BQ35100PW [TI]

用于不可充电电池(锂原)的电池电量监测计和放电结束监测计 | PW | 14 | -40 to 85;
BQ35100PW
型号: BQ35100PW
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

用于不可充电电池(锂原)的电池电量监测计和放电结束监测计 | PW | 14 | -40 to 85

电池 光电二极管
文件: 总33页 (文件大小:1490K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
BQ35100  
ZHCSF78E JUNE 2016REVISED APRIL 2019  
BQ35100 锂原电池电量监测计和放电结束监测计  
1 特性  
3 说明  
1
适用于流量计 应用的电量监测计和电池诊断 可预  
测放电结束或早期电池故障  
BQ35100 电池电量监测计和充放电结束监测计为不可  
再充电的锂原电池提供高度可配置的电量监测,无需强  
制电池放电。BQ35100 器件采用无需优化即可实现精  
确测量的设计,并使用获得专利的 TI 监测算法来支持  
使用新电池无缝更换旧电池的选项。  
支持锂亚硫酰氯 (Li-SOCl2) 和锂二氧化锰 (Li-  
MnO2) 化学 电池  
精确的电压、温度、电流和库仑计数器测量,可  
报告电池运行状况和使用寿命  
BQ35100 器件以超低平均功耗提供精确结果,可借助  
GAUGE ENABLE (GE) 引脚通过主机控制实现小于  
2µA 的功耗。此器件只需以系统确定的更新频率在足  
够长的时间内获得供电,即可收集数据并进行计算以支  
持所选的算法。由于监测计不需要通电即可测量所有放  
电活动,因此典型系统可能每 8 小时只需更新一次。  
针对 Li-MnO2 的运行状况 (SOH) 算法  
针对 Li-SOCl2 的放电结束 (EOS) 算法  
针对所有电池类型的库仑累积 (ACC) 算法  
超低平均功耗可尽可能延长电池的正常运行时间  
通过主机控制的定期更新启用监测计  
运行状况 (SOH) ~0.06µA  
放电结束 (EOS) ~0.35µA  
电量监测计功能使用电压、电流和温度测量结果来提供  
运行状况 (SOH) 数据和充放电结束 (EOS) 警告信息,  
然后主机可通过 400kHz I2C 总线从其中读取收集的数  
据。此外还可使用基于各种可配置状态和数据选项的  
ALERT 输出来中断主机。  
库仑累积 (ACC) 诊断更新 ~0.3µA  
系统交互能力  
I2C 主机通信,提供电池参数和状态访问  
可配置主机中断  
电池信息数据记录选项,可用于运行诊断和故障  
分析  
器件信息(1)  
器件型号  
BQ35100  
封装  
封装尺寸(标称值)  
SHA-1 认证可防止使用伪劣电池  
TSSOP (14)  
5.00mm × 4.40mm  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
2 应用  
用于一次电池系统且适用于动态负载和环境温度变  
化较大的 应用  
简化原理图  
BAT+  
智能仪表和流量计  
门禁控制  
REGIN  
I2C CLK  
10 k 10 k  
烟雾和气体泄漏探测器  
楼宇自动化  
I2C DATA  
REG25  
100k  
VIN  
SDA  
SCL  
1
2
3
4
5
6
7
14  
13  
物联网,包括传感器节点  
资产跟踪  
ALERT  
ALERT  
NC  
REG25  
100  
VEN 12  
TS 11  
10k NTC  
适用于流量计系统且具有早期故障检测能力的电池  
状态报告和诊断功能  
BAT  
GAUGE ENABLE  
VSUPPLY  
0.1 µF  
GE  
SRN 10  
0.1  
75 ppm  
100  
0.1 µF  
REGIN  
REG25  
通过精确的电池电量监测延长电池正常运行时间,  
适用于烟雾探测器、传感器节点和资产跟踪器 应用  
REGIN  
REG25  
SRP  
VSS  
9
8
100  
1 M  
0.1 µF  
0.1 µF  
1 µF  
1 µF  
PACK–  
Copyright © 2017, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLUSCM6  
 
 
 
 
 
 
BQ35100  
ZHCSF78E JUNE 2016REVISED APRIL 2019  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 Power Supply Current Static Modes......................... 6  
6.6 Digital Input and Outputs ......................................... 6  
6.7 Power-On Reset........................................................ 7  
6.8 LDO Regulator .......................................................... 7  
6.9 Internal Temperature Sensor .................................... 7  
6.10 Internal Clock Oscillators ....................................... 7  
6.11 Integrating ADC (Coulomb Counter)....................... 7  
6.12 ADC (Temperature and Voltage Measurements) ... 8  
6.13 Data Flash Memory................................................. 8  
6.14 I2C-Compatible Interface Timing Characteristics.... 8  
6.15 Typical Characteristics ........................................... 9  
7
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ...................................... 10  
7.3 Feature Description................................................. 10  
7.4 Device Functional Modes........................................ 15  
Application and Implementation ........................ 17  
8.1 Application Information .......................................... 17  
8.2 Typical Applications ................................................ 17  
Power Supply Recommendations...................... 21  
8
9
10 Layout................................................................... 22  
10.1 Layout Guidelines ................................................. 22  
10.2 Layout Example .................................................... 22  
10.3 ESD Spark Gap .................................................... 24  
11 器件和文档支持 ..................................................... 25  
11.1 文档支持................................................................ 25  
11.2 接收文档更新通知 ................................................. 25  
11.3 社区资源................................................................ 25  
11.4 ....................................................................... 25  
11.5 静电放电警告......................................................... 25  
11.6 术语表 ................................................................... 25  
12 机械、封装和可订购信息....................................... 25  
4 修订历史记录  
Changes from Revision D (May 2018) to Revision E  
Page  
更正了特性 中的拼写错误 ....................................................................................................................................................... 1  
Changes from Revision C (September 2017) to Revision D  
Page  
已添加 向特性 应用 中添加了更多信息 ............................................................................................................................... 1  
Changed Recommended Operating Conditions .................................................................................................................... 5  
Added Power Supply Current Static Modes........................................................................................................................... 6  
Changed Basic Measurement Systems ............................................................................................................................... 10  
Changed Device Functional Modes ..................................................................................................................................... 15  
Added EOS Mode Load Pulse Synchronization................................................................................................................... 20  
Added Benefits of the bq35100 Gauge Compared to Alternative Monitoring Techniques .................................................. 20  
Changes from Revision B (September 2016) to Revision C  
Page  
已更改 特性参考设计 说明 ............................................................................................................................................ 1  
Added Preparation for Gauging ........................................................................................................................................... 18  
Changed Detailed Design Procedure .................................................................................................................................. 18  
Added Using the bq35100 with a Battery and Capacitor in Parallel ................................................................................... 20  
Changes from Revision A (July 2016) to Revision B  
Page  
已更改 器件信息 .................................................................................................................................................................... 1  
Changed Specifications ......................................................................................................................................................... 5  
Changed Application Curves ............................................................................................................................................... 21  
2
Copyright © 2016–2019, Texas Instruments Incorporated  
 
