BQ4050 [TI]

1 至 4 节串联 CEDV 电池电量监测计;
BQ4050
型号: BQ4050
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

1 至 4 节串联 CEDV 电池电量监测计

电池
文件: 总55页 (文件大小:2319K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
bq4050  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
用于 1-4 节串联锂离子电池组的  
bq4050 CEDV 电量测量仪表和保护解决方案  
1 特性  
bq4050 器件提供一个基于电池组的完全集成式解决方  
1
案,该解决方案具备闪存可编程的定制精简指令集  
CPU (RISC)、安全保护以及身份验证,适用于锂离子  
和锂聚合物电池组。  
高侧保护 N 通道 FET 驱动器可在故障期间实现串  
行总线通信  
采用内部旁路的电池均衡功能可优化电池健康状况  
用于故障分析的诊断使用寿命数据监控器和黑盒记  
录器  
bq4050 电量测量仪表通过一个与 SMBus 兼容的接口  
进行通信,并将超低功耗的高速 TI bqBMP 处理器、  
高精度模拟测量功能、集成式闪存存储器、一组外设和  
通信端口、N 通道 FET 驱动以及 SHA-1 身份验证变  
换响应器,融合为一个完整的高性能电池管理解决方  
案。  
全面的可编程保护 特性:电压、电流和温度  
JEITA 充电算法支持智能充电  
具有双路独立模数转换器 (ADC) 的模拟前端  
同步电流和电压采样  
高精度库伦计数器,输入偏移误差 < 1µV(典型  
值)  
器件信息(1)  
支持电池跳变点 (BTP) 功能,用于 Windows®集成  
器件型号  
bq4050  
封装  
VQFN (32)  
封装尺寸(标称值)  
LED 显示屏用于充电状态和电池状态指示  
4.00mm x 4.00mm  
适用于编程和数据访问的 100KHz SMBus 1.1 版通  
信接口,具有 400KHz 交替模式  
(1) 如需了解所有可用封装,请见产品说明书末尾的可订购产品附  
录。  
SHA-1 认证响应器,用于提高电池组安全性  
紧凑型 32 引脚 VQFN 封装 (RSM)  
简化电路原理图  
+
PACK  
2 应用  
笔记本电脑  
LEDCNTLA  
BAT  
VC4  
医疗与测试设备  
LEDCNTLB  
LEDCNTLC  
便携式仪表  
VC3  
VC2  
OUT  
VC3  
VC2  
VC1  
无线真空吸尘器和扫地机器人  
Cell 3  
Cell 2  
DISP  
SMBD  
SMBC  
PRES  
VDD  
GND  
SMBD  
SMBC  
VC1  
PBI  
VSS SRP SRN TS1 TS2 TS3 TS4 BTP PRES  
3 说明  
Cell 1  
BTP  
德州仪器 (TI) bq4050 器件采用补偿放电终止电压  
(CEDV) 技术,是一款高度集成的高精度 1-4 节电池电  
量测量仪表和保护解决方案,可实现自主的充电器控制  
和电池平衡。  
PACK–  
Copyright  
© 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLUSC67  
 
 
 
 
 
bq4050  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
www.ti.com.cn  
目录  
6.24 Electrical Characteristics: Internal 1.8-V LDO....... 14  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 7  
6.1 Absolute Maximum Ratings ...................................... 7  
6.2 ESD Ratings.............................................................. 7  
6.3 Recommended Operating Conditions....................... 8  
6.4 Thermal Information.................................................. 8  
6.5 Electrical Characteristics: Supply Current................. 8  
6.6 Electrical Characteristics: Power Supply Control...... 9  
6.7 Electrical Characteristics: AFE Power-On Reset...... 9  
6.25 Electrical Characteristics: High-Frequency  
Oscillator .................................................................. 14  
6.26 Electrical Characteristics: Low-Frequency  
Oscillator .................................................................. 15  
6.27 Electrical Characteristics: Voltage Reference 1.... 15  
6.28 Electrical Characteristics: Voltage Reference 2.... 15  
6.29 Electrical Characteristics: Instruction Flash .......... 15  
6.30 Electrical Characteristics: Data Flash ................... 15  
6.31 Electrical Characteristics: OCD, SCC, SCD1, SCD2  
Current Protection Thresholds................................. 16  
6.32 Timing Requirements: OCD, SCC, SCD1, SCD2  
Current Protection Timing........................................ 17  
6.33 Timing Requirements: SMBus .............................. 17  
6.34 Timing Requirements: SMBus XL......................... 18  
6.35 Typical Characteristics.......................................... 19  
Detailed Description ............................................ 22  
7.1 Overview ................................................................. 22  
7.2 Functional Block Diagram ...................................... 22  
7.3 Feature Description................................................. 23  
7.4 Device Functional Modes........................................ 26  
Applications and Implementation ...................... 27  
8.1 Application Information .......................................... 27  
8.2 Typical Applications ................................................ 28  
Power Supply Recommendations...................... 42  
6.8 Electrical Characteristics: AFE Watchdog Reset and  
Wake Timer................................................................ 9  
7
6.9 Electrical Characteristics: Current Wake  
Comparator ................................................................ 9  
6.10 Electrical Characteristics: VC1, VC2, VC3, VC4,  
BAT, PACK .............................................................. 10  
6.11 Electrical Characteristics: SMBD, SMBC.............. 10  
6.12 Electrical Characteristics: PRES, BTP_INT, DISP  
................................................................................. 10  
8
9
6.13 Electrical Characteristics: LEDCNTLA, LEDCNTLB,  
LEDCNTLC ............................................................. 11  
6.14 Electrical Characteristics: Coulomb Counter ........ 11  
6.15 Electrical Characteristics: CC Digital Filter ........... 11  
6.16 Electrical Characteristics: ADC ............................. 12  
6.17 Electrical Characteristics: ADC Digital Filter......... 12  
6.18 Electrical Characteristics: CHG, DSG FET Drive . 12  
6.19 Electrical Characteristics: PCHG FET Drive......... 13  
6.20 Electrical Characteristics: FUSE Drive.................. 13  
10 Layout................................................................... 42  
10.1 Layout Guidelines ................................................. 42  
10.2 Layout Example .................................................... 44  
11 器件和文档支持 ..................................................... 46  
11.1 文档支持................................................................ 46  
11.2 社区资源................................................................ 46  
11.3 ....................................................................... 46  
11.4 静电放电警告......................................................... 46  
11.5 Glossary................................................................ 46  
12 机械、封装和可订购信息....................................... 46  
6.21 Electrical Characteristics: Internal Temperature  
Sensor...................................................................... 13  
6.22 Electrical Characteristics: TS1, TS2, TS3, TS4 .... 14  
6.23 Electrical Characteristics: PTC, PTCEN ............... 14  
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (April 2016) to Revision B  
Page  
已更改 应用............................................................................................................................................................................. 1  
2
Copyright © 2016–2017, Texas Instruments Incorporated  
 
bq4050  
www.ti.com.cn  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
5 Pin Configuration and Functions  
RSM Package  
32-Pin VQFN with Exposed Thermal Pad  
Top View  
PBI  
VC4  
VC3  
VC2  
VC1  
SRN  
NC  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
PTCEN  
PTC  
LEDCNTLC  
LEDCNTLB  
LEDCNTLA  
SMBC  
Thermal  
Pad  
SMBD  
SRP  
DISP  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NUMBER  
PBI  
1
P(1)  
IA  
Power supply backup input pin  
Sense voltage input pin for the most positive cell, and balance current input for the most  
positive cell  
VC4  
VC3  
VC2  
VC1  
2
3
4
5
Sense voltage input pin for the second most positive cell, balance current input for the  
second most positive cell, and return balance current for the most positive cell  
IA  
IA  
IA  
Sense voltage input pin for the third most positive cell, balance current input for the third  
most positive cell, and return balance current for the second most positive cell  
Sense voltage input pin for the least positive cell, balance current input for the least  
positive cell, and return balance current for the third most positive cell  
Analog input pin connected to the internal coulomb counter peripheral for integrating a  
small voltage between SRP and SRN where SRP is the top of the sense resistor.  
SRN  
NC  
6
7
8
I
I
Not internally connected. Connect to VSS  
.
Analog input pin connected to the internal coulomb counter peripheral for integrating a  
small voltage between SRP and SRN where SRP is the top of the sense resistor.  
SRP  
VSS  
TS1  
9
P
IA  
IA  
IA  
IA  
O
Device ground  
10  
11  
12  
13  
14  
15  
Temperature sensor 1 thermistor input pin  
Temperature sensor 2 thermistor input pin  
Temperature sensor 3 thermistor input pin  
Temperature sensor 4 thermistor input pin  
TS2  
TS3  
TS4  
NC  
Not internally connected. Connect to VSS  
.
BTP_INT  
Battery Trip Point (BTP) interrupt output  
PRES or  
SHUTDN  
Host system present input for removable battery pack or emergency system shutdown  
input for embedded packs  
16  
I
(1) P = Power Connection, O = Digital Output, AI = Analog Input, I = Digital Input, I/OD = Digital Input/Output  
Copyright © 2016–2017, Texas Instruments Incorporated  
3
bq4050  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NAME  
DISP  
NUMBER  
17  
18  
19  
Display control for LEDs  
SMBus data pin  
SMBD  
SMBC  
I/OD  
I/OD  
SMBus clock pin  
LED display segment that drives the external LEDs depending on the firmware  
configuration  
LEDCNTLA  
LEDCNTLB  
20  
21  
LED display segment that drives the external LEDs depending on the firmware  
configuration  
LED display segment that drives the external LEDs depending on the firmware  
configuration  
LEDCNTLC  
PTC  
22  
23  
24  
IA  
IA  
Safety PTC thermistor input pin. To disable, connect PTC and PTCEN to VSS  
Safety PTC thermistor enable input pin. Connect to BAT. To disable, connect PTC and  
PTCEN to VSS  
.
PTCEN  
.
FUSE  
VCC  
PACK  
DSG  
NC  
25  
26  
27  
28  
29  
30  
31  
32  
O
P
Fuse drive output pin  
Secondary power supply input  
Pack sense input pin  
IA  
O
O
O
P
NMOS Discharge FET drive output pin  
Not internally connected. Connect to VSS  
PMOS Precharge FET drive output pin  
NMOS Charge FET drive output pin  
Primary power supply input pin  
.
PCHG  
CHG  
BAT  
4
Copyright © 2016–2017, Texas Instruments Incorporated  
bq4050  
www.ti.com.cn  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
VC4  
CDEN4  
CDEN3  
BAT  
3.1 V  
VCC  
PACK  
VC3  
+
BATDET  
ENVCC  
PACK  
Detector  
VC2  
ADC Mux  
ADC  
PACKDET  
PBI  
SHUTDOWN  
Shutdown  
Latch  
CDEN2  
Reference  
System  
1.8 V  
Domain  
SHOUT  
VC1  
ENBAT  
BAT  
Control  
CDEN1  
Power Supply Control  
Cell Balancing  
VCC  
CHGEN  
BAT  
2 kΩ  
CHG  
CHG  
Pump  
8 kΩ  
PCHG  
2 kΩ  
CHGOFF  
PCHGEN  
Pre-Charge Drive  
PACK  
BAT  
DSGEN  
ZVCD  
BAT  
2 kΩ  
DSG  
DSG  
CHGEN  
Pump  
BAT  
CHG  
Pump  
VCC  
DSGOFF  
ZVCHGEN  
CHG, DSG Drive  
Zero-Volt Charge  
Figure 1. Pin Equivalent Diagram 1  
Copyright © 2016–2017, Texas Instruments Incorporated  
5
bq4050  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
www.ti.com.cn  
1.8 V  
ADTHx  
BAT  
FUSEWKPUP  
18 kΩ  
2 kΩ  
ADC Mux  
ADC  
150 nA  
TS1,2,3,4  
FUSEEN  
2 kΩ  
FUSE  
1.8 V  
1.8 V  
100 kΩ  
FUSEDIG  
RCWKPUP  
RCPUP  
FUSE Drive  
1 kΩ  
RCIN  
RCOUT  
100 kΩ  
SMBCIN  
SMBC  
Thermistor Inputs  
SMBCOUT  
SMBCEN  
1 MΩ  
PBI  
100 kΩ  
SMBDIN  
SMBD  
RHOEN  
SMBDOUT  
10 kΩ  
SMBDEN  
1 MΩ  
PRES  
SMBus Interface  
RHOUT  
100 kΩ  
RHIN  
High-Voltage GPIO  
PTCEN  
BAT  
30 kΩ  
PTCDIG  
PTC  
Comparator  
PTC  
Counter  
PTC  
PTC  
Latch  
RLOEN  
290 nA  
LED1, 2, 3  
22.5 mA  
RLOUT  
100 kΩ  
RLIN  
PTC Detection  
LED Drive  
Figure 2. Pin Equivalent Diagram 2  
6
Copyright © 2016–2017, Texas Instruments Incorporated  
bq4050  
www.ti.com.cn  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
10 Ω  
VC4  
CHANx  
Φ
2
3.8 kΩ  
1.9 MΩ  
0.1 MΩ  
SRP  
SRN  
Φ
1
ADC Mux  
ADC  
Comparator  
Array  
Φ
2
1
3.8 kΩ  
Φ
Φ
2
10 Ω  
100 Ω  
PACK  
Φ
1
Coulomb  
Counter  
Φ
2
1
CHANx  
100 Ω  
Φ
1.9 MΩ  
0.1 MΩ  
ADC Mux  
ADC  
OCD, SCC, SCD Comparators and Coulomb Counter  
VC4 and PACK Dividers  
Figure 3. Pin Equivalent Diagram 3  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over-operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
30  
UNIT  
Supply voltage range, VCC BAT, VCC, PBI  
PACK, SMBC, SMBD, PRES or SHUTDN, BTP_INT, DISP  
TS1, TS2, TS3, TS4  
V
V
V
V
V
30  
VREG + 0.3  
VBAT + 0.3  
0.3  
PTC, PTCEN, LEDCNTLA, LEDCNTLB, LEDCNTLC  
SRP, SRN  
VC3 + 8.5 V, or  
VSS + 30  
VC4  
VC3 – 0.3  
VC2 – 0.3  
VC1 – 0.3  
VSS – 0.3  
V
V
V
V
Input voltage range, VIN  
VC2 + 8.5 V, or  
VSS + 30  
VC3  
VC2  
VC1  
VC1 + 8.5 V, or  
VSS + 30  
VSS + 8.5 V, or  
VSS + 30 V  
CHG, DSG  
Output voltage range, VO  
PCHG, FUSE  
–0.3  
–0.3  
32  
30  
V
Maximum VSS current, ISS  
50  
mA  
°C  
°C  
TSTG  
Storage temperature  
–65  
150  
300  
Lead temperature (soldering, 10 s), TSOLDER  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification  
JESD22-C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2016–2017, Texas Instruments Incorporated  
7
bq4050  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
MIN  
2.2  
NOM  
MAX  
26  
UNIT  
VCC  
Supply voltage  
BAT, VCC, PBI  
V
V
V
VSHUTDOWN–  
Shutdown voltage  
VPACK < VSHUTDOWN–  
VPACK > VSHUTDOWN– + VHYS  
1.8  
2.0  
2.2  
VSHUTDOWN+ Start-up voltage  
2.05  
2.25  
2.45  
Shutdown voltage  
hysteresis  
VHYS  
VSHUTDOWN+ – VSHUTDOWN–  
250  
mV  
PACK, SMBC, SMBD, PRES, BTP_IN, DISP  
26  
VREG  
TS1, TS2, TS3, TS4  
PTC, PTCEN, LEDCNTLA, LEDCNTLB, LEDCNTLC  
VBAT  
SRP, SRN  
VC4  
–0.2  
VVC3  
VVC2  
VVC1  
VVSS  
0.2  
VIN  
Input voltage range  
V
VVC3 + 5  
VVC2 + 5  
VVC1 + 5  
VVSS + 5  
VC3  
VC2  
VC1  
Output voltage  
range  
VO  
CHG, DSG, PCHG, FUSE  
26  
V
External PBI  
capacitor  
CPBI  
TOPR  
2.2  
µF  
°C  
Operating  
temperature  
–40  
85  
6.4 Thermal Information  
bq4050  
RSM (QFN)  
32 PINS  
47.4  
THERMAL METRIC(1)  
UNIT  
RθJA, High K  
RθJC(top)  
RθJB  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
40.3  
Junction-to-board thermal resistance  
14.7  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
0.8  
ψJB  
14.4  
RθJC(bottom)  
3.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics: Supply Current  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 20 V (unless otherwise noted)  
PARAMETER  
NORMAL mode  
TEST CONDITIONS  
CHG on. DSG on, no Flash write  
MIN  
TYP  
336  
75  
MAX  
UNIT  
INORMAL  
ISLEEP  
µA  
CHG off, DSG on, no SBS communication  
CHG off, DSG off, no SBS communication  
SLEEP mode  
µA  
µA  
52  
ISHUTDOWN  
SHUTDOWN mode  
1.6  
8
Copyright © 2016–2017, Texas Instruments Incorporated  
bq4050  
www.ti.com.cn  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
6.6 Electrical Characteristics: Power Supply Control  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
BAT to VCC  
VSWITCHOVER–  
switchover  
voltage  
VBAT < VSWITCHOVER–  
1.95  
2.1  
2.2  
V
VCC to BAT  
switchover  
voltage  
VSWITCHOVER+  
VBAT > VSWITCHOVER– + VHYS  
2.9  
3.1  
3.25  
V
Switchover  
voltage hysteresis  
VHYS  
VSWITCHOVER+ – VSWITCHOVER–  
1000  
mV  
BAT pin, BAT = 0 V, VCC = 25 V, PACK = 25 V  
PACK pin, BAT = 25 V, VCC = 0 V, PACK = 0 V  
1
1
Input Leakage  
current  
ILKG  
µA  
BAT and PACK terminals, BAT = 0 V, VCC = 0 V, PACK  
= 0 V, PBI = 25 V  
1
Internal pulldown  
resistance  
RPD  
PACK  
30  
40  
50  
kΩ  
6.7 Electrical Characteristics: AFE Power-On Reset  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Negative-going  
voltage input  
VREGIT–  
VHYS  
VREG  
1.51  
1.55  
1.59  
V
Power-on reset  
hysteresis  
VREGIT+ – VREGIT–  
70  
100  
300  
130  
400  
mV  
µs  
Power-on reset  
time  
tRST  
200  
6.8 Electrical Characteristics: AFE Watchdog Reset and Wake Timer  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
372  
TYP  
500  
MAX  
628  
UNIT  
tWDT = 500  
tWDT = 1000  
tWDT = 2000  
tWDT = 4000  
tWAKE = 250  
tWAKE = 500  
tWAKE = 1000  
tWAKE = 512  
744  
1000  
2000  
4000  
250  
1256  
2512  
5024  
314  
AFE watchdog  
timeout  
tWDT  
ms  
1488  
2976  
186  
372  
500  
628  
tWAKE  
AFE wake timer  
ms  
ms  
744  
1000  
2000  
1256  
2512  
1488  
FET off delay after  
reset  
tFETOFF  
tFETOFF = 512  
409  
512  
614  
6.9 Electrical Characteristics: Current Wake Comparator  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VWAKE = ±0.625 mV  
MIN  
±0.3  
±0.6  
±1.2  
±2.4  
TYP  
±0.625  
±1.25  
±2.5  
MAX  
±0.9  
±1.8  
±3.6  
±7.2  
UNIT  
VWAKE = ±1.25 mV  
VWAKE = ±2.5 mV  
VWAKE = ±5 mV  
Wake voltage  
threshold  
VWAKE  
mV  
±5.0  
Copyright © 2016–2017, Texas Instruments Incorporated  
9
bq4050  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
www.ti.com.cn  
Electrical Characteristics: Current Wake Comparator (continued)  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Temperature drift  
of VWAKE accuracy  
VWAKE(DRIFT)  
0.5%  
°C  
Time from  
application of  
current to wake  
interrupt  
tWAKE  
700  
µs  
µs  
Wake comparator  
startup time  
tWAKE(SU)  
500  
1000  
6.10 Electrical Characteristics: VC1, VC2, VC3, VC4, BAT, PACK  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VC1–VSS, VC2–VC1, VC3–VC2, VC4–VC3  
BAT–VSS, PACK–VSS  
MIN  
TYP  
MAX  
0.2020  
0.051  
0.510  
5
UNIT  
0.1980 0.2000  
K
Scaling factor  
0.049  
0.490  
–0.2  
0.050  
0.500  
VREF2  
VC1–VSS, VC2–VC1, VC3–VC2, VC4–VC3  
BAT–VSS, PACK–VSS  
VIN  
Input voltage range  
Input leakage current  
V
–0.2  
20  
VC1, VC2, VC3, VC4, cell balancing off, cell detach  
detection off, ADC multiplexer off  
ILKG  
RCB  
ICD  
1
200  
70  
µA  
Ω
Internal cell balance  
resistance  
RDS(ON) for internal FET switch at 2 V < VDS < 4 V  
VCx > VSS + 0.8 V  
Internal cell detach  
check current  
30  
50  
µA  
6.11 Electrical Characteristics: SMBD, SMBC  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SMBC, SMBD, VREG = 1.8 V  
MIN  
TYP  
MAX  
UNIT  
V
VIH  
Input voltage high  
Input voltage low  
Output low voltage  
Input capacitance  
Input leakage current  
Pulldown resistance  
1.3  
VIL  
SMBC, SMBD, VREG = 1.8 V  
0.8  
0.4  
V
VOL  
CIN  
ILKG  
RPD  
SMBC, SMBD, VREG = 1.8 V, IOL = 1.5 mA  
V
5
pF  
µA  
MΩ  
1
0.7  
1.0  
1.3  
6.12 Electrical Characteristics: PRES, BTP_INT, DISP  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
High-level input  
Low-level input  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
VIH  
VIL  
1.3  
0.55  
V
VBAT > 5.5 V, IOH = –0 µA  
3.5  
1.8  
VOH  
Output voltage high  
V
VBAT > 5.5 V, IOH = –10 µA  
IOL = 1.5 mA  
VOL  
CIN  
Output voltage low  
Input capacitance  
Input leakage current  
0.4  
1
V
5
pF  
µA  
ILKG  
10  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
bq4050  
www.ti.com.cn  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
Electrical Characteristics: PRES, BTP_INT, DISP (continued)  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Output reverse  
resistance  
RO  
Between PRES or BTP_INT or DISP and PBI  
8
kΩ  
6.13 Electrical Characteristics: LEDCNTLA, LEDCNTLB, LEDCNTLC  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
High-level input  
Low-level input  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
VIH  
VIL  
1.45  
0.55  
V
VBAT  
VOH  
VOL  
ISC  
Output voltage high  
Output voltage low  
VBAT > 3.0 V, IOH = –22.5 mA  
V
V
1.6  
IOL = 1.5 mA  
0.4  
High level output  
current protection  
–30  
–45  
–6 0  
mA  
Low level output  
current  
IOL  
VBAT > 3.0 V, VOH = 0.4 V  
VBAT = VLEDCNTLx + 2.5 V  
15.75  
22.5  
29.25  
mA  
Current matching  
between LEDCNTLx  
ILEDCNTLx  
±1%  
20  
CIN  
Input capacitance  
pF  
µA  
ILKG  
Input leakage current  
1
Frequency of LED  
pattern  
fLEDCNTLx  
124  
Hz  
6.14 Electrical Characteristics: Coulomb Counter  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
Input voltage range  
TEST CONDITIONS  
MIN  
–0.1  
TYP  
MAX  
0.1  
UNIT  
V
Full scale range  
Integral nonlinearity(1)  
Offset error  
–VREF1/10  
VREF1/10  
±22.3  
±10  
V
16-bit, best fit over input voltage range  
16-bit, Post-calibration  
±5.2  
±5  
LSB  
µV  
Offset error drift  
Gain error  
15-bit + sign, Post-calibration  
0.2  
0.3  
µV/°C  
FSR  
15-bit + sign, over input voltage range  
15-bit + sign, over input voltage range  
±0.2%  
±0.8%  
Gain error drift  
150 PPM/°C  
Effective input resistance  
2.5  
MΩ  
(1) 1 LSB = VREF1/(10 × 2N) = 1.215/(10 × 215) = 3.71 µV  
6.15 Electrical Characteristics: CC Digital Filter  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
Conversion time  
Effective resolution  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ms  
Single conversion  
Single conversion  
250  
15  
Bits  
Copyright © 2016–2017, Texas Instruments Incorporated  
11  
bq4050  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
www.ti.com.cn  
6.16 Electrical Characteristics: ADC  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Internal reference (VREF1  
External reference (VREG  
VFS = VREF1 or VREG  
MIN  
–0.2  
–0.2  
–VFS  
TYP  
MAX  
1
UNIT  
)
Input voltage range  
V
)
0.8 × VREG  
VFS  
Full scale range  
V
16-bit, best fit, –0.1 V to 0.8 × VREF1  
16-bit, best fit, –0.2 V to –0.1 V  
16-bit, Post-calibration, VFS = VREF1  
16-bit, Post-calibration, VFS = VREF1  
16-bit, –0.1 V to 0.8 × VFS  
±6.6  
Integral nonlinearity(1)  
LSB  
±13.1  
±157  
Offset error(2)  
±67  
0.6  
µV  
Offset error drift  
Gain error  
3
µV/°C  
FSR  
±0.2%  
±0.8%  
Gain error drift  
Effective input resistance  
16-bit, –0.1 V to 0.8 × VFS  
150 PPM/°C  
8
MΩ  
(1) 1 LSB = VREF1/(2N) = 1.225/(215) = 37.4 µV (when tCONV = 31.25 ms)  
(2) For VC1–VSS, VC2–VC1, VC3–VC2, VC4–VC3, VC4–VSS, PACK–VSS, and VREF1/2, the offset error is multiplied by (1/ADC  
multiplexer scaling factor (K)).  
6.17 Electrical Characteristics: ADC Digital Filter  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
31.25  
15.63  
7.81  
MAX  
UNIT  
Single conversion  
Single conversion  
Single conversion  
Single conversion  
No missing codes  
Conversion time  
ms  
1.95  
Resolution  
16  
14  
13  
11  
9
Bits  
Bits  
With sign, tCONV = 31.25 ms  
With sign, tCONV = 15.63 ms  
With sign, tCONV = 7.81 ms  
With sign, tCONV = 1.95 ms  
15  
14  
12  
10  
Effective resolution  
6.18 Electrical Characteristics: CHG, DSG FET Drive  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RatioDSG = (VDSG – VBAT)/VBAT, 2.2 V < VBAT < 4.92 V,  
10 MΩ between PACK and DSG  
2.133  
2.333  
2.433  
Output voltage  
ratio  
RatioCHG = (VCHG – VBAT)/VBAT, 2.2 V < VBAT < 4.92 V,  
10 MΩ between BAT and CHG  
2.133  
10.5  
10.5  
2.333  
11.5  
11.5  
2.433  
12  
VDSG(ON) = VDSG – VBAT, 4.92 V VBAT 18 V, 10 MΩ  
between PACK and DSG  
Output voltage,  
CHG and DSG on  
V(FETON)  
V
V
VCHG(ON) = VCHG – VBAT, 4.92 V VBAT 18 V, 10 MΩ  
between BAT and CHG  
12  
VDSG(OFF) = VDSG – VPACK, 10 MΩ between PACK and  
DSG  
–0.4  
–0.4  
0.4  
0.4  
Output voltage,  
CHG and DSG off  
V(FETOFF)  
VCHG(OFF) = VCHG – VBAT, 10 MΩ between BAT and CHG  
VDSG from 0% to 35% VDSG(ON)(TYP), VBAT 2.2 V, CL  
=
4.7 nF between DSG and PACK, 5.1 kΩ between DSG  
and CL, 10 MΩ between PACK and DSG  
200  
200  
500  
500  
tR  
Rise time  
µs  
VCHG from 0% to 35% VCHG(ON)(TYP), VBAT 2.2 V, CL  
4.7 nF between CHG and BAT, 5.1 kΩ between CHG  
and CL, 10 MΩ between BAT and CHG  
=
12  
Copyright © 2016–2017, Texas Instruments Incorporated  
bq4050  
www.ti.com.cn  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
Electrical Characteristics: CHG, DSG FET Drive (continued)  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VDSG from VDSG(ON)(TYP) to 1 V, VBAT 2.2 V, CL = 4.7 nF  
between DSG and PACK, 5.1 kΩ between DSG and CL,  
10 MΩ between PACK and DSG  
40  
300  
tF  
Fall time  
µs  
VCHG from VCHG(ON)(TYP) to 1 V, VBAT 2.2 V, CL = 4.7  
nF between CHG and BAT, 5.1 kΩ between CHG and  
CL, 10 MΩ between BAT and CHG  
40  
200  
6.19 Electrical Characteristics: PCHG FET Drive  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Output voltage,  
PCHG on  
VPCHG(ON) = VVCC – VPCHG, 10 MΩ between VCC and  
PCHG  
V(FETON)  
6
7
8
V
Output voltage,  
PCHG off  
VPCHG(OFF) = VVCC – VPCHG, 10 MΩ between VCC and  
PCHG  
V(FETOFF)  
–0.4  
0.4  
V
VPCHG from 10% to 90% VPCHG(ON)(TYP), VVCC 8 V, CL  
4.7 nF between PCHG and VCC, 5.1 kΩ between PCHG  
and CL, 10 MΩ between VCC and CHG  
=
tR  
Rise time  
Fall time  
40  
40  
200  
µs  
VPCHG from 90% to 10% VPCHG(ON)(TYP), VCC 8 V, CL  
4.7 nF between PCHG and VCC, 5.1 kΩ between PCHG  
and CL, 10 MΩ between VCC and CHG  
=
tF  
200  
µs  
6.20 Electrical Characteristics: FUSE Drive  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
8.65  
VBAT  
2.5  
UNIT  
V
BAT 8 V, CL = 1 nF, IAFEFUSE = 0 µA  
6
VBAT – 0.1  
1.5  
7
Output voltage  
high  
VOH  
V
VBAT < 8 V, CL = 1 nF, IAFEFUSE = 0 µA  
VIH  
High-level input  
2.0  
V
Internal pullup  
current  
IAFEFUSE(PU)  
VBAT 8 V, VAFEFUSE = VSS  
150  
330  
3.2  
nA  
RAFEFUSE  
CIN  
Output impedance  
Input capacitance  
2
2.6  
5
kΩ  
pF  
Fuse trip detection  
delay  
tDELAY  
tRISE  
128  
256  
20  
µs  
µs  
Fuse output rise  
time  
VBAT 8 V, CL = 1 nF, VOH = 0 V to 5 V  
5
6.21 Electrical Characteristics: Internal Temperature Sensor  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
–1.9  
TYP  
–2.0  
MAX  
–2.1  
UNIT  
VTEMPP  
Internal temperature  
sensor voltage drift  
VTEMP  
mV/°C  
VTEMPP – VTEMPN, assured by design  
0.177  
0.178  
0.179  
Copyright © 2016–2017, Texas Instruments Incorporated  
13  
bq4050  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
www.ti.com.cn  
6.22 Electrical Characteristics: TS1, TS2, TS3, TS4  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TS1, TS2, TS3, TS4, VBIAS = VREF1  
TS1, TS2, TS3, TS4, VBIAS = VREG  
MIN  
–0.2  
–0.2  
TYP  
MAX  
0.8 × VREF1  
0.8 × VREG  
UNIT  
Input voltage  
range  
VIN  
V
Internal pullup  
resistance  
RNTC(PU)  
TS1, TS2, TS3, TS4  
TS1, TS2, TS3, TS4  
14.4  
18  
21.6  
kΩ  
Resistance drift  
over temperature  
RNTC(DRIFT)  
–360  
–280  
–200 PPM/°C  
6.23 Electrical Characteristics: PTC, PTCEN  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
RPTC(TRIP) PTC trip resistance  
VPTC(TRIP)  
TEST CONDITIONS  
MIN  
1.2  
TYP  
2.5  
MAX  
3.95  
890  
UNIT  
MΩ  
PTC trip voltage  
VPTC(TRIP) = VPTCEN – VPTC  
200  
500  
mV  
Internal PTC  
current bias  
IPTC  
TA = –40°C to 110°C  
TA = –40°C to 110°C  
200  
40  
290  
80  
350  
145  
nA  
ms  
tPTC(DELAY)  
PTC delay time  
6.24 Electrical Characteristics: Internal 1.8-V LDO  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VREG  
Regulator voltage  
1.6  
1.8  
2.0  
V
Regulator output  
over temperature  
ΔVO(TEMP)  
ΔVREG/ΔTA, IREG = 10 mA  
±0.25%  
ΔVO(LINE)  
Line regulation  
ΔVREG/ΔVBAT, VBAT = 10 mA  
–0 .6%  
–1.5%  
0.5%  
1.5%  
ΔVO(LOAD) Load regulation  
ΔVREG/ΔIREG, IREG = 0 mA to 10 mA  
Regulator output  
current limit  
IREG  
VREG = 0.9 × VREG(NOM), VIN > 2.2 V  
VREG = 0 × VREG(NOM)  
20  
25  
mA  
mA  
dB  
Regulator short-  
ISC  
40  
40  
55  
circuit current limit  
Power supply  
PSRRREG  
ΔVBAT/ΔVREG, IREG = 10 mA ,VIN > 2.5 V, f = 10 Hz  
rejection ratio  
Slew rate  
VSLEW  
enhancement  
VREG  
1.58  
1.65  
V
voltage threshold  
6.25 Electrical Characteristics: High-Frequency Oscillator  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
16.78  
MAX  
UNIT  
fHFO  
Operating frequency  
MHz  
TA = –20°C to 70°C, includes frequency drift  
TA = –40°C to 85°C, includes frequency drift  
–2.5%  
–3.5%  
±0.25%  
±0.25%  
2.5%  
3.5%  
fHFO(ERR)  
Frequency error  
TA = –20°C to 85°C, oscillator frequency within  
+/–3% of nominal  
4
ms  
µs  
tHFO(SU)  
Start-up time  
oscillator frequency within +/–3% of nominal  
100  
14  
Copyright © 2016–2017, Texas Instruments Incorporated  
bq4050  
www.ti.com.cn  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
6.26 Electrical Characteristics: Low-Frequency Oscillator  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
Operating frequency  
TEST CONDITIONS  
MIN  
TYP  
262.144  
±0.25%  
±0.25  
MAX  
UNIT  
fLFO  
kHz  
TA = –20°C to 70°C, includes frequency drift  
TA = –40°C to 85°C, includes frequency drift  
–1.5%  
–2.5  
1.5%  
2.5  
fLFO(ERR)  
Frequency error  
Failure detection  
frequency  
fLFO(FAIL)  
30  
80  
100  
kHz  
6.27 Electrical Characteristics: Voltage Reference 1  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Internal reference  
voltage  
VREF1  
TA = 25°C, after trim  
1.21  
1.215  
1.22  
V
TA = 0°C to 60°C, after trim  
TA = –40°C to 85°C, after trim  
±50  
±80  
Internal reference  
voltage drift  
VREF1(DRIFT)  
PPM/°C  
6.28 Electrical Characteristics: Voltage Reference 2  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Internal reference  
voltage  
VREF2  
TA = 25°C, after trim  
1.22  
1.225  
1.23  
V
TA = 0°C to 60°C, after trim  
TA = –40°C to 85°C, after trim  
±50  
±80  
Internal reference  
voltage drift  
VREF2(DRIFT)  
PPM/°C  
6.29 Electrical Characteristics: Instruction Flash  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
Data retention  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
10  
Years  
Flash programming  
write cycles  
1000  
Cycles  
µs  
Word programming  
time  
tPROGWORD  
TA = –40°C to 85°C  
40  
tMASSERASE  
tPAGEERASE  
IFLASHREAD  
IFLASHWRITE  
IFLASHERASE  
Mass-erase time  
Page-erase time  
Flash-read current  
Flash-write current  
Flash-erase current  
TA = –40°C to 85°C  
TA = –40°C to 85°C  
TA = –40°C to 85°C  
TA = –40°C to 85°C  
TA = –40°C to 85°C  
40  
40  
2
ms  
ms  
mA  
mA  
mA  
5
15  
6.30 Electrical Characteristics: Data Flash  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Data retention  
10  
Years  
Flash programming  
write cycles  
20000  
Cycles  
µs  
Word programming  
time  
tPROGWORD  
TA = –40°C to 85°C  
40  
Copyright © 2016–2017, Texas Instruments Incorporated  
15  
bq4050  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
www.ti.com.cn  
Electrical Characteristics: Data Flash (continued)  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA = –40°C to 85°C  
MIN  
TYP  
MAX  
40  
40  
1
UNIT  
ms  
tMASSERASE  
tPAGEERASE  
IFLASHREAD  
IFLASHWRITE  
IFLASHERASE  
Mass-erase time  
Page-erase time  
Flash-read current  
Flash-write current  
Flash-erase current  
TA = –40°C to 85°C  
TA = –40°C to 85°C  
TA = –40°C to 85°C  
TA = –40°C to 85°C  
ms  
mA  
mA  
mA  
5
15  
6.31 Electrical Characteristics: OCD, SCC, SCD1, SCD2 Current Protection Thresholds  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOCD = VSRP – VSRN, AFE PROTECTION  
CONTROL[RSNS] = 1  
–16.6  
–100  
OCD detection  
threshold voltage range  
VOCD  
mV  
VOCD = VSRP – VSRN, AFE PROTECTION  
CONTROL[RSNS] = 0  
–8.3  
–50  
VOCD = VSRP – VSRN, AFE PROTECTION  
CONTROL[RSNS] = 1  
–5.56  
–2.78  
OCD detection  
threshold voltage  
program step  
ΔVOCD  
mV  
mV  
mV  
mV  
mV  
mV  
VOCD = VSRP – VSRN, AFE PROTECTION  
CONTROL[RSNS] = 0  
VSCC = VSRP – VSRN, AFE PROTECTION  
CONTROL[RSNS] = 1  
44.4  
22.2  
200  
100  
SCC detection  
threshold voltage range  
VSCC  
VSCC = VSRP – VSRN, AFE PROTECTION  
CONTROL[RSNS] = 0  
VSCC = VSRP – VSRN, AFE PROTECTION  
CONTROL[RSNS] = 1  
22.2  
11.1  
SCC detection  
threshold voltage  
program step  
ΔVSCC  
VSCD1  
ΔVSCD1  
VSCD2  
ΔVSCD2  
VSCC = VSRP – VSRN, AFE PROTECTION  
CONTROL[RSNS] = 0  
VSCD1 = VSRP – VSRN, AFE PROTECTION  
CONTROL[RSNS] = 1  
–44.4  
–22.2  
–200  
–100  
SCD1 detection  
threshold voltage range  
VSCD1 = VSRP – VSRN, AFE PROTECTION  
CONTROL[RSNS] = 0  
VSCD1 = VSRP – VSRN, AFE PROTECTION  
CONTROL[RSNS] = 1  
–22.2  
–11.1  
SCD1 detection  
threshold voltage  
program step  
VSCD1 = VSRP – VSRN, AFE PROTECTION  
CONTROL[RSNS] = 0  
VSCD2 = VSRP – VSRN, AFE PROTECTION  
CONTROL[RSNS] = 1  
–44.4  
–22.2  
–200  
–100  
SCD2 detection  
threshold voltage range  
VSCD2 = VSRP – VSRN, AFE PROTECTION  
CONTROL[RSNS] = 0  
VSCD2 = VSRP – VSRN, AFE PROTECTION  
CONTROL[RSNS] = 1  
–22.2  
–11.1  
SCD2 detection  
threshold voltage  
program step  
mV  
mV  
VSCD2 = VSRP – VSRN, AFE PROTECTION  
CONTROL[RSNS] = 0  
OCD, SCC, and SCDx  
offset error  
VOFFSET  
VSCALE  
Post-trim  
–2.5  
2.5  
No trim  
–10%  
–5%  
10%  
5%  
OCD, SCC, and SCDx  
scale error  
Post-trim  
16  
Copyright © 2016–2017, Texas Instruments Incorporated  
bq4050  
www.ti.com.cn  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
6.32 Timing Requirements: OCD, SCC, SCD1, SCD2 Current Protection Timing  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
OCD detection  
delay time  
tOCD  
1
31  
ms  
OCD detection  
delay time  
program step  
ΔtOCD  
2
ms  
µs  
µs  
SCC detection  
delay time  
tSCC  
0
915  
SCC detection  
delay time  
ΔtSCC  
61  
program step  
AFE PROTECTION CONTROL[SCDDx2] = 0  
AFE PROTECTION CONTROL[SCDDx2] = 1  
AFE PROTECTION CONTROL[SCDDx2] = 0  
0
0
915  
SCD1 detection  
delay time  
tSCD1  
ΔtSCD1  
tSCD2  
µs  
µs  
µs  
1850  
SCD1 detection  
delay time  
program step  
61  
AFE PROTECTION CONTROL[SCDDx2] = 1  
121  
AFE PROTECTION CONTROL[SCDDx2] = 0  
AFE PROTECTION CONTROL[SCDDx2] = 1  
AFE PROTECTION CONTROL[SCDDx2] = 0  
0
0
458  
915  
SCD2 detection  
delay time  
SCD2 detection  
delay time  
program step  
30.5  
61  
ΔtSCD2  
tDETECT  
tACC  
µs  
µs  
AFE PROTECTION CONTROL[SCDDx2] = 1  
Current fault  
detect time  
VSRP – VSRN = VT – 3 mV for OCD, SCD1, and SC2,  
VSRP – VSRN = VT + 3 mV for SCC  
160  
Current fault  
delay time  
accuracy  
Max delay setting  
–10%  
10%  
6.33 Timing Requirements: SMBus  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
fSMB  
fMAS  
SMBus operating frequency SLAVE mode, SMBC 50% duty cycle  
10  
100  
kHz  
SMBus master clock  
MASTER mode, no clock low slave extend  
frequency  
51.2  
kHz  
µs  
Bus free time between start  
and stop  
tBUF  
4.7  
4.0  
Hold time after (repeated)  
start  
tHD(START)  
µs  
tSU(START)  
tSU(STOP)  
tHD(DATA)  
tSU(DATA)  
tTIMEOUT  
tLOW  
Repeated start setup time  
Stop setup time  
4.7  
4.0  
300  
250  
25  
µs  
µs  
ns  
ns  
ms  
µs  
µs  
ns  
ns  
Data hold time  
Data setup time  
Error signal detect time  
Clock low period  
35  
4.7  
4.0  
tHIGH  
Clock high period  
50  
1000  
300  
tR  
Clock rise time  
Clock fall time  
10% to 90%  
90% to 10%  
tF  
Cumulative clock low slave  
extend time  
tLOW(SEXT)  
tLOW(MEXT)  
25  
10  
ms  
ms  
Cumulative clock low  
master extend time  
Copyright © 2016–2017, Texas Instruments Incorporated  
17  
bq4050  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
www.ti.com.cn  
6.34 Timing Requirements: SMBus XL  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
fSMBXL  
tBUF  
SMBus XL operating  
frequency  
SLAVE mode  
40  
400  
kHz  
Bus free time between start  
and stop  
4.7  
µs  
tHD(START)  
tSU(START)  
tSU(STOP)  
tTIMEOUT  
tLOW  
Hold time after (repeated) start  
Repeated start setup time  
Stop setup time  
4.0  
4.7  
4.0  
5
µs  
µs  
µs  
ms  
µs  
µs  
Error signal detect time  
Clock low period  
20  
20  
20  
tHIGH  
Clock high period  
TtR  
TtF  
TtF  
TtR  
TtHIGH  
T
tSU(STOP)p  
tHD(START)  
TtBUFT  
TtLOWT  
SMBC  
SMBD  
SMBC  
SMBD  
P
S
tHD(DATA)  
T
TtSU(DATA)  
Start and Stop Condition  
Wait and Hold Condition  
tSU(START)  
T
TtTIMEOUT  
SMBC  
SMBD  
SMBC  
SMBD  
S
Repeated Start Condition  
Timeout Condition  
Figure 4. SMBus Timing Diagram  
18  
Copyright © 2016–2017, Texas Instruments Incorporated  
bq4050  
www.ti.com.cn  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
6.35 Typical Characteristics  
0.15  
0.10  
±8.  
ꢀ8.  
Max CC Offset Error  
Min CC Offset Error  
ꢁ8.  
0.05  
ꢂ8.  
0.00  
.8.  
±ꢂ8.  
±ꢁ8.  
±ꢀ8.  
±±8.  
œ0.05  
œ0.10  
œ0.15  
Max ADC Offset Error  
Min ADC Offset Error  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
.
ꢂ.  
ꢁ.  
ꢀ.  
±.  
1..  
1ꢂ.  
±ꢁ.  
±ꢂ.  
Temperature (°C)  
Temperature (°C)  
C001  
C..3  
Figure 5. CC Offset Error vs. Temperature  
Figure 6. ADC Offset Error vs. Temperature  
1.24  
1.23  
1.22  
1.21  
1.20  
264  
262  
260  
258  
256  
254  
252  
250  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C006  
C007  
Figure 7. Reference Voltage vs. Temperature  
Figure 8. Low-Frequency Oscillator vs. Temperature  
16.9  
16.8  
16.7  
16.6  
œ24.6  
œ24.8  
œ25.0  
œ25.2  
œ25.4  
œ25.6  
œ25.8  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C008  
C009  
Threshold setting is –25 mV.  
Figure 9. High-Frequency Oscillator vs. Temperature  
Figure 10. Overcurrent Discharge Protection Threshold vs.  
Temperature  
Copyright © 2016–2017, Texas Instruments Incorporated  
19  
bq4050  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
87.4  
œ86.0  
œ86.2  
œ86.4  
œ86.6  
œ86.8  
œ87.0  
œ87.2  
87.2  
87.0  
86.8  
86.6  
86.4  
86.2  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C010  
C011  
Threshold setting is 88.85 mV.  
Threshold setting is –88.85 mV.  
Figure 11. Short Circuit Charge Protection Threshold vs.  
Temperature  
Figure 12. Short Circuit Discharge 1 Protection Threshold  
vs. Temperature  
11.00  
10.95  
10.90  
10.85  
10.80  
10.75  
10.70  
œ172.9  
œ173.0  
œ173.1  
œ173.2  
œ173.3  
œ173.4  
œ173.5  
œ173.6  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C012  
C013  
Threshold setting is –177.7 mV.  
Threshold setting is 11 ms.  
Figure 14. Overcurrent Delay Time vs. Temperature  
Figure 13. Short Circuit Discharge 2 Protection Threshold  
vs. Temperature  
452  
450  
448  
446  
444  
442  
440  
438  
436  
434  
432  
480  
460  
440  
420  
400  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C014  
C015  
Threshold setting is 465 µs.  
Threshold setting is 465 µs (including internal delay).  
Figure 15. Short Circuit Charge Current Delay Time vs.  
Temperature  
Figure 16. Short Circuit Discharge 1 Delay Time vs.  
Temperature  
20  
Copyright © 2016–2017, Texas Instruments Incorporated  
bq4050  
www.ti.com.cn  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
Typical Characteristics (continued)  
2.4984  
2.49835  
2.4983  
2.49825  
2.4982  
2.49815  
2.4981  
2.49805  
2.498  
3.49825  
3.4982  
3.49815  
3.4981  
3.49805  
3.498  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C016  
C017  
This is the VCELL average for single cell.  
Figure 17. VCELL Measurement at 2.5-V vs. Temperature  
Figure 18. VCELL Measurement at 3.5-V vs. Temperature  
4.24805  
99.25  
4.248  
4.24795  
4.2479  
99.20  
99.15  
99.10  
99.05  
99.00  
4.24785  
4.2478  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C018  
C019  
This is the VCELL average for single cell.  
ISET = 100 mA  
Figure 19. VCELL Measurement at 4.25-V vs. Temperature  
Figure 20. I Measured vs. Temperature  
Copyright © 2016–2017, Texas Instruments Incorporated  
21  
bq4050  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The bq4050 device, incorporating Compensated End-of-Discharge Voltage (CEDV) technology, provides cell  
balancing while charging or at rest. This fully integrated, single-chip, pack-based solution, including a diagnostic  
lifetime data monitor and black box recorder, provides a rich array of features for gas gauging, protection, and  
authentication for 1-series, 2-series, 3-series, and 4-series cell Li-Ion and Li-Polymer battery packs.  
7.2 Functional Block Diagram  
Cell, Stack,  
Pack  
Voltage  
High Side  
N-CH FET  
Drive  
Cell  
Balancing  
Cell Detach  
Detection  
Power Mode  
Control  
P-CH  
FET Drive  
Zero Volt  
Charge  
Control  
PTCEN  
PTC  
Wake  
Comparator  
Power On  
Reset  
PTC  
Overtemp  
Short Circuit  
Comparator  
FUSE  
Control  
FUSE  
SRP  
SRN  
BTP_INT  
Over  
Current  
Comparator  
High  
Voltage  
I/O  
Voltage  
Reference2  
PRES or SHUTDN  
DISP  
Random  
Number  
Generator  
Watchdog  
Timer  
NTC Bias  
TS1  
TS2  
TS3  
TS4  
LEDCNTLC  
LEDCNTLB  
LEDCNTLA  
Internal  
Temp  
Sensor  
LED Display  
Drive I/O  
Voltage  
Reference1  
ADC MUX  
AFE Control  
Low  
Frequency  
Oscillator  
SBS High  
Voltage  
Translation  
SMBD  
SMBC  
ADC/CC  
FRONTEND  
1.8V LDO  
Regulator  
AFE COM  
Engine  
High  
Frequency  
Oscillator  
Low Voltage  
I/O  
I/O  
I/O &  
Interrupt  
Controller  
ADC/CC  
Digital Filter  
Timers&  
PWM  
AFE COM  
Engine  
SBS COM  
Engine  
Data (8bit)  
DMAddr (16bit)  
bqBMP  
CPU  
PMInstr  
(8bit)  
PMAddr  
(16bit)  
Program  
Flash  
EEPROM  
Data Flash  
EEPROM  
Data  
SRAM  
Copyright © 2017, Texas Instruments Incorporated  
22  
Copyright © 2016–2017, Texas Instruments Incorporated  
bq4050  
www.ti.com.cn  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
7.3 Feature Description  
7.3.1 Primary (1st Level) Safety Features  
The bq4050 gas gauge supports a wide range of battery and system protection features that can easily be  
configured. See the bq4050 Technical Reference Manual (SLUUAQ3) for detailed descriptions of each protection  
function.  
The primary safety features include:  
Cell Overvoltage Protection  
Cell Undervoltage Protection  
Overcurrent in Charge Protection  
Overcurrent in Discharge Protection  
Overload in Discharge Protection  
Short Circuit in Charge Protection  
Short Circuit in Discharge Protection  
Overtemperature in Charge Protection  
Overtemperature in Discharge Protection  
Undertemperature in Charge Protection  
Undertemperature in Discharge Protection  
Overtemperature FET protection  
Precharge Timeout Protection  
Host Watchdog Timeout Protection  
Overcharge Protection  
Overcharging Voltage Protection  
Overcharging Current Protection  
Over Precharge Current Protection  
7.3.2 Secondary (2nd Level) Safety Features  
The secondary safety features of the bq4050 gas gauge can be used to indicate more serious faults via the  
FUSE pin. This pin can be used to blow an in-line fuse to permanently disable the battery pack from charging or  
discharging. See the bq4050 Technical Reference Manual (SLUUAQ3) for detailed descriptions of each  
protection function.  
The secondary safety features provide protection against:  
Safety Overvoltage Permanent Failure  
Safety Undervoltage Permanent Failure  
Safety Overtemperature Permanent Failure  
Safety FET Overtemperature Permanent Failure  
Fuse Failure Permanent Failure  
PTC Permanent Failure  
Voltage Imbalance at Rest (VIMR) Permanent Failure  
Voltage Imbalance Active (VIMA) Permanent Failure  
Charge FET Permanent Failure  
Discharge FET Permanent Failure  
AFE Register Permanent Failure  
AFE Communication Permanent Failure  
Second Level Protector Permanent Failure  
Instruction Flash Checksum Permanent Failure  
Open Cell Connection Permanent Failure  
Data Flash Permanent Failure  
Open Thermistor Permanent Failure  
Copyright © 2016–2017, Texas Instruments Incorporated  
23  
bq4050  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
www.ti.com.cn  
Feature Description (continued)  
7.3.3 Charge Control Features  
The bq4050 gas gauge charge control features include:  
Supports JEITA temperature ranges. Reports charging voltage and charging current according to the active  
temperature range  
Handles more complex charging profiles. Allows for splitting the standard temperature range into two  
subranges and allows for varying the charging current according to the cell voltage  
Reports the appropriate charging current needed for constant current charging and the appropriate charging  
voltage needed for constant voltage charging to a smart charger using SMBus broadcasts  
Reduces the charge difference of the battery cells in fully charged state of the battery pack gradually using a  
voltage-based cell balancing algorithm during charging. A voltage threshold can be set up for cell balancing to  
be active. This prevents fully charged cells from overcharging and causing excessive degradation and also  
increases the usable pack energy by preventing premature charge termination.  
Supports precharging/0-volt charging  
Supports charge inhibit and charge suspend if the battery pack temperature is out of temperature range  
Reports charging fault and also indicates charge status via charge and discharge alarms  
7.3.4 Gas Gauging  
The bq4050 gas gauge uses the Compensated End-of-Discharge Voltage (CEDV) algorithm to measure and  
calculate the available capacity in battery cells. The bq4050 device accumulates a measure of charge and  
discharge currents, estimates self-discharge of the battery, and adjusts the self-discharge estimation based on  
temperature. See the bq4050 Technical Reference Manual (SLUUAQ3) for further details.  
7.3.5 Configuration  
7.3.5.1 Oscillator Function  
The bq4050 gas gauge fully integrates the system oscillators and does not require any external components to  
support this feature.  
7.3.5.2 System Present Operation  
The bq4050 gas gauge checks the PRES pin periodically (1 s). If PRES input is pulled to ground by the external  
system, the bq4050 device detects this as system present.  
7.3.5.3 Emergency Shutdown  
For battery maintenance, the emergency shutdown feature enables a push button action connecting the  
SHUTDN pin to shut down an embedded battery pack system before removing the battery. A high-to-low  
transition of the SHUTDN pin signals the bq4050 gas gauge to turn off the CHG and DSG FETs, disconnecting  
the power from the system to safely remove the battery pack. The CHG and DSG FETs can be turned on again  
by another high-to-low transition detected by the SHUTDN pin or when a data flash configurable timeout is  
reached.  
7.3.5.4 1-Series, 2-Series, 3-Series, or 4-Series Cell Configuration  
In a 1-series cell configuration, VC4 is shorted to VC, VC2, and VC1. In a 2-series cell configuration, VC4 is  
shorted to VC3 and VC2. In a 3-series cell configuration, VC4 is shorted to VC3.  
7.3.5.5 Cell Balancing  
The device reduces the charge difference of the battery cells in a fully charged state of the battery pack by  
gradually using a voltage-based cell balancing algorithm during charging. A voltage threshold can be set up for  
cell balancing to be active. This prevents fully charged cells from overcharging and causing excessive  
degradation, and increases the usable pack energy by preventing premature charge termination.  
24  
Copyright © 2016–2017, Texas Instruments Incorporated  
bq4050  
www.ti.com.cn  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
Feature Description (continued)  
7.3.6 Battery Parameter Measurements  
7.3.6.1 Charge and Discharge Counting  
The bq4050 gas gauge uses an integrating delta-sigma analog-to-digital converter (ADC) for current  
measurement, and a second delta-sigma ADC for individual cell and battery voltage and temperature  
measurement.  
The integrating delta-sigma ADC measures the charge/discharge flow of the battery by measuring the voltage  
drop across a small-value sense resistor between the SRP and SRN terminals. The integrating ADC measures  
bipolar signals from –0.1 V to 0.1 V. The bq4050 gauge detects charge activity when VSR = V(SRP) – V(SRN) is  
positive, and discharge activity when VSR = V(SRP) – V(SRN) is negative. The bq4050 gas gauge continuously  
integrates the signal over time, using an internal counter. The fundamental rate of the counter is 0.26 nVh.  
7.3.7 Battery Trip Point (BTP)  
Required for WIN8 OS, the battery trip point (BTP) feature indicates when the RSOC of a battery pack has  
depleted to a certain value set in a DF register. This feature enables a host to program two capacity-based  
thresholds that govern the triggering of a BTP interrupt on the BTP_INT pin and the setting or clearing of the  
OperationStatus[BTP_INT] on the basis of RemainingCapacity().  
An internal weak pullup is applied when the BTP feature is active. Depending on the system design, an external  
pullup may be required to put on the BTP_INT pin. See Electrical Characteristics: PRES, BTP_INT, DISP for  
details.  
7.3.8 Lifetime Data Logging Features  
The bq4050 gas gauge offers lifetime data logging for several critical battery parameters. The following  
parameters are updated every 10 hours if a difference is detected between values in RAM and data flash:  
Maximum and Minimum Cell Voltages  
Maximum Delta Cell Voltage  
Maximum Charge Current  
Maximum Discharge Current  
Maximum Average Discharge Current  
Maximum Average Discharge Power  
Maximum and Minimum Cell Temperature  
Maximum Delta Cell Temperature  
Maximum and Minimum Internal Sensor Temperature  
Maximum FET Temperature  
Number of Safety Events Occurrences and the Last Cycle of the Occurrence  
Number of Valid Charge Termination and the Last Cycle of the Valid Charge Termination  
Number of Shutdown Events  
Cell Balancing Time for Each Cell  
(This data is updated every 2 hours if a difference is detected.)  
Total FW Runtime and Time Spent in Each Temperature Range  
(This data is updated every 2 hours if a difference is detected.)  
7.3.9 Authentication  
The bq4050 gas gauge supports authentication by the host using SHA-1.  
7.3.10 LED Display  
The bq4050 gas gauge can drive a 3-, 4-, or 5- segment LED display for remaining capacity indication and/or a  
permanent fail (PF) error code indication.  
Copyright © 2016–2017, Texas Instruments Incorporated  
25  
bq4050  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
www.ti.com.cn  
Feature Description (continued)  
7.3.11 Voltage  
The bq4050 gas gauge updates the individual series cell voltages at 0.25-s intervals. The internal ADC of the  
bq4050 device measures the voltage, and scales and calibrates it appropriately. This data is also used to  
calculate the impedance of the cell for the CEDV gas gauging.  
7.3.12 Current  
The bq4050 gas gauge uses the SRP and SRN inputs to measure and calculate the battery charge and  
discharge current using a 1-mΩ to 3-mΩ typ. sense resistor.  
7.3.13 Temperature  
The bq4050 gas gauge has an internal temperature sensor and inputs for four external temperature sensors. All  
five temperature sensor options can be individually enabled and configured for cell or FET temperature usage.  
Two configurable thermistor models are provided to enable monitoring of the cell temperature in addition to the  
FET temperature, which use a different thermistor profile.  
7.3.14 Communications  
The bq4050 gas gauge uses SMBus v1.1 with MASTER mode and packet error checking (PEC) options per the  
SBS specification.  
7.3.14.1 SMBus On and Off State  
The bq4050 gas gauge detects an SMBus off state when SMBC and SMBD are low for two or more seconds.  
Clearing this state requires that either SMBC or SMBD transition high. The communication bus will resume  
activity within 1 ms.  
7.3.14.2 SBS Commands  
See the bq4050 Technical Reference Manual (SLUUAQ3) for further details.  
7.4 Device Functional Modes  
The bq4050 gas gauge supports three power modes to reduce power consumption:  
In NORMAL mode, the bq4050 gauge performs measurements, calculations, protection decisions, and data  
updates in 250-ms intervals. Between these intervals, the bq4050 gauge is in a reduced power stage.  
In SLEEP mode, the bq4050 gauge performs measurements, calculations, protection decisions, and data  
updates in adjustable time intervals. Between these intervals, the bq4050 gauge is in a reduced power stage.  
The bq4050 gauge has a wake function that enables exit from SLEEP mode when current flow or failure is  
detected.  
In SHUTDOWN mode, the bq4050 gauge is completely disabled.  
26  
Copyright © 2016–2017, Texas Instruments Incorporated  
bq4050  
www.ti.com.cn  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
8 Applications and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The bq4050 gas gauge has primary protection support to be used with a 1-series to 4-series Li-Ion/Li Polymer  
battery pack. To implement and design a comprehensive set of parameters for a specific battery pack, users  
need the Battery Management Studio (bqStudio) graphical user-interface tool installed on a PC during  
development. The firmware installed on the bqStudio tool has default values for this product, which are  
summarized in the bq4050 Technical Reference Manual (SLUUAQ3). Using the bqStudio tool, these default  
values can be changed to cater to specific application requirements during development once the system  
parameters, such as fault trigger thresholds for protection, enable/disable of certain features for operation,  
configuration of cells, chemistry that best matches the cell used, and more are known. This data is referred to as  
the "golden image."  
Copyright © 2016–2017, Texas Instruments Incorporated  
27  
bq4050  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
www.ti.com.cn  
8.2 Typical Applications  
4P  
9
EP  
1
1
1
1
4
6
3
5
2
1
1
1
1
1
1
1
1
2
3
4
1
1
1
5
1
1
33  
32  
31  
30  
29  
28  
27  
26  
25  
PWPD  
BAT  
9
VSS  
10  
TS1  
CHG  
PCHG  
NC  
11  
TS2  
12  
TS3  
13  
1
TS4  
DSG  
PACK  
VCC  
1
5
14  
NC  
15  
BTP_INT  
4
1
16  
PRES or SHUTDN  
1
FUSE  
3
2
1
3
2
MM3ZxxVyC  
MM3ZxxVyC  
MM3ZxxVyC  
2
1
1
SMBD  
SMBC  
GND S2IDE  
GND SIDE  
SMBC  
SMBD  
1
1
7
6
1
1
CHGND  
1
1
2
1
1
GND SIDE  
2
GND SIDE  
Figure 21. Application Schematic  
28  
Copyright © 2016–2017, Texas Instruments Incorporated  
bq4050  
www.ti.com.cn  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
Typical Applications (continued)  
8.2.1 Design Requirements  
Table 1 shows the default settings for the main parameters. Use the bqStudio tool to update the settings to meet  
the specific application or battery pack configuration requirements.  
The device should be calibrated before any gauging test. Follow the information in the bqStudio Calibration  
page to calibrate the device, and use the bqStudio Chemistry page to update the match chemistry profile to the  
device.  
Table 1. Design Parameters  
DESIGN PARAMETER  
Cell Configuration  
EXAMPLE  
3s1p (3-series with 1 Parallel)(1)  
Design Capacity  
4400 mAh  
Device Chemistry  
1210 (LiCoO2/graphitized carbon)  
Cell Overvoltage at Standard Temperature  
Cell Undervoltage  
4300 mV  
2500 mV  
Shutdown Voltage  
2300 mV  
Overcurrent in CHARGE Mode  
Overcurrent in DISCHARGE Mode  
Short Circuit in CHARGE Mode  
Short Circuit in DISCHARGE Mode  
Safety Overvoltage  
6000 mA  
–6000 mA  
0.1 V/Rsense across SRP, SRN  
0.1 V/Rsense across SRP, SRN  
4500 mV  
Cell Balancing  
Disabled  
Internal and External Temperature Sensor  
Undertemperature Charging  
Undertemperature Discharging  
BROADCAST Mode  
External Temperature Sensors are used.  
0°C  
0°C  
Disabled  
Disabled  
Battery Trip Point (BTP) with active high interrupt  
(1) When using the device the first time, if the a 1-s or 2-s battery pack is used, then a charger or power supply should be connected to the  
PACK+ terminal to prevent device shutdown. Then update the cell configuration (see the bq4050 Technical Reference Manual  
(SLUUAQ3) for details) before removing the charger connection.  
8.2.2 Detailed Design Procedure  
8.2.2.1 High-Current Path  
The high-current path begins at the PACK+ terminal of the battery pack. As charge current travels through the  
pack, it finds its way through protection FETs, a chemical fuse, the lithium-ion cells and cell connections, and the  
sense resistor, and then returns to the PACK– terminal (see Figure 22). In addition, some components are  
placed across the PACK+ and PACK– terminals to reduce effects from electrostatic discharge.  
8.2.2.1.1 Protection FETs  
Select the N-CH charge and discharge FETs for a given application. Most portable battery applications are a  
good match for the CSD17308Q3. The TI CSD17308Q3 is a 47A, 30-V device with Rds(on) of 8.2 mΩ when the  
gate drive voltage is 8 V.  
If a precharge FET is used, R1 is calculated to limit the precharge current to the desired rate. Be sure to account  
for the power dissipation of the series resistor. The precharge current is limited to (VCHARGER – VBAT)/R1 and  
maximum power dissipation is (Vcharger – Vbat)2/R1.  
The gates of all protection FETs are pulled to the source with a high-value resistor between the gate and source  
to ensure they are turned off if the gate drive is open.  
Copyright © 2016–2017, Texas Instruments Incorporated  
29  
 
 
bq4050  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
www.ti.com.cn  
Capacitors C1 and C2 help protect the FETs during an ESD event. Using two devices ensures normal operation  
if one becomes shorted. To have good ESD protection, the copper trace inductance of the capacitor leads must  
be designed to be as short and wide as possible. Ensure that the voltage ratings of C1 and C2 are adequate to  
hold off the applied voltage if one of the capacitors becomes shorted.  
C1  
0.1 F  
C2  
0.1 F  
R1  
300  
Q1  
FDN358P  
Q4  
2N7002K  
Q3  
Si7114DN  
Q2  
Si7114DN  
R3  
10M  
R2  
10M  
R5  
10M  
R4  
10K  
R7  
5.1K  
R8  
5.1K  
R9  
100  
R10  
5.1K  
Copyright © 2016, Texas Instruments Incorporated  
Figure 22. bq4050 Protection FETs  
8.2.2.1.2 Chemical Fuse  
The chemical fuse (Dexerials, Uchihashi, and so on) is ignited under command from either the bq294700  
secondary voltage protection IC or from the FUSE pin of the gas gauge. Either of these events applies a positive  
voltage to the gate of Q5, shown in Figure 23, which then sinks current from the third terminal of the fuse,  
causing it to ignite and open permanently.  
It is important to carefully review the fuse specifications and match the required ignition current to that available  
from the N-CH FET. Ensure that the proper voltage, current, and Rds(on) ratings are used for this device. The  
fuse control circuit is discussed in detail in FUSE Circuitry.  
30  
Copyright © 2016–2017, Texas Instruments Incorporated  
bq4050  
www.ti.com.cn  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
F1  
DNP  
4P  
2
1
3
Q5  
3
Si1406DH  
C3  
R6  
0.1 F  
51K  
to 2nd Level Protector  
to FUSE Pin  
5.1K  
R17  
R16  
5.1K  
Copyright © 2016, Texas Instruments Incorporated  
Figure 23. FUSE Circuit  
8.2.2.1.3 Lithium-Ion Cell Connections  
The important part to remember about the cell connections is that high current flows through the top and bottom  
connections; therefore, the voltage sense leads at these points must be made with a Kelvin connection to avoid  
any errors due to a drop in the high-current copper trace. The location marked 4P in Figure 24 indicates the  
Kelvin connection of the most positive battery node. The connection marked 1N is equally important. The VC5  
pin (a ground reference for cell voltage measurement), which is in the older generation devices, is not in the  
bq4050 device. Therefore, the single-point connection at 1N to the low-current ground is needed to avoid an  
undesired voltage drop through long traces while the gas gauge is measuring the bottom cell voltage.  
Figure 24. Lithium-Ion Cell Connections  
Copyright © 2016–2017, Texas Instruments Incorporated  
31  
 
 
bq4050  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
www.ti.com.cn  
8.2.2.1.4 Sense Resistor  
As with the cell connections, the quality of the Kelvin connections at the sense resistor is critical. The sense  
resistor must have a temperature coefficient no greater than 50 ppm in order to minimize current measurement  
drift with temperature. Choose the value of the sense resistor to correspond to the available overcurrent and  
short-circuit ranges of the bq4050 gauge. Select the smallest value possible to minimize the negative voltage  
generated on the bq4050 VSS node(s) during a short circuit. This pin has an absolute minimum of –0.3 V. Parallel  
resistors can be used as long as good Kelvin sensing is ensured. The device is designed to support a 1-mΩ to 3-  
mΩ sense resistor.  
The ground scheme of bq4050 gauge is different from the older generation devices. In previous devices, the  
device ground (or low current ground) is connected to the SRN side of the Rsense resistor pad. The bq4050  
gauge, however, it connects the low-current ground on the SRP side of the Rsense resistor pad close to the  
battery 1N terminal (see Lithium-Ion Cell Connections). This is because the bq4050 gauge has one less VC pin  
(a ground reference pin VC5) compared to the previous devices. The pin was removed and was internally  
combined to SRP.  
R19  
0.001  
50 ppm  
Copyright © 2016, Texas Instruments Incorporated  
Figure 25. Sense Resistor  
8.2.2.1.5 ESD Mitigation  
A pair of series 0.1-μF ceramic capacitors is placed across the PACK+ and PACK– terminals to help in the  
mitigation of external electrostatic discharges. The two devices in series ensure continued operation of the pack  
if one of the capacitors becomes shorted.  
Optionally, a tranzorb such as the SMBJ2A can be placed across the terminals to further improve ESD immunity.  
8.2.2.2 Gas Gauge Circuit  
The gas gauge circuit includes the bq4050 gauge and its peripheral components. These components are divided  
into the following groups: Differential Low-Pass Filter, PBI, system present, SMBus Communication, FUSE  
circuit, and LED.  
8.2.2.2.1 Coulomb-Counting Interface  
The bq4050 gauge uses an integrating delta-sigma ADC for current measurements. Add a 100-Ω resistor from  
the sense resistor to the SRP and SRN inputs of the device. Place a 0.1-µF (C18) filter capacitor across the SRP  
and SRN inputs. Optional 0.1-µF filter capacitors (C19 and C20) can be added for additional noise filtering if  
required for a circuit.  
32  
Copyright © 2016–2017, Texas Instruments Incorporated  
bq4050  
www.ti.com.cn  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
C18  
0.1 µF  
C19  
DNP  
R30  
100  
R31  
100  
C20  
DNP  
R19  
0.001  
50 ppm  
Copyright © 2016, Texas Instruments Incorporated  
Figure 26. Differential Filter  
8.2.2.2.2 Power Supply Decoupling and PBI  
The bq4050 gauge has an internal LDO that is internally compensated and does not require an external  
decoupling capacitor.  
The PBI pin is used as a power supply backup input pin providing power during brief transient power outages. A  
standard 2.2-µF ceramic capacitor is connected from the PBI pin to ground as shown in Figure 27.  
24  
23  
22  
21  
20  
19  
18  
17  
1
2
3
4
5
6
7
8
PBI  
PTCEN  
PTC  
VC4  
VC3  
VC2  
VC1  
C13  
LEDCNTL  
3
2.2 μF  
LEDCNTL2  
LEDCNTL1  
SMBC  
SRN  
NC  
SMBD  
DISP  
SRP  
Copyright © 2016, Texas Instruments Incorporated  
Figure 27. Power Supply Decoupling  
8.2.2.2.3 System Present  
The system present signal is used to inform the gas gauge whether the pack is installed into or removed from the  
system. In the host system, this pin is grounded. The PRES pin of the bq4050 gauge is occasionally sampled to  
test for system present. To save power, an internal pullup is provided by the gas gauge during a brief 4-μs  
sampling pulse once per second. A resistor can be used to pull the signal low and the resistance must be 20 kΩ  
or lower to ensure that the test pulse is lower than the VIL limit. The pullup current source is typically 10 µA to  
20 µA.  
Copyright © 2016–2017, Texas Instruments Incorporated  
33  
 
bq4050  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
www.ti.com.cn  
VIL  
<20 K  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 28. System Present Pull-Down Resistor  
Because the system present signal is part of the pack connector interface to the outside world, it must be  
protected from external electrostatic discharge events. An integrated ESD protection on the PRES device pin  
reduces the external protection requirement to just R29 for an 8-kV ESD contact rating. However, if it is possible  
that the system present signal may short to PACK+, then R28 and D4 must be included for high-voltage  
protection.  
34  
Copyright © 2016–2017, Texas Instruments Incorporated  
bq4050  
www.ti.com.cn  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
D5  
D6  
24  
23  
PTCEN  
PTC  
22  
21  
20  
LED3  
LED4  
LEDCNTL3  
LEDCNTL2  
D9  
LEDCNTL1  
SMBC  
LED5  
D7  
D8  
19  
18  
17  
SMBD  
LED1  
LED2  
DISP  
R24  
200  
200  
R25  
R27  
100  
4
3
2
R26  
S2  
100  
SMBD  
SMBC  
VSS  
A
B
A1  
B1  
1
J2  
J3  
R29  
1 k  
R28  
200  
3
2
Sys Pres  
D2  
D3  
D4  
1
2
1
PACK+  
MM3Z5V6C  
MM3Z5V6C  
MM3Z5V6C  
PACKœ  
J4  
Copyright © 2016, Texas Instruments Incorporated  
Figure 29. System Present ESD and Short Protection  
8.2.2.2.4 SMBus Communication  
The SMBus clock and data pins have integrated high-voltage ESD protection circuits; however, adding a Zener  
diode (D2 and D3) and series resistor (R24 and R26) provides more robust ESD performance.  
The SMBus clock and data lines have internal pulldown. When the gas gauge senses that both lines are low  
(such as during removal of the pack), the device performs auto-offset calibration and then goes into SLEEP  
mode to conserve power.  
Copyright © 2016–2017, Texas Instruments Incorporated  
35  
bq4050  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
www.ti.com.cn  
R24  
R26  
200  
200  
R25  
R27  
100  
100  
4
3
2
SMBD  
SMBC  
1
VSS  
J2  
J3  
R28  
200  
R29  
1 k  
3
Sys Pres  
2
D2  
D3  
D4  
1
PACK+  
2
MM3Z5V6C  
1
MM3Z5V6C  
MM3Z5V6C  
PACKœ  
J4  
Copyright © 2016, Texas Instruments Incorporated  
Figure 30. ESD Protection for SMB Communication  
8.2.2.2.5 FUSE Circuitry  
The FUSE pin of the bq4050 gauge is designed to ignite the chemical fuse if one of the various safety criteria is  
violated. The FUSE pin also monitors the state of the secondary-voltage protection IC. Q5 ignites the chemical  
fuse when its gate is high. The 7-V output of the bq294700 is divided by R16 and R6, which provides adequate  
gate drive for Q5 while guarding against excessive back current into the bq294700 if the FUSE signal is high.  
Using C3 is generally a good practice, especially for RFI immunity. C3 may be removed, if desired, because the  
chemical fuse is a comparatively slow device and is not affected by any submicrosecond glitches that come from  
the FUSE output during the cell connection process.  
F1  
DNP  
4P  
2
1
3
Q5  
3
Si1406DH  
C3  
R6  
0.1 F  
51K  
to 2nd Level Protector  
to FUSE Pin  
R17  
5.1K  
R16  
5.1K  
Copyright © 2016, Texas Instruments Incorporated  
Figure 31. FUSE Circuit  
When the bq4050 gauge is commanded to ignite the chemical fuse, the FUSE pin activates to give a typical 8-V  
output. The new design makes it possible to use a higher Vgs FET for Q5. This improves the robustness of the  
system, as well as widens the choices for Q5.  
36  
Copyright © 2016–2017, Texas Instruments Incorporated  
bq4050  
www.ti.com.cn  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
8.2.2.3 Secondary-Current Protection  
The bq4050 gauge provides secondary overcurrent and short-circuit protection, cell balancing, cell voltage  
multiplexing, and voltage translation. The following discussion examines cell and battery inputs, pack and FET  
control, temperature output, and cell balancing.  
8.2.2.3.1 Cell and Battery Inputs  
Each cell input is conditioned with a simple RC filter, which provides ESD protection during cell connect and acts  
to filter unwanted voltage transients. The resistor value allows some trade-off for cell balancing versus safety  
protection.  
The integrated cell balancing FETs allow the AFE to bypass cell current around a given cell or numerous cells,  
effectively balancing the entire battery stack. External series resistors placed between the cell connections and  
the VCx I/O pins set the balancing current magnitude. The internal FETs provide a 200-Ω resistance (2 V < VDS  
< 4 V). Series input resistors between 100 Ω and 1 kΩ are recommended for effective cell balancing.  
The BAT input uses a diode (D1) to isolate and decouple it from the cells in the event of a transient dip in voltage  
caused by a short-circuit event.  
Also, as described in High-Current Path, the top and bottom nodes of the cells must be sensed at the battery  
connections with a Kelvin connection to prevent voltage sensing errors caused by a drop in the high-current PCB  
copper.  
D1 BAT54HT1  
1
PBI  
2
VC4  
3
VC3  
C14  
4
VC2  
C15  
0.1 F  
5
0.1 F  
VC1  
SRN  
NC  
C16  
C13  
6
7
8
C17  
0.1 F  
2.2 F  
J5  
J1  
R20 100  
R21  
1
SRP  
0.1 F  
4P  
3P  
100  
R23  
2
3
1
2
R22  
100  
2P  
1P  
1N  
100  
Copyright © 2016, Texas Instruments Incorporated  
Figure 32. Cell and BAT Inputs  
8.2.2.3.2 External Cell Balancing  
Internal cell balancing can only support up to 10 mA. External cell balancing is provided as another option for  
faster cell balancing. For details, refer to the application note, Fast Cell Balancing Using External MOSFET  
(SLUA420).  
Copyright © 2016–2017, Texas Instruments Incorporated  
37  
bq4050  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
www.ti.com.cn  
8.2.2.3.3 PACK and FET Control  
The PACK and VCC inputs provide power to the bq4050 gauge from the charger. The PACK input also provides a  
method to measure and detect the presence of a charger. The PACK input uses a 100-Ω resistor; whereas, the  
VCC input uses a diode to guard against input transients and prevents misoperation of the date driver during  
short-circuit events.  
C1 0.1 μF C2 0.1 μF  
R1  
300  
Q1  
FDN358P  
Q4  
2N7002K  
Q3  
R2  
10M  
Q2  
Si7114 DN  
R3  
10M  
Si7114DN  
R5  
10M  
R4  
10K  
R7  
5.1K  
R8  
R10  
5.1K  
R9  
R12  
10K  
5.1K  
100  
Copyright © 2016, Texas Instruments Incorporated  
Figure 33. bq4050 PACK and FET Control  
The N-CH charge and discharge FETs are controlled with 5.1-kΩ series gate resistors, which provide a switching  
time constant of a few microseconds. The 10-MΩ resistors ensure that the FETs are off in the event of an open  
connection to the FET drivers. Q4 is provided to protect the discharge FET (Q3) in the event of a reverse-  
connected charger. Without Q4, Q3 can be driven into its linear region and suffer severe damage if the PACK+  
input becomes slightly negative.  
Q4 turns on in that case to protect Q3 by shorting its gate to source. To use the simple ground gate circuit, the  
FET must have a low gate turn-on threshold. If it is desired to use a more standard device, such as the 2N7002  
as the reference schematic, the gate should be biased up to 3.3 V with a high-value resistor. The bq4050 device  
has the capability to provide a current-limited charging path typically used for low battery voltage or low  
temperature charging. The bq4050 device uses an external P-channel, precharge FET controlled by PCHG.  
8.2.2.3.4 Temperature Output  
For the bq4050 device, TS1, TS2, TS3, and TS4 provide thermistor drive-under program control. Each pin can  
be enabled with an integrated 18-k(typical) linearization pullup resistor to support the use of a 10-kat 25°C  
(103) NTC external thermistor, such as a Mitsubishi BN35-3H103. The reference design includes four 10-kΩ  
thermistors: RT1, RT2, RT3, and RT4. The bq4050 device supports up to four external thermistors. Connect  
unused thermistor pins to VSS  
.
38  
Copyright © 2016–2017, Texas Instruments Incorporated  
bq4050  
www.ti.com.cn  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
RT2  
10 K  
RT3  
10 K  
RT4  
10 K  
RT5  
10 K  
Copyright © 2016, Texas Instruments Incorporated  
Figure 34. Thermistor Drive  
8.2.2.3.5 LEDs  
Three LED control outputs provide constant current sinks for the driving external LEDs. These outputs are  
configured to provide voltage and control for up to 5 LEDs. No external bias voltage is required. Unused  
LEDCNTL pins can remain open or they can be connected to VSS. The DISP pin should be connected to VSS, if  
the LED feature is not used.  
D5  
D6  
24  
23  
PTCEN  
PTC  
22  
21  
LED3  
LED4  
LEDCNTL3  
LEDCNTL2  
D9  
20  
LEDCNTL1  
LED5  
D7  
D8  
19  
18  
17  
SMBC  
SMBD  
LED1  
LED2  
DISP  
Copyright © 2016, Texas Instruments Incorporated  
Figure 35. LEDs  
8.2.2.3.6 Safety PTC Thermistor  
The bq4050 device provides support for a safety PTC thermistor. The PTC thermistor is connected between PTC  
and PTCEN, and PTCEN is connected to BAT. It can be placed close to the CHG/DSG FETs to monitor the  
temperature. A PTC fault is one of the permanent failure modes. It can only be cleared by a POR.  
To disable, connect PTC and PTCEN to VSS  
.
Copyright © 2016–2017, Texas Instruments Incorporated  
39  
bq4050  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
www.ti.com.cn  
C12  
0.1 F  
24  
RT1  
10K  
PTCEN  
23  
PTC  
BAT  
22  
LEDCNTL3  
21  
LEDCNTL2  
20  
LEDCNTL1  
19  
SMBC  
18  
SMBD  
17  
DISP  
Copyright © 2016, Texas Instruments Incorporated  
Figure 36. PTC Thermistor  
40  
Copyright © 2016–2017, Texas Instruments Incorporated  
bq4050  
www.ti.com.cn  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
8.2.3 Application Curves  
œ24.6  
œ24.8  
œ25.0  
œ25.2  
œ25.4  
œ25.6  
œ25.8  
87.4  
87.2  
87.0  
86.8  
86.6  
86.4  
86.2  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C009  
C010  
Threshold setting is –25 mV.  
Threshold setting is 88.85 mV.  
Figure 37. Overcurrent Discharge Protection Threshold Vs.  
Temperature  
Figure 38. Short Circuit Charge Protection Threshold Vs.  
Temperature  
œ86.0  
œ86.2  
œ86.4  
œ86.6  
œ86.8  
œ87.0  
œ87.2  
œ172.9  
œ173.0  
œ173.1  
œ173.2  
œ173.3  
œ173.4  
œ173.5  
œ173.6  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C012  
C011  
Threshold setting is –177.7 mV.  
Threshold setting is –88.85 mV.  
Figure 40. Short Circuit Discharge 2 Protection Threshold  
Vs. Temperature  
Figure 39. Short Circuit Discharge 1 Protection Threshold  
Vs. Temperature  
11.00  
10.95  
10.90  
10.85  
10.80  
10.75  
10.70  
452  
450  
448  
446  
444  
442  
440  
438  
436  
434  
432  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C013  
C014  
Threshold setting is 11 ms.  
Threshold setting is 465 µs.  
Figure 41. Overcurrent Delay Time Vs. Temperature  
Figure 42. Short Circuit Charge Current Delay Time Vs.  
Temperature  
Copyright © 2016–2017, Texas Instruments Incorporated  
41  
bq4050  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
www.ti.com.cn  
9 Power Supply Recommendations  
The device manages its supply voltage dynamically according to the operation conditions. Normally, the BAT  
input is the primary power source to the device. The BAT pin should be connected to the positive termination of  
the battery stack. The input voltage for the BAT pin ranges from 2.2 V to 26 V.  
The VCC pin is the secondary power input, which activates when the BAT voltage falls below minimum VCC. This  
allows the device to source power from a charger (if present) connected to the PACK pin. The VCC pin should  
be connected to the common drain of the CHG and DSG FETs. The charger input should be connected to the  
PACK pin.  
10 Layout  
10.1 Layout Guidelines  
A battery fuel gauge circuit board is a challenging environment due to the fundamental incompatibility of high-  
current traces and ultra-low current semiconductor devices. The best way to protect against unwanted trace-to-  
trace coupling is with a component placement, such as that shown in Figure 43, where the high-current section is  
on the opposite side of the board from the electronic devices. Clearly, this is not possible in many situations due  
to mechanical constraints. Still, every attempt should be made to route high-current traces away from signal  
traces, which enter the bq4050 gauge directly. IC references and registers can be disturbed and in rare cases  
damaged due to magnetic and capacitive coupling from the high-current path.  
NOTE  
During surge current and ESD events, the high-current traces appear inductive and can  
couple unwanted noise into sensitive nodes of the gas gauge electronics, as illustrated in  
Figure 44.  
BAT +  
C2  
C3  
Q1  
Q2  
Low Level Circuits  
F1  
C1  
BAT –  
J1  
R1  
Copyright © 2016, Texas Instruments Incorporated  
Figure 43. Separating High- and Low-Current Sections Provides an Advantage in Noise Immunity  
42  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
bq4050  
www.ti.com.cn  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
Layout Guidelines (continued)  
PACK+  
COMM  
BMU  
PACK–  
Copyright © 2016, Texas Instruments Incorporated  
Figure 44. Avoid Close Spacing Between High-Current and Low-Level Signal Lines  
Kelvin voltage sensing is important to accurately measure current and top and bottom cell voltages. Place all  
filter components as close as possible to the device. Route the traces from the sense resistor in parallel to the  
filter circuit. Adding a ground plane around the filter network can add additional noise immunity. Figure 45 and  
Figure 46 demonstrate correct kelvin current sensing.  
Current Direction  
R
SNS  
Current Sensing Direction  
To SRP – SRN pin or HSRP – HSRN pin  
Figure 45. Sensing Resistor PCB Layout  
Sense Resistor  
Ground Shield  
Filter Circuit  
Figure 46. Sense Resistor, Ground Shield, and Filter Circuit Layout  
Copyright © 2016–2017, Texas Instruments Incorporated  
43  
 
 
bq4050  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
www.ti.com.cn  
Layout Guidelines (continued)  
10.1.1 Protector FET Bypass and Pack Terminal Bypass Capacitors  
Use wide copper traces to lower the inductance of the bypass capacitor circuit. In Figure 47, an example layout  
demonstrates this technique.  
BAT+  
C2  
C3  
C2  
C3  
Q1  
Q2  
Pack+  
F1  
Low Level Circuits  
F1  
BATœ  
C1  
Packœ  
C1  
J1  
R1  
Copyright © 2016, Texas Instruments Incorporated  
Figure 47. Use Wide Copper Traces to Lower the Inductance of Bypass Capacitors C1, C2, and C3  
10.1.2 ESD Spark Gap  
Protect the SMBus clock, data, and other communication lines from ESD with a spark gap at the connector. The  
pattern in Figure 48 is recommended, with 0.2-mm spacing between the points.  
Figure 48. Recommended Spark-Gap Pattern Helps Protect Communication Lines from ESD  
10.2 Layout Example  
THERMISTORS  
CHARGE  
AND  
DISCHARGE  
2ND LEVEL  
PATH  
PROTECTOR  
LEDS  
CURRENT  
FILTER  
SENSE  
RESISTOR  
Figure 49. Top Layer  
44  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
bq4050  
www.ti.com.cn  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
Layout Example (continued)  
Figure 50. Internal Layer 1  
Figure 51. Internal Layer 2  
CHARGE  
AND  
DISCHARGE  
PATH  
FILTER  
COMPONENTS  
Figure 52. Bottom Layer  
版权 © 2016–2017, Texas Instruments Incorporated  
45  
bq4050  
ZHCSEW9B MARCH 2016REVISED OCTOBER 2017  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
如需相关文档,请参阅bq4050 技术参考手册》(SLUUAQ3)。  
11.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.3 商标  
E2E is a trademark of Texas Instruments.  
Windows is a registered trademark of Microsoft.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。  
46  
版权 © 2016–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ4050RSMR  
BQ4050RSMT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RSM  
RSM  
32  
32  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
BQ4050  
BQ4050  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ4050RSMR  
BQ4050RSMT  
VQFN  
VQFN  
RSM  
RSM  
32  
32  
3000  
250  
330.0  
180.0  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ4050RSMR  
BQ4050RSMT  
VQFN  
VQFN  
RSM  
RSM  
32  
32  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RSM 32  
4 x 4, 0.4 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224982/A  
www.ti.com  
PACKAGE OUTLINE  
RSM0032A  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
B
4.1  
3.9  
A
0.5  
0.3  
PIN 1 INDEX AREA  
4.1  
3.9  
0.25  
0.15  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 2.8  
1.4 0.05  
(0.2) TYP  
4X (0.45)  
28X 0.4  
9
16  
8
17  
EXPOSED  
THERMAL PAD  
2X  
SYMM  
33  
2.8  
24  
0.25  
32X  
1
SEE TERMINAL  
DETAIL  
0.15  
0.1  
C A B  
25  
32  
PIN 1 ID  
(OPTIONAL)  
0.05  
SYMM  
0.5  
0.3  
32X  
4219107/A 11/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RSM0032A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.4)  
SYMM  
32  
25  
32X (0.6)  
1
32X (0.2)  
24  
SYMM  
33  
(3.8)  
28X (0.4)  
(
0.2) VIA  
17  
8
(R0.05)  
TYP  
9
16  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219107/A 11/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RSM0032A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.3)  
(R0.05) TYP  
25  
32  
32X (0.6)  
32X (0.2)  
1
24  
SYMM  
33  
(3.8)  
28X (0.4)  
METAL  
TYP  
17  
8
16  
9
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 33:  
86% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219107/A 11/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

BQ4050RSMR

1 至 4 节串联 CEDV 电池电量监测计 | RSM | 32 | -40 to 85
TI

BQ4050RSMT

1 至 4 节串联 CEDV 电池电量监测计 | RSM | 32 | -40 to 85
TI

BQ40Z50

1-Series, 2-Series, 3-Series, and 4-Series Li-Ion Battery Pack Manager
TI

BQ40Z50-R1

支持涡轮模式 1.0 的 1 至 4 节串联锂离子电池组管理器
TI

BQ40Z50-R2

支持涡轮模式 2.0 的 1 至 4 节串联锂离子电池组管理器
TI

BQ40Z50RSMR

1-Series, 2-Series, 3-Series, and 4-Series Li-Ion Battery Pack Manager
TI

BQ40Z50RSMR-R1

支持涡轮模式 1.0 的 1 至 4 节串联锂离子电池组管理器 | RSM | 32 | -40 to 85
TI

BQ40Z50RSMR-R2

支持涡轮模式 2.0 的 1 至 4 节串联锂离子电池组管理器 | RSM | 32 | -40 to 85
TI

BQ40Z50RSMT

1-Series, 2-Series, 3-Series, and 4-Series Li-Ion Battery Pack Manager
TI

BQ40Z50RSMT-R1

支持涡轮模式 1.0 的 1 至 4 节串联锂离子电池组管理器 | RSM | 32 | -40 to 85
TI

BQ40Z50RSMT-R2

支持涡轮模式 2.0 的 1 至 4 节串联锂离子电池组管理器 | RSM | 32 | -40 to 85
TI

BQ40Z60

完整的多节电池管理器 | 电池电量监测计
TI