BQ29732DSER [TI]

锂离子/锂聚合物高级单节电池保护器 | DSE | 6 | -40 to 85;
BQ29732DSER
型号: BQ29732DSER
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

锂离子/锂聚合物高级单节电池保护器 | DSE | 6 | -40 to 85

电池 光电二极管
文件: 总34页 (文件大小:1924K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BQ2970, BQ2971, BQ2972, BQ2973  
SLUSBU9H – MARCH 2014 – REVISED JUNE 2021  
BQ297xx Cost-Effective Voltage and Current Protection Integrated Circuit for Single-  
Cell Li-Ion and Li-Polymer Batteries  
1 Features  
2 Applications  
Input voltage range pack+: VSS – 0.3 V to 12 V  
FET drive:  
– CHG and DSG FET drive output  
Voltage sensing across external FETs for  
overcurrent protection (OCP) is within ±5 mV  
(typical)  
Tablet PCs  
Mobile handsets  
Handheld data terminals  
3 Description  
The BQ2970 battery cell protection device provides  
an accurate monitor and trigger threshold for  
overcurrent protection during high discharge/charge  
current operation or battery overcharge conditions.  
Fault detection  
– Overcharge detection (OVP)  
– Over-discharge detection (UVP)  
– Charge overcurrent detection (OCC)  
– Discharge overcurrent detection (OCD)  
– Load short-circuit detection (SCP)  
Zero voltage charging for depleted battery  
Factory programmed fault protection thresholds  
– Fault detection voltage thresholds  
– Fault trigger timers  
– Fault recovery timers  
Modes of operation without battery charger  
enabled  
– NORMAL mode ICC = 4 µA  
– Shutdown Iq = 100 nA  
The BQ2970 device provides the protection functions  
for Li-ion/Li-polymer cells, and monitors across the  
external power FETs for protection due to high  
charge or discharge currents. In addition, there is  
overcharge and depleted battery monitoring and  
protection. These features are implemented with low  
current consumption in NORMAL mode operation.  
Device Information  
PART NUMBER  
PACKAGE(1)  
BODY SIZE (NOM)  
BQ2970, BQ2971,  
BQ2972, BQ2973  
WSON (6)  
1.50 mm × 1.50 mm  
Operating temperature range TA = –40°C to +85°C  
Package:  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
– 6-pin DSE (1.50 mm × 1.50 mm × 0.75 mm)  
PACK+  
0.0  
œ0.5  
œ1.0  
œ1.5  
œ2.0  
œ2.5  
œ3.0  
œ3.5  
œ4.0  
V–  
NC  
330  
BAT  
VSS  
COUT  
DOUT  
CELLP  
CELLN  
2.2k  
PACK–  
D
S
S
CHG  
DSG  
Simplified Schematic  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
Temperature (°C)  
C012  
OCD Detection Accuracy Versus Temperature  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
BQ2970, BQ2971, BQ2972, BQ2973  
SLUSBU9H – MARCH 2014 – REVISED JUNE 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
6.1 Pin Descriptions..........................................................4  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings........................................ 4  
7.2 ESD Ratings............................................................... 4  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................5  
7.5 DC Characteristics......................................................5  
7.6 Programmable Fault Detection Thresholds................ 6  
7.7 Programmable Fault Detection Timer Ranges............6  
7.8 Typical Characteristics................................................7  
8 Parameter Measurement Information..........................10  
8.1 Timing Charts............................................................10  
8.2 Test Circuits.............................................................. 12  
8.3 Test Circuit Diagrams................................................14  
9 Detailed Description......................................................14  
9.1 Overview...................................................................14  
9.2 Functional Block Diagram.........................................15  
9.3 Feature Description...................................................15  
9.4 Device Functional Modes..........................................15  
10 Application and Implementation................................19  
10.1 Application Information........................................... 19  
10.2 Typical Application.................................................. 19  
11 Power Supply Recommendations..............................22  
12 Layout...........................................................................22  
12.1 Layout Guidelines................................................... 22  
12.2 Layout Example...................................................... 22  
13 Device and Documentation Support..........................23  
13.1 Related Documentation.......................................... 23  
13.2 Support Resources................................................. 23  
13.3 Trademarks.............................................................23  
13.4 Electrostatic Discharge Caution..............................23  
13.5 Glossary..................................................................23  
14 Mechanical, Packaging, and Orderable  
Information.................................................................... 23  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision G (December 2018) to Revision H (June 2021)  
Page  
Changed the BQ29728 and BQ29737 devices to Production Data....................................................................3  
Changes from Revision F (December 2018) to Revision G (January 2020)  
Page  
Changed the Device Comparison Table ............................................................................................................ 3  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: BQ2970 BQ2971 BQ2972 BQ2973  
 
BQ2970, BQ2971, BQ2972, BQ2973  
SLUSBU9H – MARCH 2014 – REVISED JUNE 2021  
www.ti.com  
5 Device Comparison Table  
OCD  
DELAY  
(ms)  
OVP DELAY  
UVP DELAY  
(ms)  
OCC DELAY  
(ms)  
SCD DELAY  
PART NUMBER(1) OVP (V)  
UVP (V)  
OCC (V)  
OCD (V)  
SCD (V)  
(s)  
(µs)  
BQ29700  
BQ29701  
BQ29702  
BQ29703  
BQ29704  
BQ29705  
BQ29706  
BQ29707  
BQ29716  
BQ29717  
BQ29718  
BQ29723  
BQ29728  
BQ29729  
BQ29732  
BQ29733  
BQ29737  
4.275  
4.280  
4.350  
4.425  
4.425  
4.425  
3.850  
4.280  
4.425  
4.425  
4.425  
4.425  
4.280  
4.275  
4.280  
4.400  
4.250  
1.25  
1.25  
1
2.800  
2.300  
2.800  
2.300  
2.500  
2.500  
2.500  
2.800  
2.300  
2.500  
2.500  
2.500  
2.800  
2.300  
2.500  
2.800  
2.800  
144  
144  
96  
–0.100  
–0.100  
–0.155  
–0.100  
–0.100  
–0.100  
–0.150  
–0.090  
–0.100  
–0.100  
–0.100  
–0.060  
–0.100  
–0.100  
–0.100  
–0.100  
–0.050  
8
8
8
8
8
8
8
6
8
8
8
4
8
8
8
8
16  
0.100  
0.125  
0.160  
0.160  
0.125  
0.150  
0.200  
0.090  
0.165  
0.130  
0.100  
0.100  
0.150  
0.130  
0.190  
0.120  
0.100  
20  
8
0.5  
0.5  
0.3  
0.5  
0.5  
0.5  
0.6  
0.3  
0.5  
0.5  
0.5  
0.3  
0.5  
0.5  
0.5  
0.3  
0.3  
250  
250  
250  
250  
250  
250  
250  
250  
250  
250  
250  
250  
250  
250  
250  
250  
250  
16  
8
1.25  
1.25  
1.25  
1.25  
1
20  
20  
8
20  
8
144  
96  
8
16  
8
1.25  
1.25  
1.25  
1
20  
20  
8
20  
8
96  
8
1.25  
1.25  
1.25  
1.25  
1
144  
20  
8
8
144  
20  
8
8
96  
16  
0.25, 1,  
1.25, 4.5  
20, 96, 125, –0.045 to  
144 –0.155  
8, 16, 20, 0.3, 0.4, 0.5,  
48 0.6  
BQ297xy  
3.85–4.6  
2.0–2.8  
4, 6, 8, 16  
0.090–0.200  
250  
(1) All of the protections have a recovery delay time. The recovery timer starts as soon as the fault is triggered. The device starts to check  
for a recovery condition only when the recovery timer expires. This is NOT a delay time between recovery condition to FETs recovery.  
OVP recovery delay = 12 ms; UVP/OCC/OCD recovery delay = 8 ms.  
6 Pin Configuration and Functions  
NC  
COUT  
DOUT  
1
2
3
6
5
4
V–  
BAT  
VSS  
Figure 6-1. DSE Package 6-PIN WSON Top View  
Table 6-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
BAT  
NO.  
5
P
O
VDD pin  
COUT  
DOUT  
NC  
2
Gate Drive Output for Charge FET  
Gate Drive Output for Discharge FET  
No Connection (electrically open, do not connect to BAT or VSS)  
Ground pin  
3
O
1
NC  
P
VSS  
V–  
4
6
I/O  
Input pin for charger negative voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: BQ2970 BQ2971 BQ2972 BQ2973  
 
