BQ27220 [TI]

具有预编程化学成分的单节电池组/系统侧 CEDV 电池电量监测计;
BQ27220
型号: BQ27220
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有预编程化学成分的单节电池组/系统侧 CEDV 电池电量监测计

电池
文件: 总25页 (文件大小:793K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
bq27220  
ZHCSEX1A MARCH 2016REVISED APRIL 2016  
bq27220 单节 CEDV 电量监测计  
1 特性  
3 说明  
1
单节串联锂离子电池电量监测计  
德州仪器 (TI) bq27220 电池电量监测计是一款单节电  
池电量监测计,只需进行少量用户配置和系统微控制器  
固件开发工作即可快速实现系统调通。 bq27220 器件  
采用补偿放电结束电压 (CEDV) 算法进行电量检测,  
可提供诸如剩余电量 (mAh)、充电状态 (%)、续航时间  
(分钟)、电池电压 (mV)、温度 (°C) 和健康状况 (%)  
等信息。  
驻留在电池组或系统主板上  
支持嵌入式或可拆除电池  
由集成低压降稳压器 (LDO) 的电池直接供电  
支持低值 (10mΩ) 外部感测电阻  
超低功耗:正常模式下为 50µA,休眠模式下为  
9µA  
基于补偿放电结束电压 (CEDV) 技术的电池电量监  
bq27220 电池电量监测计在正常模式 (50μA) 和休眠模  
(9μA) 下均具有超低功耗,有助于延长电池运行时  
间。可配置中断有助于节省系统功耗,释放主机使其停  
止继续轮询。外部热敏电阻为精确温度感测提供支持。  
用平滑滤波器报告剩余电量和充电状态 (SOC)  
针对电池老化、自放电以及温度和速率变化进行  
自动调节  
提供电池健康(老化)状况的估计  
客户可以使用 ROM 中预载的 CEDV 参数,或者使用  
通过 TI 网络工具 GAUGEPARCAL 生成的定制化学参  
数。生成的定制参数可在系统上电时通过主机编程到器  
RAM 中,客户也可以将该参数编程到板载一次性可  
编程 (OTP) 存储器中。  
微控制器外设支持:  
400kHz I2C™串行接口  
可配置的 SOC 中断或  
电池低电量数字输出警告  
内部温度传感器、  
主机报告的温度或  
外部热敏电阻  
通过 bq27220 器件进行电池电量监测时,只需将  
PACK+ (P+) PACK- (P-) 连接至可拆卸电池组或嵌  
入式电池电路即可。微型 9 焊球、1.62mm ×  
1.58mm、间距为 0.5mm NanoFree™芯片级封装  
(DSBGA),是空间受限类应用的 理想选择。  
2 应用  
智能手机和功能手机  
平板电脑  
器件信息(1)  
可穿戴产品  
器件型号  
bq27220  
封装  
封装尺寸(标称值)  
楼宇自动化  
YZF (9)  
1.62mm x 1.58mm  
便携式医疗/工业手持终端  
便携式音频设备  
游戏机  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
简化电路原理图(系统侧)  
SRN  
SRP  
SCL  
VSYS  
2
I C  
Bus  
Coulomb  
Counter  
SDA  
CPU  
Battery Pack  
GPOUT  
B
AT  
PACKP  
T
ADC  
Li-Ion  
Cell  
BIN  
Protection  
IC  
VDD  
1 µF  
2.2 µF  
1.8 V  
LDO  
PACKN  
VSS  
NFET NFET  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLUSCB7  
 
 
 
bq27220  
ZHCSEX1A MARCH 2016REVISED APRIL 2016  
www.ti.com.cn  
目录  
6.13 Typical Characteristics............................................ 8  
Detailed Description .............................................. 9  
7.1 Overview ................................................................... 9  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Supply Current .......................................................... 5  
6.6 Digital Input and Output DC Characteristics............. 5  
7
7.2 Functional Block Diagram (System-Side  
Configuration)............................................................. 9  
7.3 Feature Description................................................... 9  
7.4 Device Functional Modes........................................ 11  
Application and Implementation ........................ 12  
8.1 Application Information............................................ 12  
8.2 Typical Applications ................................................ 12  
Power Supply Recommendation........................ 15  
9.1 Power Supply Decoupling....................................... 15  
8
9
10 Layout................................................................... 15  
10.1 Layout Guidelines ................................................. 15  
10.2 Layout Example .................................................... 16  
11 器件和文档支持 ..................................................... 17  
11.1 文档支持................................................................ 17  
11.2 社区资源................................................................ 17  
11.3 ....................................................................... 17  
11.4 静电放电警告......................................................... 17  
11.5 Glossary................................................................ 17  
12 机械、封装和可订购信息....................................... 17  
6.7 LDO Regulator, Wake-up, and Auto-Shutdown DC  
Characteristics ........................................................... 6  
6.8 LDO Regulator, Wake-up, and Auto-shutdown AC  
Characteristics ........................................................... 6  
6.9 ADC (Temperature and Cell Measurement)  
Characteristics ........................................................... 6  
6.10 Integrating ADC (Coulomb Counter) Characteristics  
................................................................................... 6  
6.11 I2C-Compatible Interface Communication Timing  
Characteristics ........................................................... 7  
6.12 SHUTDOWN and WAKE-UP Timing ...................... 8  
4 修订历史记录  
日期  
修订版本  
注释  
2016 4 月  
A
产品预览量产数据”  
2
Copyright © 2016, Texas Instruments Incorporated  
 
bq27220  
www.ti.com.cn  
ZHCSEX1A MARCH 2016REVISED APRIL 2016  
5 Pin Configuration and Functions  
Top View  
3
2
1
C
B
A
Bottom View  
1
2
3
C
B
A
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
BAT  
NUMBER  
LDO regulator input and battery voltage measurement input. Kelvin sense connect to the positive  
battery terminal (PACKP). Connect a capacitor (1 µF) between BAT and VSS. Place the capacitor  
close to the gauge.  
C3  
PI, AI(1)  
Battery insertion detection input. If OpConfig [BI_PU_EN] = 1 (default), a logic low on the pin is  
detected as battery insertion. For a removable pack, the BIN pin can be connected to VSS  
through a pulldown resistor on the pack, typically the 10-kΩ thermistor; the system board should  
use a 1.8-MΩ pullup resistor to VDD to ensure the BIN pin is high when a battery is removed. If  
the battery is embedded in the system or in the pack, it is recommended to leave [BI_PU_EN] =  
1 and use a 10-kΩ pulldown resistor from BIN to VSS. If [BI_PU_EN] = 0, then the host must  
inform the gauge of battery insertion and removal with the BAT_INSERT and BAT_REMOVE  
subcommands. A 10-kΩ pulldown resistor should be placed between BIN and VSS, even if this  
pin is unused.  
BIN  
B1  
DI  
NOTE: The BIN pin must not be shorted directly to VCC or VSS and any pullup resistor on the BIN  
pin must be connected only to VDD and not an external voltage rail. If an external thermistor is  
used for temperature input, the thermistor should be connected between this pin and VSS  
.
(1) IO = Digital input-output, AI = Analog input, P = Power connection  
Copyright © 2016, Texas Instruments Incorporated  
3
bq27220  
ZHCSEX1A MARCH 2016REVISED APRIL 2016  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NAME  
NUMBER  
This open-drain output can be configured to indicate BAT_LOW when the OpConfig  
[BATLOWEN] bit is set. By default [BATLOWEN] is cleared and this pin performs an interrupt  
function (SOC_INT) by pulsing for specific events, such as a change in state-of-charge. Signal  
polarity for these functions is controlled by the [GPIOPOL] configuration bit. This pin should not  
be left floating, even if unused; therefore, a 10-kΩ pullup resistor is recommended. If the device  
is in SHUTDOWN mode, toggling GPOUT makes the gauge exit SHUTDOWN. It is  
recommended to connect GPOUT to a GPIO of the host MCU so that in case of any inadvertent  
shutdown condition, the gauge can be commanded to come out of SHUTDOWN.  
GPOUT  
A1  
DO  
SCL  
SDA  
SRN  
A3  
A2  
C2  
DIO  
DIO  
AI  
Slave I2C serial bus for communication with system (Master). Open-drain pins. Use with external  
10-kpullup resistors (typical) for each pin. If the external pullup resistors will be disconnected  
from these pins during normal operation, recommend using external 1-Mpulldown resistors to  
VSS at each pin to avoid floating inputs.  
Coulomb counter differential inputs expecting an external 10-mΩ, 1% sense resistor. For system-  
side configurations, Kelvin sense connect SRP to the positive battery terminal (PACKP) side of  
the external sense resistor. Kelvin sense connect SRN to the other side of the external sense  
resistor with the positive connection to the system (VSYS). For pack-side configurations with low-  
side sensing, connect SRP to PACK– and SRN to Cell–. See the Simplified Schematic.  
No calibration is required. The fuel gauge is pre-calibrated for a standard 10-mΩ, 1% sense  
resistor.  
SRP  
C1  
AI  
1.8-V regulator output. Decouple with a 2.2-μF ceramic capacitor to VSS. This pin is not intended  
to provide power for other devices in the system.  
VDD  
VSS  
B3  
B2  
PO  
PI  
Ground pin  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
MAX  
UNIT  
V
VBAT  
VSR  
BAT pin input voltage range  
6
SRP and SRN pins input voltage range  
Differential voltage across SRP and SRN. ABS(SRP – SRN)  
VDD pin supply voltage range (LDO output)  
Open-drain IO pins (SDA, SCL)  
VBAT + 0.3  
V
2
V
VDD  
VIOD  
VIOPP  
TA  
–0.3  
–0.3  
–0.3  
–40  
–65  
2
6
V
V
Push-pull IO pins (BIN)  
VDD + 0.3  
85  
V
Operating free-air temperature range  
°C  
°C  
Storage temperature, Tstg  
150  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±1500  
±250  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
4
Copyright © 2016, Texas Instruments Incorporated  
bq27220  
www.ti.com.cn  
ZHCSEX1A MARCH 2016REVISED APRIL 2016  
6.3 Recommended Operating Conditions  
TA = 30°C and VBAT = 3.6 V (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
External input capacitor for internal LDO  
between BAT and VSS  
(1)  
CBAT  
0.1  
μF  
Nominal capacitor values specified.  
Recommend a 5% ceramic X5R-type  
capacitor located close to the device.  
External output capacitor for internal LDO  
between VDD and VSS  
(1)  
CLDO18  
2.2  
μF  
External pullup voltage for open-drain  
pins (SDA, SCL, GPOUT)  
(1)  
VPU  
1.62  
3.6  
V
(1) Specified by design. Not production tested.  
6.4 Thermal Information  
bq27220  
THERMAL METRIC(1)  
YZF (DSBGA)  
9 PINS  
64.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJCtop  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
59.8  
52.7  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJB  
28.3  
RθJCbot  
2.4  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953  
6.5 Supply Current  
TA = 30°C and VBAT = 3.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
ILOAD > Sleep Current(2)  
ILOAD < Sleep Current(2)  
MIN  
TYP  
50  
9
MAX  
UNIT  
μA  
(1)  
ICC  
NORMAL mode current  
SLEEP mode current  
(1)  
ISLP  
μA  
Fuel gauge in host commanded  
SHUTDOWN mode.  
(1)  
ISD  
SHUTDOWN mode current  
0.6  
μA  
(LDO regulator output disabled)  
(1) Specified by design. Not production tested.  
(2) Wake Comparator Disabled.  
6.6 Digital Input and Output DC Characteristics  
TA = –40°C to 85°C, typical values at TA = 30°C and VBAT = 3.6 V (unless otherwise noted)(Force Note1)(1)  
PARAMETER  
Input voltage, high(2)  
TEST CONDITIONS  
MIN  
VPU × 0.7  
1.4  
TYP  
MAX  
UNIT  
V
VIH(OD)  
VIH(PP)  
VIL  
External pullup resistor to VPU  
(3)  
Input voltage, high  
V
Input voltage, low(2) (3)  
Output voltage, low(2)  
Output source current, high(2)  
Output sink current, low(2)  
Input capacitance(2)(3)  
0.6  
0.6  
0.5  
–3  
5
V
VOL  
V
IOH  
mA  
mA  
pF  
IOL(OD)  
(1)  
CIN  
Input leakage current  
(SCL, SDA, BIN, GPOUT)  
Ilkg  
1
μA  
(1) Specified by design. Not production tested.  
(2) Open Drain pins: (SCL, SDA, GPOUT)  
(3) Push-Pull pin: (BIN)  
Copyright © 2016, Texas Instruments Incorporated  
5
bq27220  
ZHCSEX1A MARCH 2016REVISED APRIL 2016  
www.ti.com.cn  
6.7 LDO Regulator, Wake-up, and Auto-Shutdown DC Characteristics  
TA = –40°C to 85°C, typical values at TA = 30°C and VBAT = 3.6 V (unless otherwise noted)(Force Note1)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
4.5  
UNIT  
V
VBAT  
VDD  
BAT pin regulator input  
Regulator output voltage  
2.45  
1.85  
2
V
VBAT undervoltage lock-out  
LDO wake-up rising threshold  
UVLOIT+  
UVLOIT–  
V
V
V
VBAT undervoltage lock-out  
LDO auto-shutdown falling threshold  
1.95  
GPOUT (input) LDO Wake-up rising LDO Wake-up from SHUTDOWN  
edge threshold(2)  
mode  
(1)  
VWU+  
1.2  
(1) Specified by design. Not production tested.  
(2) If the device is commanded to SHUTDOWN via I2C with VBAT > UVLOIT+, a wake-up rising edge trigger is required on GPOUT.  
6.8 LDO Regulator, Wake-up, and Auto-shutdown AC Characteristics  
TA = –40°C to 85°C, typical values at TA = 30°C and VBAT = 3.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Time delay from SHUTDOWN  
command to LDO output disable.  
(1)  
(1)  
tSHDN  
tSHUP  
SHUTDOWN entry time  
250  
ms  
Minimum low time of GPOUT (input)  
in SHUTDOWN before WAKEUP  
SHUTDOWN GPOUT low time  
Initial VDD output delay  
10  
μs  
(1)  
tVDD  
13  
8
ms  
Time delay from rising edge of  
GPOUT (input) to nominal VDD  
output.  
(1)  
tWUVDD  
Wake-up VDD output delay  
ms  
ms  
Time delay from rising edge of BAT  
to the Active state. Includes  
firmware initialization time.  
tPUCD  
Power-up communication delay  
250  
(1) Specified by design. Not production tested.  
6.9 ADC (Temperature and Cell Measurement) Characteristics  
TA = –40°C to 85°C; typical values at TA = 30°C and VBAT = 3.6 V (unless otherwise noted) (Force Note1)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN(BAT)  
BAT pin voltage measurement  
range  
Voltage divider enabled  
2.45  
4.5  
V
tADC_CONV Conversion time  
Effective resolution  
125  
15  
ms  
bits  
(1) Specified by design. Not tested in production.  
6.10 Integrating ADC (Coulomb Counter) Characteristics  
TA = –40°C to 85°C; typical values at TA = 30°C and VBAT = 3.6 V (unless otherwise noted)(Force Note1)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Input voltage range of SRN, SRP  
pins  
VSRCM  
VSS  
VBAT  
V
Input differential voltage range of  
VSRP–VSRN  
VSRDM  
± 80  
mV  
tSR_CONV  
Conversion time  
Single conversion  
Single conversion  
1
s
Effective Resolution  
16  
bits  
(1) Specified by design. Not tested in production.  
6
Copyright © 2016, Texas Instruments Incorporated  
bq27220  
www.ti.com.cn  
ZHCSEX1A MARCH 2016REVISED APRIL 2016  
6.11 I2C-Compatible Interface Communication Timing Characteristics  
TA = –40°C to 85°C; typical values at TA = 30°C and VBAT = 3.6 V (unless otherwise noted) (Force Note1)(1)  
MIN  
NOM  
MAX  
UNIT  
Standard Mode (100 kHz)  
td(STA) Start to first falling edge of SCL  
tw(L)  
4
4.7  
4
μs  
μs  
μs  
μs  
ns  
ns  
μs  
SCL pulse duration (low)  
SCL pulse duration (high)  
Setup for repeated start  
Data setup time  
tw(H)  
tsu(STA)  
tsu(DAT)  
th(DAT)  
tsu(STOP)  
t(BUF)  
4.7  
250  
0
Host drives SDA  
Host drives SDA  
Data hold time  
Setup time for stop  
4
Bus free time between stop and  
start  
Includes Command Waiting Time  
66  
μs  
tf  
SCL or SDA fall time(1)  
SCL or SDA rise time(1)  
Clock frequency(2)  
300  
300  
100  
ns  
ns  
tr  
fSCL  
kHz  
Fast Mode (400 kHz)  
td(STA) Start to first falling edge of SCL  
tw(L)  
600  
1300  
600  
600  
100  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCL pulse duration (low)  
SCL pulse duration (high)  
Setup for repeated start  
Data setup time  
tw(H)  
tsu(STA)  
tsu(DAT)  
th(DAT)  
tsu(STOP)  
t(BUF)  
Host drives SDA  
Host drives SDA  
Data hold time  
Setup time for stop  
600  
Bus free time between stop and  
start  
Includes Command Waiting Time  
66  
μs  
tf  
SCL or SDA fall time(1)  
SCL or SDA rise time(1)  
Clock frequency(2)  
300  
300  
400  
ns  
ns  
tr  
fSCL  
kHz  
(1) Specified by design. Not production tested.  
(2) If the clock frequency (fSCL) is > 100 kHz, use 1-byte write commands for proper operation. All other transactions types are supported at  
400 kHz. (See I2C Interface and I2C Command Waiting Time.)  
t
t
t
t
t
f
t
r
(BUF)  
SU(STA)  
w(H)  
w(L)  
SCL  
SDA  
t
t
t
d(STA)  
su(STOP)  
f
t
r
t
t
su(DAT)  
h(DAT)  
REPEATED  
START  
STOP  
START  
Figure 1. I2C-Compatible Interface Timing Diagram  
Copyright © 2016, Texas Instruments Incorporated  
7
bq27220  
ZHCSEX1A MARCH 2016REVISED APRIL 2016  
www.ti.com.cn  
6.12 SHUTDOWN and WAKE-UP Timing  
tPUCD  
tSHUP  
tPUCD  
tVDD  
tSHDN  
tWUVDD  
BAT  
VDD  
2
_
SHUTDOWN  
ENABLE  
I C Bus  
SHUTDOWN  
*
GPOUT  
Off  
WAKE-UP  
Active  
SHUTDOWN  
WAKE-UP  
Active  
State  
* GPOUT is configured as an input for wake-up signaling.  
Figure 2. SHUTDOWN and WAKE-UP Timing Diagram  
6.13 Typical Characteristics  
0.6%  
0.5%  
0.4%  
0.3%  
0.2%  
0.1%  
0
0.45%  
0.4%  
0.35%  
0.3%  
0.25%  
0.2%  
0.15%  
0.1%  
0.05%  
0
-0.1%  
-50  
0
50  
100  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (èC)  
Temperature (èC)  
D001  
D002  
Figure 3. Current Accuracy Error vs. Temperature  
Figure 4. Voltage Accuracy Error vs. Temperature  
0
-1%  
-2%  
-3%  
-4%  
-5%  
-6%  
-50  
0
50  
100  
Temperature (èC)  
D003  
Figure 5. Internal Temperature Accuracy Error vs. Temperature  
8
Copyright © 2016, Texas Instruments Incorporated  
bq27220  
www.ti.com.cn  
ZHCSEX1A MARCH 2016REVISED APRIL 2016  
7 Detailed Description  
7.1 Overview  
The bq27220 fuel gauge accurately predicts the battery capacity and other operational characteristics of a single  
Li-based rechargeable cell. It can be interrogated by a system processor to provide cell information such as  
state-of-charge (SoC). The bq27220 monitors charge and discharge activity by sensing the voltage across a  
small value resistor (10 mΩ typical) between the SRP and SRN pins and in series with the battery. By integrating  
charge passing through the battery, the battery’s SOC is adjusted during battery charge or discharge.  
The fuel gauging is derived from the Compensated End of Discharge Voltage (CEDV) method, which uses a  
mathematical model to correlate remaining state of charge (RSOC) and voltage near to the end of discharge  
state. This requires a full discharge cycle for a single point FCC update. The implementation models cell voltage  
(OCV) as a function of battery state of charge (SOC), temperature, and current. The impedance is also a function  
of SOC and temperature, all of which can be satisfied by using seven parameters: EMF, C0, R0, T0, R1, TC, C1.  
NOTE  
The following formatting conventions are used in this document:  
Commands: italics with parentheses() and no breaking spaces, for example, Control().  
Data Flash: italics, bold, and breaking spaces, for example, Design Capacity.  
Register bits and flags: italics with brackets [ ], for example, [TDA]  
Data flash bits: italics, bold, and brackets [ ], for example, [LED1]  
Modes and states: ALL CAPITALS, for example, UNSEALED mode.  
7.2 Functional Block Diagram (System-Side Configuration)  
SRN  
SCL  
SDA  
VSYS  
2
I C  
Bus  
Coulomb  
Counter  
SRP  
CPU  
Battery Pack  
GPOUT  
B
AT  
PACKP  
T
ADC  
Li-Ion  
Cell  
BIN  
Protection  
IC  
VDD  
1 µF  
2.2 µF  
1.8 V  
LDO  
PACKN  
VSS  
NFET NFET  
7.3 Feature Description  
Information is accessed through a series of commands called Standard Commands. Further capabilities are  
provided by the additional Extended Commands set. Both sets of commands, indicated by the general format  
Command), are used to read and write information within the control and status registers, as well as its data  
locations. Commands are sent from the system to the gauge using the I2C serial communications engine, and  
can be executed during application development, system manufacture, or end-equipment operation.  
The fuel gauge measures the charging and discharging of the battery by monitoring the voltage across a small-  
value sense resistor. When a cell is attached to the fuel gauge, cell impedance is computed based on cell  
current, cell open-circuit voltage (OCV), and cell voltage under loading conditions.  
The fuel gauge uses an integrated temperature sensor for estimating cell temperature. Alternatively, the host  
processor can provide temperature data for the fuel gauge.  
Copyright © 2016, Texas Instruments Incorporated  
9
bq27220  
ZHCSEX1A MARCH 2016REVISED APRIL 2016  
www.ti.com.cn  
Feature Description (continued)  
For more details, see the bq27220 Technical Reference Manual (SLUUBD4).  
The external temperature sensing is optimized with the use of a high accuracy negative temperature coefficient  
(NTC) thermistor with R25 = 10.0 kΩ ±1%. B25/85 = 3435K ± 1% (such as Semitec NTC 103AT) on the BIN pin.  
Alternatively, the bq27220 can also be configured to use its internal temperature sensor or receive temperature  
data from the host processor. The bq27220 uses temperature to monitor the battery-pack environment, which is  
used for fuel gauging and cell protection functionality.  
7.3.1 Communications  
7.3.1.1 I2C Interface  
The fuel gauge supports the standard I2C read, incremental read, quick read, one-byte write, and incremental  
write functions. The 7-bit device address (ADDR) is the most significant 7 bits of the hex address and is fixed as  
1010101. The first 8 bits of the I2C protocol are, therefore, 0xAA or 0xAB for write or read, respectively.  
Host generated  
ADDR[6:0] 0 A  
Gauge generated  
S
CMD[7:0]  
(a) 1-byte write  
A
DATA [7:0]  
A
P
S
ADDR[6:0]  
1
A
DATA [7:0]  
(b) quick read  
DATA [7:0]  
N P  
S
ADDR[6:0] 0 A  
CMD[7:0]  
A
Sr  
ADDR[6:0]  
1
A
N P  
(c) 1- byte read  
S
ADDR[6:0] 0 A  
CMD[7:0]  
A
Sr  
ADDR[6:0]  
1
A
DATA [7:0]  
A
A
. . .  
DATA [7:0]  
A . . . A P  
N P  
(d) incremental read  
S
ADDR[6:0] 0 A  
CMD[7:0]  
A
DATA [7:0]  
DATA [7:0]  
(e) incremental write  
(S = Start, Sr = Repeated Start, A = Acknowledge, N = No Acknowledge , and P = Stop).  
Figure 6. I2C Interface Read and Write Functions  
The quick read returns data at the address indicated by the address pointer. The address pointer, a register  
internal to the I2C communication engine, increments whenever data is acknowledged by the fuel gauge or the  
I2C master. “Quick writes” function in the same manner and are a convenient means of sending multiple bytes to  
consecutive command locations (such as two-byte commands that require two bytes of data).  
The following command sequences are not supported:  
Figure 7. Attempt to Write a Read-Only Address (NACK After Data Sent By Master)  
Figure 8. Attempt to Read an Address Above 0x6B (NACK Command)  
7.3.1.2 I2C Time Out  
The I2C engine releases both SDA and SCL if the I2C bus is held low for 2 seconds. If the fuel gauge is holding  
the lines, releasing them frees them for the master to drive the lines. If an external condition is holding either of  
the lines low, the I2C engine enters the low-power SLEEP mode.  
10  
Copyright © 2016, Texas Instruments Incorporated  
bq27220  
www.ti.com.cn  
ZHCSEX1A MARCH 2016REVISED APRIL 2016  
Feature Description (continued)  
7.3.1.3 I2C Command Waiting Time  
To ensure proper operation at 400 kHz, a t(BUF) 66 μs bus-free waiting time must be inserted between all  
packets addressed to the fuel gauge. In addition, if the SCL clock frequency (fSCL) is > 100 kHz, use individual 1-  
byte write commands for proper data flow control. Figure 9 shows the standard waiting time required between  
issuing the control subcommand the reading the status result. For read-write standard commands, a minimum of  
2 seconds is required to get the result updated. For read-only standard commands, there is no waiting time  
required, but the host must not issue any standard command more than two times per second. Otherwise, the  
gauge could result in a reset issue due to the expiration of the watchdog timer.  
S
S
S
ADDR [6:0] 0 A  
ADDR [6:0] 0 A  
ADDR [6:0] 0 A  
CMD [7:0]  
CMD [7:0]  
CMD [7:0]  
A
A
A
DATA [7:0]  
DATA [7:0]  
ADDR [6:0]  
A
A
P
P
66ms  
66ms  
Sr  
1
A
DATA [7:0]  
A
DATA [7:0]  
N P  
66ms  
Waiting time inserted between two 1-byte write packets for a subcommand and reading results  
(required for 100 kHz < fSCL £ 400 kHz)  
S
S
ADDR [6:0] 0 A  
ADDR [6:0] 0 A  
CMD [7:0]  
CMD [7:0]  
A
A
DATA [7:0]  
ADDR [6:0]  
A
DATA [7:0]  
DATA [7:0]  
A
P
66ms  
DATA [7:0]  
Sr  
1
A
A
N P  
66ms  
Waiting time inserted between incremental 2-byte write packet for a subcommand and reading results  
(acceptable for fSCL £ 100 kHz)  
S
ADDR [6:0] 0 A  
DATA [7:0]  
CMD [7:0]  
DATA [7:0]  
A
Sr  
ADDR [6:0]  
66ms  
1
A
DATA [7:0]  
A
DATA [7:0]  
A
A
N P  
Waiting time inserted after incremental read  
Figure 9. Standard Waiting Time  
7.3.1.4 I2C Clock Stretching  
A clock stretch can occur during all modes of fuel gauge operation. In SLEEP mode, a short 100-µs clock  
stretch occurs on all I2C traffic as the device must wake-up to process the packet. In the other modes  
(INITIALIZATION, NORMAL), a 4-ms clock stretching period may occur within packets addressed for the fuel  
gauge as the I2C interface performs normal data flow control.  
7.4 Device Functional Modes  
To minimize power consumption, the fuel gauge has several power modes: INITIALIZATION, NORMAL, and  
SLEEP. The fuel gauge passes automatically between these modes, depending upon the occurrence of specific  
events, though a system processor can initiate some of these modes directly. For more details, see the bq27220  
Technical Reference Manual (SLUUBD4).  
Copyright © 2016, Texas Instruments Incorporated  
11  
 
bq27220  
ZHCSEX1A MARCH 2016REVISED APRIL 2016  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following application section is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The bq27220 fuel gauge is a microcontroller peripheral that provides system-side or pack-side fuel gauging for  
single-cell Li-Ion batteries. The device requires minimal configuration and uses One-Time Programmable (OTP)  
Non-Volatile Memory (NVM). Battery fuel gauging with the fuel gauge requires connections only to PACK+ and  
PACK– for a removable battery pack or embedded battery circuit. To allow for optimal performance in the end  
application, special considerations must be taken to ensure minimization of measurement error through proper  
printed circuit board (PCB) board layout. Such requirements are detailed in Design Requirements.  
8.2 Typical Applications  
Ext VCC  
EXT_VCC  
GND  
TP4  
EXT_VCC  
J3  
VDD  
VDD  
J4  
R2  
1.8 Meg  
PGND  
EXT_VCC  
BIN  
JP1  
JP2  
EXT_VCC  
R3  
5.1k  
J2  
R4 R5  
10.0k 10.0k  
GPOUT  
GPOUT  
J1  
4
SDA  
3
2
1
SDA  
SCL  
SCL  
VSS  
U1  
VDD  
TP5  
C3  
B3  
BAT  
VDD  
VDD  
C1  
0.47 µF 2.2 µF  
PGND  
A3  
A2  
C1  
C2  
SCL  
SDA  
SRP  
SRN  
C3  
Recommended to be connected  
to a GPIO on the host.  
A1  
B1  
GPOUT  
BIN  
GPOUT  
BIN  
B2  
VSS  
PGND PGND  
Cell+  
TP1  
J6  
Load+  
TP2  
Pack+  
PGND  
Cell+  
1
2
3
Charger+  
BIN  
BIN  
Cell–  
J5  
C2  
1 µF  
R8  
10.0k  
Load-  
TP3  
J7  
Charger-  
Pack+  
R1  
0.01  
PGND  
Figure 10. Typical Application for Pack-Side Using Low-Side Sensing  
8.2.1 Design Requirements  
As shipped from the Texas Instruments factory, many bq27220 parameters in OTP NVM are left in the  
unprogrammed state (zero). This partially programmed configuration facilitates customization for each end  
application. Upon device reset, the contents of OTP are copied to associated volatile RAM-based data memory  
blocks. For proper operation, all parameters in RAM-based data memory require initialization — either by  
updating data memory parameters in a lab/evaluation situation or by programming the OTP for customer  
production. The bq27220 Technical Reference Manual (SLUUBD4) shows the default value and a typically  
expected value appropriate for most of applications.  
12  
Copyright © 2016, Texas Instruments Incorporated  
 
bq27220  
www.ti.com.cn  
ZHCSEX1A MARCH 2016REVISED APRIL 2016  
Typical Applications (continued)  
8.2.2 Detailed Design Procedure  
8.2.2.1 BAT Voltage Sense Input  
A ceramic capacitor at the input to the BAT pin is used to bypass AC voltage ripple to ground, greatly reducing  
its influence on battery voltage measurements. It proves most effective in applications with load profiles that  
exhibit high-frequency current pulses (that is, cell phones) but is recommended for use in all applications to  
reduce noise on this sensitive high-impedance measurement node.  
8.2.2.2 Integrated LDO Capacitor  
The fuel gauge has an integrated LDO with an output on the VDD pin of approximately 1.8 V. A capacitor with a  
value of at least 2.2 μF should be connected between the VDD pin and VSS. The capacitor must be placed close  
to the gauge IC and have short traces to both the VDD pin and VSS. This regulator must not be used to provide  
power for other devices in the system.  
8.2.2.3 Sense Resistor Selection  
Any variation encountered in the resistance present between the SRP and SRN pins of the fuel gauge will affect  
the resulting differential voltage, and derived current, that it senses. As such, it is recommended to select a  
sense resistor with minimal tolerance and temperature coefficient of resistance (TCR) characteristics. The  
standard recommendation based on the best compromise between performance and price is a 1% tolerance, 50-  
ppm drift sense resistor with a 1-W power rating.  
8.2.3 External Thermistor Support  
The fuel gauge temperature sensing circuitry is designed to work with a negative temperature coefficient-type  
(NTC) thermistor with a characteristic 10-kΩ resistance at room temperature (25°C). The default curve-fitting  
coefficients configured in the fuel gauge specifically assume a Semitec 103AT type thermistor profile and so that  
is the default recommendation for thermistor selection purposes. Moving to a separate thermistor resistance  
profile (for example, JT-2 or others) requires an update to the default thermistor coefficients, which can be  
modified in RAM to ensure highest accuracy temperature measurement performance.  
Copyright © 2016, Texas Instruments Incorporated  
13  
bq27220  
ZHCSEX1A MARCH 2016REVISED APRIL 2016  
www.ti.com.cn  
Typical Applications (continued)  
8.2.4 Application Curves  
0.6%  
0.5%  
0.4%  
0.3%  
0.2%  
0.1%  
0
0.45%  
0.4%  
0.35%  
0.3%  
0.25%  
0.2%  
0.15%  
0.1%  
0.05%  
0
-0.1%  
-50  
0
50  
100  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (èC)  
Temperature (èC)  
D001  
D002  
Figure 11. Current Accuracy Error vs. Temperature  
Figure 12. Voltage Accuracy Error vs. Temperature  
0
-1%  
-2%  
-3%  
-4%  
-5%  
-6%  
-50  
0
50  
100  
Temperature (èC)  
D003  
Figure 13. Internal Temperature Accuracy Error vs. Temperature  
14  
Copyright © 2016, Texas Instruments Incorporated  
bq27220  
www.ti.com.cn  
ZHCSEX1A MARCH 2016REVISED APRIL 2016  
9 Power Supply Recommendation  
9.1 Power Supply Decoupling  
The battery connection on the BAT pin is used for two purposes:  
To supply power to the fuel gauge, and  
To provide an input for voltage measurement of the battery.  
A capacitor of value of at least 1 µF should be connected between BAT and VSS. The capacitor must be placed  
close to the gauge IC and have short traces to both the BAT pin and VSS  
.
The fuel gauge has an integrated LDO with an output on the VDD pin of approximately 1.8 V. A capacitor of value  
of at least 2.2 µF should be connected between the VDD pin and VSS. The capacitor must be placed close to the  
gauge IC and have short traces to both the VDD pin and VSS. This regulator must not be used to provide power  
for other devices in the system.  
10 Layout  
10.1 Layout Guidelines  
A capacitor of value of at least 2.2 µF is connected between the VDD pin and VSS. The capacitor must be  
placed close to the gauge IC and have short traces to both the VDD pin and VSS. This regulator must not be  
used to provide power for other devices in the system.  
It is required to have a capacitor of at least 1.0 µF connect between the BAT pin and VSS if the connection  
between the battery pack and the gauge BAT pin has the potential to pick up noise. The capacitor should be  
placed close to the gauge IC and have short traces to both the BAT pin and VSS  
.
If the external pullup resistors on the SCL and SDA lines will be disconnected from the host during low-power  
operation, it is recommended to use external 1-MΩ pulldown resistors to VSS to avoid floating inputs to the I2C  
engine.  
The value of the SCL and SDA pullup resistors should take into consideration the pullup voltage and the bus  
capacitance. Some recommended values, assuming a bus capacitance of 10 pF, can be seen in Table 1.  
Table 1. Recommended Values for SCL and SDA Pullup Resistors  
VPU  
1.8 V  
3.3 V  
Range  
400 Ω ≤ RPU 37.6 kΩ  
Typical  
Range  
900 Ω ≤ RPU 29.2 kΩ  
Typical  
RPU  
10 kΩ  
5.1 kΩ  
If the host is not using the GPOUT functionality, then it is recommended that GPOUT be connected to a  
GPIO of the host so that in the cases where the device is in SHUTDOWN, toggling GPOUT can wake the  
gauge from the SHUTDOWN state.  
If the battery pack thermistor is not connected to the BIN pin, the BIN pin should be pulled down to VSS with a  
10-kΩ resistor.  
The BIN pin should not be shorted directly to VDD or VSS  
The actual device ground is pin B2 (VSS).  
.
The SRP and SRN pins should be Kelvin connected to the RSENSE terminals. SRP to the battery pack side of  
RSENSE and SRN to the system side of the RSENSE  
Kelvin connect the BAT pin to the battery PACKP terminal.  
.
Copyright © 2016, Texas Instruments Incorporated  
15  
 
bq27220  
ZHCSEX1A MARCH 2016REVISED APRIL 2016  
www.ti.com.cn  
10.2 Layout Example  
Kelvin connect SRP  
and SRN connections  
right at Rsense  
terminals  
RSENSE  
VSYSTEM  
If battery pack’s  
thermistor will not be  
connected to BIN pin, a  
10-kΩ pulldown resistor  
should be connected to  
the BIN pin.  
VDD  
BAT  
Battery Pack  
PACK+  
TS  
CBAT  
The BIN pin should not be  
shorted directly to VDD or  
RBIN  
Li-Ion  
Cell  
VSS.  
+
VDD  
Vpullup( do not pull to gauge VDD)  
CVDD  
RTHERM  
Protection  
IC  
Place close to  
gauge IC. Trace  
to pin and VSS  
should be short  
SCL  
PACK-  
RSDA  
RSCL  
RGPOUT  
NFET  
NFET  
SCL  
Via connects to Power Ground  
SDA  
GPOUT  
Figure 14. EVM Board Layout  
16  
版权 © 2016, Texas Instruments Incorporated  
bq27220  
www.ti.com.cn  
ZHCSEX1A MARCH 2016REVISED APRIL 2016  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档ꢀ  
bq27220 技术参考》手册(文献编号:SLUUBD4)  
bq27220 快速入门指南》(文献编号:SLUUAP7)  
《单节电池电量监测计电路设计》(SLUA456)  
bq27500 bq27501 主要设计注意事项》(SLUA439)  
《手持式电池电子产品中的 ESD RF 迁移》(SLUA460)  
11.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
NanoFree, E2E are trademarks of Texas Instruments.  
I2C is a trademark of NXP Semiconductors, N.V.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016, Texas Instruments Incorporated  
17  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ27220YZFR  
BQ27220YZFT  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YZF  
YZF  
9
9
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
BQ27220  
BQ27220  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ27220YZFR  
BQ27220YZFT  
DSBGA  
DSBGA  
YZF  
YZF  
9
9
3000  
250  
180.0  
180.0  
8.4  
8.4  
1.78  
1.78  
1.78  
1.78  
0.69  
0.69  
4.0  
4.0  
8.0  
8.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ27220YZFR  
BQ27220YZFT  
DSBGA  
DSBGA  
YZF  
YZF  
9
9
3000  
250  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
YZF0009  
DSBGA - 0.625 mm max height  
SCALE 8.000  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
CORNER  
D
C
0.625 MAX  
SEATING PLANE  
0.05 C  
BALL TYP  
0.35  
0.15  
1 TYP  
SYMM  
C
1
TYP  
SYMM  
B
A
D: Max = 1.651 mm, Min = 1.59 mm  
E: Max = 1.61 mm, Min = 1.55 mm  
0.5  
TYP  
3
1
2
0.35  
0.25  
9X  
0.015  
0.5 TYP  
C A B  
4219558/A 10/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YZF0009  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.5) TYP  
9X ( 0.245)  
(0.5) TYP  
1
2
3
A
SYMM  
B
C
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 40X  
0.05 MIN  
0.05 MAX  
METAL UNDER  
SOLDER MASK  
(
0.245)  
METAL  
(
0.245)  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4219558/A 10/2018  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YZF0009  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.5) TYP  
(R0.05) TYP  
3
9X ( 0.25)  
1
2
A
B
(0.5) TYP  
SYMM  
METAL  
TYP  
C
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE: 40X  
4219558/A 10/2018  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

BQ27220YZFR

具有预编程化学成分的单节电池组/系统侧 CEDV 电池电量监测计 | YZF | 9 | -40 to 85
TI

BQ27220YZFT

具有预编程化学成分的单节电池组/系统侧 CEDV 电池电量监测计 | YZF | 9 | -40 to 85
TI

BQ27320

单节电池组/系统侧 CEDV 电池电量监测计
TI

BQ27320YZFR

单节电池组/系统侧 CEDV 电池电量监测计 | YZF | 15 | -40 to 85
TI

BQ27320YZFT

单节电池组/系统侧 CEDV 电池电量监测计 | YZF | 15 | -40 to 85
TI

BQ27350

Single Cell Li-Ion Battery Manager With Impedance Track Fuel Gauge Technology
TI

BQ27350PW

Single Cell Li-Ion Battery Manager With Impedance Track Fuel Gauge Technology
TI

BQ27350PWG4

Single Cell Li-Ion Battery Manager With Impedance Track Fuel Gauge Technology
TI

BQ27350PWR

Single Cell Li-Ion Battery Manager With Impedance Track Fuel Gauge Technology
TI

BQ27350PWRG4

Single Cell Li-Ion Battery Manager With Impedance Track Fuel Gauge Technology
TI

BQ27410-G1

System-Side Impedance Track? Fuel Gauge With Direct Battery Connection
TI

BQ27410DRZR-G1

System-Side Impedance Track? Fuel Gauge With Direct Battery Connection
TI