BQ35100  
www.ti.com.cn  
ZHCSF78E JUNE 2016REVISED APRIL 2019  
Changed VCC to VREG25 in Layout Guidelines ...................................................................................................................... 22  
Changed VCC to VREG25 in Board Offset Considerations ..................................................................................................... 23  
Copyright © 2016–2019, Texas Instruments Incorporated  
3
BQ35100  
ZHCSF78E JUNE 2016REVISED APRIL 2019  
www.ti.com.cn  
5 Pin Configuration and Functions  
TSSOP (PW) Package  
14-Pin  
Top View  
VIN  
ALERT  
NC  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
SDA  
SCL  
VEN  
TS  
BAT  
GE  
SRN  
SRP  
REGIN  
REG25  
8
V
SS  
Not to scale  
Pin Functions  
NUMBER  
NAME  
VIN  
I/O  
AI(1)  
O
DESCRIPTION  
1
2
3
4
5
6
Optional voltage measurement input  
Active low interrupt open-drain output. Requires an external pullup  
Not used and should be connected to VSS  
ALERT  
NC  
P
.
BAT  
Voltage measurement input and can be left floating or tied to VSS if not used.  
Gauge enable. Internal LDO is disconnected from REGIN when driven low.  
Internal integrated LDO input. Decouple with 0.1-µF ceramic capacitor to VSS.  
GE  
I
REGIN  
P
2.5-V output voltage of the internal integrated LDO. Decouple with 1-µF ceramic capacitor  
VSS  
7
8
9
REG25  
VSS  
P
P
I
.
Device ground  
Analog input pin connected to the internal coulomb-counter peripheral for integrating a small  
voltage between SRP and SRN where SRP is nearest the BAT– connection.  
SRP  
Analog input pin connected to the internal coulomb-counter peripheral for integrating a small  
voltage between SRP and SRN where SRN is nearest the PACK– connection.  
10  
SRN  
I
11  
12  
13  
TS  
I
O
I
Pack thermistor voltage sense (use 103AT-type thermistor)  
VEN  
SCL  
Optional open-drain external voltage divider control output  
Slave I2C serial communication clock input. Use with a 10-K pullup resistor (typical).  
Open-drain slave I2C serial communication data line. Use with a 10-kΩ pullup resistor  
(typical).  
14  
SDA  
I/O  
(1) P = Power Connection, O = Digital Output, AI = Analog Input, I = Digital Input, I/OD = Digital Input/Output  
4
Copyright © 2016–2019, Texas Instruments Incorporated  
BQ35100  
www.ti.com.cn  
ZHCSF78E JUNE 2016REVISED APRIL 2019  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over-operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–40  
MAX  
5.5  
UNIT  
V
VREGIN  
VREG25  
Regulator Input Range  
Supply Voltage Range  
2.75  
V
Open-drain I/O pins (SDA, SCL, VEN)  
Open-drain I/O pins (ALERT)  
BAT Input Pin  
5.5  
V
VIOD  
2.75  
V
VBAT  
VI  
5.5  
V
Input voltage range (SRN, SRP, TS)  
Operating free-air temperature range  
Functional Temperature Range  
Storage temperature range  
Lead temperature (soldering, 10 s)  
VREG25 + 0.3  
85  
V
TA  
°C  
°C  
°C  
°C  
TF  
–40  
100  
–65  
150  
TSTG  
–40  
100  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±1500  
±2000  
±500  
UNIT  
Human Body Model (HBM), per ANSI/ESDA/JEDEC JS-001(1), BAT pin  
Human Body Model (HBM), per ANSI/ESDA/JEDEC JS-001(1), all other pins  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
TA =–40°C to 85°C; Typical Values at TA = 25°C CLDO25 = 1.0 μF, and VREGIN = 3.6 V (unless otherwise noted)  
MIN  
2.7  
NOM  
MAX  
4.5  
UNIT  
V
No operating restrictions  
No FLASH writes  
VREGIN  
Supply Voltage  
2.45  
2.7  
V
External input capacitor  
for internal LDO  
between REGIN and  
VSS  
CREGIN  
0.1  
µF  
Nominal capacitor values specified.  
Recommend a 10% ceramic X5R type  
capacitor located close to the device.  
External output  
CLDO25  
capacitor for internal  
LDO between VREG25  
0.47  
1
0.05  
0.3  
µF  
µA  
µA  
Gas gauge in Disabled  
mode  
(1)  
ICC_GELOW  
GE = Low  
Gas gauge in  
(1)  
ICC_ACC_AVE  
ACCUMULATOR mode Update every 30 minutes otherwise GE = Low  
average current  
State-of-health average  
Update every 8 hours otherwise GE = Low  
current  
(1)  
(1)  
ICC_SOH_AVE  
ICC_EOS_AVE  
VA1  
0.06  
0.35  
µA  
µA  
V
End-of-service average Update every 8 hours 3- s Load Pulse  
current  
otherwise GE = Low  
Input voltage range  
(VIN, TS)  
VSS – 0.05  
1
Input voltage range  
(BAT)  
VA2  
VSS – 0.125  
5.0  
V
(1) Not production tested  
Copyright © 2016–2019, Texas Instruments Incorporated  
5
 
BQ35100  
ZHCSF78E JUNE 2016REVISED APRIL 2019  
www.ti.com.cn  
Recommended Operating Conditions (continued)  
TA =–40°C to 85°C; Typical Values at TA = 25°C CLDO25 = 1.0 μF, and VREGIN = 3.6 V (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
Input voltage range  
(SRP, SRN)  
VA3  
VSS – 0.125  
0.125  
0.3  
V
Input leakage current  
(I/O pins)  
ILKG  
tPUCD  
µA  
ms  
Power-up  
communication  
250  
6.4 Thermal Information  
BQ35100  
THERMAL METRIC(1)  
TSSOP (PW)  
14 PINS  
103.8  
31.9  
UNIT  
RθJA, High K  
RθJC(top)  
RθJB  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
46.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
2.0  
ψJB  
45.9  
RθJC(bottom)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Power Supply Current Static Modes  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
GE = High AND GaugeStart()  
received and GaugeStop() not  
Received (GMSEL1,0 = 0,0)  
Gas gauge in  
ACCUMULATOR mode  
(1)  
ICC_ACCU  
130  
µA  
GE = High AND GaugeStart()  
received and GaugeStop() not  
Received (GMSEL1,0 = 0,1)  
State-of-health operating  
current  
(1)  
ICC_SOH  
40  
µA  
µA  
GE = High AND GaugeStart()  
received and GaugeStop() not  
Received (GMSEL1,0 = 1,0)  
End-of-service operating  
current—data burst  
(1)  
ICC_EOS_Burst  
315  
GE = High AND GaugeStart() AND  
GaugeStop() Received (GMSEL1,0  
= 1,0)  
End-of-service operating  
current—data gathering  
(1)  
ICC_EOS_Gather  
75  
µA  
µA  
(1)  
ICC_GELOW  
Device Disabled  
GE = LOW  
0.05  
(1) Not production tested  
6.6 Digital Input and Outputs  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Output voltage low (SDA, SCL,  
VEN)  
VOL  
IOL = 3 mA  
0.4  
V
V
V
VOH(PP)  
VOH(OD)  
Output high voltage  
IOH = –1 mA  
VREG25 – 0.5  
VREG25 – 0.5  
Output high voltage (SDA, SCL,  
VEN, ALERT)  
External pullup resistor connected to  
VREG25  
VIL  
Input voltage low (SDA, SCL)  
Input voltage high (SDA, SCL)  
GE Low-level input voltage  
GE High-level input voltage  
Input leakage current (I/O pins)  
–0.3  
1.2  
0.6  
5.5  
0.8  
V
V
VIH  
VIL(GE)  
VIH(GE)  
Ilkg  
VREGIN = 2.8 to 4.5 V  
V
2.65  
0.3  
μA  
6
Copyright © 2016–2019, Texas Instruments Incorporated  
BQ35100  
www.ti.com.cn  
ZHCSF78E JUNE 2016REVISED APRIL 2019  
6.7 Power-On Reset  
TA = –40°C to 85°C; Typical Values at TA = 25°C and VREGIN = 3.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
2.20  
115  
MAX UNIT  
Positive-going battery voltage  
input at REG25  
VIT+  
2.05  
2.31  
V
VHYS  
Power-on reset hysteresis  
mV  
6.8 LDO Regulator  
TA = 25°C, CLDO25 = 1.0 μF, VREGIN = 3.6 V (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
2.7 V VREGIN 4.5 V, IOUT 16 mA TA = –40°C  
to 85°C  
2.3  
2.3  
2.5  
2.7  
V
VREG25  
Regulator output voltage  
2.45 V VREGIN < 2.7 V, IOUT 3 mA TA  
=
–40°C to 85°C  
VREG25 = 0 V  
TA = –40°C to 85°C  
(2)  
ISHORT  
Short circuit current limit  
250  
mA  
(1) LDO output current, IOUT, is the sum of internal and external load currents.  
(2) Specified by design. Not production tested.  
6.9 Internal Temperature Sensor  
TA = –40°C to 85°C, 2.4 V < REG25 < 2.6 V; Typical Values at TA = 25°C and REG25 = 2.5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Internal temperature sensor  
voltage gain  
GTEMP  
–2  
mV/°C  
6.10 Internal Clock Oscillators  
TA = –40°C to 85°C, 2.4 V < REG25 < 2.6 V; Typical Values at TA = 25°C and REG25 = 2.5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
32.768  
2.097  
2.5  
MAX UNIT  
kHz  
f(LOSC)  
f(OSC)  
t(SXO)  
Operating frequency  
Operating frequency  
Start-up time(1)  
MHz  
5
ms  
(1) The startup time is defined as the time it takes for the oscillator output frequency to be ±3%.  
6.11 Integrating ADC (Coulomb Counter)  
TA = –40°C to 85°C, 2.4 V < REG25 < 2.6 V; Typical Values at TA = 25°C and REG25 = 2.5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
V(SR) = V(SRN) – V(SRP)  
Single conversion  
MIN  
TYP  
MAX UNIT  
Input voltage range,  
V(SR)  
–0.125  
0.125  
15  
V
V(SRN) and V(SRP)  
Conversion time  
Resolution  
1
s
tSR_CONV  
14  
bits  
µV  
VOS(SR)  
INL  
Input offset  
10  
Integral nonlinearity  
error  
±0.007%  
FSR(1)  
Effective input  
resistance(2)  
ZIN(SR)  
2.5  
MΩ  
Input leakage  
current(2)  
ILKG(SR)  
0.3  
µA  
(1) Full-scale reference  
(2) Specified by design. Not tested in production.  
Copyright © 2016–2019, Texas Instruments Incorporated  
7
BQ35100  
ZHCSF78E JUNE 2016REVISED APRIL 2019  
www.ti.com.cn  
6.12 ADC (Temperature and Voltage Measurements)  
TA = –40°C to 85°C, 2.4 V < REG25 < 2.6 V; Typical Values at TA = 25°C and REG25 = 2.5 V (unless otherwise noted)  
PARAMETER  
BAT Input range  
TEST CONDITIONS  
MIN  
VSS – 0.125  
VSS – 0.125  
TYP  
MAX UNIT  
VIN(BAT)  
5
V
V
VIN(TSAT)  
TS Input range  
Conversion time  
Resolution  
VREG25  
Single conversion  
125  
1
ms  
bits  
µV  
tSR_CONV  
14  
15  
VOS(SR)  
ZADC1  
Input offset  
Effective input  
With internal pull-down activated  
5
8
kΩ  
resistance(TS)(1)  
When not measuring  
During measurement  
MΩ  
kΩ  
Effective input  
ZADC2  
resistance(BAT)(1)  
100  
Input leakage  
current(1)  
ILKG(ADC)  
0.3  
µA  
(1) Specified by design. Not tested in production.  
6.13 Data Flash Memory  
TA = –40°C to 85°C, 2.4 V < REG25 < 2.6 V; Typical Values at TA = 25°C and REG25 = 2.5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
10  
TYP  
MAX UNIT  
Years  
Data retention(1)  
tDR  
Flash-programming write cycles(1)  
Word programming time(1)  
Flash-write supply current(1)  
20,000  
Cycles  
tWORDPROG  
ICCPROG  
2
ms  
5
10  
mA  
(1) Specified by design. Not tested in production.  
6.14 I2C-Compatible Interface Timing Characteristics  
TA = –40°C to 85°C, 2.45 V < VREGIN = VBAT < 5.5 V; Typical Values at TA = 25°C and VBAT = 3.6 V (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
tR  
SCL/SDA rise time  
300  
300  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
µs  
kHz  
tF  
SCL/SDA fall time  
tW(H)  
SCL pulse width (high)  
SCL pulse width (low)  
Setup for repeated start  
Start to first falling edge of SCL  
Data setup time  
600  
1.3  
600  
600  
100  
0
tW(L)  
tSU(STA)  
td(STA)  
tSU(DAT)  
th(DAT)  
tSU(STOP)  
tBUF  
Data hold time  
Setup time for stop  
600  
66  
Bus free time between stop and start  
Clock frequency  
fSCL  
400  
8
Copyright © 2016–2019, Texas Instruments Incorporated  
BQ35100  
www.ti.com.cn  
ZHCSF78E JUNE 2016REVISED APRIL 2019  
t
t
t
t
t
f
t
r
(BUF)  
SU(STA)  
w(H)  
w(L)  
SCL  
SDA  
t
t
t
d(STA)  
su(STOP)  
f
t
r
t
t
su(DAT)  
h(DAT)  
REPEATED  
START  
STOP  
START  
Figure 1. I2C-Compatible Interface Timing Diagrams  
6.15 Typical Characteristics  
15  
10  
5
25  
20  
15  
10  
5
0
0
-5  
-5  
-10  
-15  
-20  
-25  
-10  
-15  
-40èC  
-20èC  
25èC  
65èC  
85èC  
-40èC  
-20èC  
25èC  
65èC  
85èC  
-20  
2800 3000 3200 3400 3600 3800 4000 4200 4400  
Battery Voltage (mV)  
-3000  
-2000  
-1000  
0
Current (mA)  
1000  
2000  
3000  
D001  
D003  
Figure 2. V(Err) Across VIN (0 mA)  
Figure 3. I(Err)  
2
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (èC)  
D004  
Figure 4. T(Err)  
Copyright © 2016–2019, Texas Instruments Incorporated  
9
BQ35100  
ZHCSF78E JUNE 2016REVISED APRIL 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The BQ35100 Battery Fuel Gauge and End-Of-Service Monitor provides gas gauging for lithium thionyl  
chloride (Li-SOCl2) and lithium manganese dioxide (Li-MnO2) primary batteries without requiring any forced  
discharge of the battery. The lithium primary gas gauging function uses voltage, current, and temperature  
data to provide state-of-health (SOH) and end-of-service (EOS) data.  
7.2 Functional Block Diagram  
REGIN  
GE  
Oscillator  
2.5-V LDO  
+
BAT  
VIN  
TS  
Divider  
System Clock  
Power Mgmt  
REG25  
ADC  
Temp  
Sensor  
Gauging  
SDA  
SCL  
SRP  
I2C  
Algorithm  
Coulomb  
Counter  
Communications  
SRN  
VEN  
ALERT  
Peripherals  
Data  
Memory  
Program  
Memory  
Copyright © 2017 Texas Instruments Incorporated  
,
NC  
VSS  
7.3 Feature Description  
7.3.1 Basic Measurement Systems  
7.3.1.1 Voltage  
The device measures the BAT input using the integrated delta-sigma ADC, which is scaled by the internal  
translation network, through the ADC. The translation gain function is determined by a calibration process.  
In systems where the battery voltage is greater than VIN(BAT) MAX (for example, 2-series cell or more), then an  
external voltage scaling circuit is required. The firmware then scales this <1 V value to reflect an average cell  
value and then again by the number of series cells to reflect the full battery voltage value.  
7.3.1.2 Temperature  
The device can measure temperature through an integrated temperature sensor or an external NTC thermistor  
using the integrated delta-sigma ADC. Only one source can be used and the selection is made by setting  
Operation Config A [TEMPS] appropriately. The resulting measured temperature is available through the  
Temperature() command. The internal temperature sensor result is also available through the  
InternalTemperature() command.  
10  
Copyright © 2016–2019, Texas Instruments Incorporated  
BQ35100  
www.ti.com.cn  
ZHCSF78E JUNE 2016REVISED APRIL 2019  
Feature Description (continued)  
7.3.1.3 Coulombs  
The integrating delta-sigma ADC (coulomb counter) in the device measures the discharge flow of the battery by  
measuring the voltage drop across a small-value sense resistor between the SRP and SRN pins.  
The 15-bit integrating ADC measures bipolar signals from –0.125 V to 0.125 V. The device continuously monitors  
the measured current and integrates this value over time using an internal counter.  
7.3.1.4 Current  
For the primary battery current, the integrating delta-sigma ADC in the device measures the discharge current of  
the battery by measuring the voltage drop across a small-value sense resistor between the SRP and SRN pins,  
and is available through the Current() command.  
The measured current also includes the current consumed by the device. To subtract this value from the reported  
current, a value programmed in EOS Gauge Load Current is subtracted for improved accuracy.  
7.3.2 Battery Gauging  
The BQ35100 device can operate in three distinct modes: ACCUMULATOR (ACC) mode, STATE-OF-HEALTH  
(SOH) mode, and END-OF-SERVICE (EOS) mode. The device can be configured and used for only one of these  
modes in the field, as it is not intended to be able to actively switch between modes when in normal use.  
7.3.2.1 ACCUMULATOR (ACC) Mode  
In this mode, the BQ35100 device measures and updates cell voltage, cell temperature, and load current every  
1 s. This data is provided through the I2C interface while ControlStatus()[GA] is set. To begin accumulation, the  
GAUGE_START command should be sent, and when accumulation ends, the GAUGE_STOP command should  
be sent. To ensure that no data is lost, the host should wait until G_DONE is set before powering down the  
device.  
7.3.2.2 STATE-OF-HEALTH (SOH) Mode  
This mode is suitable for determining SOH for lithium manganese dioxide (Li-MnO2) chemistry. In this mode, cell  
voltage and temperature are precisely measured immediately after the GE pin is asserted. The gauge uses this  
data to compute SOH. Once the initial update occurs and the host reads the updated SOH, then the device can  
be powered down.  
7.3.2.2.1 Low State-of-Health Alert  
BatteryStatus()[SOH_LOW] is set when StateOfCharge() is less than or equal to the value programmed in  
SOHLOW.  
7.3.2.3 END-OF-SERVICE (EOS) Mode  
This mode is suitable for gauging lithium thionyl chloride (Li-SOCl2) cells. The end-of-service (EOS) gauging  
algorithm uses voltage, current, and temperature data to determine the resistance (R) and rate of change of  
resistance of the battery. The resistance data is then used to find Depth of Discharge (DOD) = DOD(R). As  
above, SOH is determined and in turn used to determine the EOS condition.  
7.3.2.3.1 Initial EOS Learning  
For optimal accuracy, the first event where the device updates its impedance value is required to be when the  
battery is full (a fresh battery). If the battery is partially discharged, then the accuracy of the EOS detection is  
compromised.  
When a new battery is inserted, then the NEW_BATTERY() command should be sent to the device to ensure the  
initial learned resistance RNEW is refreshed correctly.  
7.3.2.3.1.1 End-Of-Service Detection  
The BQ35100 device can detect when a sharp increase in the trend of tracked impedance occurs, indicating that  
the battery is reaching its EOS condition.  
Copyright © 2016–2019, Texas Instruments Incorporated  
11  
BQ35100  
ZHCSF78E JUNE 2016REVISED APRIL 2019  
www.ti.com.cn  
Feature Description (continued)  
7.3.3 Power Control  
The BQ35100 device only has one active power mode that is enabled through the GAUGE ENABLE (GE) pin.  
The power consumption of the BQ35100 device can change significantly based on host commands it receives  
and its default configuration, specifically with respect to data flash updates.  
For information on how to configure the device to influence the average power consumption, see the Power  
Control section in the BQ35100 Technical Reference Manual (SLUUBH1).  
7.3.4 Battery Condition Warnings  
7.3.4.1 Battery Low Warning  
The BQ35100 device can indicate and optionally trigger the ALERT pin when the primary battery voltage falls  
below a programmable threshold.  
7.3.4.2 Temperature Low Warning  
The BQ35100 device can indicate and optionally trigger the ALERT pin when the primary battery temperature  
falls below a programmable threshold.  
7.3.4.3 Temperature High Warning  
The BQ35100 device can indicate and optionally trigger the ALERT pin when the primary battery temperature  
rises above a programmable threshold.  
7.3.4.4 Battery Low SOH Warning  
The BQ35100 device can indicate and optionally trigger the ALERT pin when the primary battery state-of-health  
(SOH) falls below a programmable threshold.  
7.3.4.5 Battery EOS OCV BAD Warning  
The device assumes that when GE is asserted the cell is at rest and uses the initialization voltage reading to  
determine the Open Circuit Voltage (OCV). If the cell were not fully relaxed at that point, then the voltage after  
the pulse could rise above the OCV. This causes an incorrect impedance to be calculated.  
7.3.5 ALERT Signal  
The ALERT signal can be configured to be triggered by a variety of status conditions. When the ALERT  
Configuration bit is set AND the corresponding bit in BatteryStatus() or ControlStatus() is set, then the  
corresponding BatteryAlert() bit is set, triggering the ALERT signal.  
7.3.6 Lifetime Data Collection  
The BQ35100 device can be enabled by writing to Control() 0x002E [LT_EN] to gather data regarding the  
primary battery and store it to data flash.  
The following data is collected in RAM and only written to DF when the host sends the End command to the  
device:  
Max and Min Cell Voltage  
Max and Min Discharge Current  
Max and Min Temperature  
7.3.7 SHA-1 Authentication  
As of March 2012, the latest revision is FIPS 180-4. SHA-1, or secure hash algorithm, is used to compute a  
condensed representation of a message or data also known as hash. For messages < 264, the SHA-1 algorithm  
produces a 160-bit output called a digest.  
12  
Copyright © 2016–2019, Texas Instruments Incorporated  
 
BQ35100  
www.ti.com.cn  
ZHCSF78E JUNE 2016REVISED APRIL 2019  
Feature Description (continued)  
In a SHA-1 one-way hash function, there is no known mathematical method of computing the input given, only  
the output. The specification of SHA-1, as defined by FIPS 180-4, states that the input consists of 512-bit blocks  
with a total input length less than 264 bits. Inputs that do not conform to integer multiples of 512-bit blocks are  
padded before any block is input to the hash function. The SHA-1 algorithm outputs the 160-bit digest.  
The device generates a SHA-1 input block of 288 bits (total input = 160-bit message + 128-bit key). To complete  
the 512-bit block size requirement of the SHA-1 function, the device pads the key and message with a 1,  
followed by 159 0s, followed by the 64 bit value for 288 (000...00100100000), which conforms to the pad  
requirements specified by FIPS 180-4.  
http://www.nist.gov/itl/  
http://csrc.nist.gov/publications/fips  
www.faqs.org/rfcs/rfc3174.html  
7.3.8 Data Commands  
7.3.8.1 Command Summary  
Table 1. Command Summary Table  
Size in  
Bytes  
Default  
Value  
Cmd  
Mode  
Name  
Format  
Min Value Max Value  
Unit  
0x00...0x01  
0x02…0x05  
0x06…0x07  
0x08...0x09  
0x0A  
R/W  
R
Control  
AccumulatedCapacity  
Temperature  
Voltage  
Hex  
Integer  
2
4
2
2
1
1
2
2
2
2
1
2
1
2
0x00  
0xff  
4.29e9  
32767  
65535  
0xff  
µAh  
0.1 K  
mV  
0
R
Signed Int  
Integer  
–32768  
R
0
R
BatteryStatus  
BatteryAlert  
Hex  
0x00  
0x0B  
R
Hex  
0x00  
0xff  
0x0C…0x0D  
0x16…0x17  
0x22…0x23  
0x28…0x29  
0x2E…0x2F  
0x3C…0x3D  
0x79  
R
Current  
Signed Integer  
Integer  
–32768  
32767  
65535  
65535  
32767  
100  
mA  
mΩ  
mΩ  
0.1 K  
%
R
Scaled R  
0
R
Measured Z  
InternalTemperature  
StateOfHealth  
DesignCapacity  
Cal_Count  
Integer  
0
R
Signed Integer  
Integer  
–32768  
R
0
0
R
Integer  
65535  
0xff  
mAh  
R
Hex  
0x00  
0
0x7a…0x7B  
R
Cal_Current  
Signed Int  
65535  
mA  
mV or  
0x7C…0x7D  
0x7E…0x7F  
R
R
Cal_Voltage  
Integer  
Integer  
2
2
0
0
65535  
65535  
Counts(1)  
Cal_Temperature  
K
(1) mV when [EXTVCELL] = 0, and ADC counts when [EXTVCELL] = 1.  
7.3.8.2 0x00, 0x01 AltManufacturerAccess() and 0x3E, 0x3F AltManufacturerAccess()  
AltManufacturerAccess() provides a method of reading and writing data in the Manufacturer Access System  
(MAC). The MAC command is sent via AltManufacturerAccess() by a block protocol. The result is returned on  
AltManufacturerAccess() via a block read.  
Commands are set by writing to registers 0x00/0x01. On a valid word access, the MAC command state is set,  
and commands 0x3E and 0x3F are used for MAC commands. These new addresses work the same as 0x00 and  
0x01, but are primarily intended for block writes and reads.  
7.3.8.3 Control(): 0x00/0x01  
Issuing a Control() command requires a subsequent two-byte subcommand. These additional bytes specify the  
particular control function desired. The Control() command allows the host to control specific features of the  
device during normal operation, and additional features when the BQ35100 device is in different access modes,  
as described in Table 2.  
Copyright © 2016–2019, Texas Instruments Incorporated  
13  
BQ35100  
ZHCSF78E JUNE 2016REVISED APRIL 2019  
www.ti.com.cn  
Table 2. Control Functions  
CNTL FUNCTION  
CNTL DATA  
SEALED ACCESS  
DESCRIPTION  
Reports the status of key features  
CONTROL_STATUS  
0x0000  
Yes  
Reports the device type of 0x40 (indicating  
BQ35100)  
DEVICE_TYPE  
0x0001  
Yes  
FW_VERSION  
0x0002  
0x0003  
0x0005  
Yes  
Yes  
Yes  
Reports the firmware version on the device type  
Reports the hardware version of the device type  
Calculates chemistry checksum  
HW_VERSION  
STATIC_CHEM_CHKSUM  
Reports the chemical identifier used by the gas  
gauge algorithms  
CHEM_ID  
0x0006  
0x0007  
0x0009  
Yes  
Yes  
Yes  
PREV_MACWRITE  
BOARD_OFFSET  
Returns previous Control() command code  
Forces the device to measure and store the board  
offset  
CC_OFFSET  
0x000A  
0x000B  
0x000C  
0x0011  
Yes  
Yes  
Yes  
Yes  
Forces the device to measure the internal CC offset  
Forces the device to store the internal CC offset  
Reports the data flash version on the device  
Triggers the device to enter ACTIVE mode  
CC_OFFSET_SAVE  
DF_VERSION  
GAUGE_START  
Triggers the device to stop gauging and complete all  
outstanding tasks  
GAUGE_STOP  
0x0012  
Yes  
SELAED  
0x0020  
0x002D  
0x002E  
0x0041  
0x0080  
0x0081  
No  
No  
No  
No  
No  
No  
Places the device in SEALED access mode  
Toggle CALIBRATION mode enable  
Enables Lifetime Data collection  
Forces a full reset of the device  
Exit CALIBRATION mode  
CAL_ENABLE  
LT_ENABLE  
RESET  
EXIT_CAL  
ENTER_CAL  
Enter CALIBRATION mode  
This is used to refresh the gauge when a new battery  
is installed and resets all recorded data.  
NEW_BATTERY  
0xa613  
Yes  
7.3.9 Communications  
7.3.9.1 I2C Interface  
The gas gauge supports the standard I2C read, incremental read, one-byte write quick read, and functions. The  
7-bit device address (ADDR) is the most significant 7 bits of the hex address and is fixed as 1010101. The 8-bit  
device address is therefore 0xAA or 0xAB for write or read, respectively.  
Host Generated  
Fuel Gauge Generated  
S
ADDR[6:0]  
0
A
CMD[7:0]  
A
DATA[7:0]  
A
P
S
ADDR[6:0]  
1
A
DATA[7:0]  
N P  
(a) 1-byte write  
(b) quick read  
DATA[7:0]  
N
CMD[7:0]  
ADDR[6:0]  
1
A
ADDR[6:0]  
S
0
A
P
A
Sr  
(c) 1-byte read  
A
Sr  
1
A
ADDR[6:0]  
A
N P  
S
ADDR[6:0]  
0
A
CMD[7:0]  
DATA[7:0]  
DATA[7:0]  
. . .  
(d) incremental read  
Figure 5. Supported I2C Formats: (a) 1-Byte Write, (b) Quick Read, (c) 1 Byte-read, and (d) Incremental  
Read (S = Start, Sr = Repeated Start, A = Acknowledge, N = No Acknowledge, and P = Stop).  
The “quick read” returns data at the address indicated by the address pointer. The address pointer, a register  
internal to the I2C communication engine, increments whenever data is acknowledged by the device or the I2C  
master. “Quick writes” function in the same manner and are a convenient means of sending multiple bytes to  
consecutive command locations (such as 2-byte commands that require two bytes of data).  
14  
Copyright © 2016–2019, Texas Instruments Incorporated  
BQ35100  
www.ti.com.cn  
ZHCSF78E JUNE 2016REVISED APRIL 2019  
S
ADDR[6:0]  
0
A
CMD[7:0]  
A
DATA[7:0]  
A
P
Figure 6. Attempt To Write a Read-Only Address (Nack After Data Sent By Master)  
CMD[7:0]  
S
ADDR[6:0]  
0
A
N P  
Figure 7. Attempt To Read an Address Above 0x7F (Nack Command)  
CMD[7:0]  
DATA[7:0]  
A
DATA[7:0]  
ADDR[6:0]  
S
0
A
N
P
A
N
. . .  
Figure 8. Attempt at Incremental Writes (Nack All Extra Data Bytes Sent)  
A
Sr  
1
A
ADDR[6:0]  
A
N P  
S
ADDR[6:0]  
0
A
CMD[7:0]  
DATA[7:0]  
DATA[7:0]  
. . .  
Address  
0x7F  
Data From  
addr 0x7F  
Data From  
addr 0x00  
Figure 9. Incremental Read at the Maximum Allowed Read Address  
The I2C engine releases both SDA and SCL if the I2C bus is held low for Bus Low Time. If the gas gauge were  
holding the lines, releasing them frees the master to drive the lines. If an external condition is holding either of  
the lines low, the I2C engine enters the low-power SLEEP mode.  
7.4 Device Functional Modes  
The BQ35100 device is intended for systems where the battery electronics are required to consume a very low  
average current. To achieve this, the device is intended to be fully powered off when not required through control  
of the GAUGE ENABLE (GE) pin. When this pin is low, then the device is fully powered down with no  
measurements being made and no data, unless in flash, is retained.  
An example system current profile is shown along with the state of GAUGE ENABLE to reduce the average  
power consumption of the battery electronics.  
GE HIGH  
0
GE LOW  
Figure 10. Power Consumption  
The average power consumption of the BQ35100 device is an average of the periods where GAUGE ENABLE is  
high AND low over a given period.  
For example, if the system enters a high power state (500 µA) for 30 s every 4 hours, the average current will be:  
315 µA × 30 s / 4 h = 0.66 µA  
Copyright © 2016–2019, Texas Instruments Incorporated  
15  
 
BQ35100  
ZHCSF78E JUNE 2016REVISED APRIL 2019  
www.ti.com.cn  
Device Functional Modes (continued)  
When GAUGE ENABLE is low (GE = Low), then the device is powered off and the current is nominally  
ICC_GELOW, and is the leakage current into the REGIN pin. Other components connected to this node should also  
be evaluated to determine the "System Off" current total.  
When the device is used for gas gauging, it transitions through several power states based on the selection of  
OperationCfgA[GMSEL].  
Figure 11 highlights the operational flow and conditional decisions.  
Systems to  
begin monitoring  
Startup Phase  
Host sets GE High  
Device powers up  
GE = GAUGE ENABLE Pin  
Take initial  
measurements and  
check for warnings  
Set INITCOMP = 1  
Waiting Phase  
Device OK to  
power down  
Z{Ç!wÇ[ /a5  
from Host  
NO  
YES  
Active  
Phase  
Update Discharge  
Accumulation from  
Coulomb Counter  
NO  
Update Voltage and  
Temperature  
Is GMSEL = 10  
NO  
Check for warnings  
and update status  
Execute Lifetime  
Checks  
Z{Çht[ /a5  
from Host  
YES  
Update Voltage and  
Update  
Temperature  
x
Current with 128  
YES  
8-ms conversions  
Execute End of  
Service detection  
algorithm and  
update status  
YES  
Is GMSEL = 10  
Update Voltage  
Update Lifetime DF  
NO  
YES  
YES  
Are Lifetime  
updates  
enabled?  
Write accumulated  
data and status to  
DF  
Are DF updates  
enabled?  
Set G_DONE =1  
NO  
NO  
Data Update  
Phase  
Figure 11. Operational Flow  
16  
Copyright © 2016–2019, Texas Instruments Incorporated  
 
BQ35100  
www.ti.com.cn  
ZHCSF78E JUNE 2016REVISED APRIL 2019  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The BQ35100 device is a highly configurable device with many options. The major configuration choices  
comprise the battery chemistry and control methods.  
8.2 Typical Applications  
Figure 12 is a simplified diagram of the main features of the BQ35100 device. Specific implementations detailing  
the main configuration options are shown later in this section.  
BAT+  
REGIN  
I2C CLK  
10 k 10 k  
I2C DATA  
REG25  
100k  
VIN  
SDA  
SCL  
1
2
3
4
5
6
7
14  
13  
ALERT  
ALERT  
NC  
REG25  
100  
VEN 12  
TS 11  
10k NTC  
BAT  
GAUGE ENABLE  
VSUPPLY  
0.1  
µF  
GE  
SRN 10  
0.1  
75 ppm  
100  
0.1 µF  
REGIN  
REG25  
REGIN  
REG25  
SRP  
VSS  
9
8
100  
1 M  
0.1 µF  
0.1 µF  
1 µF  
1 µF  
PACK–  
Copyright © 2017, Texas Instruments Incorporated  
Figure 12. BQ35100 Single-Cell Simplified Implementation  
Copyright © 2016–2019, Texas Instruments Incorporated  
17  
 
BQ35100  
ZHCSF78E JUNE 2016REVISED APRIL 2019  
www.ti.com.cn  
Typical Applications (continued)  
8.2.1 Design Requirements  
For design guidelines, refer to the BQ35100 EVM User's Guide (SLUUBH7).  
8.2.2 Detailed Design Procedure  
8.2.2.1 Preparation for Gauging  
Before it is ready to gauge a lithium primary battery, a BQ35100 device-based circuit requires several steps, as  
follows:  
1. Provide power to the device via a supply to the BAT pin that is above VREGIN, 2.7 V.  
2. Power up the device by pulling the GE pin to a supply above VIH(GE), 2.65 V.  
3. Use BQStudio to calibrate the device. The device is calibrated when in ACC Mode (GMSEL = 0x0), which is  
also the state the device is shipped from TI. The BQ35100 EVM User Guide details the BQStudio software  
and Calibration Tab operation.  
4. Use BQStudio to update the CHEM ID. The Chemistry Tab enables the selection and programming of the  
appropriate CHEM ID for the cell being used.  
5. Reset the device once the calibration and CHEM ID programming are complete. To do this, toggle the GE  
pin Low and then back High or via the Reset command in BQStudio.  
With these steps complete the next phase of configuration and use is determined by which Gauging Mode is  
intended to be used.  
8.2.2.2 Gauging Mode Selection  
The BQ35100 device can be configured to support lithium manganese dioxide (Li-MnO2) or lithium thionyl  
chloride (Li-SOCl2) cells, and can also be configured to support any chemistry through the ACCUMULATOR  
mode. To select the GAUGING mode, set the GMSEL[1:0] bits in Operation Config A register.  
Table 3. Chemistry  
Chemistry Supported  
Gauging Mode  
Operation Config A [GMSEL]  
All Chemistries  
ACCUMULATOR  
0x0  
STATE-OF-HEALTH  
(Voltage Correlation)  
Lithium Manganese Dioxide (Li-MnO2)  
Lithium Thionyl Chloride (Li-SOCl2)  
0x1  
0x2  
END-OF-SERVICE  
(Resistance Correlation)  
NOTE  
During operation in the field, the BQ35100 fuel gauge should be used in only one mode at  
a time, and should not be switched between modes.  
8.2.2.2.1 ACCUMULATOR Mode  
The ACCUMULATOR mode (ACC) is chemistry-independent and accumulates the passed discharge of the  
battery when the gauge is enabled, but also provides no gas gauging data, such as remaining state-of-health  
(RSOC), full charge capacity (FCC), or end-of-service (EOS) indication. This is the default configuration as it is  
also the required mode for the device when it is calibrated. Once calibration is completed, the device can be set  
to the appropriate gauging mode or left in the default mode.  
To configure the BQ35100 fuel gauge to use the ACCUMULATOR mode, the following data flash configuration  
variables must be configured correctly. For more details, including information on Operation Config A [GMSEL],  
see the BQ35100 Technical Reference Manual (SLUUBH1).  
To use ACCUMULATOR mode, follow these steps:  
1. Step 1: Set GE high to power up the BQ35100 gauge and wait for ALERT to go low due to INITCOMP = 1.  
2. Step 2: Clear ALERT (read BatteryStatus()) and send GAUGE_START().  
3. Step 3: Read AccumulatedCapacity() for the latest passed discharge data since GAUGE_START().  
18  
Copyright © 2016–2019, Texas Instruments Incorporated  
BQ35100  
www.ti.com.cn  
ZHCSF78E JUNE 2016REVISED APRIL 2019  
4. Step 4: Send GAUGE_STOP() and wait for ALERT to go low due to G_DONE = 1.  
5. Step 5: Read final AccumulatedCapacity() value.  
6. Step 6: Set GE low to power down the BQ35100 device.  
8.2.2.2.1.1 STATE-OF-HEALTH (Voltage Correlation) Mode  
STATE-OF-HEALTH mode is typically used with lithium manganese dioxide (Li-MnO2) cells as the voltage vs.  
state-of-health (SOH) profile has a defined slope to enable accuracy.  
To configure the BQ35100 gauge to use the STATE-OF-HEALTH mode, the following data flash configuration  
variables must be configured correctly. For more details, including information on Operation Config A [GMSEL],  
see the BQ35100 Technical Reference Manual (SLUUBH1).  
To use STATE-OF-HEALTH mode, follow these steps:  
1. Step 1: Set GE high to power up the BQ35100 gauge and wait for ALERT to go low due to INITCOMP = 1.  
2. Step 2: Clear ALERT (read BatteryStatus()).  
3. Step 3: Read any required data such as State-Of-Health() for the latest battery data.  
4. Step 4: Optional: Send GAUGE_START().  
5. Step 5: Optional: Send GAUGE_STOP(). At this point, Lifetime Data can be stored and any Threshold  
detection checks are run. This is only needed if these features are desired.  
6. Step 6: Set GE low to power down the BQ35100 device.  
8.2.2.2.1.2 END-OF-SERVICE (Resistance Correlation) Mode  
END-OF-SERVICE mode is only used with lithium thionyl chloride (Li-SOCl2) cells. To configure the BQ35100  
device to use END-OF-SERVICE mode, the following data flash configuration variables must be configured  
correctly. For more details, including information on Operation Config A [GMSEL], R Data Seconds, see the  
BQ35100 Technical Reference Manual (SLUUBH1).  
To use END-OF-SERVICE mode, follow these steps:  
1. Step 1: Set GE high to power up the BQ35100 device and wait for ALERT to go low due to INITCOMP = 1.  
2. Step 2: Clear ALERT (read BatteryStatus()).  
3. Step 3: Send GAUGE_START() 1 s prior to the high load pulse starting.  
4. Step 4: Send GAUGE_STOP() directly after the high load pulse has stopped. During the time between Step4  
and Step 5 there should be no other pulse load. A low current DC load is acceptable.  
5. Step 5: Wait for ALERT to go low due to G_DONE = 1.  
6. Step 6: Read BatteryStatus() for an [EOS] decision and other data, such as State-Of-Health().  
7. Step 7: Set GE low to power down the BQ35100 device.  
8.2.2.3 Voltage Measurement Selection  
The default configuration is for the BQ35100 device to support 1-series cell with a maximum of 4.5 V. If the  
battery voltage can be above this level, then [EXTVCELL] in Operation Config A should be set. In this setting,  
an external resistor divider is used to scale the voltage so the gauge can measure accurately.  
8.2.2.4 Temperature Measurement Selection  
There are three options for temperature measurement in the BQ35100 device. By default, the device is  
configured to use an external 103AT NTC thermistor. However, if [TEMPS] = 0, then an internal temperature  
sensor is used. This requires no external components but for optimal performance in this case, the BQ35100  
device should be very close to the cell, preferably thermally connected.  
There is one other option that can be used if the system already includes a cell temperature measurement  
solution: If WRTEMP = 1, then the host can write the temperature to the device and the BQ35100 algorithms will  
use that data.  
Copyright © 2016–2019, Texas Instruments Incorporated  
19  
BQ35100  
ZHCSF78E JUNE 2016REVISED APRIL 2019  
www.ti.com.cn  
8.2.2.5 Current Sense Resistor Selection  
The BQ35100 device calculates current through measuring a voltage across a small resistor in series with the  
battery. The default value is 100 m. To maximize current measurement accuracy, the ideal value is calculated  
as:  
RSENSE (m) = V(SR)Max / Peak Load Current (mA)  
Where V(SR) MAX = 125 mV  
8.2.2.6 Expected Device Usage Profiles  
The BQ35100 device is designed to work in a system where there is a period discharge pulse of at least 10 s of  
mA for 10 s of ms. In ACC mode, any pulse can be measured based on the information the host requires.  
However, in EOS modes, the battery condition does not change very fast so only pulses that are many hours  
apart; for example, 24 hours, are needed.  
If the time between pulses needing monitoring is less than a minute, then it is recommended not to power down  
the device. However, if the period is greater than 5 hours, then powering down the device between pulses is  
expected. Periods in between risk not allowing the battery to rest and any EOS-related data may be  
compromised. Battery EOS OCV BAD Warning provides more information on this.  
The shorter the period between pulses has a large effect of the overall cumulative power consumption of the  
battery electronics. See Device Functional Modes for more details on average power consumption.  
8.2.2.7 Using the BQ35100 Fuel Gauge with a Battery and Capacitor in Parallel  
The BQ35100 device can be used in systems where the lithium primary battery is permanently connected to a  
bulk capacitor in parallel; for example, an electrolytic or super capacitor.  
8.2.2.7.1 ACCUMULATOR Mode  
In this mode, the BQ35100 device does not count the leakage of the capacitor, and so the leakage should be  
added to the data the BQ35100 device counts.  
8.2.2.7.2 STATE-OF-HEALTH Mode  
In this mode, as the voltage of the capacitor will match that of the battery, there is no impact to the accuracy of  
the device's gauging performance with the capacitor in the system.  
8.2.2.7.3 END-OF-SERVICE Mode  
In this mode, the resistance of the capacitor will influence the end-of-service determination, but this does not  
impact the accuracy as the overall power delivery to the system is determined by the total resistance of the  
combined battery and capacitor. However, for the resistance to be updated to support the end-of-service feature,  
there needs to be a large enough delta in voltage between the open circuit voltage and the voltage under load.  
As the battery is discharged, the resistance increases and so the resistance at a state of charge of < 50% is the  
most important so that the accuracy will be optimized as the battery is in the second half of its service life.  
The minimum delta voltage should be 100 mV to ensure there is no impact to the accuracy; therefore, the high  
load pulse current when the gauge is active should be:  
High Load Pulse Current (mA) = 100 mV / Resistance of the battery and capacitor in parallel at 50% SOC.  
8.2.3 EOS Mode Load Pulse Synchronization  
For correct data updates in EOS mode, the device operation needs to be synchronized with the pulsed load on  
the battery. Typically, this is managed by the system host MCU, but additionally it can be managed by an  
external detection circuit. An example of this alternative approach is detailed in TI Designs: TIDA-01546: Battery  
and System Health Monitoring of Battery Powered Smart Flow Meters Reference Design (TIDUDO5).  
8.2.4 Benefits of the BQ35100 Gauge Compared to Alternative Monitoring Techniques  
The BQ35100 gauge offers many capabilities and provides a level of accuracy that alternative monitoring  
techniques cannot offer. One of the main techniques is to use a voltage lookup table implemented with an MCU  
and integrated ADC.  
20  
Copyright © 2016–2019, Texas Instruments Incorporated  
BQ35100  
www.ti.com.cn  
Operation  
ZHCSF78E JUNE 2016REVISED APRIL 2019  
Table 4. BQ35100 Compared to MCU + ADC  
Advantages  
Disadvantages  
Characterize the  
cells' performance  
under the expected  
load condition to  
create a voltage  
versus SOH table  
to measure voltage  
and temperature  
and compare the  
measurements to  
the characterized  
table.  
No simple accounting for cell-to-cell or temperature variation  
No simple accounting for installation variations, such as radio power  
due to transmit distances  
Assumptions and tolerances must be built into the original cell  
capacity, forcing a much larger, more expensive cell to be used.  
Cell voltage is very flat so a small voltage measurement error is a very  
large capacity error.  
Easy to implement  
Accounts for early cell degradation  
Most system host microcontrollers  
have a spare ADC channel.  
Only uses a small amount of memory  
and CPU operation.  
The table can be updated if the  
system load configuration is changed  
(for example, FW Update).  
LiSoCl2: 95% of SOC is 100 mV of voltage.  
A typical MCU ADC of 10-bit resolution has only seven bits of  
accurate performance, providing a 36-mV resolution.  
In summary, the voltage measurement performance of the measurement system is critical to this technique and  
that is typically not available from the host MCU.  
8.2.5 Application Curves  
15  
10  
5
25  
20  
15  
10  
5
0
0
-5  
-5  
-10  
-15  
-20  
-25  
-10  
-15  
-20  
-40èC  
-20èC  
25èC  
65èC  
85èC  
-40èC  
-20èC  
25èC  
65èC  
85èC  
2800 3000 3200 3400 3600 3800 4000 4200 4400  
Battery Voltage (mV)  
-3000  
-2000  
-1000  
0
Current (mA)  
1000  
2000  
3000  
D001  
D003  
Figure 13. V(Err) Across VIN (0 mA)  
Figure 14. I(Err)  
2
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (èC)  
D004  
Figure 15. T(Err)  
9 Power Supply Recommendations  
Power supply requirements for the BQ35100 device are simplified due to the presence of the internal LDO  
voltage regulation. The REGIN pin accepts any voltage level between 2.7 V and 4.5 V, which is optimum for  
single-cell Li-primary applications.  
Decoupling the REGIN pin should be done with a 0.1-μF 10% ceramic X5R capacitor placed close to the device.  
Copyright © 2016–2019, Texas Instruments Incorporated  
21  
BQ35100  
ZHCSF78E JUNE 2016REVISED APRIL 2019  
www.ti.com.cn  
REGIN can be powered from an alternate power source, such as, for example, the boost converter output, as  
long as it is not also connected to the BAT input. In this case, BAT should only remain connected to the top of  
the cell.  
10 Layout  
10.1 Layout Guidelines  
10.1.1 Introduction  
Attention to layout is critical to the success of any battery management circuit board. The mixture of high-current  
paths with an ultralow-current microcontroller creates the potential for design issues that are not always trivial to  
solve. Some of the key areas of concern are described in the following sections, and can help to enable success.  
10.1.2 Power Supply Decoupling Capacitor  
Power supply decoupling from VREG25 to ground is important for optimal operation of the gas gauge. To keep the  
loop area small, place this capacitor next to the IC and use the shortest possible traces. A large loop area  
renders the capacitor useless and forms a small-loop antenna for noise pickup. Ideally, the traces on each side  
of the capacitor should be the same length and run in the same direction to avoid differential noise during ESD. If  
possible, place a via near the VSS pin to a ground plane layer.  
10.1.3 Capacitors  
Power supply decoupling for the gas gauge requires a pair of 0.1-μF ceramic capacitors for (PBAT) and (VREG25  
)
pins. These should be placed reasonably close to the IC without using long traces back to VSS. The LDO voltage  
regulator, whether external or internal to the main IC, requires a 0.47-μF ceramic capacitor to be placed fairly  
close to the regulation output pin. This capacitor is for amplifier loop stabilization and as an energy well for the  
2.5-V supply.  
10.1.4 Communication Line Protection Components  
The 5.6-V Zener diodes used to protect the communication pins of the gas gauge from ESD should be located as  
close as possible to the pack connector. The grounded end of these Zener diodes should be returned to the  
Pack(–) node rather than to the low-current digital ground system. This way, ESD is diverted away from the  
sensitive electronics as much as possible.  
10.2 Layout Example  
10.2.1 Ground System  
The fuel gauge requires a low-current ground system separate from the high-current PACK(–) path. ESD ground  
is defined along the high-current path from the Pack(–) terminal to the sense resistor. It is important that the low-  
current ground systems only connect to the PACK(–) path at the sense resistor Kelvin pick-off point. It is  
recommended to use an optional inner layer ground plane for the low-current ground system.  
In Figure 16, the green is an example of using the low-current ground as a shield for the gas gauge circuit. Note  
how it is kept separate from the high-current ground, which is shown in red. The high-current path is joined with  
the low-current path only at one point, shown with the small blue connection between the two planes.  
22  
Copyright © 2016–2019, Texas Instruments Incorporated  
BQ35100  
www.ti.com.cn  
ZHCSF78E JUNE 2016REVISED APRIL 2019  
Layout Example (continued)  
Figure 16. Differential Filter Component with Symmetrical Layout  
10.2.2 Kelvin Connections  
Kelvin voltage sensing is very important to accurately measure current and cell voltage. Note how the differential  
connections at the sense resistor do not add any voltage drop across the copper etch that carries the high  
current path through the sense resistor. See Figure 16 and Figure 17.  
10.2.3 Board Offset Considerations  
Although the most important component for board offset reduction is the decoupling capacitor for VREG25, an  
additional benefit is possible by using this recommended pattern for the coulomb counter differential low-pass  
filter network. Maintain the symmetrical placement pattern shown for optimum current offset performance. Use  
symmetrical shielded differential traces, if possible, from the sense resistor to the 100-Ω resistors, as shown in  
Figure 17.  
Copyright © 2016–2019, Texas Instruments Incorporated  
23  
 
BQ35100  
ZHCSF78E JUNE 2016REVISED APRIL 2019  
www.ti.com.cn  
Layout Example (continued)  
Figure 17. Differential Connection Between SRP and SRN Pins with Sense Resistor  
10.3 ESD Spark Gap  
Protect the communication lines from ESD with a spark gap at the connector. Figure 18 shows the recommended  
pattern with its 0.2-mm spacing between the points.  
Figure 18. Recommended Spark-Gap Pattern Helps Protect Communication Lines from ESD  
24  
版权 © 2016–2019, Texas Instruments Incorporated  
 
BQ35100  
www.ti.com.cn  
ZHCSF78E JUNE 2016REVISED APRIL 2019  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
BQ35100 技术参考手册》 (SLUUBH1)  
BQ35100 EVM 用户指南》 (SLUUBH7)  
《使用 I2C BQ275xx 系列电量监测计通信》 应用报告(SLUA467)  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016–2019, Texas Instruments Incorporated  
25  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ35100PW  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
PW  
PW  
14  
14  
90  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
BQ35100  
BQ35100  
BQ35100PWR  
2000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ35100PWR  
TSSOP  
PW  
14  
2000  
330.0  
12.4  
6.9  
5.6  
1.6  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TSSOP PW 14  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 38.0  
BQ35100PWR  
2000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
PW TSSOP  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
BQ35100PW  
14  
90  
530  
10.2  
3600  
3.5  
Pack Materials-Page 3  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

BQ35100PWR

用于不可充电电池(锂原)的电池电量监测计和放电结束监测计 | PW | 14 | -40 to 85
TI

BQ35211EEC60

Extended Eighth-brick package
SYNQOR

BQ35211EEC60xyz-G

Extended Eighth-brick package
SYNQOR

BQ3EG

"ANTISTATIC BAG 4""X6"""
ETC

BQ3GJ

"ANTISTATIC BAG 6""X8"""
ETC

BQ3JK

"ANTISTATIC BAG 8""X10"""
ETC

BQ4010

8Kx8 Nonvolatile SRAM
TI

BQ4010-150

8Kx8 Nonvolatile SRAM
TI

BQ4010-200

8Kx8 Nonvolatile SRAM
TI

BQ4010-85

8Kx8 Nonvolatile SRAM
TI

BQ4010LY

8 k x 8 NONVOLATILE SRAM (5 V, 3.3 V)
TI

BQ4010LYMA-70N

8 k x 8 NONVOLATILE SRAM (5 V, 3.3 V)
TI