 
 
BQ2970, BQ2971, BQ2972, BQ2973  
SLUSBU9H – MARCH 2014 – REVISED JUNE 2021  
www.ti.com  
6.1 Pin Descriptions  
6.1.1 Supply Input: BAT  
This pin is the input supply for the device and is connected to the positive terminal of the battery pack. A 0.1-µF  
input capacitor is connected to ground for filtering noise.  
6.1.2 Cell Negative Connection: VSS  
This pin is an input to the device for cell negative ground reference. Internal circuits associated with cell voltage  
measurements and overcurrent protection input to differential amplifier for either Vds sensing or external sense  
resistor sensing will be referenced to this node.  
6.1.3 Voltage Sense Node: V–  
This is a sense node used for measuring several fault detection conditions, such as overcurrent charging or  
overcurrent discharging configured as Vds sensing for protection. This input, in conjunction with VSS, forms the  
differential measurement for the stated fault detection conditions. A 2.2-kΩ resistor is connected between this  
input pin and Pack– terminal of the system in the application.  
6.1.4 Discharge FET Gate Drive Output: DOUT  
This pin is an output to control the discharge FET. The output is driven from an internal circuitry connected to the  
BAT supply. This output transitions from high to low when a fault is detected, and requires the DSG FET to turn  
OFF. A 5-MΩ high impedance resistor is connected from DOUT to VSS for gate capacitance discharge when the  
FET is turned OFF.  
6.1.5 Charge FET Gate Drive Output: COUT  
This pin is an output to control the charge FET. The output is driven from an internal circuitry connected to the  
BAT supply. This output transitions from high to low when a fault is detected, and requires the CHG FET to turn  
OFF. A 5-MΩ high impedance resistor is connected from COUT to Pack– for gate capacitance discharge when  
FET is turned OFF.  
7 Specifications  
7.1 Absolute Maximum Ratings  
MIN(1)  
–0.3  
MAX  
12  
UNIT  
V
Input voltage: BAT  
Supply control and input  
V– pin(pack–)  
BAT – 28  
VSS – 0.3  
BAT – 28  
–40  
BAT + 0.3  
BAT + 0.3  
BAT + 0.3  
85  
V
DOUT (Discharge FET Output), GDSG (Discharge FET Gate Drive)  
V
FET drive and protection COUT (Charge FET Output), GCHG (Charge FET Gate Drive)  
Operating temperature: TFUNC  
V
°C  
°C  
Storage temperature, Tstg  
–55  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings can cause permanent damage to the device. These are stress  
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated  
under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods can affect device  
reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS–001, all pins(2)  
±2000  
Electrostatic  
Discharge  
(1)  
VESD  
V
Charged device model (CDM), per JEDEC specification JESD22-C101, all  
pins(3)  
±500  
(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges  
into the device.  
(2) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as 1000  
V can have higher performance.  
(3) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as 250  
V can have higher performance.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: BQ2970 BQ2971 BQ2972 BQ2973  
 
 
 
 
 
 
 
 
BQ2970, BQ2971, BQ2972, BQ2973  
SLUSBU9H – MARCH 2014 – REVISED JUNE 2021  
www.ti.com  
7.3 Recommended Operating Conditions  
MIN  
–0.3  
MAX  
8
UNIT  
V
Positive input voltage: BAT  
Supply control and input  
Negative input voltage: V–  
BAT – 25  
VSS  
BAT  
BAT  
BAT  
85  
V
Discharge FET control: DOUT  
FET drive and protection  
V
Charge FET control: COUT  
BAT – 25  
–40  
V
Operating temperature: TAmb  
°C  
°C  
°C  
°C/W  
Storage temperature: TS  
Temperature Ratings  
–55  
150  
300  
250  
Lead temperature (soldering 10 s)  
Thermal resistance junction to ambient, θJA  
7.4 Thermal Information  
BQ297xx  
THERMAL METRIC(1)  
DSE (WSON)  
12 PINS  
190.5  
UNIT  
RθJA, High K  
RθJC(top)  
RθJB  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
94.9  
149.3  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
6.4  
ψJB  
152.8  
RθJC(bottom)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
7.5 DC Characteristics  
Typical Values stated where TA = 25°C and BAT = 3.6 V. Min/Max values stated where TA = –40°C to 85°C, and BAT = 3 V to  
4.2 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Current consumption  
BAT – VSS  
BAT – V–  
1.5  
1.5  
8
V
28  
VBAT  
Device operating range  
INORMAL  
Current consumption in NORMAL mode  
BAT = 3.8 V, V– = 0 V  
4
5.5  
0.1  
µA  
µA  
IPower_down Current consumption in power down mode BAT = V– = 1.5 V  
FET Output, DOUT and COUT  
VOL  
VOH  
VOL  
VOH  
Charge FET low output  
Charge FET high output  
Discharge FET low output  
Discharge FET high output  
IOL = 30 µA, BAT = 3.8 V  
IOH = –30 µA, BAT = 3.8 V  
IOL = 30 µA, BAT = 2 V  
IOH = –30 µA, BAT = 3.8 V  
0.4  
3.7  
0.2  
3.7  
0.5  
0.5  
V
V
V
V
3.4  
3.4  
100  
8
Pullup Internal Resistance on V–  
RV–D  
Resistance between V– and VBAT  
VBAT = 1.8 V, V– = 0 V  
VBAT = 3.8 V  
300  
550  
24  
kΩ  
µA  
Current sink on V–  
IV–S  
Current sink on V– to VSS  
Load short detection on V–  
VBAT  
1 V  
Vshort  
Short detection voltage  
VBAT = 3.8 V and RPackN = 2.2 kΩ  
V
V
0-V battery charge function  
V0CHG  
0-V battery charging start voltage  
0-V battery charging function allowed  
1.7  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: BQ2970 BQ2971 BQ2972 BQ2973  
 
 
 
