BQ27532-G1 [TI]

适用于 bq2425x 充电器的电池管理单元 Impedance Track™ 电量监测计;
BQ27532-G1
型号: BQ27532-G1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于 bq2425x 充电器的电池管理单元 Impedance Track™ 电量监测计

电池
文件: 总30页 (文件大小:868K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
bq27532-G1  
ZHCSCT0 SEPTEMBER 2014  
bq27532-G1 用于 bq2425x 充电器的电池管理单元 Impedance Track™  
电量监测计  
1 特性  
3
说明  
1
电池电量计和充电器控制器适用于 1 节锂离子电池  
应用(最高容量 14,500mAh)  
bq27532-G1 系统端,锂离子电池管理单元是具有  
Impedance Track™ 电量监测功能和对单节锂离子电  
池组进行充电控制的微控制器外设。 电量监测计对系  
统微控制器固件开发的要求极低。 电量监测计可配合  
bq2425x 单节开关模式充电器管理嵌入式电池(不可  
拆卸)或可拆卸电池组。  
驻留在系统主板上  
基于已获专利的 Impedance Track™ 技术的电池电  
量计量  
对电池放电曲线建模以精确预测剩余电量  
针对电池老化、电池自放电以及温度和速率低效  
情况进行自动调节  
此电量监测计使用已经获得专利的 Impedance Track  
算法来进行电量计量,并提供诸如剩余电量 (mAh),  
充电状态 (%),续航时间(分钟),电池电压 (mV)、  
和温度 (°C) SoH (%) 等信息。  
低值感测电阻器(5 20m)  
采用可定制充电配置文件的电池充电控制器  
可根据温度配置的充电电压和电流  
可选择运行状态 (SoH) 和多级别充电配置文件  
通过该器件进行电池电量监测只需将 PACK+  
无主机自主电池管理系统  
(P+)PACK– (P–) 和热敏电阻 (T) 连接至可拆卸电池  
组或嵌入式电池电路。 15 引脚 NanoFree™ 芯片级封  
(CSP) 的尺寸为 2.61mm × 1.96mm,引线间距  
0.5mm。 它是空间受限类应用的理想选择。  
减少了软件开销,提升了各平台间的可移植性同  
时缩短了 OEM 设计周期  
提高了安全性  
运行时间提升  
器件信息(1)  
封装  
通过 Impedance Track™ 技术延长电池续航时  
部件号  
封装尺寸(标称值)  
bq27532-G1  
CSP (15)  
2.61mm x 1.96mm  
能够对充电器终端进行更精确的控制  
提高了再充电阈值  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
智能充电 定制化和自适应充电配置文件  
4 简化电路原理图  
基于 SoH 的充电器控制  
温度水平充电 (TLC)  
SW  
SYS  
SYSTEM LOAD  
BQ2425x  
4.35V t 10.5V  
VIN  
适用于 bq2425x 单节开关模式电池充电器的独立电  
池充电控制器  
用于连接系统微控制器端口的 400kHz I2C 接口  
Charger BAT  
2
应用  
PGND  
智能手机、功能型手机和平板电脑  
数码相机与视频摄像机  
手持式终端  
I2C  
BQ27532-G1  
Single Cell Li-Ion Battery Pack  
P+  
T
BAT  
TS  
BI/TOUT  
SYSTEM LOAD  
REGIN  
CE  
MP3 或多媒体播放器  
PROTECTION IC  
I2C  
VCC  
SRP  
Application  
Processor  
P-  
FETs  
SOCINT  
VSS  
SRN  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLUSBU6  
 
 
 
 
bq27532-G1  
ZHCSCT0 SEPTEMBER 2014  
www.ti.com.cn  
目录  
7.13 I2C-compatible Interface Communication Timing  
Characteristics ........................................................... 7  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
简化电路原理图........................................................ 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 Handling Ratings....................................................... 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Supply Current .......................................................... 5  
7.14 Typical Characteristics............................................ 7  
Detailed Description .............................................. 9  
8.1 Overview ................................................................... 9  
8.2 Functional Block Diagram ....................................... 10  
8.3 Feature Description................................................. 11  
8.4 Device Functional Modes........................................ 11  
8.5 Programming........................................................... 12  
Application and Implementation ........................ 17  
9.1 Typical Application .................................................. 18  
8
9
10 Power Supply Recommendations ..................... 21  
10.1 Power Supply Decoupling..................................... 21  
11 Layout................................................................... 22  
11.1 Layout Guidelines ................................................. 22  
12 器件和文档支持 ..................................................... 23  
12.1 文档支持................................................................ 23  
12.2 ....................................................................... 23  
12.3 静电放电警告......................................................... 23  
12.4 术语表 ................................................................... 23  
13 机械封装和可订购信息 .......................................... 24  
7.6 Digital Input and Output DC Electrical  
Characteristics ........................................................... 5  
7.7 Power-on Reset ........................................................ 5  
7.8 2.5-V LDO Regulator ................................................ 5  
7.9 Internal Clock Oscillators .......................................... 5  
7.10 ADC (Temperature and Cell Measurement)  
Characteristics ........................................................... 6  
7.11 Integrating ADC (Coulomb Counter)  
Characteristics ........................................................... 6  
7.12 Data Flash Memory Characteristics........................ 6  
5 修订历史记录  
日期  
修订版本  
注释  
2014 9 月  
*
最初发布版本  
2
Copyright © 2014, Texas Instruments Incorporated  
 
bq27532-G1  
www.ti.com.cn  
ZHCSCT0 SEPTEMBER 2014  
6 Pin Configuration and Functions  
(TOP VIEW)  
(BOTTOM VIEW)  
A3  
A2  
A1  
B3  
B2  
B1  
C3  
C2  
C1  
E3  
E2  
E1  
E3  
E2  
E1  
D3  
D2  
D1  
C3  
C2  
C1  
B3  
B2  
B1  
A3  
A2  
A1  
D3  
D2  
D1  
E
Pin A1  
Index Area  
D
DIM  
MIN  
TYP  
MAX  
2640  
1986  
UNITS  
D
E
2580  
1926  
2610  
1956  
m  
Pin Functions  
PIN  
NUMBER  
TYPE(1)  
DESCRIPTION  
NAME  
BAT  
E2  
E3  
I
Cell-voltage measurement input. ADC input. TI recommends 4.8 V maximum for conversion accuracy.  
Battery-insertion detection input. Power pin for pack thermistor network. Thermistor-multiplexer control pin. Use with  
BI/TOUT  
IO  
pullup resistor > 1 MΩ (1.8 MΩ typical).  
BSCL  
BSDA  
B2  
C3  
O
Battery charger clock output line for chipset communication. Use without external pullup resistor. Push-pull output.  
Battery charger data line for chipset communication. Use without external pullup resistor. Push-pull output.  
IO  
Chip enable. Internal LDO is disconnected from REGIN when driven low.  
Note: CE has an internal ESD protection diode connected to REGIN. TI recommends maintaining VCE VREGIN under  
all conditions.  
CE  
D2  
I
REGIN  
SCL  
E1  
A3  
P
I
Regulator input. Decouple with 0.1-μF ceramic capacitor to VSS.  
Slave I2C serial communications clock input line for communication with system (master). Open-drain IO. Use with  
10-kpullup resistor (typical).  
Slave I2C serial communications data line for communication with system (master). Open-drain IO. Use with 10-kΩ  
pullup resistor (typical).  
SDA  
B3  
A2  
B1  
IO  
IO  
AI  
SOC state interrupts output. Generates a pulse as described in SLUUB04, bq27532-G1 Technical Reference Manual.  
Open-drain output.  
SOC_INT  
SRN  
Analog input pin connected to the internal coulomb counter where SRN is nearest the VSS connection. Connect to 5-  
to 20-msense resistor.  
Analog input pin connected to the internal coulomb counter where SRP is nearest the PACK– connection. Connect to  
5- to 20-msense resistor.  
SRP  
TS  
A1  
D3  
AI  
AI  
P
Pack thermistor voltage sense (use 103AT-type thermistor). ADC input.  
Regulator output and bq27532-G1 device power. Decouple with 1-μF ceramic capacitor to VSS. Pin is not intended to  
power additional external loads.  
VCC  
VSS  
D1  
C1, C2  
P
Device ground  
(1) IO = Digital input-output, AI = Analog input, P = Power connection  
Copyright © 2014, Texas Instruments Incorporated  
3
bq27532-G1  
ZHCSCT0 SEPTEMBER 2014  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
V
VREGIN  
Regulator input range  
5.5  
(2)  
6.0  
V
VCE  
CE input pin  
VREGIN + 0.3  
V
V
V
V
V
V
VCC  
VIOD  
VBAT  
Supply voltage range  
Open-drain IO pins (SDA, SCL, SOC_INT)  
BAT input pin  
2.75  
5.5  
5.5  
(2)  
6.0  
VI  
Input voltage range to all other pins  
(BI/TOUT, TS, SRP, SRN, BSCL, BSDA)  
VCC + 0.3  
85  
TA  
Operating free-air temperature range  
–40  
°C  
(1) Stresses beyond those listed as absolute maximum ratings may cause permanent damage to the device. These are stress ratings only,  
and functional operation of the device at these or any other conditions beyond those indicated as recommended operating conditions is  
not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Condition not to exceed 100 hours at 25°C lifetime.  
7.2 Handling Ratings  
MIN  
–65  
0
MAX  
150  
1.5  
UNIT  
Tstg  
Storage temperature range  
Electrostatic discharge  
°C  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001,  
BAT pin  
(1)  
V(ESD)  
kV  
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all other pins(2)  
0
2
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
TA = –40°C to 85°C, VREGIN = VBAT = 3.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.8  
NOM  
MAX  
UNIT  
No operating restrictions  
4.5  
2.8  
VREGIN  
Supply voltage  
V
No flash writes  
2.45  
External input capacitor for internal LDO  
between REGIN and VSS  
CREGIN  
CLDO25  
tPUCD  
0.1  
μF  
Nominal capacitor values specified.  
Recommend a 5% ceramic X5R-type  
capacitor located close to the device.  
External output capacitor for internal LDO  
between VCC and VSS  
0.47  
1
μF  
Power-up communication delay  
250  
ms  
7.4 Thermal Information  
THERMAL METRIC(1)  
CSP  
UNIT  
(15 PINS)  
RθJA  
RJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
70  
17  
20  
1
Junction-to-board thermal resistance  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
ψJB  
18  
n/a  
RθJC(bottom) Junction-to-case (bottom) thermal resistance  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2014, Texas Instruments Incorporated  
bq27532-G1  
www.ti.com.cn  
ZHCSCT0 SEPTEMBER 2014  
7.5 Supply Current  
TA = 25°C and VREGIN = VBAT = 3.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Fuel gauge in NORMAL mode  
ILOAD > Sleep current  
(1)  
ICC  
Normal operating-mode current  
118  
μA  
Fuel gauge in SLEEP+ mode  
ILOAD < Sleep current  
(1)  
ISLP+  
Sleep+ operating-mode current  
Low-power storage-mode current  
Hibernate operating-mode current  
62  
23  
8
μA  
μA  
μA  
Fuel gauge in SLEEP mode  
ILOAD < Sleep current  
(1)  
ISLP  
Fuel gauge in HIBERNATE mode  
ILOAD < Hibernate current  
(1)  
IHIB  
(1) Specified by design. Not production tested. Actual supply current consumption will vary slightly depending on firmware operation and  
dataflash configuration.  
7.6 Digital Input and Output DC Electrical Characteristics  
TA = –40°C to 85°C, typical values at TA = 25°C and VREGIN = 3.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Output voltage, low (SCL, SDA,  
SOC_INT, BSDA, BSCL)  
VOL  
IOL = 3 mA  
0.4  
V
VOH(PP)  
VOH(OD)  
Output voltage, high (BSDA, BSCL) IOH = –1 mA  
VCC – 0.5  
VCC – 0.5  
V
Output voltage, high (SDA, SCL,  
SOC_INT)  
External pullup resistor connected to  
VCC  
Input voltage, low (SDA, SCL)  
Input voltage, low (BI/TOUT)  
Input voltage, high (SDA, SCL)  
Input voltage, high (BI/TOUT)  
Input voltage, low (CE)  
–0.3  
–0.3  
1.2  
0.6  
0.6  
VIL  
VIH  
V
V
BAT INSERT CHECK MODE active  
BAT INSERT CHECK MODE active  
VREGIN = 2.8 to 4.5 V  
1.2  
VCC + 0.3  
0.8  
VIL(CE)  
VIH(CE)  
V
Input voltage, high (CE)  
2.65  
(1)  
Ilkg  
Input leakage current (IO pins)  
0.3  
μA  
(1) Specified by design. Not production tested.  
7.7 Power-on Reset  
TA = –40°C to 85°C, typical values at TA = 25°C and VREGIN = 3.6 V (unless otherwise noted)  
PARAMETER  
Positive-going battery voltage input at VCC  
Power-on reset hysteresis  
MIN  
TYP  
2.15  
115  
MAX  
UNIT  
V
VIT+  
2.05  
2.20  
VHYS  
mV  
7.8 2.5-V LDO Regulator  
TA = –40°C to 85°C, CLDO25 = 1 μF, VREGIN = 3.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
2.8 V VREGIN 4.5 V, IOUT 16 mA(1)  
2.3  
2.5  
2.6  
V
VREG25  
Regulator output voltage (VCC)  
2.45 V VREGIN < 2.8 V (low battery),  
2.3  
V
IOUT 3 mA  
(1) LDO output current, IOUT, is the total load current. LDO regulator should be used to power internal fuel gauge only.  
7.9 Internal Clock Oscillators  
TA = –40°C to 85°C, 2.4 V < VCC < 2.6 V; typical values at TA = 25°C and VCC = 2.5 V (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
8.389  
MAX  
UNIT  
MHz  
kHz  
fOSC  
High-frequency oscillator  
Low-frequency oscillator  
fLOSC  
32.768  
Copyright © 2014, Texas Instruments Incorporated  
5
bq27532-G1  
ZHCSCT0 SEPTEMBER 2014  
www.ti.com.cn  
7.10 ADC (Temperature and Cell Measurement) Characteristics  
TA = –40°C to 85°C, 2.4 V < VCC < 2.6 V; typical values at TA = 25°C and VCC = 2.5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
VSS – 0.125  
VSS – 0.125  
0.05  
TYP  
MAX  
UNIT  
VADC1  
VADC2  
VIN(ADC)  
GTEMP  
Input voltage range (TS)  
Input voltage range (BAT)  
Input voltage range  
2
5
1
V
V
V
Internal temperature sensor voltage  
gain  
–2  
mV/°C  
tADC_CONV Conversion time  
Resolution  
125  
15  
ms  
bits  
mV  
MΩ  
MΩ  
kΩ  
14  
VOS(ADC)  
Input offset  
1
(1)  
ZADC1  
Effective input resistance (TS)  
8
8
Device not measuring cell voltage  
Device measuring cell voltage  
(1)  
ZADC2  
Effective input resistance (BAT)  
Input leakage current  
100  
(1)  
Ilkg(ADC)  
0.3  
μA  
(1) Specified by design. Not tested in production.  
7.11 Integrating ADC (Coulomb Counter) Characteristics  
TA = –40°C to 85°C, 2.4 V < VCC < 2.6 V; typical values at TA = 25°C and VCC = 2.5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VSR = V(SRP) – V(SRN)  
MIN  
TYP  
MAX  
UNIT  
VSR  
Input voltage range,  
V(SRP) and V(SRN)  
–0.125  
0.125  
V
tSR_CONV  
Conversion time  
Single conversion  
1
s
bits  
Resolution  
14  
15  
±0.034  
0.3  
VOS(SR)  
INL  
Input offset  
10  
μV  
Integral nonlinearity error  
Effective input resistance  
Input leakage current  
±0.007  
% FSR  
MΩ  
(1)  
ZIN(SR)  
2.5  
(1)  
Ilkg(SR)  
μA  
(1) Specified by design. Not tested in production.  
7.12 Data Flash Memory Characteristics  
TA = –40°C to 85°C, 2.4 V < VCC < 2.6 V; typical values at TA = 25°C and VCC = 2.5 V (unless otherwise noted)  
PARAMETER  
MIN  
10  
TYP  
MAX  
UNIT  
Years  
Cycles  
ms  
(1)  
tDR  
Data retention  
Flash-programming write cycles(1)  
20,000  
(1)  
tWORDPROG  
Word programming time  
2
(1)  
ICCPROG  
Flash-write supply current  
Data flash master erase time  
Instruction flash master erase time  
Flash page erase time  
5
10  
mA  
(1)  
tDFERASE  
tIFERASE  
tPGERASE  
200  
200  
20  
ms  
(1)  
(1)  
ms  
ms  
(1) Specified by design. Not production tested  
6
Copyright © 2014, Texas Instruments Incorporated  
bq27532-G1  
www.ti.com.cn  
ZHCSCT0 SEPTEMBER 2014  
7.13 I2C-compatible Interface Communication Timing Characteristics  
TA = –40°C to 85°C, 2.4 V < VCC < 2.6 V; typical values at TA = 25°C and VCC = 2.5 V (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
300  
UNIT  
ns  
tr  
SCL or SDA rise time  
SCL or SDA fall time  
tf  
300  
ns  
tw(H)  
SCL pulse duration (high)  
SCL pulse duration (low)  
Setup for repeated start  
Start to first falling edge of SCL  
Data setup time  
600  
1.3  
600  
600  
100  
0
ns  
tw(L)  
μs  
tsu(STA)  
td(STA)  
tsu(DAT)  
th(DAT)  
tsu(STOP)  
t(BUF)  
fSCL  
ns  
ns  
ns  
Data hold time  
ns  
Setup time for stop  
600  
66  
ns  
Bus free time between stop and start  
μs  
(1)  
Clock frequency  
400  
kHz  
(1) If the clock frequency (fSCL) is > 100 kHz, use 1-byte write commands for proper operation. All other transactions types are supported at  
400 kHz (see I2C Interface and I2C Command Waiting Time).  
Figure 1. I2C-compatible Interface Timing Diagrams  
7.14 Typical Characteristics  
2.65  
2.6  
8.8  
8.7  
8.6  
8.5  
8.4  
8.3  
8.2  
8.1  
8
VREGIN = 2.7 V  
VREGIN = 4.5 V  
2.55  
2.5  
2.45  
2.4  
2.35  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (qC)  
Temperature (qC)  
D001  
D002  
2. Regulator Output Voltage vs. Temperature  
3. High-Frequency Oscillator Frequency vs. Temperature  
版权 © 2014, Texas Instruments Incorporated  
7
bq27532-G1  
ZHCSCT0 SEPTEMBER 2014  
www.ti.com.cn  
Typical Characteristics (接下页)  
34  
33.5  
33  
5
4
3
2
32.5  
32  
1
0
-1  
-2  
-3  
-4  
-5  
31.5  
31  
30.5  
30  
-40  
-20  
0
20  
40  
60  
80  
100  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
Temperature (qC)  
Temperature (qC)  
D003  
D004  
4. Low-Frequency Oscillator Frequency vs. Temperature  
5. Reported Internal Temperature Measurement vs.  
Temperature  
8
版权 © 2014, Texas Instruments Incorporated  
bq27532-G1  
www.ti.com.cn  
ZHCSCT0 SEPTEMBER 2014  
8 Detailed Description  
8.1 Overview  
The fuel gauge accurately predicts the battery capacity and other operational characteristics of a single, Li-  
based, rechargeable cell. It can be interrogated by a system processor to provide cell information, such as  
remaining capacity and state-of-charge (SOC) as well as SOC interrupt signal to the host.  
The fuel gauge can control a bq2425x Charger IC without the intervention from an application system processor.  
Using the bq27532-G1 and bq2425x chipset, batteries can be charged with the typical constant-current,  
constant-voltage (CCCV) profile or charged using a Multi-Level Charging (MLC) algorithm.  
The fuel gauge can also be configured to suggest charge voltage and current values to the system so that the  
host can control a charger that is not part of the bq2425x charger family.  
Formatting conventions used in this document:  
Commands: italics with parentheses and no breaking spaces, for example, Control( )  
Data flash: italics, bold, and breaking spaces, for example, Design Capacity  
Register bits and flags: brackets and italics, for example, [TDA]  
Data flash bits: brackets, italics and bold, for example, [LED1]  
Modes and states: ALL CAPITALS, for example, UNSEALED mode  
版权 © 2014, Texas Instruments Incorporated  
9
bq27532-G1  
ZHCSCT0 SEPTEMBER 2014  
www.ti.com.cn  
8.2 Functional Block Diagram  
REGIN  
LDO  
POR  
2.5 V  
VCC  
BAT  
HFO  
HFO  
SRN  
SRP  
CC  
LFO  
HFO/128  
4R  
HFO/128  
MUX  
ADC  
R
Wake  
Comparator  
TS  
Internal  
Temp  
Sensor  
BI/TOUT  
HFO/4  
SDA  
SCL  
SOCINT  
22  
22  
Instruction  
ROM  
I2C Slave  
Engine  
CPU  
VSS  
I/O  
Controller  
Instruction  
FLASH  
BSDA  
BSCL  
I2C Master  
Engine  
8
8
Wake  
and  
Watchdog  
Timer  
GP Timer  
and  
PWM  
Data  
SRAM  
Data  
FLASH  
10  
版权 © 2014, Texas Instruments Incorporated  
bq27532-G1  
www.ti.com.cn  
ZHCSCT0 SEPTEMBER 2014  
8.3 Feature Description  
Information is accessed through a series of commands, called Standard Commands. Further capabilities are  
provided by the additional Extended Commands set. Both sets of commands, indicated by the general format  
Command( ), are used to read and write information contained within the control and status registers, as well as  
its data flash locations. Commands are sent from system to gauge using the I2C serial communications engine,  
and can be executed during application development, pack manufacture, or end-equipment operation.  
Cell information is stored in non-volatile flash memory. Many of these data flash locations are accessible during  
application development. They cannot, generally, be accessed directly during end-equipment operation. Access  
to these locations is achieved by either use of the companion evaluation software, through individual commands,  
or through a sequence of data-flash-access commands. To access a desired data flash location, the correct data  
flash subclass and offset must be known.  
The key to the high-accuracy gas gauging prediction is the TI proprietary Impedance Track™ algorithm. This  
algorithm uses cell measurements, characteristics, and properties to create SOC predictions that can achieve  
less than 1% error across a wide variety of operating conditions and over the lifetime of the battery.  
The fuel gauge measures the charging and discharging of the battery by monitoring the voltage across a small-  
value series sense resistor (5 to 20 m, typical) located between the system VSS and the battery PACK–  
terminal. When a cell is attached to the fuel gauge, cell impedance is computed, based on cell current, cell open-  
circuit voltage (OCV), and cell voltage under loading conditions.  
The external temperature sensing is optimized with the use of a high-accuracy negative temperature coefficient  
(NTC) thermistor with R25 = 10.0 k±1%, B25/85 = 3435 K ± 1% (such as Semitec NTC 103AT). The fuel  
gauge can also be configured to use its internal temperature sensor. When an external thermistor is used, a  
18.2-kΩ pullup resistor between the BI/TOUT and TS pins is also required. The fuel gauge uses temperature to  
monitor the battery-pack environment, which is used for fuel gauging and cell protection functionality.  
To minimize power consumption, the fuel gauge has different power modes: NORMAL, SLEEP, SLEEP+,  
HIBERNATE, and BAT INSERT CHECK. The fuel gauge passes automatically between these modes, depending  
upon the occurrence of specific events, though a system processor can initiate some of these modes directly.  
For complete operational details, see SLUUB04, bq27532-G1 Technical Reference Manual.  
8.4 Device Functional Modes  
8.4.1 Functional Description  
The fuel gauge measures the cell voltage, temperature, and current to determine battery SOC. The fuel gauge  
monitors the charging and discharging of the battery by sensing the voltage across a small-value resistor (5 mΩ  
to 20 m, typical) between the SRP and SRN pins and in series with the cell. By integrating charge passing  
through the battery, the battery SOC is adjusted during battery charge or discharge.  
The total battery capacity is found by comparing states of charge before and after applying the load with the  
amount of charge passed. When an application load is applied, the impedance of the cell is measured by  
comparing the OCV obtained from a predefined function for present SOC with the measured voltage under load.  
Measurements of OCV and charge integration determine chemical SOC and chemical capacity (Qmax). The  
initial Qmax values are taken from a cell manufacturers' data sheet multiplied by the number of parallel cells. It is  
also used for the value in Design Capacity. The fuel gauge acquires and updates the battery-impedance profile  
during normal battery usage. It uses this profile, along with SOC and the Qmax value, to determine  
FullChargeCapacity(  
FullChargeCapacity( ) is reported as capacity available from a fully-charged battery under the present load and  
temperature until Voltage( reaches the Terminate Voltage. NominalAvailableCapacity( and  
)
and StateOfCharge( ), specifically for the present load and temperature.  
)
)
FullAvailableCapacity( ) are the uncompensated (no or light load) versions of RemainingCapacity( ) and  
FullChargeCapacity( ), respectively.  
The fuel gauge has two flags accessed by the Flags( ) function that warn when the battery SOC has fallen to  
critical levels. When RemainingCapacity( ) falls below the first capacity threshold as specified in SOC1 Set  
Threshold, the [SOC1] (State of Charge Initial) flag is set. The flag is cleared once RemainingCapacity( ) rises  
above SOC1 Clear Threshold.  
When the voltage is discharged to Terminate Voltage, the SOC will be set to 0.  
Copyright © 2014, Texas Instruments Incorporated  
11  
bq27532-G1  
ZHCSCT0 SEPTEMBER 2014  
www.ti.com.cn  
8.5 Programming  
8.5.1 Standard Data Commands  
The fuel gauge uses a series of 2-byte standard commands to enable system reading and writing of battery  
information. Each standard command has an associated command-code pair, as indicated in Table 1. Because  
each command consists of two bytes of data, two consecutive I2C transmissions must be executed both to  
initiate the command function, and to read or write the corresponding two bytes of data. Additional details are  
found in the SLUUB04, bq27532-G1 Technical Reference Manual.  
Table 1. Standard Commands  
SEALED  
ACCESS  
UNSEALED  
ACCESS  
NAME  
COMMAND CODE  
UNIT  
Control( )  
0x00 and 0x01  
0x02 and 0x03  
0x04 and 0x05  
0x06 and 0x07  
0x08 and 0x09  
0x0A and 0x0B  
0x0C and 0x0D  
0x0E and 0x0F  
0x10 and 0x11  
0x12 and 0x13  
0x14 and 0x15  
0x16 and 0x17  
0x18 and 0x19  
0x1A and 0x1B  
0x1C and 0x1D  
0x1E and 0x1F  
0x20 and 0x21  
0x22 and 0x23  
0x24 and 0x25  
0x26 and 0x27  
0x28 and 0x29  
0x2A and 0x2B  
0x2C and 0x2D  
0x2E and 0x2F  
0x30 and 0x31  
0x32  
NA  
mA  
RW  
RW  
R
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
AtRate( )  
AtRateTimeToEmpty( )  
Temperature( )  
Voltage( )  
Minutes  
0.1 K  
mV  
RW  
R
Flags( )  
Hex  
mAh  
mAh  
mAh  
mAh  
mA  
R
NominalAvailableCapacity( )  
FullAvailableCapacity( )  
RemainingCapacity( )  
FullChargeCapacity( )  
AverageCurrent( )  
InternalTemperature( )  
ResScale( )  
R
R
R
R
R
0.1 K  
Num  
Num  
% / num  
Counters  
%
R
R
ChargingLevel( )  
R
StateOfHealth( )  
R
CycleCount( )  
R
StateOfCharge( )  
R
R
InstantaneousCurrentReading( )  
FineQPass( )  
mA  
R
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
mAh  
num  
mA  
R
FineQPassFract( )  
ProgChargingCurrent( )  
ProgChargingVoltage( )  
LevelTaperCurrent( )  
CalcChargingCurrent( )  
CalcChargingVoltage( )  
ChargerStatus( )  
R
R
mV  
R
mA  
R
mA  
R
mV  
R
Hex  
Hex  
Hex  
Hex  
Hex  
Hex  
Hex  
Hex  
mAh  
mAh  
mAh  
mAh  
%
R
ChargReg0( )  
0x33  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
ChargReg1( )  
0x34  
ChargReg2( )  
0x35  
ChargReg3( )  
0x36  
ChargReg4( )  
0x37  
ChargReg5( )  
0x38  
ChargReg6( )  
0x39  
RemainingCapacityUnfiltered( )  
RemainingCapacityFiltered( )  
FullChargeCapacityUnfiltered( )  
FullChargeCapacityFiltered( )  
TrueSOC( )  
0x6C and 0x6D  
0x6E and 0x6F  
0x70 and 0x71  
0x72 and 0x73  
0x74 and 0x75  
0x76 and 0x77  
R
R
R
R
MaxCurrent( )  
mA  
R
12  
Copyright © 2014, Texas Instruments Incorporated  
 
bq27532-G1  
www.ti.com.cn  
ZHCSCT0 SEPTEMBER 2014  
8.5.2 Control( ): 0x00 and 0x01  
Issuing a Control( ) command requires a subsequent 2-byte subcommand. These additional bytes specify the  
particular control function desired. The Control( ) command allows the system to control specific features of the  
fuel gauge during normal operation and additional features when the fuel gauge is in different access modes, as  
described in Table 2. Additional details are found in the SLUUB04, bq27532-G1 Technical Reference Manual.  
Table 2. Control( ) Subcommands  
CONTROL  
DATA  
SEALED  
ACCESS  
CONTROL FUNCTION  
DESCRIPTION  
CONTROL_STATUS  
DEVICE_TYPE  
FW_VERSION  
HW_VERSION  
MLC_ENABLE  
0x0000  
0x0001  
0x0002  
0x0003  
0x0004  
Yes  
Yes  
Yes  
Yes  
Yes  
Reports the status of HIBERNATE, IT, and so on  
Reports the device type (for example, 0x0532 for bq27532-G1)  
Reports the firmware version on the device type  
Reports the hardware version of the device type  
Charge profile is based on MaxLife profile  
Charge profile is solely based on charge temperature tables and, if enabled, State  
of Health  
MLC_DISABLE  
0x0005  
Yes  
CLEAR_IMAX_INT  
PREV_MACWRITE  
CHEM_ID  
0x0006  
0x0007  
0x0008  
0x0009  
0x000A  
0x000B  
0x000C  
0x000D  
0x000E  
0x0011  
0x0012  
0x0013  
0x0014  
Yes  
Yes  
Yes  
No  
Clears the IMAX status bit and the interrupt signal from SOC_INT pin.  
Returns previous MAC subcommand code  
Reports the chemical identifier of the Impedance Track™ configuration  
Forces the device to measure and store the board offset  
Forces the device to measure the internal CC offset  
Forces the device to store the internal CC offset  
Request the gauge to take a OCV measurement  
Forces the BAT_DET bit set when the [BIE] bit is 0  
Forces the BAT_DET bit clear when the [BIE] bit is 0  
Forces CONTROL_STATUS [HIBERNATE] to 1  
Forces CONTROL_STATUS [HIBERNATE] to 0  
Forces CONTROL_STATUS [SNOOZE] to 1  
BOARD_OFFSET  
CC_OFFSET  
No  
CC_OFFSET_SAVE  
OCV_CMD  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
BAT_INSERT  
BAT_REMOVE  
SET_HIBERNATE  
CLEAR_HIBERNATE  
SET_SLEEP+  
CLEAR_SLEEP+  
Forces CONTROL_STATUS [SNOOZE] to 0  
When the gauge is not connected to the charger through I2C, this command  
indicates to the gauge that there is a charger input current limiting loop active.  
Disables charge termination detection by the gauge.  
ILIMIT_LOOP_ENABLE  
0x0015  
Yes  
When the gauge is not connected to the charger through I2C, this command  
indicates to the gauge that battery charge current is not limited. Allows charge  
termination detection by the gauge.  
ILIMIT_LOOP_DISABLE  
SHIPMODE_ENABLE  
SHIPMODE_DISABLE  
0x0016  
0x0017  
0x0018  
Yes  
Yes  
Yes  
Commands the bq2425x to turn off BATFET after a delay time programmed in data  
flash so that system load does not draw power from the battery  
Commands the bq2425x to disregard turning off BATFET before the delay time or  
commands BATFET to turn on if a VIN had power during the SHIPMODE enabling  
process  
CHG_ENABLE  
CHG_DISABLE  
0x001A  
0x001B  
Yes  
Yes  
Enable charger. Charge will continue as dictated by the gauge charging algorithm.  
Disable charger (Set CE bit of bq2425x)  
Enables the gas gauge to control the charger while continuously resetting the  
charger watchdog  
GG_CHGRCTL_ENABLE  
GG_CHGRCTL_DISABLE  
SMOOTH_SYNC  
0x001C  
0x001D  
0x001E  
Yes  
Yes  
Yes  
The gas gauge stops resetting the charger watchdog  
Synchronizes RemainingCapacityFiltered( ) and FullChargeCapacityFiltered( ) with  
RemainingCapacityUnfiltered( ) and FullChargeCapacityUnfiltered( )  
DF_VERSION  
SEALED  
0x001F  
0x0020  
0x0021  
0x0041  
Yes  
No  
No  
No  
Returns the Data Flash Version  
Places device in SEALED access mode  
Enables the Impedance Track™ algorithm  
Forces a full reset of the bq27532-G1 device  
IT_ENABLE  
RESET  
Copyright © 2014, Texas Instruments Incorporated  
13  
 
bq27532-G1  
ZHCSCT0 SEPTEMBER 2014  
www.ti.com.cn  
8.5.3 Charger Data Commands  
The charger registers are mapped to a series of single-byte Charger Data Commands to enable system reading  
and writing of battery charger registers. During charger power up, the registers are initialized to Charger Reset  
State. The fuel gauge can change the values of these registers during the System Reset State.  
Each of the bits in the Charger Data Commands can be read or write. Note that System Access can be different  
from the read or write access as defined in bq2425x charger hardware. The fuel gauge may block write access to  
the charger hardware when the bit function is controlled by the fuel gauge exclusively. For example, the  
[VBATREGx] bits of Chrgr_Reg2 are controlled by the fuel gauge and cannot be modified by system.  
The fuel gauge reads the corresponding registers of Chrgr_Reg0( ) and Chrgr_Reg2( ) every second to mirror  
the charger status. Other registers in the bq2425x device are read when registers are modified by the fuel gauge.  
3. Charger Data Commands  
COMMAND  
CODE  
bq2425x CHARGER  
MEMORY LOCATION  
SEALED  
ACCESS  
UNSEALED  
ACCESS  
REFRESH  
RATE  
NAME  
ChargerStatus( )  
Chrgr_Reg0( )  
Chrgr_Reg1( )  
Chrgr_Reg2( )  
Chrgr_Reg3( )  
Chrgr_Reg4( )  
Chrgr_Reg5( )  
Chrgr_Reg6( )  
CHGRSTAT  
CHGR0  
CHGR1  
CHGR2  
CHGR3  
CHGR4  
CHGR5  
CHGR6  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
NA  
R
R
Every second  
Every second  
Data change  
Every second  
Data change  
Every second  
Data change  
Data change  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
8.5.4 Communications  
8.5.4.1 I2C Interface  
The fuel gauge supports the standard I2C read, incremental read, quick read, one-byte write, and incremental  
write functions. The 7-bit device address (ADDR) is the most significant 7 bits of the hex address and is fixed as  
1010101. The first 8 bits of the I2C protocol are, therefore, 0xAA or 0xAB for write or read, respectively.  
Host generated  
ADDR[6:0] 0 A  
Gauge generated  
S
CMD[7:0]  
(a) 1-byte write  
A
DATA [7:0]  
A
P
S
ADDR[6:0]  
1
A
DATA [7:0]  
(b) quick read  
DATA [7:0]  
N P  
S
ADDR[6:0] 0 A  
CMD[7:0]  
A
Sr  
ADDR[6:0]  
1
A
N P  
(c) 1- byte read  
S
ADDR[6:0] 0 A  
CMD[7:0]  
A
Sr  
ADDR[6:0]  
1
A
DATA [7:0]  
A
A
. . .  
DATA [7:0]  
A . . . A P  
N P  
(d) incremental read  
S
ADDR[6:0] 0 A  
CMD[7:0]  
A
DATA [7:0]  
DATA [7:0]  
(e) incremental write  
(S = Start, Sr = Repeated Start, A = Acknowledge, N = No Acknowledge , and P = Stop).  
The quick read returns data at the address indicated by the address pointer. The address pointer, a register  
internal to the I2C communication engine, increments whenever data is acknowledged by the fuel gauge or the  
I2C master. “Quick writes” function in the same manner and are a convenient means of sending multiple bytes to  
consecutive command locations (such as two-byte commands that require two bytes of data).  
14  
版权 © 2014, Texas Instruments Incorporated  
bq27532-G1  
www.ti.com.cn  
ZHCSCT0 SEPTEMBER 2014  
The following command sequences are not supported:  
Attempt to write a read-only address (NACK after data sent by master):  
Attempt to read an address above 0x6B (NACK command):  
8.5.4.2 I2C Time Out  
The I2C engine releases both SDA and SCL if the I2C bus is held low for 2 seconds. If the fuel gauge is holding  
the lines, releasing them frees them for the master to drive the lines. If an external condition is holding either of  
the lines low, the I2C engine enters the low-power SLEEP mode.  
8.5.4.3 I2C Command Waiting Time  
To ensure proper operation at 400 kHz, a t(BUF) 66 μs bus-free waiting time must be inserted between all  
packets addressed to the fuel gauge. In addition, if the SCL clock frequency (fSCL) is > 100 kHz, use individual 1-  
byte write commands for proper data flow control. The following diagram shows the standard waiting time  
required between issuing the control subcommand the reading the status result. For read-write standard  
command, a minimum of 2 seconds is required to get the result updated. For read-only standard commands,  
there is no waiting time required, but the host must not issue any standard command more than two times per  
second. Otherwise, the gauge could result in a reset issue due to the expiration of the watchdog timer.  
S
S
S
ADDR [6:0] 0 A  
ADDR [6:0] 0 A  
ADDR [6:0] 0 A  
CMD [7:0]  
CMD [7:0]  
CMD [7:0]  
A
A
A
DATA [7:0]  
DATA [7:0]  
ADDR [6:0]  
A
A
P
P
66ms  
66ms  
Sr  
1
A
DATA [7:0]  
A
DATA [7:0]  
N P  
66ms  
Waiting time inserted between two 1-byte write packets for a subcommand and reading results  
(required for 100 kHz < fSCL £ 400 kHz)  
S
S
ADDR [6:0] 0 A  
ADDR [6:0] 0 A  
CMD [7:0]  
CMD [7:0]  
A
A
DATA [7:0]  
ADDR [6:0]  
A
DATA [7:0]  
DATA [7:0]  
A
P
66ms  
DATA [7:0]  
Sr  
1
A
A
N P  
66ms  
Waiting time inserted between incremental 2-byte write packet for a subcommand and reading results  
(acceptable for fSCL £ 100 kHz)  
S
ADDR [6:0] 0 A  
DATA [7:0]  
CMD [7:0]  
DATA [7:0]  
A
Sr  
ADDR [6:0]  
66ms  
1
A
DATA [7:0]  
A
DATA [7:0]  
A
A
N P  
Waiting time inserted after incremental read  
版权 © 2014, Texas Instruments Incorporated  
15  
bq27532-G1  
ZHCSCT0 SEPTEMBER 2014  
www.ti.com.cn  
8.5.4.4 I2C Clock Stretching  
A clock stretch can occur during all modes of fuel gauge operation. In SLEEP and HIBERNATE modes, a short  
clock stretch occurs on all I2C traffic as the device must wake-up to process the packet. In the other modes  
(INITIALIZATION, NORMAL) clock stretching only occurs for packets addressed for the fuel gauge. The majority  
of clock stretch periods are small as the I2C interface performs normal data flow control. However, less frequent  
yet more significant clock stretch periods may occur as blocks of data flash are updated. The following table  
summarizes the approximate clock stretch duration for various fuel gauge operating conditions.  
GAUGING  
MODE  
APPROXIMATE  
DURATION  
OPERATING CONDITION / COMMENT  
SLEEP  
HIBERNATE  
Clock stretch occurs at the beginning of all traffic as the device wakes up.  
4 ms  
INITIALIZATION Clock stretch occurs within the packet for flow control (after a start bit, ACK or first data bit).  
4 ms  
24 ms  
NORMAL  
Normal Ra table data flash updates.  
Data flash block writes.  
72 ms  
Restored data flash block write after loss of power.  
End of discharge Ra table data flash update.  
116 ms  
144 ms  
16  
版权 © 2014, Texas Instruments Incorporated  
bq27532-G1  
www.ti.com.cn  
ZHCSCT0 SEPTEMBER 2014  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
版权 © 2014, Texas Instruments Incorporated  
17  
bq27532-G1  
ZHCSCT0 SEPTEMBER 2014  
www.ti.com.cn  
9.1 Typical Application  
CPMID  
1µF  
LO  
1.0PH  
PMID  
VIN  
CIN  
IN  
SW  
System Load  
R1  
R2  
CBOOT  
33nF  
2.2µF  
VDPM  
bq24250  
BOOT  
PGND  
SYS  
LDO  
1µF  
22F  
STAT  
BAT  
TS  
GPIO1  
GPIO2  
EN1  
EN2  
1F  
LDO  
R3  
/CE  
INT  
VGPIO  
Host  
GPIO3  
SCL  
SCL  
SDA  
SDA  
ILIM  
ISET  
Optional  
BAT  
VCC  
0.1µF  
Optional for non-  
removable pack  
bq27532-G1  
1µF  
BSDA  
1.8MŸ  
BSCL  
BI/TOUT  
TS  
0.033µF  
18.2kŸ  
SOC_INT  
SCL  
1kŸ  
TEMP  
PACK+  
+
RNTC  
0.1µF  
0.1µF  
SDA  
PACK-  
SRP  
SRN  
0.01  
CE  
Optional  
REGIN  
VSS  
VSS  
0.1µF  
6. Schematic  
18  
版权 © 2014, Texas Instruments Incorporated  
bq27532-G1  
www.ti.com.cn  
ZHCSCT0 SEPTEMBER 2014  
Typical Application (接下页)  
9.1.1 Design Requirements  
Several key parameters must be updated to align with a given application's battery characteristics. For highest  
accuracy gauging, it is important to follow-up this initial configuration with a learning cycle to optimize resistance  
and maximum chemical capacity (Qmax) values prior to sealing and shipping systems to the field. Successful  
and accurate configuration of the fuel gauge for a target application can be used as the basis for creating a  
"golden" gas gauge (.fs) file that can be written to all gauges, assuming identical pack design and Li-ion cell  
origin (chemistry, lot, and so on). Calibration data is included as part of this golden GG file to cut down on  
system production time. If going this route, it is recommended to average the voltage and current measurement  
calibration data from a large sample size and use these in the golden file. 4, Key Data Flash Parameters for  
Configuration, shows the items that should be configured to achieve reliable protection and accurate gauging  
with minimal initial configuration.  
4. Key Data Flash Parameters for Configuration  
NAME  
DEFAULT  
UNIT  
RECOMMENDED SETTING  
Set based on the nominal pack capacity as interpreted from cell manufacturer's  
datasheet. If multiple parallel cells are used, should be set to N × Cell Capacity.  
Design Capacity  
1000  
mAh  
Set to 10 to convert all power values to cWh or to 1 for mWh. Design Energy  
is divided by this value.  
Design Energy Scale  
1
-
Set to desired runtime remaining (in seconds / 3600) × typical applied load  
between reporting 0% SOC and reaching Terminate Voltage, if needed.  
Reserve Capacity-mAh  
Cycle Count Threshold  
0
mAh  
mAh  
900  
Set to 90% of configured Design Capacity.  
Should be configured using TI-supplied Battery Management Studio software.  
Default open-circuit voltage and resistance tables are also updated in  
conjunction with this step. Do not attempt to manually update reported Device  
Chemistry as this does not change all chemistry information! Always update  
chemistry using the appropriate software tool (that is, bqStudio).  
Chem ID  
0100  
hex  
Load Mode  
Load Select  
1
1
-
-
Set to applicable load model, 0 for constant current or 1 for constant power.  
Set to load profile which most closely matches typical system load.  
Set to initial configured value for Design Capacity. The gauge will update this  
parameter automatically after the optimization cycle and for every regular  
Qmax update thereafter.  
Qmax Cell 0  
1000  
4200  
mAh  
mV  
Set to nominal cell voltage for a fully charged cell. The gauge will update this  
parameter automatically each time full charge termination is detected.  
Cell0 V at Chg Term  
Set to empty point reference of battery based on system needs. Typical is  
between 3000 and 3200 mV.  
Terminate Voltage  
Ra Max Delta  
3200  
44  
mV  
mΩ  
Set to 15% of Cell0 R_a 4 resistance after an optimization cycle is completed.  
Set based on nominal charge voltage for the battery in normal conditions  
(25°C, etc). Used as the reference point for offsetting by Taper Voltage for full  
charge termination detection.  
Charging Voltage  
Taper Current  
4200  
100  
100  
60  
mV  
mA  
mV  
mA  
mA  
mA  
mA  
Set to the nominal taper current of the charger + taper current tolerance to  
ensure that the gauge will reliably detect charge termination.  
Sets the voltage window for qualifying full charge termination. Can be set  
tighter to avoid or wider to ensure possibility of reporting 100% SOC in outer  
JEITA temperature ranges that use derated charging voltage.  
Taper Voltage  
Sets threshold for gauge detecting battery discharge. Should be set lower than  
minimal system load expected in the application and higher than Quit Current.  
Dsg Current Threshold  
Chg Current Threshold  
Quit Current  
Sets the threshold for detecting battery charge. Can be set higher or lower  
depending on typical trickle charge current used. Also should be set higher  
than Quit Current.  
75  
Sets threshold for gauge detecting battery relaxation. Can be set higher or  
lower depending on typical standby current and exhibited in the end system.  
40  
Current profile used in capacity simulations at onset of discharge or at all times  
if Load Select = 0. Should be set to nominal system load. Is automatically  
updated by the gauge every cycle.  
Avg I Last Run  
–299  
Power profile used in capacity simulations at onset of discharge or at all times  
if Load Select = 0. Should be set to nominal system power. Is automatically  
updated by the gauge every cycle.  
Avg P Last Run  
–1131  
mW  
版权 © 2014, Texas Instruments Incorporated  
19  
 
bq27532-G1  
ZHCSCT0 SEPTEMBER 2014  
www.ti.com.cn  
Typical Application (接下页)  
4. Key Data Flash Parameters for Configuration (接下页)  
NAME  
DEFAULT  
UNIT  
RECOMMENDED SETTING  
Sets the threshold at which the fuel gauge enters SLEEP mode. Take care in  
setting above typical standby currents else entry to SLEEP may be  
unintentionally blocked.  
Sleep Current  
15  
mA  
Charge T0  
0
10  
45  
50  
60  
50  
50  
50  
50  
0
°C  
°C  
Sets the boundary between charging inhibit and charging with T0 parameters.  
Sets the boundary between charging with T0 and T1 parameters.  
Sets the boundary between charging with T1 and T2 parameters.  
Sets the boundary between charging with T2 and T3 parameters.  
Sets the boundary between charging with T3 and T4 parameters.  
Sets the charge current parameter for T0.  
Charge T1  
Charge T2  
°C  
Charge T3  
°C  
Charge T4  
°C  
Charge Current T0  
Charge Current T1  
Charge Current T2  
Charge Current T3  
Charge Current T4  
Charge Voltage T0  
Charge Voltage T1  
Charge Voltage T2  
Charge Voltage T3  
Charge Voltage T4  
% Des Cap  
% Des Cap  
% Des Cap  
% Des Cap  
% Des Cap  
20-mV  
20-mV  
20-mV  
20-mV  
20-mV  
Sets the charge current parameter for T1.  
Sets the charge current parameter for T2.  
Sets the charge current parameter for T3.  
Sets the charge current parameter for T4.  
210  
210  
207  
205  
0
Sets the charge voltage parameter for T0.  
Sets the charge voltage parameter for T1.  
Sets the charge voltage parameter for T2.  
Sets the charge voltage parameter for T3.  
Sets the charge voltage parameter for T4.  
Adds temperature hysteresis for boundary crossings to avoid oscillation if  
temperature is changing by a degree or so on a given boundary.  
Chg Temp Hys  
5
°C  
Sets the voltage threshold for voltage regulation to system when charge is  
disabled. It is recommended to program to same value as Charging Voltage  
and maximum charge voltage that is obtained from Charge Voltage Tn  
parameters.  
Chg Disabled  
Regulation V  
4200  
mV  
Calibrate this parameter using TI-supplied bqStudio software and calibration  
procedure in the TRM. Determines conversion of coulomb counter measured  
sense resistor voltage to current.  
CC Gain  
CC Delta  
10  
10  
mohms  
mohms  
Counts  
Counts  
Calibrate this parameter using TI-supplied bqStudio software and calibration  
procedure in the TRM. Determines conversion of coulomb counter measured  
sense resistor voltage to passed charge.  
Calibrate this parameter using TI-supplied bqStudio software and calibration  
procedure in the TRM. Determines native offset of coulomb counter hardware  
that should be removed from conversions.  
CC Offset  
Board Offset  
–1418  
0
Calibrate this parameter using TI-supplied bqStudio software and calibration  
procedure in the TRM. Determines native offset of the printed circuit board  
parasitics that should be removed from conversions.  
Calibrate this parameter using TI-supplied bqStudio software and calibration  
procedure in the TRM. Determines voltage offset between cell tab and ADC  
input node to incorporate back into or remove from measurement, depending  
on polarity.  
Pack V Offset  
0
mV  
9.1.2 Detailed Design Procedure  
9.1.2.1 BAT Voltage Sense Input  
A ceramic capacitor at the input to the BAT pin is used to bypass AC voltage ripple to ground, greatly reducing  
its influence on battery voltage measurements. It proves most effective in applications with load profiles that  
exhibit high-frequency current pulses (that is, cell phones) but is recommended for use in all applications to  
reduce noise on this sensitive high-impedance measurement node.  
20  
版权 © 2014, Texas Instruments Incorporated  
bq27532-G1  
www.ti.com.cn  
ZHCSCT0 SEPTEMBER 2014  
9.1.2.2 SRP and SRN Current Sense Inputs  
The filter network at the input to the coulomb counter is intended to improve differential mode rejection of voltage  
measured across the sense resistor. These components should be placed as close as possible to the coulomb  
counter inputs and the routing of the differential traces length-matched to best minimize impedance mismatch-  
induced measurement errors.  
9.1.2.3 Sense Resistor Selection  
Any variation encountered in the resistance present between the SRP and SRN pins of the fuel gauge will affect  
the resulting differential voltage, and derived current, it senses. As such, it is recommended to select a sense  
resistor with minimal tolerance and temperature coefficient of resistance (TCR) characteristics. The standard  
recommendation based on best compromise between performance and price is a 1% tolerance, 100 ppm drift  
sense resistor with a 1-W power rating.  
9.1.2.4 TS Temperature Sense Input  
Similar to the BAT pin, a ceramic decoupling capacitor for the TS pin is used to bypass AC voltage ripple away  
from the high-impedance ADC input, minimizing measurement error. Another helpful advantage is that the  
capacitor provides additional ESD protection since the TS input to system may be accessible in systems that use  
removable battery packs. It should be placed as close as possible to the respective input pin for optimal filtering  
performance.  
9.1.2.5 Thermistor Selection  
The fuel gauge temperature sensing circuitry is designed to work with a negative temperature coefficient-type  
(NTC) thermistor with a characteristic 10-kΩ resistance at room temperature (25°C). The default curve-fitting  
coefficients configured in the fuel gauge specifically assume a 103AT-2 type thermistor profile and so that is the  
default recommendation for thermistor selection purposes. Moving to a separate thermistor resistance profile (for  
example, JT-2 or others) requires an update to the default thermistor coefficients in data flash to ensure highest  
accuracy temperature measurement performance.  
9.1.2.6 REGIN Power Supply Input Filtering  
A ceramic capacitor is placed at the input to the fuel gauge internal LDO to increase power supply rejection  
(PSR) and improve effective line regulation. It ensures that voltage ripple is rejected to ground instead of  
coupling into the internal supply rails of the fuel gauge.  
9.1.2.7 VCC LDO Output Filtering  
A ceramic capacitor is also needed at the output of the internal LDO to provide a current reservoir for fuel gauge  
load peaks during high peripheral utilization. It acts to stabilize the regulator output and reduce core voltage  
ripple inside of the fuel gauge.  
10 Power Supply Recommendations  
10.1 Power Supply Decoupling  
Both the REGIN input pin and the VCC output pin require low equivalent series resistance (ESR) ceramic  
capacitors placed as closely as possible to the respective pins to optimize ripple rejection and provide a stable  
and dependable power rail that is resilient to line transients. A 0.1-µF capacitor at the REGIN and a 1-µF  
capacitor at VCC will suffice for satisfactory device performance.  
版权 © 2014, Texas Instruments Incorporated  
21  
bq27532-G1  
ZHCSCT0 SEPTEMBER 2014  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
11.1.1 Sense Resistor Connections  
Kelvin connections at the sense resistor are just as critical as those for the battery terminals themselves. The  
differential traces should be connected at the inside of the sense resistor pads and not anywhere along the high-  
current trace path to prevent false increases to measured current that could result when measuring between the  
sum of the sense resistor and trace resistance between the tap points. In addition, the routing of these leads  
from the sense resistor to the input filter network and finally into the SRP and SRN pins needs to be as closely  
matched in length as possible else additional measurement offset could occur. It is further recommended to add  
copper trace or pour-based "guard rings" around the perimeter of the filter network and coulomb counter inputs to  
shield these sensitive pins from radiated EMI into the sense nodes. This prevents differential voltage shifts that  
could be interpreted as real current change to the fuel gauge. All of the filter components need to be placed as  
close as possible to the coulomb counter input pins.  
11.1.2 Thermistor Connections  
The thermistor sense input should include a ceramic bypass capacitor placed as close to the TS input pin as  
possible. The capacitor helps to filter measurements of any stray transients as the voltage bias circuit pulses  
periodically during temperature sensing windows.  
11.1.3 High-Current and Low-Current Path Separation  
For best possible noise performance, it is extremely important to separate the low-current and high-current loops  
to different areas of the board layout. The fuel gauge and all support components should be situated on one side  
of the boards and tap off of the high-current loop (for measurement purposes) at the sense resistor. Routing the  
low-current ground around instead of under high-current traces will further help to improve noise rejection.  
22  
版权 © 2014, Texas Instruments Incorporated  
bq27532-G1  
www.ti.com.cn  
ZHCSCT0 SEPTEMBER 2014  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档ꢀ  
如需以下任何 TI 文档的副本,请致电 (800) 477-8924 联系德州仪器 (TI) 文献咨询中心或致电 (512) 434-1560 联  
系支持中心。 订购时,可通过文档标题或文献编号识别文档。 也可通过 TI 网站获取更新版本的文档,网  
址:www.ti.com。  
1. bq27532-G1 技术参考手册用户指南》(SLUUB04)  
2. bq27532EVM,带 bq27532 电池管理单元 Track™ 电量监测计和 bq24250 2.0A,适用于单节应用的开关模  
式电池充电器用户指南》(SLUUB58)  
12.2 商标  
Impedance Track, NanoFree are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.3 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.4 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
版权 © 2014, Texas Instruments Incorporated  
23  
bq27532-G1  
ZHCSCT0 SEPTEMBER 2014  
www.ti.com.cn  
13 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
24  
版权 © 2014, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ27532YZFR-G1  
BQ27532YZFT-G1  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YZF  
YZF  
15  
15  
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
BQ27532  
BQ27532  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
YZF0015  
DSBGA - 0.625 mm max height  
SCALE 6.500  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
CORNER  
D
C
0.625 MAX  
SEATING PLANE  
0.05 C  
0.35  
0.15  
BALL TYP  
1 TYP  
SYMM  
E
D
SYMM  
2
TYP  
C
B
D: Max = 2.64 mm, Min = 2.58 mm  
E: Max = 1.986 mm, Min =1.926 mm  
0.5  
TYP  
A
1
2
3
0.35  
0.25  
C A B  
15X  
0.5 TYP  
0.015  
4219381/A 02/2017  
NanoFree Is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. NanoFreeTM package configuration.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YZF0015  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.5) TYP  
15X ( 0.245)  
(0.5) TYP  
1
3
2
A
B
SYMM  
C
D
E
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:30X  
0.05 MAX  
0.05 MIN  
(
0.245)  
METAL  
METAL UNDER  
SOLDER MASK  
EXPOSED  
METAL  
EXPOSED  
METAL  
(
0.245)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4219381/A 02/2017  
NOTES: (continued)  
4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YZF0015  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.5) TYP  
(R0.05) TYP  
15X ( 0.25)  
1
2
3
A
B
(0.5)  
TYP  
METAL  
TYP  
SYMM  
C
D
E
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:40X  
4219381/A 02/2017  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY