BQ28Z610DRZT-R1 [TI]

适用于 1-2 节串联电池组并具有集成保护器的电池电量监测计 | DRZ | 12 | -40 to 85;
BQ28Z610DRZT-R1
型号: BQ28Z610DRZT-R1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于 1-2 节串联电池组并具有集成保护器的电池电量监测计 | DRZ | 12 | -40 to 85

电池
文件: 总39页 (文件大小:1998K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BQ28Z610-R1  
ZHCSKR6B JANUARY 2020 REVISED JANUARY 2022  
BQ28Z610-R1 适用1-2 芯串联锂离子电池组的  
Impedance Track™ 电量监测计和保护解决方案  
1 特性  
3 说明  
• 采用专用主模I2C 接口实现自主电池充电控制  
• 采用内部旁路实现电芯均衡优化电池运行状况  
• 高侧保N FET 驱动器可在故障期间实现串  
行总线通信  
• 适用于电压、电流和温度的可编程保护等级  
• 具备两个独ADC 的模拟前端  
德州仪器 (TI) BQ28Z610-R1 器件是一款高度集成  
的高精1-2 芯串联电池电量监测计和保护解决方案,  
可实现自主的电荷控制和电芯均衡。  
BQ28Z610-R1 器件通过主模式 I2C 广播充电电流和电  
压信息可实现自主电荷控制从而消除通常由系统主  
机控制器产生的软件开销。  
– 支持电流和电压同步采样  
– 高精度库伦计数器输入失调电压误< 1µV  
典型值)  
BQ28Z610-R1 器件提供了一个基于电池组的全集成解  
决方案该解决方案具备闪存可编程的定制精简指令集  
CPU (RISC)、安全保护以及认证功能适用于 1-2 芯  
串联锂离子和锂聚合物电池组。  
• 支持低1mΩ电流感应电阻器同时支1mA  
电流测量  
• 支持电池跳变(BTP) 功能Windows® 集成  
SHA-1 认证响应器用于提高电池组安全性  
• 适用于高速编程和数据访问400kHz I2C 总线通  
信接口  
BQ28Z610-R1 电量监测计通过 I2C 兼容接口进行通  
并将超低功耗的高速 TI BQBMP 处理器、高精度  
模拟测量功能、集成闪存、大量的外设和通信端口、N  
FET 驱动器以SHA-1 认证转换响应器融合于一  
套完整的高性能电池管理解决方案。  
• 紧凑12 VSON (DRZ)  
2 应用  
器件信息  
器件型号(1)  
封装尺寸标称值)  
封装  
VSON (12)  
平板电脑计算  
便携式和可佩戴式健康设备  
便携式音频设备  
BQ28Z610-R1  
4mm x 2.5mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
线(Bluetooth®) 扬声器  
Pack  
+
10 M  
10 M  
Audio  
Power Amp  
Fuse  
Boost Converter  
Battery  
13  
100  
1 µF  
5
1
2
3
VC1 12  
VSS  
SRN  
PWPD  
2 s  
0.1  
µF  
Gauge  
Charger  
1 s  
11  
VC2  
0.1 µF  
5.1 k  
5.1 k  
SRP  
TS1  
10  
9
PBI  
Audio Processor  
MCU  
2.2 µF  
Battery  
cells  
4
5
CHG  
10k  
10  
100  
100  
100  
PACK  
8
Pack Side  
System Side  
SCL  
SDA  
2
I
C
Comm  
Bus  
MM3Z5V6C  
100  
6
7
DSG  
Power  
Copyright  
© 2017, Texas Instruments Incorporated  
MM3Z5V6C  
100  
100  
线(Bluetooth®) 扬声器应用  
方框图  
Pack  
Copyright © 2016 Texas Instruments Incorporated  
,
1 to10 mΩ  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSE07  
 
 
 
BQ28Z610-R1  
ZHCSKR6B JANUARY 2020 REVISED JANUARY 2022  
www.ti.com.cn  
Table of Contents  
7.23 Current Protection Thresholds................................10  
7.24 Current Protection Timing....................................... 11  
7.25 N-CH FET Drive (CHG, DSG).................................12  
7.26 I2C Interface I/O...................................................... 12  
7.27 I2C Interface Timing ............................................... 12  
7.28 Typical Characteristics............................................14  
8 Detailed Description......................................................17  
8.1 Overview...................................................................17  
8.2 Functional Block Diagram.........................................17  
8.3 Feature Description...................................................18  
8.4 Device Functional Modes..........................................22  
9 Applications and Implementation................................24  
9.1 Application Information............................................. 24  
9.2 Typical Applications.................................................. 24  
10 Power Supply Recommendations..............................27  
11 Layout...........................................................................28  
11.1 Layout Guidelines................................................... 28  
11.2 Layout Example...................................................... 29  
12 Device and Documentation Support..........................30  
12.1 第三方产品免责声明................................................30  
12.2 Documentation Support.......................................... 30  
12.3 接收文档更新通知................................................... 30  
12.4 支持资源..................................................................30  
12.5 Trademarks.............................................................30  
12.6 Electrostatic Discharge Caution..............................30  
12.7 术语表..................................................................... 30  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................2  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings........................................ 4  
7.2 ESD Ratings............................................................... 4  
7.3 Recommended Operating Conditions.........................4  
7.4 Thermal Information....................................................5  
7.5 Supply Current............................................................5  
7.6 Power Supply Control................................................. 5  
7.7 Low-Voltage General Purpose I/O, TS1......................6  
7.8 Power-On Reset (POR).............................................. 6  
7.9 Internal 1.8-V LDO......................................................6  
7.10 Current Wake Comparator........................................7  
7.11 Coulomb Counter......................................................7  
7.12 ADC Digital Filter...................................................... 7  
7.13 ADC Multiplexer........................................................8  
7.14 Cell Balancing Support............................................. 8  
7.15 Internal Temperature Sensor.................................... 8  
7.16 NTC Thermistor Measurement Support....................8  
7.17 High-Frequency Oscillator........................................ 8  
7.18 Low-Frequency Oscillator......................................... 9  
7.19 Voltage Reference 1................................................. 9  
7.20 Voltage Reference 2................................................. 9  
7.21 Instruction Flash........................................................9  
7.22 Data Flash...............................................................10  
Information.................................................................... 30  
4 Revision History  
Changes from Revision A (February 2020) to Revision B (January 2022)  
Page  
Changed Absolute Maximum Ratings ............................................................................................................... 4  
Changes from Revision * (February 2020) to Revision A (February 2020)  
Page  
Changed I2C Interface I/O ............................................................................................................................... 12  
5 说明)  
BQ28Z610-R1 器件提供大量的电池和系统安全功能其中包括对电池提供放电过流、充电短路和放电短路保护,  
N FET FET 保护AFE 看门狗以及电芯均衡功能。该器件可通过固件添加更多保护特性例如  
过压、欠压、过热等。  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: BQ28Z610-R1  
 
 
BQ28Z610-R1  
ZHCSKR6B JANUARY 2020 REVISED JANUARY 2022  
www.ti.com.cn  
6 Pin Configuration and Functions  
VSS  
SRN  
SRP  
TS1  
SCL  
SDA  
1
2
3
4
5
6
12  
11  
10  
9
VC1  
VC2  
PBI  
Thermal  
Pad  
CHG  
PACK  
DSG  
8
7
Not to scale  
6-1. DRZ Package 12-Pin VSON Top View  
6-1. Pin Functions  
PIN NUMBER PIN NAME  
TYPE  
DESCRIPTION  
1
2
VSS  
SRN  
P(1)  
Device ground  
Analog input pin connected to the internal coulomb counter peripheral for integrating a  
small voltage between SRP and SRN where SRP is the top of the sense resistor.  
AI  
Analog input pin connected to the internal coulomb counter peripheral for integrating a  
small voltage between SRP and SRN where SRP is the top of the sense resistor.  
3
4
SRP  
TS1  
AI  
AI  
Temperature input for ADC to the oversampled ADC channel, and optional Battery Trip  
Point (BTP) output  
5
6
SCL  
SDA  
DSG  
PACK  
CHG  
PBI  
I/O  
I/O  
O
Serial Clock for I2C interface; requires external pullup when used  
Serial Data for I2C interface; requires external pullup  
N-CH FET drive output pin  
7
8
AI, P  
O
Pack sense input pin  
9
N-CH FET drive output pin  
10  
P
Power supply backup input pin  
Sense voltage input pin for most positive cell, balance current input for most positive cell.  
Primary power supply input and battery stack measurement input (BAT)  
11  
12  
VC2  
AI, P  
VC1  
AI  
Sense voltage input pin for least positive cell, balance current input for least positive cell  
Exposed Pad, electrically connected to VSS (external trace)  
PWPD  
(1) P = Power Connection, O = Digital Output, AI = Analog Input, I = Digital Input, I/O = Digital Input/Output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: BQ28Z610-R1  
 
 
BQ28Z610-R1  
ZHCSKR6B JANUARY 2020 REVISED JANUARY 2022  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
30  
UNIT  
Supply voltage range, VCC  
Input voltage range, VIN  
VC2, PBI  
PACK  
V
V
V
V
0.3  
0.3  
0.3  
0.3  
30  
TS  
VREG + 0.3  
VREG + 0.3  
SRP, SRN  
VC1 + 8.5 or  
VSS + 30  
VC2  
VC1  
V
V
VC1 0.3  
VSS 0.3  
VSS + 8.5 or  
VSS + 30  
Communication Interface  
Output voltage range, VO  
Maximum VSS current, ISS  
Functional Temperature, TFUNC  
SDA, SCL  
CHG, DSG  
6
V
V
0.3  
0.3  
32  
±50  
110  
±300  
150  
mA  
°C  
°C  
°C  
40  
65  
Lead temperature (soldering, 10 s), TSOLDER  
Storage temperature range, TSTG  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and  
this may affect device reliability, functionality, performance, and shorten the device lifetime.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002, all pins(2)  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
Typical values stated where TA = 25°C and VCC = 7.2 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
2.2  
NOM  
MAX UNIT  
VCC  
Supply voltage  
Shutdown voltage  
Start-up voltage  
VC2, PBI  
26  
2.2  
V
VSHUTDOWN–  
VSHUTDOWN+  
VPACK < VSHUTDOWN –  
VPACK > VSHUTDOWN+ VHYS  
1.8  
2.0  
V
V
2.05  
2.25  
2.45  
Shutdown voltage  
hysteresis  
VHYS  
250  
mV  
V
V
SHUTDOWN+ VSHUTDOWN–  
SDA, SCL  
TS1  
5.5  
VREG  
0.2  
SRP, SRN  
VC2  
0.2  
VVC1  
VVSS  
VIN  
Input voltage range  
VVC1 + 5  
VVSS + 5  
26  
VC1  
PACK  
VO  
Output voltage range  
External PBI capacitor  
CHG, DSG  
26  
V
CPBI  
2.2  
µF  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: BQ28Z610-R1  
 
 
 
 
 
 
 
 
BQ28Z610-R1  
ZHCSKR6B JANUARY 2020 REVISED JANUARY 2022  
www.ti.com.cn  
7.3 Recommended Operating Conditions (continued)  
Typical values stated where TA = 25°C and VCC = 7.2 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
NOM  
MAX UNIT  
85 °C  
TOPR  
Operating temperature  
40  
7.4 Thermal Information  
BQ28Z610-R1  
DRZ  
THERMAL METRIC(1)  
UNIT  
12 PINS  
186.4  
90.4  
RθJA, High K  
RθJC(top)  
RθJB  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
110.7  
96.7  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
ψJT  
90  
ψJB  
RθJC(bottom)  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics Application  
Report (SPRA953).  
7.5 Supply Current  
Typical values stated where TA = 25°C and VCC = 7.2 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
(1)  
INORMAL  
NORMAL mode  
SLEEP mode  
CHG = ON, DSG = ON, No Flash Write  
250  
µA  
CHG = OFF, DSG = OFF, No Communication on  
Bus  
(1)  
ISLEEP  
100  
0.5  
ISHUTDOWN  
SHUTDOWN mode  
2
µA  
(1) Dependent on the use of the correct firmware (FW) configuration  
7.6 Power Supply Control  
Typical values stated where TA = 25°C and VCC = 7.2 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
VVC2 < VSWITCHOVER–  
VVC2 > VSWITCHOVER+ VHYS  
SWITCHOVER+ VSWITCHOVER–  
MIN  
TYP  
MAX  
UNIT  
VC2 to PACK  
VSWITCHOVER–  
VSWITCHOVER+  
VHYS  
2.0  
2.1  
2.2  
V
switchover voltage  
PACK to VC2  
3.0  
3.1  
3.2  
V
switchover voltage  
Switchover voltage  
hysteresis  
1000  
mV  
V
VC2 pin, VC2 = 0 V, PACK = 25 V  
PACK pin, VC2 = 25 V, PACK = 0 V  
1
1
Input Leakage  
current  
ILKG  
µA  
VC2 and PACK pins, VC2 = 0 V, PACK = 0 V,  
PBI = 25 V  
1
Internal pulldown  
resistance  
RPACK(PD)  
PACK  
30  
40  
50  
kΩ  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: BQ28Z610-R1  
 
 
 
 
 
BQ28Z610-R1  
ZHCSKR6B JANUARY 2020 REVISED JANUARY 2022  
www.ti.com.cn  
7.7 Low-Voltage General Purpose I/O, TS1  
Typical values stated where TA = 25°C and VCC = 7.2 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
0.35 x VREG  
0.2 x VREG  
UNIT  
V
VIH  
VIL  
High-level input  
0.65 x VREG  
Low-level input  
V
VOH  
VOL  
CIN  
Output voltage high  
0.75 x VREG  
V
IOH = 1.0 mA  
Output voltage low IOL = 1.0 mA  
Input capacitance  
V
5
pF  
Input leakage  
current  
ILKG  
1
µA  
7.8 Power-On Reset (POR)  
Typical values stated where TA = 25°C and VCC = 7.2 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
Negative-going voltage  
input  
VREGIT–  
VREG  
REGIT+ VREGIT–  
1.51  
1.55  
1.59  
V
Power-on reset  
hysteresis  
VHYS  
tRST  
70  
100  
300  
130  
400  
mV  
µs  
V
Power-on reset time  
200  
7.9 Internal 1.8-V LDO  
Typical values stated where TA = 25°C and VCC = 7.2 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
VREG  
Regulator voltage  
1.6  
1.8  
2.0  
V
Regulator output over  
temperature  
±0.25%  
ΔVO(TEMP)  
ΔVREG/ΔTA, IREG = 10 mA  
Line regulation  
Load regulation  
0.5%  
1.5%  
ΔVO(LINE)  
ΔVO(LOAD)  
ΔVREG/ΔVBAT, VBAT = 10 mA  
0 .6%  
1.5%  
ΔVREG/ΔIREG, IREG = 0 mA to 10 mA  
Regulator output  
current limit  
IREG  
VREG = 0.9 x VREG(NOM), VIN > 2.2 V  
VREG = 0 x VREG(NOM)  
ΔVBAT/ΔVREG, IREG = 10 mA, VIN > 2.5 V, f = 10 Hz  
20  
25  
mA  
mA  
dB  
V
Regulator short-circuit  
current limit  
ISC  
40  
40  
50  
Power supply rejection  
ratio  
PSRRREG  
VSLEW  
Slew rate enhancement  
voltage threshold  
VREG  
1.58  
1.65  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: BQ28Z610-R1  
 
 
 
BQ28Z610-R1  
ZHCSKR6B JANUARY 2020 REVISED JANUARY 2022  
www.ti.com.cn  
7.10 Current Wake Comparator  
Typical values stated where TA = 25°C and VCC = 7.2 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
VWAKE = VSRP VSRN WAKE_CONTROL[WK1,  
WK0] = 0,0  
±0.3  
±0.625  
±0.9  
±1.8  
±3.6  
±7.2  
mV  
VWAKE = VSRP VSRN WAKE_CONTROL[WK1,  
WK0] = 0,1  
±0.6  
±1.2  
±2.4  
±1.25  
±2.5  
±5.0  
0.5%  
0.25  
250  
mV  
mV  
mV  
°C  
Wake voltage  
threshold  
VWAKE  
VWAKE = VSRP VSRN WAKE_CONTROL[WK1,  
WK0] = 1,0  
VWAKE = VSRP VSRN WAKE_CONTROL[WK1,  
WK0] = 1,1  
Temperature drift of  
VWAKE accuracy  
VWAKE(DRIFT)  
Time from application  
of current to wake  
tWAKE  
0.5  
ms  
µs  
Wake up comparator  
startup time  
[WKCHGEN] = 0 and [WKDSGEN] = 0 to  
[WKCHGEN] = 1 and [WKDSGEN] = 1  
tWAKE(SU)  
640  
7.11 Coulomb Counter  
Typical values stated where TA = 25°C and VCC = 7.2 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
100  
TYP  
MAX UNIT  
Input voltage range  
Full scale range  
Differential nonlinearity  
Integral nonlinearity  
Offset error  
100  
+VREF1/10  
±1  
mV  
mV  
LSB  
LSB  
LSB  
VREF1/10  
16-bit, no missing codes  
16-bit, best fit over input voltage range  
16-bit, post-calibration  
±5.2  
±1.3  
0.04  
±131  
4.3  
±22.3  
±2.6  
Offset error drift  
Gain error  
15-bit + sign, post-calibration  
15-bit + sign, over input voltage range  
15-bit + sign, over input voltage range  
0.07 LSB/°C  
±492 LSB  
Gain error drift  
9.8 LSB/°C  
Effective input resistance  
2.5  
MΩ  
7.12 ADC Digital Filter  
Typical values stated where TA = 25°C and VCC = 7.2 V, Min/Max values stated where TA = 40°C to 85°C and VCC = 2.2  
V to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
31.25  
15.63  
7.81  
MAX UNIT  
ADCTL[SPEED1, SPEED0] = 0, 0  
ADCTL[SPEED1, SPEED0] = 0, 1  
ADCTL[SPEED1, SPEED0] = 1, 0  
ADCTL[SPEED1, SPEED0] = 1, 1  
tCONV  
ms  
1.95  
No missing codes, ADCTL[SPEED1, SPEED0] =  
0, 0  
Resolution  
16  
Bits  
Bits  
With sign, ADCTL[SPEED1, SPEED0] = 0, 0  
With sign, ADCTL[SPEED1, SPEED0] = 0, 1  
With sign, ADCTL[SPEED1, SPEED0] = 1, 0  
With sign, ADCTL[SPEED1, SPEED0] = 1, 1  
14  
13  
11  
9
15  
14  
12  
10  
Effective resolution  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: BQ28Z610-R1  
 
