BQ51052BYFPT [TI]

符合 Qi (WPC) 标准的 BQ51052B 集成无线电源锂离子电池充电器接收器 | YFP | 28 | 0 to 125;
BQ51052BYFPT
型号: BQ51052BYFPT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

符合 Qi (WPC) 标准的 BQ51052B 集成无线电源锂离子电池充电器接收器 | YFP | 28 | 0 to 125

电池 PC 无线
文件: 总44页 (文件大小:2165K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
bq51050B, bq51051B, bq51052B  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
符合 Qi v1.2 标准的 bq5105xB 高效无线电源接收器  
和电池充电器  
1 特性  
3 说明  
1
单级无线电源接收器  
和锂离子/锂聚合物电池充电器  
bq5105x 器件是符合 Qi 标准的高效无线电源接收器,  
具有集成的锂离子/锂聚合物电池充电控制器,可用于  
便携式 应用。bq5105xB 器件提供高效交流/直流电源  
转换,集成了符合 Qi v1.2 通信协议所需的数字控制  
器,并提供了安全高效锂离子和锂聚合物电池充电所需  
的所有必需控制算法。通过搭配使用 bq500212A 发送  
器侧控制器,bq5105x 可为直接电池充电器解决方案  
提供完整的无线电源传输系统。通过使用近场感应式电  
力传输,嵌入在便携式器件内的接收器线圈能够接收发  
送器线圈所发出的电能。来自接收器线圈的交流信号继  
而被整流和调节以将电能直接应用到电池。为了稳定电  
能传输过程,建立了接收器到发送器的全局反馈机制。  
这个反馈使用 Qi v1.2 通信协议建立。  
在单个小型封装内将无线电源接收器、整流器和  
电池充电器组合在一起  
4.20V4.35V 4.40V 输出电压选项  
支持高达 1.5A 的充电电流  
93% 峰值交流至直流 (AC-DC) 充电效率  
稳健耐用架构  
20V 最大输入电压容差,具有输入过压保护  
热关断及过流保护  
温度监控和故障检测  
符合 WPC v1.2 Qi 行业标准  
功率级输出跟踪整流器和电池电压以确保整个充电  
周期内的最大效率  
bq5105xB 器件在单个封装内集成了低阻抗同步整流  
器、低压降稳压器 (LDO)、数字控制、充电器控制器  
及精准电压和电流环路。整个功率级(整流器与  
LDO)均使用低阻抗 N-MOSFET100mΩ 常用导通  
电阻)以确保高效率与低功耗。  
采用小型 DSGBA VQFN 封装  
2 应用  
电池组  
手机和智能电话  
耳机  
器件信息(1)  
便携式媒体播放器  
其他手持式器件  
器件型号  
bq51050B  
bq51051B  
bq51052B  
封装  
VQFN (20)  
DSBGA (28)  
封装尺寸(标称值)  
4.50mm x 3.50mm  
3.00mm x 1.90mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
典型应用电路原理图  
bq5105xB  
AD-EN  
AD  
BAT  
CCOMM1  
CBOOT1  
C4  
C3  
COMM1  
BOOT1  
AC1  
D1  
RECT  
C1  
R4  
TI  
TX  
COIL  
Wireless  
Power  
Transmitter  
RX  
COIL  
PACK+  
C2  
NTC  
TS/CTRL  
AC2  
BOOT2  
COMM2  
ROS  
PACK-  
CBOOT2  
CHG  
CCOMM2  
CCLAMP2  
CCLAMP1  
CLAMP2  
CLAMP1  
ILIM  
TERM  
EN2  
Tri-State  
Bi-State  
HOST  
R5  
FOD  
PGND  
R1  
RFOD  
Copyright  
©
2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLUSB42  
 
 
 
 
 
 
 
bq51050B, bq51051B, bq51052B  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 27  
Application and Implementation ........................ 28  
9.1 Application Information............................................ 28  
9.2 Typical Application .................................................. 28  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Options....................................................... 4  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 7  
7.6 Typical Characteristics............................................ 10  
Detailed Description ............................................ 13  
8.1 Overview ................................................................. 13  
8.2 Functional Block Diagram ....................................... 14  
8.3 Feature Description................................................. 14  
9
10 Power Supply Recommendations ..................... 33  
11 Layout................................................................... 33  
11.1 Layout Guidelines ................................................. 33  
11.2 Layout Example .................................................... 33  
12 器件和文档支持 ..................................................... 34  
12.1 文档支持................................................................ 34  
12.2 相关链接................................................................ 34  
12.3 接收文档更新通知 ................................................. 34  
12.4 社区资源................................................................ 34  
12.5 ....................................................................... 34  
12.6 静电放电警告......................................................... 34  
12.7 Glossary................................................................ 34  
13 机械、封装和可订购信息....................................... 34  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision E (March 2015) to Revision F  
Page  
在整个文档中将所有 Qi v1.1 WPC v1.1 更改为 Qi v1.2 WPC v1.2 .............................................................................. 1  
Added the Adaptive Communication Limit section............................................................................................................... 24  
Deleted R1 = 29.402 kΩ R3 = 14.302 kΩ and added a link to SLUS629 in the Internal Temperature Sense (TS  
Function of the TS/CTRL Pin) section ................................................................................................................................. 25  
Changes from Revision D (January 2014) to Revision E  
Page  
已添加 ESD 额定值表,特性 说明 部分、器件功能模式应用和实施 部分、电源建议 部分、布局 部分、器件和文档  
支持 部分,以及机械、封装和可订购信息 部分...................................................................................................................... 1  
已添加 bq51052B 4.40V 选项................................................................................................................................................. 1  
Updated pinout images........................................................................................................................................................... 4  
Added thermal pad description in Pin Functions table ........................................................................................................... 4  
Added AD voltage to Recommended Operating Conditions .................................................................................................. 6  
Changed RECT overvoltage specification name from VRECT to VOVP..................................................................................... 7  
Changed to ILIM_SHORT, OK from ILIM_SC for clarity...................................................................................................................... 7  
Added VOREG for bq51052B .................................................................................................................................................... 8  
Added minimum current for KILIM ............................................................................................................................................ 8  
Changed KILIM TYP value from 300 to 314 (min / max also changed)................................................................................... 8  
Added IBULK spec for charging minimum and maximum......................................................................................................... 8  
Added VRECH for bq51052B .................................................................................................................................................... 8  
Added new spec ITermination ...................................................................................................................................................... 8  
Changed to VTSB from VTS for clarity................................................................................................................................... 8  
Changed from ITS-Bias for clarity............................................................................................................................................... 8  
Deleted V0C-F as redundant..................................................................................................................................................... 8  
Changed typical JEITA regulation on bq51050B from 4.10 V to 4.06 V ................................................................................ 8  
Changed to clarify CTRL pin high and low levels................................................................................................................... 8  
2
版权 © 2012–2017, Texas Instruments Incorporated  
 
