUT resistance  
VOUT to CFL1 resistance  
CFL1 to GND resistance  
PMID to CFH2 resistance  
CFH2 to VOUT resistance  
VOUT to CFL2 resistance  
CFL2 to GND resistance  
VBUS pull down resistance  
VBUS=8V  
PMID=8V  
CFLY=4V  
VOUT=4V  
CFLY=4V  
PMID=8V  
CFLY=4V  
VOUT=4V  
CFLY=4V  
6.1  
19.3  
11.4  
11.8  
12  
10.5  
26.8  
16.8  
18  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
kΩ  
18.3  
26.8  
16.8  
18  
19.3  
11.4  
11.8  
12  
18.3  
5
VAC pull down resistance for  
both VAC1 and VAC2  
RVAC_PD  
VAC=10V  
125  
Ω
PROTECTION AND ALARM THRESHOLD AND ACCURACY  
VBATOVP_RANGE  
VBATOVP_STEP  
IBATP  
Battery over-voltage range  
Typical battery over-voltage step  
BATP leakage current  
3.491  
4.759  
V
9.985  
mV  
1.2 µA  
IBATN  
BATN leakage current  
1
4.434  
5.1  
nA  
V
VBATOVP_ACC  
VOUTOVP_ACC  
IBATOCP_RANGE  
IBATOCP_STEP  
Battery over-voltage accuracy  
VOUT over-voltage accuracy  
Battery over-current range  
Typical battery over-current step  
VBATOVP = 4.390V  
VOUTOVP= 5V  
4.346  
4.9  
4.390  
5
V
2.05  
8.7125  
A
102.5  
6.15  
mA  
IBATOCP=6.15A, RSNS=2mΩ  
TJ = 20°C - 85°C  
IBATOCP_ACC  
Battery over-current accuracy  
VBUS over-voltage range  
5.842  
6.458  
A
V
Switched Cap Mode  
Bypass Mode  
7
12.75  
6.5  
VBUSOVP_RANGE  
3.5  
Switched Cap Mode  
Bypass Mode  
50  
25  
mV  
mV  
V
VBUSOVP_STEP  
Typical VBUS over-voltage step  
VBUS over-voltage accuracy  
VBUSOVP = 4.45V  
VBUSOVP = 9V  
4.39  
8.91  
4.45  
9
4.488  
9.09  
VBUSOVP_ACC  
V
VBUS ERRHI rising threshold for  
switched cap mode stop  
switching  
VBUS_ERRHI_RISING_SC  
VOUT=4V  
VOUT=4V  
9.6  
9.4  
V
V
VBUS ERRHI falling threshold  
for switched cap mode start  
switching  
VBUS_ERRHI_FALLING_SC  
VBUS ERRHI rising threshold for  
bypass mode stop switching  
VBUS_ERRHI_RISING_BYPASS  
VBUS_ERRHI_FALLING_BYPASS  
VOUT=4V  
VOUT=4V  
4.8  
V
V
VBUS ERRHI falling threshold  
for bypass mode start switching  
4.68  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: BQ25960  
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
MAX UNIT  
8.5 Electrical Characteristics (continued)  
VBUS=8V, VOUT=4V, TJ= -40°C to +85°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
VVACOVP_RANGE  
VAC over-voltage range  
6.5  
18  
6.6  
V
V
VACOVP=6.5V  
6.3  
6.5  
10.5  
12  
VVACOVP_ACC  
VAC over-voltage accuracy  
VACOVP=10.5V  
VACOVP=12V  
10.2  
11.7  
10.7  
12.2  
V
V
VVACOVP_HYS  
VACOVP hysteresis  
3
%
A
Switched Cap Mode  
Bypass Mode  
1.0175  
1.0475  
4.579  
6.809  
IBUSOCP_RANGE  
Input over-current range  
A
Switched Cap Mode  
Bypass Mode  
254  
262  
mA  
mA  
IBUSOCP_STEP  
Typical input over current step  
IBUSOCP=3.05A, switched cap  
mode  
TJ = 20°C - 85°C  
2.897  
3.05  
3.14  
3.206  
3.297  
A
A
IBUSOCP_ACC  
Input over current accuracy  
Input under-current accuracy  
IBUSOCP=3.14A, bypass mode  
TJ = 20°C - 85°C  
2.983  
100  
BUSUCP=250mA, TJ = 20°C -  
85°C  
IBUSUCP_ACC  
250  
300  
450 mA  
450 mA  
IBUSRCP_ACC  
Input reverse-current accuracy  
TSBUS fault % of VREGN range  
BUSRCP=300mA, TJ = -20°C - 85°C  
TSBUS_FLT=20.12%  
150  
0
TSBUS_FLT_RANGE  
50  
%
%
TSBUS fault % of VREGN step  
size  
TSBUS_FLT_STEP  
0.1953  
20.12  
TSBUSFLT_ACC  
TSBUS fault accuracy  
18.5  
0
21.5  
50  
%
%
TSBAT_FLT_RANGE  
TSBAT fault % of VREGN range  
TSBAT fault % of VREGN step  
size  
TSBAT_FLT_STEP  
0.1953  
20.12  
%
%
TSBAT_FLT_ACC  
TDIE_FLT_RANGE  
TDIE_FLT_STEP  
TSBAT voltage accuracy  
TSBAT_FLT=20.12%  
18.5  
80  
21.5  
TDIE over-temperature range  
TDIE over-temperature step  
140 °C  
°C  
20  
TDIE over-temperature alarm  
range  
TDIE_ALM_RANGE  
TDIE_ALM_STEP  
25  
150 °C  
°C  
TDIE over-temperature alarm  
step  
0.5  
ADC MEASUREMENT PERFORMANCE  
ADC_SAMPLE[1:0] = 00  
ADC_SAMPLE[1:0] = 01  
ADC_SAMPLE[1:0] = 10  
ADC_SAMPLE[1:0] = 11  
ADC_SAMPLE[1:0] = 00  
ADC_SAMPLE[1:0] = 01  
ADC_SAMPLE[1:0] = 10  
ADC_SAMPLE[1:0] = 11  
24  
12  
6
ms  
ms  
ms  
ms  
bit  
Conversion-time, Each  
Measurement  
tADC_CONV  
3
14  
13  
12  
10  
15  
14  
13  
11  
bit  
ADCRES  
Effective Resolution  
bit  
bit  
ADC MEASUREMENT RANGES AND ACCURACY  
IBUSADC_RANGE  
ADC BUS current range  
ADC BUS current LSB  
ADC BUS current LSB  
ADC BUS current offset  
ADC BUS current offset  
0
7
A
Switched Cap Mode  
Bypass Mode  
0.9972  
1.0279  
66  
mA  
mA  
mA  
mA  
IBUSADC_LSB  
Switched Cap Mode  
Bypass Mode  
IBUSADC_OFFSET  
64  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: BQ25960  
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
8.5 Electrical Characteristics (continued)  
VBUS=8V, VOUT=4V, TJ= -40°C to +85°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IBUS=2A, ADC_SAMPLE[1:0]=00,  
TJ = 20°C - 85°C  
1.9  
2
2.1  
A
A
IBUSADC_ACC  
ADC BUS current accuracy  
IBUS=3A, ADC_SAMPLE[1:0]=00,  
TJ = 20°C - 85°C  
2.85  
0
3
3.15  
VBUSADC_RANGE  
VBUSADC_LSB  
ADC BUS voltage range  
ADC BUS voltage LSB  
16.39  
V
mV  
V
1.002  
VBUS=4V, ADC_SAMPLE[1:0]=00  
VBUS=8V, ADC_SAMPLE[1:0]=00  
3.96  
7.92  
0
4
8
4.04  
8.08  
14  
VBUSADC_ACC  
ADC BUS voltage accuracy  
V
VAC1ADC_RANGE  
VAC1ADC_STEP  
VAC1ADC_OFFSET  
ADC VAC1 voltage range  
ADC VAC1 voltage LSB  
ADC VAC1 voltage offset  
V
1.0008  
mV  
mV  
V
3
4
8
VAC1=4V, ADC_SAMPLE[1:0]=00  
VAC1=8V, ADC_SAMPLE[1:0]=00  
3.96  
7.92  
0
4.04  
8.08  
14  
VAC1ADC_ACC  
ADC VAC1 voltage accuracy  
V
VAC2ADC_RANGE  
VAC2ADC_LSB  
ADC VAC2 voltage range  
ADC VAC2 voltage LSB  
ADC VAC2 voltage offset  
ADC VAC2 voltage accuracy  
ADC VAC2 voltage accuracy  
ADC BAT voltage range  
ADC BAT voltage LSB  
V
1.0006  
mV  
mV  
V
VAC2ADC_OFFSET  
VAC2ADC_ACC  
VAC2ADC_ACC  
VBATADC_RANGE  
VBATADC_LSB  
5
4
8
VAC2=4V, ADC_SAMPLE[1:0]=00  
VAC2=8V, ADC_SAMPLE[1:0]=00  
3.96  
7.92  
0
4.04  
8.08  
6
V
V
1.017  
1
mV  
mV  
V
VBATADC_OFFSET  
ADC BAT voltage offset  
VBAT=4V, ADC_SAMPLE[1:0]=00  
VBAT=4.4V, ADC_SAMPLE[1:0]=00  
3.96  
4.356  
0
4
4.04  
4.444  
6
VBATADC_ACC  
ADC BAT voltage accuracy  
4.4  
V
VOUTADC_RANGE  
VOUTADC_LSB  
ADC VOUT voltage range  
ADC VOUT voltage LSB  
ADC VOUT voltage offset  
V
1.0037  
mV  
mV  
V
VOUTADC_OFFSET  
2
4
VOUT=4V, ADC_SAMPLE[1:0]=00  
VOUT=4.4V, ADC_SAMPLE[1:0]=00  
3.98  
4.378  
-12  
4.02  
4.422  
12  
VOUTADC_ACC  
ADC VOUT voltage accuracy  
4.4  
V
IBATADC_RANGE  
IBATADC_LSB  
ADC battery current range  
ADC battery current LSB  
ADC battery current offset  
A
0.999  
-150  
mA  
mA  
IBATADC_OFFSET  
IBAT=4A, ADC_SAMPLE[1:0]=00, TJ  
= 20°C - 85°C  
3.92  
4.00  
6.00  
4.08  
A
ADC battery current accuracy  
through 2mOhm sense resistor  
IBATADC_ACC_2mOhm  
IBAT=6A, ADC_SAMPLE[1:0]=00, TJ  
= 20°C - 85°C  
5.88  
0
6.12  
50  
A
%
%
TSBUSADC_RANGE  
TSBUSADC_STEP  
ADC TSBUS % of VREGN range  
ADC TSBUS % of VREGN range  
LSB  
0.0986  
0.1  
ADC TSBUS % of VREGN range  
offset  
TSBUSADC_OFFSET  
%
TSBUS=20% of VREGN  
ADC_SAMPLE[1:0]=00  
,
TSBUSADC_ACC  
TSBATADC_RANGE  
TSBATADC_STEP  
ADC TSBUS accuracy  
19  
0
20  
21  
50  
%
%
%
ADC TSBAT % of VREGN range  
ADC TSBAT % of VREGN range  
LSB  
0.0976  
0.065  
ADC TSBAT % of VREGN range  
offset  
TSBATADC_OFFSET  
%
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: BQ25960  
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
MAX UNIT  
8.5 Electrical Characteristics (continued)  
VBUS=8V, VOUT=4V, TJ= -40°C to +85°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TSBAT=20% of VREGN  
ADC_SAMPLE[10]=00  
MIN  
TYP  
,
TSBATADC_ACC  
ADC TSBAT accuracy  
19  
20  
21  
%
TDIE_ADC_RANGE  
TDIE_ADC_STEP  
TDIE_ADC_OFFSET  
REGN LDO  
VREGN  
ADC TDIE range  
ADC TDIE step  
ADC TDIE offset  
-40  
150 °C  
°C  
0.5079  
-3.5  
°C  
REGN LDO output voltage  
REGN LDO current limit  
VBUS=8V, IREGN=20mA  
VBUS=8V, VREGN=4.5V  
5.0  
V
IREGN  
40  
mA  
I2C INTERFACE (SCL, SDA)  
Input high threshold level, SDA  
and SCL  
VIH  
Pull up rail 1.8V  
1.3  
V
VIL  
Input low threshold level  
Output low threshold level  
High-level leakage current  
Pull up rail 1.8V  
Sink current = 5mA  
Pull up rail 1.8V  
0.4  
0.4  
1
V
V
VOL  
IBIAS  
µA  
LOGIC OUTPUT PIN (INT, TSBAT_SYNCOUT)  
Output low threshold level, INT  
pin  
VOL  
Sink current = 5mA  
Pull up rail 1.8V  
0.4  
1
V
High-level leakage current, INT  
pin  
IOUT  
µA  
LOGIC INPUT PIN (SRN_SYNCIN)  
Input high threshold level,  
SRN_SYNCIN  
VIH_SRN_SYNCIN  
1.3  
V
Input low threshold level,  
SRN_SYNCIN  
VIL_SRN_SYNCIN  
IIN_SRN_SYNCIN  
0.4  
1
V
High level leakage current  
Pull-up rail 1.8V  
µA  
8.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
TIMINGS  
tVACOVP  
VAC OVP response time  
IBAT OCP response time  
100  
640  
256  
120  
ns  
µs  
µs  
ms  
tBATOCP  
tINT  
Duration that INT is pulled low when an event occurs  
Time between consecutive faults for ALM indication  
tALM_DEBOUNCE  
I2C INTERFACE  
fSCL  
SCL clock frequency  
1000  
kHz  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: BQ25960  
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
8.7 Typical Characteristics  
Typical characteristics are taken with the BMS041 for switching test and GRM188R61C226M is used as CFLY.  
97.75  
97.25  
96.75  
96.25  
95.75  
95.25  
94.75  
94.25  
93.75  
93.25  
2.4  
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0
1
2
3
Charge current (A)  
4
5
6
7
8
0
1
2
3
Charge current (A)  
4
5
6
7
8
VBAT = 4.0 V, FSW = 500 kHz  
VBAT = 4.0 V, FSW = 500 kHz  
8-1. Battery Charge Efficiency vs. Charge Current, 1 x 22-µF  
8-2. Battery Charge Power Loss vs. Charge Current, 1 x 22-  
CFLY per Phase Switching Frequency  
µF CFLY per Phase Switching Frequency  
1.8  
1.6  
1.4  
1.2  
1
98  
97.6  
97.2  
96.8  
96.4  
96  
0.8  
0.6  
0.4  
0.2  
0
95.6  
95.2  
94.8  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
Charge current (A)  
6.5  
7.5  
8.5  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
Charge current (A)  
6.5  
7.5  
8.5  
VBAT = 4.0 V, FSW = 500 kHz  
VBAT = 4.0 V, FSW = 500 kHz  
8-3. Battery Charge Efficiency vs. Charge Current, 2 x 22-µF  
8-4. Battery Charge Power Loss vs. Charge Current, 2 x 22-  
CFLY per Phase  
µF CFLY per Phase  
98.2  
98  
1.6  
1.4  
1.2  
1
97.8  
97.6  
97.4  
97.2  
97  
96.8  
96.6  
96.4  
96.2  
96  
0.8  
0.6  
0.4  
0.2  
0
95.8  
95.6  
95.4  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
Charge current (A)  
6.5  
7.5  
8.5  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
Charge current (A)  
6.5  
7.5  
8.5  
VBAT = 4.0 V, FSW = 500 kHz  
VBAT = 4.0 V, FSW = 500 kHz  
8-6. Battery Charge Power Loss vs. Charge Current, 3 x 22-  
8-5. Battery Charge Efficiency vs. Charge Current, 3 x 22-µF  
µF CFLY per Phase  
CFLY per Phase  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: BQ25960  
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The BQ25960 is a 98.1% peak efficiency, 8-A battery charging solution using a switched cap architecture for 1-  
cell Li-ion battery. This architecture allows the cable current to be half the charging current, reducing the cable  
power loss, and limiting temperature rise. The dual-phase architecture increases charging efficiency and reduces  
the input and output cap requirements. When used with a main charger such as BQ2561x or BQ2589x, the  
system the system enables full charging cycle from trickle charge to termination with low power loss at Constant  
Current (CC) and Constant Voltage (CV) mode.  
The device also operates in bypass mode charging the battery directly from VBUS through QB, QCH1 and  
QDH1 in parallel with QCH2 and QDH2. The impedance in bypass mode is limited to 21 mfor 5-A charging  
current.  
The device supports dual input power path management which manages the power flowing from two different  
input sources. The inputs selection is controlled by host through I2C with default source #1 as the primary input  
and the source #2 as the secondary source.  
The device integrates all the necessary protection features to ensure safe charging, including input overvoltage  
and overcurrent protection, output overvoltage and overcurrent protection, temperature sensing for the battery  
and cable, and monitoring the die temperature.  
The device includes a 16-bit ADC to provide bus voltage, bus current, output voltage, battery voltage, battery  
current, input connector temperature, battery temperature, junction temperature, and other calculated  
measurements needed to manage the charging of the battery from the smart wall adapter or wireless input or  
power bank.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: BQ25960  
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
9.2 Functional Block Diagram  
VVBUSUVLOZ  
BQ25960  
+
UVLO  
Block Diagram  
+
REGN  
REGN  
LDO  
VVBUSOVP  
REGN  
EN_HIZ  
VBUSOVP  
CDRVH  
QB  
CDRVL_ADDRMS  
IBUS  
PMID  
VBUS  
ACDRV1  
ACDRV2  
QCH1  
QCH2  
Switched  
Cap  
Control  
CFH2  
CFH1  
VAC1  
INPUT  
SELECTOR  
VAC2  
QDH1  
QDH2  
VOUT  
Digital Core,  
I2C Control  
and System  
Feedback to HOST  
SCL  
SDA  
QCL1  
QCL2  
SYNCOUT  
CFL2  
CFL1  
SYNCIN  
INT  
QDL2  
QDL1  
+
TSBUS  
GND  
TSBUS_FLT  
VBUS_ADC  
VBAT_ADC  
IBAT_ADC  
TSBUS_ADC  
TSBAT_ADC  
TDIE_ADC  
VAC1_ADC  
VAC2_ADC  
BATP  
+
TSBAT_SYNCOUT  
TSBAT_FLT  
ADC  
IBUS_ADC  
SYNCOUT  
VOUT_ADC  
BATN_SRP  
+
VBUS  
+
+
+
+
VBATOVP  
VBUSOVP  
SRN_SYNCIN  
+
IBUS  
+
IBATOCP  
Protection  
IBUSOCP  
VOUT  
IBUSUCP  
IBUS  
+
+
SYNCIN  
VOUTOVP  
IBUS  
IC_TJ  
TDIE_FTL  
+
IBUSRCP  
VAC2  
+
+
VAC1  
VAC1OVP  
VAC2OVP  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: BQ25960  
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Charging System  
BQ25960 is a single-cell high efficiency switched cap charger, used in parallel with a switching mode charger. A  
host must set up the protections and alarms on BQ25960 prior to enabling the BQ25960. The host must monitor  
the alarms generated by BQ25960 and communicate with the smart adapter to control the current delivered to  
the charger.  
Phone  
BQ25960  
(Parallel charger)  
VOUT  
SC Phase  
#1  
SC Phase  
#2  
Adapter  
SW  
VBUS  
SYSTEM  
AC/DC  
Converter  
VBUS  
D+/D-  
SYS  
BAT  
Main charger  
D+/D-  
Host + PD Controller  
CC1/ CC2  
PD Controller  
I2C  
AP  
9-1. BQ25960 System Diagram  
9.3.2 Battery Charging Profile  
The system will have a specific battery charging profile that is unique due to the switched cap architecture. The  
charging will be controlled by the main charger such as the BQ2561x or BQ2589x until ystem voltage reaches  
minimum system regulation voltage VSYSMIN. Once the battery voltage reaches VSYSMIN (3.5 V), the adapter can  
negotiate for a higher bus voltage, enable BQ25960 charging, and regulate the current on VBUS to charge the  
battery. In the CC phase, the protection in BQ25960 will not regulate the battery voltage, but will provide  
feedback to the system to increase and decrease current as needed, as well as disable the blocking and  
switching FETs if the voltage is exceeded. Once the CV point is reached, the BQ25960 will provide feedback to  
the adapter to reduce the current, effectively tapering the current until a point where the main charger takes over  
again. The BQ25960 can operate as long as input current is above the BUSUCP threshold.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: BQ25960  
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
8A  
7A  
Note: Current and Voltage steps are exaggerated for  
example only œ actual current steps are much  
smaller  
BATOVP  
BATOVP_ALM  
6A  
5A  
4A  
Battery Current  
Battery Voltage  
Cable Current  
3.5V  
3A  
3.5  
2A  
1A  
3.0  
3.0V  
Pre-Charge  
Pre-Charge  
Main charger  
CC CC  
Main charger BQ25960  
CV  
BQ25960  
CV  
Main charger  
T1 T2 T3  
T4  
T5  
9-2. BQ25960 System Charging Profile  
9.3.3 Device Power Up  
The device is powered from the higher of VAC1 or VAC2 (with VAC1 being primary input), VBUS or VOUT  
(battery). The voltage must be greater than the VVACUVLOZ, VVBUSUVLOZ or VVOUTUVLOZ threshold to be a valid  
supply. When VAC1 or VAC2 rises above VVACUVLOZ or VBUS rises above VVBUSUVLOZ or VOUT rises above  
VVOUTUVLOZ, I2C interface is ready for communication and all the registers are reset to default value. The host  
needs to wait VBUSPRESENT_STAT and VOUTPRESENT_STAT go high before setting CHG_EN =1 and start  
charging.  
9.3.4 Device HIZ State  
The device enters HIZ mode when EN_HIZ bit is set to '1'. When device is in HIZ mode, the converter stops  
switching, ADC stops converting, ACDRV is turned off and REGN LDO is forced off even when the adapter is  
present and no fault condition is present. The device exits HIZ Mode when EN_HIZ is set to '0' by host or device  
POR.  
The faults conditions force the converter stop switching and clear CHG_EN bit, but keep REGN on and EN_HIZ  
bit = 0. More details can be found in the Device Protection section.  
9.3.5 Dual Input Bi-Directional Power Path Management  
The device has two ACDRV pins to drive two sets of N-channel ACFET-RBFET, which select and manage the  
input power from two different input sources. In the POR sequence, the device detects if the ACFET-RBFET is  
populated based on if ACDRV pin is shorted to ground or not, and then updates the status register  
ACRB1_CONFIG_STAT or ACRB2_CONFIG_STAT to indicate the presence of ACFET-RBFET. If the external  
ACFET-RBFET is not populated in the schematic, then tie VAC to VBUS and connect ACDRV to GND. The  
device supports:  
1. single input without external FET  
2. single input with one single ACFET  
3. dual input with one set of ACFET-RBFET  
4. dual input with two sets of ACFET-RBFET  
The power-up sequences for different applications are described in detail below.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: BQ25960  
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
9.3.5.1 ACDRV Turn-On Condition  
The ACDRV controls input power MUX for both BQ25960 and main charger. In order to turn the ACDRV, all of  
the following conditions must be valid:  
1. The corresponding AC-RB FET is populated: VAC is not short to VBUS and ACDRV is not short to ground  
2. VAC is above VVACpresent threshold  
3. VAC is below VVACOVP threshold  
4. DIS_ACDRV_BOTH is not set to '1'  
5. EN_HIZ is not set to '1'  
6. VBUS is below VVBUSpresent threshold  
9.3.5.2 Single Input from VAC to VBUS without ACFET-RBFET  
In this scenario, VAC1 and VAC2 are both shorted to VBUS, ACDRV1 and ACDRV2 are pulled down to ground.  
The table below summarizes the VAC1/VAC2, ACDRV1/ACDRV2 connection, register control, and status  
functions.  
9-1. Single Input without External FET Summary  
INPUT CONFIGURATION  
SINGLE INPUT  
External FET connection  
No external FET  
Input pin connection  
ACDRV pin connection  
ACDRV1_STAT  
VAC1 and VAC2 short to VBUS  
ACDRV1 and ACDRV2 short to ground  
0
ACDRV2_STAT  
0
DIS_ACDRV_BOTH  
ACRB1_CONFIG_STAT  
ACRB2_CONFIG_STAT  
EN_HIZ  
1
0
0
No impact on ACDRV  
ACDRV2  
VAC2  
PMID  
Adapter  
VBUS  
QB  
VAC1  
ACDRV1  
BQ25960  
9-3. Single input without ACFET-RBFET  
9.3.5.3 Single Input with ACFET1  
In this scenario, ACFET1 without RBFET1 is populated, but ACFET2-RBFET2 is not. VAC2 is short to VBUS  
and ACDRV2 is pulled down to ground. The table below summarizes the VAC1/ VAC2, ACDRV1/ACDRV2  
connection, register control, and status functions. Use VAC1 for single input configuration.  
9-2. Single Input with Single ACFET1  
INPUT CONFIGURATION  
External FET connection  
SINGLE INPUT  
ACFET1, no ACFET2-RBFET2  
Input pin connection  
ACDRV pin connection  
ACDRV1_STAT  
VAC1 connected to input source  
VAC2 short to VBUS  
ACDRV1 active  
ACDRV2 tie to ground  
1: ACDRV1 is ON  
0: ACDRV1 is OFF  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: BQ25960  
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
9-2. Single Input with Single ACFET1 (continued)  
INPUT CONFIGURATION  
SINGLE INPUT  
ACDRV2_STAT  
0
DIS_ACDRV_BOTH  
0: Allow ACDRV1 to turn on if the conditions of ACDRV turn on are met.  
1: Force ACDRV1 OFF  
ACRB1_CONFIG_STAT  
ACRB2_CONFIG_STAT  
EN_HIZ  
1
0
0: Allow ACDRV1 to turn on if the conditions of ACDRV turn on are met.  
1: Force ACDRV1 OFF  
ACDRV2  
VAC2  
ACFET1  
Adapter  
PMID  
VBUS  
QB  
ACDRV1  
VAC1  
BQ25960  
9-4. Single Input with ACFET1  
9.3.5.4 Dual Input with ACFET1-RBFET1  
In this scenario, ACFET1-RBFET1 is populated, but ACFET2-RBFET2 is not. VAC2 is short to VBUS and  
ACDRV2 is pulled down to ground. The table below summarizes the connection, register control and status  
functions. Use VAC1 for adapter input and VBUS for wireless input.  
9-3. Dual Input with ACFET1-RBFET1  
INPUT CONFIGURATION  
External FET connection  
DUAL INPUT  
ACFET1-RBFET1, no ACFET2-RBFET2  
Input pin connection  
ACDRV pin connection  
ACDRV1_STAT  
VAC1 connected to input source 1  
VAC2 short to VBUS  
ACDRV1 active  
ACDRV2 short to ground  
0: ACDRV1 OFF  
1: ACDRV1 ON  
ACDRV2_STAT  
0
DIS_ACDRV_BOTH  
0: Allow ACDRV1 to turn on if other conditions of ACDRV turn on are met  
1: Force ACDRV1 OFF  
ACRB1_CONFIG_STAT  
ACRB2_CONFIG_STAT  
EN_HIZ  
1
0
0: Allow ACDRV1 to turn on if other conditions of ACDRV turn on are met  
1: Force ACDRV1 OFF  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: BQ25960  
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
ACDRV2  
VAC2  
PMID  
Wireless  
Adapter  
VBUS  
QB  
ACDRV1  
VAC1  
BQ25960  
ACFET1  
RBFET1  
9-5. Dual Input with ACFET-RBFET1  
9.3.5.5 Dual Input with ACFET1-RBFET1 and ACFET2-RBFET2  
In this scenario, both ACFET1-RBFET1 and ACFET2-RBFET2 are populated and the device supports dual  
input. The table below summarizes the connection, register control and status functions. Connect input with high  
OVP threshold to VAC1.  
9-4. Dual Input with Both ACFET1-RBFET1 and ACFET2-RBFET2 Summary  
INPUT CONFIGURATION  
DUAL INPUT  
External FET connection  
ACFET1-RBFET1, ACFET1-RBFET2  
Input pin connection  
VAC1 connected to input source 1  
VAC2 connected to input source 2  
No input source allowed to connect to VBUS  
ACDRV pin connection  
ACDRV1_STAT  
ACDRV1 and ACDRV2 active  
0: ACDRV1 OFF  
1: ACDRV1 ON  
Once device is in dual input configuration with ACFET1-RBFET1 and ACFET2-RBFET2, the  
host can use this bit to swap the input between VAC1 and VAC2 if both VAC1 and VAC2 are  
valid.  
ACDRV2_STAT  
0: ACDRV2 OFF  
1: ACDRV2 ON  
Once device is in dual input configuration with ACFET1-RBFET1 and ACFET2-RBFET2, the  
host can use this bit to swap the input between VAC1 and VAC2 if both VAC1 and VAC2 are  
valid.  
DIS_ACDRV_BOTH  
0: Allow ACDRV to turn on. By default, ACDRV1 is turned on if the conditions of ACDRV turn  
on are met, ACDRV1_STAT=1 and ACDRV2_STAT =0. In On-The-GO (OTG) or Reverse TX  
Mode, refer to OTG and Reverse TX Mode Operation session for turn on precedence.  
1: Force both ACDRV to turn off, both ACDRV1_STAT and ACDRV2_STAT become 0.  
ACRB1_CONFIG_STAT  
ACRB2_CONFIG_STAT  
EN_HIZ  
1
1
0: Allow ACDRV to turn on for the port w/ VAC present if the conditions of ACDRV turn on  
are met.  
ACDRV1 is turned on since VAC1 is the primary input source when both VAC1 and VAC2  
present and the turn on conditions are met.  
1: Turns off both ACDRV  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: BQ25960  
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
ACDRV2  
VAC2  
RBFET2  
ACFET2  
Wireless  
Adapter  
VBUS  
PMID  
QB  
ACDRV1  
VAC1  
ACFET1  
RBFET1  
BQ25960  
9-6. Two Inputs with ACFET-RBFET1 and ACFET-RBFET2  
9.3.5.6 OTG and Reverse TX Mode Operation  
When the main charger is in OTG or reverse TX Mode, the input power MUX (ACFET-RBFET) also controls  
which port is desired for OTG output.  
To enter OTG or reverse TX Mode, the host should follow the steps below:  
1. Host writes EN_OTG =1  
2. BQ25960 sets DIS_ACDRV_BOTH =1  
3. Host writes DIS_ACDRV_BOTH=0, and then writes ACDRV1_STAT=1 or ACDRV2_STAT=1 depending on  
which port is desired for OTG or reverse TX output  
4. Host enables OTG Mode on main charger  
5. If VBUSOVP or VACOVP fault occurs, ACDRV will be disabled but EN_OTG is still '1'. Host needs to write  
ACDRV1_STAT high or ACDRV2_STAT high when the fault is cleared. Set VAC1OVP and VAC2OVP to the  
same threshold in the OTG Mode  
6. EN_OTG is cleared when watchdog timer expires  
To exit OTG or Reverse TX Mode, the host should follow the steps below:  
1. Turn off main OTG or reverse TX source  
2. Turn on VBUS pulldown resistor (RVBUS_PD) by setting BUS_PD_EN=1 or VAC pulldown resistor RVAC_PD by  
setting VAC1_PD_EN=1 or VAC2_PD_EN=1, depending on which port is to be discharged  
3. Wait for VBUS and VAC to be discharged  
4. Turn off ACDRV by setting ACDRV1_STAT=0 or ACDRV2_STAT=0  
5. Exit OTG Mode by setting EN_OTG=0  
9.3.6 Bypass Mode Operation  
When host determines the adapter support bypass mode charging, the device can enable Bypass mode by  
setting EN_BYPASS=1. Blocking FET (QB) and four high side switching FET (QCH1 and QDH1/ QCH2 and  
QDH2) are turned on to charge from adapter to battery. During Bypass Mode, when fault occurs, CHG_EN is  
cleared but EN_BYPASS stays 1.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: BQ25960  
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
ACDRV2  
VBUS  
VAC2  
BQ25960  
Adapter  
Wireless  
SDA  
ACDRV1  
Digital  
Core  
QB  
SCL  
/INT  
Host  
VAC1  
PMID  
QCH1  
QCH2  
CFH2  
CFH1  
QDH1  
CFLY2  
QDH2  
QCL2  
QDL2  
CFLY1  
VOUT  
QCL1  
CFL2  
CFL1  
QDL1  
GND  
9-7. BQ25960 Bypass Mode  
To change from Bypass Mode to Switched Cap Mode or from Switched Cap to Bypass Mode, the host would first  
set CHG_EN=0 to stop the converter and then set EN_BYPASS to desired value. The host sets desired  
protection threshold based on the selected operation modes and then host enables charge by setting  
CHG_EN=1.  
9.3.7 Charging Start-Up  
The host can start Switched Cap or Bypass Mode charging follow the steps below:  
1. Both VBUS and VOUT need to be present. Host can check the status through VBUSPRESENT_STAT  
(REG15[2]) and VOUTPRSENT_STAT (REG15[5]). Both of them need to be '1'.  
2. Host sets all the protections to the desired thresholds. Refer to the Device Modes and Protection Status  
section for proper setting.  
3. Host sets either Switched Cap Mode or Bypass Mode through EN_BYPASS bit (REG0F[3]) based on  
adapter type.  
4. Host sets the desired switching frequency in Switched Cap Mode through FSW_SET [2:0] bits (REG10[7:5]).  
5. Host sets BUS under current protection (BUSUCP) to 250 mA though BUSUCP bit (REG05[6])=1  
6. Host sets charger configuration bits: CHG_CONFIG_1 (REG05[3])=1.  
7. Host can enable charge by setting CHG_EN=1.  
8. Once charge has been enabled, the CONV_ACTIVE_STAT bit is set to '1' to indicate either switched cap or  
bypass is active, and current starts to flow to the battery.  
9. When watchdog timer expires, CHG_EN is reset to '0' and charging stops. Host needs to read or write any  
register bit before watchdog expires, or disable watchdog timer (set REG10[2]=1) to prevent watchdog timer  
from expiring.  
9.3.8 Adapter Removal  
If adapter is removed during soft start timer, CHG_EN will be cleared after soft-start timer expires. The user can  
program the soft-start timer in SS_TIMEOUT register. If adapter is removed after soft-start timer expires,  
converter stops switching and CHG_EN is cleared after the deglitch time programmed in  
IBUSUCP_FALL_DG_SEL register. The device prevents boost back when the adapter is removed during and  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: BQ25960  
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
after the soft-start timer. To accelerate VBUS or VAC discharge after adapter removal, the user to turn on the  
VBUS pulldown resistor (RVBUS_PD) and VAC pulldown current resistor (RVAC_PD) by setting BUS_PD_EN or  
VAC1_PD_EN or VAC2_PD_EN to '1'.  
9.3.9 Integrated 16-Bit ADC for Monitoring and Smart Adapter Feedback  
The integrated 16-bit ADC of the device allows the user to get critical system information for optimizing the  
behavior of the charger control. The control of the ADC is done through the ADC control register. The ADC_EN  
bit provides the ability to enable and disable the ADC to conserve power. The ADC_RATE bit allows continuous  
conversion or one-shot behavior. The ADC_AVG bit enables or disables (default) averaging. ADC_AVG_INIT  
starts average using the existing (default) or using a new ADC value.  
To enable the ADC, the ADC_EN bit must be set to 1. The ADC is allowed to operate if the  
VVAC>VVACPRESENT, VVBUS>VVBUSPRESENT or VVOUT>VVOUTPRESENT is valid. If ADC_EN is set to 1before  
VAC, VBUS or VOUT reach their respective PRESENT threshold, then the ADC conversion will be postponed  
until one of the power supplies reaches the threshold.  
The ADC_SAMPLE bits control the sample speed of the ADC, with conversion times of tADC_CONV. The  
integrated ADC has two rate conversion options: a 1-shot mode and a continuous conversion mode set by the  
ADC_RATE bit. By default, all ADC parameters will be converted in 1-shot or continuous conversion mode  
unless disabled in the ADC CONTROL 1 and ADC_CONTROL 2 register. If an ADC parameter is disabled by  
setting the corresponding bit in the ADC CONTROL 1 and ADC_CONTROL 2 register, then the value in that  
register will be from the last valid ADC conversion or the default POR value (all zeros if no conversions have  
taken place). If an ADC parameter is disabled in the middle of an ADC measurement cycle, the device will finish  
the conversion of that parameter, but will not convert the parameter starting the next conversion cycle. Even  
though no conversion takes place when all ADC measurement parameters are disabled, the ADC circuitry is  
active and ready to begin conversion as soon as one of the bits in the ADC CONTROL 1 and ADC_CONTROL 2  
register is set to 0.  
The ADC_DONE_* bits signal when a conversion is complete in 1-shot mode only. During continuous conversion  
mode, the ADC_DONE_* bits have no meaning and will be 0.  
ADC conversion operates independently of the faults present in the device. ADC conversion will continue even  
after a fault has occurred (such as one that causes the power stage to be disabled), and the host must set  
ADC_EN = 0to disable the ADC. ADC readings are only valid for DC states and not for transients. When  
host writes ADC_EN=0, the ADC stops immediately. If the host wants to exit ADC more gracefully, it is possible  
to do either of the following:  
1. Write ADC_RATE to one-shot, and the ADC will stop at the end of a complete cycle of conversions, or  
2. Write all the DIS bits low, and the ADC will stop at the end of the current measurement.  
When external sense resistor (RSNS) is placed and IBATADC is used, it is recommended to use 375-kHz  
switching frequency.  
9.3.10 Device Modes and Protection Status  
9-5 shows the features and modes of the device depending on the conditions of the device.  
9-5. Device Modes and Protection Status  
STATE  
BATTERY ONLY VAC1/  
VAC2/ VBUS NOT  
PRESENT  
INPUT PRESENT  
INPUT PRESENT  
INPUT PRESENT  
FUNCTIONS AVAILABLE  
DURING SOFTSTART  
TIMER  
AFTER SOFTSTART  
TIMER  
CHARGE DISABLED  
I2C allowed  
ADC  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
ACDRV gate drive  
VACOVP  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: BQ25960  
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
9-5. Device Modes and Protection Status (continued)  
STATE  
BATTERY ONLY VAC1/  
VAC2/ VBUS NOT  
PRESENT  
INPUT PRESENT  
INPUT PRESENT  
INPUT PRESENT  
FUNCTIONS AVAILABLE  
DURING SOFTSTART  
TIMER  
AFTER SOFTSTART  
TIMER  
CHARGE DISABLED  
TDIE_ALM  
TDIE_TFL  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
BUSOVP_ALM  
BUSOCP_ALM  
BATOVP_ALM  
BATOCP_ALM  
BATUCP_ALM  
VOUTOVP  
TSBUS_FLT  
TSBAT_ FLT  
BUSOVP  
X
X
X
X
X
BATOVP  
BATOCP  
BUSOCP  
BUSUCP  
BUSRCP  
X
Tripping any of these protections causes QB to be off and converter stops switching. Masking the fault or alarm  
does NOT disable the protection, but only keeps an INT from being triggered by the event. Disabling the fault or  
alarm protection other than BUSUCP holds that STAT and FLAG bits in reset, and also prevents an interrupt  
from occurring. Disable BUSUCP protection still sets STAT and FLAT bits and sends interrupt to alert host but  
keeps converter running when triggered.  
When any OVP, OCP, RCP or overtemperature fault event is triggered, the CHG_EN bit is set to 0to disable  
charging, and the charging start-up sequence must be followed to begin charging again.  
9.3.10.1 Input Overvoltage, Overcurrent, Undercurrent, Reverse-Current and Short-Circuit Protection  
Input overvoltage protection with external single or back-to-back N-channel FET(s): The device integrates  
the functionality of an input overvoltage protector. With external single or back-to-back N-channel FET(s), the  
device blocks high input voltage exceeding VACOVP threshold (VAC1OVP or VAC2OVP). This eliminates the  
need for a separate OVP device to protect the overall system. The integrated VACOVP feature has a response  
time of tVACOVP (the actual time to turn off external FET(s) will be longer and depends upon the FET(s) gate  
capacitance). The VAC1OVP and VAC2OVP setting is adjustable in the VAC control register. The part allows the  
user to have different VAC1OVP and VAC2OVP settings. Always put the high VACOVP threshold input to VAC1.  
When VAC1OVP or VAC2OVP is tripped, corresponding ACDRV is turned off and VAC1OVP_STAT or  
VAC2OVP_STAT and VAC1OVP_FLAG or VAC2OVP_FLAG is set to 1, and INT is asserted low to alert the  
host (unless masked by VAC1OVP_MASK or VAC2OVP_MASK). When VAC2OVP is triggered, the device  
sends multiple interrupts when the fault persists. Use VAC1 as input unless both VAC1 and VAC2 are needed.  
Input overvoltage protection (BUSOVP): The BUSOVP threshold is adjustable in the BUSOVP register. When  
BUSOVP is tripped, switched cap or bypass mode is disabled and CHG_EN is set to 0. BUSOVP_STAT and  
BUSOVP_FLAG is set to 1, and INT is asserted low to alert the host (unless masked by BUSOVP_MASK).  
The start-up sequence must be followed to resume charging.  
Input overcurrent protection (BUSOCP): Input overcurrent protection monitors the current flow into VBUS.  
The overcurrent protection threshold is adjustable in the BUSOCP register. When BUSOCP is tripped, Switched  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: BQ25960  
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
Cap or Bypass Mode is disabled and CHG_EN is set to 0. BUSOCP_STAT and BUSOCP_FLAG is set to  
1, and INT is asserted low to alert the host (unless masked by BUSOCP_MASK). The start-up sequence  
must be followed to resume charging.  
Input undercurrent protection (BUSUCP): BUS undercurrent protection (UCP) is implemented to detect  
adapter unplug. Set BUSUCP =1 (REG05[6]) before enable charge. When BUSUCP is enabled  
(BUSUCP_DIS=0), if the current is below BUSUCP after soft start timer (programmable in SS_TIMEOUT[2:0])  
expires, Switched Cap or Bypass Mode is disabled and CHG_EN is set to 0. BUSUCP_STAT and  
BUSUCP_FLAG is set to 1, and INT is asserted low to alert the host (unless masked by BUSUCP_MASK).  
The start-up sequence must be followed to resume charging. The deglitch time for BUSUCP is programmable in  
IBUSUCP_FALL_DG_SET[1:0] register. Please note that BUSUCP deglitch time needs to be set shorter than  
soft start timer in order for BUSUCP to be effective.  
When BUSUCP is disabled (BUSUCP_DIS=1), if the current is below BUSUCP after soft-start timer expires,  
CHG_EN is not set to 0, BUSUCP_STAT and BUSUCP_FLAG is set to 1, and INT is asserted low to  
alert the host (unless masked by BUSUCP_MASK). The host can determine if charge needs to be stopped in  
this case.  
Input reverse-current protection (BUSRCP): The device monitors the current flow from VBUS to VBAT to  
ensure there is no reverse current (current flow from VBAT to VBUS). In an event that a reverse current flow is  
detected when BUSRCP_DIS is set to 0, the Switched Cap or Bypass is disabled and CHG_EN is set to  
0. The start-up sequence must be followed to resume charging. To disable BUSRCP, set REG05[1:0] to '00'  
and then set BUSRCP_DIS=1.  
RCP is always active when converter is switching and BUSRCP_DIS is set to '0'. When RCP is tripped,  
BUSRCP_STAT and BUSRCP_FLAG is set to 1, and INT is asserted low to alert the host (unless masked  
by BUSRCP_MASK).  
Input overvoltage and overcurrent protection alarm (BUSOVP_ALM and BUSOCP_ALM): In addition to  
input overvoltage and overcurrent, the device also integrates alarm function BUSOVP_ALM and BUSOCP_ALM.  
When alarm is triggered, the corresponding STAT and FLAG bit is set to 1and INT is asserted low to alert  
the host (unless it is masked by the MASK bit). However, CHG_EN is not cleared and host can reduce input  
voltage or input current to prevent VBUS reaching VBUSOVP threshold or IBUS reaching IBUSOCP threshold.  
VBUS_ERRHI: the device monitors VBUS to VOUT voltage ratio. If VBUS/VOUT is greater than  
VBUS_ERRHI_RISING threshold, the converter does not switch but CHG_EN is kept at '1'. The converter  
automatically starts switching when the VBUS/VOUT drops below VBUS_ERRHI_FALLING threshold.  
9.3.10.2 Battery Overvoltage and Overcurrent Protection  
BATOVP and BATOVP_ALM: The device integrates both overcurrent and overvoltage protection for the battery.  
The device monitors the battery voltage on BATP and BATN_SRP. In order to reduce the possibility of battery  
terminal shorts during manufacturing, 100-Ω series resistors on BATP is required. If external sense resistor is  
not used, place 100-Ω series resistors on BATN as well. The device is intended to be operated within the  
window formed by the BATOVP and BATOVP_ALM. When the BATOVP_ALM is reached, an interrupt is sent to  
the host to reduce the charge current and thereby not reaching the BATOVP threshold. If BATOVP is reached,  
the switched cap or bypass is disabled and CHG_EN is set to 0, and the start-up sequence must be  
followed to resume charging. At the same time, BATOVP_STAT and BATOVP_FLAG are set to 1, and INT is  
asserted low to alert the host (unless masked by BATOVP_MASK). BATOVP and BATOVP_ALM is disabled  
when BATOVP_DIS and BATOVP_ALM_DIS is set to 1.  
BATOCP and BATOCP_ALM: The device monitors current through the battery by monitoring the voltage across  
the external series battery sense resistor. The differential voltage of this sense resistor is measured on  
BATN_SRP and SRN_SYNCIN. The device is intended to be operated within the window formed by the  
BATOCP and BATOCP_ALM. When the BATOCP_ALM is reached, an interrupt is sent to the host to reduce the  
charge current from reaching the BATOCP threshold. If BATOCP is reached, the Switched Cap or Bypass is  
disabled after a deglitch time of tBATOCP and CHG_EN is set to 0, and the start-up sequence must be  
followed to resume charging. At the same time, BATOCP_STAT and BATOCP_FLAG are set to 1, and INT  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: BQ25960  
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
is asserted low to alert the host (unless masked by BATOCP_MASK). BATOCP and BATOCP_ALM is disabled  
when BATOCP_DIS and BATOCP_ALM_DIS is set to 1.  
VOUTOVP: The device also monitors output voltage between VOUT and ground in case of battery removal to  
protect the system. If VOUTOVP is reached and VOUTOVP_DIS=0, the Switched Cap or Bypass is disabled and  
CHG_EN is set to 0, and the start-up sequence must be followed to resume charging. At the same time,  
VOUTOVP_STAT and VOUTOVP_FLAG is set to 1, and INT is asserted low to alert the host (unless  
masked by VOUTOVP_MASK). If VOUTOVP_DIS =1, the protection is disabled.  
9.3.10.3 IC Internal Thermal Shutdown, TSBUS, and TSBAT Temperature Monitoring  
The device has three temperature sensing mechanisms to protect the device and system during charging:  
1. TSBUS for monitoring the cable connector temperature  
2. TSBAT for monitoring the battery temperature  
3. TDIE for monitoring the internal junction temperature of the device  
The TSBUS and TSBAT both rely on a resistor divider that has an external pullup voltage to REGN. Place a  
negative coefficient thermistor (NTC) in parallel to the low-side resistor. A fault on the TSBUS and TSBAT pin is  
triggered on the falling edge of the voltage threshold, signifying a hottemperature. The threshold is adjusted  
using the TSBUS_FLT and TSBAT_FLT registers.  
The typical TS resistor network on TSBAT_SYNCOUT is illustrated in 9-8. The resistor network on TSBUS is  
the same.  
REGN  
TSBAT_SYNCOUT  
BQ25960  
9-8. TSBAT_SYNCOUT Resistor Network  
The RLO and RHI resistors should be chosen depending on the NTC used. If a 10-kNTC is used, use 10-kΩ  
resistors for RLO and RHI. If a 100-kNTC is used, use 100-kresistors for RLO and RHI. The ratio of VTS/  
REGN can be from 0% to 50%, and the voltage at the TS pin is determined by the following equation.  
1
1
1
406% 4.1  
(
+
)
65$75 KN 65$#6 (8) =  
× 84')0  
1
4*+ +  
1
1
406% 4.1  
(
+
)
(1)  
The percentage of the TS pin voltage is determined by the following equation.  
1
1
1
406% 4.1  
(
+
)
65$75 KN 65$#6 (%) =  
1
4*+ +  
1
1
406% 4.1  
(
+
)
(2)  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: BQ25960  
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
Additionally, the device measures internal junction temperature, with adjustable threshold TDIE_FLT in  
TDIE_FLT register.  
If the TSBUS_FLT, TSBAT_FLT, and TDIE_FLT thresholds are reached, the Switched Cap or Bypass Mode is  
disabled and CHG_EN is set to 0, and the start-up sequence must be followed to resume charging. The  
corresponding STAT and FLAG bit is set to 1unless it is masked by the MASK bit. If TSBUS, TSBAT, or  
TDIE protections are not used, the functions can be disabled in the register by setting the TSBUS_FLT_DIS,  
TSBAT_FLT_DIS, or TDIE_FLT_DIS bit to 1.  
TSBUS_TSBAT_ALM_STAT and FLAG is set to 1unless it is masked by corresponding mask bit when one  
of the following conditions is met: 1) TSBUS is within 5% of TSBUS_FLT threshold or 2) TSBAT is within of  
TSBAT_FLT. If the TSBUS_FLT or TSBAT_FLT is disabled, it will not trigger a TSBUS_TSBAT_ALM interrupt.  
Using the TDIE_ALM register, an alarm can be set to notify the host when the device die temperature exceeds a  
threshold. The TDIE_ALM_STAT and TDIE_ALM_FLAG bit is set to 1 unless it is masked by  
TDIE_ALM_MASK bit. The device will not automatically stop switching when reaching the alarm threshold and  
the host may decide on the steps to take to lower the temperature, such as reducing the charge current.  
9.3.11 INT Pin, STAT, FLAG, and MASK Registers  
The INT pin is an open drain pin that needs to be pulled up to a voltage with a pullup resistor. INT is normally  
high and will assert low for tINT when the device needs to alert the host of a fault or status change.  
The fields in the STAT registers show the current status of the device, and are updated as the status changes.  
The fields in the FLAG registers indicate that the event has occurred, and the field is cleared when read. If the  
event persists after the FLAG register has been read and cleared, another INT signal is not sent to prevent host  
keep receiving interrupts. The fields in the MASK registers allow the user to disable the interrupt on the INT pin,  
but the STAT and FLAG registers are still updated even though INT is not pulled low.  
9.3.12 Dual Charger Operation Using Primary and Secondary Modes  
For higher power systems, it is possible to use two devices in dual charger configuration. This allows each  
device to operate at lower charging current with higher efficiency compared with single device operating at the  
same total charging current. The CDRVL_ADDRMS pin is used to configure the functionality of the device as  
Standalone, Primary or Secondary during POR. Refer to 9.3.13 for proper setting. When configured as a  
primary, the TSBAT_SYNCOUT pin functions as SYNCOUT, and the SRN_SYNCIN pin functions as SRN. When  
configured as a Secondary, the TSBAT_SYNCOUT pin functions as TSBAT, and the SRN_SYNCIN pin functions  
as SYNCIN. ACDRV1 and ACDRV2 are controlled by the primary, and ACDRV1 and ACDRV2 on the secondary  
should be grounded. Pull the SYNCIN/SYNCOUT pins to REGN on the primary BQ25960 through a 1-kΩ  
resistor. The maximum switching frequency in primary and secondary mode is 500 kHz.  
The dual charger can operate in Primary and Secondary Mode in Bypass Mode as well. In both Bypass and  
Switched Cap Mode, the current distribution between the two devices depends on loop impedance and the  
chargers do not balance it. In order balance the current, the board layout needs to be as symmetrical as  
possible.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: BQ25960  
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
System  
SYS  
BAT  
VBUS  
GND  
Main Charger  
RX  
ACDRV2 VAC2  
VAC1  
ACDRV2 VAC2  
BQ25960_Primary  
BQ25960_Secondary  
ACDRV1  
VBUS  
Adapter  
VBUS  
Host  
SDA/  
Digital Core  
SCL  
ACDRV1  
SDA/  
SCL  
Digital Core  
QB  
QB  
VAC1  
PMID  
PMID  
CFH1  
CFH1  
VOUT  
VOUT  
SC Phase  
#1  
SC Phase  
#1  
CFLY1  
CFLY2  
CFLY1  
CFLY2  
CFL1  
CFH2  
CFL2  
CFL1  
CFH2  
PMID  
PMID  
BATP  
BATP  
SC Phase  
#2  
SC Phase  
#2  
CFL2  
BATN_SRP  
BATN_SRP  
CDRVH  
CDRVH  
Protection  
16 bit ADC  
16 bit ADC  
Protection  
CDRVL_  
ADDRMS  
CDRVL_  
ADDRMS  
SRN_SYNCIN  
TSBAT_SYNCOUT  
REGN  
SRN_SYNCIN  
1kΩ  
9-9. Parallel Operation of BQ25960  
9.3.13 CDRVH and CDRVL_ADDRMS Functions  
The device requires a cap between the CDRVH and CDRVL_ADDRMS pin to operate correctly. The  
CDRVL_ADDRMS pin also allows setting the default I2C address and device operation mode. Pull to GND with a  
resistor for the desired setting shown in 9-6. The surface mount resistor with ±1% tolerance is recommended.  
After POR, the host can read back the device's configuration from MS register (REG12[1:0]).  
9-6. I2C Address and Mode Selection  
I2C ADDRESS  
CONFIGURATION  
Standalone  
RADDRMS (kΩ)  
>75.0  
0x65  
6.19  
0x67  
Standalone  
8.06  
10.5  
0x66  
Dual charger (Secondary)  
0x66  
0x66  
0x67  
Dual charger (Primary)  
14.0  
18.2  
Standalone  
Dual charger (Secondary)  
27.4  
0x65  
Dual charger (Primary)  
9.4 Programming  
The device uses an I2C compatible interface to program and read many parameters. I2C is a 2-wire serial  
interface developed by NXP (formerly Philips Semiconductor, see I2C BUS Specification, Version 5, October  
2012). The BUS consists of a data line (SDA) and a clock line (SCL) with pullup structures. When the BUS is  
idle, both SDA and SCL lines are pulled high. All the I2C compatible devices connect to the I2C BUS through  
open drain I/O terminals, SDA and SCL. A master device, usually a microcontroller or digital signal processor,  
controls the BUS. The master is responsible for generating the SCL signal and device addresses. The master  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: BQ25960  
 