 
 
BQ28Z610-R1  
ZHCSKR6B JANUARY 2020 REVISED JANUARY 2022  
www.ti.com.cn  
7.13 ADC Multiplexer  
Typical values stated where TA = 25°C and VCC = 7.2 V, Min/Max values stated where TA = 40°C to 85°C and VCC = 2.2  
V to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
VC1VSS, VC2VC1  
VC2VSS, PACKVSS  
VREF1/2  
MIN  
0.1980  
0.0485  
0.490  
0.2  
TYP  
0.2000  
0.050  
MAX UNIT  
0.2020  
K
Scaling factor  
0.051  
0.510  
0.500  
20  
VC2VSS, PACKVSS  
TS1  
VIN  
Input voltage range  
Input leakage current  
0.8 × VREF1  
0.8 × VREG  
V
0.2  
TS1  
0.2  
VC1, VC2 cell balancing off, cell detach detection off,  
ADC multiplexer off  
ILKG  
1
µA  
7.14 Cell Balancing Support  
Typical values stated where TA = 25°C and VCC = 7.2 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 7.6 V (unless otherwise noted)  
PARAMETER  
Internal cell balance  
resistance  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
200  
RCB  
RDS(ON) for internal FET switch at 2 V < VDS < 4 V  
Ω
7.15 Internal Temperature Sensor  
Typical values stated where TA = 25°C and VCC = 7.2 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
1.9  
0.177  
TYP  
2.0  
0.178  
MAX UNIT  
VTEMPP  
2.1  
Internal temperature  
VTEMP  
mV/°C  
sensor voltage drift  
(1)  
0.179  
V
TEMPP VTEMPN  
(1) Assured by design  
7.16 NTC Thermistor Measurement Support  
Typical values stated where TA = 25°C and VCC = 7.2 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
Internal pull-up  
resistance  
RNTC(PU)  
TS1  
14.4  
18  
21.6  
kΩ  
Resistance drift over  
temperature  
RNTC(DRIFT)  
TS1  
PPM/°C  
360  
280  
200  
7.17 High-Frequency Oscillator  
Typical values stated where TA = 25°C and VCC = 7.2 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
16.78  
MAX UNIT  
MHz  
fHFO  
Operating frequency  
±0.25%  
±0.25%  
2.5%  
3.5%  
TA = 20°C to 70°C, includes frequency drift  
TA = 40°C to 85°C, includes frequency drift  
2.5%  
3.5%  
fHFO(ERR)  
Frequency error  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: BQ28Z610-R1  
 
 
 
 
 
 
BQ28Z610-R1  
ZHCSKR6B JANUARY 2020 REVISED JANUARY 2022  
www.ti.com.cn  
7.17 High-Frequency Oscillator (continued)  
Typical values stated where TA = 25°C and VCC = 7.2 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
TA = 20°C to 85°C, Oscillator frequency within +/–  
3% of nominal, CLKCTL[HFRAMP] = 1  
4
ms  
µs  
tHFO(SU)  
Start-up time  
Oscillator frequency within +/3% of nominal,  
CLKCTL[HFRAMP] = 0  
100  
7.18 Low-Frequency Oscillator  
Typical values stated where TA = 25°C and VCC = 7.2 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
fLFO  
Operating frequency  
262.144  
kHz  
kHz  
Operating frequency in  
low power mode  
fLFO(LP)  
247  
±0.25%  
±0.25%  
1.5%  
2.5%  
TA = 20°C to 70°C, includes frequency drift  
TA = 40°C to 85°C, includes frequency drift  
1.5%  
2.5%  
fLFO(ERR)  
Frequency error  
Frequency error in low  
power mode  
fLFO(LPERR)  
5%  
5%  
Failure detection  
frequency  
fLFO(FAIL)  
30  
80  
100  
kHz  
7.19 Voltage Reference 1  
Typical values stated where TA = 25°C and VCC = 7.2 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
Internal reference  
voltage  
VREF1  
TA = 25°C, after trim  
1.215  
1.220  
1.225  
V
TA = 0°C to 60°C, after trim  
±50  
±80  
Internal reference  
voltage drift  
VREF1(DRIFT)  
PPM/°C  
TA = 40°C to 85°C, after trim  
7.20 Voltage Reference 2  
Typical values stated where TA = 25°C and VCC = 7.2 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
Internal reference  
voltage  
VREF2  
TA = 25°C, after trim  
1.215  
1.220  
1.225  
V
TA = 0°C to 60°C, after trim  
±50  
±80  
Internal reference  
voltage drift  
VREF2(DRIFT)  
PPM/°C  
TA = 40°C to 85°C, after trim  
7.21 Instruction Flash  
Typical values stated where TA = 25°C and VCC = 7.2 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
Years  
Data retention  
10  
Flash programming  
write cycles  
1000  
Cycles  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: BQ28Z610-R1  
 
 
 
 
BQ28Z610-R1  
ZHCSKR6B JANUARY 2020 REVISED JANUARY 2022  
www.ti.com.cn  
7.21 Instruction Flash (continued)  
Typical values stated where TA = 25°C and VCC = 7.2 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 7.6 V (unless otherwise noted)  
PARAMETER  
Word programming  
time  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
tPROGWORD  
40  
µs  
TA = 40°C to 85°C  
tMASSERASE Mass-erase time  
tPAGEERASE Page-erase time  
IFLASHREAD Flash-read current  
IFLASHWRITE Flash-write current  
IFLASHERASE Flash-erase current  
40  
40  
2
ms  
ms  
mA  
mA  
mA  
TA = 40°C to 85°C  
TA = 40°C to 85°C  
TA = 40°C to 85°C  
TA = 40°C to 85°C  
TA = 40°C to 85°C  
5
15  
7.22 Data Flash  
Typical values stated where TA = 25°C and VCC = 7.2 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
Years  
Data retention  
10  
Flash programming  
write cycles  
20000  
Cycles  
µs  
Word programming  
time  
tPROGWORD  
40  
TA = 40°C to 85°C  
tMASSERASE Mass-erase time  
tPAGEERASE Page-erase time  
IFLASHREAD Flash-read current  
IFLASHWRITE Flash-write current  
IFLASHERASE Flash-erase current  
40  
40  
1
ms  
ms  
mA  
mA  
mA  
TA = 40°C to 85°C  
TA = 40°C to 85°C  
TA = 40°C to 85°C  
TA = 40°C to 85°C  
TA = 40°C to 85°C  
5
15  
7.23 Current Protection Thresholds  
Typical values stated where TA = 25°C and VCC = 7.2 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
VOCD = VSRP VSRN,  
PROTECTION_CONTROL[RSNS] = 1  
16.6  
100  
OCD detection threshold  
voltage range  
VOCD  
mV  
VOCD = VSRP VSRN,  
PROTECTION_CONTROL[RSNS] = 0  
8.3  
50  
VOCD = VSRP VSRN,  
PROTECTION_CONTROL[RSNS] = 1  
5.56  
2.78  
OCD detection threshold  
voltage program step  
mV  
mV  
mV  
ΔVOCD  
ΔVSCC  
ΔVSCC  
VOCD = VSRP VSRN,  
PROTECTION_CONTROL[RSNS] = 0  
VSCC = VSRP VSRN,  
PROTECTION_CONTROL[RSNS] = 1  
44.4  
22.2  
200  
100  
SCC detection threshold  
voltage range  
VSCC = VSRP VSRN,  
PROTECTION_CONTROL[RSNS] = 0  
VSCC = VSRP VSRN,  
PROTECTION_CONTROL[RSNS] = 1  
22.2  
11.1  
SCC detection threshold  
voltage program step  
VSCC = VSRP VSRN,  
PROTECTION_CONTROL[RSNS] = 0  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: BQ28Z610-R1  
 
 
BQ28Z610-R1  
ZHCSKR6B JANUARY 2020 REVISED JANUARY 2022  
www.ti.com.cn  
7.23 Current Protection Thresholds (continued)  
Typical values stated where TA = 25°C and VCC = 7.2 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
VSCD1 = VSRP VSRN,  
PROTECTION_CONTROL[RSNS] = 1  
44.4  
200  
SCD1 detection threshold  
voltage range  
VSCD1  
mV  
VSCD1 = VSRP VSRN,  
PROTECTION_CONTROL[RSNS] = 0  
22.2  
100  
VSCD1 = VSRP VSRN,  
PROTECTION_CONTROL[RSNS] = 1  
22.2  
11.1  
SCD1 detection threshold  
voltage program step  
mV  
mV  
mV  
ΔVSCD1  
VSCD1 = VSRP VSRN,  
PROTECTION_CONTROL[RSNS] = 0  
VSCD2 = VSRP VSRN,  
PROTECTION_CONTROL[RSNS] = 1  
44.4  
22.2  
200  
100  
SCD2 detection threshold  
voltage range  
VSCD2  
VSCD2 = VSRP VSRN,  
PROTECTION_CONTROL[RSNS] = 0  
VSCD2 = VSRP VSRN,  
PROTECTION_CONTROL[RSNS] = 1  
22.2  
11.1  
SCD2 detection threshold  
voltage program step  
ΔVSCD2  
VSCD2 = VSRP VSRN,  
PROTECTION_CONTROL[RSNS] = 0  
7.24 Current Protection Timing  
Typical values stated where TA = 25°C and VCC = 7.2 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
NOM  
MAX UNIT  
OCD detection delay  
time  
tOCD  
1
31  
ms  
ms  
µs  
OCD detection delay  
time program step  
2
ΔtOCD  
tSCC  
SCC detection delay  
time  
0
915  
SCC detection delay  
time program step  
61  
µs  
ΔtSCC  
PROTECTION_CONTROL[SCDDx2] = 0  
0
0
915  
SCD1 detection delay  
time  
tSCD1  
µs  
µs  
µs  
PROTECTION_CONTROL[SCDDx2] = 1  
PROTECTION_CONTROL[SCDDx2] = 0  
PROTECTION_CONTROL[SCDDx2] = 1  
PROTECTION_CONTROL[SCDDx2] = 0  
PROTECTION_CONTROL[SCDDx2] = 1  
PROTECTION_CONTROL[SCDDx2] = 0  
PROTECTION_CONTROL[SCDDx2] = 1  
1850  
61  
SCD1 detection delay  
time program step  
ΔtSCD1  
121  
0
0
458  
915  
SCD2 detection delay  
time  
tSCD2  
30.5  
61  
SCD2 detection delay  
time program step  
µs  
µs  
ΔtSCD2  
V
V
SRP VSRN = VT 3 mV for OCD, SCD1, and SC2,  
SRP VSRN = VT + 3 mV for SCC  
tDETECT  
tACC  
Current fault detect time  
160  
Current fault delay time  
accuracy  
Max delay setting  
10%  
10%  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: BQ28Z610-R1  
 
BQ28Z610-R1  
ZHCSKR6B JANUARY 2020 REVISED JANUARY 2022  
www.ti.com.cn  
7.25 N-CH FET Drive (CHG, DSG)  
Typical values stated where TA = 25°C and VCC = 7.2 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
RatioDSG = (VDSG VVC2)/VVC2, 2.2 V < VVC2 < 4.07 V,  
10 MΩbetween PACK and DSG  
2.133  
2.333  
2.467  
Output voltage ratio  
RatioCHG = (VCHG VVC2)/VVC2, 2.2 V < VVC2 < 4.07 V,  
10 MΩbetween BAT and CHG  
2.133  
8.75  
2.333  
9.5  
2.467  
10.25  
10.25  
0.4  
VDSG(ON) = VDSG VVC2, 4.07 V VVC2 18 V, 10 MΩ  
between PACK and DSG  
Output voltage,  
CHG and DSG on  
V(FETON)  
V
V
VCHG(ON) = VCHG VVC2, 4.07 V VVC2 18 V, 10 MΩ  
between VC2 and CHG  
8.75  
9.5  
VDSG(OFF) = VDSG VPACK, 10 MΩbetween PACK and  
DSG  
0.4  
0.4  
Output voltage,  
CHG and DSG off  
V(FETOFF)  
VCHG(OFF) = VCHG VBAT, 10 MΩbetween VC2 and  
CHG  
0.4  
VDSG from 0% to 35% VDSG (ON)(TYP), VBAT 2.2 V, CL =  
4.7 nF between DSG and PACK, 5.1 kΩbetween DSG  
and CL, 10 MΩbetween PACK and DSG  
200  
200  
40  
500  
500  
300  
200  
tR  
Rise time  
µs  
µs  
VCHG from 0% to 35% VCHG (ON)(TYP), VVC2 2.2 V, CL =  
4.7 nF between CHG and VC2, 5.1 kΩbetween CHG and  
CL, 10 MΩbetween VC2 and CHG  
VDSG from VDSG(ON)(TYP) to 1 V, VVC2 2.2 V, CL = 4.7 nF  
between DSG and PACK, 5.1 kΩbetween DSG and CL,  
10 MΩbetween PACK and DSG  
tF  
Fall time  
VCHG from VCHG(ON)(TYP) to 1 V, VVC2 2.2 V, CL = 4.7 nF  
between CHG and VC2, 5.1 kΩbetween CHG and CL, 10  
MΩbetween VC2 and CHG  
40  
7.26 I2C Interface I/O  
Typical values stated where TA = 25°C and VCC = 7.2 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
0.7 × VREG  
0.5  
TYP  
MAX UNIT  
VIH  
VIL  
Input voltage high  
SCL, SDA (STANDARD and FAST modes)  
SCL, SDA (STANDARD and FAST modes)  
SCL, SDA, IOL = 1 mA (STANDARD and FAST modes)  
V
Input voltage low  
Output low voltage  
Input capacitance  
0.3 × VREG  
0.2 × VREG  
10  
V
V
VOL  
CIN  
pF  
Input leakage  
current  
ILKG  
RPD  
1
µA  
Pull-down resistance  
3.3  
kΩ  
7.27 I2C Interface Timing  
Typical values stated where TA = 25°C and VCC = 7.2 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 7.6 V (unless otherwise noted)  
PARAMETER  
Clock rise time  
Clock fall time  
Clock high period  
Clock low period  
TEST CONDITION  
MIN  
NOM  
MAX  
300  
UNIT  
ns  
tR  
10% to 90%  
90% to 10%  
tF  
300  
ns  
tHIGH  
tLOW  
600  
1.3  
ns  
µs  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: BQ28Z610-R1  
 
 
 
 
BQ28Z610-R1  
ZHCSKR6B JANUARY 2020 REVISED JANUARY 2022  
www.ti.com.cn  
7.27 I2C Interface Timing (continued)  
Typical values stated where TA = 25°C and VCC = 7.2 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 7.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
NOM  
MAX  
UNIT  
Repeated start setup  
time  
tSU(START)  
td(START)  
600  
ns  
Start for first falling  
edge to SCL  
600  
ns  
tSU(DATA)  
tHD(DATA)  
tSU(STOP)  
Data setup time  
Data hold time  
Stop setup time  
100  
0
ns  
µs  
ns  
600  
Bus free time  
between stop and  
start  
tBUF  
1.3  
µs  
Clock operating  
frequency  
fSW  
SLAVE mode, SCL 50% duty cycle  
400  
kHz  
t
t
t
t
t
f
t
w(L)  
r
(BUF)  
SU(STA)  
w(H)  
SCL  
SDA  
t
t
t
d(STA)  
su(STOP)  
f
t
r
t
t
su(DAT)  
h(DAT)  
REPEATED  
START  
STOP  
START  
7-1. I2C Timing  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: BQ28Z610-R1  
BQ28Z610-R1  
ZHCSKR6B JANUARY 2020 REVISED JANUARY 2022  
www.ti.com.cn  
7.28 Typical Characteristics  
±8.  
ꢀ8.  
0.15  
Max CC Offset Error  
Min CC Offset Error  
0.10  
0.05  
ꢁ8.  
ꢂ8.  
0.00  
.8.  
±ꢂ8.  
±ꢁ8.  
±ꢀ8.  
±±8.  
œ0.05  
œ0.10  
œ0.15  
Max ADC Offset Error  
Min ADC Offset Error  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
.
ꢂ.  
ꢁ.  
ꢀ.  
±.  
1..  
1ꢂ.  
±ꢁ.  
±ꢂ.  
Temperature (°C)  
C001  
Temperature (°C)  
C..3  
7-2. CC Offset Error vs Temperature  
7-3. ADC Offset Error vs Temperature  
1.24  
1.23  
1.22  
1.21  
1.20  
264  
262  
260  
258  
256  
254  
252  
250  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C006  
C007  
7-4. Reference Voltage vs Temperature  
7-5. Low-Frequency Oscillator vs Temperature  
16.9  
16.8  
16.7  
16.6  
–24.6  
–24.8  
–25.0  
–25.2  
–25.4  
–25.6  
–25.8  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
–40  
–20  
Temperature (°C)  
Temperature (°C)  
C008  
C009  
7-6. High-Frequency Oscillator vs Temperature  
Threshold setting is 25 mV.  
7-7. Overcurrent Discharge Protection Threshold vs  
Temperature  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: BQ28Z610-R1  
 
BQ28Z610-R1  
ZHCSKR6B JANUARY 2020 REVISED JANUARY 2022  
www.ti.com.cn  
7.28 Typical Characteristics (continued)  
87.4  
87.2  
87.0  
86.8  
86.6  
86.4  
86.2  
œ86.0  
œ86.2  
œ86.4  
œ86.6  
œ86.8  
œ87.0  
œ87.2  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C010  
C011  
Threshold setting is 88.8 mV.  
Threshold setting is 88.8 mV.  
7-8. Short Circuit Charge Protection Threshold vs  
7-9. Short Circuit Discharge 1 Protection Threshold vs  
Temperature  
Temperature  
11.00  
10.95  
10.90  
10.85  
10.80  
10.75  
10.70  
œ172.9  
œ173.0  
œ173.1  
œ173.2  
œ173.3  
œ173.4  
œ173.5  
œ173.6  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C012  
C013  
Threshold setting is 11 ms.  
Threshold setting is 177.7 mV.  
7-11. Overcurrent Delay Time vs Temperature  
7-10. Short Circuit Discharge 2 Protection Threshold vs  
Temperature  
452  
450  
448  
446  
444  
442  
440  
438  
436  
434  
432  
480  
460  
440  
420  
400  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C014  
C015  
Threshold setting is 465 µs.  
Threshold setting is 465 µs (including internal delay).  
7-12. Short Circuit Charge Current Delay Time vs  
7-13. Short Circuit Discharge 1 Delay Time vs Temperature  
Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: BQ28Z610-R1  
BQ28Z610-R1  
ZHCSKR6B JANUARY 2020 REVISED JANUARY 2022  
www.ti.com.cn  
7.28 Typical Characteristics (continued)  
2.4984  
2.49835  
2.4983  
2.49825  
2.4982  
2.49815  
2.4981  
2.49805  
2.498  
3.49825  
3.4982  
3.49815  
3.4981  
3.49805  
3.498  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C017  
C016  
7-14. VCELL Measurement at 2.5-V vs Temperature  
This is the VCELL average for single cell.  
7-15. VCELL Measurement at 3.5-V vs Temperature  
4.24805  
4.248  
99.25  
99.20  
99.15  
99.10  
99.05  
99.00  
4.24795  
4.2479  
4.24785  
4.2478  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C018  
C019  
A.  
This is the VCELL average for single cell.  
ISET = 100 mA, RSNS= 1 Ω  
7-17. I Measured vs Temperature  
7-16. VCELL Measurement at 4.25-V vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: BQ28Z610-R1  
BQ28Z610-R1  
ZHCSKR6B JANUARY 2020 REVISED JANUARY 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The BQ28Z610-R1 gas gauge is a fully integrated battery manager that employs flash-based firmware and  
integrated hardware protection to provide a complete solution for battery-stack architectures composed of 1- to  
2-series cells. The BQ28Z610-R1 device interfaces with a host system via an I2C protocol. High-performance,  
integrated analog peripherals enable support for a sense resistor down to 1 mΩ and simultaneous current/  
voltage data conversion for instant power calculations. The following sections detail all of the major component  
blocks included as part of the BQ28Z610-R1 device.  
8.2 Functional Block Diagram  
The Functional Block Diagram depicts the analog (AFE) and digital (AGG) peripheral content in the BQ28Z610-  
R1 device.  
High Side  
N-CH FET  
Drive  
Cell, Stack,  
Pack  
Voltage  
Cell  
Balancing  
Cell Detach  
Detection  
Power Mode  
Control  
Zero Volt  
Charge  
Control  
Wake  
Comparator  
Power On  
Reset  
Short Circuit  
Comparator  
Over  
Current  
Comparator  
Voltage  
Reference2  
Watchdog  
Timer  
Interrupt  
NTC Bias  
Internal  
Temp  
Sensor  
(
AD0/RC0 TS1  
)
Internal  
Reset  
Voltage  
Reference1  
ADC MUX  
AFE Control  
Low  
Frequency  
Oscillator  
ADC/CC  
FRONTEND  
AFE COM  
Engine  
1.8V LDO  
Regulator  
SRP  
SRN  
SDA  
SCL  
High  
Frequency  
Oscillator  
Low Voltage  
I/O  
I/O &  
Interrupt  
Controller  
In-Circuit  
Emulator  
ADC/CC  
Digital Filter  
Timers&  
PWM  
AFE COM  
Engine  
COM  
Engine  
Data (8bit)  
DMAddr (16bit)  
bqBMP  
CPU  
PMInstr  
(8bit)  
PMAddr  
(16bit)  
Program  
Flash  
EEPROM  
Data Flash  
EEPROM  
Data  
SRAM  
Copyright © 2016 Texas Instruments Incorporated  
,
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: BQ28Z610-R1  
 
 
 
BQ28Z610-R1  
ZHCSKR6B JANUARY 2020 REVISED JANUARY 2022  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Battery Parameter Measurements  
The BQ28Z610-R1 device measures cell voltage and current simultaneously, and measures temperature to  
calculate the information related to remaining capacity, full charge capacity, state-of-health, and other gauging  
parameters.  
8.3.1.1 BQ28Z610-R1 Processor  
The BQ28Z610-R1 device uses a custom TI-proprietary processor design that features a Harvard architecture  
and operates at frequencies up to 4.2 MHz. Using an adaptive, three-stage instruction pipeline, the BQ28Z610-  
R1 processor supports variable instruction length of 8, 16, or 24 bits.  
8.3.2 Coulomb Counter (CC)  
The first ADC is an integrating converter designed specifically for coulomb counting. The converter resolution is  
a function of its full-scale range and number of bits, yielding a 3.74-µV resolution.  
8.3.3 CC Digital Filter  
The CC digital filter generates a 16-bit conversion value from the delta-sigma CC front-end. Its FIR filter uses the  
LFO clock output, which allows it to stop the HFO clock during conversions. New conversions are available  
every 250 ms while CCTL[CC_ON] = 1. Proper use of this peripheral requires turning on the CC modulator in the  
AFE.  
8.3.4 ADC Multiplexer  
The ADC multiplexer provides selectable connections to the VCx inputs, TS1 inputs, internal temperature  
sensor, internal reference voltages, internal 1.8-V regulator, PACK input, and VSS ground reference input. In  
addition, the multiplexer can independently enable the TS1 input connection to the internal thermistor biasing  
circuitry, and enables the user to short the multiplexer inputs for test and calibration purposes.  
8.3.5 Analog-to-Digital Converter (ADC)  
The second ADC is a 16-bit delta-sigma converter designed for general-purpose measurements. The ADC  
automatically scales the input voltage range during sampling based on channel selection. The converter  
resolution is a function of its full-scale range and number of bits, yielding a 38-µV resolution. The default  
conversion time of the ADC is 31.25 ms, but is user-configurable down to 1.95 ms. Decreasing the conversion  
time presents a tradeoff between conversion speed and accuracy, as the resolution decreases for faster  
conversion times.  
8.3.6 ADC Digital Filter  
The ADC digital filter generates a 24-bit conversion result from the delta-sigma ADC front end. Its FIR filter uses  
the LFO clock, which allows it to stop the HFO clock during conversions. The ADC digital filter is capable of  
providing two 24-bit results: one result from the delta-sigma ADC front-end and a second synchronous result  
from the delta-sigma CC front-end.  
8.3.7 Internal Temperature Sensor  
An internal temperature sensor is available on the BQ28Z610-R1 device to reduce the cost, power, and size of  
the external components necessary to measure temperature. It is available for connection to the ADC using the  
multiplexer, and is ideal for quickly determining pack temperature under a variety of operating conditions.  
8.3.8 External Temperature Sensor Support  
The TS1 input is enabled with an internal 18-kΩ (Typ.) linearization pull-up resistor to support the use of a 10-  
kΩ (25°C) NTC external thermistor, such as the Semitec 103AT-2. The NTC thermistor should be connected  
between VSS and the individual TS1 pin. The analog measurement is then taken via the ADC through its input  
multiplexer. If a different thermistor type is required, then changes to configurations may be required.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: BQ28Z610-R1  
 