bq51050B, bq51051B, bq51052B  
www.ti.com.cn  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
Changed Thermal shutdown name to TJ-SD for clarity ............................................................................................................ 9  
Added section to describe Adapter Enable function............................................................................................................... 9  
Changed Synchronous rectifer switchover name to IBAT-SR for clarity..................................................................................... 9  
Added synchronous mode entry for bq51052B...................................................................................................................... 9  
Deleted note regarding internal junction monitor reducing current - it is not applicable. ..................................................... 19  
Added section on modified JEITA profile for bq51052B....................................................................................................... 21  
Changed TS/CTRL function to correct Termination Packet value........................................................................................ 22  
Added Taper mode completion for Termination Packet....................................................................................................... 22  
Changed Beta value from 4500 to 3380 to match NTC datasheet ...................................................................................... 25  
Changed received power maximum error from 250 mW to 375 mW to comply with latest WPC v1.2 specification........... 27  
Changes from Revision C (February 2013) to Revision D  
Page  
Changed the ABSOLUTE MAXIMUM RATINGS - moved AC1 and AC2 onto a single row with a Min value of –0.8 ......... 6  
Added section: Details of a Qi Wireless Power System and bq5105xB Power Transfer Flow Diagrams............................ 15  
Changed text in the Battery Charge Profile section ............................................................................................................. 19  
Changed Battery failure Conditions in Table 1..................................................................................................................... 22  
Changed Equation 3 and Equation 4 ................................................................................................................................... 25  
Changed R2 = 7.81 kΩ To: R1 = 29.402 kΩ ......................................................................................................................... 25  
Changed R3 = 13.98 kΩ To: R3 = 14.302 kΩ in the Internal Temperature Sense (TS Function of the TS/CTRL Pin)  
section .................................................................................................................................................................................. 25  
Changed THOT = 0°C To: THOT = 60°C.................................................................................................................................. 25  
Changed Equation 6............................................................................................................................................................. 29  
Changes from Revision B (September 2012) to Revision C  
Page  
完整数据表第一................................................................................................................................................................... 1  
Changes from Revision A (August 2012) to Revision B  
Page  
将最后一条 特性 要点由“1.9 x 3.0mm WCSP 4.5 x 3.5mm QFN 封装选项更改为采用小型 WCSP QFN 封装”......... 1  
更改了图表 1 并将标题从:无线充电联盟(WPC Qi)感应充电系统,改为:典型系统方框图显示 bq5105xB 被用  
作一个无线电源锂离子/锂聚合物电池充电器 .......................................................................................................................... 1  
补充说明:如需了解产品详细信息和设计资源,请访问 ti.com/wirelesspower....................................................................... 1  
Changes from Original (August 2012) to Revision A  
Page  
Changed Regulated BAT(output) voltage............................................................................................................................... 8  
Changed Recharge threshold for bq51052B.......................................................................................................................... 8  
Deleted ITS-Bias-Max.................................................................................................................................................................... 8  
Changed VCOLD to VOC and values ......................................................................................................................................... 8  
Changed V45C values.............................................................................................................................................................. 8  
Changed V60C values.............................................................................................................................................................. 8  
Changed Figure 25............................................................................................................................................................... 21  
Changed Figure 25............................................................................................................................................................... 22  
Copyright © 2012–2017, Texas Instruments Incorporated  
3
bq51050B, bq51051B, bq51052B  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
www.ti.com.cn  
5 Device Options  
DEVICE  
FUNCTION  
VRECT-OVP  
15 V  
VRECT-REG  
Track  
VBAT-REG  
4.20 V  
NTC MONITORING  
JEITA  
bq51050B  
bq51051B  
bq51052B  
4.20-V Li-Ion Wireless Battery Charger  
4.35-V Li-Ion Wireless Battery Charger  
4.40-V Li-Ion Wireless Battery Charger  
15 V  
Track  
4.35 V  
JEITA  
15 V  
Track  
4.40 V  
Modified JEITA  
6 Pin Configuration and Functions  
YFP Package  
28-Pin DSBGA  
Top View  
RHL Package  
20-Pin VQFN With Exposed Thermal Pad  
Top View  
1
2
3
4
A
B
C
D
E
F
PGND  
PGND  
PGND  
PGND  
AC1  
BOOT1  
BAT  
2
3
4
5
6
7
8
9
19  
18  
17  
16  
15  
14  
13  
12  
AC2  
AC2  
BOOT2  
BAT  
AC2  
RECT  
BAT  
AC1  
RECT  
BAT  
AC1  
BOOT1  
BAT  
RECT  
BOOT2  
CLAMP2  
COMM2  
FOD  
Thermal  
Pad  
CLAMP1  
COMM1  
CHG  
AD-EN  
AD  
TS/CTRL  
ILIM  
COMM2  
TS/CTRL  
ILIM  
CLAMP2  
FOD  
CLAMP1  
AD-EN  
TERM  
COMM1  
CHG  
The exposed thermal pad should be  
connected to ground.  
G
EN2  
AD  
4
Copyright © 2012–2017, Texas Instruments Incorporated  
bq51050B, bq51051B, bq51052B  
www.ti.com.cn  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
Pin Functions  
Pin  
DSBGA VQFN  
I/O  
DESCRIPTION  
NAME  
AC1  
B3, B4  
B1, B2  
2
I
I
Input power from receiver coil.  
Input power from receiver coil.  
AC2  
19  
If AD functionality is used, connect this pin to the wired adapter input. When VAD-Pres is applied to  
this pin wireless charging is disabled and AD_ENn is driven low. Connect a 1-µF capacitor from AD  
to PGND. If unused, the capacitor is not required and AD should be connected directly to PGND.  
AD  
G4  
9
8
I
AD-EN  
F3  
D1  
D2  
D3  
D4  
C4  
C1  
F4  
E3  
O
Push-pull driver for external PFET when wired charging is active. Float if not used.  
BAT  
4
O
Output pin, delivers power to the battery while applying the internal charger profile.  
BOOT1  
BOOT2  
CHG  
3
17  
7
O
O
O
O
Bootstrap capacitors for driving the high-side FETs of the synchronous rectifier. Connect a 10-nF  
ceramic capacitor from BOOT1 to AC1 and from BOOT2 to AC2.  
Open-drain output – active when BAT is enabled. Float if not used.  
CLAMP1  
5
Open-drain FETs which are used for a non-power dissipative overvoltage AC clamp protection.  
When the RECT voltage goes above 15 V, both switches will be turned on and the capacitors will  
act as a low impedance to protect the device from damage. If used, capacitors are used to connect  
CLAMP1 to AC1 and CLAMP2 to AC2. Recommended connections are 0.47-µF capacitors.  
CLAMP2  
COMM1  
COMM2  
E2  
E4  
E1  
16  
6
O
O
O
Open-drain outputs used to communicate with primary by varying reflected impedance. Connect a  
capacitor from COMM1 to AC1 and a capacitor from COMM2 to AC2 for capacitive load modulation.  
For resistive modulation connect COMM1 and COMM2 to RECT through a single resistor. See  
Communication Modulator for more information.  
15  
Used to set priority between wireless power and wired power. EN2 low enables wired charging  
source if AD input voltage is present. EN2 high disables wired charging source and wireless power  
is enabled if present.  
EN2  
FOD  
ILIM  
G2  
F2  
G1  
11  
14  
12  
I
I
Input for the rectified power measurement. See WPC v1.2 Compatibility for details.  
Programming pin for the battery charge current. The total resistance from ILIM to PGND (RILIM) sets  
I/O the charge current. Figure 32 shows RILIM to be R1 + RFOD. Details can be found in Electrical  
Characteristics and Battery Charge Current Setting Calculations.  
A1  
A2  
A3  
A4  
PGND  
1, 20  
Power ground  
Filter capacitor for the internal synchronous rectifier. Connect a ceramic capacitor to PGND.  
Depending on the power levels, the value may be from 4.7 μF to 22 μF.  
RECT  
TERM  
C2, C3  
18  
10  
O
I
Input that is used to set the termination threshold. Termination current is the battery current level  
below which the charge process will cease. The termination current is set as a percentage of the  
charge current. See Battery Charge Current Setting Calculations for more details.  
G3  
Temperature Sense (TS) and Control (CTRL) pin functionality. For the TS functionality connect  
TS/CTRL to ground through a Negative Temperature Coefficient (NTC) resistor. If an NTC function  
is not desired, connect to PGND with a 10-kΩ resistor. As a CTRL pin pull low to send end power  
transfer (EPT) fault to the transmitter or pull up to an internal rail to send EPT termination to the  
transmitter. See Internal Temperature Sense (TS Function of the TS/CTRL Pin) for more details.  
TS/CTRL  
F1  
13  
I
PAD  
The exposed thermal pad should be connected to ground (PGND).  
Copyright © 2012–2017, Texas Instruments Incorporated  
5
bq51050B, bq51051B, bq51052B  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings(1)(2)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.3  
–0.8  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
RECT, COMM1, COMM2, BAT, CHG, CLAMP1, CLAMP2  
AC1, AC2  
20  
20  
30  
26  
7
V
V
Input voltage  
AD, AD-EN  
V
BOOT1, BOOT2  
V
EN2, TERM, FOD, TS/CTRL, ILIM  
V
A(RMS)  
A
Input current  
AC1, AC2  
BAT  
2
Output current  
1.5  
15  
1.0  
150  
150  
CHG  
mA  
A
Output sink current  
COMM1, COMM2  
Junction temperature, TJ  
Storage temperature, Tstg  
–40  
–65  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to the VSS terminal, unless otherwise noted.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4
MAX UNIT  
VIN  
IIN  
Input voltage range  
Input current  
RECT  
10  
1.5  
1.5  
0.8  
15  
V
A
Internal Rectifier (voltage monitored at RECT node)  
bq51050B, bq51051B  
bq51052B  
IBAT  
BAT(output) current  
BAT  
A
VAD  
Adapter voltage  
Sink current  
AD  
V
IAD-EN  
ICOMM  
TJ  
AD-EN  
COMM  
1
mA  
mA  
°C  
COMM sink current  
Junction temperature  
500  
125  
0
7.4 Thermal Information  
bq51050B, bq51051B, bq51052B  
THERMAL METRIC(1)  
YFP (DSGBA)  
RHL (VQFN)  
20 PINS  
37.7  
UNIT  
28 PINS  
58.9  
0.2  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
35.5  
9.1  
13.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1.4  
0.5  
ψJB  
8.9  
13.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6
Copyright © 2012–2017, Texas Instruments Incorporated  
bq51050B, bq51051B, bq51052B  
www.ti.com.cn  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
Thermal Information (continued)  
bq51050B, bq51051B, bq51052B  
THERMAL METRIC(1)  
YFP (DSGBA)  
28 PINS  
n/a  
RHL (VQFN)  
20 PINS  
2.7  
UNIT  
RθJC(bot)  
Junction-to-case (bottom) thermal resistance  
°C/W  
7.5 Electrical Characteristics  
Over junction temperature range 0°C TJ 125°C and recommended supply voltage (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VUVLO  
Undervoltage lockout  
VRECT: 0 V 3 V  
2.6  
2.7  
2.8  
V
mV  
V
VHYS-UVLO  
VOVP  
VHYS-OVP  
Hysteresis on UVLO  
VRECT: 3 V 2 V  
VRECT: 5 V 16 V  
VRECT: 16 V 5 V  
250  
15  
Input overvoltage threshold  
Hysteresis on OVP  
14.5  
15.5  
150  
5.11  
mV  
V
(1)  
VRECT-REG  
VRECT regulation voltage  
ILOAD Hysteresis for dynamic VRECT thresholds as a %  
of IILIM  
ILOAD  
ILOAD falling  
5%  
300  
8.3  
3.1  
VBAT = 3.5 V,  
VTRACK  
Tracking VRECT regulation above VBAT  
mV  
V
IBAT 500 mA  
VRECT-REV = VBAT – VRECT  
VBAT = 10 V  
,
VRECT-REV  
VRECT-DPM  
Rectifier reverse voltage protection at the BAT(output)  
9
Rectifier undervoltage protection, restricts IBAT at  
VRECT-DPM  
3
3.2  
V
QUIESCENT CURRENT  
IBAT = 0 mA, 0°C TJ 85°C  
IBAT = 300 mA, 0°C TJ 85°C  
8
2
10  
3
mA  
mA  
Active chip quiescent current consumption from RECT  
(when wireless power is present)  
IRECT  
Quiescent current at the BAT when wireless power is  
disabled (Standby)  
IQ  
VBAT = 4.2 V, 0°C TJ 85°C  
12  
20  
µA  
ILIM SHORT PROTECTION  
bq51050B,  
bq51051B  
Highest value of ILIM resistor considered a fault  
(short).  
Monitored for IBAT > ILIM_SHORT, OK  
RILIM: 200 Ω 50 Ω. IBAT  
latches off, cycle power to  
reset  
120  
235  
RILIM-SHORT  
Ω
bq51052B  
tDGL-Short  
Deglitch time transition from ILIM short to IBAT disable  
1
145  
75  
ms  
mA  
bq51050B,  
bq51051B  
110  
55  
165  
95  
ILIM_SHORT,  
ILIM-SHORT,OK enables the IILIM short comparator when  
IBAT is greater than this value  
IBAT: 0 mA 200 mA  
IBAT: 200 mA 0 mA  
OK  
bq51052B  
ILIM-SHORT,  
Hysteresis for ILIM-SHORT,OK comparator  
Maximum output current limit  
30  
mA  
A
OK  
HYSTERESIS  
Maximum IBAT that will be delivered for up  
to 1 ms when ILIM is shorted to PGND  
IBAT-CL  
2.4  
BATTERY SHORT PROTECTION  
VBAT(SC)  
BAT pin short-circuit detection/precharge threshold  
VBAT: 3 V 0.5 V, no deglitch  
VBAT: 0.5 V 3 V  
bq51050B,  
0.75  
0.8  
0.85  
V
VBAT(SC)-HYS VBAT(SC) hysteresis  
100  
mV  
12  
12  
18  
18  
22  
25  
Source current to BAT pin during short-circuit  
detection  
bq51051B  
IBAT(SC)  
VBAT = 0 V  
mA  
mA  
bq51052B  
VOLTAGE REGULATION PHASE  
bq51050B,  
0.35 *  
IBULK  
bq51051B  
IBAT threshold during Voltge Regulation Phase that  
changes VRECT level from VBAT+VTRACK to VRECT-REG  
IEndTrack  
IBAT decreasing  
0.05 *  
IBULK  
bq51052B  
(1) VRECT-REG is overridden when rectifier foldback mode is active (VRECT-REG-VTRACK).  
Copyright © 2012–2017, Texas Instruments Incorporated  
7
 
bq51050B, bq51051B, bq51052B  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over junction temperature range 0°C TJ 125°C and recommended supply voltage (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
PRECHARGE  
VLOWV  
Precharge to fast charge transition threshold  
VBAT: 2 V 4 V  
2.9  
3.0  
3.1  
V
VLOWV > VBAT > VBAT(SC)  
IBAT: 50 mA – 300 mA  
Precharge current as a percentage of the programmed  
KPRECHG  
18%  
20%  
23%  
charge current setting (IBULK  
IBAT during precharge  
Precharge time-out  
)
IPRECHG  
VLOWV > VBAT > VBAT(SC), IBULK = 500 mA  
VBAT(SC) < VBAT < VLOWV  
100  
30  
mA  
min  
ms  
ms  
tprecharge  
tDGL1(LOWV)  
tDGL2(LOWV)  
OUTPUT  
Deglitch time, pre- to fast-charge  
Deglitch time, fast- to precharge  
25  
25  
bq51050B  
4.16  
4.30  
4.36  
4.20  
4.35  
4.40  
110  
4.22  
VOREG  
Regulated BAT(output) voltage  
Drop-out voltage, RECT to BAT  
IBAT = 1000 mA  
IBAT = 1 A  
bq51051B  
bq51052B  
4.37  
4.44  
190  
V
VDO  
mV  
RLIM = KILIM / IIBULK (500  
mA - 1.5 A)  
bq51050B,  
bq51051B  
KILIM  
Current programming factor  
Battery charging current limits  
303  
314  
321  
AΩ  
RLIM = KILIM / IIBULK (500  
mA - 1.0 A)  
bq51052B  
bq51050B,  
bq51051B  
500  
500  
1,500  
1,000  
IBULK  
KILIM 303 to 321  
mA  
bq51052B  
tfast-charge  
IBAT-R  
Fast-charge timer  
VLOWV < VBAT < VBAT-REG  
10  
hours  
mA  
Battery charge current limit programming range  
Current limit during communication  
1500  
420  
ICOMM-CL  
330  
200  
390  
mA  
TERMINATION  
Programmable termination current as a percentage of  
IIBULK  
KTERM  
ITERM-Th  
ITERM  
RTERM = %IIBULK x KTERM (IBULK = 500 mA)  
240  
100  
50  
280  
55  
Ω/%  
mA  
µA  
Termination current from BAT, defined with KTERM, as IBAT decreasing, RTERM = 2.4k Ω, IBULK  
the current that terminates the charge cycle  
=
1000 mA  
Constant current at the TERM pin to bias the  
termination reference  
40  
VBAT-REG VBAT-REG VBAT-REG  
–135mV –110mV –90mV  
bq51050B  
bq51051B  
bq51052B  
V
VBAT-REG VBAT-REG VBAT-REG  
–125mV –95mV –70mV  
VRECH  
Recharge threshold  
VBAT-REG VBAT-REG VBAT-REG  
–125mV  
–95mV  
–70mV  
ITermination  
Termination current setting limits  
120  
mA  
V
TS / CTRL FUNCTIONALITY  
ITSB< 100 µA (periodically  
Internal TS bias voltage (VTS is the voltage at the  
TS/CTRL pin, VTSB is the internal bias voltage)  
VTSB  
2
2.2  
2.4  
driven see tTS/CTRL-Meas  
VTS: 50% 60%  
VTS: 60% 50%  
VTS: 40% 50%  
VTS: 50% 40%  
VTS: 25% 15%  
VTS: 15% 25%  
VTS: 20% 5%  
VTS: 5% 20%  
)
V0C-R  
Rising threshold  
57  
58.7  
2.4  
47.8  
2
60 %VTSB  
%VTSB  
V0C-Hyst  
V10C  
V10C-Hyst  
V45C  
V45C-Hyst  
V60C  
Hysteresis on 0°C Comparator  
Rising threshold  
46  
18  
12  
49 %VTSB  
%VTSB  
Hysteresis on 10°C Comparator  
Falling threshold  
19.6  
3
21 %VTSB  
%VTSB  
Hysteresis on 45°C Comparator  
Falling threshold  
13.1  
1
14 %VTSB  
%VTSB  
V60C-Hyst  
Hysteresis on 60°C Comparator  
IBULK reduction percentage at 45°C (in full JEITA mode  
- N/A for bq51052B)  
I45C  
VTS: 25% 15%, IBAT = IBULK  
45%  
50%  
55%  
bq51050B  
bq51051B  
bq51052B  
4.06  
4.2  
VO-J  
Voltage regulation during JEITA temperature range  
Voltage on CTRL pin for a high  
V
V
4.2  
VCTRL-HI  
0.2  
5
8
Copyright © 2012–2017, Texas Instruments Incorporated  
bq51050B, bq51051B, bq51052B  
www.ti.com.cn  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
Electrical Characteristics (continued)  
Over junction temperature range 0°C TJ 125°C and recommended supply voltage (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VCTRL-LOW  
tTS/CTRL-Meas  
tTS-Deglitch  
Voltage on CTRL pin for a low  
0
0.1  
V
Time period of TS/CTRL measurements (when VTSB is TS bias voltage is only driven when  
being driven internally)  
24  
10  
20  
ms  
ms  
kΩ  
communication packets are sent  
Deglitch time for all TS comparators  
Pullup resistor for the NTC network. Pulled up to the  
TS bias LDO.  
NTC-Pullup  
18  
22  
Nominal resistance requirement at 25°C of the NTC  
resistor  
NTC-RNOM  
NTC-Beta  
10  
kΩ  
Beta requirement for accurate temperature sensing  
through the above specified thresholds  
3380  
Ω
THERMAL PROTECTION  
TJ-SD  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
155  
20  
°C  
°C  
TJ-Hys  
OUTPUT LOGIC LEVELS ON CHG  
VOL  
Open-drain CHG pin  
ISINK = 5 mA  
500  
1
mV  
µA  
VCHG = 20 V,  
0°C TJ 85°C  
IOFF,CHG  
CHG leakage current when disabled  
COMM PIN  
RDS-  
COMM1 and COMM2  
VRECT = 2.6 V  
1
2
Ω
ON(COMM)  
fCOMM  
Signaling frequency on COMM pin  
COMM pin leakage current  
kb/s  
µA  
VCOMM1 = 20 V,  
VCOMM2 = 20 V  
IOFF,COMM  
1
CLAMP PIN  
RDS-  
CLAMP1 and CLAMP2  
0.75  
Ω
ON(CLAMP)  
ADAPTER ENABLE  
VAD-Pres  
VAD-PresH  
IAD  
VAD Rising threshold voltage. EN-UVLO  
VAD 0 V 5 V  
3.5  
3.6  
3.8  
V
VAD-Pres hysteresis, EN-HYS  
Input leakage current  
VAD 5 V 0 V  
400  
mV  
µA  
VRECT = 0 V, VAD = 5 V  
60  
Pullup resistance from AD-EN to BAT when adapter  
mode is disabled and VBAT > VAD, EN-OUT  
RAD  
VAD = 0 V, VBAT = 5 V  
200  
4.5  
350  
Ω
Voltage difference between VAD and VAD-EN when  
adapter mode is enabled, EN-ON  
VAD-Diff  
VAD = 5 V, 0°C TJ 85°C  
3
5
V
SYNCHRONOUS RECTIFIER  
bq51050B,  
bq51051B  
80  
20  
115  
50  
140  
65  
IBAT at which the synchronous rectifier enters half  
synchronous mode, SYNC_EN  
IBAT-SR  
IBAT 200 mA 0 mA  
bq51052B  
mA  
V
bq51050B,  
bq51051B  
25  
IBAT-SRH  
Hysteresis for IBAT,SR (full-synchronous mode enabled) IBAT 0 mA 200 mA  
bq51052B  
28  
High-side diode drop when the rectifier is in half  
synchronous mode  
VHS-DIODE  
IAC-VRECT = 250 mA, and TJ = 25°C  
0.7  
EN2  
VIL  
Input low threshold for EN2  
Input high threshold for EN2  
EN2 pulldown resistance  
0.4  
V
V
VIH  
1.3  
RPD, EN  
ADC  
200  
kΩ  
0 W – 5 W received power after calibration  
of Rx magnetics losses  
PowerREC  
Received power measurement  
0.25  
W
Copyright © 2012–2017, Texas Instruments Incorporated  
9
bq51050B, bq51051B, bq51052B  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
www.ti.com.cn  
7.6 Typical Characteristics  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
Pre-charge & fast charge mode  
Taper mode  
0
1
2
3
4
5
0.00  
1.00  
2.00  
3.00  
4.00  
5.00  
Output Power (W)  
Figure 1. Rectifier Efficiency  
Output Power (W)  
Figure 2. IC Efficiency (AC Input to DC Output)  
5.50  
5.00  
4.50  
4.00  
3.50  
3.00  
2.50  
2.00  
1.50  
6.0  
5.0  
4.0  
3.0  
Vrect  
Vbat  
Pre-charge & fast charge mode  
2.0  
Taper mode  
Precharge & fast charge mode  
Taper mode  
RILIM=600W  
1.0  
0.00  
0.20  
0.40  
Output Current (A)  
Figure 3. VRECT, VBAT versus Output Current  
0.60  
0.80  
1.00  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Output Current (A)  
Figure 4. VRECT versus Output Current at RILIM=600 Ω (ILIM  
=
523 mA)  
0.008  
70  
Pre-charge & fast charge mode  
0.007  
0.006  
0.005  
0.004  
0.003  
0.002  
0.001  
0
Taper mode  
60  
50  
40  
30  
20  
10  
0
0.2  
0.4  
Output Current (A)  
Figure 5. Output Ripple versus Output Current  
0.6  
0.8  
1
1.2  
0
1
2
3
4
Output Power (W)  
Figure 6. System Efficiency (DC Input to DC Output)  
10  
Copyright © 2012–2017, Texas Instruments Incorporated  
bq51050B, bq51051B, bq51052B  
www.ti.com.cn  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
Typical Characteristics (continued)  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
3
3.3  
3.6  
3.9  
4.2  
4.5  
0
0.06  
0.12  
0.18  
0.24  
0.3  
VBAT (V)  
IBAT during Taper Mode (A)  
D001  
D001  
Figure 7. bq51052B 300-mA Fast Charge Efficiency (DC  
Input to DC Output)  
Figure 8. bq51052B 300-mA Taper Charge Efficiency (DC  
Input to DC Output)  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
3
3.3  
3.6  
3.9  
4.2  
4.5  
0
0.2  
0.4  
0.6  
0.8  
1
VBAT (V)  
IBAT during Taper Mode (A)  
D001  
D001  
Figure 9. bq51052B 800-mA Fast Charge Efficiency (DC  
Input to DC Output)  
Figure 10. bq51052B 800-mA Taper Charge Efficiency (DC  
Input to DC Output)  
VRECT  
VRECT  
VBAT  
VBAT  
IBAT  
IBAT  
Figure 11. Battery Insertion in Precharge Mode  
Figure 12. Battery Insertion in Fast-Charge Mode  
Copyright © 2012–2017, Texas Instruments Incorporated  
11  
 