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
also generates specific conditions that indicate the START and STOP of data transfer. A slave device receives  
and/or transmits data on the BUS under control of the master device.  
The device works as a slave and supports the following data transfer modes, as defined in the I2C BUS™  
Specification: standard mode (100 kbps) and fast mode (400 kbps). The interface adds flexibility to the battery  
management solution, enabling most functions to be programmed to new values depending on the  
instantaneous application requirements. The I2C circuitry is powered from the battery in active battery mode. The  
battery voltage must stay above VBATUVLO when no VIN is present to maintain proper operation.  
The data transfer protocol for standard and fast modes is exactly the same; therefore, they are referred to as the  
F/S-mode in this document. The device only supports 7-bit addressing. The device 7-bit address is determined  
by the ADDR pin on the device.  
9.4.1 F/S Mode Protocol  
The master initiates data transfer by generating a start condition. The start condition is when a high-to-low  
transition occurs on the SDA line while SCL is high, as shown in the figure below. All I2C-compatible devices  
should recognize a start condition.  
DATA  
CLK  
S
P
START Condition  
STOP Condition  
9-10. START and STOP Condition  
The master then generates the SCL pulses, and transmits the 8-bit address and the read/write direction bit R/W  
on the SDA line. During all transmissions, the master ensures that data is valid. A valid data condition requires  
the SDA line to be stable during the entire high period of the clock pulse (see 9-11). All devices recognize the  
address sent by the master and compare it to their internal fixed addresses. Only the slave device with a  
matching address generates and acknowledge (see 9-12) by pulling the SDA line low during the entire high  
period of the ninth SCL cycle. Upon detecting this acknowledge, the master knows that communication link with  
a slave has been established.  
DATA  
CLK  
Data Line  
Stable;  
Data Valid  
Change  
of Data  
Allowed  
9-11. Bit Transfer on the Serial Interface  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: BQ25960  
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
Data Output  
by Transmitter  
Not Acknowledge  
Data Output  
by Receiver  
Acknowledge  
8
SCL From  
Master  
9
1
2
Clock Pulse for  
Acknowledgement  
START  
Condition  
9-12. Acknowledge on the I2C BUS  
The master generates further SCL cycles to either transmit data to the slave (R/W bit 0) or receive data from the  
slave (R/W bit 1). In either case, the receiver needs to acknowledge the data sent by the transmitter. An  
acknowledge signal can either be generated by the master or by the slave, depending on which on is the  
receiver. The 9-bit valid data sequences consisting of 8-bit data and 1-bit acknowledge can continue as long as  
necessary. To signal the end of the data transfer, the master generates a stop condition by pulling the SDA line  
from low to high while the SCL line is high (see 9-13). This releases the BUS and stops the communication  
link with the addressed slave. All I2C compatible devices must recognize the stop condition. Upon the receipt of  
a stop condition, all devices know that the BUS is released, and wait for a start condition followed by a matching  
address. If a transaction is terminated prematurely, the master needs to send a STOP condition to prevent the  
slave I2C logic from remaining in an incorrect state. Attempting to read data from register addresses not listed in  
this section will result in 0xFFh being read out.  
Recognize START or  
REPEATED START  
Condition  
Recognize STOP or  
REPEATED START  
Condition  
Generate ACKNOWLEDGE  
Signal  
P
SDA  
Acknowledgement  
Signal From Slave  
MSB  
Sr  
Address  
R/W  
SCL  
S
or  
Sr  
or  
P
ACK  
ACK  
Sr  
9-13. BUS Protocol  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: BQ25960  
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
9.5 Register Maps  
9.5.1 I2C Registers  
9-7 lists the I2C registers. All register offset addresses not listed in 9-7 should be considered as reserved  
locations and the register contents should not be modified. All register bits marked 'RESERVED' in Field column  
should not be modified.  
9-7. I2C Registers  
Offset  
0h  
Acronym  
Register Name  
Section  
Go  
REG00_BATOVP  
BATOVP  
1h  
REG01_BATOVP_ALM  
REG02_BATOCP  
BATOVP_ALM  
BATOCP  
Go  
2h  
Go  
3h  
REG03_BATOCP_ALM  
REG04_BATUCP_ALM  
REG05_CHARGER_CONTROL 1  
REG06_BUSOVP  
BATOCP_ALM  
BATUCP_ALM  
CHARGER_CONTROL 1  
BUSOVP  
Go  
4h  
Go  
5h  
Go  
6h  
Go  
7h  
REG07_BUSOVP_ALM  
REG08_BUSOCP  
BUSOVP_ALM  
BUSOCP  
Go  
8h  
Go  
9h  
REG09_BUSOCP_ALM  
Go  
BUSOCP_ALM  
Ah  
Bh  
REG0A_TEMP_CONTROL  
REG0B_TDIE_ALM  
REG0C_TSBUS_FLT  
REG0D_TSBAT_FLT  
REG0E_VAC_CONTROL  
REG0F_CHARGER_CONTROL 2  
REG10_CHARGER_CONTROL 3  
REG11_CHARGER_CONTROL 4  
REG12_CHARGER_CONTROL 5  
REG13_STAT 1  
TEMP CONTROL  
TDIE_ALM  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Ch  
TSBUS_FLT  
TSBAT_FLT  
VAC CONTROL  
CHARGER CONTROL 2  
CHARGER CONTROL 3  
CHARGER CONTROL 4  
CHARGER CONTROL 5  
STAT 1  
Dh  
Eh  
Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
27h  
REG14_STAT 2  
STAT 2  
REG15_STAT 3  
STAT 3  
REG16_STAT 4  
STAT 4  
REG17_STAT 5  
STAT 5  
REG18_FLAG 1  
FLAG 1  
REG19_FLAG 2  
FLAG 2  
REG1A_FLAG 3  
FLAG 3  
REG1B_FLAG 4  
FLAG 4  
REG1C_FLAG 5  
FLAG 5  
REG1D_MASK 1  
MASK 1  
REG1E_MASK 2  
MASK 2  
REG1F_MASK 3  
MASK 3  
REG20_MASK 4  
MASK 4  
REG21_MASK 5  
MASK 5  
REG22_DEVICE_INFO  
REG23_ADC_CONTROL 1  
REG24_ADC_CONTROL 2  
REG25_IBUS_ADC  
REG27_VBUS_ADC  
DEVICE INFO  
ADC_CONTROL 1  
ADC_CONTROL 2  
IBUS_ADC  
VBUS_ADC  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: BQ25960  
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
9-7. I2C Registers (continued)  
Register Name  
VAC1_ADC  
Offset  
29h  
Acronym  
Section  
Go  
REG29_VAC1_ADC  
REG2B_VAC2_ADC  
REG2D_VOUT_ADC  
REG2F_VBAT_ADC  
REG31_IBAT_ADC  
REG33_TSBUS_ADC  
REG35_TSBAT_ADC  
REG37_TDIE_ADC  
2Bh  
2Dh  
2Fh  
31h  
VAC2_ADC  
Go  
VOUT_ADC  
Go  
VBAT_ADC  
Go  
IBAT_ADC  
Go  
33h  
TSBUS_ADC  
Go  
35h  
TSBAT_ADC  
Go  
37h  
TDIE_ADC  
Go  
Complex bit access types are encoded to fit into small table cells. 9-8 shows the codes that are used for  
access types in this section.  
9-8. I2C Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
9.5.1.1 REG00_BATOVP Register (Offset = 0h) [reset = 5Ah]  
REG00_BATOVP is shown in 9-9  
Return to the Summary Table.  
BATOVP  
9-9. REG00_BATOVP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Note  
Description  
7
BATOVP_DIS  
R/W  
0h  
Reset by: Disable BATOVP  
REG_RST Type : R/W  
POR: 0b  
0h = Enable  
1h = Disable  
6-0  
BATOVP_6:0  
R/W  
5Ah  
Reset by: Battery Overvoltage Setting. When the battery voltage reaches  
REG_RST the programmed threshold, QB and switching FETs are turned  
off and CHG_EN is set to '0'. The host controller should  
monitor the bus voltage to ensure that the adapter keeps the  
voltage under the BATOVP threshold for proper operation.  
Type : R/W  
POR: 4390 mV (5Ah)  
Range : 3491 mV - 4759 mV  
Fixed Offset : 3491 mV  
Bit Step Size : 9.985 mV  
9.5.1.2 REG01_BATOVP_ALM Register (Offset = 1h) [reset = 46h]  
REG01_BATOVP_ALM is shown in 9-10.  
Return to the Summary Table.  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: BQ25960  
 
 
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
BATOVP_ALM  
9-10. REG01_BATOVP_ALM Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Note  
Description  
7
BATOVP_ALM_DIS  
R/W  
0h  
Reset by: Disable BATOVP_ALM  
REG_RST Type : R/W  
POR: 0b  
0h = Enable  
1h = Disable  
6-0  
BATOVP_ALM_6:0  
R/W  
46h  
Reset by: When battery voltage goes above the programmed threshold,  
REG_RST an INT is sent.  
The BATOVP_ALM should be set lower than BATOVP and the  
host controller should monitor the battery voltage to ensure  
that the adapter keeps the voltage under BATOVP threshold  
for proper operation.  
Type : R/W  
POR: 4200 mV (46h)  
Range : 3500 mV - 4770 mV  
Fixed Offset : 3500 mV  
Bit Step Size : 10 mV  
9.5.1.3 REG02_BATOCP Register (Offset = 2h) [reset = 47h]  
REG02_BATOCP is shown in 9-11.  
Return to the Summary Table.  
BATOCP  
9-11. REG02_BATOCP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Note  
Description  
7
BATOCP_DIS  
R/W  
0h  
Reset by: Disable BATOCP  
REG_RST Type : R/W  
POR: 0b  
0h = Enable  
1h = Disable  
6-0  
BATOCP_6:0  
R/W  
47h  
Reset by: Battery Overcurrent Protection Setting. When battery current  
REG_RST reaches the programmed threshold, the QB and switching  
FETs are disabled and CHG_EN is set to '0'. The host  
controller should monitor the battery current to ensure that the  
adapter keeps the current under the threshold for proper  
operation.  
Type : R/W  
POR: 7277.5 mA (47h)  
Range : 2050 mA - 8712.5 mA  
Fixed Offset : 0 mA  
Bit Step Size : 102.5 mA  
9.5.1.4 REG03_BATOCP_ALM Register (Offset = 3h) [reset = 46h]  
REG03_BATOCP_ALM is shown in 9-12.  
Return to the Summary Table.  
BATOCP_ALM  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: BQ25960  
 
