BQ40Z50-R1 [TI]

支持涡轮模式 1.0 的 1 至 4 节串联锂离子电池组管理器;
BQ40Z50-R1
型号: BQ40Z50-R1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

支持涡轮模式 1.0 的 1 至 4 节串联锂离子电池组管理器

电池
文件: 总55页 (文件大小:3968K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
bq40z50-R1  
ZHCSDZ9 JULY 2015  
bq40z50-R1 1 节、2 节、3 节和 4 节串联锂离子电池组管理器  
1 特性  
3 说明  
1
全集成 1 节、2 节、3 节和 4 节串联锂离子或锂聚  
合物电池组管理器及保护  
bq40z50-R1 器件采用已获专利的 Impedance Track™  
技术,是一款基于电池组的单芯片全集成解决方案,针  
1 节、2 节、3 节和 4 节串联锂离子或锂聚合物电  
池组提供电量监测、保护及认证等一些列丰富的功能。  
下一代已获专利的 Impedance Track™ 技术可准确  
测量锂离子和锂聚合物电池中的可用电量  
高侧 N 通道保护场效应晶体管 (FET) 驱动  
充电或者静止状态时集成的电池均衡  
可编程保护特性的完全阵列  
bq40z50-R1 器件利用其集成的高性能模拟外设,测量  
锂离子或锂聚合物电池的可用容量、电压、电流、温度  
和其他关键参数,保留准确的数据记录,并通过  
SMBus v1.1 兼容接口将这些信息报告给系统主机控制  
器。  
电压  
电流  
温度  
器件信息(1)  
充电终止时间  
CHG/DSG FET  
模拟前端 (AFE)  
器件型号  
bq40z50-R1  
封装  
VQFN (32)  
封装尺寸(标称值)  
4.00mm x 4.00mm  
精密的充电算法  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
日本电子与信息技术工业协会 (JEITA)  
简化电路原理图  
增强型充电  
自适应充电  
电池均衡  
+
PACK  
支持 TURBO 升压模式  
支持电池跳变点 (BTP)  
LEDCNTLA  
BAT  
VC4  
LEDCNTLB  
诊断寿命数据监视器和黑匣子记录器  
发光二极管 (LED) 显示  
LEDCNTLC  
VC3  
VC2  
OUT  
VC3  
VC2  
VC1  
Cell 3  
Cell 2  
DISP  
支持 2 线制系统管理总线 (SMBus) v1.1 接口  
安全散列算法 (SHA-1) 认证  
SMBD  
VDD  
GND  
SMBD  
SMBC  
VC1  
PBI  
SMBC  
PRES  
VSS SRP SRN TS1 TS2 TS3 TS4 BTP PRES  
紧凑封装:32 导线四方扁平无引线 (QFN) (RSM)  
Cell 1  
BTP  
2 应用  
PACK  
笔记本/上网本  
医疗与测试设备  
便携式仪表  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLUSCB3  
 
 
 
bq40z50-R1  
ZHCSDZ9 JULY 2015  
www.ti.com.cn  
目录  
7.24 Electrical Characteristics: Internal 1.8-V LDO ..... 14  
1
2
3
4
5
6
7
特性.......................................................................... 1  
7.25 Electrical Characteristics: High-Frequency  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明(续............................................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 7  
7.1 Absolute Maximum Ratings ...................................... 7  
7.2 ESD Ratings.............................................................. 7  
7.3 Recommended Operating Conditions....................... 8  
7.4 Thermal Information.................................................. 8  
7.5 Electrical Characteristics: Supply Current................. 8  
7.6 Electrical Characteristics: Power Supply Control...... 8  
7.7 Electrical Characteristics: AFE Power-On Reset...... 9  
Oscillator .................................................................. 14  
7.26 Electrical Characteristics: Low-Frequency  
Oscillator .................................................................. 14  
7.27 Electrical Characteristics: Voltage Reference 1.... 15  
7.28 Electrical Characteristics: Voltage Reference 2.... 15  
7.29 Electrical Characteristics: Instruction Flash .......... 15  
7.30 Electrical Characteristics: Data Flash ................... 15  
7.31 Electrical Characteristics: OCD, SCC, SCD1, SCD2  
Current Protection Thresholds................................. 16  
7.32 Timing Requirements: OCD, SCC, SCD1, SCD2  
Current Protection Timing........................................ 16  
7.33 Timing Requirements: SMBus .............................. 17  
7.34 Timing Requirements: SMBus XL......................... 17  
7.35 Typical Characteristics ......................................... 19  
Detailed Description ............................................ 22  
8.1 Overview ................................................................. 22  
8.2 Functional Block Diagram ...................................... 22  
8.3 Feature Description................................................. 23  
8.4 Device Functional Modes........................................ 26  
Applications and Implementation ...................... 27  
9.1 Application Information .......................................... 27  
9.2 Typical Applications ................................................ 28  
7.8 Electrical Characteristics: AFE Watchdog Reset and  
Wake Timer................................................................ 9  
8
9
7.9 Electrical Characteristics: Current Wake  
Comparator ................................................................ 9  
7.10 Electrical Characteristics: VC1, VC2, VC3, VC4,  
BAT, PACK .............................................................. 10  
7.11 Electrical Characteristics: SMBD, SMBC.............. 10  
7.12 Electrical Characteristics: PRES, BTP_INT, DISP  
................................................................................. 10  
7.13 Electrical Characteristics: LEDCNTLA, LEDCNTLB,  
LEDCNTLC ............................................................. 11  
10 Power Supply Recommendations ..................... 42  
11 Layout................................................................... 43  
11.1 Layout Guidelines ................................................. 43  
11.2 Layout Example .................................................... 45  
12 器件和文档支持 ..................................................... 47  
12.1 文档支持................................................................ 47  
12.2 社区资源................................................................ 47  
12.3 ....................................................................... 47  
12.4 静电放电警告......................................................... 47  
12.5 Glossary................................................................ 47  
13 机械、封装和可订购信息....................................... 47  
7.14 Electrical Characteristics: Coulomb Counter ........ 11  
7.15 Electrical Characteristics: CC Digital Filter ........... 11  
7.16 Electrical Characteristics: ADC ............................. 11  
7.17 Electrical Characteristics: ADC Digital Filter......... 12  
7.18 Electrical Characteristics: CHG, DSG FET Drive . 12  
7.19 Electrical Characteristics: PCHG FET Drive......... 13  
7.20 Electrical Characteristics: FUSE Drive.................. 13  
7.21 Electrical Characteristics: Internal Temperature  
Sensor...................................................................... 13  
7.22 Electrical Characteristics: TS1, TS2, TS3, TS4 .... 13  
7.23 Electrical Characteristics: PTC, PTCEN ............... 14  
4 修订历史记录  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
日期  
修订版本  
注释  
2015 7 月  
*
最初发布版本  
2
版权 © 2015, Texas Instruments Incorporated  
 
bq40z50-R1  
www.ti.com.cn  
ZHCSDZ9 JULY 2015  
5 说明(续)  
bq40z50-R1 器件为主机系统提供最大的功率和电流,从而支持 Turbo 升压模式。 该器件还支持电池跳变点,从而  
在预设的充电阈值状态向主机系统发送 BTP 中断信号。  
bq40z50-R1 提供了基于软件的第 1 级和第 2 级安全保护,可防止出现过压、欠压、过流、短路、过载和过热情况  
以及其他与电池组和电池相关的故障。  
具有针对认证码密钥的安全内存的 SHA-1 认证能够识别真正的电池组。  
这个紧凑的 32 导线 QFN 封装在尽可能地提供电池电量测量应用的功能性和安全性的同时,最大限度地降低解决  
方案成本和智能电池的尺寸。  
6 Pin Configuration and Functions  
RSM Package  
32-Pin VQFN with Exposed Thermal Pad  
Top View  
1
PBI  
VC4  
VC3  
VC2  
VC1  
SRN  
NC  
PTCEN  
2
3
PTC  
LEDCNTLC  
LEDCNTLB  
LEDCNTLA  
SMBC  
4
5
6
7
8
21  
20  
19  
18  
17  
SMBD  
¯ ¯ ¯ ¯  
SRP  
DISP  
Pin Functions  
PIN NAME  
NUMBER  
TYPE(1)  
DESCRIPTION  
PBI  
1
P
Power supply backup input pin  
Sense voltage input pin for most positive cell, and balance current input for most positive  
cell  
VC4  
VC3  
VC2  
VC1  
2
3
4
5
IA  
IA  
IA  
IA  
Sense voltage input pin for second most positive cell, balance current input for second  
most positive cell, and return balance current for most positive cell  
Sense voltage input pin for third most positive cell, balance current input for third most  
positive cell, and return balance current for second most positive cell  
Sense voltage input pin for least positive cell, balance current input for least positive cell,  
and return balance current for third most positive cell  
Analog input pin connected to the internal coulomb counter peripheral for integrating a  
small voltage between SRP and SRN where SRP is the top of the sense resistor.  
SRN  
NC  
6
7
8
I
I
Not internally connected. Connect to VSS.  
Analog input pin connected to the internal coulomb counter peripheral for integrating a  
small voltage between SRP and SRN where SRP is the top of the sense resistor.  
SRP  
VSS  
TS1  
9
P
IA  
IA  
IA  
IA  
O
Device ground  
10  
11  
12  
13  
14  
15  
Temperature sensor 1 thermistor input pin  
Temperature sensor 2 thermistor input pin  
Temperature sensor 3 thermistor input pin  
Temperature sensor 4 thermistor input pin  
Not internally connected  
TS2  
TS3  
TS4  
NC  
BTP_INT  
Battery Trip Point (BTP) interrupt output  
(1) P = Power Connection, O = Digital Output, AI = Analog Input, I = Digital Input, I/OD = Digital Input/Output  
Copyright © 2015, Texas Instruments Incorporated  
3
bq40z50-R1  
ZHCSDZ9 JULY 2015  
www.ti.com.cn  
Pin Functions (continued)  
PIN NAME  
NUMBER  
TYPE(1)  
DESCRIPTION  
Host system present input for removable battery pack or emergency system shutdown  
input for embedded pack  
PRES or SHUTDN  
16  
I
DISP  
SMBD  
SMBC  
17  
18  
19  
Display control for LEDs  
SMBus data pin  
I/OD  
I/OD  
SMBus clock pin  
LED display segment that drives the external LEDs depending on the firmware  
configuration  
LEDCNTLA  
LEDCNTLB  
20  
21  
LED display segment that drives the external LEDs depending on the firmware  
configuration  
LED display segment that drives the external LEDs depending on the firmware  
configuration  
LEDCNTLC  
PTC  
22  
23  
24  
IA  
IA  
Safety PTC thermistor input pin. To disable, connect both PTC and PTCEN to VSS.  
Safety PTC thermistor enable input pin. Connect to BAT. To disable, connect both PTC  
and PTCEN to VSS.  