bq51050B, bq51051B, bq51052B  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
VRECT  
VRECT  
VTS/CTRL  
VTS/CTRL  
VBAT  
VBAT  
IBAT  
IBAT  
Figure 13. TS Fault  
Figure 14. TS Ground Fault  
VTS/CTRL  
VRECT  
VRECT  
VBAT  
IBAT  
VBAT  
IBAT  
Figure 16. JEITA Functionality (Rising Temp) -  
bq51050B/bq51051B  
Figure 15. Precharge to Fast-Charge Transition  
VRECT  
VRECT  
VTS/CTRL  
VBAT  
IBAT  
VBAT  
IBAT  
Figure 18. Battery Short to Precharge Mode Transition  
Figure 17. JEITA Functionality (Falling Temp) -  
bq51050B/bq51051B  
12  
Copyright © 2012–2017, Texas Instruments Incorporated  
bq51050B, bq51051B, bq51052B  
www.ti.com.cn  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
8 Detailed Description  
8.1 Overview  
8.1.1 A Brief Description of the Wireless System  
A wireless system consists of a charging pad (primary, transmitter) and the secondary-side equipment. There are  
coils in the charging pad and in the secondary equipment which magnetically couple to each other when the  
equipment is placed on the charging pad. Power is transferred from the primary to the secondary by transformer  
action between the coils. Control over the amount of power transferred is achieved by changing the frequency of  
the primary drive.  
The secondary can communicate with the primary by changing the load seen by the primary. This load variation  
results in a change in the primary coil current, which is measured and interpreted by a processor in the charging  
pad. The communication is digital - packets are transferred from the secondary to the primary. Differential bi-  
phase encoding is used for the packets. The rate is 2-kbps.  
Various types of communication packets have been defined. These include identification and authentication  
packets, error packets, control packets, power usage packets, end of power packet and efficiency packets.  
The primary coil is powered off most of the time. It wakes up occasionally to see if a secondary is present. If a  
secondary authenticates itself to the primary, the primary remains powered up. The secondary maintains full  
control over the power transfer using communication packets.  
Power  
bq5105x  
Voltage/  
Current  
Conditioning  
System  
AC to DC  
Drivers  
Rectification  
Communication  
LI-Ion  
Battery  
Battery  
Charger  
Controller  
V/I  
Sense  
Controller  
bq500210  
Transmitter  
Receiver  
Figure 19. WPC Wireless Power Charging System Indicating the Functional Integration of the bq5105x  
Copyright © 2012–2017, Texas Instruments Incorporated  
13  
bq51050B, bq51051B, bq51052B  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
www.ti.com.cn  
8.2 Functional Block Diagram  
RECT  
I
BAT  
VOUT,FB  
VREF,ILIM  
VILIM  
_
+
_
+ VOUT,REG  
VREF,IABS  
VIABS,FB  
+
_
ILIM  
VIN,FB  
+
_
VIN,DPM  
AD  
+
_
VREFAD,OVP  
BOOT2  
BOOT1  
_
+
VREFAD,UVLO  
AD-EN  
FOD  
AC1  
AC2  
Sync  
Rectifier  
Control  
VREF,TS-BIAS  
VFOD  
+
_
COMM1  
COMM2  
+
_
TS_0  
VBG,REF  
VIN,FB  
VOUT,FB  
VILIM  
TS_10  
+
_
DATA_  
OUT  
VIABS,FB  
TS_45  
TS_60  
ADC  
+
_
TS/CTRL  
CLAMP1  
CLAMP2  
VIABS,REF  
VIC,TEMP  
VFOD  
+
_
Digital Control  
and Charger  
+
_
TS_DETECT  
VREF_100MV  
50µ A  
VRECT  
VOVP,REF  
+
_
OVP  
+
_
CHG  
TERM  
TERM  
EN2  
ILIM  
200kW  
PGND  
Copyright  
© 2016, Texas Instruments Incorporated  
8.3 Feature Description  
8.3.1 Using the bq5105x as a Wireless Li-Ion/Li-Pol Battery Charger (With Reference to Functional Block  
Diagram)  
Functional Block Diagram is the schematic of a system which uses the bq5105x as a direct battery charger.  
When the system shown in Functional Block Diagram is placed on the charging pad (transmitter), the receiver  
coil couples to the magnetic flux generated by the coil in the charging pad which consequently induces a voltage  
in the receiver coil. The internal synchronous rectifier feeds this voltage to the RECT pin which has the filter  
capacitor C3.  
14  
Copyright © 2012–2017, Texas Instruments Incorporated  
 
 
bq51050B, bq51051B, bq51052B  
www.ti.com.cn  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
Feature Description (continued)  
The bq5105x identifies and authenticates itself to the primary using the COMM pins by switching on and off the  
COMM FETs and hence switching in and out CCOMM. If the authentication is successful, the transmitter will  
remain powered on. The bq5105x measures the voltage at the RECT pin, calculates the difference between the  
actual voltage and the desired voltage VRECT-REG and sends back error packets to the primary. This process goes  
on until the RECT voltage settles at VRECT-REG  
.
During power-up, the LDO is held off until the VRECT-REG threshold converges. The voltage control loop ensures  
that the output (BAT) voltage is maintained at VBAT-REG. The values of VBAT and VRECT are dependant on the  
battery charge mode. The bq5105x continues to monitor the VRECT and VBAT and sends error packets to the  
primary every 250 ms. The bq5105x regulates the VRECT voltage very close to battery voltage, this voltage  
tracking process minimizes the voltage difference across the internal LDO and maximizes the charging efficiency.  
If a large transient occurs, the feedback to the primary speeds up to every 32 ms in order to converge on an  
operating point in less time.  
8.3.2 Details of a Qi Wireless Power System and bq5105xB Power Transfer Flow Diagrams  
The bq5105xB integrates a fully compliant WPC v1.2 communication algorithm in order to streamline receiver  
designs (no extra software development required). Other unique algorithms such as Dynamic Rectifier Control  
are also integrated to provide best-in-class system performance. This section provides a high level overview of  
these features by illustrating the wireless power transfer flow diagram from start-up to active operation.  
During start-up operation, the wireless power receiver must comply with proper handshaking to be granted a  
power contract from the TX. The TX will initiate the handshake by providing an extended digital ping. If an RX is  
present on the TX surface, the RX will then provide the signal strength, configuration and identification packets to  
the TX (see volume 1 of the WPC specification for details on each packet). These are the first three packets sent  
to the TX. The only exception is if there is a shutdown condition on the EN1/EN2, AD, or TS/CTRL pins where  
the Rx will shut down the TX immediately. Once the TX has successfully received the signal strength,  
configuration and identification packets, the RX will be granted a power contract and is then allowed to control  
the operating point of the power transfer. With the use of the bq5105xB Dynamic Rectifier Control algorithm, the  
RX will inform the TX to adjust the rectifier voltage above 5 V before enabling the output supply. This method  
enhances the transient performance during system start-up. See Figure 20 for the start-up flow diagram details.  
Copyright © 2012–2017, Texas Instruments Incorporated  
15  
bq51050B, bq51051B, bq51052B  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
www.ti.com.cn  
Feature Description (continued)  
Çó towered  
wiꢀhouꢀ ꢁó  
!cꢀive  
Çó 9xꢀended 5igiꢀal ting  
{end 9tÇ packeꢀ wiꢀh  
reason value  
9ꢂ2ꢄ!5ꢄÇ{ꢄ/Çꢁ[ 9tÇ  
/ondiꢀion?  
ò9{  
ꢂꢃ  
Ldenꢀificaꢀion &  
/onfiguraꢀion & {{, ꢁeceived  
by Çó?  
ꢂꢃ  
ò9{  
tower /onꢀracꢀ 9sꢀablished.  
!ll proceeding conꢀrol is  
dicꢀaꢀed by ꢀhe ꢁó.  
{end conꢀrol error packeꢀ ꢀo  
increase ëꢁ9/Ç  
ëꢁ9/Ç < ëꢁ9/Ç-ꢁ9D  
?
ò9{  
ꢂꢃ  
{ꢀarꢀup operaꢀing poinꢀ  
esꢀablished. 9nable ꢀhe ꢁó  
ouꢀpuꢀ.  
ꢁó !cꢀive tower  
Çransfer {ꢀage  
Figure 20. Wireless Power Start-up Flow Diagram  
16  
Copyright © 2012–2017, Texas Instruments Incorporated  
bq51050B, bq51051B, bq51052B  
www.ti.com.cn  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
Feature Description (continued)  
Once the start-up procedure has been established, the RX will enter the active power transfer stage. This is  
considered the “main loop” of operation. The Dynamic Rectifier Control algorithm will determine the rectifier  
voltage target based on a percentage of the maximum output current level setting (set by KILIM and the IILIM  
resistance to PGND). The RX will send control error packets in order to converge on these targets. As the output  
current changes, the rectifier voltage target will dynamically change. As a note, the feedback loop of the WPC  
system is relatively slow where it can take up to 90 ms to converge on a new rectifier voltage target. It should be  
understood that the instantaneous transient response of the system is open loop and dependent on the RX coil  
output impedance at that operating point. More details on this will be covered in the section Receiver Coil Load-  
Line Analysis. The “main loop” will also determine if any conditions are true and will then discontinue the power  
transfer. Figure 21 shows the active power transfer loop.  
wó !ctive ꢁoꢀer  
Çransfer {tage  
wó {hutdoꢀn  
conditions per  
the 9ꢁÇ Çable?  
Çó ꢁoꢀered  
ꢀithout wó  
!ctive  
{end 9ꢁÇ packet ꢀith  
reason value  
ò9{  
ò9{  
ò9{  
bh  
ë.!Ç < ë[ꢂíë  
bh  
ëw9/Ç target = ëw9/Ç-w9D  
{end control error packets  
to convergeꢃ  
ëw9/Ç target = ë.!Ç + ëÇw!/Y  
{end control error packets  
to convergeꢃ  
L.!Ç > Yꢁw9/ID% of L.Ü[Y  
?
bh  
ëw9/Ç target = ëw9/Ç-w9D  
{end control error packets  
to convergeꢃ  
ꢄeasure wectified ꢁoꢀer  
and {end ëalue to Çó  
Ç9wꢄ {Ç!Ç9  
Figure 21. Active Power Transfer Flow Diagram  
Copyright © 2012–2017, Texas Instruments Incorporated  
17  
 
bq51050B, bq51051B, bq51052B  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
www.ti.com.cn  
Feature Description (continued)  
tower  
Çransfer  
{end 9tÇ /harge  
/ompleꢂe  
ë.!Ç > ëꢁ9/I  
?
ò9{  
ëL[Lꢀ < ëÇ9ꢁꢀ  
?
ò9{  
bh  
bh  
ëꢁ9/Ç Çargeꢂ = ëꢁ9/Ç-ꢁ9D  
L.!Ç = L.!Ç({/)  
ë.!Ç < ë.!Ç({/)  
ò9{  
bh  
ëꢁ9/Ç Çargeꢂ = ëꢁ9/Ç-ꢁ9D  
LꢃÜÇ = Ltꢁ9/ID  
ë.!Ç({/) < ë.!Ç < ë[ꢃíë  
ò9{  
ò9{  
ò9{  
bh  
ë[ꢃíë < ë.!Ç < ëꢃꢁ9D  
bh  
bh  
ëꢁ9/Ç Çargeꢂ = ë.!Ç + ëÇꢁ!/Y  
L.!Ç = L.Ü[Y  
L.!Ç < L9ndÇrack  
?
ëꢁ9/Ç Çargeꢂ = ëꢁ9/Ç-ꢁ9D  
bh  
!5 ꢄ Ç{ꢄ/Çꢁ[  
9tÇ /ondiꢂion?  
ò9{  
{end 9tÇ  
Figure 22. TERM STATE Flow Diagram of bq5105XB  
18  
Copyright © 2012–2017, Texas Instruments Incorporated  
bq51050B, bq51051B, bq51052B  
www.ti.com.cn  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
Feature Description (continued)  
8.3.3 Battery Charge Profile  
The battery is charged in three phases: precharge, fast-charge constant current and constant voltage. A voltage-  
based battery pack thermistor monitoring input (TS function of the TS/CTRL pin) is included that monitors battery  
temperature for safe charging. The TS function for bq51050B and bq51051B is JEITA compatible. The TS  
function for the bq51052B modifies the current regulation differently than standard JEITA. See Battery-Charger  
Safety and JEITA Guidelines for more details.  
The rectifier voltage follows BAT voltage plus VTRACK for any battery voltage above VLOWV to full regulation  
voltage and most of the taper charging phase. If the battery voltage is below VLOWV the rectifier voltage increases  
to VRECT-REG  
.
If IBAT is less than IEndTrack (a percentage of IBULK) during taper mode, the rectifier voltage increases to VRECT-REG  
.
The charge profile for the bq51050B and bq51051B is shown in Figure 23 while the bq51052B is shown in  
Figure 24.  
tre-charge  
thase  
/urrenꢀ wegulaꢀion thase  
ëolꢀage wegulaꢀion thase  
ëw9/Ç-w9D  
ëw9/Ç = ë.!Ç + ëÇw!/Y  
ëw9/Ç = ëw9/Ç-w9D  
ëw9/Ç = ëw9/Ç-w9D  
ëꢁw9D  
L.!Ç = L.Ü[Y  
ë.!Ç = ëꢁw9D  
L.ulk  
ëw9/Ç  
=
ë.!Ç + ëÇw!/Y  
ë.!Ç  
ë[ꢁíë  
ë.!Ç({/)  
ë.!Ç  
L9ndÇrack  
L.!Ç = Çaper  
LÇ9wꢂ-Çh  
Ltw9/ID  
L.!Ç({/)  
L.!Ç  
L.!Ç = ꢁff  
9xits  
ëw9/Ç-Çw!/Y  
ëw9/Ç-w9D  
ëw9/Ç-Çw!/Y  
Çó hff  
Figure 23. bq51050B and bq51051B Li-Ion Battery Charge Profile  
tre-charge  
thase  
/urrenꢀ wegulaꢀion thase  
L.!Ç = L.Ü[Y  
ëolꢀage wegulaꢀion thase  
ëw9/Ç = ë.!Ç + ëÇw!/Y  
ëw9/Ç-w9D  
ëꢁw9D  
ëw9/Ç = ëw9/Ç-w9D  
ë.!Ç = ëꢁw9D  
L.ulk  
ëw9/Ç  
=
ë.!Ç + ëÇw!/Y  
ë.!Ç  
ë[ꢁíë  
ë.!Ç({/)  
ë.!Ç  
L.!Ç = Çaper  
LÇ9wꢂ-Çh  
Ltw9/ID  
L.!Ç({/)  
L.!Ç  
L.!Ç = ꢁff  
ëw9/Ç-w9D  
ëw9/Ç-Çw!/Y  
Çó hff  
Figure 24. bq51052B Li-Ion Battery Charge Profile  
Copyright © 2012–2017, Texas Instruments Incorporated  
19  
 
 
bq51050B, bq51051B, bq51052B  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
www.ti.com.cn  
Feature Description (continued)  
8.3.4 Battery Charging Process  
8.3.4.1 Precharge Mode (VBAT VLOWV  
)
The bq5105X enters precharge mode when VBAT VLOWV. Upon entering precharge mode, battery charge  
current limit is set to IPRECHG. During precharge mode, the charge current is regulated to KPRECHG percent of the  
fast charge current (IBULK) setting. For example, if IBULK is set to 800 mA, then the precharge current would  
have a typical value of 160 mA.  
If the battery is deeply discharged or shorted (VBAT < VBAT(SC)), the bq5105X applies IBAT(SC) current to bring the  
battery voltage up to acceptable charging levels. Once the battery rises above VBAT(SC), the charge current is  
regulated to IPRECHG  
.
Under normal conditions, the time spent in this precharge region is a very short percentage of the total charging  
time and this does not affect the overall charging efficiency for very long.  
8.3.4.2 Fast Charge Mode / Constant Voltage Mode  
Once VBAT > VLOWV, the bq5105x enters fast charge mode (Current Regulation Phase) where charge current is  
regulated using the internal MOSFETs between RECT and BAT. Once the battery voltage charges up to VBAT-  
REG, the bq5105x enters constant voltage (CV) phase and regulates battery voltage to VOREG and the charging  
current is reduced.  
Once IBAT falls below the termination threshold (ITERM-Th), the charger sends an EPT (Charge Complete)  
notification to the TX and enters high impedance mode.  
8.3.4.3 Battery Charge Current Setting Calculations  
8.3.4.3.1 RILIM Calculations  
The bq5105x includes a means of providing hardware overcurrent protection by means of an analog current  
regulation loop. The hardware current limit provides an extra level of safety by clamping the maximum allowable  
output current (for example, a current compliance). The calculation for the total RILIM resistance is as follows:  
YL[La  
YL[La  
w1 =  
t wCh5  
wL[La = w1 + wCh5  
L.Ü[Y =  
L
.Ü[Y  
w
L[La  
(1)  
Where IBULK is the programmed battery charge current during fast charge mode. When referring to the application  
diagram shown in Figure 32, RILIM is the sum of RFOD and R1 (the total resistance from the ILIM pin to PGND).  
8.3.4.3.2 Termination Calculations  
The bq5105X includes a programmable upper termination threshold. The upper termination threshold is  
calculated using Equation 2:  
wÇ9wa  
Y
Ç9wa  
wÇ9wa = YÇ9wa * %L.Ü[Y  
%L.Ü[Y =  
(2)  
The KTERM constant is specified in Electrical Characteristics as 240 Ω/%. The upper termination threshold is set  
as a percentage of the charge current setting (IBULK).  
For example, if RILIM is set to 314 Ω, IBULK will be 1 A (314 ÷ 314). If the upper termination threshold is desired to  
be 100 mA, this would be 10% of IBULK. The RTERM resistor would then equal 2.4 kΩ (240 × 10).  
Termination can be disabled by floating the TERM pin. If the TERM pin is grounded the termination function is  
effectively disabled. However, due to offsets of internal comparators, termination may occur at low battery  
currents.  
20  
Copyright © 2012–2017, Texas Instruments Incorporated  
 
 
bq51050B, bq51051B, bq51052B  
www.ti.com.cn  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
Feature Description (continued)  
8.3.4.4 Battery-Charger Safety and JEITA Guidelines  
The bq5105x continuously monitors battery temperature by measuring the voltage between the TS/CTRL pin and  
PGND. A negative temperature coefficient thermistor (NTC) and an external voltage divider typically develop this  
voltage. The bq5105x compares this voltage against its internal thresholds to determine if charging is allowed. To  
initiate a charge cycle, the voltage on TS/CTRL pin (VTS) must be within the VT1 to VT4 thresholds. If VTS is  
outside of this range, the bq5105x suspends charge and waits until the battery temperature is within the VT1 to  
VT4 range. Additional information on the Temperature Sense function can be found in Internal Temperature  
Sense (TS Function of the TS/CTRL Pin).  
8.3.4.4.1 bq51050B and bq51051B JEITA  
If VTS is within the ranges of VT1 and VT2 or VT3 and VT4, the charge current is reduced to IBULK/2. If VTS is within  
the range of VT1 and VT3, the maximum charge voltage regulation is VOREG. If VTS is within the range of VT3 and  
VT4, the maximum charge voltage regulation is reduced to "NEW SPEC". Figure 25 summarizes the operation.  
/harge /urrent: L.Ü[Y  
L.Ü[Y ꢁ 2  
L.Ü[Y ꢁ 2  
0 !  
/harge ëoltage: ëꢀw9D  
ëꢀ-W  
0 ë  
Ç1  
(0° /)  
Ç2  
(10° /)  
Ç3  
(45° /)  
Ç4  
(60° /)  
Figure 25. JEITA Compatible TS Profile for bq51050B and bq51051B  
8.3.4.4.2 bq51052B Modified JEITA  
The bq51052B has a modififed JEITA profile. The maximum charge current is not modified between VT1 and VT2  
or between VT3 and VT4, it remains at IBULK. The maximum charge voltage is reduced to VO-J when the VTS is  
between VT3 and VT4.  
Copyright © 2012–2017, Texas Instruments Incorporated  
21  
 
bq51050B, bq51051B, bq51052B  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
www.ti.com.cn  
Feature Description (continued)  
/harge /urrent: L.Ü[Y  
0 !  
/harge ëoltage: ëꢀw9D  
ëꢀ-W  
0 ë  
Ç1  
(0° /)  
Ç2  
(10° /)  
Ç3  
(45° /)  
Ç4  
(60° /)  
Figure 26. JEITA Compatible TS Profile for bq51052B  
8.3.4.5 Input Overvoltage  
If, for some condition (for example, a change in position of the equipment on the charging pad), the rectifier  
voltage suddenly increases in potential, the voltage-control loop inside the bq5105x becomes active, and  
prevents the output from going beyond VBAT-REG. The receiver then starts sending back error packets every 32  
ms until the RECT voltage comes back to an acceptable level, and then maintains the error communication every  
250 ms.  
If the input voltage increases in potential beyond VOVP, the device switches off the internal FET and  
communicates to the primary to bring the voltage back to VRECT-REG. In addition a proprietary voltage protection  
circuit is activated by means of CCLAMP1 and CCLAMP2 that protects the device from voltages beyond the maximum  
rating.  
8.3.4.6 End Power Transfer Packet (WPC Header 0x02)  
The WPC allows for a special command to terminate power transfer from the TX termed End Power Transfer  
(EPT) packet. WPC v1.2 specifies the reasons for sending a termination packet and their data field value. In  
Table 1, the CONDITION column corresponds to the stimulus causing the bq5105x device to send the  
hexidecimal code in the VALUE column.  
Table 1. Termination Packets  
REASON  
VALUE  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
CONDITION  
Unknown  
AD > VAD-Pres, TS/CTRL = VCTRL-HI  
IBAT falls below ITERM-Th during Taper mode  
TJ > 150°C or RILIM < RILIM-SHORT  
TS < VHOT, TS > VCOLD, or TS/CTRL < VCTRL-LOW  
Not Sent  
Charge Complete  
Internal Fault  
Overtemperature  
Overvoltage  
Overcurrent  
Not Sent  
Battery is not coming out of precharge mode after Precharge time-out, or  
fast charge time-out has occured.  
Battery failure  
0x06  
Reconfigure  
0x07  
0x08  
Not Sent  
No Response  
VRECT target does not converge  
22  
Copyright © 2012–2017, Texas Instruments Incorporated  
 
bq51050B, bq51051B, bq51052B  
www.ti.com.cn  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
8.3.4.7 Status Output  
The bq5105x provides one status output, CHG. This output is an open-drain NMOS device that is rated to 20 V.  
The open-drain FET connected to the CHG pin will be turned on whenever the output (BAT) of the charger is  
enabled. As a note, the output of the charger supply will not be enabled if the VRECT-REG does not converge to the  
no-load target voltage.  
8.3.4.8 Communication Modulator  
The bq5105x provides two identical, integrated communication FETs which are connected to the pins COMM1  
and COMM2. These FETs are used for modulating the secondary load current which allows bq5105x to  
communicate error control and configuration information to the transmitter.There are two methods to implement  
load modulation, capacitive and resistive.  
Capacitive load modulation is more commonly used. Capacitive load modulation is shown in Figure 27. In this  
case, a capacitor is connected from COMM1 to AC1 and from COMM2 to AC2. When the COMM switches are  
closed there is effectively a 22 nF capacitor connected between AC1 and AC2. Connecting a capacitor in  
between AC1 and AC2 modulates the impedance seen by the coil, which will be reflected to the primary and  
interpreted by the controller as a change in current.  
AC1  
AC2  
47 nF  
47 nF  
COMM1  
COMM2  
COMM_DRIVE  
Figure 27. Capacitive Load Modulation  
Figure 28 shows how the COMM pins can be used for resistive load modulation. Each COMM pin can handle at  
most a 24 Ω communication resistor. Therefore, if a COMM resistor between 12 Ω and 24 Ω is required, COMM1  
and COMM2 pins must be connected in parallel. bq5105x does not support a COMM resistor less than 12 Ω.  
RECTIFIER  
24 W  
24 W  
COMM1  
COMM2  
COMM_DRIVE  
Figure 28. Resistive Load Modulation  
Copyright © 2012–2017, Texas Instruments Incorporated  
23  
 
 
bq51050B, bq51051B, bq51052B  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
www.ti.com.cn  
8.3.4.9 Adaptive Communication Limit  
The Qi communication channel is established through backscatter modulation as described in the previous  
sections. This type of modulation takes advantage of the loosely coupled inductor relationship between the RX  
and TX coils. Essentially, the switching in-and-out of the communication capacitor or resistor adds a transient  
load to the RX coil in order to modulate the TX coil voltage and current waveform (amplitude modulation). The  
consequence of this technique is that a load transient (load current noise) from the mobile device has the same  
signature. To provide noise immunity to the communication channel, the output load transients must be isolated  
from the RX coil. The proprietary feature Adaptive Communication Limit achieves this by dynamically adjusting  
the current limit of the regulator.  
This can be seen in Figure 12. In this plot, an output load is limited to 400 mA during communications time. The  
pulses on VRECT indicate that a communication packet event is occurring. The regulator limits the load to a  
constant 400 mA and, therefore, preserves communication.  
8.3.4.10 Synchronous Rectification  
The bq5105x provides an integrated, self-driven synchronous rectifier that enables high-efficiency AC to DC  
power conversion. The rectifier consists of an all NMOS H-Bridge driver where the back gates of the diodes are  
configured to be the rectifier when the synchronous rectifier is disabled. During the initial start-up of the WPC  
system the synchronous rectifier is not enabled. At this operating point, the DC rectifier voltage is provided by the  
diode rectifier. Once VRECT is greater than VUVLO, half synchronous mode will be enabled until the load current  
surpasses IBAT-SR. Above IBAT-SR the full synchronous rectifier stays enabled until the load current drops back  
below the hysteresis level (IBAT-SRH) where half synchronous mode is re-enabled.  
8.3.4.11 Internal Temperature Sense (TS Function of the TS/CTRL Pin)  
The bq5105x includes a ratiometric battery temperature sense circuit. The temperature sense circuit has two  
ratiometric thresholds which represent hot and cold conditions. An external temperature sensor is recommended  
to provide safe operating conditions to the receiver product. This pin is best used when monitoring the battery  
temperature.  
The circuits in Figure 29 allow for any NTC resistor to be used with the given VHOT and VCOLD thresholds. The  
thermister characteristics and threshold temperatures selected will determine which circuit is best for an  
application.  
ëÇ{.  
ëÇ{.  
20 lQ  
w2  
20 lQ  
w2  
Ç{ꢀ/Çw[  
Ç{ꢀ/Çw[  
w1  
w1  
w3  
/
3
/
3
bÇ/  
bÇ/  
Figure 29. NTC Circuit Options for Safe Operation of the Wireless Receiver Power Supply  
24  
Copyright © 2012–2017, Texas Instruments Incorporated  
 
bq51050B, bq51051B, bq51052B  
www.ti.com.cn  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
The resistors R1 and R3 can be solved by resolving the system of equations at the desired temperature  
thresholds. The two equations are:  
æ
ç
ç
è
ö
÷
÷
ø
R3  
R
+ R  
1
TCOLD  
(
)
NTC  
R + R  
+ R  
(
NTC  
)
3
NTC  
1
TCOLD  
%VCOLD  
=
´100  
æ
ç
ç
è
ö
÷
÷
ø
R3  
R
+ R  
(
)
1
TCOLD  
+ R2  
R + R  
+ R  
1
(
)
3
NTC  
TCOLD  
(3)  
(4)  
æ
ö
÷
÷
ø
R3  
R
+ R  
1
THOT  
(
(
NTC  
)
NTC  
ç
ç
è
R + R  
+ R  
)
3
NTC  
1
THOT  
%VHOT  
=
´100  
æ
ö
÷
÷
ø
R3  
R
+ R  
(
)
1
THOT  
ç
ç
è
+ R2  
R + R  
+ R  
(
)
3
NTC  
1
THOT  
Where:  
RNTC  
1
1
1
b
-
(
)
TCOLD  
To  
= Roe  
TCOLD  
1
b
-
(
)
THOT  
To  
RNTC  
= Roe  
THOT  
TCOLD and THOT are the desired temperature thresholds in degrees Kelvin. Ro is the nominal resistance at T0  
(25°C) and β is the temperature coefficient of the NTC resistor. For an example solution for part number ERT-  
JZEG103JA see the BQ5105XB NTC Calculator Tool, (SLUS629).  
Where,  
TCOLD = 0°C (273.15°K)  
THOT = 60°C (333.15°K)  
β = 3380  
Ro = 10 kΩ  
The plot of the percent VTSB versus temperature is shown in Figure 30:  
Copyright © 2012–2017, Texas Instruments Incorporated  
25  
bq51050B, bq51051B, bq51052B  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
www.ti.com.cn  
Figure 30. Example Solution for Panasonic Part # ERT-JZEG103JA  
Figure 31 shows the periodic biasing scheme used for measuring the TS state. An internal TS_READ signal  
enables the TS bias voltage for 25 ms. During this period the TS comparators are read (each comparator has a  
10-ms deglitch) and appropriate action is taken based on the temperature measurement. After this 25-ms period  
has elapsed the TS_READ signal goes low, which causes the TS/CTRL pin to become high impedance. During  
the next 100-ms period, the TS voltage is monitored and compared to VCTRL-HI. If the TS voltage is greater than  
VCTRL-HI then a secondary device is driving the TS/CTRL pin and a CTRL = 1 is detected.  
240ms  
Figure 31. Timing Diagram for TS Detection Circuit  
8.3.4.11.1 TS/CTRL Function  
The TS/CTRL pin offers three functions:  
NTC temperature monitoring  
Charge done indication  
Fault indication  
When an NTC resistor is connected between the TS/CTRL pin and PGND, the NTC function is allowed to  
operate. This functionality can effectively be disabled by connecting a 10 kΩ resistor from TS/CRTL to PGND. If  
the TS/CTRL pin is pulled above VCTRL-HI, the RX is shut down with the indication of a charge complete  
condition. If the TS/CTRL pin is pulled below VCTRL-LOW, the RX is shut down with the indication of a fault.  
26  
Copyright © 2012–2017, Texas Instruments Incorporated  
 
bq51050B, bq51051B, bq51052B  
www.ti.com.cn  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
8.3.4.11.2 Thermal Protection  
The bq5105x includes thermal shutdown protection. If the die temperature reaches TJ-SD, the LDO is shut off to  
prevent any further power dissipation. Once the temperature falls TJ-Hys below TJ-SD, operation can continue.  
8.3.4.12 WPC v1.2 Compatibility  
The bq5105x is a WPC v1.2 compatible device. In order to enable a Power Transmitter to monitor the power loss  
across the interface as one of the possible methods to limit the temperature rise of Foreign Objects, the bq5105x  
reports its Received Power to the Power Transmitter. The Received Power equals the power that is available  
from the output of the Power Receiver plus any power that is lost in producing that output power. For example,  
the power loss includes (but is not limited to) the power loss in the Secondary Coil and series resonant capacitor,  
the power loss in the Shielding of the Power Receiver, the power loss in the rectifier, the power loss in any post-  
regulation stage, and the eddy current loss in metal components or contacts within the Power Receiver. In the  
WPC v1.2 specification, foreign object detection (FOD) is enforced, that means the bq5105x will send received  
power information with known accuracy to the transmitter.  
WPC v1.2 defines Received Power as “the average amount of power that the Power Receiver receives through  
its Interface Surface, in the time window indicated in the Configuration Packet”.  
A Receiver will be certified as WPC v1.2 only after meeting the following requirement. The device under test  
(DUT) is tested on a Reference Transmitter whose transmitted power is calibrated, the receiver must send a  
received power such that:  
0 < (TX PWR) REF – (RX PWR out) DUT < 375 mW  
(5)  
This 250 mW bias ensures that system will remain interoperable.  
WPC v1.2 Transmitters will be tested to see if they can detect reference Foreign Objects with a Reference  
receiver. The WPC v1.2 specification allows much more accurate sensing of Foreign Objects than WPC v1.0.  
A Transmitter can be certified as a WPC v1.2 only after meeting the following requirement. A Transmitter is  
tested to see if it can prevent some reference Foreign Objects (disc, coin, foil) from exceeding their threshold  
temperature (60°C, 80°C).  
8.4 Device Functional Modes  
The general modes of battery charging are described above in the Feature Description. The bq5105x devices  
have several functional modes. Start-up refers to the initial power transfer and communication between the  
receiver (bq5105x circuit) and the transmitter. Power transfer refers to any time that the TX and RX are  
communicating and power is being delivered from the TX to the RX. Charge termination covers intentional  
termination (charge complete) and unintentional termination (removal of the RX from the TX, over temperature or  
other fault conditions).  
Copyright © 2012–2017, Texas Instruments Incorporated  
27  
bq51050B, bq51051B, bq51052B  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The bq51050B is an integrated wireless power receiver and charger in a single device. The device complies with  
the WPC v1.2 specifications for a wireless power receiver. When paired with a WPC v1.2 compliant transmitter, it  
can provide up to 5-W of power for battery charging. There are several tools available for the design of the  
system. These tools may be obtained by checking the product page at www.ti.com/product/bq51050b.  
9.2 Typical Application  
9.2.1 bq51050B Used as a Wireless Power Receiver and Li-Ion/Li-Pol Battery Charger  
The following application discussion covers the requirements for setting up the bq51050B in a Qi-compliant  
system for charging a battery.  
bq5105xB  
AD-EN  
AD  
BAT  
CCOMM1  
C4  
C3  
COMM1  
BOOT1  
AC1  
CBOOT1  
D1  
RECT  
C1  
R4  
TI  
TX  
COIL  
Wireless  
Power  
Transmitter  
RX  
COIL  
PACK+  
C2  
NTC  
TS/CTRL  
AC2  
BOOT2  
COMM2  
ROS  
PACK-  
CBOOT2  
CHG  
CCOMM2  
CCLAMP2  
CCLAMP1  
CLAMP2  
CLAMP1  
ILIM  
TERM  
EN2  
Tri-State  
Bi-State  
HOST  
R5  
PGND  
FOD  
R1  
RFOD  
Copyright © 2016, Texas Instruments Incorporated  
Figure 32. Typical Application Schematic  
9.2.1.1 Design Requirements  
This application is for a 4.2-V Lithium-Ion battery to be charged at 800 mA. Because this is planned for a WPC  
v1.2 solution, any of the Qi-certified transmitters can be used interchangeably so no discussion of the TX is  
required. To charge a 4.20-V Li-Ion battery, the bq51050B will be chosen. Each of the components from the  
application drawing will be examined. Temperature sensing of the battery must be done with JEITA  
specifications. An LED indicator is required to notify the user if charging is active.  
28  
Copyright © 2012–2017, Texas Instruments Incorporated  
 
bq51050B, bq51051B, bq51052B  
www.ti.com.cn  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
Typical Application (continued)  
9.2.1.2 Detailed Design Procedure  
9.2.1.2.1 Series and Parallel Resonant Capacitor Selection  
Shown in Figure 33, the capacitors C1 (series) and C2 (parallel) make up the dual resonant circuit with the  
receiver coil. These two capacitors must be sized correctly per the WPC v1.2 specification. Figure 33 shows the  
equivalent circuit of the dual resonant circuit:  
/1 (/s)  
[[  
/2 (/d)  
Figure 33. Dual Resonant Circuit with the Receiver Coil  
The power receiver design requirements in volume 1 of the WPC v1.2 specification highlights in detail the sizing  
requirements. To summarize, the receiver designer will be required take inductance measurements with a fixed  
test fixture. The test fixture is shown in Figure 34:  
Magnetic  
Interface  
Surface  
Attractor  
(example)  
Secondary Coil  
Shielding (optional)  
Mobile  
Device  
Spacer  
d
z
Primary Shielding  
Figure 34. WPC v1.2 Receiver Coil Test Fixture for the Inductance Measurement Ls’  
The primary shield is to be 50 mm × 50 mm × 1 mm of Ferrite material PC44 from TDK Corp. The gap (dZ) is to  
be 3.4 mm. The receiver coil, as it will be placed in the final system (for example, the back cover and battery  
must be included if the system calls for this), is to be placed on top of this surface and the inductance is to be  
measured at 1-V RMS and a frequency of 100 kHz. This measurement is termed Ls’. The measurement termed  
Ls is the free-space inductance. Each capacitor can then be calculated using Equation 6:  
1
C1 =  
(2p´ ¦s)2 ´L's  
æ
ö-1  
÷
ø
1
C = (¦ ´ 2p)2 ´L -  
ç
2
D
s
C1  
è
(6)  
Where fS is 100 kHz +5/–10% and fD is 1 MHz ±10%. C1 must be chosen first prior to calculating C2. The quality  
factor must be greater than 77 and can be determined by Equation 7:  
Copyright © 2012–2017, Texas Instruments Incorporated  
29  
 
 
 
bq51050B, bq51051B, bq51052B  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
www.ti.com.cn  
Typical Application (continued)  
2p´ ¦D ´Ls  
Q =  
R
(7)  
Where R is the DC resistance of the receiver coil. All other constants are defined above.  
For this application, we will design with an inductance measurement (L) of 11 µH and an Ls' of 16 µH with a DC  
resistance of 191 mΩ. Plugging Ls' into Equation 6 above, we get a value for C1 to be 158.3 nF. The range on  
the capacitance is about 144 nF to 175 nF. To build the resulting value, the optimum solution is usually found  
with 3 capacitors in parallel. This allows for more precise selection of values, lower effective resistance and  
better thermal results. To get 158 nF, choose from standard values. In this case, the values are 68 nF, 47 nF and  
39 nF for a total of 154 nF. Well in the required range. Now that C1 is chosen, the value of C2 can be calculated.  
The result of this calculation is 2.3 nF. The practical solution for this is 2 capacitors, a 2.2 nF capacitor and a 100  
pF capacitor. In all cases, these capacitors must have at least a 25-V rating. Solving for the quality factor (Q) this  
solution shows a rating over 500.  
9.2.1.2.2 COMM, CLAMP and BOOT Capacitors  
For most applications, the COMM, CLAMP and BOOT capacitors will be chosen to match the Evaluation Module.  
The BOOT capacitors are used to allow the internal rectifier FETs to turn on and off properly. These capacitors  
are on the AC1 or AC2 lines to the Boot nodes and should have a minimum of 10-V rating. A 10-nF capacitor  
with a 10-V rating is chosen.  
The CLAMP capacitors are used to aid the clamping process to protect against overvoltage. Choosing a 0.47-µF  
capacitor with a 25-V rating is appropriate for most applications.  
The COMM capacitors are used to facilitate the communication from the RX to the TX. This selection can vary a  
bit more than the BOOT and CLAMP capacitors. In general, a 22-nF capacitor is recommended. Based on the  
results of testing of the communication robustness, a change to a 47-nF capacitor may be in order. The larger  
the capacitor the larger the deviation will be on the coil which sends a stronger signal to the TX. This also  
decreases the efficiency somewhat. In this case, choose the 22-nF capacitor with the 25-V rating.  
9.2.1.2.3 Charging and Termination Current  
The Design Requirements show an 800-mA charging current and an 80-mA termination current.  
Setting the charge current (IBULK) is done by selecting the R1 and RFOD. Solving Equation 1 results in RILIM of 393  
Ω. Setting RFOD to 200 Ω as a starting point before the FOD calibration is recommended. This leaves 205 Ω for  
R1. Using standard resistor values (or resistors in series / parallel) can improve accuracy.  
Setting the termination current is done with Equation 2. Because 80 mA is 10% of the IBULK (800mA), the RTERM  
is calculated as (240 * 10) or 2.4 kΩ.  
9.2.1.2.4 Adapter Enable  
The AD pin will be tied to the external USB power source to allow for an external source to power the system.  
AD_EN is tied to the gate of Q1 (CSD75205W1015). This allows the bq51050B to sense when power is applied  
to the AD pin. The EN2 pin controls whether the wired source will be enabled or not. EN2 is tied to the system  
host to allow it to control the use of the USB power. If wired power is enabled and present, the AD pin will  
disable the BAT output and then enable Q1 through the AD_EN pin. An external charger is required to take  
control of the battery charging.  
9.2.1.2.5 Charge Indication and Power Capacitors  
The CHG pin is open-drain. D1 and R4 are selected as a 2.1-V forward bias capable of 2 mA and a 100-Ω  
current-limiting resistor.  
RECT is used to smooth the internal AC to DC conversion. Two 10-µF capacitors and a 0.1-µF capacitor are  
chosen. The rating is 25 V.  
BAT capacitors are 1.0 µF and 0.1 µF.  
30  
Copyright © 2012–2017, Texas Instruments Incorporated  
bq51050B, bq51051B, bq51052B  
www.ti.com.cn  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
Typical Application (continued)  
9.2.1.3 Application Curves  
VRECT  
VRECT  
VBAT  
VBAT  
IBAT  
IBAT  
Figure 35. Battery Insertion During Precharge  
Figure 36. Precharge to Fast-Charge Transition  
Copyright © 2012–2017, Texas Instruments Incorporated  
31  
bq51050B, bq51051B, bq51052B  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
www.ti.com.cn  
Typical Application (continued)  
9.2.2 Application for Wired Charging  
The application discussed below will cover the same requirements as the first example and will add a DC supply  
with a secondary charger. This solution covers using a standard DC supply or a USB port as the supply.  
R8  
D2  
bq24040  
IN  
OUT  
TS  
R9  
ISET  
VSS  
/CHG  
ISET2  
NC  
C6  
R6  
C7  
D3  
CSD75207W15  
Q1  
PRETERM  
/PG  
USB or  
AC Adapter  
Input  
R7  
bq5105xB  
C5  
AD-EN  
AD  
BAT  
CCOMM1  
COMM1  
CBOOT1  
C4  
D1  
BOOT1  
RECT  
C1  
AC1  
R4  
C3  
TI  
TX  
COIL  
Wireless  
Power  
Transmitter  
RX  
COIL  
PACK+  
C2  
NTC  
TS/CTRL  
AC2  
BOOT2  
CBOOT2  
ROS  
PACK-  
COMM2  
CCOMM2  
CHG  
CLAMP2  
CCLAMP2  
TERM  
EN2  
Tri-State  
Bi-State  
CLAMP1  
CCLAMP1  
HOST  
R5  
FOD  
PGND  
ILIM  
R1  
RFOD  
Copyright  
© 2016, Texas Instruments Incorporated  
Figure 37. bq51050B Wireless Power Receiver and Wired Charger  
9.2.2.1 Design Requirements  
The requirements for this solution are identical to the first application so all common components are identical.  
This solution adds a wired charger and a blocking back-back FET (Q1).  
The addition of a wired charger is simply enabled. The AD pin on the bq5105x is tied to the input of the DC  
supply. When the bq5105x senses a voltage greater than VAD-Pres on the AD pin, the BAT pin will be disabled  
(high impedance). Once the BAT pin is disabled, the AD_EN pin will transition and enable Q1. If wireless power  
is not present, the functionality of AD and AD_EN remains and wired charging can take place.  
9.2.2.2 Detailed Design Procedure  
9.2.2.2.1 Blocking Back-Back FET  
Q1 is recommended to eliminate the potential for both wired and wireless systems to drive current to the  
simultaneously. The charge current and DC voltage level will set up parmerters for the blocking FET. The  
requirements for this system are 1 A for the wired charger and 5 V DC. The CSD75207W15 is chosen for its low  
RON and small size.  
The wired charger in this solution is the bq24040. See the bq24040 datasheet (SLUS941) for specific component  
selection.  
32  
Copyright © 2012–2017, Texas Instruments Incorporated  
bq51050B, bq51051B, bq51052B  
www.ti.com.cn  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
10 Power Supply Recommendations  
The bq51050B requires a Qi-compatible transmitter as its power supply.  
11 Layout  
11.1 Layout Guidelines  
Keep the trace resistance as low as possible on AC1, AC2, and BAT.  
Detection and resonant capacitors need to be as close to the device as possible.  
COMM, CLAMP, and BOOT capacitors need to be placed as close to the device as possible.  
Via interconnect on PGND net is critical for appropriate signal integrity and proper thermal performance.  
High frequency bypass capacitors need to be placed close to RECT and OUT pins.  
ILIM and FOD resistors are important signal paths and the loops in those paths to PGND must be minimized.  
For the RHL package, connect the thermal pad to ground to help dissipate heat.  
Signal and sensing traces are the most sensitive to noise; the sensing signal amplitudes are usually  
measured in mV, which is comparable to the noise amplitude. Make sure that these traces are not being  
interfered by the noisy and power traces. AC1, AC2, BOOT1, BOOT2, COMM1, and COMM2 are the main  
source of noise in the board. These traces should be shielded from other components in the board. It is  
usually preferred to have a ground copper area placed underneath these traces to provide additional  
shielding. Also, make sure they do not interfere with the signal and sensing traces. The PCB should have a  
ground plane (return) connected directly to the return of all components through vias (two vias per capacitor  
for power-stage capacitors, one via per capacitor for small-signal components).  
For a 1-A fast charge current application, the current rating for each net is as follows:  
AC1 = AC2 = 1.2 A  
OUT = 1 A  
RECT = 100 mA (RMS)  
COMMx = 300 mA  
CLAMPx = 500 mA  
All others can be rated for 10 mA or less  
11.2 Layout Example  
/[!ꢁt2  
capaciꢀor  
.hhÇ2  
.!Ç  
.hhÇ2  
capaciꢀor  
!/2  
L[Lꢁ  
9b2  
!/1-!/2 capaciꢀors  
tDb5  
Ç9wꢁ  
!5  
ꢂ/ID  
/hꢁꢁ1  
!/1  
.hhÇ1  
capaciꢀor  
.!Ç  
.hhÇ1  
/[!ꢁt2  
capaciꢀor  
.!Ç capaciꢀors  
Figure 38. bq5105x Layout Example  
版权 © 2012–2017, Texas Instruments Incorporated  
33  
bq51050B, bq51051B, bq51052B  
ZHCSAX2F JULY 2012REVISED JUNE 2017  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
相关文档如下:  
《具有自动启动功能的 bq2404x 1A 单输入单节锂离子和锂聚合物电池充电器》SLUS941  
12.2 相关链接  
下面的表格列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的  
快速链接。  
2. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
工具和软件  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
bq51050B  
bq51051B  
bq51052B  
12.3 接收文档更新通知  
要接收文档更新通知,请转至 ti.com 上您的器件的产品文件夹。请在右上角单击通知我 按钮进行注册,即可收到  
产品信息更改每周摘要(如有)。有关更改的详细信息,请查看任意已修订文档的修订历史记录。  
12.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参见左侧的导航栏。  
34  
版权 © 2012–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ51050BRHLR  
BQ51050BRHLT  
BQ51050BYFPR  
BQ51050BYFPT  
BQ51051BRHLR  
BQ51051BRHLT  
BQ51051BYFPR  
BQ51051BYFPT  
BQ51052BYFPR  
BQ51052BYFPT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RHL  
RHL  
YFP  
YFP  
RHL  
RHL  
YFP  
YFP  
YFP  
YFP  
20  
20  
28  
28  
20  
20  
28  
28  
28  
28  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
0 to 125  
0 to 125  
0 to 125  
0 to 125  
0 to 125  
0 to 125  
0 to 125  
0 to 125  
0 to 125  
0 to 125  
BQ51050B  
NIPDAU  
SNAGCU  
SNAGCU  
NIPDAU  
NIPDAU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
BQ51050B  
BQ51050B  
BQ51050B  
BQ51051B  
BQ51051B  
BQ51051B  
BQ51051B  
BQ51052B  
BQ51052B  
DSBGA  
DSBGA  
VQFN  
VQFN  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ51050BRHLR  
BQ51050BRHLT  
BQ51050BYFPR  
BQ51050BYFPT  
BQ51051BRHLR  
BQ51051BRHLT  
BQ51051BYFPR  
BQ51051BYFPT  
BQ51052BYFPR  
BQ51052BYFPT  
VQFN  
VQFN  
RHL  
RHL  
YFP  
YFP  
RHL  
RHL  
YFP  
YFP  
YFP  
YFP  
20  
20  
28  
28  
20  
20  
28  
28  
28  
28  
3000  
250  
330.0  
180.0  
180.0  
180.0  
330.0  
180.0  
180.0  
180.0  
180.0  
180.0  
12.4  
12.4  
8.4  
3.71  
3.71  
2.0  
4.71  
4.71  
3.13  
3.13  
4.71  
4.71  
3.13  
3.13  
3.13  
3.13  
1.1  
1.1  
0.6  
0.6  
1.1  
1.1  
0.6  
0.6  
0.6  
0.6  
8.0  
8.0  
4.0  
4.0  
8.0  
8.0  
4.0  
4.0  
4.0  
4.0  
12.0  
12.0  
8.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
DSBGA  
DSBGA  
VQFN  
3000  
250  
8.4  
2.0  
8.0  
3000  
250  
12.4  
12.4  
8.4  
3.71  
3.71  
2.0  
12.0  
12.0  
8.0  
VQFN  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
3000  
250  
8.4  
2.0  
8.0  
3000  
250  
8.4  
2.0  
8.0  
8.4  
2.0  
8.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ51050BRHLR  
BQ51050BRHLT  
BQ51050BYFPR  
BQ51050BYFPT  
BQ51051BRHLR  
BQ51051BRHLT  
BQ51051BYFPR  
BQ51051BYFPT  
BQ51052BYFPR  
BQ51052BYFPT  
VQFN  
VQFN  
RHL  
RHL  
YFP  
YFP  
RHL  
RHL  
YFP  
YFP  
YFP  
YFP  
20  
20  
28  
28  
20  
20  
28  
28  
28  
28  
3000  
250  
346.0  
210.0  
182.0  
182.0  
346.0  
210.0  
182.0  
182.0  
182.0  
182.0  
346.0  
185.0  
182.0  
182.0  
346.0  
185.0  
182.0  
182.0  
182.0  
182.0  
33.0  
35.0  
20.0  
20.0  
33.0  
35.0  
20.0  
20.0  
20.0  
20.0  
DSBGA  
DSBGA  
VQFN  
3000  
250  
3000  
250  
VQFN  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
3000  
250  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RHL0020A  
PLASTIC QUAD FLATPACK- NO LEAD  
A
3.6  
3.4  
B
PIN 1 INDEX AREA  
4.6  
4.4  
C
1 MAX  
SEATING PLANE  
0.08 C  
2.05±0.1  
2X 1.5  
SYMM  
0.5  
0.3  
20X  
(0.2) TYP  
10  
11  
14X 0.5  
9
12  
SYMM  
21  
2X  
3.05±0.1  
3.5  
19  
2
0.29  
20X  
0.19  
0.1  
0.05  
20  
1
PIN 1 ID  
(OPTIONAL)  
C A B  
C
4X (0.2)  
2X (0.55)  
4219071 / A 05/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RHL0020A  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.3)  
(2.05)  
2X (1.5)  
SYMM  
1
20  
2X (0.4)  
20X (0.6)  
19  
2
20X (0.24)  
14X (0.5)  
SYMM  
21  
(3.05) (4.3)  
6X (0.525)  
2X (0.75)  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
9
12  
(R0.05) TYP  
(Ø0.2) VIA  
TYP)  
10  
11  
4X (0.2)  
4X  
(0.775)  
2X (0.55)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 18X  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
0.07 MIN  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219071 / A 05/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271)  
.
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
6. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to theri  
locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RHL0020A  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.3)  
2X (1.5)  
(0.55)  
TYP  
(0.56)  
TYP  
1
20  
SOLDER MASK EDGE  
TYP  
20X (0.6)  
2
19  
20X (0.24)  
14X (0.5)  
SYMM  
(1.05)  
TYP  
(4.3)  
21  
6X  
(0.85)  
(R0.05) TYP  
METAL  
TYP  
12  
9
2X  
(0.775)  
2X (0.25)  
6X (0.92)  
11  
10  
4X (0.2)  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1mm THICK STENCIL  
EXPOSED PAD  
75% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4219071 / A 05/2017  
NOTES: (continued)  
7.  
Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
D: Max = 3.036 mm, Min =2.976 mm  
E: Max = 1.913 mm, Min =1.852 mm  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

BQ51221

双模式 5W(WPC 和 PMA)单芯片无线电源接收器
TI

BQ51221YFPR

双模式 5W(WPC 和 PMA)单芯片无线电源接收器 | YFP | 42 | -40 to 85
TI

BQ51221YFPT

双模式 5W(WPC 和 PMA)单芯片无线电源接收器 | YFP | 42 | -40 to 85
TI

BQ51222

双模式 5W(WPC v1.2 和 PMA)单芯片无线电源接收器
TI

BQ51222YFPR

双模式 5W(WPC v1.2 和 PMA)单芯片无线电源接收器 | YFP | 42 | -40 to 125
TI

BQ51222YFPT

双模式 5W(WPC v1.2 和 PMA)单芯片无线电源接收器 | YFP | 42 | -40 to 125
TI

BQ55090EPA35NNS-G

DC-DC Regulated Power Supply Module, 1 Output, 336W, Hybrid, ROHS COMPLIANT, EIGHTH BRICK PACKAGE-5
SYNQOR

BQ55090EPA35NRS-G

DC-DC Regulated Power Supply Module, 1 Output, 336W, Hybrid, ROHS COMPLIANT, EIGHTH BRICK PACKAGE-5
SYNQOR

BQ55090EPA35NYS-G

DC-DC Regulated Power Supply Module, 1 Output, 336W, Hybrid, ROHS COMPLIANT, EIGHTH BRICK PACKAGE-5
SYNQOR

BQ55090EPA35PKS-G

DC-DC Regulated Power Supply Module, 1 Output, 336W, Hybrid, ROHS COMPLIANT, EIGHTH BRICK PACKAGE-5
SYNQOR

BQ55090EPA35PNS-G

DC-DC Regulated Power Supply Module, 1 Output, 336W, Hybrid, ROHS COMPLIANT, EIGHTH BRICK PACKAGE-5
SYNQOR

BQ55090EPA35PRS-G

DC-DC Regulated Power Supply Module, 1 Output, 336W, Hybrid, ROHS COMPLIANT, EIGHTH BRICK PACKAGE-5
SYNQOR