 
BQ2970, BQ2971, BQ2972, BQ2973  
SLUSBU9H – MARCH 2014 – REVISED JUNE 2021  
www.ti.com  
7.5 DC Characteristics (continued)  
Typical Values stated where TA = 25°C and BAT = 3.6 V. Min/Max values stated where TA = –40°C to 85°C, and BAT = 3 V to  
4.2 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
0-V battery charge inhibit function  
0-V battery charging inhibit voltage  
threshold  
V0INH  
0-V battery charging function disallowed  
0.75  
V
7.6 Programmable Fault Detection Thresholds  
PARAMETER  
CONDITION  
MIN  
TYP  
MAX UNIT  
TA = 25°C  
–10  
10  
20  
mV  
mV  
Factory Device Configuration: 3.85 V to  
4.60 V in 50-mV steps  
VOVP  
Overcharge detection voltage  
TA = 0°C to  
60°C  
–20  
–20  
–50  
Overcharge release hysteresis 100 mV and (VSS – V–) > OCC (min) for release, TA  
=
VOVP–Hys  
VUVP  
20  
50  
mV  
mV  
voltage  
25°C  
Over-discharge detection  
voltage  
Factory Device Configuration: 2.00 V to 2.80 V in 50-mV  
steps, TA = 25°C  
Over-discharge release  
hysteresis voltage  
VUVP+Hys  
100 mV and (BAT – V–) > 1 V for release, TA = 25°C  
–50  
–10  
–15  
50  
10  
15  
mV  
mV  
mV  
TA = 25°C  
Discharging overcurrent  
detection voltage  
Factory Device Configuration: 90 mV to  
200 mV in 5-mV steps  
VOCD  
TA = –40°C to  
85°C  
Release when BAT – V– > 1 V  
TA = 25°C  
Release of Release of discharging  
VOCD overcurrent detection voltage  
1
V
–10  
–15  
10  
15  
mV  
mV  
Charging overcurrent detection Factory Device Configuration: –45 mV to  
voltage  
VOCC  
TA = –40°C to  
85°C  
–155 mV in 5-mV steps  
Release of Release of overcurrent  
Release when VSS – V– ≥ OCC (min)  
40  
1
mV  
mV  
V
VOCC  
VSCC  
detection voltage  
Factory Device Configuration: 300 mV,  
400 mV, 500 mV, 600 mV  
Short Circuit detection voltage  
TA = 25°C  
–100  
100  
Release of Short Circuit  
detection voltage  
VSCCR  
Release when BAT – V– ≥ 1 V  
7.7 Programmable Fault Detection Timer Ranges  
PARAMETER  
CONDITION  
MIN  
TYP  
MAX UNIT  
tOVPD  
tUVPD  
Overcharge detection delay time Factory Device Configuration: 0.25 s, 1 s, 1.25 s, 4.5 s  
–20%  
20%  
20%  
s
Over-discharge detection delay  
time  
Factory Device Configuration: 20 ms, 96 ms, 125 ms, 144  
ms  
–20%  
ms  
Discharging overcurrent  
detection delay time  
tOCDD  
Factory Device Configuration: 8 ms, 16 ms, 20 ms, 48 ms –20%  
20%  
ms  
Charging overcurrent detection  
delay time  
tOCCD  
tSCCD  
Factory Device Configuration: 4 ms, 6 ms, 8 ms, 16 ms  
–20%  
–50%  
20%  
50%  
ms  
µs  
Short Circuit detection delay time 250 µs (fixed)  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: BQ2970 BQ2971 BQ2972 BQ2973  
 
 
BQ2970, BQ2971, BQ2972, BQ2973  
SLUSBU9H – MARCH 2014 – REVISED JUNE 2021  
www.ti.com  
7.8 Typical Characteristics  
0.050  
0.045  
0.040  
0.035  
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
0.000  
6
5
4
3
2
1
0
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C001  
C002  
VBAT = 1.5 V  
VBAT = 3.9 V  
Figure 7-1. 1.5-V IBAT Versus Temperature  
Figure 7-2. 3.9-V IBAT Versus Temperature  
1.34  
1.32  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
1.18  
œ1.32  
œ1.34  
œ1.36  
œ1.38  
œ1.40  
œ1.42  
œ1.44  
œ1.46  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C003  
C004  
FOSC, Setting = 1.255  
kHz  
VBAT, Setting = 0 V  
Figure 7-4. 0-V Charging Allowed Versus  
Temperature  
Figure 7-3. Internal Oscillator Frequency Versus  
Temperature  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
4
2
0
œ2  
œ4  
œ6  
œ8  
œ10  
œ12  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C005  
C006  
OVP, Setting = 4.275 V  
Figure 7-5. 0-V Charging Disallowed Versus  
Temperature  
Figure 7-6. OVP Detection Accuracy Versus  
Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: BQ2970 BQ2971 BQ2972 BQ2973  
 
BQ2970, BQ2971, BQ2972, BQ2973  
SLUSBU9H – MARCH 2014 – REVISED JUNE 2021  
www.ti.com  
1350  
1300  
1250  
1200  
1150  
1100  
0
œ2  
œ4  
œ6  
œ8  
œ10  
œ12  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C007  
C008  
tOVPD, Setting = 1.25 s  
UVP, Setting = 2.800 V  
Figure 7-7. OVP Detection Dely Time Versus  
Temperature  
Figure 7-8. UVP Detection Accuracy Versus  
Temperature  
160  
155  
150  
145  
140  
135  
130  
0.0  
œ0.2  
œ0.4  
œ0.6  
œ0.8  
œ1.0  
œ1.2  
œ1.4  
œ1.6  
œ1.8  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C009  
C010  
tUVPD, Setting = 144 ms  
VOCC, Setting = –100 mV  
Figure 7-9. UVP Detection Delay Time Versus  
Temperature  
Figure 7-10. OCC Detection Accuracy Versus  
Temperature  
8.6  
8.4  
8.2  
8.0  
7.8  
7.6  
7.4  
7.2  
7.0  
0.0  
œ0.5  
œ1.0  
œ1.5  
œ2.0  
œ2.5  
œ3.0  
œ3.5  
œ4.0  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C011  
C012  
tOCCD, Setting = 8 ms  
VOCD, Setting = 100 mV  
Figure 7-11. OCC Detection Delay Time Versus  
Temperature  
Figure 7-12. OCD Detection Accuracy Versus  
Temperature  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: BQ2970 BQ2971 BQ2972 BQ2973  
BQ2970, BQ2971, BQ2972, BQ2973  
SLUSBU9H – MARCH 2014 – REVISED JUNE 2021  
www.ti.com  
22.5  
22.0  
21.5  
21.0  
20.5  
20.0  
19.5  
19.0  
18.5  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C013  
C014  
tUVPD, Setting = 20 ms  
VSCC, Setting = 500 mV  
Figure 7-13. OCD Detection Delay Time Versus  
Temperature  
Figure 7-14. SCC Detection Accuracy Versus  
Temperature  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
1.12  
1.10  
3.795  
3.790  
3.785  
3.780  
3.775  
3.770  
3.765  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C015  
C016  
VBAT, Setting = 3.9 V  
Figure 7-15. Power On Reset Versus Temperature  
Figure 7-16. COUT Versus Temperature with Ioh  
–30 µA  
=
3.7160  
3.7155  
3.7150  
3.7145  
3.7140  
3.7135  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
Temperature (°C)  
C017  
VBAT, Setting = 3.9 V  
Figure 7-17. DOUT Versus Temperature with Ioh = –30 µA  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: BQ2970 BQ2971 BQ2972 BQ2973  
BQ2970, BQ2971, BQ2972, BQ2973  
SLUSBU9H – MARCH 2014 – REVISED JUNE 2021  
www.ti.com  
8 Parameter Measurement Information  
8.1 Timing Charts  
Over-  
Discharge  
Normal  
Overcharge  
Normal  
Normal  
V
OVP  
V
OVPHys  
V
UVPHys  
V
UVP  
BAT  
V
SS  
BAT  
V
SS  
PACK–  
BAT  
V
OCD  
V
SS  
PACK–  
t
UVPD  
t
OVPD  
Charger  
Connected  
Load  
Connected  
Charger  
Connected  
Figure 8-1. Overcharge Detection, Over-Discharge Detection  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: BQ2970 BQ2971 BQ2972 BQ2973  
 
 
BQ2970, BQ2971, BQ2972, BQ2973  
SLUSBU9H – MARCH 2014 – REVISED JUNE 2021  
www.ti.com  
Normal  
Discharge Overcurrent  
Normal  
Discharge Overcurrent  
Normal  
V
OVP  
V
OVP–Hys  
V
UVP+Hys  
V
UVP  
BAT  
VSS  
BAT  
VSS  
PACK–  
BAT  
V
SCC  
V
OCD  
VSS  
t
OCDD  
t
SCCD  
Load  
Connected  
Load  
Disconnected  
Load Short-  
Circuit  
Figure 8-2. Discharge Overcurrent Detection  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: BQ2970 BQ2971 BQ2972 BQ2973  
BQ2970, BQ2971, BQ2972, BQ2973  
SLUSBU9H – MARCH 2014 – REVISED JUNE 2021  
www.ti.com  
8.2 Test Circuits  
The following tests are referenced as follows: The COUT and DOUT outputs are “H,” which are higher than  
the threshold voltage of the external logic level FETs and regarded as ON state. “L” is less than the turn ON  
threshold for external NMOS FETs and regarded as OFF state. The COUT pin is with respect to V–, and the  
DOUT pin is with respect to VSS.  
1. Overcharge detection voltage and overcharge release voltage (Test Circuit 1):  
The overcharge detection voltage (VOVP) is measured between the BAT and VSS pins, respectively. Once  
V1 is increased, the over-detection is triggered, and the delay timer expires. Then, COUT transitions from a  
high to low state and reduces the V1 voltage to check for the overcharge hysteresis parameter (VOVP-Hys).  
The delta voltage between overcharge detection voltages (VOVP) and the overcharge release occurs when  
the CHG FET drive output goes from low to high.  
2. Over-discharge detection voltage and over-discharge release voltage (Test Circuit 2):  
Over-discharge detection (VUVP) is defined as the voltage between BAT and VSS at which the DSG drive  
output goes from high to low by reducing the V1 voltage. V1 is set to 3.5 V and gradually reduced while V2 is  
set to 0 V. The over-discharge release voltage is defined as the voltage between BAT and VSS at which the  
DOUT drive output transition from low to high when V1 voltage is gradually increased from a VUVP condition.  
The overcharge hysteresis voltage is defined as the delta voltage between VUVP and the instance at which  
the DOUT output drive goes from low to high.  
3. Discharge overcurrent detection voltage (Test Circuit 2):  
The discharge overcurrent detection voltage (VOCD) is measured between V– and VSS pins and triggered  
when the V2 voltage is increased above VOCD threshold with respect to VSS. This delta voltage once  
satisfied will trigger an internal timer tOCDD before the DOUT output drive transitions from high to low.  
4. Load short circuit detection voltage (Test Circuit 2):  
Load short-circuit detection voltage (VSCC) is measured between V– and VSS pins and triggered when the  
V2 voltage is increased above VSCC threshold with respect to VSS within 10 µs. This delta voltage, once  
satisfied, triggers an internal timer tSCCD before the DOUT output drive transitions from high to low.  
5. Charge overcurrent detection voltage (Test Circuit 2):  
The charge overcurrent detection voltage (VOCC) is measured between VSS and V– pins and triggered when  
the V2 voltage is increased above VOCC threshold with respect to V–. This delta voltage, once satisfied,  
triggers an internal timer tOCCD before the COUT output drive transitions from high to low.  
6. Operating current consumption (Test Circuit 2):  
The operating current consumption IBNORMAL is the current measured going into the BAT pin under the  
following conditions: V1 = 3.9 V and V2 = 0 V.  
7. Power down current consumption (Test Circuit 2):  
The operating current consumption IPower_down is the current measured going into the BAT pin under the  
following conditions: V1 = 1.5 V and V2 = 1.5 V.  
8. Resistance between V– and BAT pin (Test Circuit 3):  
Measure the resistance (RV_D) between V– and BAT pins by setting the following conditions: V1 = 1.8 V and  
V2 = 0 V.  
9. Current sink between V– and VSS (Test Circuit 3):  
Measure the current sink IV–S between V– and VSS pins by setting the following condition: V1 = 4 V.  
10. COUT current source when activated High (Test Circuit 4):  
Measure ICOUT current source on the COUT pin by setting the following conditions: V1 = 3.9 V, V2 = 0 V, and  
V3 = 3.4 V.  
11. COUT current sink when activated Low (Test Circuit 4):  
Measure ICOUT current sink on COUT pin by setting the following conditions: V1 = 4.5 V, V2 = 0 V, and V3 =  
0.5 V.  
12. DOUT current source when activated High (Test Circuit 4):  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: BQ2970 BQ2971 BQ2972 BQ2973  
 
BQ2970, BQ2971, BQ2972, BQ2973  
SLUSBU9H – MARCH 2014 – REVISED JUNE 2021  
www.ti.com  
Measure IDOUT current source on DOUT pin by setting the following conditions: V1 = 3.9 V, V2 = 0 V, and V3  
= 3.4 V.  
13. DOUT current sink when activated Low (Test Circuit 4):  
Measure IDOUT current sink on DOUT pin by setting the following conditions: V1 = 2.0 V, V2 = 0 V, and V3 =  
0.4 V.  
14. Overcharge detection delay (Test Circuit 5):  
The overcharge detection delay time tOVPD is the time delay before the COUT drive output transitions from  
high to low once the voltage on V1 exceeds the VOVP threshold. Set V2 = 0 V and then increase V1 until BAT  
input exceeds the VOVP threshold, then check the time for when COUT goes from high to low.  
15. Over-discharge detection delay (Test Circuit 5):  
The over-discharge detection delay time tUVPD is the time delay before the DOUT drive output transitions  
from high to low once the voltage on V1 decreases to VUVP threshold. Set V2 = 0 V and then decrease V1  
until BAT input reduces to the VUVPthreshold, then check the time of when DOUT goes from high to low.  
16. Discharge overcurrent detection delay (Test Circuit 5):  
The discharge overcurrent detection delay time tOCDD is the time for DOUT drive output to transition from  
high to low after the voltage on V2 is increased from 0 V to 0.35 V. V1 = 3.5 V and V2 starts from 0 V and  
increases to trigger threshold.  
17. Load short circuit detection delay (Test Circuit 5):  
The load short-circuit detection delay time tSCCD is the time for DOUT drive output to transition from high  
to low after the voltage on V2 is increased from 0 V to V1 – 1 V. V1 = 3.5 V and V2 starts from 0 V and  
increases to trigger threshold.  
18. Charge overcurrent detection delay (Test Circuit 5):  
The charge overcurrent detection delay time tOCCD is the time for COUT drive output to transition from high  
to low after the voltage on V2 is decreased from 0 V to –0.3 V. V1 = 3.5 V and V2 starts from 0 V and  
decreases to trigger threshold.  
19. 0-V battery charge starting charger voltage (Test Circuit 2):  
The 0-V charge for start charging voltage V0CHA is defined as the voltage between BAT and V– pins at which  
COUT goes high when voltage on V2 is gradually decreased from a condition of V1 = V2 = 0 V.  
20. 0-V battery charge inhibition battery voltage (Test Circuit 2):  
The 0-V charge inhibit for charger voltage V0INH is defined as the voltage between BAT and VSS pins at  
which COUT should go low as V1 is gradually decreased from V1 = 2 V and V2 = –4 V.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: BQ2970 BQ2971 BQ2972 BQ2973  
BQ2970, BQ2971, BQ2972, BQ2973  
SLUSBU9H – MARCH 2014 – REVISED JUNE 2021  
www.ti.com  
8.3 Test Circuit Diagrams  
V-  
6
5
4
V-  
6
5
4
1
2
3
NC  
1
2
3
NC  
I
BAT  
220Ω  
V2  
COUT  
DOUT  
BAT  
VSS  
COUT  
DOUT  
BAT  
VSS  
A
V
COUT  
V
VCOUT V  
V1  
V1  
V
V
V
DOUT  
V
DOUT  
Figure 8-3. Test Circuit 1  
Figure 8-4. Test Circuit 2  
I
V-  
V-  
6
5
4
V-  
6
5
4
A
1
2
3
NC  
1
2
3
NC  
I
COUT  
I
BAT  
V2  
V2  
A
COUT  
DOUT  
BAT  
VSS  
COUT  
DOUT  
BAT  
VSS  
A
I
DOUT  
V3  
A
V1  
V1  
V4  
Figure 8-6. Test Circuit 4  
Figure 8-5. Test Circuit 3  
V-  
6
5
4
1
2
3
NC  
Oscilloscope  
Oscilloscope  
V2  
COUT  
DOUT  
BAT  
VSS  
V1  
Figure 8-7. Test Circuit 5  
9 Detailed Description  
9.1 Overview  
This BQ2970 device is a primary protector for a single-cell Li-ion/Li-polymer battery pack. The device uses a  
minimum number of external components to protect for overcurrent conditions due to high discharge/charge  
currents in the application. In addition, it monitors and helps to protect against battery pack overcharging or  
depletion of energy in the pack. The BQ2970 device is capable of having an input voltage of 8 V from a charging  
adapter and can tolerate a voltage of BAT – 25 V across the two input pins. In the condition when a fault is  
triggered, there are timer delays before the appropriate action is taken to turn OFF either the CHG or DSG  
FETs. The recovery period also has a timer delay once the threshold for recovery condition is satisfied. These  
parameters are fixed once they are programmed. There is also a feature called zero voltage charging that  
enables depleted cells to be charged to an acceptable level before the battery pack can be used for normal  
operation. Zero voltage charging is allowed if the charger voltage is above 1.7 V. For Factory Programmable  
Options, see Table 9-1.  
Table 9-1. Factory Programmable Options  
PARAMETER  
FACTORY DEVICE CONFIGURATION  
VOVP  
VUVP  
VOCD  
VOCC  
VSCC  
tOVPD  
tUVPD  
Overcharge detection voltage  
3.85 V to 4.60 V in 50-mV steps  
Over-discharge detection voltage  
Discharging overcurrent detection voltage  
Charging overcurrent detection voltage  
Short Circuit detection voltage  
2.00 V to 2.80 V in 50-mV steps  
90 mV to 200 mV in 5-mV steps  
–45 mV to –155 mV in 5-mV steps  
300 mV, 400 mV, 500 mV, 600 mV  
0.25 s, 1.00 s, 1.25 s, 4.50 s  
Overcharge detection delay time  
Over-discharge detection delay time  
20 ms, 96 ms, 125 ms, 144 ms  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: BQ2970 BQ2971 BQ2972 BQ2973  
 
 
 
 
BQ2970, BQ2971, BQ2972, BQ2973  
SLUSBU9H – MARCH 2014 – REVISED JUNE 2021  
www.ti.com  
Table 9-1. Factory Programmable Options (continued)  
PARAMETER  
FACTORY DEVICE CONFIGURATION  
tOCDD  
tOCCD  
tSCCD  
Discharging overcurrent detection delay time  
Charging overcurrent detection delay time  
Short Circuit detection delay time  
8 ms, 16 ms, 20 ms, 48 ms  
4 ms, 6 ms, 8 ms, 16 ms  
250 µs (fixed)  
For available released devices, see the Released Device Configurations table.  
9.2 Functional Block Diagram  
Charger  
Detection  
Circuit  
Counter  
Oscillator  
Logic circuit  
Overcharge  
Comparator (OVP)  
with Hys  
BAT 5  
2
COUT  
Overcharge  
Current  
Comparator  
Delay  
Short Detect  
Over-Discharge  
Comparator (UVP)  
with Hys  
Logic circuit  
3
DOUT  
Over-Discharge  
Current Comparator  
BAT  
R
V–D  
6 V–  
4
VSS  
I
V–S  
9.3 Feature Description  
The BQ2970 family of devices measures voltage drops across several input pins for monitoring and detection  
of the following faults: OCC, OCD, OVP, and UVP. An internal oscillator initiates a timer to the fixed delays  
associated with each parameter once the fault is triggered. Once the timer expires due to a fault condition, the  
appropriate FET drive output (COUT or DOUT) is activated to turn OFF the external FET. The same method is  
applicable for the recovery feature once the system fault is removed and the recovery parameter is satisfied,  
then the recovery timer is initiated. If there are no reoccurrences of this fault during this period, the appropriate  
gate drive is activated to turn ON the appropriate external FET.  
9.4 Device Functional Modes  
9.4.1 Normal Operation  
This device monitors the voltage of the battery connected between BAT pin and VSS pin and the differential  
voltage between V– pin and VSS pin to control charging and discharging. The system is operating in NORMAL  
mode when the battery voltage range is between the over-discharge detection threshold (VUVP) and the  
overcharge detection threshold (VOVP), and the V– pin voltage is within the range for charge overcurrent  
threshold (VOCC) to over-discharge current threshold (VOCD) when measured with respect to VSS. If these  
conditions are satisfied, the device turns ON the drive for COUT and DOUT FET control.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: BQ2970 BQ2971 BQ2972 BQ2973  
 
 
 
BQ2970, BQ2971, BQ2972, BQ2973  
SLUSBU9H – MARCH 2014 – REVISED JUNE 2021  
www.ti.com  
CAUTION  
When the battery is connected for the first time, the discharging circuit might not be enabled. In this  
case, short the V– pin to the VSS pin.  
Alternatively, connect the charger between the Pack+ and Pack– terminals in the system.  
9.4.2 Overcharge Status  
This mode is detected when the battery voltage measured is higher than the overcharge detection threshold  
(VOVP) during charging. If this condition exists for a period greater than the overcharge detection delay (tOVPD) or  
longer, the COUT output signal is driven low to turn OFF the charging FET to prevent any further charging of the  
battery.  
The overcharge condition is released if one of the following conditions occurs:  
If the V– pin is higher than the overcharge detection voltage (VOCC_Min), the device releases the overcharge  
status when the battery voltage drops below the overcharge release voltage (VOVP-Hys).  
If the V– pin is higher than or equal to the over-discharge detection voltage (VOCD), the device releases the  
overcharge status when the battery voltage drops below the overcharge detection voltage (VOVP).  
The discharge is initiated by connecting a load after the overcharge detection. The V– pin rises to a voltage  
greater than VSS due to the parasitic diode of the charge FET conducting to support the load. If the V– pin  
voltage is higher than or equal to the discharge overcurrent detection threshold (VOCD), the overcurrent condition  
status is released only if the battery voltage drops lower than or equal to the overcharge detection voltage  
(VOVP).  
CAUTION  
1. If the battery is overcharged to a level greater than overcharge detection (VOVP) and the  
battery voltage does not drop below the overcharge detection voltage (VOVP) with a heavy load  
connected, the discharge overcurrent and load short-circuit detection features do not function  
until the battery voltage drops below the overcharge detection voltage (VOVP). The internal  
impedance of a battery is in the order of tens of mΩ, so application of a heavy load on the output  
should allow the battery voltage to drop immediately, enabling discharge overcurrent detection  
and load short-circuit detection features after an overcharge release delay.  
2. When a charger is connected after an overcharge detection, the overcharge status does  
not release even if the battery voltage drops below the overcharge release threshold. The  
overcharge status is released when the V– pin voltage exceeds the overcurrent detection  
voltage (VOCD) by removing the charger.  
9.4.3 Over-Discharge Status  
If the battery voltage drops below the over-discharge detection voltage (VUVP) for a time greater than (tUVPD  
)
the discharge control output, DOUT is switched to a low state and the discharge FET is turned OFF to prevent  
further discharging of the battery. This is referred to as an over-discharge detection status. In this condition, the  
V– pin is internally pulled up to BAT by the resistor RV–D. When this occurs, the voltage difference between  
V– and BAT pins is 1.3 V or lower, and the current consumption of the device is reduced to power-down level  
ISTANDBY. The current sink IV–S is not active in power-down state or over-discharge state. The power-down state  
is released when a charger is connected and the voltage delta between V– and BAT pins is greater than 1.3 V.  
If a charger is connected to a battery in over-discharge state and the voltage detected at the V– is lower than  
–0.7 V, the device releases the over-discharge state and allows the DOUT pin to go high and turn ON the  
discharge FET once the battery voltage exceeds over-discharge detection voltage (VUVP).  
If a charger is connected to a battery in over-discharge state and the voltage detected at the V– is higher  
than –0.7 V, the device releases the over-discharge state and allows the DOUT pin to go high and turn  
ON the discharge FET once the battery voltage exceeds over-discharge detection release hysteresis voltage  
(VUVP +Hys).  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: BQ2970 BQ2971 BQ2972 BQ2973  
BQ2970, BQ2971, BQ2972, BQ2973  
SLUSBU9H – MARCH 2014 – REVISED JUNE 2021  
www.ti.com  
9.4.4 Discharge Overcurrent Status (Discharge Overcurrent, Load Short-Circuit)  
When a battery is in normal operation and the V– pin is equal to or higher than the discharge overcurrent  
threshold for a time greater than the discharge overcurrent detection delay, the DOUT pin is pulled low to turn  
OFF the discharge FET and prevent further discharge of the battery. This is known as the discharge overcurrent  
status. In the discharge overcurrent status, the V– and VSS pins are connected by a constant current sink IV–S  
.
When this occurs and a load is connected, the V– pin is at BAT potential. If the load is disconnected, the V– pin  
goes to VSS (BAT/2) potential.  
This device detects the status when the impedance between Pack+ and Pack– (see Figure 26) increases and  
is equal to the impedance that enables the voltage at the V– pin to return to BAT – 1 V or lower. The discharge  
overcurrent status is restored to the normal status.  
Alternatively, by connecting the charger to the system, the device returns to normal status from discharge  
overcurrent detection status, because the voltage at the V– pin drops to BAT – 1 V or lower.  
The resistance RV–D between V– and BAT is not connected in the discharge overcurrent detection status.  
9.4.5 Charge Overcurrent Status  
When a battery is in normal operation status and the voltage at V– pin is lower than the charge overcurrent  
detection due to high charge current for a time greater than charge overcurrent detection delay, the COUT pin  
is pulled low to turn OFF the charge FET and prevent further charging to continue. This is known as charge  
overcurrent status.  
The device is restored to normal status from charge overcurrent status when the voltage at the V– pin returns to  
charge overcurrent detection voltage or higher by removing the charger from the system.  
The charge overcurrent detection feature does not work in the over-discharge status.  
The resistance RV–D between V– and BAT and the current sink IV–S is not connected in the charge overcurrent  
status.  
9.4.6 0-V Charging Function Enabled  
This feature enables recharging a connected battery that has very low voltage due to self-discharge. When the  
charger applies a voltage greater than or equal to V0CHG to Pack+ and Pack– connections, the COUT pin gate  
drive is fixed by the BAT pin voltage.  
Once the voltage between the gate and the source of the charging FET becomes equal to or greater than the  
turn ON voltage due to the charger voltage, the charging FET is ON and the battery is charged with current flow  
through the charging FET and the internal parasitic diode of the discharging FET. Once the battery voltage is  
equal to or higher than the over-discharge release voltage, the device enters normal status.  
CAUTION  
1. Some battery providers do not recommend charging a depleted (self-discharged) battery.  
Consult the battery supplier to determine whether to have the 0-V battery charger function.  
2. The 0-V battery charge feature has a higher priority than the charge overcurrent detection  
function. In this case, the 0-V charging will be allowed and the battery charges forcibly, which  
results in charge overcurrent detection being disabled if the battery voltage is lower than the  
over-discharge detection voltage.  
9.4.7 0-V Charging Inhibit Function  
This feature inhibits recharging a battery that has an internal short circuit of a 0-V battery. If the battery voltage  
is below the charge inhibit voltage V0INH or lower, the charge FET control gate is fixed to the Pack– voltage to  
inhibit charging. When the battery is equal to V0INH or higher, charging can be performed. The 0-V charge inhibit  
function is available in all configurations of the BQ297xx device.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: BQ2970 BQ2971 BQ2972 BQ2973  
BQ2970, BQ2971, BQ2972, BQ2973  
SLUSBU9H – MARCH 2014 – REVISED JUNE 2021  
www.ti.com  
CAUTION  
Some battery providers do not recommend charging a depleted (self-discharged) battery. Consult  
the battery supplier to determine whether to enable or inhibit the 0-V battery charger function.  
9.4.8 Delay Circuit  
The detection delay timers are based from an internal clock with a frequency of 10 kHz.  
BAT  
t
0 t ≤ t  
D
D
SCCD  
VSS  
Time  
tD  
t
OCDD  
˂
V
SCC  
V
OCD  
VSS  
Time  
Figure 9-1. Delay Circuit  
If the over-discharge current is detected, but remains below the over-discharge short circuit detection threshold,  
the over-discharge detection conditions must be valid for a time greater than or equal to over-discharge current  
delay tOCCD time before the DOUT goes low to turn OFF the discharge FET. However, during any time the  
discharge overcurrent detection exceeds the short circuit detection threshold for a time greater than or equal to  
load circuit detection delay tSCCD, the DOUT pin goes low in a faster delay for protection.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: BQ2970 BQ2971 BQ2972 BQ2973  
BQ2970, BQ2971, BQ2972, BQ2973  
SLUSBU9H – MARCH 2014 – REVISED JUNE 2021  
www.ti.com  
10 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
10.1 Application Information  
The BQ2970 devices are a family of primary protectors used for protection of the battery pack in the application.  
The application drives two low-side NMOS FETs that are controlled to provide energy to the system loads or  
interrupt the power in the event of a fault condition.  
10.2 Typical Application  
PACK+  
V–  
NC  
330  
BAT  
VSS  
COUT  
DOUT  
CELLP  
CELLN  
2.2k  
PACK–  
D
S
S
CHG  
DSG  
The 5-M resistor for an external gate-source is optional.  
Figure 10-1. Typical Application Schematic, BQ2970  
10.2.1 Design Requirements  
For this design example, use the parameters listed in Table 10-1.  
Table 10-1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE at TA = 25°C  
Input voltage range  
4.5 V to 7 V  
7 A  
Maximum operating discharge current  
Maximum Charge Current for battery pack  
Overvoltage Protection (OVP)  
4.5 A  
4.275 V  
1.2 s  
Overvoltage detection delay timer  
Overvoltage Protection (OVP) release voltage  
Undervoltage Protection (UVP)  
4.175 V  
2.8 V  
Undervoltage detection delay timer  
150 ms  
2.9 V  
Undervoltage Protection (UVP) release voltage  
Charge Overcurrent detection (OCC) voltage  
Charge Overcurrent Detection (OCC) delay timer  
Discharge Overcurrent Detection (OCD) voltage  
Discharge Overcurrent Detection (OCD) delay timer  
–70 mV  
9 ms  
100 mV  
18 ms  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: BQ2970 BQ2971 BQ2972 BQ2973  
 
 
 
 
 
BQ2970, BQ2971, BQ2972, BQ2973  
SLUSBU9H – MARCH 2014 – REVISED JUNE 2021  
www.ti.com  
Table 10-1. Design Parameters (continued)  
DESIGN PARAMETER  
EXAMPLE VALUE at TA = 25°C  
Load Short Circuit Detection SCC) voltage, BAT to –V ≤ threshold  
Load Short Circuit Detection (SCC) delay timer  
500 mV  
250 µs  
1 V  
Load Short Circuit release voltage, BAT to –V ≥ Threshold  
10.2.2 Detailed Design Procedure  
Note  
The external FET selection is important to ensure the battery pack protection is sufficient and  
complies to the requirements of the system.  
FET Selection: Because the maximum desired discharge current is 7 A, ensure that the Discharge  
Overcurrent circuit does not trigger until the discharge current is above this value.  
The total resistance tolerated across the two external FETs (CHG + DSG) should be 100 mV/7 A = 14.3 mΩ.  
Based on the information of the total ON resistance of the two switches, determine what would be the Charge  
Overcurrent Detection threshold, 14.3 mΩ × 4.5 A = 65 mV. Selecting a device with a 70-mV trigger threshold  
for Charge Overcurrent trigger is acceptable.  
The total Rds ON should factor in any worst-case parameter based on the FET ON resistance, de-rating due  
to temperature effects and minimum required operation, and the associated gate drive (Vgs). Therefore, the  
FET choice should meet the following criteria:  
Vdss = 25 V  
Each FET Rds ON = 7.5 mΩ at Tj = 25°C and Vgs = 3.5 V  
Imax > 50 A to allow for short Circuit Current condition for 350 µs (max delay timer). The only limiting factor  
during this condition is Pack Voltage/(Cell Resistance + (2 × FET_RdsON) + Trace Resistance).  
Use the CSD16406Q3 FET for the application.  
An RC filter is required on the BAT for noise, and enables the device to operate during sharp negative  
transients. The 330-Ω resistor also limits the current during a reverse connection on the system.  
TI recommends placing a high impedance 5-MΩ across the gate source of each external FET to deplete any  
charge on the gate-source capacitance.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: BQ2970 BQ2971 BQ2972 BQ2973  
BQ2970, BQ2971, BQ2972, BQ2973  
SLUSBU9H – MARCH 2014 – REVISED JUNE 2021  
www.ti.com  
10.2.3 Application Performance Plots  
Orange Line (Channel 1) = Power Up Ramp on BAT Pin  
Turquoise Line (Channel 2) = DOUT Gate Drive Output  
DOUT goes from low to high when UVP Recovery = UVP Set  
Threshold +100 mV  
Orange Line (Channel 1) = Power Down Ramp on BAT Pin  
Turquoise Line (Channel 2) = DOUT Date Drive Output  
DOUT goes from high to low when UVP threshold = UVP set  
Threshold + set delay time  
Figure 10-2. UVP Recovery  
Figure 10-3. UVP Set Condition  
Orange Line (Channel 1) = Power Up Ramp on BAT pin  
Turquoise Line (Channel 2) = DOUT Gate Drive Output  
Orange Line (Channel 1) = Power Up Ramp on BAT Pin  
Turquoise Line (Channel 2) = COUT Gate Drive Output  
Figure 10-4. Initial Power Up, DOUT  
Figure 10-5. Initial Power Up, COUT  
Orange Line (Channel 1) = Power Up Ramp on BAT Pin  
Turquoise Line (Channel 2) = COUT Gate Drive Output  
COUT goes from high to low when OVP threshold = OVP set  
Threshold + set delay time  
Orange Line (Channel 1) = Decrease Voltage on BAT Pin  
Turquoise Line (Channel 2) = COUT Gate Drive Output  
COUT goes from low to high when OVP Recovery = OVP Set  
Threshold –100 mV  
Figure 10-6. OVP Set Condition  
Figure 10-7. OVP Recovery Condition  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: BQ2970 BQ2971 BQ2972 BQ2973  
BQ2970, BQ2971, BQ2972, BQ2973  
SLUSBU9H – MARCH 2014 – REVISED JUNE 2021  
www.ti.com  
11 Power Supply Recommendations  
The recommended power supply for this device is a maximum 8-V operation on the BAT input pin.  
12 Layout  
12.1 Layout Guidelines  
The following are the recommended layout guidelines:  
1. Ensure the external power FETs are adequately compensated for heat dissipation with sufficient thermal  
heat spreader based on worst-case power delivery.  
2. The connection between the two external power FETs should be very close to ensure there is not an  
additional drop for fault sensing.  
3. The input RC filter on the BAT pin should be close to the terminal of the IC.  
12.2 Layout Example  
Power Trace Line  
PACK+  
V–  
BAT  
VSS  
6
5
4
1
2
NC  
COUT  
DOUT  
PACK  
3
Power Trace Line  
Power Trace Line  
CSD16406Q3  
CSD16406Q3  
Power Trace  
Via connects between two layers  
Figure 12-1. BQ2970 Board Layout  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: BQ2970 BQ2971 BQ2972 BQ2973  
 
 
 
 
BQ2970, BQ2971, BQ2972, BQ2973  
SLUSBU9H – MARCH 2014 – REVISED JUNE 2021  
www.ti.com  
13 Device and Documentation Support  
13.1 Related Documentation  
BQ29700 Single-Cell Li-Ion Protector EVM User's Guide (SLUUAZ3)  
13.2 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
13.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
13.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.5 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: BQ2970 BQ2971 BQ2972 BQ2973  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Jun-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ29700DSER  
BQ29700DSET  
BQ29701DSER  
BQ29701DSET  
BQ29702DSER  
BQ29702DSET  
BQ29703DSER  
BQ29703DSET  
BQ29704DSER  
BQ29704DSET  
BQ29705DSER  
BQ29705DSET  
BQ29706DSER  
BQ29706DSET  
BQ29707DSER  
BQ29707DSET  
BQ29716DSER  
BQ29716DSET  
BQ29717DSER  
BQ29717DSET  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
FA  
FA  
FY  
FY  
FZ  
FZ  
F1  
F1  
F2  
F2  
F3  
F3  
F4  
F4  
F5  
F5  
3P  
3P  
3Q  
3Q  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
250  
RoHS & Green  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Jun-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ29718DSER  
BQ29718DSET  
BQ29723DSER  
BQ29723DSET  
BQ29728DSER  
BQ29728DSET  
BQ29729DSER  
BQ29729DSET  
BQ29732DSER  
BQ29732DSET  
BQ29733DSER  
BQ29733DSET  
BQ29737DSER  
BQ29737DSET  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
3R  
3R  
3S  
3S  
EJ  
EJ  
3T  
3T  
3U  
3U  
4Q  
4Q  
EI  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
EI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Jun-2021  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Jun-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ29700DSER  
BQ29700DSET  
BQ29701DSER  
BQ29701DSET  
BQ29702DSER  
BQ29702DSET  
BQ29703DSER  
BQ29703DSET  
BQ29704DSER  
BQ29704DSET  
BQ29705DSER  
BQ29705DSET  
BQ29706DSER  
BQ29706DSET  
BQ29707DSER  
BQ29707DSET  
BQ29716DSER  
BQ29716DSET  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Jun-2021  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ29717DSER  
BQ29717DSET  
BQ29718DSER  
BQ29718DSET  
BQ29723DSER  
BQ29723DSET  
BQ29728DSER  
BQ29728DSET  
BQ29729DSER  
BQ29729DSET  
BQ29732DSER  
BQ29732DSET  
BQ29733DSER  
BQ29733DSET  
BQ29737DSER  
BQ29737DSET  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
WSON DSE  
SPQ  
3000  
Length (mm) Width (mm) Height (mm)  
182.0 182.0 20.0  
BQ29700DSER  
6
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Jun-2021  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ29700DSET  
BQ29701DSER  
BQ29701DSET  
BQ29702DSER  
BQ29702DSET  
BQ29703DSER  
BQ29703DSET  
BQ29704DSER  
BQ29704DSET  
BQ29705DSER  
BQ29705DSET  
BQ29706DSER  
BQ29706DSET  
BQ29707DSER  
BQ29707DSET  
BQ29716DSER  
BQ29716DSET  
BQ29717DSER  
BQ29717DSET  
BQ29718DSER  
BQ29718DSET  
BQ29723DSER  
BQ29723DSET  
BQ29728DSER  
BQ29728DSET  
BQ29729DSER  
BQ29729DSET  
BQ29732DSER  
BQ29732DSET  
BQ29733DSER  
BQ29733DSET  
BQ29737DSER  
BQ29737DSET  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
250  
3000  
250  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DSE0006A  
WSON - 0.8 mm max height  
SCALE 6.000  
PLASTIC SMALL OUTLINE - NO LEAD  
1.55  
1.45  
A
B
1.55  
1.45  
PIN 1 INDEX AREA  
0.8 MAX  
C
SEATING PLANE  
0.08 C  
(0.2) TYP  
0.05  
0.00  
0.6  
0.4  
5X  
3
4
2X 1  
4X 0.5  
6
1
0.3  
6X  
0.7  
0.5  
0.2  
0.1  
0.05  
PIN 1 ID  
C A B  
C
4220552/A 04/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSE0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
PKG  
(0.8)  
5X (0.7)  
1
6
6X (0.25)  
SYMM  
4X 0.5  
4
3
(R0.05) TYP  
(1.6)  
LAND PATTERN EXAMPLE  
SCALE:40X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
PADS 4-6  
NON SOLDER MASK  
DEFINED  
PADS 1-3  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4220552/A 04/2021  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSE0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
PKG  
5X (0.7)  
(0.8)  
6X (0.25)  
1
6
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(1.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:40X  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

BQ29732DSET

锂离子/锂聚合物高级单节电池保护器 | DSE | 6 | -40 to 85
TI

BQ29733

BQ297xx Cost-Effective Voltage and Current Protection Integrated Circuit for Single-Cell Li-Ion and Li-Polymer Batteries
TI

BQ29733DSER

锂离子/锂聚合物高级单节电池保护器 | DSE | 6 | -40 to 85
TI

BQ29733DSET

锂离子/锂聚合物高级单节电池保护器 | DSE | 6 | -40 to 85
TI

BQ29737

BQ297xx Cost-Effective Voltage and Current Protection Integrated Circuit for Single-Cell Li-Ion and Li-Polymer Batteries
TI

BQ29737DSER

BQ297xx Cost-Effective Voltage and Current Protection Integrated Circuit for Single-Cell Li-Ion and Li-Polymer Batteries
TI

BQ29737DSET

BQ297xx Cost-Effective Voltage and Current Protection Integrated Circuit for Single-Cell Li-Ion and Li-Polymer Batteries
TI

BQ29739DSER

BQ297xx Cost-Effective Voltage and Current Protection Integrated Circuit for Single-Cell Li-Ion and Li-Polymer Batteries
TI

BQ297XY

BQ297xx Cost-Effective Voltage and Current Protection Integrated Circuit for Single-Cell Li-Ion and Li-Polymer Batteries
TI

BQ2980

适用于单节锂离子和锂聚合物电池的高侧保护器
TI

BQ298000

BQ298xyz Voltage, Current, Temperature Protectors with an Integrated High-Side NFET Driver for Fast/Flash Charging Single-Cell Li-Ion and Li-Polymer Batteries
TI

BQ298000RUGR

适用于单节锂离子和锂聚合物电池的高侧保护器 | RUG | 8 | -40 to 85
TI