BQ28Z610-R1  
ZHCSKR6B JANUARY 2020 REVISED JANUARY 2022  
www.ti.com.cn  
VREG  
RNTC  
ADx  
NTC  
8-1. External Thermistor Biasing  
8.3.9 Power Supply Control  
The BQ28Z610-R1 device manages its supply voltage dynamically according to operating conditions. When  
VVC2 > VSWITCHOVER+ VHYS, the AFE connects an internal switch to BAT and uses this pin to supply power to  
its internal 1.8-V LDO, which subsequently powers all device logic and flash operations. Once VC2 decreases to  
VVC2 < VSWITCHOVER, the AFE disconnects its internal switch from VC2 and connects another switch to PACK,  
allowing sourcing of power from a charger (if present). An external capacitor connected to PBI provides a  
momentary supply voltage to help guard against system brownouts due to transient short-circuit or overload  
events that pull VC2 below VSWITCHOVER–  
.
8.3.10 Power-On Reset  
In the event of a power-cycle, the BQ28Z610-R1 AFE holds its internal RESET output pin high for tRST duration  
to allow its internal 1.8-V LDO and LFO to stabilize before running the AGG. The AFE enters power-on reset  
when the voltage at VREG falls below VREGITand exits reset when VREG rises above VREGIT+ VHYS for tRST  
time. After tRST, the BQ28Z610-R1 AGG will write its trim values to the AFE.  
tRST  
normal operation  
(untrimmed)  
normal operation  
(trimmed)  
tOSU  
VIT+  
1.8-V Regulator  
LFO  
VIT–  
AFE RESET  
AGG writes trim values to  
AFE  
8-2. POR Timing Diagram  
8.3.11 Bus Communication Interface  
The BQ28Z610-R1 device has an I2C bus communication interface. This device has the option to broadcast  
information to a smart charger to provide key information to adjust the charging current and charging voltage  
based on the temperature or individual cell voltages.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: BQ28Z610-R1  
BQ28Z610-R1  
ZHCSKR6B JANUARY 2020 REVISED JANUARY 2022  
www.ti.com.cn  
CAUTION  
If the device is configured as a single-master architecture (an application processor) and an  
occasional NACK is detected in the operation, the master can resend the transaction. However, in a  
multi-master architecture, an incorrect ACK leading to accidental loss of bus arbitration can cause a  
master to wait incorrectly for another master to clear the bus. If this master does not get a bus-free  
signal, then it must have in place a method to look for the bus and assume it is free after some  
period of time. Also, if possible, set the clock speed to be 100 kHz or less to significantly reduce the  
issue described above for multi-mode operation.  
8.3.12 I2C Timeout  
The I2C engine will release both SDA and SCL if the I2C bus is held low for ~2 seconds. If the BQ28Z610-R1  
device were holding the lines, releasing them frees the master to drive the lines. Note: that the low time setting  
can be under firmware control but the HW default is 2 seconds.  
8.3.13 Cell Balancing Support  
The integrated cell balancing FETs included in the BQ28Z610-R1 device enable the AFE to bypass cell current  
around a given cell or numerous cells to effectively balance the entire battery stack. External series resistors  
placed between the cell connections and the VCx input pins set the balancing current magnitude. The cell  
balancing circuitry can be enabled or disabled via the CELL_BAL_DET[CB2, CB1] control register. Series input  
resistors between 100 Ωand 1 kΩare recommended for effective cell balancing.  
VC2  
VC1  
VSS  
8-3. Internal Cell Balancing  
8.3.14 N-Channel Protection FET Drive  
The BQ28Z610-R1 device controls two external N-Channel MOSFETs in a back-to-back configuration for battery  
protection. The charge (CHG) and discharge (DSG) FETs are automatically disabled if a safety fault (AOLD,  
ASSC, ASCD, SOV) is detected, and can also be manually turned off using AFE_CONTROL[CHGEN, DSGEN]  
= 0, 0. When the gate drive is disabled, an internal circuit discharges CHG to VC2 and DSG to PACK.  
8.3.15 Low Frequency Oscillator  
The BQ28Z610-R1 AFE includes a low frequency oscillator (LFO) running at 262.144 kHz. The AFE monitors  
the LFO frequency and indicates a failure via LATCH_STATUS[LFO] if the output frequency is much lower than  
normal.  
8.3.16 High Frequency Oscillator  
The BQ28Z610-R1 AGG includes a high frequency oscillator (HFO) running at 16.78 MHz. It is synthesized from  
the LFO output and scaled down to 8.388 MHz with 50% duty cycle.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: BQ28Z610-R1  
BQ28Z610-R1  
ZHCSKR6B JANUARY 2020 REVISED JANUARY 2022  
www.ti.com.cn  
8.3.17 1.8-V Low Dropout Regulator  
The BQ28Z610-R1 AFE contains an integrated 1.8-V LDO that provides regulated supply voltage for the device  
CPU and internal digital logic.  
8.3.18 Internal Voltage References  
The BQ28Z610-R1 AFE provides two internal voltage references with VREF1, used by the ADC and CC, while  
VREF2 is used by the LDO, LFO, current wake comparator, and OCD/SCC/SCD1/SCD2 current protection  
circuitry.  
8.3.19 Overcurrent in Discharge Protection  
The overcurrent in discharge (OCD) function detects abnormally high current in the discharge direction. The  
overload in discharge threshold and delay time are configurable via the OCD_CONTROL register. The  
thresholds and timing can be fine-tuned even further based on a sense resistor with lower resistance or wider  
tolerance via the PROTECTION_CONTROL register. The detection circuit also incorporates a filtered delay  
before disabling the CHG and DSG FETs. When an OCD event occurs, the LATCH_STATUS[OCD] bit is set to  
1 and is latched until it is cleared and the fault condition has been removed.  
8.3.20 Short-Circuit Current in Charge Protection  
The short-circuit current in charge (SCC) function detects catastrophic current conditions in the charge direction.  
The short-circuit in charge threshold and delay time are configurable via the SCC_CONTROL register. The  
thresholds and timing can be fine-tuned even further based on a sense resistor with lower resistance or wider  
tolerance via the PROTECTION_CONTROL register. The detection circuit also incorporates a blanking delay  
before disabling the CHG and DSG FETs. When an SCC event occurs, the LATCH_STATUS[SCC] bit is set to 1  
and is latched until it is cleared and the fault condition has been removed.  
8.3.21 Short-Circuit Current in Discharge 1 and 2 Protection  
The short-circuit current in discharge (SCD) function detects catastrophic current conditions in the discharge  
direction. The short-circuit in discharge thresholds and delay times are configurable via the SCD1_CONTROL  
and SCD2_CONTROL registers. The thresholds and timing can be fine-tuned even further based on a sense  
resistor with lower resistance or wider tolerance via the PROTECTION_CONTROL register. The detection circuit  
also incorporates a blanking delay before disabling the CHG and DSG FETs. When an SCD event occurs, the  
LATCH_STATUS[SCD1] or LATCH_STATUS[SCD2] bit is set to 1 and is latched until it is cleared and the fault  
condition has been removed.  
8.3.22 Primary Protection Features  
The BQ28Z610-R1 gas gauge supports the following battery and system level protection features, which can be  
configured using firmware:  
Cell Undervoltage Protection  
Cell Overvoltage Protection  
Overcurrent in CHARGE Mode Protection  
Overcurrent in DISCHARGE Mode Protection  
Overload in DISCHARGE Mode Protection  
Short Circuit in CHARGE Mode Protection  
Overtemperature in CHARGE Mode Protection  
Overtemperature in DISCHARGE Mode Protection  
Precharge Timeout Protection  
Fast Charge Timeout Protection  
8.3.23 Gas Gauging  
This device uses the Impedance Tracktechnology to measure and determine the available charge in battery  
cells. The accuracy achieved using this method is better than 1% error over the lifetime of the battery. There is  
no full charge/discharge learning cycle required. See the Theory and Implementation of Impedance Track  
Battery Fuel-Gauging Algorithm Application Report for further details.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: BQ28Z610-R1  
BQ28Z610-R1  
ZHCSKR6B JANUARY 2020 REVISED JANUARY 2022  
www.ti.com.cn  
8.3.24 Charge Control Features  
This device supports charge control features, such as:  
Reports charging voltage and charging current based on the active temperature rangeJEITA temperature  
ranges T1, T2, T3, T4, T5, and T6  
Provides more complex charging profiles, including sub-ranges within a standard temperature range  
Reports the appropriate charging current required for constant current charging and the appropriate charging  
voltage needed for constant voltage charging to a smart charger, using the bus communication interface  
Selects the chemical state-of-charge of each battery cell using the Impedance Track method, and reduces  
the voltage difference between cells when cell balancing multiple cells in a series  
Provides pre-charging/zero-volt charging  
Employs charge inhibit and charge suspend if battery pack temperature is out of programmed range  
Reports charging faults and indicates charge status via charge and discharge alarms  
8.3.25 Authentication  
This device supports security by:  
Authentication by the host using the SHA-1 method  
The gas gauge requires SHA-1 authentication before the device can be unsealed or allow full access.  
8.4 Device Functional Modes  
This device supports three modes, but the current consumption varies, based on firmware control of certain  
functions and modes of operation:  
NORMAL mode: In this mode, the device performs measurements, calculations, protections, and data  
updates every 250-ms intervals. Between these intervals, the device is operating in a reduced power stage to  
minimize total average current consumption.  
SLEEP mode: In this mode, the device performs measurements, calculations, protections, and data updates  
in adjustable time intervals. Between these intervals, the device is operating in a reduced power stage to  
minimize total average current consumption.  
SHUTDOWN mode: The device is completely disabled.  
8.4.1 Lifetime Logging Features  
The device supports data logging of several key parameters for warranty and analysis:  
Maximum and minimum cell temperature  
Maximum current in CHARGE or DISCHARGE mode  
Maximum and minimum cell voltages  
8.4.2 Configuration  
The device supports accurate data measurements and data logging of several key parameters.  
8.4.2.1 Coulomb Counting  
The device uses an integrating delta-sigma analog-to-digital converter (ADC) for current measurement. The ADC  
measures charge/discharge flow of the battery by measuring the voltage across a very small external sense  
resistor. The integrating ADC measures a bipolar signal from a range of 100 mV to 100 mV, with a positive  
value when V(SRP) V(SRN), indicating charge current and a negative value indicating discharge current. The  
integration method uses a continuous timer and internal counter, which has a rate of 0.65 nVh.  
8.4.2.2 Cell Voltage Measurements  
The BQ28Z610-R1 measures the individual cell voltages at 250-ms intervals using an ADC. This measured  
value is internally scaled for the ADC and is calibrated to reduce any errors due to offsets. This data is also used  
for calculating the impedance of the individual cell for Impedance Track gas gauging.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: BQ28Z610-R1  
 