PTCEN  
FUSE  
VCC  
PACK  
DSG  
NC  
25  
26  
27  
28  
29  
30  
31  
32  
O
P
Fuse drive output pin  
Secondary power supply input  
Pack sense input pin  
IA  
O
O
O
P
NMOS Discharge FET drive output pin  
Not internally connected  
PCHG  
CHG  
BAT  
PMOS Precharge FET drive output pin  
NMOS Charge FET drive output pin  
Primary power supply input pin  
4
Copyright © 2015, Texas Instruments Incorporated  
bq40z50-R1  
www.ti.com.cn  
ZHCSDZ9 JULY 2015  
VC4  
CDEN4  
CDEN3  
BAT  
3.1 V  
VCC  
PACK  
VC3  
+
BATDET  
ENVCC  
PACK  
Detector  
VC2  
ADC Mux  
ADC  
PACKDET  
PBI  
SHUTDOWN  
Shutdown  
Latch  
CDEN2  
Reference  
System  
1.8 V  
Domain  
SHOUT  
VC1  
ENBAT  
BAT  
Control  
CDEN1  
Power Supply Control  
Cell Balancing  
VCC  
CHGEN  
BAT  
2 kΩ  
CHG  
CHG  
Pump  
8 kΩ  
PCHG  
2 kΩ  
CHGOFF  
PCHGEN  
Pre-Charge Drive  
PACK  
BAT  
DSGEN  
ZVCD  
BAT  
2 kΩ  
DSG  
DSG  
CHGEN  
Pump  
BAT  
CHG  
Pump  
VCC  
DSGOFF  
ZVCHGEN  
CHG, DSG Drive  
Zero-Volt Charge  
Figure 1. Pin Equivalent Diagram 1  
Copyright © 2015, Texas Instruments Incorporated  
5
bq40z50-R1  
ZHCSDZ9 JULY 2015  
www.ti.com.cn  
1.8 V  
ADTHx  
BAT  
FUSEWKPUP  
18 kΩ  
2 kΩ  
ADC Mux  
ADC  
150 nA  
TS1,2,3,4  
FUSEEN  
2 kΩ  
FUSE  
1.8 V  
1.8 V  
100 kΩ  
FUSEDIG  
RCWKPUP  
RCPUP  
FUSE Drive  
1 kΩ  
RCIN  
RCOUT  
100 kΩ  
SMBCIN  
SMBC  
Thermistor Inputs  
SMBCOUT  
SMBCEN  
1 MΩ  
PBI  
100 kΩ  
SMBDIN  
SMBD  
RHOEN  
SMBDOUT  
10 kΩ  
SMBDEN  
1 MΩ  
PRES  
SMBus Interface  
RHOUT  
100 kΩ  
RHIN  
High-Voltage GPIO  
PTCEN  
BAT  
30 kΩ  
PTCDIG  
PTC  
Comparator  
PTC  
Counter  
PTC  
PTC  
Latch  
RLOEN  
290 nA  
10 kΩ  
LED1, 2, 3  
22.5 mA  
RLOUT  
100 kΩ  
RLIN  
PTC Detection  
LED Drive  
Figure 2. Pin Equivalent Diagram 2  
6
Copyright © 2015, Texas Instruments Incorporated  
bq40z50-R1  
www.ti.com.cn  
ZHCSDZ9 JULY 2015  
10 Ω  
VC4  
CHANx  
Φ
2
3.8 kΩ  
1.9 MΩ  
0.1 MΩ  
SRP  
SRN  
Φ
1
ADC Mux  
ADC  
Comparator  
Φ
2
1
Array  
3.8 kΩ  
Φ
Φ
2
10 Ω  
100 Ω  
PACK  
Φ
1
Coulomb  
Counter  
Φ
2
1
CHANx  
100 Ω  
Φ
1.9 MΩ  
0.1 MΩ  
ADC Mux  
ADC  
OCD, SCC, SCD Comparators and Coulomb Counter  
VC4 and PACK Dividers  
Figure 3. Pin Equivalent Diagram 3  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over-operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Supply voltage range,  
BAT, VCC, PBI  
VCC  
–0.3  
30  
V
PACK, SMBC, SMBD, PRES or SHUTDN, BTP_INT, DISP  
TS1, TS2, TS3, TS4  
–0.3  
–0.3  
–0.3  
–0.3  
30  
V
V
V
V
VREG + 0.3  
VBAT + 0.3  
0.3  
PTC, PTCEN, LEDCNTLA, LEDCNTLB, LEDCNTLC  
SRP, SRN  
VC3 + 8.5, or  
VSS + 30  
VC4  
VC3 – 0.3  
VC2 – 0.3  
VC1 – 0.3  
VSS – 0.3  
V
V
V
V
Input voltage range,  
VIN  
VC2 + 8.5, or  
VSS + 30  
VC3  
VC1 + 8.5, or  
VSS + 30  
VC2  
VC1  
VSS + 8.5, or  
VSS + 30  
CHG, DSG  
–0.3  
–0.3  
32  
30  
Output voltage range,  
VO  
PCHG, FUSE  
V
Maximum VSS current, ISS  
50  
mA  
°C  
°C  
Storage temperature, TSTG  
–65  
150  
300  
Lead temperature (soldering, 10 s), TSOLDER  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
Electrostatic  
discharge  
V(ESD)  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2015, Texas Instruments Incorporated  
7
bq40z50-R1  
ZHCSDZ9 JULY 2015  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
MIN  
2.2  
NOM  
MAX  
26  
UNIT  
VCC  
Supply voltage  
BAT, VCC, PBI  
V
V
V
VSHUTDOWN–  
Shutdown voltage  
VPACK < VSHUTDOWN–  
VPACK > VSHUTDOWN– + VHYS  
1.8  
2.0  
2.2  
VSHUTDOWN+ Start-up voltage  
2.05  
2.25  
2.45  
Shutdown voltage  
hysteresis  
VHYS  
VSHUTDOWN+ – VSHUTDOWN–  
250  
mV  
PACK, SMBC, SMBD, PRES, BTP_IN, DISP  
26  
VREG  
TS1, TS2, TS3, TS4  
PTC, PTCEN, LEDCNTLA, LEDCNTLB, LEDCNTLC  
VBAT  
SRP, SRN  
VC4  
–0.2  
VVC3  
VVC2  
VVC1  
VVSS  
0.2  
VIN  
Input voltage range  
V
VVC3 + 5  
VVC2 + 5  
VVC1 + 5  
VVSS + 5  
VC3  
VC2  
VC1  
Output voltage  
range  
VO  
CHG, DSG, PCHG, FUSE  
26  
V
External PBI  
capacitor  
CPBI  
TOPR  
2.2  
µF  
°C  
Operating  
temperature  
–40  
85  
7.4 Thermal Information  
RSM (QFN)  
32 PINS  
47.4  
THERMAL METRIC(1)  
UNIT  
RθJA, High K  
RθJC(top)  
RθJB  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
40.3  
Junction-to-board thermal resistance  
14.7  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
0.8  
ψJB  
14.4  
RθJC(bottom)  
3.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
7.5 Electrical Characteristics: Supply Current  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 20 V (unless otherwise noted)  
PARAMETER  
NORMAL mode  
TEST CONDITIONS  
CHG on. DSG on, no Flash write  
MIN  
TYP  
336  
75  
MAX  
UNIT  
INORMAL  
ISLEEP  
µA  
CHG off, DSG on, no SBS communication  
CHG off, DSG off, no SBS communication  
SLEEP mode  
µA  
µA  
52  
ISHUTDOWN  
SHUTDOWN mode  
1.6  
7.6 Electrical Characteristics: Power Supply Control  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
BAT to VCC  
VSWITCHOVER–  
switchover  
voltage  
VBAT < VSWITCHOVER–  
1.95  
2.1  
2.2  
V
8
Copyright © 2015, Texas Instruments Incorporated  
bq40z50-R1  
www.ti.com.cn  
ZHCSDZ9 JULY 2015  
Electrical Characteristics: Power Supply Control (continued)  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VCC to BAT  
VSWITCHOVER+  
switchover  
voltage  
VBAT > VSWITCHOVER– + VHYS  
2.9  
3.1  
3.25  
V
Switchover  
voltage hysteresis  
VHYS  
VSWITCHOVER+ – VSWITCHOVER–  
1000  
mV  
µA  
kΩ  
BAT pin, BAT = 0 V, VCC = 25 V, PACK = 25 V  
PACK pin, BAT = 25 V, VCC = 0 V, PACK = 0 V  
1
1
Input Leakage  
current  
ILKG  
BAT and PACK terminals, BAT = 0 V, VCC = 0 V, PACK  
= 0 V, PBI = 25 V  
1
Internal pulldown  
resistance  
RPD  
PACK  
30  
40  
50  
7.7 Electrical Characteristics: AFE Power-On Reset  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Negative-going  
voltage input  
VREGIT–  
VHYS  
VREG  
1.51  
1.55  
1.59  
V
Power-on reset  
hysteresis  
VREGIT+ – VREGIT–  
70  
100  
300  
130  
400  
mV  
µs  
Power-on reset  
time  
tRST  
200  
7.8 Electrical Characteristics: AFE Watchdog Reset and Wake Timer  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
372  
TYP  
500  
MAX  
628  
UNIT  
tWDT = 500  
tWDT = 1000  
tWDT = 2000  
tWDT = 4000  
tWAKE = 250  
tWAKE = 500  
tWAKE = 1000  
tWAKE = 512  
744  
1000  
2000  
4000  
250  
1256  
2512  
5024  
314  
AFE watchdog  
timeout  
tWDT  
ms  
1488  
2976  
186  
372  
500  
628  
tWAKE  
AFE wake timer  
ms  
ms  
744  
1000  
2000  
1256  
2512  
1488  
FET off delay after  
reset  
tFETOFF  
tFETOFF = 512  
409  
512  
614  
7.9 Electrical Characteristics: Current Wake Comparator  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VWAKE = ±0.625 mV  
MIN  
±0.3  
±0.6  
±1.2  
±2.4  
TYP  
±0.625  
±1.25  
±2.5  
MAX  
±0.9  
±1.8  
±3.6  
±7.2  
UNIT  
VWAKE = ±1.25 mV  
VWAKE = ±2.5 mV  
VWAKE = ±5 mV  
Wake voltage  
threshold  
VWAKE  
mV  
±5.0  
Temperature drift  
of VWAKE accuracy  
VWAKE(DRIFT)  
0.5%  
°C  
Copyright © 2015, Texas Instruments Incorporated  
9
bq40z50-R1  
ZHCSDZ9 JULY 2015  
www.ti.com.cn  
Electrical Characteristics: Current Wake Comparator (continued)  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Time from  
application of  
current to wake  
interrupt  
tWAKE  
700  
µs  
Wake comparator  
startup time  
tWAKE(SU)  
500  
1000  
µs  
7.10 Electrical Characteristics: VC1, VC2, VC3, VC4, BAT, PACK  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VC1–VSS, VC2–VC1, VC3–VC2, VC4–VC3  
BAT–VSS, PACK–VSS  
MIN  
TYP  
MAX  
0.2020  
0.051  
0.510  
5
UNIT  
0.1980 0.2000  
K
Scaling factor  
0.049  
0.490  
–0.2  
0.050  
0.500  
VREF2  
VC1–VSS, VC2–VC1, VC3–VC2, VC4–VC3  
BAT–VSS, PACK–VSS  
VIN  
Input voltage range  
Input leakage current  
V
–0.2  
20  
VC1, VC2, VC3, VC4, cell balancing off, cell detach  
detection off, ADC multiplexer off  
ILKG  
RCB  
ICD  
1
200  
70  
µA  
Ω
Internal cell balance  
resistance  
RDS(ON) for internal FET switch at 2 V < VDS < 4 V  
VCx > VSS + 0.8 V  
Internal cell detach  
check current  
30  
50  
µA  
7.11 Electrical Characteristics: SMBD, SMBC  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SMBC, SMBD, VREG = 1.8 V  
MIN  
TYP  
MAX  
UNIT  
V
VIH  
Input voltage high  
Input voltage low  
Output low voltage  
Input capacitance  
Input leakage current  
Pulldown resistance  
1.3  
VIL  
SMBC, SMBD, VREG = 1.8 V  
0.8  
0.4  
V
VOL  
CIN  
ILKG  
RPD  
SMBC, SMBD, VREG = 1.8 V, IOL = 1.5 mA  
V
5
pF  
µA  
MΩ  
1
0.7  
1.0  
1.3  
7.12 Electrical Characteristics: PRES, BTP_INT, DISP  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
High-level input  
Low-level input  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
VIH  
VIL  
1.3  
0.55  
V
VBAT > 5.5 V, IOH = –0 µA  
3.5  
1.8  
VOH  
Output voltage high  
V
VBAT > 5.5 V, IOH = –10 µA  
IOL = 1.5 mA  
VOL  
CIN  
Output voltage low  
Input capacitance  
Input leakage current  
0.4  
1
V
5
pF  
µA  
ILKG  
Output reverse  
resistance  
RO  
Between PRES or BTP_INT or DISP and PBI  
8
kΩ  
10  
Copyright © 2015, Texas Instruments Incorporated  
 
bq40z50-R1  
www.ti.com.cn  
ZHCSDZ9 JULY 2015  
7.13 Electrical Characteristics: LEDCNTLA, LEDCNTLB, LEDCNTLC  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
High-level input  
Low-level input  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
VIH  
VIL  
1.45  
0.55  
V
VBAT  
VOH  
VOL  
ISC  
Output voltage high  
Output voltage low  
VBAT > 3.0 V, IOH = –22.5 mA  
V
V
1.6  
IOL = 1.5 mA  
0.4  
High level output  
current protection  
–30  
–45  
–6 0  
mA  
Low level output  
current  
IOL  
VBAT > 3.0 V, VOH = 0.4 V  
VBAT = VLEDCNTLx + 2.5 V  
15.75  
22.5  
29.25  
mA  
Current matching  
between LEDCNTLx  
ILEDCNTLx  
±1%  
20  
CIN  
Input capacitance  
pF  
µA  
ILKG  
Input leakage current  
1
Frequency of LED  
pattern  
fLEDCNTLx  
124  
Hz  
7.14 Electrical Characteristics: Coulomb Counter  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
Input voltage range  
TEST CONDITIONS  
MIN  
–0.1  
TYP  
MAX  
0.1  
UNIT  
V
Full scale range  
Integral nonlinearity(1)  
Offset error  
–VREF1/10  
VREF1/10  
±22.3  
±10  
V
16-bit, best fit over input voltage range  
16-bit, Post-calibration  
±5.2  
±5  
LSB  
µV  
Offset error drift  
Gain error  
15-bit + sign, Post-calibration  
0.2  
0.3  
µV/°C  
FSR  
15-bit + sign, over input voltage range  
15-bit + sign, over input voltage range  
±0.2%  
±0.8%  
Gain error drift  
150 PPM/°C  
Effective input resistance  
2.5  
MΩ  
(1) 1 LSB = VREF1/(10 × 2N) = 1.215/(10 × 215) = 3.71 µV  
7.15 Electrical Characteristics: CC Digital Filter  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
Conversion time  
Effective resolution  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ms  
Single conversion  
Single conversion  
250  
15  
Bits  
7.16 Electrical Characteristics: ADC  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Internal reference (VREF1  
External reference (VREG  
VFS = VREF1 or VREG  
MIN  
–0.2  
–0.2  
–VFS  
TYP  
MAX  
1
UNIT  
)
Input voltage range  
V
)
0.8 x VREG  
VFS  
Full scale range  
V
16-bit, best fit, –0.1 V to 0.8 x VREF1  
16-bit, best fit, –0.2 V to –0.1 V  
±6.6  
Integral nonlinearity(1)  
LSB  
±13.1  
(1) 1 LSB = VREF1/(2N) = 1.225/(215) = 37.4 µV (when tCONV = 31.25 ms)  
Copyright © 2015, Texas Instruments Incorporated  
11  
bq40z50-R1  
ZHCSDZ9 JULY 2015  
www.ti.com.cn  
Electrical Characteristics: ADC (continued)  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
Offset error(2)  
TEST CONDITIONS  
16-bit, Post-calibration, VFS = VREF1  
16-bit, Post-calibration, VFS = VREF1  
16-bit, –0.1 V to 0.8 x VFS  
MIN  
TYP  
±67  
MAX  
±157  
3
UNIT  
µV  
Offset error drift  
Gain error  
0.6  
µV/°C  
FSR  
±0.2%  
±0.8%  
Gain error drift  
16-bit, –0.1 V to 0.8 x VFS  
150 PPM/°C  
Effective input resistance  
8
MΩ  
(2) For VC1–VSS, VC2–VC1, VC3–VC2, VC4–VC3, VC4–VSS, PACK–VSS, and VREF1/2, the offset error is multiplied by (1/ADC  
multiplexer scaling factor (K)).  
7.17 Electrical Characteristics: ADC Digital Filter  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
31.25  
15.63  
7.81  
MAX  
UNIT  
Single conversion  
Single conversion  
Single conversion  
Single conversion  
No missing codes  
Conversion time  
ms  
1.95  
Resolution  
16  
14  
13  
11  
9
Bits  
Bits  
With sign, tCONV = 31.25 ms  
With sign, tCONV = 15.63 ms  
With sign, tCONV = 7.81 ms  
With sign, tCONV = 1.95 ms  
15  
14  
12  
10  
Effective resolution  
7.18 Electrical Characteristics: CHG, DSG FET Drive  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RatioDSG = (VDSG – VBAT)/VBAT, 2.2 V < VBAT < 4.92 V,  
10 MΩ between PACK and DSG  
2.133  
2.333  
2.433  
Output voltage  
ratio  
RatioCHG = (VCHG – VBAT)/VBAT, 2.2 V < VBAT < 4.92 V,  
10 MΩ between BAT and CHG  
2.133  
10.5  
10.5  
2.333  
11.5  
11.5  
2.433  
12  
VDSG(ON) = VDSG – VBAT, VBAT 4.92 V, 10 MΩ between  
PACK and DSG, VBAT = 18 V  
Output voltage,  
CHG and DSG on  
V(FETON)  
V
V
VCHG(ON) = VCHG – VBAT, VBAT 4.92 V, 10 MΩ between  
BAT and CHG, VBAT = 18 V  
12  
VDSG(OFF) = VDSG – VPACK, 10 MΩ between PACK and  
DSG  
–0.4  
–0.4  
0.4  
0.4  
Output voltage,  
CHG and DSG off  
V(FETOFF)  
VCHG(OFF) = VCHG – VBAT, 10 MΩ between BAT and CHG  
VDSG from 0% to 35% VDSG(ON)(TYP), VBAT 2.2 V, CL  
=
4.7 nF between DSG and PACK, 5.1 kΩ between DSG  
and CL, 10 MΩ between PACK and DSG  
200  
200  
40  
500  
500  
300  
200  
tR  
Rise time  
Fall time  
µs  
µs  
VCHG from 0% to 35% VCHG(ON)(TYP), VBAT 2.2 V, CL  
4.7 nF between CHG and BAT, 5.1 kΩ between CHG  
and CL, 10 MΩ between BAT and CHG  
=
VDSG from VDSG(ON)(TYP) to 1 V, VBAT 2.2 V, CL = 4.7 nF  
between DSG and PACK, 5.1 kΩ between DSG and CL,  
10 MΩ between PACK and DSG  
tF  
VCHG from VCHG(ON)(TYP) to 1 V, VBAT 2.2 V, CL = 4.7  
nF between CHG and BAT, 5.1 kΩ between CHG and  
CL, 10 MΩ between BAT and CHG  
40  
12  
Copyright © 2015, Texas Instruments Incorporated  
bq40z50-R1  
www.ti.com.cn  
ZHCSDZ9 JULY 2015  
7.19 Electrical Characteristics: PCHG FET Drive  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Output voltage,  
PCHG on  
VPCHG(ON) = VVCC – VPCHG, 10 MΩ between VCC and  
PCHG  
V(FETON)  
6
7
8
V
Output voltage,  
PCHG off  
VPCHG(OFF) = VVCC – VPCHG, 10 MΩ between VCC and  
PCHG  
V(FETOFF)  
–0.4  
0.4  
V
VPCHG from 10% to 90% VPCHG(ON)(TYP), VVCC 8 V, CL  
4.7 nF between PCHG and VCC, 5.1 kΩ between PCHG  
and CL, 10 MΩ between VCC and CHG  
=
tR  
Rise time  
Fall time  
40  
40  
200  
µs  
VPCHG from 90% to 10% VPCHG(ON)(TYP), VCC 8 V, CL  
4.7 nF between PCHG and VCC, 5.1 kΩ between PCHG  
and CL, 10 MΩ between VCC and CHG  
=
tF  
200  
µs  
7.20 Electrical Characteristics: FUSE Drive  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
8.65  
VBAT  
2.5  
UNIT  
V
BAT 8 V, CL = 1 nF, IAFEFUSE = 0 µA  
6
VBAT – 0.1  
1.5  
7
Output voltage  
high  
VOH  
V
VBAT < 8 V, CL = 1 nF, IAFEFUSE = 0 µA  
VIH  
High-level input  
2.0  
V
Internal pullup  
current  
IAFEFUSE(PU)  
VBAT 8 V, VAFEFUSE = VSS  
150  
330  
3.2  
nA  
RAFEFUSE  
CIN  
Output impedance  
Input capacitance  
2
2.6  
5
kΩ  
pF  
Fuse trip detection  
delay  
tDELAY  
tRISE  
128  
256  
20  
µs  
µs  
Fuse output rise  
time  
VBAT 8 V, CL = 1 nF, VOH = 0 V to 5 V  
5
7.21 Electrical Characteristics: Internal Temperature Sensor  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Internal  
VTEMPP  
–1.9  
–2.0  
–2.1  
temperature  
sensor voltage  
drift  
VTEMP  
mV/°C  
VTEMPP – VTEMPN, assured by design  
0.177  
0.178  
0.179  
7.22 Electrical Characteristics: TS1, TS2, TS3, TS4  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TS1, TS2, TS3, TS4, VBIAS = VREF1  
TS1, TS2, TS3, TS4, VBIAS = VREG  
MIN  
–0.2  
–0.2  
TYP  
MAX  
0.8 x VREF1  
0.8 x VREG  
UNIT  
Input voltage  
range  
VIN  
V
Internal pullup  
resistance  
RNTC(PU)  
TS1, TS2, TS3, TS4  
14.4  
18  
21.6  
kΩ  
Resistance drift  
over  
RNTC(DRIFT)  
TS1, TS2, TS3, TS4  
–360  
–280  
–200 PPM/°C  
temperature  
Copyright © 2015, Texas Instruments Incorporated  
13  
bq40z50-R1  
ZHCSDZ9 JULY 2015  
www.ti.com.cn  
7.23 Electrical Characteristics: PTC, PTCEN  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
3.95  
890  
350  
145  
UNIT  
MΩ  
mV  
nA  
PTC trip  
resistance  
RPTC(TRIP)  
VPTC(TRIP)  
IPTC  
1.2  
2.5  
PTC trip voltage  
VPTC(TRIP) = VPTCEN – VPTC  
200  
200  
40  
500  
290  
80  
Internal PTC  
current bias  
TA = –40°C to 110°C  
TA = –40°C to 110°C  
tPTC(DELAY)  
PTC delay time  
ms  
7.24 Electrical Characteristics: Internal 1.8-V LDO  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
Regulator voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VREG  
1.6  
1.8  
2.0  
V
Regulator output  
over temperature  
ΔVO(TEMP)  
ΔVO(LINE)  
ΔVREG/ΔTA, IREG = 10 mA  
±0.25%  
Line regulation  
ΔVREG/ΔVBAT, VBAT = 10 mA  
–0 .6%  
–1.5%  
0.5%  
1.5%  
ΔVO(LOAD) Load regulation  
ΔVREG/ΔIREG, IREG = 0 mA to 10 mA  
Regulator output  
current limit  
IREG  
VREG = 0.9 x VREG(NOM), VIN > 2.2 V  
VREG = 0 x VREG(NOM)  
20  
25  
mA  
mA  
dB  
Regulator short-  
ISC  
40  
40  
55  
circuit current limit  
Power supply  
PSRRREG  
ΔVBAT/ΔVREG, IREG = 10 mA ,VIN > 2.5 V, f = 10 Hz  
rejection ratio  
Slew rate  
VSLEW  
enhancement  
VREG  
1.58  
1.65  
V
voltage threshold  
7.25 Electrical Characteristics: High-Frequency Oscillator  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
16.78  
MAX  
UNIT  
fHFO  
Operating frequency  
MHz  
TA = –20°C to 70°C, includes frequency drift  
TA = –40°C to 85°C, includes frequency drift  
–2.5%  
–3.5%  
±0.25%  
±0.25%  
2.5%  
3.5%  
fHFO(ERR)  
Frequency error  
TA = –20°C to 85°C, oscillator frequency within  
+/–3% of nominal  
4
ms  
µs  
tHFO(SU)  
Start-up time  
oscillator frequency within +/–3% of nominal  
100  
7.26 Electrical Characteristics: Low-Frequency Oscillator  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
Operating frequency  
TEST CONDITIONS  
MIN  
TYP  
262.144  
±0.25%  
±0.25  
MAX  
UNIT  
fLFO  
kHz  
TA = –20°C to 70°C, includes frequency drift  
TA = –40°C to 85°C, includes frequency drift  
–1.5%  
–2.5  
1.5%  
2.5  
fLFO(ERR)  
Frequency error  
Failure detection  
frequency  
fLFO(FAIL)  
30  
80  
100  
kHz  
14  
Copyright © 2015, Texas Instruments Incorporated  
bq40z50-R1  
www.ti.com.cn  
ZHCSDZ9 JULY 2015  
7.27 Electrical Characteristics: Voltage Reference 1  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Internal reference  
voltage  
VREF1  
TA = 25°C, after trim  
1.21  
1.215  
1.22  
V
TA = 0°C to 60°C, after trim  
TA = –40°C to 85°C, after trim  
±50  
±80  
Internal reference  
voltage drift  
VREF1(DRIFT)  
PPM/°C  
7.28 Electrical Characteristics: Voltage Reference 2  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Internal reference  
voltage  
VREF2  
TA = 25°C, after trim  
1.22  
1.225  
1.23  
V
TA = 0°C to 60°C, after trim  
TA = –40°C to 85°C, after trim  
±50  
±80  
Internal reference  
voltage drift  
VREF2(DRIFT)  
PPM/°C  
7.29 Electrical Characteristics: Instruction Flash  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
Data retention  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
10  
Years  
Flash programming  
write cycles  
1000  
Cycles  
µs  
Word programming  
time  
tPROGWORD  
TA = –40°C to 85°C  
40  
tMASSERASE  
tPAGEERASE  
IFLASHREAD  
IFLASHWRITE  
IFLASHERASE  
Mass-erase time  
Page-erase time  
Flash-read current  
Flash-write current  
Flash-erase current  
TA = –40°C to 85°C  
TA = –40°C to 85°C  
TA = –40°C to 85°C  
TA = –40°C to 85°C  
TA = –40°C to 85°C  
40  
40  
2
ms  
ms  
mA  
mA  
mA  
5
15  
7.30 Electrical Characteristics: Data Flash  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Data retention  
10  
Years  
Flash programming  
write cycles  
20000  
Cycles  
µs  
Word programming  
time  
tPROGWORD  
TA = –40°C to 85°C  
40  
tMASSERASE  
tPAGEERASE  
IFLASHREAD  
IFLASHWRITE  
IFLASHERASE  
Mass-erase time  
Page-erase time  
Flash-read current  
Flash-write current  
Flash-erase current  
TA = –40°C to 85°C  
TA = –40°C to 85°C  
TA = –40°C to 85°C  
TA = –40°C to 85°C  
TA = –40°C to 85°C  
40  
40  
1
ms  
ms  
mA  
mA  
mA  
5
15  
Copyright © 2015, Texas Instruments Incorporated  
15  
bq40z50-R1  
ZHCSDZ9 JULY 2015  
www.ti.com.cn  
7.31 Electrical Characteristics: OCD, SCC, SCD1, SCD2 Current Protection Thresholds  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOCD = VSRP – VSRN, AFE PROTECTION  
CONTROL[RSNS] = 1  
–16.6  
–100  
OCD detection  
threshold voltage range  
VOCD  
mV  
VOCD = VSRP – VSRN, AFE PROTECTION  
CONTROL[RSNS] = 0  
–8.3  
–50  
VOCD = VSRP – VSRN, AFE PROTECTION  
CONTROL[RSNS] = 1  
–5.56  
–2.78  
OCD detection  
threshold voltage  
program step  
ΔVOCD  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
VOCD = VSRP – VSRN, AFE PROTECTION  
CONTROL[RSNS] = 0  
VSCC = VSRP – VSRN, AFE PROTECTION  
CONTROL[RSNS] = 1  
44.4  
22.2  
200  
100  
SCC detection  
threshold voltage range  
VSCC  
VSCC = VSRP – VSRN, AFE PROTECTION  
CONTROL[RSNS] = 0  
VSCC = VSRP – VSRN, AFE PROTECTION  
CONTROL[RSNS] = 1  
22.2  
11.1  
SCC detection  
threshold voltage  
program step  
ΔVSCC  
VSCD1  
ΔVSCD1  
VSCD2  
ΔVSCD2  
VSCC = VSRP – VSRN, AFE PROTECTION  
CONTROL[RSNS] = 0  
VSCD1 = VSRP – VSRN, AFE PROTECTION  
CONTROL[RSNS] = 1  
–44.4  
–22.2  
–200  
–100  
SCD1 detection  
threshold voltage range  
VSCD1 = VSRP – VSRN, AFE PROTECTION  
CONTROL[RSNS] = 0  
VSCD1 = VSRP – VSRN, AFE PROTECTION  
CONTROL[RSNS] = 1  
–22.2  
–11.1  
SCD1 detection  
threshold voltage  
program step  
VSCD1 = VSRP – VSRN, AFE PROTECTION  
CONTROL[RSNS] = 0  
VSCD2 = VSRP – VSRN, AFE PROTECTION  
CONTROL[RSNS] = 1  
–44.4  
–22.2  
–200  
–100  
SCD2 detection  
threshold voltage range  
VSCD2 = VSRP – VSRN, AFE PROTECTION  
CONTROL[RSNS] = 0  
VSCD2 = VSRP – VSRN, AFE PROTECTION  
CONTROL[RSNS] = 1  
–22.2  
–11.1  
SCD2 detection  
threshold voltage  
program step  
VSCD2 = VSRP – VSRN, AFE PROTECTION  
CONTROL[RSNS] = 0  
OCD, SCC, and SCDx  
offset error  
VOFFSET  
VSCALE  
Post-trim  
–2.5  
2.5  
mV  
No trim  
–10%  
–5%  
10%  
5%  
OCD, SCC, and SCDx  
scale error  
Post-trim  
7.32 Timing Requirements: OCD, SCC, SCD1, SCD2 Current Protection Timing  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
OCD detection  
delay time  
tOCD  
1
31  
ms  
OCD detection  
delay time  
program step  
ΔtOCD  
2
ms  
µs  
µs  
SCC detection  
delay time  
tSCC  
0
915  
SCC detection  
delay time  
ΔtSCC  
61  
program step  
AFE PROTECTION CONTROL[SCDDx2] = 0  
AFE PROTECTION CONTROL[SCDDx2] = 1  
0
0
915  
SCD1 detection  
delay time  
tSCD1  
µs  
1850  
16  
Copyright © 2015, Texas Instruments Incorporated  
bq40z50-R1  
www.ti.com.cn  
ZHCSDZ9 JULY 2015  
Timing Requirements: OCD, SCC, SCD1, SCD2 Current Protection Timing (continued)  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
SCD1 detection  
delay time  
program step  
AFE PROTECTION CONTROL[SCDDx2] = 0  
AFE PROTECTION CONTROL[SCDDx2] = 1  
61  
ΔtSCD1  
µs  
121  
AFE PROTECTION CONTROL[SCDDx2] = 0  
AFE PROTECTION CONTROL[SCDDx2] = 1  
AFE PROTECTION CONTROL[SCDDx2] = 0  
0
0
458  
915  
SCD2 detection  
delay time  
tSCD2  
µs  
SCD2 detection  
delay time  
program step  
30.5  
61  
ΔtSCD2  
tDETECT  
tACC  
µs  
µs  
AFE PROTECTION CONTROL[SCDDx2] = 1  
Current fault  
detect time  
VSRP – VSRN = VT – 3 mV for OCD, SCD1, and SC2,  
VSRP – VSRN = VT + 3 mV for SCC  
160  
Current fault  
delay time  
accuracy  
Max delay setting  
–10%  
10%  
7.33 Timing Requirements: SMBus  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
SMBus operating  
frequency  
fSMB  
SLAVE mode, SMBC 50% duty cycle  
10  
100  
kHz  
SMBus master clock  
frequency  
fMAS  
MASTER mode, no clock low slave extend  
51.2  
kHz  
µs  
Bus free time between start  
and stop  
tBUF  
4.7  
4.0  
Hold time after (repeated)  
start  
tHD(START)  
µs  
tSU(START)  
tSU(STOP)  
tHD(DATA)  
tSU(DATA)  
tTIMEOUT  
tLOW  
Repeated start setup time  
Stop setup time  
4.7  
4.0  
300  
250  
25  
µs  
µs  
ns  
ns  
ms  
µs  
µs  
ns  
ns  
Data hold time  
Data setup time  
Error signal detect time  
Clock low period  
Clock high period  
Clock rise time  
35  
4.7  
4.0  
tHIGH  
50  
1000  
300  
tR  
10% to 90%  
90% to 10%  
tF  
Clock fall time  
Cumulative clock low slave  
extend time  
tLOW(SEXT)  
tLOW(MEXT)  
25  
10  
ms  
ms  
Cumulative clock low  
master extend time  
7.34 Timing Requirements: SMBus XL  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
fSMBXL  
tBUF  
SMBus XL operating  
frequency  
SLAVE mode  
40  
400  
kHz  
Bus free time between start  
and stop  
4.7  
4.0  
µs  
µs  
tHD(START)  
Hold time after (repeated)  
start  
Copyright © 2015, Texas Instruments Incorporated  
17  
bq40z50-R1  
ZHCSDZ9 JULY 2015  
www.ti.com.cn  
Timing Requirements: SMBus XL (continued)  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = –40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
MIN  
4.7  
4.0  
5
NOM  
MAX  
UNIT  
µs  
tSU(START)  
tSU(STOP)  
tTIMEOUT  
tLOW  
Repeated start setup time  
Stop setup time  
µs  
Error signal detect time  
Clock low period  
20  
20  
20  
ms  
µs  
tHIGH  
Clock high period  
µs  
TtR  
TtF  
TtF  
TtR  
TtHIGH  
T
tSU(STOP)p  
tHD(START)  
TtBUFT  
TtLOWT  
SMBC  
SMBD  
SMBC  
SMBD  
P
S
tHD(DATA)  
T
TtSU(DATA)  
Start and Stop Condition  
Wait and Hold Condition  
tSU(START)  
T
TtTIMEOUT  
SMBC  
SMBD  
SMBC  
SMBD  
S
Repeated Start Condition  
Timeout Condition  
Figure 4. SMBus Timing Diagram  
18  
Copyright © 2015, Texas Instruments Incorporated  
bq40z50-R1  
www.ti.com.cn  
ZHCSDZ9 JULY 2015  
7.35 Typical Characteristics  
0.15  
0.10  
8.0  
6.0  
Max CC Offset Error  
Min CC Offset Error  
4.0  
0.05  
2.0  
0.00  
0.0  
±2.0  
±4.0  
±6.0  
±8.0  
±0.05  
±0.10  
±0.15  
Max ADC Offset Error  
Min ADC Offset Error  
0
20  
40  
60  
80  
100  
120  
±40  
±20  
0
20  
40  
60 80 100  
120  
±40  
±20  
Temperature (ƒC)  
Temperature (ƒC)  
C001  
C003  
Figure 5. CC Offset Error vs. Temperature  
Figure 6. ADC Offset Error vs. Temperature  
1.24  
1.23  
1.22  
1.21  
1.20  
264  
262  
260  
258  
256  
254  
252  
250  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
±40  
±20  
±40  
±20  
Temperature (ƒC)  
Temperature (ƒC)  
C006  
C007  
Figure 7. Reference Voltage vs. Temperature  
Figure 8. Low-Frequency Oscillator vs. Temperature  
16.9  
16.8  
16.7  
16.6  
±24.6  
±24.8  
±25.0  
±25.2  
±25.4  
±25.6  
±25.8  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
±40  
±20  
±40  
±20  
Temperature (ƒC)  
Temperature (ƒC)  
C008  
C009  
Threshold setting is 25 mV.  
Figure 9. High-Frequency Oscillator vs. Temperature  
Figure 10. Overcurrent Discharge Protection Threshold vs.  
Temperature  
Copyright © 2015, Texas Instruments Incorporated  
19  
bq40z50-R1  
ZHCSDZ9 JULY 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
87.4  
±86.0  
±86.2  
±86.4  
±86.6  
±86.8  
±87.0  
±87.2  
87.2  
87.0  
86.8  
86.6  
86.4  
86.2  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
±40  
±20  
±40  
±20  
Temperature (ƒC)  
Temperature (ƒC)  
C010  
C011  
Threshold setting is 25 mV.  
Threshold setting is –88.85 mV.  
Figure 11. Short Circuit Charge Protection Threshold vs.  
Temperature  
Figure 12. Short Circuit Discharge 1 Protection Threshold  
vs. Temperature  
11.00  
10.95  
10.90  
10.85  
10.80  
10.75  
10.70  
±172.9  
±173.0  
±173.1  
±173.2  
±173.3  
±173.4  
±173.5  
±173.6  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
±40  
±20  
±40  
±20  
Temperature (ƒC)  
Temperature (ƒC)  
C012  
C013  
Threshold setting is –177.7 mV.  
Threshold setting is 11 ms.  
Figure 14. Overcurrent Delay Time vs. Temperature  
Figure 13. Short Circuit Discharge 2 Protection Threshold  
vs. Temperature  
452  
450  
448  
446  
444  
442  
440  
438  
436  
434  
432  
480  
460  
440  
420  
400  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
±40  
±20  
±40  
±20  
Temperature (ƒC)  
Temperature (ƒC)  
C014  
C015  
Threshold setting is 465 µs.  
Threshold setting is 465 µs (including internal delay).  
Figure 15. Short Circuit Charge Current Delay Time vs.  
Temperature  
Figure 16. Short Circuit Discharge 1 Delay Time vs.  
Temperature  
20  
Copyright © 2015, Texas Instruments Incorporated  
bq40z50-R1  
www.ti.com.cn  
ZHCSDZ9 JULY 2015  
Typical Characteristics (continued)  
2.4984  
2.49835  
2.4983  
2.49825  
2.4982  
2.49815  
2.4981  
2.49805  
2.498  
3.49825  
3.4982  
3.49815  
3.4981  
3.49805  
3.498  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
±40  
±20  
±40  
±20  
Temperature (ƒC)  
Temperature (ƒC)  
C016  
C017  
This is the VCELL average for single cell.  
Figure 17. VCELL Measurement at 2.5-V vs. Temperature  
Figure 18. VCELL Measurement at 3.5-V vs. Temperature  
4.24805  
99.25  
4.248  
4.24795  
4.2479  
99.20  
99.15  
99.10  
99.05  
99.00  
4.24785  
4.2478  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
±40  
±20  
±40  
±20  
Temperature (ƒC)  
Temperature (ƒC)  
C018  
C019  
This is the VCELL average for single cell.  
ISET = 100 mA  
Figure 19. VCELL Measurement at 4.25-V vs. Temperature  
Figure 20. I measured vs. Temperature  
Copyright © 2015, Texas Instruments Incorporated  
21  
bq40z50-R1  
ZHCSDZ9 JULY 2015  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The bq40z50-R1 device, incorporating patented Impedance Track™ technology, provides cell balancing while  
charging or at rest. This fully integrated, single-chip, pack-based solution provides a rich array of features for gas  
gauging, protection, and authentication for 1-series, 2-series, 3-series, and 4-series cell Li-Ion and Li-Polymer  
battery packs, including a diagnostic lifetime data monitor and black box recorder.  
8.2 Functional Block Diagram  
Cell, Stack,  
Pack  
Voltage  
High Side  
N-CH FET  
Drive  
Cell  
Balancing  
Cell Detach  
Detection  
Power Mode  
Control  
P-CH  
FET Drive  
Zero Volt  
Charge  
Control  
PTCEN  
PTC  
Wake  
Comparator  
Power On  
Reset  
PTC  
Overtemp  
Short Circuit  
Comparator  
FUSE  
Control  
FUSE  
SRP  
SRN  
BTP_INT  
Over  
Current  
Comparator  
High  
Voltage  
I/O  
Voltage  
Reference2  
/PRES or /SHUTDN  
/DISP  
Random  
Number  
Generator  
Watchdog  
Timer  
NTC Bias  
TS1  
TS2  
TS3  
TS4  
LEDCNTLC  
LEDCNTLB  
LEDCNTLA  
Internal  
Temp  
Sensor  
LED Display  
Drive I/O  
Voltage  
Reference1  
ADC MUX  
AFE Control  
Low  
Frequency  
Oscillator  
SBS High  
Voltage  
Translation  
SMBD  
SMBC  
ADC/CC  
FRONTEND  
1.8V LDO  
Regulator  
AFE COM  
Engine  
High  
Frequency  
Oscillator  
Low Voltage  
I/O  
I/O  
I/O &  
Interrupt  
Controller  
ADC/CC  
Digital Filter  
Timers&  
PWM  
AFE COM  
Engine  
SBS COM  
Engine  
Data (8bit)  
DMAddr (16bit)  
bqBMP  
CPU  
PMInstr  
(8bit)  
PMAddr  
(16bit)  
Program  
Flash  
EEPROM  
Data Flash  
EEPROM  
Data  
SRAM  
22  
Copyright © 2015, Texas Instruments Incorporated  
bq40z50-R1  
www.ti.com.cn  
ZHCSDZ9 JULY 2015  
8.3 Feature Description  
8.3.1 Primary (1st Level) Safety Features  
The bq40z50-R1 supports a wide range of battery and system protection features that can easily be configured.  
See the bq40z50-R1 Technical Reference Manual (SLUUBC1) for detailed descriptions of each protection  
function.  
The primary safety features include:  
Cell Overvoltage Protection  
Cell Undervoltage Protection  
Cell Undervoltage Protection Compensated  
Overcurrent in Charge Protection  
Overcurrent in Discharge Protection  
Overload in Discharge Protection  
Short Circuit in Charge Protection  
Short Circuit in Discharge Protection  
Overtemperature in Charge Protection  
Overtemperature in Discharge Protection  
Undertemperature in Charge Protection  
Undertemperature in Discharge Protection  
Overtemperature FET protection  
Precharge Timeout Protection  
Host Watchdog Timeout Protection  
Fast Charge Timeout Protection  
Overcharge Protection  
Overcharging Voltage Protection  
Overcharging Current Protection  
Over Precharge Current Protection  
8.3.2 Secondary (2nd Level) Safety Features  
The secondary safety features of the bq40z50-R1 can be used to indicate more serious faults via the FUSE pin.  
This pin can be used to blow an in-line fuse to permanently disable the battery pack from charging or  
discharging. See the bq40z50-R1 Technical Reference Manual (SLUUBC1) for detailed descriptions of each  
protection function.  
The secondary safety features provide protection against:  
Safety Overvoltage Permanent Failure  
Safety Undervoltage Permanent Failure  
Safety Overtemperature Permanent Failure  
Safety FET Overtemperature Permanent Failure  
Qmax Imbalance Permanent Failure  
Impedance Imbalance Permanent Failure  
Capacity Degradation Permanent Failure  
Cell Balancing Permanent Failure  
Fuse Failure Permanent Failure  
PTC Permanent Failure  
Voltage Imbalance at Rest Permanent Failure  
Voltage Imbalance Active Permanent Failure  
Charge FET Permanent Failure  
Discharge FET Permanent Failure  
AFE Register Permanent Failure  
AFE Communication Permanent Failure  
Copyright © 2015, Texas Instruments Incorporated  
23  
bq40z50-R1  
ZHCSDZ9 JULY 2015  
www.ti.com.cn  
Feature Description (continued)  
Second Level Protector Permanent Failure  
Instruction Flash Checksum Permanent Failure  
Open Cell Connection Permanent Failure  
Data Flash Permanent Failure  
Open Thermistor Permanent Failure  
8.3.3 Charge Control Features  
The bq40z50-R1 charge control features include:  
Supports JEITA temperature ranges. Reports charging voltage and charging current according to the active  
temperature range  
Handles more complex charging profiles. Allows for splitting the standard temperature range into two sub-  
ranges and allows for varying the charging current according to the cell voltage  
Reports the appropriate charging current needed for constant current charging and the appropriate charging  
voltage needed for constant voltage charging to a smart charger using SMBus broadcasts  
Reduces the charge difference of the battery cells in fully charged state of the battery pack gradually using a  
voltage-based cell balancing algorithm during charging. A voltage threshold can be set up for cell balancing to  
be active. This prevents fully charged cells from overcharging and causing excessive degradation and also  
increases the usable pack energy by preventing premature charge termination.  
Supports pre-charging/zero-volt charging  
Supports charge inhibit and charge suspend if battery pack temperature is out of temperature range  
Reports charging fault and also indicates charge status via charge and discharge alarms  
8.3.4 Gas Gauging  
The bq40z50-R1 uses the Impedance Track algorithm to measure and calculate the available capacity in battery  
cells. The bq40z50-R1 accumulates a measure of charge and discharge currents and compensates the charge  
current measurement for the temperature and state-of-charge of the battery. The bq40z50-R1 estimates self-  
discharge of the battery and also adjusts the self-discharge estimation based on temperature. The device also  
has TURBO BOOST mode support, which enables the bq40z50-R1 to provide the necessary data for the MCU to  
determine what level of peak power consumption can be applied without causing a system reset or transient  
battery voltage level spike to trigger termination flags. See the bq40z50-R1 Technical Reference Manual  
(SLUUBC1) for further details.  
8.3.5 Configuration  
8.3.5.1 Oscillator Function  
The bq40z50-R1 fully integrates the system oscillators and does not require any external components to support  
this feature.  
8.3.5.2 System Present Operation  
The bq40z50-R1 checks the PRES pin periodically (1 s). If PRES input is pulled to ground by the external  
system, the bq40z50-R1 detects this as system present.  
8.3.5.3 Emergency Shutdown  
For battery maintenance, the emergency shutdown feature enables a push button action connecting the  
SHUTDN pin to shutdown an embedded battery pack system before removing the battery. A high-to-low  
transition of the SHUTDN pin signals the bq40z50-R1 to turn off both CHG and DSG FETs, disconnecting the  
power from the system to safely remove the battery pack. The CHG and DSG FETs can be turned on again by  
another high-to-low transition detected by the SHUTDN pin or when a data flash configurable timeout is reached.  
8.3.5.4 1-Series, 2-Series, 3-Series, or 4-Series Cell Configuration  
In a 1-series cell configuration, VC4 is shorted to VC, VC2 and VC1. In a 2-series cell configuration, VC4 is  
shorted to VC3 and VC2. In a 3-series cell configuration, VC4 is shorted to VC3.  
24  
Copyright © 2015, Texas Instruments Incorporated  
bq40z50-R1  
www.ti.com.cn  
ZHCSDZ9 JULY 2015  
Feature Description (continued)  
8.3.5.5 Cell Balancing  
The device supports cell balancing by bypassing the current of each cell during charging or at rest. If the device's  
internal bypass is used, up to 10 mA can be bypassed and multiple cells can be bypassed at the same time.  
Higher cell balance current can be achieved by using an external cell balancing circuit. In external cell balancing  
mode, only one cell at a time can be balanced.  
The cell balancing algorithm determines the amount of charge needed to be bypassed to balance the capacity of  
all cells.  
8.3.6 Battery Parameter Measurements  
8.3.6.1 Charge and Discharge Counting  
The bq40z50-R1 uses an integrating delta-sigma analog-to-digital converter (ADC) for current measurement, and  
a second delta-sigma ADC for individual cell and battery voltage and temperature measurement.  
The integrating delta-sigma ADC measures the charge/discharge flow of the battery by measuring the voltage  
drop across a small-value sense resistor between the SRP and SRN terminals. The integrating ADC measures  
bipolar signals from –0.1 V to 0.1 V. The bq40z50-R1 detects charge activity when VSR = V(SRP) – V(SRN) is  
positive, and discharge activity when VSR = V(SRP) – V(SRN) is negative. The bq40z50-R1 continuously integrates  
the signal over time, using an internal counter. The fundamental rate of the counter is 0.26 nVh.  
8.3.7 Battery Trip Point (BTP)  
Required for WIN8 OS, the battery trip point (BTP) feature indicates when the RSOC of a battery pack has  
depleted to a certain value set in a DF register. This feature allows a host to program two capacity-based  
thresholds that govern the triggering of a BTP interrupt on the BTP_INT pin and the setting or clearing of the  
OperationStatus[BTP_INT] on the basis of RemainingCapacity().  
An internal weak pull-up is applied when the BTP feature is active. Depending on the system design, an external  
pull-up may be required to put on the BTP_INT pin. See Electrical Characteristics: PRES, BTP_INT, DISP for  
details.  
8.3.8 Lifetime Data Logging Features  
The bq40z50-R1 offers lifetime data logging for several critical battery parameters. The following parameters are  
updated every 10 hours if a difference is detected between values in RAM and data flash:  
Maximum and Minimum Cell Voltages  
Maximum Delta Cell Voltage  
Maximum Charge Current  
Maximum Discharge Current  
Maximum Average Discharge Current  
Maximum Average Discharge Power  
Maximum and Minimum Cell Temperature  
Maximum Delta Cell Temperature  
Maximum and Minimum Internal Sensor Temperature  
Maximum FET Temperature  
Number of Safety Events Occurrences and the Last Cycle of the Occurrence  
Number of Valid Charge Termination and the Last Cycle of the Valid Charge Termination  
Number of Qmax and Ra Updates and the Last Cycle of the Qmax and Ra Updates  
Number of Shutdown Events  
Cell Balancing Time for Each Cell  
(This data is updated every 2 hours if a difference is detected.)  
Total FW Runtime and Time Spent in Each Temperature Range  
(This data is updated every 2 hours if a difference is detected.)  
Copyright © 2015, Texas Instruments Incorporated  
25  
bq40z50-R1  
ZHCSDZ9 JULY 2015  
www.ti.com.cn  
Feature Description (continued)  
8.3.9 Authentication  
The bq40z50-R1 supports authentication by the host using SHA-1.  
8.3.10 LED Display  
The bq40z50-R1 can drive a 3-, 4-, or 5- segment LED display for remaining capacity indication and/or a  
permanent fail (PF) error code indication.  
8.3.11 Voltage  
The bq40z50-R1 updates the individual series cell voltages at 0.25-second intervals. The internal ADC of the  
bq40z50-R1 measures the voltage, and scales and calibrates it appropriately. This data is also used to calculate  
the impedance of the cell for the Impedance Track gas gauging.  
8.3.12 Current  
The bq40z50-R1 uses the SRP and SRN inputs to measure and calculate the battery charge and discharge  
current using a 1-mΩ to 3-mΩ typ. sense resistor.  
8.3.13 Temperature  
The bq40z50-R1 has an internal temperature sensor and inputs for four external temperature sensors. All five  
temperature sensor options can be individually enabled and configured for cell or FET temperature usage. Two  
configurable thermistor models are provided to allow the monitoring of cell temperature in addition to FET  
temperature, which use a different thermistor profile.  
8.3.14 Communications  
The bq40z50-R1 uses SMBus v1.1 with MASTER mode and packet error checking (PEC) options per the SBS  
specification.  
8.3.14.1 SMBus On and Off State  
The bq40z50-R1 detects an SMBus off state when SMBC and SMBD are low for two or more seconds. Clearing  
this state requires that either SMBC or SMBD transition high. The communication bus will resume activity within  
1 ms.  
8.3.14.2 SBS Commands  
See the bq40z50-R1 Technical Reference Manual (SLUUBC1) for further details.  
8.4 Device Functional Modes  
The bq40z50-R1 supports three power modes to reduce power consumption:  
In NORMAL mode, the bq40z50-R1 performs measurements, calculations, protection decisions, and data  
updates in 250-ms intervals. Between these intervals, the bq40z50-R1 is in a reduced power stage.  
In SLEEP mode, the bq40z50-R1 performs measurements, calculations, protection decisions, and data  
updates in adjustable time intervals. Between these intervals, the bq40z50-R1 is in a reduced power stage.  
The bq40z50-R1 has a wake function that enables exit from SLEEP mode when current flow or failure is  
detected.  
In SHUTDOWN mode, the bq40z50-R1 is completely disabled.  
26  
Copyright © 2015, Texas Instruments Incorporated  
bq40z50-R1  
www.ti.com.cn  
ZHCSDZ9 JULY 2015  
9 Applications and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The bq40z50-R1 is a gas gauge with primary protection support, and that can be used with a 1-series to 4-series  
Li-Ion/Li Polymer battery pack. To implement and design a comprehensive set of parameters for a specific  
battery pack, users need the Battery Management Studio (bqSTUDIO) graphical user-interface tool installed on a  
PC during development. The firmware installed on the bqSTUDIO tool has default values for this product, which  
are summarized in the bq40z50-R1 Technical Reference Manual (SLUUBC1). Using the bqSTUDIO tool, these  
default values can be changed to cater to specific application requirements during development once the system  
parameters, such as fault trigger thresholds for protection, enable/disable of certain features for operation,  
configuration of cells, chemistry that best matches the cell used, and more are known. This data is referred to as  
the "golden image."  
Copyright © 2015, Texas Instruments Incorporated  
27  
bq40z50-R1  
ZHCSDZ9 JULY 2015  
www.ti.com.cn  
9.2 Typical Applications  
4P  
9
EP  
1
1
1
1
4
6
3
5
2
1
1
1
1
1
1
1
1
2
3
4
1
1
1
5
1
1
33  
32  
31  
30  
29  
28  
27  
26  
25  
PWPD  
BAT  
9
10  
11  
12  
13  
14  
15  
16  
VSS  
TS1  
CHG  
PCHG  
NC  
TS2  
TS3  
1
TS4  
DSG  
PACK  
VCC  
1
5
NC  
BTP_INT  
PRESorSHUTDN  
4
1
1
FUSE  
3
2
1
3
2
MM3ZxxVyC  
MM3ZxxVyC  
MM3ZxxVyC  
2
GND SID2E  
GND SIDE  
1
1
SMBD  
SMBC  
SMBC  
SMBD  
1
1
7
6
1
1
CHGND  
1
1
2
1
1
GND SIDE  
2
GND SIDE  
Figure 21. Application Schematic  
28  
Copyright © 2015, Texas Instruments Incorporated  
bq40z50-R1  
www.ti.com.cn  
ZHCSDZ9 JULY 2015  
Typical Applications (continued)  
9.2.1 Design Requirements  
Table 1 shows the default settings for the main parameters. Use the bqSTUDIO tool to update the settings to  
meet the specific application or battery pack configuration requirements.  
The device should be calibrated before any gauging test. Follow the bqSTUDIO Calibration page to calibrate the  
device, and use the bqSTUDIO Chemistry page to update the match chemistry profile to the device.  
Table 1. Design Parameters  
DESIGN PARAMETER  
Cell Configuration  
EXAMPLE  
3s1p (3-series with 1 Parallel)(1)  
Design Capacity  
4400 mAh  
Device Chemistry  
1210 (LiCoO2/graphitized carbon)  
Cell Overvoltage at Standard Temperature  
Cell Undervoltage  
4300 mV  
2500 mV  
Shutdown Voltage  
2300 mV  
Overcurrent in CHARGE Mode  
Overcurrent in DISCHARGE Mode  
Short Circuit in CHARGE Mode  
Short Circuit in DISCHARGE Mode  
Safety Overvoltage  
6000 mA  
–6000 mA  
0.1 V/Rsense across SRP, SRN  
0.1 V/Rsense across SRP, SRN  
4500 mV  
Cell Balancing  
Disabled  
Internal and External Temperature Sensor  
Undertemperature Charging  
Undertemperature Discharging  
BROADCAST Mode  
External Temperature Sensor is used.  
0°C  
0°C  
Disabled  
Disabled  
Battery Trip Point (BTP) with active high interrupt  
(1) When using the device the first time, if the a 1-s or 2-s battery pack is used, then a charger or power supply should be connected to the  
PACK+ terminal to prevent device shutdown. Then update the cell configuration (see the bq40z50-R1 Technical Reference Manual  
[SLUUBC1] for details) before removing the charger connection.  
9.2.2 Detailed Design Procedure  
9.2.2.1 High-Current Path  
The high-current path begins at the PACK+ terminal of the battery pack. As charge current travels through the  
pack, it finds its way through protection FETs, a chemical fuse, the lithium-ion cells and cell connections, and the  
sense resistor, and then returns to the PACK– terminal (see Figure 22). In addition, some components are  
placed across the PACK+ and PACK– terminals to reduce effects from electrostatic discharge.  
9.2.2.1.1 Protection FETs  
Select the N-channel charge and discharge FETs for a given application. Most portable battery applications are a  
good match for the CSD17308Q3. The TI CSD17308Q3 is a 47A, 30-V device with Rds(on) of 8.2 mΩ when the  
gate drive voltage is 8 V.  
If a precharge FET is used, R1 is calculated to limit the precharge current to the desired rate. Be sure to account  
for the power dissipation of the series resistor. The precharge current is limited to (VCHARGER – VBAT)/R1 and  
maximum power dissipation is (Vcharger – Vbat)2/R1.  
The gates of all protection FETs are pulled to the source with a high-value resistor between the gate and source  
to ensure they are turned off if the gate drive is open.  
Capacitors C1 and C2 help protect the FETs during an ESD event. Using two devices ensures normal operation  
if one becomes shorted. To have good ESD protection, the copper trace inductance of the capacitor leads must  
be designed to be as short and wide as possible. Ensure that the voltage rating of both C1 and C2 are adequate  
to hold off the applied voltage if one of the capacitors becomes shorted.  
Copyright © 2015, Texas Instruments Incorporated  
29  
 
 
bq40z50-R1  
ZHCSDZ9 JULY 2015  
www.ti.com.cn  
Figure 22. bq40z50-R1 Protection FETs  
9.2.2.1.2 Chemical Fuse  
The chemical fuse (Dexerials, Uchihashi, and so forth) is ignited under command from either the bq294700  
secondary voltage protection IC or from the FUSE pin of the gas gauge. Either of these events applies a positive  
voltage to the gate of Q5, shown in Figure 23, which then sinks current from the third terminal of the fuse,  
causing it to ignite and open permanently.  
It is important to carefully review the fuse specifications and match the required ignition current to that available  
from the N-channel FET. Ensure that the proper voltage, current, and Rds(on) ratings are used for this device.  
The fuse control circuit is discussed in detail in FUSE Circuitry.  
30  
Copyright © 2015, Texas Instruments Incorporated  
bq40z50-R1  
www.ti.com.cn  
ZHCSDZ9 JULY 2015  
Figure 23. FUSE Circuit  
9.2.2.1.3 Lithium-Ion Cell Connections  
The important part to remember about the cell connections is that high current flows through the top and bottom  
connections; therefore, the voltage sense leads at these points must be made with a Kelvin connection to avoid  
any errors due to a drop in the high-current copper trace. The location marked 4P in Figure 24 indicates the  
Kelvin connection of the most positive battery node. The connection marked 1N is equally important. The VC5  
pin (a ground reference for cell voltage measurement), which is in the older generation devices, is not in the  
bq40z50-R1 device. Therefore, the single-point connection at 1N to the low-current ground is needed to avoid an  
undesired voltage drop through long traces while the gas gauge is measuring the bottom cell voltage.  
Figure 24. Lithium-Ion Cell Connections  
Copyright © 2015, Texas Instruments Incorporated  
31  
 
 
bq40z50-R1  
ZHCSDZ9 JULY 2015  
www.ti.com.cn  
9.2.2.1.4 Sense Resistor  
As with the cell connections, the quality of the Kelvin connections at the sense resistor is critical. The sense  
resistor must have a temperature coefficient no greater than 50 ppm in order to minimize current measurement  
drift with temperature. Choose the value of the sense resistor to correspond to the available overcurrent and  
short-circuit ranges of the bq40z50-R1. Select the smallest value possible to minimize the negative voltage  
generated on the bq40z50-R1 VSS node(s) during a short circuit. This pin has an absolute minimum of –0.3 V.  
Parallel resistors can be used as long as good Kelvin sensing is ensured. The device is designed to support a 1-  
mΩ to 3-mΩ sense resistor.  
The ground scheme of bq40z50-R1 is different from the older generation devices. In previous devices, the device  
ground (or low current ground) is connected to the SRN side of the Rsense resistor pad. The bq40z50-R1,  
however, connects the low-current ground on the SRP side of the Rsense resistor pad, close to the battery 1N  
terminal (see Lithium-Ion Cell Connections). This is because the bq40z50-R1 has one less VC pin (a ground  
reference pin VC5) compared to the previous devices. The pin was removed and was internally combined to  
SRP.  
Figure 25. Sense Resistor  
9.2.2.1.5 ESD Mitigation  
A pair of series 0.1-μF ceramic capacitors is placed across the PACK+ and PACK– terminals to help in the  
mitigation of external electrostatic discharges. The two devices in series ensure continued operation of the pack  
if one of the capacitors becomes shorted.  
Optionally, a tranzorb such as the SMBJ2A can be placed across the terminals to further improve ESD immunity.  
9.2.2.2 Gas Gauge Circuit  
The Gas Gauge Circuit includes the bq40z50-R1 and its peripheral components. These components are divided  
into the following groups: Differential Low-Pass Filter, PBI, System Present, SMBus Communication, FUSE  
circuit, and LED.  
9.2.2.2.1 Coulomb-Counting Interface  
The bq40z50-R1 uses an integrating delta-sigma ADC for current measurements. Add a 100-Ω resistor from the  
sense resistor to the SRP and SRN inputs of the device. Place a 0.1-µF (C18) filter capacitor across the SRP  
and SRN inputs. Optional 0.1-µF filter capacitors (C19 and C20) can be added for additional noise filtering, if  
required for your circuit.  
32  
Copyright © 2015, Texas Instruments Incorporated  
bq40z50-R1  
www.ti.com.cn  
ZHCSDZ9 JULY 2015  
Figure 26. Differential Filter  
9.2.2.2.2 Power Supply Decoupling and PBI  
The bq40z50-R1 has an internal LDO that is internally compensated and does not require an external decoupling  
capacitor.  
The PBI pin is used as a power supply backup input pin providing power during brief transient power outages. A  
standard 2.2-µF ceramic capacitor is connected from the PBI pin to ground as shown in Figure 27.  
Figure 27. Power Supply Decoupling  
9.2.2.2.3 System Present  
The System Present signal is used to inform the gas gauge whether the pack is installed into or removed from  
the system. In the host system, this pin is grounded. The PRES pin of the bq40z50-R1 is occasionally sampled  
to test for system present. To save power, an internal pullup is provided by the gas gauge during a brief 4-μs  
sampling pulse once per second. A resistor can be used to pull the signal low and the resistance must be 20 kΩ  
or lower to insure that the test pulse is lower than the VIL limit. The pull-up current source is typically 10 µA to  
20 µA.  
Copyright © 2015, Texas Instruments Incorporated  
33  
 
bq40z50-R1  
ZHCSDZ9 JULY 2015  
www.ti.com.cn  
Figure 28. System Present Pull-Down Resistor  
Because the System Present signal is part of the pack connector interface to the outside world, it must be  
protected from external electrostatic discharge events. An integrated ESD protection on the PRES device pin  
reduces the external protection requirement to just R29 for an 8-kV ESD contact rating. However, if it is possible  
that the System Present signal may short to PACK+, then R28 and D4 must be included for high-voltage  
protection.  
Figure 29. System Present ESD and Short Protection  
9.2.2.2.4 SMBus Communication  
The SMBus clock and data pins have integrated high-voltage ESD protection circuits, however, adding a Zener  
diode (D2 and D3) and series resistor (R24 and R26) provides more robust ESD performance.  
34  
Copyright © 2015, Texas Instruments Incorporated  
bq40z50-R1  
www.ti.com.cn  
ZHCSDZ9 JULY 2015  
The SMBus clock and data lines have internal pulldown. When the gas gauge senses that both lines are low  
(such as during removal of the pack), the device performs auto-offset calibration and then goes into SLEEP  
mode to conserve power.  
Figure 30. ESD Protection for SMB Communication  
9.2.2.2.5 FUSE Circuitry  
The FUSE pin of the bq40z50-R1 is designed to ignite the chemical fuse if one of the various safety criteria is  
violated. The FUSE pin also monitors the state of the secondary-voltage protection IC. Q5 ignites the chemical  
fuse when its gate is high. The 7-V output of the bq294700 is divided by R16 and R6, which provides adequate  
gate drive for Q5 while guarding against excessive back current into the bq294700 if the FUSE signal is high.  
Using C3 is generally a good practice, especially for RFI immunity. C3 may be removed, if desired, because the  
chemical fuse is a comparatively slow device and is not affected by any sub-microsecond glitches that come from  
the FUSE output during the cell connection process.  
Copyright © 2015, Texas Instruments Incorporated  
35  
bq40z50-R1  
ZHCSDZ9 JULY 2015  
www.ti.com.cn  
Figure 31. FUSE Circuit  
When the bq40z50-R1 is commanded to ignite the chemical fuse, the FUSE pin activates to give a typical 8-V  
output. The new design makes it possible to use a higher Vgs FET for Q5. This improves the robustness of the  
system, as well as widens the choices for Q5.  
9.2.2.3 Secondary-Current Protection  
The bq40z50-R1 provides secondary overcurrent and short-circuit protection, cell balancing, cell voltage  
multiplexing, and voltage translation. The following discussion examines Cell and Battery Inputs, Pack and FET  
Control, Temperature Output, and Cell Balancing.  
9.2.2.3.1 Cell and Battery Inputs  
Each cell input is conditioned with a simple RC filter, which provides ESD protection during cell connect and acts  
to filter unwanted voltage transients. The resistor value allows some trade-off for cell balancing versus safety  
protection.  
The integrated cell balancing FETs allow the AFE to bypass cell current around a given cell or numerous cells,  
effectively balancing the entire battery stack. External series resistors placed between the cell connections and  
the VCx I/O pins set the balancing current magnitude. The internal FETs provide a 200-Ω resistance (2 V < VDS  
< 4 V). Series input resistors between 100 Ω and 1 kΩ are recommended for effective cell balancing.  
The BAT input uses a diode (D1) to isolate and decouple it from the cells in the event of a transient dip in voltage  
caused by a short-circuit event.  
Also, as described in High-Current Path, the top and bottom nodes of the cells must be sensed at the battery  
connections with a Kelvin connection to prevent voltage sensing errors caused by a drop in the high-current PCB  
copper.  
36  
Copyright © 2015, Texas Instruments Incorporated  
bq40z50-R1  
www.ti.com.cn  
ZHCSDZ9 JULY 2015  
Figure 32. Cell and BAT Inputs  
9.2.2.3.2 External Cell Balancing  
Internal cell balancing can only support up to 10 mA. External cell balancing provide as another option for faster  
cell balancing. For details, refer to the application note, Fast Cell Balancing Using External MOSFET (SLUA420).  
9.2.2.3.3 PACK and FET Control  
The PACK and VCC inputs provide power to the bq40z50-R1 from the charger. The PACK input also provides a  
method to measure and detect the presence of a charger. The PACK input uses a 100-Ω resistor; whereas, the  
VCC input uses a diode to guard against input transients and prevents mis-operation of the date driver during  
short-circuit events.  
Copyright © 2015, Texas Instruments Incorporated  
37  
bq40z50-R1  
ZHCSDZ9 JULY 2015  
www.ti.com.cn  
Figure 33. bq40z50-R1 PACK and FET Control  
The N-channel charge and discharge FETs are controlled with 5.1-kΩ series gate resistors, which provide a  
switching time constant of a few microseconds. The 10-MΩ resistors ensure that the FETs are off in the event of  
an open connection to the FET drivers. Q4 is provided to protect the discharge FET (Q3) in the event of a  
reverse-connected charger. Without Q4, Q3 can be driven into its linear region and suffer severe damage if the  
PACK+ input becomes slightly negative.  
Q4 turns on in that case to protect Q3 by shorting its gate to source. To use the simple ground gate circuit, the  
FET must have a low gate turn-on threshold. If it is desired to use a more standard device, such as the 2N7002  
as the reference schematic, the gate should be biased up to 3.3 V with a high-value resistor. The bq40z50-R1  
device has the capability to provide a current-limited charging path typically used for low battery voltage or low  
temperature charging. The bq40z50-R1 device uses an external P-channel, pre-charge FET controlled by PCHG.  
9.2.2.3.4 Temperature Output  
For the bq40z50-R1 device, TS1, TS2, TS3, and TS4 provide thermistor drive-under program control. Each pin  
can be enabled with an integrated 18-k(typical) linearization pullup resistor to support the use of a 10-kat  
25°C (103) NTC external thermistor such as a Mitsubishi BN35-3H103. The reference design includes four 10-kΩ  
thermistors: RT1, RT2, RT3, and RT4. The bq40z50-R1 device supports up to four external thermistors. Connect  
unused thermistor pins to VSS  
.
38  
Copyright © 2015, Texas Instruments Incorporated  
bq40z50-R1  
www.ti.com.cn  
ZHCSDZ9 JULY 2015  
Figure 34. Thermistor Drive  
9.2.2.3.5 LEDs  
Three LED control outputs provide constant current sinks for the driving external LEDs. These outputs are  
configured to provide voltage and control for up to 5 LEDs. No external bias voltage is required. Unused  
LEDCNTL pins can remain open or they can be connected to VSS. The DISP pin should be connected to VSS, if  
the LED feature is not used.  
Figure 35. LEDs  
9.2.2.3.6 Safety PTC Thermistor  
The bq40z50-R1 device provides support for a safety PTC thermistor. The PTC thermistor is connected between  
the PTC pin and VSS. It can be placed close to the CHG/DSG FETs to monitor the temperature. The PTC pin  
outputs a very small current, typical ~370 nA, and the PTC fault will be triggered at ~0.7 V typical. A PTC fault is  
one of the permanent failure modes. It can only be cleared by a POR.  
To disable this feature, connect a 10-kresistor between PTC and VSS  
.
Copyright © 2015, Texas Instruments Incorporated  
39  
bq40z50-R1  
ZHCSDZ9 JULY 2015  
www.ti.com.cn  
Figure 36. PTC Thermistor  
40  
Copyright © 2015, Texas Instruments Incorporated  
bq40z50-R1  
www.ti.com.cn  
ZHCSDZ9 JULY 2015  
9.2.3 Application Curves  
±24.6  
±24.8  
±25.0  
±25.2  
±25.4  
±25.6  
±25.8  
87.4  
87.2  
87.0  
86.8  
86.6  
86.4  
86.2  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
±40  
±20  
±40  
±20  
Temperature (ƒC)  
Temperature (ƒC)  
C009  
C010  
Threshold setting is 25 mV.  
Threshold setting is 25 mV.  
Figure 37. Overcurrent Discharge Protection Threshold Vs.  
Temperature  
Figure 38. Short Circuit Charge Protection Threshold Vs.  
Temperature  
±86.0  
±86.2  
±86.4  
±86.6  
±86.8  
±87.0  
±87.2  
±172.9  
±173.0  
±173.1  
±173.2  
±173.3  
±173.4  
±173.5  
±173.6  
0
20  
40  
60  
80  
100  
120  
±40  
±20  
0
20  
40  
60  
80  
100  
120  
±40  
±20  
Temperature (ƒC)  
Temperature (ƒC)  
C012  
C011  
Threshold setting is –177.7 mV.  
Threshold setting is –88.85 mV.  
Figure 40. Short Circuit Discharge 2 Protection Threshold  
Vs. Temperature  
Figure 39. Short Circuit Discharge 1 Protection Threshold  
Vs. Temperature  
11.00  
10.95  
10.90  
10.85  
10.80  
10.75  
10.70  
452  
450  
448  
446  
444  
442  
440  
438  
436  
434  
432  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
±40  
±20  
±40  
±20  
Temperature (ƒC)  
Temperature (ƒC)  
C013  
C014  
Threshold setting is 11 ms.  
Threshold setting is 465 µs.  
Figure 41. Overcurrent Delay Time Vs. Temperature  
Figure 42. Short Circuit Charge Current Delay Time Vs.  
Temperature  
Copyright © 2015, Texas Instruments Incorporated  
41  
bq40z50-R1  
ZHCSDZ9 JULY 2015  
www.ti.com.cn  
10 Power Supply Recommendations  
The device manages its supply voltage dynamically according to the operation conditions. Normally, the BAT  
input is the primary power source to the device. The BAT pin should be connected to the positive termination of  
the battery stack. The input voltage for the BAT pin ranges from 2.2 V to 26 V.  
The VCC pin is the secondary power input, which activates when the BAT voltage falls below minimum Vcc. This  
allows the device to source power from a charger (if present) connected to the PACK pin. The VCC pin should  
be connected to the common drain of the CHG and DSG FETs. The charger input should be connected to the  
PACK pin.  
42  
Copyright © 2015, Texas Instruments Incorporated  
bq40z50-R1  
www.ti.com.cn  
ZHCSDZ9 JULY 2015  
11 Layout  
11.1 Layout Guidelines  
A battery fuel gauge circuit board is a challenging environment due to the fundamental incompatibility of high-  
current traces and ultra-low current semiconductor devices. The best way to protect against unwanted trace-to-  
trace coupling is with a component placement, such as that shown in Figure 43, where the high-current section is  
on the opposite side of the board from the electronic devices. Clearly this is not possible in many situations due  
to mechanical constraints. Still, every attempt should be made to route high-current traces away from signal  
traces, which enter the bq40z50-R1 directly. IC references and registers can be disturbed and in rare cases  
damaged due to magnetic and capacitive coupling from the high-current path. Note that during surge current and  
ESD events, the high-current traces appear inductive and can couple unwanted noise into sensitive nodes of the  
gas gauge electronics, as illustrated in Figure 44.  
Figure 43. Separating High- and Low-Current Sections Provides an Advantage in Noise Immunity  
Figure 44. Avoid Close Spacing Between High-Current and Low-Level Signal Lines  
Kelvin voltage sensing is extremely important in order to accurately measure current and top and bottom cell  
voltages. Place all filter components as close as possible to the device. Route the traces from the sense resistor  
in parallel to the filter circuit. Adding a ground plane around the filter network can add additional noise immunity.  
Figure 45 and Figure 46 demonstrates correct kelvin current sensing.  
Copyright © 2015, Texas Instruments Incorporated  
43  
 
 
bq40z50-R1  
ZHCSDZ9 JULY 2015  
www.ti.com.cn  
Layout Guidelines (continued)  
Current Direction  
R
SNS  
Current Sensing Direction  
To SRP – SRN pin or HSRP – HSRN pin  
Figure 45. Sensing Resistor PCB Layout  
Figure 46. Sense Resistor, Ground Shield, and Filter Circuit Layout  
11.1.1 Protector FET Bypass and Pack Terminal Bypass Capacitors  
The general principle is to use wide copper traces to lower the inductance of the bypass capacitor circuit. In  
Figure 47, an example layout demonstrates this technique.  
Figure 47. Use Wide Copper Traces to Lower the Inductance of Bypass Capacitors C1, C2, and C3  
44  
Copyright © 2015, Texas Instruments Incorporated  
 
bq40z50-R1  
www.ti.com.cn  
ZHCSDZ9 JULY 2015  
Layout Guidelines (continued)  
11.1.2 ESD Spark Gap  
Protect SMBus Clock, Data, and other communication lines from ESD with a spark gap at the connector. The  
pattern in Figure 48 recommended, with 0.2-mm spacing between the points.  
Figure 48. Recommended Spark-Gap Pattern Helps Protect Communication Lines from ESD  
11.2 Layout Example  
THERMISTORS  
CHARGE  
AND  
DISCHARGE  
2ND LEVEL  
PATH  
PROTECTOR  
LEDS  
CURRENT  
FILTER  
SENSE  
RESISTOR  
Figure 49. Top Layer  
Figure 50. Internal Layer 1  
Copyright © 2015, Texas Instruments Incorporated  
45  
 
bq40z50-R1  
ZHCSDZ9 JULY 2015  
www.ti.com.cn  
Layout Example (continued)  
Figure 51. Internal Layer 2  
CHARGE  
AND  
DISCHARGE  
PATH  
FILTER  
COMPONENTS  
Figure 52. Bottom Layer  
46  
版权 © 2015, Texas Instruments Incorporated  
bq40z50-R1  
www.ti.com.cn  
ZHCSDZ9 JULY 2015  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
如需相关文档,请参见《bq40z50-R1 技术参考手册》(文献编号:SLUUBC1)。  
12.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.3 商标  
Impedance Track, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
47  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2015, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ40Z50RSMR-R1  
BQ40Z50RSMT-R1  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RSM  
RSM  
32  
32  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
BQ40Z50  
BQ40Z50  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RSM 32  
4 x 4, 0.4 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224982/A  
www.ti.com  
PACKAGE OUTLINE  
RSM0032A  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
B
4.1  
3.9  
A
0.5  
0.3  
PIN 1 INDEX AREA  
4.1  
3.9  
0.25  
0.15  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 2.8  
1.4 0.05  
(0.2) TYP  
4X (0.45)  
28X 0.4  
9
16  
8
17  
EXPOSED  
THERMAL PAD  
2X  
SYMM  
33  
2.8  
24  
0.25  
32X  
1
SEE TERMINAL  
DETAIL  
0.15  
0.1  
C A B  
25  
32  
PIN 1 ID  
(OPTIONAL)  
0.05  
SYMM  
0.5  
0.3  
32X  
4219107/A 11/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RSM0032A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.4)  
SYMM  
32  
25  
32X (0.6)  
1
32X (0.2)  
24  
SYMM  
33  
(3.8)  
28X (0.4)  
(
0.2) VIA  
17  
8
(R0.05)  
TYP  
9
16  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219107/A 11/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RSM0032A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.3)  
(R0.05) TYP  
25  
32  
32X (0.6)  
32X (0.2)  
1
24  
SYMM  
33  
(3.8)  
28X (0.4)  
METAL  
TYP  
17  
8
16  
9
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 33:  
86% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219107/A 11/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY