BQ34Z100PWR-R2 [TI]

多化合物 Impedance Track™ 独立式电量监测计 | PW | 14 | -40 to 85;
BQ34Z100PWR-R2
型号: BQ34Z100PWR-R2
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

多化合物 Impedance Track™ 独立式电量监测计 | PW | 14 | -40 to 85

文件: 总25页 (文件大小:1531K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BQ34Z100-R2  
ZHCSRC1 DECEMBER 2022  
BQ34Z100-R2 Impedance Track™ 技术的宽量程电量监测计  
1 特性  
2 应用  
• 支持锂离子、磷酸铁锂、PbA、镍氢和镍镉化学物  
轻型电动车辆  
医疗仪器  
移动无线电  
电动工具  
不间断电(UPS)  
• 对电压3V 至  
16.7 KV 的电池使用已获得专利Impedance  
Track技术估算容量  
– 老化补偿  
– 自放电补偿  
• 支持的电池容量高7000Ah并且提供标准配置  
选项  
• 支持的充电和放电电流高8160 A并且提供标准  
配置选项  
• 外部负温度系(NTC) 热敏电阻支持  
• 支持与主机系统的两线I2C HDQ 单线制通信  
接口  
3 说明  
BQ34Z100-R2 器件是适用于锂离子、铅酸、镍氢和镍  
镉电池Impedance Track电量监测计并且独立于  
电池串联配置工作。通过外部电压转换电路可轻松支持  
3V 16.7KV 的电池此电路可通过自动控制来降低  
系统功耗。  
BQ34Z100-R2 器件提供多个接口选项其中包括一个  
I2C 外设接口、一个 HDQ 外设接口、一个或四个直接  
LED 口以及一个 ALERT 出引脚。此外,  
BQ34Z100-R2 还支持外部端口扩展器连接四个以上  
LED。  
SHA-1/HMAC 认证  
• 一个或者四LED 直接显示控制  
• 五LED 和通过端口扩展器的更多显示  
• 节能模式典型电池组运行范围条件)  
– 正常工作< 145µA 平均电流  
– 睡眠< 84µA 平均电流  
– 全睡眠< 30µA 平均电流  
• 封装14 TSSOP  
器件信息  
器件型号(1)  
封装尺寸标称值)  
封装  
BQ34Z100-R2  
TSSOP (14)  
5.00mm × 4.40mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
简化原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSF37  
 
 
 
BQ34Z100-R2  
ZHCSRC1 DECEMBER 2022  
www.ti.com.cn  
Table of Contents  
6.12 Electrical Characteristics: Data Flash Memory  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics: Power-On Reset................5  
6.6 Electrical Characteristics: LDO Regulator...................5  
6.7 Electrical Characteristics: Internal Temperature  
Sensor Characteristics.................................................. 5  
6.8 Electrical Characteristics: Low-Frequency  
Oscillator....................................................................... 6  
6.9 Electrical Characteristics: High-Frequency  
Oscillator....................................................................... 6  
6.10 Electrical Characteristics: Integrating ADC  
(Coulomb Counter) Characteristics...............................6  
6.11 Electrical Characteristics: ADC (Temperature  
Characteristics...............................................................7  
6.13 Timing Requirements: HDQ Communication............7  
6.14 Timing Requirements: I2C-Compatible Interface...... 8  
6.15 Typical Characteristics..............................................9  
7 Functional Block Diagram............................................ 10  
8 Application and Implementation.................................. 11  
8.1 Application Information..............................................11  
8.2 Typical Applications...................................................11  
9 Power Supply Recommendations................................17  
10 Layout...........................................................................18  
10.1 Layout Guidelines................................................... 18  
10.2 Layout Example...................................................... 18  
11 Device and Documentation Support..........................21  
11.1 Documentation Support.......................................... 21  
11.2 接收文档更新通知................................................... 21  
11.3 支持资源..................................................................21  
11.4 Trademarks............................................................. 21  
11.5 静电放电警告...........................................................21  
11.6 术语表..................................................................... 21  
12 Mechanical, Packaging, and Orderable  
and Cell Measurement) Characteristics........................ 6  
Information.................................................................... 21  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
December 2022  
*
Initial Release  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: BQ34Z100-R2  
 
BQ34Z100-R2  
ZHCSRC1 DECEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
P2  
VEN  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
P3/SDA  
P4/SCL  
P5/HDQ  
P6/TS  
SRN  
P1  
BAT  
CE  
REGIN  
REG25  
SRP  
8
VSS  
Not to scale  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NUMBER  
P2  
1
O
LED 2 or Not Used (connect to VSS)  
Active High Voltage Translation Enable. This signal is optionally used to switch the input voltage  
divider on/off to reduce the power consumption (typ 45 µA) of the divider network. If not used,  
then this pin can be left floating or tied to VSS.  
VEN  
P1  
2
3
O
O
LED 1 or Not Used (connect to VSS). This pin is also used to drive an LED for single-LED mode.  
Use a small signal N-FET (Q1) in series with the LED as shown on 8-4.  
BAT  
4
5
6
I
I
Translated Battery Voltage Input  
CE  
Chip Enable. Internal LDO is disconnected from REGIN when driven low.  
Internal integrated LDO input. Decouple with a 0.1-µF ceramic capacitor to VSS.  
REGIN  
P
2.5-V output voltage of the internal integrated LDO. Decouple with 1-µF ceramic capacitor to  
VSS.  
REG25  
VSS  
7
8
9
P
P
I
Device ground  
Analog input pin connected to the internal coulomb-counter peripheral for integrating a small  
voltage between SRP and SRN where SRP is nearest the BATconnection.  
SRP  
Analog input pin connected to the internal coulomb-counter peripheral for integrating a small  
voltage between SRP and SRN where SRN is nearest the PACKconnection.  
SRN  
10  
11  
12  
I
I
P6/TS  
P5/HDQ  
Pack thermistor voltage sense (use a 103AT-type thermistor)  
Open-drain HDQ Serial communication line (target). If not used, then this pin can be left floating  
or tied to VSS.  
I/O  
Target I2C serial communication clock input. Use with a 10-kΩpullup resistor (typical). This pin is  
P4/SCL  
P3/SDA  
13  
14  
I
also used for LED 4 in the four-LED mode. If not used, then this pin can be left floating or tied to  
VSS.  
Open-drain target I2C serial communication data line. Use with a 10-kΩpullup resistor (typical).  
This pin is also used for LED 3 in the four-LED mode. If not used, then this pin can be left floating  
or tied to VSS.  
I/O  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: BQ34Z100-R2  
 
BQ34Z100-R2  
ZHCSRC1 DECEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
5.5  
UNIT  
VREGIN  
VCC  
Regulator Input Range  
V
V
V
V
0.3  
0.3  
0.3  
0.3  
0.3  
Supply Voltage Range  
2.75  
5.5  
VIOD  
VBAT  
VI  
Open-drain I/O pins (SDA, SCL, HDQ, VEN)  
Bat Input pin  
5.5  
Input Voltage range to all other pins (P1, P2, SRP, SRN)  
Human-body model (HBM), BAT pin  
Human-body model (HBM), all other pins  
Operating free-air temperature range  
Functional temperature range  
VCC + 0.3  
V
1.5  
2
kV  
kV  
°C  
°C  
°C  
°C  
ESD  
TA  
TF  
85  
40  
40  
65  
40  
100  
150  
100  
Storage temperature range  
TSTG  
Lead temperature (soldering, 10 s)  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and  
this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
TA =40°C to 85°C; Typical Values at TA = 25°C CLDO25 = 1.0 µF, and VREGIN = 3.6 V (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
No operating restrictions  
No FLASH writes  
2.7  
4.5  
2.7  
V
V
VREGIN  
Supply Voltage  
2.45  
External input capacitor for  
internal LDO between REGIN  
and VSS  
CREGIN  
0.1  
1
μF  
μF  
Nominal capacitor values specified.  
Recommend a 10% ceramic X5R type  
capacitor located close to the device.  
External output capacitor for  
internal LDO between VCC and  
VSS  
CLDO25  
0.47  
NORMAL operating-mode  
current  
Gas Gauge in NORMAL mode,  
ILOAD > Sleep Current  
ICC  
145  
μA  
μA  
μA  
Gas Gauge in SLEEP mode,  
ILOAD < Sleep Current  
ISLP  
ISLP+  
SLEEP operating-mode current  
84  
30  
FULLSLEEP operating-mode  
current  
Gas Gauge in FULL SLEEP mode,  
ILOAD < Sleep Current  
Output voltage, low (SCL, SDA,  
HDQ, VEN)  
VOL  
IOL = 3 mA  
0.4  
0.6  
V
V
V
V
VOH(PP)  
VOH(OD)  
VIL  
Output voltage, high  
IOH = 1 mA  
VCC 0.5  
VCC 0.5  
0.3  
Output voltage, high (SDA, SCL,  
HDQ, VEN)  
External pull-up resistor connected to VCC  
Input voltage, low  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: BQ34Z100-R2  
 
 
 
 
 
 
 
BQ34Z100-R2  
ZHCSRC1 DECEMBER 2022  
www.ti.com.cn  
6.3 Recommended Operating Conditions (continued)  
TA =40°C to 85°C; Typical Values at TA = 25°C CLDO25 = 1.0 µF, and VREGIN = 3.6 V (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
Input voltage, high (SDA, SCL,  
HDQ)  
VIH(OD)  
1.2  
6
V
VA1  
Input voltage range (TS)  
1
5
V
V
V
VSS 0.05  
VSS 0.125  
VSS 0.125  
VA2  
Input voltage range (BAT)  
VA3  
Input voltage range (SRP, SRN)  
Input leakage current (I/O pins)  
Power-up communication delay  
0.125  
0.3  
ILKG  
tPUCD  
μA  
250  
ms  
6.4 Thermal Information  
BQ34Z100-R2  
TSSOP (PW)  
14 PINS  
103.8  
THERMAL METRIC(1)  
UNIT  
RθJA, High K  
RθJC(top)  
RθJB  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
31.9  
46.6  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
2.0  
ψJT  
45.9  
ψJB  
RθJC(bottom)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics Application  
Report, SPRA953.  
6.5 Electrical Characteristics: Power-On Reset  
TA = 40°C to 85°C; Typical Values at TA = 25°C and VREGIN = 3.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.05  
45  
TYP  
2.20  
115  
MAX UNIT  
Positive-going battery voltage  
input at REG25  
VIT+  
2.31  
185  
V
VHYS  
Power-on reset hysteresis  
mV  
6.6 Electrical Characteristics: LDO Regulator  
TA = 25°C, CLDO25 = 1.0 µF, VREGIN = 3.6 V (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
2.7 V VREGIN 4.5 V,  
OUT 16 mA  
2.3  
2.5  
2.7  
V
TA= 40°C to 85°C  
TA = 40°C to 85°C  
TA = 40°C to 85°C  
I
Regulator output  
voltage  
VREG25  
2.45 V VREGIN < 2.7 V  
(low battery), IOUT 3 mA  
2.3  
Short Circuit  
Current Limit  
(2)  
ISHORT  
VREG25 = 0 V  
250  
mA  
(1) LDO output current, IOUT, is the sum of internal and external load currents.  
(2) Specified by design. Not production tested.  
6.7 Electrical Characteristics: Internal Temperature Sensor Characteristics  
TA = 40°C to 85°C, 2.4 V < REG25 < 2.6 V; Typical Values at TA = 25°C and REG25 = 2.5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
GTEMP  
Temperature sensor voltage gain  
mV/°C  
2  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: BQ34Z100-R2  
 
 
 
 
 
 
 
BQ34Z100-R2  
ZHCSRC1 DECEMBER 2022  
www.ti.com.cn  
6.8 Electrical Characteristics: Low-Frequency Oscillator  
TA = 40°C to 85°C, 2.4 V < REG25 < 2.6 V; Typical Values at TA = 25°C and REG25 = 2.5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
32.768  
0.25%  
0.25%  
0.25%  
500  
MAX UNIT  
f(LOSC)  
Operating frequency  
Frequency error(1) (2)  
Start-up time(3)  
kHz  
TA = 0°C to 60°C  
1.5%  
1.5%  
2.5%  
4%  
f(LEIO)  
2.5%  
TA = 20°C to 70°C  
TA = 40°C to 85°C  
4%  
t(LSXO)  
μs  
(1) The frequency drift is included and measured from the trimmed frequency at VCC = 2.5 V, TA = 25°C.  
(2) The frequency error is measured from 32.768 kHz.  
(3) The startup time is defined as the time it takes for the oscillator output frequency to be ±3%.  
6.9 Electrical Characteristics: High-Frequency Oscillator  
TA = 40°C to 85°C, 2.4 V < REG25 < 2.6 V; Typical Values at TA = 25°C and REG25 = 2.5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
8.389  
0.38%  
0.38%  
0.38%  
2.5  
MAX UNIT  
f(OSC)  
Operating frequency  
Frequency error(1) (2)  
Start-up time(2)  
MHz  
TA = 0°C to 60°C  
2%  
3%  
2%  
3%  
f(EIO)  
TA = 20°C to 70°C  
TA = 40°C to 85°C  
4.5%  
5
4.5%  
t(SXO)  
ms  
(1) The frequency error is measured from 2.097 MHz.  
(2) The startup time is defined as the time it takes for the oscillator output frequency to be ±3%.  
6.10 Electrical Characteristics: Integrating ADC (Coulomb Counter) Characteristics  
TA = 40°C to 85°C, 2.4 V < REG25 < 2.6 V; Typical Values at TA = 25°C and REG25 = 2.5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
V(SR) = V(SRN) V(SRP)  
Single conversion  
MIN  
TYP  
MAX UNIT  
V(SR)  
Input voltage range, V(SRN) and V(SRP)  
Conversion time  
0.125  
15  
V
s
0.125  
1
tSR_CONV  
Resolution  
14  
bits  
VOS(SR)  
INL  
ZIN(SR)  
Ilkg(SR)  
Input offset  
10  
µV  
Integral nonlinearity error  
Effective input resistance(1)  
Input leakage current(1)  
±0.007% ±0.034% FSR(2)  
2.5  
MΩ  
0.3  
µA  
(1) Specified by design. Not tested in production.  
(2) Full-scale reference  
6.11 Electrical Characteristics: ADC (Temperature and Cell Measurement) Characteristics  
TA = 40°C to 85°C, 2.4 V < REG25 < 2.6 V; Typical Values at TA = 25°C and REG25 = 2.5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VIN(ADC)  
Input voltage range  
Conversion time  
Resolution  
0.05  
1
125  
15  
V
ms  
tADC_CONV  
14  
bits  
mV  
MΩ  
VOS(ADC)  
ZADC1  
Input offset  
1
Effective input resistance (TS)(1)  
8
8
BQ34Z100-R2 not measuring cell  
voltage  
MΩ  
KΩ  
ZADC2  
Effective input resistance (BAT)(1)  
BQ34Z100-R2 measuring cell  
voltage  
100  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: BQ34Z100-R2  
 
 
 
 
 
 
 
 
 
 
 
BQ34Z100-R2  
ZHCSRC1 DECEMBER 2022  
www.ti.com.cn  
6.11 Electrical Characteristics: ADC (Temperature and Cell Measurement) Characteristics  
(continued)  
TA = 40°C to 85°C, 2.4 V < REG25 < 2.6 V; Typical Values at TA = 25°C and REG25 = 2.5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Ilkg(ADC)  
Input leakage current(1)  
0.3 µA  
(1) Specified by design. Not tested in production.  
6.12 Electrical Characteristics: Data Flash Memory Characteristics  
TA = 40°C to 85°C, 2.4 V < REG25 < 2.6 V; Typical Values at TA = 25°C and REG25 = 2.5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Data retention(1)  
10  
Years  
tDR  
Flash-programming write cycles(1)  
Word programming time(1)  
Flash-write supply current(1)  
20,000  
Cycles  
ms  
tWORDPROG  
ICCPROG  
2
5
10  
mA  
(1) Specified by design. Not tested in production.  
6.13 Timing Requirements: HDQ Communication  
TA = 40°C to 85°C, 2.45 V < VREGIN = VBAT < 5.5 V; typical values at TA = 25°C and VREGIN = VBAT = 3.6 V (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
190  
190  
0.5  
32  
NOM  
MAX UNIT  
t(CYCH)  
t(CYCD)  
t(HW1)  
t(DW1)  
t(HW0)  
t(DW0)  
t(RSPS)  
t(B)  
Cycle time, host to BQ34Z100-R2  
Cycle time, BQ34Z100-R2 to host  
Host sends 1 to BQ34Z100-R2  
BQ34Z100-R2 sends 1 to host  
Host sends 0 to BQ34Z100-R2  
BQ34Z100-R2 sends 0 to host  
Response time, BQ34Z100-R2 to host  
Break time  
μs  
205  
250  
50  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
50  
86  
145  
145  
950  
80  
190  
190  
40  
t(BR)  
Break recovery time  
t(RISE)  
t(RST)  
HDQ line rising time to logic 1 (1.2 V)  
HDQ Reset  
950  
2.2  
1.8  
s
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: BQ34Z100-R2  
 
 
 
 
BQ34Z100-R2  
ZHCSRC1 DECEMBER 2022  
www.ti.com.cn  
1.2V  
t(BR)  
t(RISE)  
t(B)  
(a) Break and Break Recovery  
(b) HDQ line rise time  
t(DW1)  
t(HW1)  
t(DW0)  
t(CYCD)  
t(HW0)  
t(CYCH)  
(d) Gauge Transmitted Bit  
(c) Host Transmitted Bit  
7-bit address  
1-bit  
R/W  
8-bit data  
Break  
t(RSPS)  
(e) Gauge to Host Response  
6-1. Timing Diagrams  
6.14 Timing Requirements: I2C-Compatible Interface  
TA = 40°C to 85°C, 2.45 V < VREGIN = VBAT < 5.5 V; typical values at TA = 25°C and VREGIN = VBAT = 3.6 V (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX UNIT  
tr  
SCL/SDA rise time  
300  
300  
ns  
ns  
tf  
SCL/SDA fall time  
tw(H)  
SCL pulse width (high)  
SCL pulse width (low)  
Setup for repeated start  
Start to first falling edge of SCL  
Data setup time  
600  
1.3  
600  
600  
100  
0
ns  
tw(L)  
μs  
ns  
tsu(STA)  
td(STA)  
tsu(DAT)  
th(DAT)  
tsu(STOP)  
tBUF  
ns  
ns  
Data hold time  
ns  
Setup time for stop  
600  
66  
ns  
Bus free time between stop and start  
Clock frequency  
μs  
kHz  
fSCL  
400  
t
f
t
t
t
t
t
r
(BUF)  
SU(STA)  
w(H)  
w(L)  
SCL  
SDA  
t
t
t
f
d(STA)  
su(STOP)  
t
r
t
t
su(DAT)  
h(DAT)  
REPEATED  
START  
STOP  
START  
6-2. I2C-Compatible Interface Timing Diagrams  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: BQ34Z100-R2  
 
BQ34Z100-R2  
ZHCSRC1 DECEMBER 2022  
www.ti.com.cn  
6.15 Typical Characteristics  
200  
160  
120  
80  
15  
10  
5
40  
0
0
-5  
-40  
-80  
-120  
-160  
-200  
-10  
-15  
-40°C  
-20°C  
25°C  
65°C  
85°C  
-40èC  
-20èC  
25èC  
65èC  
85èC  
-20  
25.2  
27  
28.8 30.6 32.4 34.2  
Battery Voltage (V)  
36  
37.8 39.6  
2800 3000 3200 3400 3600 3800 4000 4200 4400  
Battery Voltage (mV)  
D002  
D001  
6-4. V(Err) Across VIN (0 mA) 9 s  
6-3. V(Err) Across VIN (0 mA)  
25  
2
1
0
20  
15  
10  
5
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
0
-5  
-10  
-15  
-20  
-25  
-40èC  
-20èC  
25èC  
65èC  
85èC  
-3000  
-2000  
-1000  
0
Current (mA)  
1000  
2000  
3000  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (èC)  
D003  
D004  
6-5. I(Err)  
6-6. T(Err)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: BQ34Z100-R2  
 
BQ34Z100-R2  
ZHCSRC1 DECEMBER 2022  
www.ti.com.cn  
7 Functional Block Diagram  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: BQ34Z100-R2  
 
BQ34Z100-R2  
ZHCSRC1 DECEMBER 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属于 TI 元件规格TI 不担保其准确性和完整性。TI 的客户负责确定元件是否  
适合其用途以及验证和测试其设计实现以确认系统功能。  
8.1 Application Information  
The BQ34Z100-R2 is a flexible gas gauge device with many options. The major configuration choices comprise  
the battery chemistry, digital interface, and display.  
8.2 Typical Applications  
8-1 is a simplified diagram of the main features of the BQ34Z100-R2. Specific implementations detailing the  
main configuration options are shown later in this section.  
8-1. BQ34Z100-R2 Simplified Implementation  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: BQ34Z100-R2  
 
 
 
 
BQ34Z100-R2  
ZHCSRC1 DECEMBER 2022  
www.ti.com.cn  
The BQ34Z100-R2 can be used to provide a single Li-ion cell gas gauge with a 5-bar LED display.  
m p p 5 7 0 1 0 .  
0 3 R  
2
S H 1 S H  
8-2. 1-Cell Li-ion and 5-LED Display  
The BQ34Z100-R2 can also be used to provide a gas gauge for a multi-cell Li-ion battery with a 5-bar LED  
display.  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: BQ34Z100-R2  
BQ34Z100-R2  
ZHCSRC1 DECEMBER 2022  
www.ti.com.cn  
S
2
3
1
G
D
7 R  
8-3. Multi-Cell and 5-LED Display  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: BQ34Z100-R2  
BQ34Z100-R2  
ZHCSRC1 DECEMBER 2022  
www.ti.com.cn  
8-4 shows the BQ34Z100-R2 full features enabled.  
1
2
3
4
5
6
7
8
N R G 4 -  
N R G 4 -  
N R G 4 -  
N R G 4 -  
6 1 L 0 P T C Q  
6 1 L 0 P T C Q  
6 1 L 0 P T C Q  
6 1 L 0 P T C Q  
2
1
2 H S  
1 H S  
m p p 5 7 0 1 0 .  
0
R 3  
8-4. Full-Featured Evaluation Module EVM  
8.2.1 Design Requirements  
For additional design guidelines, refer to the BQ34Z100 EVM Wide Range Impedance Track Enabled Battery  
Fuel Gauge User's Guide (SLUU904).  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: BQ34Z100-R2  
 
BQ34Z100-R2  
ZHCSRC1 DECEMBER 2022  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 Step-by-Step Design Procedure  
8.2.2.1.1 STEP 1: Review and Modify the Data Flash Configuration Data.  
While many of the default parameters in the data flash are suitable for most applications, the following should  
first be reviewed and modified to match the intended application.  
Design Capacity: Enter the value in mAh divided by CurrScale() for the battery, even from the design  
energypoint of view.  
Design Energy: Enter the value in cWh divided by EnergyScale() .  
Cell Charge Voltage Tx-Ty: Enter the desired cell charge voltage for each JEITA temperature range.  
8.2.2.1.2 STEP 2: Review and Modify the Data Flash Configuration Registers.  
LED_Comm Configuration: See in the BQ34Z100-R2 Technical Reference Manual to aid in selection of an  
LED mode. Note that the pin used for the optional Alert signal is dependent upon the LED mode selected.  
Alert Configuration: See the BQ34Z100-R2 Technical Reference Manual to aid in selection of which faults  
trigger the ALERT pin.  
Number of Series Cells  
Pack Configuration: Ensure that the VOLSEL bit is set for multicell applications and cleared for single-cell  
applications.  
8.2.2.1.3 STEP 3: Design and Configure the Voltage Divider.  
If the battery contains more than 1-s cells, a voltage divider network is required. Design the divider network,  
based on the formula below. The voltage division required is from the highest expected battery voltage, down to  
approximately 900 mV. For example, using a lower leg resistor of 16.5 KΩ where the highest expected voltage  
is 32000 mV:  
Rseries = 16.5 KΩ(32000 mV 900 mV)/900 mV = 570.2 KΩ  
Based on price and availability, a 600-K resistor or pair of 300-K resistors could be used in the top leg along with  
a 16.5-K resistor in the bottom leg.  
Set the Voltage Divider in the Data Flash Calibration section of the Evaluation Software to 32000 mV with  
VoltScale() =1.  
Use the Evaluation Software to calibrate to the applied nominal voltage; for example, 24000 mV. After  
calibration, a slightly different value appears in the Voltage Divider parameter, which can be used as a default  
value for the project. For the applications with voltage higher than 65535 mV, please refer to the BQ34Z100-R2  
Technical Reference Manual.  
Following the successful voltage calibration, calculate and apply the value to Flash Update OK Cell Volt as:  
Flash Update OK Cell Volt = 2800 mV × Number Of Series Cells × 5000 / Voltage Divider /VoltScale() .  
8.2.2.1.4 STEP 4: Determine the Sense Resistor Value.  
To ensure accurate current measurement, the input voltage generated across the current sense resistor should  
not exceed +/125 mV. For applications with a very high dynamic range, it is allowable to extend this range to  
absolute maximum of +/300 mV for overload conditions where a protector device will be taking independent  
protective action. In such an overloaded state, current reporting and gauging accuracy will not function correctly.  
The value of the current sense resistor should be entered into both CC Gain and CC Delta parameters in the  
Data Flash Calibration section of the Evaluation Software.  
8.2.2.1.5 STEP 5: Review and Modify the Data Flash Gas Gauging Configuration, Data, and State.  
Load Select: See Current Model Used When Load Mode = 0 and Constant-Power Model Used When Load  
Mode = 1 in the BQ34Z100-R2 Technical Reference Manual.  
Load Mode: See Current Model Used When Load Mode = 0 and Constant-Power Model Used When Load  
Mode = in the BQ34Z100-R2 Technical Reference Manual.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: BQ34Z100-R2  
BQ34Z100-R2  
ZHCSRC1 DECEMBER 2022  
www.ti.com.cn  
Cell Terminate Voltage: This is the theoretical voltage where the system begins to fail. It is defined as a zero  
state-of-charge. Generally, a more conservative level is used to have some reserve capacity. Note the value  
is for a single cell only.  
Quit Current: Generally, this should be set to a value slightly above the expected idle current of the system.  
Qmax Cell 0: Start with the C-rate value of your battery.  
8.2.2.1.6 STEP 6: Determine and Program the Chemical ID.  
Use the BQChem feature in the Evaluation Software to select and program the chemical ID matching your cell. If  
no match is found, use the procedure defined in TI's (Mathcad Chemistry Selection Tool (SLUC138).  
8.2.2.1.7 STEP 7: Calibrate.  
Follow the steps on the Calibration screen in the Evaluation Software. Achieving the best possible calibration is  
important before moving on to Step 8. For mass production, calibration is not required for single-cell applications.  
For multi-cell applications, only voltage calibration is required. Current and temperature may be calibrated to  
improve gauging accuracy if needed.  
8.2.2.1.8 STEP 8: Run an Optimization Cycle.  
Refer to the Preparing Optimized Default Flash Constants for Specific Battery Types Application Report  
(SLUA334B).  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: BQ34Z100-R2  
BQ34Z100-R2  
ZHCSRC1 DECEMBER 2022  
www.ti.com.cn  
9 Power Supply Recommendations  
Power supply requirements for the BQ34Z100-R2 are simplified due to the presence of the internal LDO voltage  
regulation. The REGIN pin accepts any voltage level between 2.7 V and 4.5 V, which is optimum for a single-cell  
Li-ion application. For higher battery voltage applications, a simple pre-regulator can be provided to power the  
bq34Z100-R2 and any optional LEDs. Decoupling the REGIN pin should be done with a 0.1-µF 10% ceramic  
X5R capacitor placed close to the device. While the pre-regulator circuit is not critical, special attention should be  
paid to its quiescent current and power dissipation. The input voltage should handle the maximum battery stack  
voltage. The output voltage can be centered within the 2.7-V to 4.5-V range as recommended for the REGIN pin.  
For high stack count applications, a commercially available LDO is often the best quality solution, but comes with  
a cost tradeoff. To lower the BOM cost, the following approaches are recommended.  
In 9-1, Q1 is used to drop the battery stack voltage to roughly 4 V to power the BQ34Z100-R2 REGIN pin and  
also to feed the anode of any LEDs used in the application. To avoid unwanted quiescent current consumption,  
R1 should be set as high as is practical. It is recommended to use a low-current Zener diode.  
From Battery Stack +  
R1  
Q1  
~4 V  
D1  
5.6 V  
To REGIN/LED(s)  
9-1. Q1 Dropping Battery Stack Voltage to 4 V  
Alternatively, if the range of a high-voltage battery stack can be well defined, a simple source follower based on  
a resistive divider can be used to lower the BOM cost and the quiescent current. For example:  
From Battery Stack +  
R1  
Q1  
2.7 V ~ 4.5 V  
R2  
To REGIN/LED(s)  
9-2. Source Follower on a Resistive Divider  
Power dissipation of the linear pre-regulator may become an important design decision when multiple LEDs are  
employed in the application. For example, the BQ34Z100-R2 EVM uses a pair of FETs in parallel to  
inexpensively dissipate enough power for 10-LED evaluation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: BQ34Z100-R2  
 
 
BQ34Z100-R2  
ZHCSRC1 DECEMBER 2022  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
10.1.1 Introduction  
Attention to layout is critical to the success of any battery management circuit board. The mixture of high-current  
paths with an ultralow-current microcontroller creates the potential for design issues that are not always trivial to  
solve. Some of the key areas of concern are described in the following sections, and can help to enable  
success.  
10.1.2 Power Supply Decoupling Capacitor  
Power supply decoupling from VCC to ground is important for optimal operation of the gas gauge. To keep the  
loop area small, place this capacitor next to the IC and use the shortest possible traces. A large loop area  
renders the capacitor useless and forms a small-loop antenna for noise pickup.  
Ideally, the traces on each side of the capacitor should be the same length and run in the same direction to avoid  
differential noise during ESD. If possible, place a via near the VSS pin to a ground plane layer.  
10.1.3 Capacitors  
Power supply decoupling for the gas gauges requires a pair of 0.1-µF ceramic capacitors for (BAT) and (VCC)  
pins. These should be placed reasonably close to the IC without using long traces back to VSS. The LDO  
voltage regulator, whether external or internal to the main IC, requires a 0.47-µF ceramic capacitor to be placed  
fairly close to the regulation output pin. This capacitor is for amplifier loop stabilization and as an energy well for  
the 2.5-V supply.  
10.1.4 Communication Line Protection Components  
The 5.6-V Zener diodes, used to protect the communication pins of the gas gauge from ESD, should be located  
as close as possible to the pack connector. The grounded end of these Zener diodes should be returned to the  
Pack() node rather than to the low-current digital ground system. This way, ESD is diverted away from the  
sensitive electronics as much as possible.  
In some applications, it is sometimes necessary to cause transitions on the communication lines to trigger events  
that manage the gas gauge power modes. An example of one of these transitions is detecting a sustained low  
logic level on the communication lines to detect that a pack has been removed. Given that most of the gas  
gauges do not have internal pulldown networks, it is necessary to add a weak pulldown resistor to accomplish  
this when there's an absence of a strong pullup resistor on the system side. If the weak pulldown resistor is  
used, it may take less board space to use a small capacitor in parallel instead of the Zener diode to absorb any  
ESD transients that are received through communication lines.  
10.2 Layout Example  
10.2.1 Ground System  
The gas gauge requires a low-current ground system separate from the high-current PACK() path. ESD  
ground is defined along the high-current path from the PACK() terminal to low-side protector FETs (if present)  
or the sense resistor. It is important that the low-current ground systems only connect to the BAT() path at the  
sense resistor Kelvin pick-off point. It is recommended to use an optional inner layer ground plane for the low-  
current ground system. In 10-1, the green is an example of using the low-current ground as a shield for the  
gas gauge circuit. Notice how it is kept separate from the high-current ground, which is shown in red. The high-  
current path is joined with the low-current path only at one point, shown with the small blue connection between  
the two planes.  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: BQ34Z100-R2  
 
 
 
BQ34Z100-R2  
ZHCSRC1 DECEMBER 2022  
www.ti.com.cn  
10-1. Differential Filter Component with Symmetrical Layout  
10.2.2 Kelvin Connections  
Kelvin voltage sensing is very important to accurately measure current and cell voltage. Notice how the  
differential connections at the sense resistor do not add any voltage drop across the copper etch that carries the  
high current path through the sense resistor. See 10-1 and 10-2.  
10.2.3 Board Offset Considerations  
Although the most important component for board offset reduction is the decoupling capacitor for VCC, additional  
benefit is possible by using this recommended pattern for the coulomb counter differential low-pass filter  
network. Maintain the symmetrical placement pattern shown for optimum current offset performance. Use  
symmetrical shielded differential traces, if possible, from the sense resistor to the 100-Ω resistors, as shown in  
10-2.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: BQ34Z100-R2  
 
BQ34Z100-R2  
ZHCSRC1 DECEMBER 2022  
www.ti.com.cn  
10-2. Differential Connection Between SRP and SRN Pins with Sense Resistor  
10.2.4 ESD Spark Gap  
Protect the communication lines from ESD with a spark gap at the connector. 10-3 shows the recommended  
pattern with its 0.2-mm spacing between the points.  
10-3. Recommended Spark-Gap Pattern Helps Protect Communication Lines from ESD  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: BQ34Z100-R2  
 
 
BQ34Z100-R2  
ZHCSRC1 DECEMBER 2022  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Documentation Support  
For related documentation, see the following:  
BQ34Z100-R2 Technical Reference Manual  
BQ34Z100-R2 High Cell Count and High Capacity Applications application report  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
Impedance Trackis a trademark of Texas Instruments.  
TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: BQ34Z100-R2  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Dec-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ34Z100PWR-R2  
ACTIVE  
TSSOP  
PW  
14  
2000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 85  
34Z100  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

BQ34Z110

Wide Range Fuel Gauge with Impedance Track™ for Lead-Acid Batteries
TI

bq34z110PW

Wide Range Fuel Gauge with Impedance Track™ for Lead-Acid Batteries
TI

bq34z110PWR

Wide Range Fuel Gauge with Impedance Track™ for Lead-Acid Batteries
TI

BQ34Z651

SBS 1.1-Compliant Gas Gauge and Protection Enabled With Impedance Track™ and External Battery Heater Control
TI

BQ34Z653

SBS 1.1-Compliant Gas Gauge and Protection Enabled with Impedance Track with External Battery Heater Control and LCD Display
TI

BQ34Z653DBT

SBS 1.1-Compliant Gas Gauge and Protection Enabled with Impedance Track with External Battery Heater Control and LCD Display
TI

BQ34Z653DBTR

SBS 1.1-Compliant Gas Gauge and Protection Enabled with Impedance Track with External Battery Heater Control and LCD Display
TI

BQ34Z950

SBS 1.1-COMPLIANT GAS GAUGE AND PROTECTION ENABLED WITH IMPEDANCE TRACK WITH OPTIONAL DQ INTERFACE
TI

BQ34Z950DBT

SBS 1.1-COMPLIANT GAS GAUGE AND PROTECTION ENABLED WITH IMPEDANCE TRACK WITH OPTIONAL DQ INTERFACE
TI

BQ34Z950DBTR

SBS 1.1-COMPLIANT GAS GAUGE AND PROTECTION ENABLED WITH IMPEDANCE TRACK WITH OPTIONAL DQ INTERFACE
TI

BQ35100

用于不可充电电池(锂原)的电池电量监测计和放电结束监测计
TI

BQ35100PW

用于不可充电电池(锂原)的电池电量监测计和放电结束监测计 | PW | 14 | -40 to 85
TI