 
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
9-12. REG03_BATOCP_ALM Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Note  
Description  
7
BATOCP_ALM_DIS  
R/W  
0h  
Reset by: Disable BATOCP_ALM  
REG_RST Type : R/W  
POR: 0b  
0h = Enable  
1h = Disable  
6-0  
BATOCP_ALM_6:0  
R/W  
46h  
Reset by: Battery Overcurrent Alarm Setting. When battery current  
REG_RST reaches the programmed threshold, an INT is sent.  
The BATOCP_ALM should be set lower than BATOCP and the  
host controller should monitor the battery current to ensure  
that the adapter keeps the current under BATOCP threshold  
for proper operation.  
Type : R/W  
POR: 7000 mA (46h)  
Range : 0 mA - 12700 mA  
Fixed Offset : 0 mA  
Bit Step Size : 100 mA  
9.5.1.5 REG04_BATUCP_ALM (Offset = 4h) [reset = 28h]  
REG04_BATUCP_ALM is shown in 9-13.  
Return to the Summary Table.  
BATUCP_ALM  
9-13. REG04_BATUCP_ALM Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Note  
Description  
7
BATUCP_ALM_DIS  
R/W  
0h  
Reset by: Disable BATUCP_ALM  
REG_RST Type : R/W  
POR: 0b  
0h = Enable  
1h = Disable  
6-0  
BATUCP_ALM_6:0  
R/W  
28h  
Reset by: Battery Undercurrent Alarm setting. When battery current falls  
REG_RST below the programmed threshold, an INT is sent. The host  
controller should monitor the battery current to determine  
when to disable the device and hand over charging to the  
main charger.  
Type : R/W  
POR: 2000 mA (28h)  
Range : 0 mA - 4500 mA  
Fixed Offset : 0 mA  
Bit Step Size : 50 mA  
9.5.1.6 REG05_CHARGER_CONTROL 1 Register (Offset = 5h) [reset = 2h]  
REG05_CHARGER_CONTRL 1 is shown in 9-14.  
Return to the Summary Table.  
CHARGER_CONTROL 1  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: BQ25960  
 
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
9-14. REG05_CHARGER_CONTROL 1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Note  
Description  
7
BUSUCP_DIS  
R/W  
0h  
Reset by: Disable BUSUCP  
REG_RST Type : R/W  
POR: 0b  
0h = Enable, BUSUCP turns off QB and switching FETs,  
BUSUCP_STAT and FLAG is set to '1', and INT is sent to host.  
1h = Disable, BUSUCP does not turn off QB or switching FETs,  
but BUSUCP_STAT and FLAG is set to '1', and INT is sent to  
host.  
6
BUSUCP  
R/W  
0h  
Reset by: BUSUCP Setting. If input current is below BUSUCP threshold  
REG_RST after soft start timer expires, the QB and switching FETs are  
turned off and CHG_EN is set to '0' and INT is sent if  
BUSUCP_DIS=0. If BUSUCP_DIS=1, INT is sent to host but  
converter keeps running. Change this bit to '1' before  
CHG_EN is set to '1' in order for BUSUCP to be effective.  
Type : R/W  
POR: 0b  
0h = RESERVED  
1h = 250 mA  
5
4
BUSRCP_DIS  
BUSRCP  
R/W  
R/W  
0h  
0h  
Reset by:  
REG_RST  
Disable BUSRCP  
Type : R/W  
POR: 0b  
0h = Enable  
1h = Disable  
Reset by: BUSRCP Setting, if IBUS is below BUSRCP threshold, the QB  
REG_RST and switching FETs are turned off and CHG_EN is set to '0'  
and INT is sent. Keep this bit set to '0' in order for BUSRCP to  
be effective.  
Type : R/W  
POR: 0b  
0h = 300 mA  
1h = RESERVED  
3
2
CHG_CONFIG_1  
R/W  
R/W  
0h  
0h  
Reset by: Charger Configuration 1. Set this bit to '1' before CHG_EN is  
REG_RST set to '1'.  
Type : R/W  
POR: 0h  
VBUS_ERRHI_DIS  
Reset by: Disable VBUS_ERRHI  
REG_RST Type : R/W  
POR: 0b  
0h = Enable, converter does not switching, but QB is turned on  
when device is in VBUS_ERRHI  
1h = Disable, both converter and QB is turned on when device  
is in VBUS_ERRHI  
1-0  
RESERVED  
R/W  
2h  
Reset by: RESERVED  
REG_RST Type : R/W  
POR: 10b  
9.5.1.7 REG06_BUSOVP Register (Offset = 6h) [reset = 26h]  
REG06_BUSOVP is shown in 9-15.  
Return to the Summary Table.  
BUSOVP  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: BQ25960  
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
9-15. REG06_BUSOVP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Note  
Description  
7
BUS_PD_EN  
R/W  
0h  
Reset by: VBUS Pulldown Resistor Control  
REG_RST Type : R/W  
POR: 0b  
0h = Disable  
1h = Enable  
6-0  
BUSOVP_6:0  
R/W  
26h  
Reset by: Bus Overvoltage Setting. When the bus voltage reaches the  
REG_RST programmed threshold, QB and switching FETs are turned off  
and CHG_EN is set to '0'. The host controller should monitor  
the bus voltage to ensure that the adapter keeps the voltage  
under the BUSOVP threshold for proper operation.  
Switched cap mode:  
Type : R/W  
POR: 8900 mV (26h)  
Range : 7000 mV - 12750 mV  
Fixed Offset : 7000 mV  
Bit Step Size : 50 mV  
Bypass Mode:  
Type : R/W  
POR: 4450 mV (26h)  
Range : 3500 mV - 6500 mV  
Fixed Offset : 3500 mV  
Bit Step Size : 25 mV  
9.5.1.8 REG07_BUSOVP_ALM Register (Offset = 7h) [reset = 22h]  
REG07_BUSOVP_ALM is shown in 9-16.  
Return to the Summary Table.  
BUSOVP_ALM  
9-16. REG07_BUSOVP_ALM Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Note  
Description  
7
BUSOVP_ALM_DIS  
R/W  
0h  
Reset by: Disable BUSOVP_ALM  
REG_RST Type : R/W  
POR: 0b  
0h = Enable  
1h = Disable  
6-0  
BUSOVP_ALM_6:0  
R/W  
22h  
Reset by: Bus Overvoltage Alarm Setting. When the bus voltage reaches  
REG_RST the programmed threshold, an INT is sent. The host controller  
should monitor the bus voltage to ensure that the adapter  
keeps the voltage under the BUSOVP threshold for proper  
operation.  
Switched Cap Mode:  
Type : R/W  
POR: 8700 mV (22h)  
Range : 7000 mV - 13350 mV  
Fixed Offset : 7000 mV  
Bit Step Size : 50 mV  
Bypass Mode:  
Type : R/W  
POR: 4350 mV (22h)  
Range : 3500 mV - 6675 mV  
Fixed Offset : 3500 mV  
Bit Step Size : 25 mV  
9.5.1.9 REG08_BUSOCP Register (Offset = 8h) [reset = Bh]  
REG08_BUSOCP is shown in 9-17.  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: BQ25960  
 
 
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
Return to the Summary Table.  
BUSOCP  
9-17. REG08_BUSOCP Register Field Descriptions  
Bit  
7-5  
4-0  
Field  
Type  
Reset  
Note  
Description  
RESERVED  
BUSOCP_4:0  
R
0h  
RESERVED  
R/W  
Bh  
Reset by: BUS Overcurrent Protection Setting. When the bus current  
REG_RST reaches the programmed threshold, the output is disabled.  
The host controller should monitor the bus current to ensure  
that the adapter keeps the current under this threshold for  
proper operation.  
Type : R/W  
Switched Cap Mode:  
POR: 3816 mA (Bh)  
Range: 1017.5 mA - 4579 mA  
Fixed Offset : 1017.5 mA  
Bit Step Size : 254 mA  
Bypass Mode:  
POR: 3928 mA (Bh)  
Range: 1047.5 mA - 6809 mA  
Fixed Offset : 1047.5 mA  
Bit Step Size : 262 mA  
9.5.1.10 REG09_BUSOCP_ALM Register (Offset = 9h) [reset = Ch]  
REG09_BUSOCP_ALM is shown in 9-18.  
Return to the Summary Table.  
BUSOCP_ALM  
9-18. REG09_BUSOCP_ALM Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Note  
Description  
7
R/W  
0h  
Reset by: Disable BUSOCP_ALM  
BUSOCP_ALM_DIS  
REG_RST Type : R/W  
POR: 0b  
0h = Enable  
1h = Disable  
RESERVED  
6-5  
4-0  
R
0h  
Ah  
RESERVED  
BUSOCP_ALM_4:0  
R/W  
Reset by: Bus Overvoltage Alarm Setting. When the bus current reaches  
REG_RST the programmed threshold, an INT is sent. The host controller  
should monitor the bus current to ensure that the adapter  
keeps the current under the BUSOCP threshold for proper  
operation.  
Type : R/W  
POR: 3500 mA (Ah)  
Range : 1000 mA - 8750 mA  
Fixed Offset : 1000 mA  
Bit Step Size : 250 mA  
9.5.1.11 REG0A_TEMP_CONTROL Register (Offset = Ah) [reset = 60h]  
REG0A_TEMP_CONTROL is shown in 9-19.  
Return to the Summary Table.  
TEMP_CONTROL  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: BQ25960  
 
 
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
9-19. REG0A_TEMP_CONTROL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Note  
Description  
7
TDIE_FLT_DIS  
R/W  
0h  
Reset by: Disable TDIE Overtemperature Protection  
REG_RST Type : R/W  
POR: 0b  
0h = TDIE_FLT enable  
1h = TDIE_FLT disable  
6-5  
TDIE_FLT_1:0  
R/W  
3h  
Reset by: TDIE Overtemperature Setting. When the junction temperature  
REG_RST reaches the programmed threshold, the QB and switching  
FETs are turned off and CHG_EN is set to '0'.  
Type : R/W  
POR: 11b  
0h = 80C  
1h = 100C  
2h = 120C  
3h = 140C  
4
3
TDIE_ALM_DIS  
TSBUS_FLT_DIS  
TSBAT_FLT_DIS  
RESERVED  
R/W  
R/W  
R/W  
R
0h  
0h  
0h  
0h  
Reset by: Disable TDIE Overtemperature Alarm  
REG_RST Type : R/W  
POR: 0b  
0h = TDIE_ALM enable  
1h = TDIE_ALM disable  
Reset by: Disable TSBUS_FLT  
REG_RST Type : R/W  
POR: 0b  
0h = TSBUS_FLT enable  
1h = TSBUS_FLT disable  
2
Reset by: Disable TSBAT_FLT  
REG_RST Type : R/W  
POR: 0b  
0h = TSBAT_FLT enable  
1h = TSBAT_FLT disable  
1-0  
RESERVED  
Type : R  
POR: 00b  
9.5.1.12 REG0B_TDIE_ALM Register (Offset = Bh) [reset = C8h]  
REG0B_TDIE_ALM is shown in 9-20.  
Return to the Summary Table.  
TDIE_ALM  
9-20. REG0B_TDIE_ALM Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Note  
Description  
7-0  
TDIE_ALM_7:0  
R/W  
C8h  
Reset by: Die Overtemperature Alarm Setting. When the junction  
REG_RST temperature reaches the programmed threshold, an INT is  
sent.  
Type : R/W  
POR: 125°C (C8h)  
Range : 25°C - 150°C  
Fixed Offset : 25°C  
Bit Step Size : 0.5°C  
9.5.1.13 REG0C_TSBUS_FLT Register (Offset = Ch) [reset = 15h]  
REG0C_TSBUS_FLT is shown in 9-21.  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: BQ25960  
 
 
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
Return to the Summary Table.  
TSBUS_FLT  
9-21. REG0C_TSBUS_FLT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Note  
Description  
7-0  
TSBUS_FLT_7:0  
R/W  
15h  
Reset by: TSBUS Percentage Fault Threshold. When the TSBUS/REGN  
REG_RST ratio drops below the programmed threshold, the QB and  
switching FETs are turned off and CHG_EN is set to '0'.  
Type : R/W  
POR: 4.10151% (15h)  
Range : 0% - 49.8041%  
Fixed Offset : 0%  
Bit Step Size : 0.19531%  
9.5.1.14 REG0D_TSBAT_FLT Register (Offset = Dh) [reset = 15h]  
REG0D_TSBAT_FLG is shown in 9-22.  
Return to the Summary Table.  
TSBAT_FLG  
9-22. REG0D_TSBAT_FLT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Note  
Description  
7-0  
TSBAT_FLT_7:0  
R/W  
15h  
Reset by: TSBAT Percentage Fault Threshold. When the TSBAT/REGN  
REG_RST ratio drops below the programmed threshold, the QB and  
switching FETs are turned off and CHG_EN is set to '0'.  
Type : R/W  
POR: 4.10151% (15h)  
Range : 0% - 49.8041%  
Fixed Offset : 0%  
Bit Step Size : 0.19531%  
9.5.1.15 REG0E_VAC_CONTROL Register (Offset = Eh) [reset = 0h]  
REG0E_VAC_CONTROL is shown in 9-23.  
Return to the Summary Table.  
VAC_CONTROL  
9-23. REG0E_VAC_CONTROL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Note  
Description  
7-5  
VAC1OVP_2:0  
R/W  
0h  
Reset by: VAC1OVP Setting. When VAC1 voltage reaches the  
REG_RST programmed threshold, ACDRV1 is turned off.  
Type : R/W  
POR: 000b  
0h = 6.5 V  
1h = 10.5 V  
2h = 12 V  
3h = 14 V  
4h = 16 V  
5h = 18 V  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: BQ25960  
 
 
 
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
9-23. REG0E_VAC_CONTROL Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Note  
Description  
4-2  
VAC2OVP_2:0  
R/W  
0h  
Reset by: VAC2OVP Setting. When VAC2 voltage reaches the  
REG_RST programmed threshold, ACDRV2 is turned off.  
Type : R/W  
POR: 000b  
0h = 6.5 V  
1h = 10.5 V  
2h = 12 V  
3h = 14 V  
4h = 16 V  
5h = 18 V  
1
0
VAC1_PD_EN  
VAC2_PD_EN  
R/W  
R/W  
0h  
0h  
Reset by: Enable VAC1 Pulldown Resistor  
REG_RST Type : R/W  
POR: 0b  
0h = Disable  
1h = Enable  
Reset by: Enable VAC2 Pulldown Resistor  
REG_RST Type : R/W  
POR: 0b  
0h = Disable  
1h = Enable  
9.5.1.16 REG0F_CHARGER_CONTROL 2 Register (Offset = Fh) [reset = 0h]  
REG0F_CHARGER_CONTROL 2 is shown in 9-24.  
Return to the Summary Table.  
CHARGER CONTROL 2  
9-24. REG0F_CHARGER_CONTROL 2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Note  
Description  
7
REG_RST  
R/W  
0h  
Reset by:  
Register Reset. Reset registers to default values and reset  
REG_RST  
timer. This bit automatically goes back to '0' after reset.  
Type : R/W  
POR: 0b  
0h = Not reset register  
1h = Reset register  
6
EN_HIZ  
R/W  
0h  
Reset by:  
REG_RST  
Enable HIZ Mode. When device is in HIZ mode, converter  
stops switching, ADC stops converting, ACDRV is turned off  
and the REGN LDO is forced off.  
Type : R/W  
POR: 0b  
0h = Disable HIZ mode  
1h = Enable HIZ mode  
5
4
EN_OTG  
CHG_EN  
R/W  
R/W  
0h  
0h  
Reset by:  
WATCHDOG Type : R/W  
REG_RST  
Power Path Control During the OTG and Reverse TX Mode  
POR: 0b  
0h = Don't allow host to control ACDRV(s)  
1h = Allow host to control ACDRV(s)  
Reset by:  
Charge Enable  
WATCHDOG Type : R/W  
REG_RST  
POR: 0b  
0h = Disable charge  
1h = Enable charge  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: BQ25960  
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
9-24. REG0F_CHARGER_CONTROL 2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Note  
Description  
3
EN_BYPASS  
R/W  
0h  
Reset by:  
Enable Bypass Mode  
WATCHDOG Type : R/W  
REG_RST  
POR: 0b  
0h = Disable Bypass Mode  
1h = Enable Bypass Mode  
2
1
0
DIS_ACDRV_BOTH  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Disable Both ACDRV. When this bit is set, the device forces  
both ACDRV off. It is not reset by the REG_RST or the  
WATCHDOG.  
Type : R/W  
POR: 0b  
0h = ACDRV1 and ACDRV2 can be turned on  
1h = ACDRV1 and ACDRV2 are forced off  
ACDRV1_STAT  
ACDRV2_STAT  
External ACFET1-RBFET1 Gate Driver Status. For dual input  
with two sets ACFET-RBFET, this bit can be used to swap  
input. It is not reset by the REG_RST or the WATCHDOG.  
Type : R/W  
POR: 0b  
0h = ACDRV1 is OFF  
1h = ACDRV1 is ON  
External ACFET2-RBFET2 Gate Driver Status. For dual input  
with two sets ACFET-RBFET, this bit can be used to swap  
input. It is not reset by the REG_RST or the WATCHDOG.  
Type : R/W  
POR: 0b  
0h = ACDRV2 is OFF  
1h = ACDRV2 is ON  
9.5.1.17 REG10_CHARGER_CONTROL 3 Register (Offset = 10h) [reset = 83h]  
REG10_CHARGER_CONTROL 3 is shown in 9-25.  
Return to the Summary Table.  
CHARGER CONTROL 3  
9-25. REG10_CHARGER_CONTROL 3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Note  
Description  
7-5  
FSW_SET_2:0  
R/W  
4h  
Set Switching Frequency in Switched Cap Mode. It is not reset  
by the REG_RST or the WATCHDOG.  
Type : R/W  
POR: 100b  
0h = 187.5 kHz  
1h = 250 kHz  
2h = 300 kHz  
3h = 375 kHz  
4h = 500 kHz  
5h = 750 kHz  
The maximum switching frequency is 500 kHz in dual charger  
configuration.  
4-3  
WATCHDOG_1:0  
R/W  
0h  
Reset by: Watchdog Timer  
REG_RST Type : R/W  
POR: 00b  
0h = 0.5 s  
1h = 1 s  
2h = 5 s  
3h = 30 s  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: BQ25960  
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
9-25. REG10_CHARGER_CONTROL 3 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Note  
Description  
2
WATCHDOG_DIS  
R/W  
0h  
Reset by: Watchdog Timer Control  
REG_RST Type : R/W  
POR: 0b  
0h = Enable  
1h = Disable  
1-0  
RESERVED  
R
3h  
RESERVED  
9.5.1.18 REG11_CHARGER_CONTROL 4 Register (Offset = 11h) [reset = 71h]  
REG11_CHARGER_CONTROL 4 is shown in 9-26.  
Return to the Summary Table.  
CHARGER CONTROL 4  
9-26. REG11_CHARGER_CONTROL 4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Note  
Description  
7
RSNS  
R/W  
0h  
Reset by: Battery Current Sense Resistor Value  
REG_RST Type : R/W  
POR: 0b  
0h = 2 mΩ  
1h = 5 mΩ  
6-4  
SS_TIMEOUT_2:0  
R/W  
7h  
Soft Start Timeout to Check if Input Current is Above  
BUSUCP Threshold. It is not reset by the REG_RST or  
the WATCHDOG.  
Type : R/W  
POR: 111b  
0h = 6.25 ms  
1h = 12.5 ms  
2h = 25 ms  
3h = 50 ms  
4h = 100 ms  
5h = 400 ms  
6h = 1.5 s  
7h = 10 s  
3-2  
IBUSUCP_FALL_DG_SEL_1:0  
R/W  
0h  
Reset by: BUSUCP Deglitch Timer  
REG_RST Type : R/W  
POR: 00b  
0h = 0.01 ms  
1h = 5 ms  
2h = 50 ms  
3h = 150 ms  
1-0  
RESERVED  
R/W  
1h  
Reset by:  
REG_RST  
RESERVED  
Type : R/W  
POR: 1b  
9.5.1.19 REG12_CHARGER_CONTROL 5 Register (Offset = 12h) [reset = 60h]  
REG12_CHARGER_CONTROL 5 is shown in 9-27.  
Return to the Summary Table.  
CHARGER CONTROL 5  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: BQ25960  
 
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
9-27. REG12_CHARGER_CONTROL 5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Note  
Description  
7
VOUTOVP_DIS  
R/W  
0h  
Reset by: Disable VOUTOVP  
REG_RST Type : R/W  
POR: 0b  
0h = Enable  
1h = Disable  
Reset by: VOUTOVP Protection. When output voltage is above the  
REG_RST programmed threshold, QB and switching FETs are turned off  
6-5  
VOUTOVP_1:0  
R/W  
3h  
and CHG_EN is set to '0'.  
Type : R/W  
POR: 11b  
0h = 4.7 V  
1h = 4.8 V  
2h = 4.9 V  
3h = 5.0 V  
4-3  
FREQ_SHIFT_1:0  
R/W  
0h  
Reset by: Adjust Switching Frequency  
REG_RST Type : R/W  
POR: 00b  
0h = Nominal switching frequency set in REG10[7:5]  
1h = Set switching frequency 10% higher than normal  
2h = Set switching frequency 10% lower than normal  
2
RESERVED  
MS_1:0  
R/W  
R
0h  
0h  
Reset by:  
REG_RST  
RESERVED  
Type : R/W  
POR: 0b  
1-0  
Primary, Secondary, Standalone Operation  
Type : R  
POR: 00b  
0h = Standalone  
1h = Secondary  
2h = Primary  
9.5.1.20 REG13_STAT 1 Register (Offset = 13h) [reset = 0h]  
REG13_STAT 1 is shown in 9-28.  
Return to the Summary Table.  
STAT 1  
9-28. REG13_STAT 1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BATOVP_STAT  
R
0h  
BATOVP Status  
Type : R  
POR: 0b  
0h = Not in BATOVP  
1h = In BATOVP  
6
5
BATOVP_ALM_STAT  
VOUTOVP_STAT  
R
R
0h  
0h  
BATOVP_ALM Status  
Type : R  
POR: 0b  
0h = Not in BATOVP_ALM  
1h = In BATOVP_ALM  
VOUTOVP Status  
Type : R  
POR: 0b  
0h = Not in VOUTOVP  
1h = in VOUTOVP  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: BQ25960  
 
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
9-28. REG13_STAT 1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4
BATOCP_STAT  
R
0h  
BATOCP Status  
Type : R  
POR: 0b  
0h = Not in BATOCP  
1h = In BATOCP  
3
2
1
0
BATOCP_ALM_STAT  
R
R
R
R
0h  
0h  
0h  
0h  
BATOCP_ALM Status  
Type : R  
POR: 0b  
0h = Not in BATOCP_ALM  
1h = In BATOCP_ALM  
BATUCP_ALM Status  
Type : R  
POR: 0b  
0h = Not in BATUCP_ALM  
1h = In BATUCP_ALM  
BATUCP_ALM_STAT  
BUSOVP_STAT  
VBUSOVP Status  
Type : R  
POR: 0b  
0h = Not in VBUS OVP  
1h = In VBUS OVP  
BUSOVP_ALM_STAT  
BUSOVP_ALM Status  
Type : R  
POR: 0b  
0h = Not in BUSOVP_ALM  
1h = In BUSOVP_ALM  
9.5.1.21 REG14_STAT 2 Register (Offset = 14h) [reset = 0h]  
REG14_STAT 2 is shown in 9-29.  
Return to the Summary Table.  
STAT 2  
9-29. REG14_STAT 2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BUSOCP_STAT  
R
0h  
BUSOCP Status  
Type : R  
POR: 0b  
0h = Not in BUSOCP  
1h = In BUSOCP  
6
5
4
BUSOCP_ALM_STAT  
BUSUCP_STAT  
R
R
R
0h  
0h  
0h  
BUSOCP_ALM Status  
Type : R  
POR: 0b  
0h = Not in BUSOCP_ALM  
1h = In BUSOCP_ALM  
BUSUCP Status  
Type : R  
POR: 0b  
0h = Not in BUSUCP  
1h = In BUSUCP  
BUSRCP_STAT  
BUSRCP Status  
Type : R  
POR: 0b  
0h = Not in BUSRCP  
1h = In BUSRCP  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: BQ25960  
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
9-29. REG14_STAT 2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3
R
0h  
RESERVED  
RESERVED  
2
CFLY_SHORT_STAT  
R
0h  
CFLY Short Detection Status  
Type : R  
POR: 0b  
0h = CFLY not shorted  
1h = CFLY shorted  
1-0  
RESERVED  
R
0h  
RESERVED  
9.5.1.22 REG15_STAT 3 Register (Offset = 15h) [reset = 0h]  
REG15_STAT 3 is shown in 9-30.  
Return to the Summary Table.  
STAT 3  
9-30. REG15_STAT 3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
VAC1OVP_STAT  
R
0h  
VAC1 OVP Status  
Type : R  
POR: 0b  
0h = Not in VAC1 OVP  
1h = In VAC1 OVP  
6
5
VAC2OVP_STAT  
R
R
0h  
0h  
VAC2 OVP Status  
Type : R  
POR: 0b  
0h = Not in VAC2 OVP  
1h = In VAC2 OVP  
VOUTPRESENT_STAT  
VOUT Present Status  
Type : R  
POR: 0b  
0h = VOUT not present  
1h = VOUT present  
4
3
2
1
VAC1PRESENT_STAT  
VAC2PRESENT_STAT  
VBUSPRESENT_STAT  
ACRB1_CONFIG_STAT  
R
R
R
R
0h  
0h  
0h  
0h  
VAC1 Present Status  
Type : R  
POR: 0b  
0h = VAC1 not present  
1h = VAC1 present  
VAC2 Present Status  
Type : R  
POR: 0b  
0h = VAC2 not present  
1h = VAC2 present  
VBUS Present Status  
Type : R  
POR: 0b  
0h = VBUS not present  
1h = VBUS present  
ACFET1-RBFET1 Status  
Type : R  
POR: 0b  
0h = ACFET1-RBFET1 is not placed  
1h = ACFET1-RBFET1 is placed  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: BQ25960  
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
9-30. REG15_STAT 3 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
ACRB2_CONFIG_STAT  
R
0h  
ACFET2-RBFET2 Status  
Type : R  
POR: 0b  
0h = ACFET2-RBFET2 is not placed  
1h = ACFET2-RBFET2 is placed  
9.5.1.23 REG16_STAT 4 Register (Offset = 16h) [reset = 0h]  
REG16_STAT 4 is shown in 9-31.  
Return to the Summary Table.  
STAT 4  
9-31. REG16_STAT 4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ADC_DONE_STAT  
R
0h  
ADC Conversion Status (in One-Shot Mode only)  
Note: Always reads 0 in continuous mode  
Type : R  
POR: 0b  
0h = Conversion not complete  
1h = Conversion complete  
6
5
SS_TIMEOUT_STAT  
R
R
0h  
0h  
Soft-Start Timeout Status  
Type : R  
POR: 0b  
0h = Device not in soft timeout  
1h = Device in soft timeout  
TSBUS_TSBAT_ALM_STAT  
TSBUS and TSBAT ALM Status  
Type : R  
POR: 0b  
0h = TSBUS or TSBAT threshold is NOT within 5% of the  
TSBUS_FLT or TSBAT_FLT set threshold  
1h = TSBUS or TSBAT threshold is within 5% of the  
TSBUS_FLT or TSBAT_FLT set threshold  
4
3
2
1
TSBUS_FLT_STAT  
TSBAT_FLT_STAT  
TDIE_FLT_STAT  
TDIE_ALM_STAT  
R
R
R
R
0h  
0h  
0h  
0h  
TSBUS_FLT Status  
Type : R  
POR: 0b  
0h = Not in TSBUS_FLT  
1h = In TSBUS_FLT  
TSBAT_FLT Status  
Type : R  
POR: 0b  
0h = Not in TSBAT_FLT  
1h = In TSBAT_FLT  
TDIE Fault Status  
Type : R  
POR: 0b  
0h = Not in TDIE fault  
1h = In TDIE fault  
TDIE_ALM Status  
Type : R  
POR: 0b  
0h = Not in TDIE_ALM  
1h = In TDIE_ALM  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: BQ25960  
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
9-31. REG16_STAT 4 Register Field Descriptions (continued)  
Bit  
Field  
WD_STAT  
Type  
Reset  
Description  
0
R
0h  
I2C Watch Dog Status  
Type : R  
POR: 0b  
0h = Normal  
1h = WD timer expired  
9.5.1.24 REG17_STAT 5 Register (Offset = 17h) [reset = 0h]  
REG17_STAT 5 is shown in 9-32.  
Return to the Summary Table.  
STAT 5  
9-32. REG17_STAT 5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
REGN_GOOD_STAT  
R
0h  
REGN_GOOD Status  
Type : R  
POR: 0b  
0h = REGN not good  
1h = REGN good  
6
CONV_ACTIVE_STAT  
R
0h  
Converter Active Status  
Type : R  
POR: 0b  
0h = Converter not running  
1h = Converter running  
5
4
RESERVED  
R
R
0h  
0h  
RESERVED  
VBUS_ERRHI_STAT  
VBUS_ERRHI Status  
Type : R  
POR: 0b  
0h = Not in VBUS_ERRHI status  
1h = In VBUS_ERRHI status  
3-0  
RESERVED  
R
0h  
RESERVED  
9.5.1.25 REG18_FLAG 1 Register (Offset = 18h) [reset = 0h]  
REG18_FLAG 1 is shown in 9-33.  
Return to the Summary Table.  
FLAG 1  
9-33. REG18_FLAG 1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BATOVP_FLAG  
R
0h  
BATOVP Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = BATOVP status changed  
6
BATOVP_ALM_FLAG  
R
0h  
BATOVP_ALM Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = BATOVP_ALM status changed  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: BQ25960  
 
 
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
9-33. REG18_FLAG 1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5
VOUTOVP_FLAG  
R
0h  
VOUTOVP Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = VOUTOVP status changed  
4
3
2
1
0
BATOCP_FLAG  
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
BATOCP Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = BATOCP status changed  
BATOCP_ALM_FLAG  
BATUCP_ALM_FLAG  
BUSOVP_FLAG  
BATOCP_ALM Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = BATOCP_ALM status changed  
BATUCP_ALM Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = BATUCP_ALM status changed  
BUSOVP Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = BUSOVP status changed  
BUSOVP_ALM_FLAG  
BUSOVP_ALM Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = BUSOVP_ALM status changed  
9.5.1.26 REG19_FLAG 2 Register (Offset = 19h) [reset = 0h]  
REG19_FLAG 2 is shown in 9-34.  
Return to the Summary Table.  
FLAG 2  
9-34. REG19_FLAG 2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BUSOCP_FLAG  
R
0h  
BUSOCP Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = BUSOCP status changed  
6
5
R
R
0h  
0h  
BUSOCP_ALM Flag  
Type : R  
POR: 0b  
BUSOCP_ALM_FLAG  
BUSUCP_FLAG  
0h = Normal  
1h = BUSOCP_ALM status changed  
BUSUCP Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = BUSUCP status changed  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: BQ25960  
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
9-34. REG19_FLAG 2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4
BUSRCP_FLAG  
R
0h  
BUSRCP Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = BUSRCP status changed  
3
2
RESERVED  
R
R
0h  
0h  
RESERVED  
CFLY_SHORT_FLAG  
CFLY Short Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = CFLY_SHORT status changed  
1-0  
RESERVED  
R
0h  
RESERVED  
9.5.1.27 REG1A_FLAG 3 Register (Offset = 1Ah) [reset = 0h]  
REG1A_FLAG 3 is shown in 9-35.  
Return to the Summary Table.  
FLAG 3  
9-35. REG1A_FLAG 3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
VAC1OVP_FLAG  
R
0h  
VAC1OVP Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = VAC1 OVP status changed  
6
5
VAC2OVP_FLAG  
R
R
0h  
0h  
VAC2OVP Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = VAC2 OVP status changed  
VOUTPRESENT_FLAG  
VOUT Present Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = VOUT present status changed  
4
3
2
VAC1PRESENT_FLAG  
VAC2PRESENT_FLAG  
VBUSPRESENT_FLAG  
R
R
R
0h  
0h  
0h  
VAC1 Present Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = VAC1 present status changed  
VAC2 Present Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = VAC2 present status changed  
VBUS Present Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = VBUS present status changed  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: BQ25960  
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
9-35. REG1A_FLAG 3 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1
ACRB1_CONFIG_FLAG  
R
0h  
ACFET1-RBFET1_CONFIG Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = ACFET1-RBFET1_CONFIG status changed  
0
ACRB2_CONFIG_FLAG  
R
0h  
ACFET2-RBFET2_CONFIG Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = ACFET2-RBFET2_CONFIG status changed  
9.5.1.28 REG1B_FLAG 4 Register (Offset = 1Bh) [reset = 0h]  
REG1B_FLAG 4 is shown in 9-36.  
Return to the Summary Table.  
FLAG 4  
9-36. REG1B_FLAG 4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ADC_DONE_FLAG  
R
0h  
ADC Conversion Flag (in One-Shot Mode only)  
Type : R  
POR: 0b  
0h = Normal  
1h = ADC conversion done status changed  
6
5
4
3
2
1
SS_TIMEOUT_FLAG  
TSBUS_TSBAT_ALM_FLAG  
TSBUS_FLT_FLAG  
TSBAT_FLT_FLAG  
TDIE_FLT_FLAG  
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
Soft-Start Timeout Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Soft start timeout status changed  
TSBUS_TSBAT_ALM Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Converter active status changed  
TSBUS_FLT Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = TSBUS_FLT status changed  
TSBAT_FLT Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = TSBAT_FLT status changed  
TDIE_FLT Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = TDIE_FLT status changed  
TDIE_ALM_FLAG  
TDIE_ALM Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = TDIE_ALM status changed  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: BQ25960  
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
9-36. REG1B_FLAG 4 Register Field Descriptions (continued)  
Bit  
Field  
WD_FLAG  
Type  
Reset  
Description  
0
R
0h  
I2C Watch Dog Timer Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = WD timer status changed  
9.5.1.29 REG1C_FLAG 5 Register (Offset = 1Ch) [reset = 0h]  
REG1C_FLAG 5 is shown in 9-37.  
Return to the Summary Table.  
FLAG 5  
9-37. REG1C_FLAG 5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
REGN_GOOD_FLAG  
R
0h  
REGN_GOOD Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = REGN_GOOD status changed  
6
CONV_ACTIVE_FLAG  
R
0h  
Converter Active Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = Converter active status changed  
5
4
RESERVED  
R
R
0h  
0h  
RESERVED  
VBUS_ERRHI_FLAG  
VBUS_ERRHI Flag  
Type : R  
POR: 0b  
0h = Normal  
1h = VBUS_ERRHI status changed  
3-0  
RESERVED  
R
0h  
RESERVED  
9.5.1.30 REG1D_MASK 1 Register (Offset = 1Dh) [reset = 0h]  
REG1D_MASK 1 is shown in 9-38.  
Return to the Summary Table.  
MASK 1  
9-38. REG1D_MASK 1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Note  
Description  
7
BATOVP_MASK  
R/W  
0h  
Reset by: BATOVP Mask  
REG_RST Type : R/W  
POR: 0b  
0h = BATOVP flag produce INT  
1h = BATOVP flag does not produce INT  
Reset by: BATOVP_ALM Mask  
6
BATOVP_ALM_MASK R/W  
0h  
REG_RST Type : R/W  
POR: 0b  
0h = BATOVP_ALM flag produce INT  
1h = BATOVP _ALM flag does not produce INT  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: BQ25960  
 
 
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
9-38. REG1D_MASK 1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Note  
Description  
5
VOUTOVP_MASK  
R/W  
0h  
Reset by: VOUTOVP Mask  
REG_RST Type : R/W  
POR: 0b  
0h = VOUTOVP flag produce INT  
1h = VOUTOVP flag does not produce INT  
Reset by: BATOCP Mask  
REG_RST Type : R/W  
POR: 0b  
0h = BATOCP flag produce INT  
1h = BATOCP flag does not produce INT  
Reset by: BATOCP_ALM Mask  
REG_RST Type : R/W  
POR: 0b  
0h = BATOCP_ALM flag produce INT  
1h = BATOCP_ALM flag does not produce INT  
Reset by: BATUCP_ALM Mask  
REG_RST Type : R/W  
POR: 0b  
0h = BATUCP_ALM flag produce INT  
1h = BATUCP_ALM flag does not produce INT  
Reset by: BUSOVP Mask  
REG_RST Type : R/W  
POR: 0b  
4
3
2
1
0
BATOCP_MASK  
R/W  
0h  
0h  
0h  
0h  
0h  
BATOCP_ALM_MASK R/W  
R/W  
R/W  
BATUCP_ALM_MASK  
BUSOVP_MASK  
0h = BUSOVP flag produce INT  
1h = BUSOVP flag does not produce INT  
Reset by: BUSOVP_ALM Mask  
BUSOVP_ALM_MASK R/W  
REG_RST Type : R/W  
POR: 0b  
0h = BUSOVP_ALM flag produce INT  
1h = BUSOVP_ALM flag does not produce INT  
9.5.1.31 REG1E_MASK 2 Register (Offset = 1Eh) [reset = 0h]  
REG1E_MASK 2 is shown in 9-39.  
Return to the Summary Table.  
MASK 2  
9-39. REG1E_MASK 2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Note  
Description  
7
R/W  
0h  
BUSOCP Mask  
Type : R/W  
POR: 0b  
BUSOCP_MASK  
Reset by:  
REG_RST  
0h = BUSOCP flag produce INT  
1h = BUSOCP flag does not produce INT  
6
5
BUSOCP_ALM_MASK R/W  
0h  
0h  
Reset by: BUSOCP_ALM Mask  
REG_RST Type : R/W  
POR: 0b  
0h = BUSOCP_ALM flag produce INT  
1h = BUSOCP_ALM flag does not produce INT  
Reset by: BUSUCP Mask  
BUSUCP_MASK  
R/W  
REG_RST Type : R/W  
POR: 0b  
0h = BUSUCP flag produce INT  
1h = BUSUCP flag does not produce INT  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: BQ25960  
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
9-39. REG1E_MASK 2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Note  
Description  
4
BUSRCP_MASK  
R/W  
0h  
Reset by: BUSRCP Mask  
REG_RST Type : R/W  
POR: 0b  
0h = BUSRCP flag produce INT  
1h = BUSRCP flag does not produce INT  
Reset by: RESERVED  
3
2
RESERVED  
R/W  
0h  
0h  
REG_RST  
CFLY_SHORT_MASK R/W  
Reset by: CFLY_SHORT Mask  
REG_RST Type : R/W  
POR: 0b  
0h = CFLY_SHORT flag produce INT  
1h = CFLY_SHORT flag does not produce INT  
Reset by: RESERVED  
REG_RST Type : R/W  
POR: 0h  
1
0
RESERVED  
RESERVED  
R/W  
R
0h  
0h  
RESERVED  
9.5.1.32 REG1F_MASK 3 Register (Offset = 1Fh) [reset = 0h]  
REG1F_MASK 3 is shown in 9-40.  
Return to the Summary Table.  
MASK 3  
9-40. REG1F_MASK 3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Note  
Description  
7
VAC1OVP_MASK  
R/W  
0h  
Reset by: VAC1OVP Mask  
REG_RST Type : R/W  
POR: 0b  
0h = VAC1OVP flag produce INT  
1h = VAC1OVP flag does not produce INT  
Reset by: VAC2OVP Mask  
REG_RST Type : R/W  
POR: 0b  
0h = VAC2OVP flag produce INT  
1h = VAC2OVP flag does not produce INT  
Reset by: VOUTPRESENT Mask  
REG_RST Type : R/W  
POR: 0b  
0h = VOUTPRESENT flag produce INT  
1h = VOUTPRESENT flag does not produce INT  
Reset by: VAC1PRESENT Mask  
REG_RST Type : R/W  
POR: 0b  
0h = VAC1PRESENT flag produce INT  
1h = VAC1PRESENT flag does not produce INT  
Reset by: VAC2PRESENT Mask  
6
5
4
3
VAC2OVP_MASK  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
VOUTPRESENT_MASK  
VAC1PRESENT_MASK  
VAC2PRESENT_MASK  
REG_RST Type : R/W  
POR: 0b  
0h = VAC2PRESENT flag produce INT  
1h = VAC2PRESENT flag does not produce INT  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: BQ25960  
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
9-40. REG1F_MASK 3 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Note  
Description  
2
VBUSPRESENT_MASK  
R/W  
0h  
Reset by: VBUSPRESENT Mask  
REG_RST Type : R/W  
POR: 0b  
0h = VBUSPRESENT flag produce INT  
1h = VBUSPRESENT flag does not produce INT  
Reset by: ACFET1-RBFET1 CONFIG Mask  
REG_RST Type : R/W  
POR: 0b  
0h = ACRB1_CONFIG flag produce INT  
1h = ACRB1_CONFIG flag does not produce INT  
Reset by: ACFET2-RBFET2 CONFIG Mask  
1
0
ACRB1_CONFIG_MASK  
ACRB2_CONFIG_MASK  
R/W  
R/W  
0h  
0h  
REG_RST Type : R/W  
POR: 0b  
0h = ACRB2_CONFIG flag produce INT  
1h = ACRB2_CONFIG flag does not produce INT  
9.5.1.33 REG20_MASK 4 Register (Offset = 20h) [reset = 0h]  
REG20_MASK 4 is shown in 9-41.  
Return to the Summary Table.  
MASK 4  
9-41. REG20_MASK 4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Note  
Description  
7
ADC_DONE_MASK  
R/W  
0h  
Reset by: ADC_DONE Mask  
REG_RST Type : R/W  
POR: 0b  
0h = ADC_DONE flag produce INT  
1h = ADC_DONE flag does not produce INT  
Reset by: SS_TIMEOUT Mask  
REG_RST Type : R/W  
POR: 0b  
0h = SS_TIMEOUT flag produce INT  
1h = SS_TIMEOUT flag does not produce INT  
Reset by: TSBUS_TSBAT_ALM Mask  
REG_RST Type : R/W  
POR: 0b  
0h = TSBUS_TSBAT_ALM flag produce INT  
1h = TSBUS_TSBAT_ALM flag does not produce INT  
Reset by: TSBUS_FLT Mask  
REG_RST Type : R/W  
POR: 0b  
0h = TSBUS_FLT flag produce INT  
1h = TSBUS_FLT flag does not produce INT  
Reset by: TSBAT_FLT Mask  
REG_RST Type : R/W  
POR: 0b  
6
5
4
3
2
SS_TIMEOUT_MASK  
R/W  
0h  
0h  
0h  
0h  
0h  
TSBUS_TSBAT_ALM_MASK R/W  
TSBUS_FLT_MASK  
TSBAT_FLT_MASK  
TDIE_FLT_MASK  
R/W  
R/W  
R/W  
0h = TSBAT_FLT flag produce INT  
1h = TSBAT_FLT flag does not produce INT  
Reset by: TDIE_FLT Mask  
REG_RST Type : R/W  
POR: 0b  
0h = TDIE_FLT flag produce INT  
1h = TDIE_FLT flag does not produce INT  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: BQ25960  
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
9-41. REG20_MASK 4 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Note  
Description  
1
TDIE_ALM_MASK  
R/W  
0h  
Reset by: TDIE_ALM Mask  
REG_RST Type : R/W  
POR: 0b  
0h = TDIE_ALM flag produce INT  
1h = TDIE_ALM flag does not produce INT  
Reset by: Watchdog Mask  
0
WD_MASK  
R/W  
0h  
REG_RST Type : R/W  
POR: 0b  
0h = WD flag produce INT  
1h = WD flag does not produce INT  
9.5.1.34 REG21_MASK 5 Register (Offset = 21h) [reset = 0h]  
REG21_MASK 5 is shown in 9-42.  
Return to the Summary Table.  
MASK 5  
9-42. REG21_MASK 5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Note  
Description  
7
REGN_GOOD_MASK R/W  
0h  
Reset by: REGN_GOOD Mask  
REG_RST Type : R/W  
POR: 0b  
0h = REGN_GOOD flag produce INT  
1h = REGN_GOOD flag does not produce INT  
Reset by: CONV_ACTIVE Mask  
6
CONV_ACTIVE_MASK R/W  
0h  
REG_RST Type : R/W  
POR: 0b  
0h = CONV_ACTIVE flag produce INT  
1h = CONV_ACTIVE flag does not produce INT  
5
4
RESERVED  
R/W  
R/W  
0h  
0h  
Reset by:  
REG_RST  
RESERVED  
Type : R/W  
POR: 0h  
VBUS_ERRHI_MASK  
Reset by: VBUS_ERRHI Mask  
REG_RST Type : R/W  
POR: 0b  
0h = VBUS_ERRHI flag produce INT  
1h = VBUS_ERRHI flag does not produce INT  
3-0  
RESERVED  
R
0h  
RESERVED  
9.5.1.35 REG22_DEVICE_INFO Register (Offset = 22h) [reset = 0h]  
REG22_DEVICE_INFO is shown in 9-43.  
Return to the Summary Table.  
DEVICE INFO  
9-43. REG22_DEVICE_INFO Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DEVICE_REV_3:0  
R
0h  
Device Revision  
Type : R  
POR: 0h  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: BQ25960  
 
 
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
9-43. REG22_DEVICE_INFO Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-0  
DEVICE_ID_3:0  
R
0h  
Device ID  
Type : R  
POR: 0h  
9.5.1.36 REG23_ADC_CONTROL 1 Register (Offset = 23h) [reset = 0h]  
REG23_ADC_CONTROL 1 is shown in 9-44.  
Return to the Summary Table.  
ADC_CONTROL 1  
9-44. REG23_ADC_CONTROL 1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Note  
Description  
7
ADC_EN  
R/W  
0h  
Reset by:  
ADC Enable  
WATCHDOG Type : R/W  
REG_RST  
POR: 0b  
0h = Disable  
1h = Enable  
6
5
ADC_RATE  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
Reset by:  
REG_RST  
ADC Rate  
Type : R/W  
POR: 0b  
0h = Continuous conversion  
1h = 1 shot  
ADC_AVG  
Reset by:  
REG_RST  
ADC Average  
Type : R/W  
POR: 0b  
0h = Single value  
1h = Running average  
4
ADC_AVG_INIT  
ADC_SAMPLE_1:0  
Reset by:  
REG_RST  
ADC Average Initial Value  
Type : R/W  
POR: 0b  
0h = Start average using the existing register value  
1h = Start average using a new conversion  
3-2  
Reset by:  
REG_RST  
ADC Sample Speed  
Type : R/W  
POR: 00b  
0h = 15 bit  
1h = 14 bit  
2h = 13 bit  
3h = 11 bit  
1
0
IBUS_ADC_DIS  
VBUS_ADC_DIS  
R/W  
R/W  
0h  
0h  
Reset by:  
REG_RST  
IBUS ADC Control  
Type : R/W  
POR: 0b  
0h = Enable  
1h = Disable  
Reset by:  
REG_RST  
VBUS ADC Control  
Type : R/W  
POR: 0b  
0h = Enable  
1h = Disable  
9.5.1.37 REG24_ADC_CONTROL 2 Register (Offset = 24h) [reset = 0h]  
REG24_ADC_CONTROL 2 is shown in 9-45.  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: BQ25960  
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
Return to the Summary Table.  
ADC_CONTROL 2  
9-45. REG24_ADC_CONTROL 2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Note  
Description  
7
VAC1_ADC_DIS  
R/W  
0h  
Reset by: VAC1 ADC Control  
REG_RST Type : R/W  
POR: 0b  
0h = Enable  
1h = Disable  
6
5
4
3
2
1
0
VAC2_ADC_DIS  
VOUT_ADC_DIS  
VBAT_ADC_DIS  
IBAT_ADC_DIS  
TSBUS_ADC_DIS  
TSBAT_ADC_DIS  
TDIE_ADC_DIS  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Reset by: VAC2 ADC Control  
REG_RST Type : R/W  
POR: 0b  
0h = Enable  
1h = Disable  
Reset by: VOUT ADC Control  
REG_RST Type : R/W  
POR: 0b  
0h = Enable  
1h = Disable  
Reset by: VBAT ADC Control  
REG_RST Type : R/W  
POR: 0b  
0h = Enable  
1h = Disable  
Reset by: IBAT ADC Control  
REG_RST Type : R/W  
POR: 0b  
0h = Enable  
1h = Disable  
Reset by: TSBUS ADC Control  
REG_RST Type : R/W  
POR: 0b  
0h = Enable  
1h = Disable  
Reset by: TSBAT ADC Control  
REG_RST Type : R/W  
POR: 0b  
0h = Enable  
1h = Disable  
Reset by: TDIE ADC Control  
REG_RST Type : R/W  
POR: 0b  
0h = Enable  
1h = Disable  
9.5.1.38 REG25_IBUS_ADC Register (Offset = 25h) [reset = 0h]  
REG25_IBUS_ADC is shown in 9-46.  
Return to the Summary Table.  
IBUS_ADC  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: BQ25960  
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
9-46. REG25_IBUS_ADC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
IBUS_ADC_15:0  
R
0h  
IBUS ADC Reading  
Type : R  
POR: 0 mA (0h)  
Range : 0 mA - 7000 mA  
Switched Cap Mode:  
Fixed Offset : 66 mA  
Bit Step Size : 0.9972 mA  
Bypass Mode:  
Fixed Offset : 64 mA  
Bit Step Size : 1.0279 mA  
9.5.1.39 REG27_VBUS_ADC Register (Offset = 27h) [reset = 0h]  
REG27_VBUS_ADC is shown in 9-47.  
Return to the Summary Table.  
VBUS_ADC  
9-47. REG27_VBUS_ADC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
VBUS_ADC_15:0  
R
0h  
VBUS ADC Reading  
Type : R  
POR: 0 mV (0h)  
Range : 0 mV - 16385 mV  
Fixed Offset : 0 mV  
Bit Step Size : 1.002 mV  
9.5.1.40 REG29_VAC1_ADC Register (Offset = 29h) [reset = 0h]  
REG29_VAC1_ADC is shown in 9-48.  
Return to the Summary Table.  
VAC1_ADC  
9-48. REG29_VAC1_ADC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
VAC1_ADC_15:0  
R
0h  
VAC1 ADC Reading  
Type : R  
POR: 0 mV (0h)  
Range : 0 mV - 14000 mV  
Fixed Offset : 3 mV  
Bit Step Size : 1.0008 mV  
9.5.1.41 REG2B_VAC2_ADC Register (Offset = 2Bh) [reset = 0h]  
REG2B_VAC2_ADC is shown in 9-49.  
Return to the Summary Table.  
VAC2_ADC  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: BQ25960  
 
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
9-49. REG2B_VAC2_ADC Register Field Descriptions  
Bit  
Field  
VAC2_ADC_15:0  
Type  
Reset  
Description  
15-0  
R
0h  
VAC2 ADC Reading  
Type : R  
POR: 0 mV (0h)  
Range : 0 mV - 14000 mV  
Fixed Offset : 5 mV  
Bit Step Size : 1.0006 mV  
9.5.1.42 REG2D_VOUT_ADC Register (Offset = 2Dh) [reset = 0h]  
REG2D_VOUT_ADC is shown in 9-50.  
Return to the Summary Table.  
VOUT_ADC  
9-50. REG2D_VOUT_ADC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
VOUT_ADC_15:0  
R
0h  
VOUT ADC Reading  
Type : R  
POR: 0 mV (0h)  
Range : 0 mV - 6000 mV  
Fixed Offset : 2 mV  
Bit Step Size : 1.0037 mV  
9.5.1.43 REG2F_VBAT_ADC Register (Offset = 2Fh) [reset = 0h]  
REG2F_VBAT_ADC is shown in 9-51.  
Return to the Summary Table.  
VBAT_ADC  
9-51. REG2F_VBAT_ADC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
VBAT_ADC_15:0  
R
0h  
VBAT ADC Reading  
Type : R  
POR: 0 mV (0h)  
Range : 0 mV - 6000 mV  
Fixed Offset : 1 mV  
Bit Step Size : 1.017 mV  
9.5.1.44 REG31_IBAT_ADC Register (Offset = 31h) [reset = 0h]  
REG31_IBAT_ADC is shown in 9-52.  
Return to the Summary Table.  
IBAT_ADC  
9-52. REG31_IBAT_ADC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
IBAT_ADC_15:0  
R
0h  
IBAT ADC Reading  
Type : R  
POR: 0 mA (0h)  
Range : 0 mA - 12000 mA  
Fixed Offset : -150 mA  
Bit Step Size : 0.999 mA  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: BQ25960  
 
 
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
9.5.1.45 REG33_TSBUS_ADC Register (Offset = 33h) [reset = 0h]  
REG33_TSBUS_ADC is shown in 9-53.  
Return to the Summary Table.  
TSBUS_ADC  
9-53. REG33_TSBUS_ADC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
TSBUS_ADC_15:0  
R
0h  
TSBUS ADC Reading  
Type : R  
POR: 0% (0h)  
Range : 0% - 50%  
Fixed Offset : 0.1%  
Bit Step Size : 0.09860%  
9.5.1.46 REG35_TSBAT_ADC Register (Offset = 35h) [reset = 0h]  
REG35_TSBAT_ADC is shown in 9-54.  
Return to the Summary Table.  
TSBAT_ADC  
9-54. REG35_TSBAT_ADC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
TSBAT_ADC_15:0  
R
0h  
TSBAT ADC Reading  
Type : R  
POR: 0% (0h)  
Range : 0% - 50%  
Fixed Offset : 0.065%  
Bit Step Size : 0.09762%  
9.5.1.47 REG37_TDIE_ADC Register (Offset = 37h) [reset = 0h]  
REG37_TDIE_ADC is shown in 9-55.  
Return to the Summary Table.  
TDIE_ADC  
9-55. REG37_TDIE_ADC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
TDIE_ADC_15:0  
R
0h  
TDIE ADC Reading  
Type : R  
POR: 0°C (0h)  
Range : -40°C - 150°C  
Fixed Offset : -3.5°C  
Bit Step Size : 0.5079°C  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: BQ25960  
 
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
10 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
10.1 Application Information  
A typical application consists of the device configured as an I2C controlled parallel charger along with a standard  
switching charger, however, it can also be used with a linear charger or PMIC with integrated charger as well.  
BQ25960 can start fast charging after the main charger completes pre-charging. BQ25960 will then hand back  
charging to the main charger when final current tapering is desired. This point is usually where the efficiency of  
the main charger is acceptable for the application. The device can be used to charge Li-Ion and Li-polymer  
batteries used in a wide range of smartphones and other portable devices. To take advantage of the high charge  
current capabilities of the BQ25960, it may be necessary to charge in excess of 1C. In this case, be sure to  
follow the battery manufacturers recommendations closely.  
10.2 Typical Application  
A typical schematic is shown below with all the optional and required components shown.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: BQ25960  
 
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
10.2.1 Standalone Application Information (for use with main charger)  
System  
SYS  
BAT  
VBUS  
Main Charger  
GND  
Adapter  
Wireless  
ACDRV2  
VAC2  
VBUS  
BQ25960  
1µF  
SDA  
ACDRV1  
Digital  
Core  
QB  
Host  
SCL  
/INT  
VAC1  
PMID  
10µF  
QCH1  
QCH2  
CFH2  
CFH1  
CFLY1  
1-3×22µF  
CFLY2  
1-3×22µF  
QDH1  
QDH2  
QCL2  
QDL2  
VOUT  
22µF  
QCL1  
CFL2  
CFL1  
100Ω  
QDL1  
GND  
BATP  
BATN_SRP  
Protection  
16 bit ADC  
2mΩ  
SRN_SYNCIN  
REGN  
10kΩ  
REGN  
10kΩ  
TSBUS  
CDRVH  
10kΩ  
10kΩ  
TSBAT_SYNCOUT  
REGN  
10kΩ  
10kΩ  
220nF  
CDRVL_  
ADDRMS  
75kΩ  
4.7µF  
10-1. BQ25960 Typical Application Diagram with Dual Input  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: BQ25960  
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
System  
SYS  
BAT  
VBUS  
GND  
Main Charger  
Optional  
Adapter  
ACDRV2  
VAC2  
VBUS  
1µF  
BQ25960  
ACDRV1  
VAC1  
SDA  
Digital  
Core  
QB  
Host  
SCL  
INT  
PMID  
10µF  
QCH1  
QCH2  
CFH2  
CFH1  
CFLY1  
1-3×22µF  
CFLY2  
1-3×22µF  
QDH1  
QDH2  
QCL2  
QDL2  
VOUT  
22µF  
QCL1  
CFL2  
CFL1  
100Ω  
QDL1  
GND  
BATP  
BATN_SRP  
Protection  
16 bit ADC  
2mΩ  
SRN_SYNCIN  
REGN  
10kΩ  
TSBUS  
CDRVH  
REGN  
10kΩ  
10kΩ  
10kΩ  
10kΩ  
TSBAT_SYNCOUT  
REGN  
10kΩ  
220nF  
CDRVL_  
ADDRMS  
75kΩ  
4.7µF  
10-2. BQ25960 Typical Application Diagram with Single Input  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: BQ25960  
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
10.2.1.1 Design Requirements  
The design requires a smart wall adapter to provide the proper input voltage and input current to the BQ25960,  
following the USB_PD Programmable Power Supply (PPS) voltage steps and current steps. The design shown  
is capable of charging up to 8 A, although this may not be practical for some applications due to the total power  
loss at this operating point. Careful consideration of the thermal constraints, space constraints, and operating  
conditions should be done to ensure acceptable performance.  
10.2.1.2 Detailed Design Procedure  
The first step is to determine the number of CFLY caps to put on each phase of the design. It is important to  
consider the current rating of the caps, their ESR, and the capacitance rating. Be sure to consider the bias  
voltage derating for the caps, as the CFLY caps are biased to half of the input voltage, and this will affect their  
effective capacitance. An optimal system will have 3 22-µF caps per phase, for a total of 6 caps per device. It is  
possible to use fewer caps if the board space is limited. Using fewer caps will result in higher voltage and current  
ripple on the output, as well as lower efficiency.  
The default switching frequency, fSW, for the power stage is 500 kHz. The switching frequency can be adjusted in  
register 0x10h using the FSW_SET bits. It is recommended to select 500 kHz if IBATADC is not used and 375  
kHz if IBATADC is used.  
It is recommended to use 1-µF cap on VBUS, 10-µF cap on PMID and 22-µF cap on VOUT.  
10.2.1.3 Application Curves  
10-3. Switched Cap Mode Power Up  
10-4. Bypass Mode Power Up  
10-5. Adapter Unplug in Switched Cap Mode  
10-6. Adapter Unplug in Bypass Mode  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: BQ25960  
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
10-7. VBUSOVP in Switched Cap Mode  
10-8. VBUSOVP in Bypass Mode  
10-9. IBUSOCP in Switched Cap Mode  
10-10. IBUSOCP in Bypass Mode  
10-11. VBATOVP in Switched Cap Mode  
10-12. VBATOVP in Bypass Mode  
10-13. IBATOCP in Switched Cap Mode  
10-14. IBATOCP in Bypass Mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: BQ25960  
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
VAC1 and VAC2 short to VBUS, ACDRV1 and ACDRV2 short  
to ground  
VAC1 connected to input source, VAC2 short to VBUS,  
ACDRV1 active, ACDRV2 short to ground  
10-15. Power Up without AC-RFFET  
10-16. Power Up from VAC1 with Single ACFET1  
VAC1 connected to input source 1, VBUS connected to input  
source 2, VAC2 short to VBUS, ACDRV1 active, ACDRV2  
short to ground  
VAC1 connected to input source 1, VBUS connected to input  
source 2, VAC2 short to VBUS, ACDRV1 active, ACDRV2  
short to ground  
10-17. Power Up from VAC1 with ACFET1-  
10-18. Plugin VAC1 When Device is Power Up  
RBFET1  
From VBUS with ACFET1-RBFET1  
VAC1 connected to input source 1, VAC2 connected to input  
source 2, ACDRV1 and ACDRV2 active  
VAC1 connected to input source 1, VAC2 connected to input  
source 2, ACDRV1 and ACumDRV2 active  
10-19. Power Up from VAC1 with ACFET1-  
10-20. Power Up from VAC2 with ACFET1-  
RBFET1 and ACFET2-RBFET2  
RBFET1 and ACFET2-RBFET2  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: BQ25960  
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
11 Power Supply Recommendations  
The BQ25960 can be powered by a standard power supply capable of meeting the input voltage and current  
requirements for evaluation. In the actual application, it must be used with a wall adapter that supports USB  
Power Delivery (PD) Programmable Power Supply (PPS) specifications.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: BQ25960  
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
Layout is very important to maximize the electrical and thermal performance of the total system. General  
guidelines are provided, but the form factor, board stack-up, and proximity of other components also need to be  
considered to maximize the performance.  
1. VBUS and VOUT traces should be as short and wide as possible to accommodate for high current.  
2. Copper trace of VBUS and VOUT should run at least 150 mil (3.81 mm) straight (perpendicular to WCSP  
ball array) before making turns.  
3. CFLY caps should be placed as close as possible to the device and CFLY trace should be as wide as  
possible until close to the IC.  
4. CLFY pours should be as symmetrical between CFH pads and CFL pads as possible.  
5. Place low ESR bypass capacitors to ground for VBUS, PMID, and VOUT. The capacitor should be placed as  
close to the device pins as possible.  
6. The CFLY pads should be as small as possible, and the CFLY caps placed as close as possible to the  
device, as these are switching pins and this will help reduce EMI.  
7. Do not route so the power planes are interrupted by signal traces.  
Refer to the EVM design and more information in the BQ25960EVM (BMS041) Evaluation Module User's Guide  
for the recommended component placement with trace and via locations.  
12.2 Layout Example  
CFLY1  
CFLY2  
0603  
0603  
CFLY1  
CFLY2  
0603  
0603  
1
2
3
4
5
6
Blind via  
PMID  
GND  
CFL1  
VOUT  
CFH1  
VBUS  
A
Top Layer  
Bottom Layer  
CFH1  
CFH2  
PMID  
PMID  
GND  
GND  
CFL1  
CFL2  
VOUT  
VOUT  
VOUT  
VBUS  
VBUS  
SRN  
B
C
D
E
F
Mid Layer_1  
Mid Layer_2  
/INT  
SCL  
SDA  
CDRVH  
CDRVL  
REGN  
CFL2  
CFH2  
SRP_  
BATN  
VAC2  
TSBAT  
TSBUS  
VAC1  
ACDRV1  
BATP  
ACDRV2  
12-1. BQ25960 Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: BQ25960  
 
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
13 Device and Documentation Support  
13.1 Device Support  
13.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
13.2 Documentation Support  
13.2.1 Related Documentation  
For related documentation see the following:  
BQ25960EVM (BMS041) Evaluation Module User's Guide  
13.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
13.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
13.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
13.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
13.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: BQ25960  
 
 
 
 
 
 
 
 
BQ25960  
ZHCSNF1 FEBRUARY 2021  
www.ti.com.cn  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: BQ25960  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Mar-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ25960YBGR  
ACTIVE  
DSBGA  
YBG  
36  
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
-40 to 85  
BQ25960  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
YBG0036  
DSBGA - 0.5 mm max height  
SCALE 6.000  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
CORNER  
D
C
0.5 MAX  
SEATING PLANE  
0.05 C  
0.20  
0.14  
BALL TYP  
2 TYP  
SYMM  
F
E
D
C
2
TYP  
SYMM  
D: Max = 2.542 mm, Min =2.482 mm  
E: Max = 2.542 mm, Min =2.482 mm  
B
A
0.4 TYP  
0.27  
2
1
4
5
6
3
36X  
0.23  
0.015  
C A B  
0.4 TYP  
4224846/A 03/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YBG0036  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
3
36X ( 0.23)  
2
1
4
5
6
A
(0.4) TYP  
B
C
SYMM  
D
E
F
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 30X  
0.05 MIN  
0.05 MAX  
METAL UNDER  
SOLDER MASK  
(
0.23)  
METAL  
(
0.23)  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4224846/A 03/2019  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YBG0036  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
3
36X ( 0.25)  
(0.4) TYP  
(R0.05) TYP  
6
2
1
4
5
A
B
C
SYMM  
METAL  
TYP  
D
E
F
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE: 30X  
4224846/A 03/2019  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

BQ25960YBGR

具有旁路模式和双输入选择器的 I2C 控制型单节 8A 开关电容并联电池充电器 | YBG | 36 | -40 to 85
TI

BQ25968

I2C 控制的单节电池高效率 ADC、6A 开关电容快速充电器
TI

BQ25968YFFR

I2C 控制的单节电池高效率 ADC、6A 开关电容快速充电器 | YFF | 56 | -40 to 85
TI

BQ25970

用于并联充电应用并支持外部过压保护的 I2C 单节 8A 开关电容器电池充电器
TI

BQ25970YFFR

用于并联充电应用并支持外部过压保护的 I2C 单节 8A 开关电容器电池充电器 | YFF | 56 | -40 to 85
TI

BQ25970YFFT

用于并联充电应用并支持外部过压保护的 I2C 单节 8A 开关电容器电池充电器 | YFF | 56 | -40 to 85
TI

BQ25971

用于并联充电应用的 I2C 单节 8A 开关电容器电池充电器
TI

BQ25971YFFR

用于并联充电应用的 I2C 单节 8A 开关电容器电池充电器 | YFF | 56 | -40 to 85
TI

BQ25971YFFT

用于并联充电应用的 I2C 单节 8A 开关电容器电池充电器 | YFF | 56 | -40 to 85
TI

BQ25980

具有集成保护功能的 I2C 控制型 8A 开关电容式 2 节并联电池充电器
TI

BQ25980YFFR

具有集成保护功能的 I2C 控制型 8A 开关电容式 2 节并联电池充电器 | YFF | 80 | -40 to 85
TI

BQ26100

SHA-1/HMAC BASED SECURITY AND AUTHENTICATION IC WITH SDQ INTERFACE
TI