BQ28Z610-R1  
ZHCSKR6B JANUARY 2020 REVISED JANUARY 2022  
www.ti.com.cn  
8.4.2.3 Current Measurements  
The current measurement is performed by measuring the voltage drop across the external sense resistor (1 mΩ  
to 3 mΩ) and the polarity of the differential voltage determines if the cell is in the CHARGE or DISCHARGE  
mode.  
8.4.2.4 Auto Calibration  
The auto-calibration feature helps to cancel any voltage offset across the SRP and SRN pins for accurate  
measurement of the cell voltage, charge/discharge current, and thermistor temperature. The auto-calibration is  
performed when there is no communication activity for a minimum of 5 s on the bus lines.  
8.4.2.5 Temperature Measurements  
This device has an internal sensor for on-die temperature measurements, and the ability to support external  
temperature measurements via the external NTC on the TS1 pin. These two measurements are individually  
enabled and configured.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: BQ28Z610-R1  
BQ28Z610-R1  
ZHCSKR6B JANUARY 2020 REVISED JANUARY 2022  
www.ti.com.cn  
9 Applications and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The BQ28Z610-R1 gas gauge is a primary protection device that can be used with a 1- to 2-series Li-ion/Li-  
polymer battery pack. To implement and design a comprehensive set of parameters for a specific battery pack,  
the user needs Battery Management Studio (BQSTUDIO), which is a graphical user-interface tool installed on a  
PC during development. The firmware installed in the product has default values, which are summarized in the  
BQ28Z610-R1 Technical Reference Manual (SLUUC81) for this product. Using the BQSTUDIO tool, these  
default values can be changed to cater to specific application requirements during development once the system  
parameters, such as fault trigger thresholds for protection, enable/disable of certain features for operation,  
configuration of cells, chemistry that best matches the cell used, and more are known. This data can be referred  
to as the "golden image."  
9.2 Typical Applications  
9-1 shows the BQ28Z610-R1 application schematic for the 2-series configuration. 9-2 shows a wireless  
(Bluetooth) speaker application block diagram.  
0.1  
0.1  
µF  
µF  
2N7002K  
10 M  
10 M  
10 k  
Fuse  
13  
100  
1
12  
VC1  
VSS  
SRN  
0.1 µF  
0.1 µF  
PWPD  
2 s  
1s  
0.1µF  
1 µF  
11  
10  
9
2
3
4
5
6
VC2  
PBI  
5
0.1 µF  
0.1 µF  
0.1 µF  
5.1 k  
5.1 k  
SRP  
TS1  
SCL  
SDA  
µF  
2.2  
PACK+  
CHG  
10 k  
100  
10  
100  
100  
8
SCL  
SDA  
PACK  
DSG  
MM3Z5V6C  
100  
7
MM3Z5V6C  
PACK  
100  
100  
1 to 3 mΩ  
Note:  
The input filter capacitors of 0.1 µF for the SRN and SRP pins must be located near the pins of  
the device.  
9-1. BQ28Z610-R1 2-Series Cell Typical Implementation  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: BQ28Z610-R1  
 
 
 
 
BQ28Z610-R1  
ZHCSKR6B JANUARY 2020 REVISED JANUARY 2022  
www.ti.com.cn  
Audio  
Power Amp  
Boost Converter  
Battery  
Gauge  
Charger  
Audio Processor  
MCU  
System Side  
Pack Side  
2
I C  
Power  
Copyright © 2017, Texas Instruments Incorporated  
9-2. Wireless (Bluetooth) Speaker Application Block Diagram  
9.2.1 Design Requirements (Default)  
DESIGN PARAMETER  
Cell Configuration  
EXAMPLE  
2s1p (2-series with 1 parallel)  
Design Capacity  
4400 mAh  
Device Chemistry  
100 (LiCoO2/graphitized carbon)  
Cell Overvoltage at Standard Temperature  
Cell Undervoltage  
4300 mV  
2500 mV  
Shutdown Voltage  
2300 mV  
Overcurrent in CHARGE Mode  
Overcurrent in DISCHARGE Mode  
Short Circuit in CHARGE Mode  
Short Circuit in DISCHARGE 1 Mode  
Safety Over Voltage  
6000 mA  
6000 mA  
0.1 V/Rsense across SRP, SRN  
0.1 V/Rsense across SRP, SRN  
4500 mV  
Disabled  
Enabled  
0°C  
Cell Balancing  
Internal and External Temperature Sensor  
Under Temperature Charging  
Under Temperature Discharging  
BROADCAST Mode  
0°C  
Enabled  
9.2.2 Detailed Design Procedure  
9.2.2.1 Setting Design Parameters  
For the firmware settings needed for the design requirements, refer to the BQ28Z610-R1 Technical Reference  
Manual.  
To set the 2s1p battery pack, go to data flash Configuration: DA Configuration register's bit 0 (CC0) = 1.  
To set design capacity, set the data flash value to 4400 in the Gas Gauging: Design: Design Capacity  
register.  
To set device chemistry, go to data flash SBS Configuration: Data: Device Chemistry. The BQSTUDIO  
software automatically populates the correct chemistry identification. This selection is derived from using the  
BQCHEM feature in the tools and choosing the option that matches the device chemistry from the list.  
To protect against cell overvoltage, set the data flash value to 4300 in Protections: COV: Standard Temp.  
To protect against cell undervoltage, set the data flash value to 2500 in the Protections: CUV register.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: BQ28Z610-R1  
 
BQ28Z610-R1  
ZHCSKR6B JANUARY 2020 REVISED JANUARY 2022  
www.ti.com.cn  
To set the shutdown voltage to prevent further pack depletion due to low pack voltage, program Power:  
Shutdown: Shutdown voltage = 2300.  
To protect against large charging currents when the AC adapter is attached, set the data flash value to 6000  
in the Protections: OCC: Threshold register.  
To protect against large discharging currents when heavy loads are attached, set the data flash value to –  
6000 in the Protections: OCD: Threshold register.  
Program a short circuit delay timer and threshold setting to enable the operating the system for large short  
transient current pulses. These two parameters are under Protections: ASCC: Threshold = 100 for  
charging current. The discharge current setting is Protections: ASCD:Threshold = 100 mV.  
To prevent the cells from overcharging and adding a second level of safety, there is a register setting that will  
shut down the device if any of the cells voltage measurement is greater than the Safety Over Voltage setting  
for greater than the delay time. Set this data flash value to 4500 in Permanent Fail: SOV: Threshold.  
To disable the cell balancing feature, set the data flash value to 0 in Settings: Configuration: Balancing  
Configuration: bit 0 (CB).  
To enable the internal temperature and the external temperature sensors: Set Settings:Configuration:  
Temperature Enable: Bit 0 (TSInt) = 1 for the internal sensor; set Bit 1 (TS1) = 1 for the external sensor.  
To prevent charging of the battery pack if the temperature falls below 0°C, set Protections: UTC:Threshold  
= 0.  
To prevent discharging of the battery pack if the temperature falls below 0°C, set Protections:  
UTD:Threshold = 0.  
To provide required information to the smart chargers, the gas gauge must operate in BROADCAST mode.  
To enable this, set the [BCAST] bit in Configuration: SBS Configuration 2: Bit 0 [BCAST] = 1.  
Each parameter listed for fault trigger thresholds has a delay timer setting associated for any noise filtering.  
These values, along with the trigger thresholds for fault detection, may be changed based upon the application  
requirements using the data flash settings in the appropriate register stated in the BQ28Z610-R1 Technical  
Reference Manual.  
9.2.2.2 Calibration Process  
The calibration of current, voltage, and temperature readings is accessible by writing 0xF081 or 0xF082 to  
ManufacturerAccess(). A detailed procedure is included in the BQ28Z610-R1 Technical Reference Manual in the  
Calibration section. The description allows for calibration of cell voltage measurement offset, battery voltage,  
pack voltage, current calibration, coulomb counter offset, PCB offset, CC gain/capacity gain, and temperature  
measurement for both internal and external sensors.  
9.2.2.3 Gauging Data Updates  
When a battery pack enabled with the BQ28Z610-R1 device is first cycled, the value of FullChargeCapacity()  
updates several times. 9-3 shows RemainingCapacity() and FullChargeCapacity(), and where those updates  
occur. As part of the Impedance Track algorithm, it is expected that FullChargeCapacity() may update at the end  
of charge, at the end of discharge, and at rest.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: BQ28Z610-R1  
BQ28Z610-R1  
ZHCSKR6B JANUARY 2020 REVISED JANUARY 2022  
www.ti.com.cn  
9.2.3 Application Curve  
9-3. Elapsed Time(s)  
10 Power Supply Recommendations  
There are two inputs for this device, the PACK input and VC2. The PACK input can be an unregulated input from  
a typical AC adapter. This input should always be greater than the maximum voltage associated with the number  
of series cells configured. The input voltage for the VC2 pin will have a minimum of 2.2 V to a maximum of 26 V  
with the recommended external RC filter.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: BQ28Z610-R1  
 
 
BQ28Z610-R1  
ZHCSKR6B JANUARY 2020 REVISED JANUARY 2022  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
The layout for the high-current path begins at the PACK+ pin of the battery pack. As charge current travels  
through the pack, it finds its way through protection FETs, a chemical fuse, the Li-ion cells and cell  
connections, and the sense resistor, and then returns to the PACKpin. In addition, some components are  
placed across the PACK+ and PACKpins to reduce effects from electrostatic discharge.  
The N-channel charge and discharge FETs must be selected for a given application. Most portable battery  
applications are a good option for the CSD16412Q5A. These FETs are rated at 14-A, 25-V device with  
Rds(on) of 11 mΩwhen the gate drive voltage is 10 V. The gates of all protection FETs are pulled to the  
source with a high-value resistor between the gate and source to ensure they are turned off if the gate drive  
is open. The capacitors (both 0.1 µF values) placed across the FETs are to help protect the FETs during an  
ESD event. The use of two devices ensures normal operation if one of them becomes shorted. For effective  
ESD protection, the copper trace inductance of the capacitor leads must be designed to be as short and wide  
as possible. Ensure that the voltage rating of both these capacitors is adequate to hold off the applied voltage  
if one of the capacitors becomes shorted.  
The quality of the Kelvin connections at the sense resistor is critical. The sense resistor must have a  
temperature coefficient no greater than 50 ppm in order to minimize current measurement drift with  
temperature. Choose the value of the sense resistor to correspond to the available overcurrent and short-  
circuit ranges of the BQ28Z610-R1. Select the smallest value possible in order to minimize the negative  
voltage generated on the BQ28Z610-R1 VSS node(s) during a short circuit. This pin has an absolute  
minimum of 0.3 V. Parallel resistors can be used as long as good Kelvin sensing is ensured. The device is  
designed to support a 1-mΩto 3-mΩsense resistor.  
A pair of series 0.1-μF ceramic capacitors is placed across the PACK+ and PACKpins to help in the  
mitigation of external electrostatic discharges. The two devices in series ensure continued operation of the  
pack if one of the capacitors becomes shorted. Optionally, a transorb such as the SMBJ2A can be placed  
across the pins to further improve ESD immunity.  
In reference to the gas gauge circuit the following features require attention for component placement and  
layout: Differential Low-Pass Filter, I2C communication, and PBI (Power Backup Input).  
The BQ28Z610-R1 uses an integrating delta-sigma ADC for current measurements. Add a 100-Ωresistor  
from the sense resistor to the SRP and SRN inputs of the device. Place a 0.1-μF filter capacitor across the  
SRP and SRN inputs. Optional 0.1-μF filter capacitors can be added for additional noise filtering for each  
sense input pin to ground, if required for your circuit. Place all filter components as close as possible to the  
device. Route the traces from the sense resistor in parallel to the filter circuit. Adding a ground plane around  
the filter network can add additional noise immunity.  
0.1 µF  
0.1 µF  
0.1 µF  
100  
100  
0.001, 50 ppm  
Filter Circuit  
Sense  
Ground  
Shield  
resistor  
11-1. BQ28Z610-R1 Differential Filter  
The BQ28Z610-R1 has an internal LDO that is internally compensated and does not require an external  
decoupling capacitor. The PBI pin is used as a power supply backup input pin, providing power during brief  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: BQ28Z610-R1  
 
 
BQ28Z610-R1  
ZHCSKR6B JANUARY 2020 REVISED JANUARY 2022  
www.ti.com.cn  
transient power outages. A standard 2.2-μF ceramic capacitor is connected from the PBI pin to ground, as  
shown in application example.  
The I2C clock and data pins have integrated high-voltage ESD protection circuits; however, adding a Zener  
diode and series resistor provides more robust ESD performance. The I2C clock and data lines have an  
internal pull-down. When the gas gauge senses that both lines are low (such as during removal of the pack),  
the device performs auto-offset calibration and then goes into SLEEP mode to conserve power.  
11.2 Layout Example  
CSD16412Q5A  
CSD16412Q5A  
D
G
D
G
D
S
D
S
D
S
D
S
D
S
D
S
Power Trace Line  
PACK+  
PACK–  
Reverse Polarity  
Portection  
Fuse  
Input filters  
13  
1
VSS  
12  
11  
10  
9
VC1  
VC2  
PBI  
PWPD  
2 s  
1 s  
2
3
SRN  
SRP  
TS1  
SCL  
Differential Input well  
matched for accuracy  
Thermistor  
CHG  
4
5
8
7
PACK  
DSG  
SCL  
SDA  
Bus  
Communication  
Power Ground Trace  
6
SDA  
Exposed Thermal Pad  
Via connects to Power Ground  
Via connects between two layers  
11-2. BQ28Z610-R1 Board Layout  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: BQ28Z610-R1  
 
BQ28Z610-R1  
ZHCSKR6B JANUARY 2020 REVISED JANUARY 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
12.2 Documentation Support  
BQ28Z610-R1 Technical Reference Manual  
Theory and Implementation of Impedance Track Battery Fuel-Gauging Algorithm Application Report  
12.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.5 Trademarks  
Impedance Trackand TI E2Eare trademarks of Texas Instruments.  
Windows® is a registered trademark of Microsoft.  
Bluetooth® is a registered trademark of Bluetooth SIG, Inc.  
所有商标均为其各自所有者的财产。  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: BQ28Z610-R1  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Jun-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ28Z610DRZR-R1  
BQ28Z610DRZT-R1  
ACTIVE  
SON  
SON  
DRZ  
12  
12  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
28Z6  
10R1  
ACTIVE  
DRZ  
NIPDAU  
28Z6  
10R1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Jun-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ28Z610DRZR-R1  
BQ28Z610DRZT-R1  
SON  
SON  
DRZ  
DRZ  
12  
12  
3000  
250  
330.0  
180.0  
12.4  
12.4  
2.8  
2.8  
4.3  
4.3  
1.2  
1.2  
4.0  
4.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ28Z610DRZR-R1  
BQ28Z610DRZT-R1  
SON  
SON  
DRZ  
DRZ  
12  
12  
3000  
250  
552.0  
552.0  
346.0  
185.0  
36.0  
36.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
BQ28Z610DRZR-R1  
BQ28Z610DRZT-R1  
DRZ  
DRZ  
VSON  
VSON  
12  
12  
3000  
250  
381.51  
381.51  
4.22  
4.22  
2286  
2286  
0
0
Pack Materials-Page 3  
PACKAGE OUTLINE  
VSON - 1 mm max height  
DRZ0012A  
PLASTIC QUAD FLATPACK- NO LEAD  
4.15  
3.85  
B
A
PIN 1 INDEX AREA  
2.65  
2.35  
1
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0
2.55  
2.35  
(0.2) TYP  
2X (0.2)  
6
7
SYMM  
13  
2.05  
1.85  
2X  
2
10X 0.4  
1
12  
SYMM  
0.3  
12X  
PIN 1 ID  
(OPTIONAL)  
0.1  
0.1  
C A B  
C
0.5  
0.3  
12X  
0.05  
4218895/B 03/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VSON - 1 mm max height  
DRZ0012A  
PLASTIC QUAD FLATPACK- NO LEAD  
2X (2.25)  
2X (0.975)  
12X (0.6)  
12X (0.2)  
1
12  
(1.95)  
10X (0.4)  
13  
SYMM  
2X (2)  
(2.9)  
2X (0.725)  
(Ø0.2) VIA  
TYP  
6
7
(R0.05) TYP  
4X (0.2)  
SYMM  
(2.45)  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
EXPOSED  
METAL  
EXPOSED  
METAL  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218895/B 03/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VSON - 1 mm max height  
DRZ0012A  
PLASTIC QUAD FLATPACK- NO LEAD  
2X (1.08)  
4X (1.2625)  
2X (0.64)  
12X (0.6)  
12X (0.2)  
1
7
10X (0.4)  
SYMM  
13  
2X (1.75)  
(0.05) TYP  
12  
6
SYMM  
4X (0.375)  
METAL TYP  
4X (0.2)  
2X (2.25)  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD  
79% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4218895/B 03/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY