BQ7692000PWR [TI]

3 至 5 节电池锂离子和锂磷酸盐电池监视器(bq76940 系列) | PW | 20 | -40 to 85;
BQ7692000PWR
型号: BQ7692000PWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3 至 5 节电池锂离子和锂磷酸盐电池监视器(bq76940 系列) | PW | 20 | -40 to 85

电池 监视器 光电二极管
文件: 总69页 (文件大小:3092K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
用于锂离子电池和磷酸盐电池BQ769x0 3 15 节串联、电池监控器系列  
1 特性  
3 说明  
AFE 监控特性  
BQ769x0 可靠的模拟前端 (AFE) 器件系列是针对下一  
代高功率系统如轻型电动车辆、电动工具和不间断电  
的完整电池组监控与保护解决方案的组成部分。  
BQ769x0 专为实现低功耗而设计不仅可通过启用/禁  
IC 中的子块来控制整个芯片的电流消耗还可以利  
用运输模式将电池组轻松切换至超低功耗状态。  
– 纯数字接口  
– 内部模数转换(ADC) 用于测量电池电压、芯  
片温度和外部热敏电阻  
– 一个单独的、内ADC 测量电池组电流库伦  
电荷计数器)  
– 直接支持多达三个热敏电(103AT)  
• 硬件保护特性  
BQ76920 器件支持多5 节串联电池或典型值为 18 V  
的电池组BQ76930 可处理多达 10 节串联电池或典  
型值为 36 V 的电池组BQ76940 支持多达 15 节  
串联电池或典型值为 48 V 的电池组。可借助这些 AFE  
管理各种电池化学物质例如锂离子、磷酸铁锂等。通  
I2C主机控制器可以使用 BQ769x0 来执行多种电  
池组管理功能例如监控电池电压、电池组电流、电  
池组温度、保护控制充电/放电 FET以及平衡功  
能。集成式模数 (A/D) 转换器可实现对关键系统参数的  
纯数字读取并会TI 制造过程中校准这些参数。  
– 放电过(OCD)  
– 放电短(SCD)  
– 过(OV)  
– 欠(UV)  
– 次级保护器故障检测  
• 其他特性  
– 集成电池均衡场效应晶体(FET)  
– 充电、放电低NCH FET 驱动器  
– 到主机微控制器的警报中断  
2.5 V 3.3 V 输出电压稳压器  
– 无EEPROM 编程  
– 高电源电压绝对最大值108V)  
– 可兼I2C 的简单接口CRC 选项)  
– 可容忍电池随机连接  
器件信息  
器件型1  
BQ76920  
封装尺寸标称值)  
6.50mm × 4.40mm  
7.80mm x 4.40mm  
11.00mm x 4.40mm  
封装  
TSSOP (20)  
TSSOP (30)  
TSSOP (44)  
BQ76930  
BQ76940  
2 应用  
轻型电动车(LEV)电动自行车、电动踏板车、  
脚踏电动自行车和踏板辅助自行车  
电动工具和园艺工具  
电池备份单(BBUS)、储能系(ESS) 和不间断  
(UPS) 系统  
其他工业电池(10S)  
PACK  
+
Rf  
BAT  
VC  
VC  
VC  
VC  
VC  
VC  
5
4
3
2
1
0
REGSRC  
REGOUT  
Rc  
Rc  
Rc  
Rc  
Rc  
Cc  
Cc  
Cc  
CAP  
1
10 kΩ  
TS 1  
1 µF  
1
µF  
4.7 µF  
Cf  
SCL  
SDA  
VSS  
CHG  
DSG  
10  
k
SRP  
SRN  
PUSH  
- BUTTON FOR BOOT  
Cc  
Cc  
ALERT  
VCC  
SCL  
Companion  
Controller  
SDA  
GPIO  
VSS  
Cc  
1 M  
Rc  
0 .1 µF  
100  
0 .1 µF  
0 .1 µF  
100  
1 M  
1 M  
Rsns  
PACK  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSBK2  
 
 
 
 
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
Table of Contents  
8.2 Functional Block Diagram.........................................17  
8.3 Feature Description...................................................18  
8.4 Device Functional Modes..........................................28  
8.5 Register Maps...........................................................30  
9 Application and Implementation..................................40  
9.1 Application Information............................................. 40  
9.2 Typical Applications ................................................. 43  
10 Power Supply Recommendations..............................48  
11 Layout...........................................................................50  
11.1 Layout Guidelines................................................... 50  
11.2 Layout Example...................................................... 50  
12 Device and Documentation Support..........................52  
12.1 第三方产品免责声明................................................52  
12.2 Documentation Support.......................................... 52  
12.3 Related Links.......................................................... 52  
12.4 Receiving Notification of Documentation Updates..52  
12.5 Trademarks.............................................................52  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
6.1 Versions...................................................................... 3  
6.2 BQ76920 Pin Diagram................................................4  
6.3 BQ76930 Pin Diagram................................................5  
6.4 BQ76940 Pin Diagram................................................6  
7 Specifications.................................................................. 8  
7.1 Absolute Maximum Ratings........................................ 8  
7.2 ESD Ratings............................................................... 8  
7.3 Recommended Operating Conditions.........................9  
7.4 Thermal Information..................................................10  
7.5 Electrical Characteristics...........................................10  
7.6 Timing Requirements................................................14  
7.7 Typical Characteristics..............................................15  
8 Detailed Description......................................................17  
8.1 Overview...................................................................17  
Information.................................................................... 52  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision H (March 2019) to Revision I (March 2022)  
Page  
• 通篇更改了格式...................................................................................................................................................1  
Added VCn rows in Absolute Maximum Ratings table....................................................................................... 8  
Changed tablenote for POR and referenced entries........................................................................................ 10  
Changed the scale in the VCx and OV Protection plots .................................................................................. 15  
Updated 16-Bit Pack Voltage ...........................................................................................................................22  
Changed "OV Trip" to "UV Trip" in the description of undervoltage protection.................................................22  
Changed the LSB bit count from 2 to 4 for the OV_TRIP register....................................................................31  
Updated Application Information ......................................................................................................................40  
Added Device Timing .......................................................................................................................................40  
Added Random Cell Connection ..................................................................................................................... 40  
Added Power Pin Diodes .................................................................................................................................40  
Added Alert Pin ................................................................................................................................................40  
Added Sense Inputs ........................................................................................................................................ 40  
Added TSn Pins ...............................................................................................................................................40  
Updated Unused Pins ......................................................................................................................................41  
Updated Step-by-Step Design Procedure ....................................................................................................... 47  
Changes from Revision G (April 2016) to Revision H (March 2019)  
Page  
• 更改了.........................................................................................................................................................1  
• 更改了.........................................................................................................................................................1  
Added High-Side FET Driving ..........................................................................................................................24  
Added the link to the BQ769x0 Boot Switch Alternatives Application Report ..................................................28  
Added the link to the BQ769x0 Family Top Design Considerations Application Report ..................................40  
Added 9-4 to provide an example of a high-side FET configuration............................................................ 43  
Added BQ769x0 Family Top Design Considerations Application Report link...................................................48  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: BQ76920 BQ76930 BQ76940  
 
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
5 Device Comparison Table  
I2C ADDRESS (7-  
Bit)  
TUBE  
TAPE & REEL  
CELLS  
LDO (V)  
CRC  
PACKAGE  
BQ7692000PW  
BQ7692001PW(1)  
BQ7692002PW(1)  
BQ7692003PW  
BQ7692006PW  
BQ7693000DBT  
BQ7693001DBT  
BQ7693002DBT  
BQ7693003DBT  
BQ7693006DBT  
BQ7693007DBT  
BQ7694000DBT  
BQ7694001DBT  
BQ7694002DBT  
BQ7694003DBT  
BQ7694006DBT  
BQ7692000PWR  
BQ7692001PWR(1)  
BQ7692002PWR(1)  
BQ7692003PWR  
BQ7692006PWR  
BQ7693000DBTR  
BQ7693001DBTR  
BQ7693002DBTR  
BQ7693003DBTR  
BQ7693006DBTR  
BQ7693007DBTR  
BQ7694000DBTR  
BQ7694001DBTR  
BQ7694002DBTR  
BQ7694003DBTR  
BQ7694006DBTR  
No  
Yes  
No  
2.5  
0x08  
0x18  
0x08  
20-TSSOP (PW)  
35  
3.3  
2.5  
Yes  
No  
No  
Yes  
No  
30-TSSOP (DBT)  
610  
Yes  
No  
3.3  
0x18  
Yes  
No  
2.5  
3.3  
Yes  
No  
0x08  
0x18  
44-TSSOP (DBT)  
915  
Yes  
No  
(1) Product Preview only  
Texas Instruments preconfigures the BQ769x0 devices for a specific I2C address, LDO voltage, and more.  
These settings are permanently stored in EEPROM and cannot be further modified.  
Contact Texas Instruments for other options not listed above, as well as any options noted as Product Preview  
only.”  
6 Pin Configuration and Functions  
6.1 Versions  
ALERT  
DSG  
CHG  
1
2
3
4
5
6
7
8
9
DSG  
CHG  
1
2
20 ALERT  
DSG  
CHG  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
44 ALERT  
43 SRN  
42 SRP  
41 VC0  
SRN  
SRP  
VC0  
VC1  
VC2  
VC3  
19  
18  
17  
16  
15  
14  
13  
12  
11  
SRN  
SRP  
VC0  
VC1  
VC2  
VC3  
VSS  
VSS  
3
VSS  
3
SDA  
SDA  
4
SDA  
4
SCL  
SCL  
SCL  
VC1  
VC2  
5
5
40  
39  
20-TSSOP  
TS1  
TS1  
TS1  
6
6
CAP1  
REGOUT  
REGSRC  
BAT  
CAP1  
REGOUT  
REGSRC  
VC5x  
NC  
CAP1  
REGOUT  
REGSRC  
38 VC3  
37 VC4  
36 VC5  
35 VC5B  
34 VC6  
33 VC7  
32 VC8  
31 VC9  
30 VC10  
7
7
VC4  
VC5  
NC  
8
8
VC4  
VC5  
VC5B  
VC6  
VC7  
VC8  
VC9  
VC10  
30-TSSOP  
9
9
VC5x 10  
NC 11  
NC 12  
10  
10  
11  
12  
13  
44-TSSOP  
NC  
13  
14  
15  
16  
17  
18  
TS2  
TS2  
CAP2  
VC10x  
NC  
CAP2 14  
BAT 15  
29  
28  
27  
VC10B  
VC11  
VC12  
NC  
TS3  
CAP3 19  
BAT 20  
26 VC13  
25 VC14  
24 VC15  
23 NC  
NC 21  
NC 22  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: BQ76920 BQ76930 BQ76940  
 
 
 
 
 
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
BQ76920: 35 Series Cells (20-TSSOP)  
6.5 mm x 4.4 mm x 1.2 mm  
BQ76930: 610 Series Cells (30-TSSOP)  
7.8 mm x 4.4 mm x 1.2 mm  
BQ76940: 915 Series Cells (44-TSSOP)  
11.3 mm x 4.4 mm x 1.2 mm  
6.2 BQ76920 Pin Diagram  
DSG  
CHG  
1
2
20 ALERT  
SRN  
SRP  
VC0  
VC1  
VC2  
VC3  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VSS  
3
SDA  
4
SCL  
5
20-TSSOP  
TS1  
6
CAP1  
REGOUT  
REGSRC  
BAT  
7
VC4  
VC5  
NC  
8
9
10  
6-1. BQ76920 Pin Functions  
PIN  
1
NAME  
DSG  
CHG  
VSS  
TYPE  
DESCRIPTION  
O
O
Discharge FET driver  
Charge FET driver  
Chip VSS  
2
3
I/O  
I
4
SDA  
I2C communication to the host controller  
I2C communication to the host controller  
Thermistor #1 positive terminal(1)  
Capacitor to VSS  
5
SCL  
6
TS1  
I
7
CAP1  
REGOUT  
REGSRC  
BAT  
O
P
I
8
Output LDO  
9
Input source for output LDO  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
P
Battery (top-most) terminal  
NC  
No connect  
VC5  
I
Sense voltage for 5th cell positive terminal  
Sense voltage for 4th cell positive terminal  
Sense voltage for 3rd cell positive terminal  
Sense voltage for 2nd cell positive terminal  
Sense voltage for 1st cell positive terminal  
Sense voltage for 1st cell negative terminal  
Negative current sense (nearest VSS)  
Positive current sense  
VC4  
I
VC3  
I
VC2  
I
VC1  
I
VC0  
I
I
SRP  
SRN  
I
ALERT  
I/O  
Alert output and override input  
(1) If not used, pull down to VSS with a 10-kΩnominal resistor.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: BQ76920 BQ76930 BQ76940  
 
 
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
6.3 BQ76930 Pin Diagram  
ALERT  
DSG  
CHG  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
SRN  
SRP  
VC0  
VC1  
VC2  
VC3  
VSS  
3
SDA  
4
SCL  
5
TS1  
6
CAP1  
REGOUT  
REGSRC  
VC5x  
NC  
7
30-TSSOP  
8
VC4  
VC5  
VC5B  
VC6  
VC7  
VC8  
VC9  
VC10  
9
10  
11  
12  
13  
NC  
TS2  
CAP2 14  
BAT 15  
6-2. BQ76930 Pin Functions  
PIN  
1
NAME  
DSG  
CHG  
VSS  
TYPE  
DESCRIPTION  
O
O
Discharge FET driver  
Charge FET driver  
Chip VSS  
2
3
I/O  
I
4
SDA  
I2C communication to the host controller  
I2C communication to the host controller  
Thermistor #1 positive terminal(1)  
Capacitor to VSS  
5
SCL  
6
TS1  
I
7
CAP1  
REGOUT  
REGSRC  
VC5X  
NC  
O
P
I
8
Output LDO  
9
Input source for output LDO  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
P
Thermistor #2 negative terminal  
No connect (short to CAP2)  
I
NC  
No connect (short to CAP2)  
TS2  
Thermistor #2 positive terminal(1)  
CAP2  
BAT  
O
P
I
Capacitor to VC5X  
Battery (top-most) terminal  
VC10  
VC9  
Sense voltage for 10th cell positive terminal  
Sense voltage for 9th cell positive terminal  
Sense voltage for 8th cell positive terminal  
Sense voltage for 7th cell positive terminal  
Sense voltage for 6th cell positive terminal  
Sense voltage for 6th cell negative terminal  
Sense voltage for 5th cell positive terminal  
Sense voltage for 4th cell positive terminal  
Sense voltage for 3rd cell positive terminal  
Sense voltage for 2nd cell positive terminal  
Sense voltage for 1st cell positive terminal  
I
VC8  
I
VC7  
I
VC6  
I
VC5B  
VC5  
I
I
VC4  
I
VC3  
I
VC2  
I
VC1  
I
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: BQ76920 BQ76930 BQ76940  
 
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
6-2. BQ76930 Pin Functions (continued)  
PIN  
27  
28  
29  
30  
NAME  
VC0  
TYPE  
DESCRIPTION  
Sense voltage for 1st cell negative terminal  
Negative current sense (nearest VSS)  
Positive current sense  
I
I
SRP  
SRN  
I
ALERT  
I/O  
Alert output and override input  
(1) If not used, pull down to group ground reference (VSS for TS1 and VC5X for TS2) with a 10-kΩnominal resistor.  
6.4 BQ76940 Pin Diagram  
DSG  
CHG  
1
2
3
4
5
6
7
8
9
44 ALERT  
43 SRN  
42 SRP  
41 VC0  
VSS  
SDA  
SCL  
VC1  
VC2  
40  
39  
TS1  
CAP1  
REGOUT  
REGSRC  
38 VC3  
37 VC4  
36 VC5  
35 VC5B  
34 VC6  
33 VC7  
32 VC8  
31 VC9  
30 VC10  
VC5x 10  
NC 11  
NC 12  
44-TSSOP  
13  
14  
15  
16  
17  
18  
TS2  
CAP2  
VC10x  
NC  
29  
28  
27  
VC10B  
VC11  
VC12  
NC  
TS3  
CAP3 19  
BAT 20  
26 VC13  
25 VC14  
24 VC15  
23 NC  
NC 21  
NC 22  
BQ76940 Pin Functions  
PIN  
1
NAME  
DSG  
TYPE  
O
DESCRIPTION  
Discharge FET driver  
Charge FET driver  
Chip VSS  
2
CHG  
O
3
VSS  
I/O  
I
4
SDA  
I2C communication to the host controller  
I2C communication to the host controller  
Thermistor #1 positive terminal(1)  
Capacitor to VSS  
5
SCL  
6
TS1  
I
7
CAP1  
REGOUT  
REGSRC  
VC5X  
NC  
O
P
I
8
Output LDO  
9
Input source for output LDO  
Thermistor #2 negative terminal  
No connect (short to CAP2)  
No connect (short to CAP2)  
10  
11  
12  
P
NC  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: BQ76920 BQ76930 BQ76940  
 
 
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
BQ76940 Pin Functions (continued)  
PIN  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
NAME  
TS2  
TYPE  
DESCRIPTION  
I
Thermistor #2 positive terminal(1)  
Capacitor to VC5X  
CAP2  
VC10X  
NC  
O
P
Thermistor #3 negative terminal  
No connect (short to CAP3)  
No connect (short to CAP3)  
Thermistor #3 positive terminal(1)  
Capacitor to VC10X  
I
NC  
TS3  
CAP3  
BAT  
O
P
Battery (top-most) terminal  
No connect  
NC  
NC  
No connect  
NC  
No connect  
VC15  
VC14  
VC13  
VC12  
VC11  
VC10B  
VC10  
VC9  
I
Sense voltage for 15th cell positive terminal  
Sense voltage for 14th cell positive terminal  
Sense voltage for 13th cell positive terminal  
Sense voltage for 12th cell positive terminal  
Sense voltage for 11th cell positive terminal  
Sense voltage for 11th cell negative terminal  
Sense voltage for 10th cell positive terminal  
Sense voltage for 9th cell positive terminal  
Sense voltage for 8th cell positive terminal  
Sense voltage for 7th cell positive terminal  
Sense voltage for 6th cell positive terminal  
Sense voltage for 6th cell negative terminal  
Sense voltage for 5th cell positive terminal  
Sense voltage for 4th cell positive terminal  
Sense voltage for 3rd cell positive terminal  
Sense voltage for 2nd cell positive terminal  
Sense voltage for 1st cell positive terminal  
Sense voltage for 1st cell negative terminal  
Negative current sense (nearest VSS)  
Positive current sense  
I
I
I
I
I
I
I
VC8  
I
VC7  
I
VC6  
I
VC5B  
VC5  
I
I
VC4  
I
VC3  
I
VC2  
I
VC1  
I
VC0  
I
I
SRP  
SRN  
ALERT  
I
I/O  
Alert output and override input  
(1) If not used, pull down to group ground reference (VSS for TS1, VC5X for TS2, and VC10X for TS3) with a 10-kΩnominal resistor.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: BQ76920 BQ76930 BQ76940  
 
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over-operating free-air temperature range (unless otherwise noted) (1)  
MIN  
MAX  
UNIT  
BQ76920  
BQ76930  
BQ76940  
(BATVSS)  
VBAT  
Supply voltage  
Input voltage  
Output voltage  
36  
V
(BATVC5x), (VC5xVSS)  
0.3  
(BATVC10x), (VC10xVC5x), (VC5xVSS)  
BQ76920,  
BQ76930,  
BQ76940  
(n × 7.2)  
(VCnVSS) where n = 1..5  
BQ76930,  
BQ76940  
(n5) ×  
V
V
0.3  
0.3  
(VCn-VC5x) where n = 6..10  
7.2  
(n10) ×  
BQ76940  
(VCnVC10x) where n = 11..15  
7.2  
Cell input pins, differential (VCnVCn1) where n = 1..15/10/5  
9
(BQ76940/BQ76930/BQ76920, respectively)  
VI  
SRN, SRP, SCL, SDA  
(VC0VSS), (CAP1VSS), (TS1VSS)(2)  
BQ76920  
(VC0VSS), (VC5bVC5x), (CAP2VC5x),  
(CAP1VSS), (TS2VC5x), (TS1VSS)(2)  
BQ76930  
BQ76940  
3.6  
0.3  
V
(VC0VSS), (VC5bVC5x), (VC10bVC10x),  
(CAP3VC10x), (CAP2VC5x), (CAP1VSS),  
(TS3VC10x), (TS2VC5x), (TS1VSS)(2)  
REGSRC  
REGOUT, ALERT  
DSG  
36  
3.6  
0.3  
0.3  
0.3  
0.3  
VO  
20  
V
CHG  
VCHGCLAMP  
BQ76920  
70  
mA  
mA  
mA  
ICB  
Cell balancing current (per cell)  
BQ76930,  
BQ76940  
5
7
IDSG  
Discharge pin input current when disabled (measured into terminal)  
Storage temperature  
150  
300  
65  
TSTG  
°C  
Lead temperature (soldering, 10 s)  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and  
this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) The Absolute Maximum Ratings for (TS1VSS) apply after the device completes POR and should be observed after tBOOTREADY  
(10 ms), following the application of the boot signal on TS1. Prior to completion of POR, TS1 should not exceed 5 V.  
7.2 ESD Ratings  
VALUE  
±2  
UNIT  
kV  
V(ESD) Electrostatic  
discharge  
Human body model (HBM) ESD stress voltage(1)  
Charged device model (CDM) ESD stress voltage(2)  
±500  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: BQ76920 BQ76930 BQ76940  
 
 
 
 
 
 
 
 
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
Over-operating free-air temperature range (unless otherwise noted). See 9.1.8 for more information on cell configurations.  
All voltages are relative to VSS, except "Cell input differential."  
MIN  
TYP  
MAX  
UNIT  
BQ76920  
BQ76930  
(BATVSS)  
(BATVC5x), (VC5xVSS)  
VBAT  
Supply voltage  
6
25  
V
(BATVC10x), (VC10xVC5x),  
(VC5xVSS)  
BQ76940  
Cell input pins, differential (VCnVCn1) where n  
= 1..15/10/5 (BQ76940/BQ76930/BQ76920,  
respectively), in-use cells only  
2
0
5
V
V
BQ76920  
(VCnVSS) where n = 1..5  
(VCnVSS) where n = 1..5,  
(VCnVC5x) where n = 6..10  
BQ76930  
5 × n  
(VCnVSS) where n = 1..5,  
(VCnVC5x) where n = 6..10,  
(VCnVC10x) where n = 11..15  
BQ76940  
SRP  
BQ76920  
BQ76930  
(VC0VSS)  
VIN  
Input voltage  
10  
200  
3.6  
mV  
mV  
10  
200  
0
(VC0VSS), (VC5bVC5x)  
(VC0VSS), (VC5bVC5x),  
(VC10bVC10x)  
BQ76940  
SRN  
SCL, SDA  
BQ76920  
BQ76930  
(TS1VSS)  
(TS1VSS), (TS2VC5x)  
V
(TS1VSS), (TS2VC5x),  
(TS3VC10x)  
BQ76940  
REGSRC  
6
0
25  
16  
CHG, DSG  
V
V
REGOUT, ALERT  
(CAP1VSS)  
BQ76920  
BQ76930  
VOUT  
Output voltage  
0
3.6  
(CAP1VSS), (CAP2VC5x)  
(CAP1VSS), (CAP2VC5x),  
(CAP3VC10x)  
BQ76940  
Cell balancing  
current (internal, per  
cell)  
BQ76920  
0
0
50  
5
mA  
mA  
ICB  
BQ76930, BQ76940  
BQ76920  
40  
500  
0.1  
40  
100  
1K  
1
1K  
1K  
10  
1K  
40  
Ω
Ω
µF  
External cell input  
resistance  
RC  
BQ76930, BQ76940  
CC  
Rf  
External cell input capacitance  
External supply filter resistance  
External supply filter capacitance  
Sense resistor filter resistance  
100  
10  
Ω
Cf  
1
µF  
RFILT  
100  
1K  
1M  
4.7  
Ω
Ω
RALERT ALERT pin to VSS resistor  
CL  
REGOUT loading capacitance  
1
1
µF  
µF  
CCAP  
RTS  
REGSRC, CAP1, CAP2, and CAP3 output capacitance  
External thermistor nominal resistance (103AT) at 25°C  
10K  
Ω
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: BQ76920 BQ76930 BQ76940  
 
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
Over-operating free-air temperature range (unless otherwise noted). See 9.1.8 for more information on cell configurations.  
All voltages are relative to VSS, except "Cell input differential."  
MIN  
TYP  
MAX  
UNIT  
TOPR  
Operating free-air temperature  
85  
°C  
40  
7.4 Thermal Information  
Over-operating free-air temperature range (unless otherwise noted)  
TSSOP  
THERMAL METRIC(1)  
BQ76920xy  
UNIT  
BQ76930xy  
BQ76940xy  
20 PINS (PW)  
30 PINS (DBT)  
44 PINS (DBT)  
RθJA, High K Junction-to-ambient thermal resistance  
93.7  
28.7  
44.6  
1.3  
86.5  
19.4  
41.3  
0.5  
70.1  
17.5  
33.9  
0.5  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
44.1  
40.6  
33.4  
ψJB  
Rθ  
Junction-to-case(bottom) thermal resistance  
n/a  
n/a  
n/a  
°C/W  
JC(bottom)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics Application  
Report (SPRA953).  
7.5 Electrical Characteristics  
Typical conditions are measured at 25°C with nominal BAT voltages of 18 V (BQ76920), 36 V (BQ76930), or 48 V (BQ76940)  
with VCELL = 4 V. Min and max values include full recommended operating condition temperature range from 40°C to  
+85°C. Certain characteristics may be shown at different voltage or temperature ranges, as clarified in the Test Condition  
sections.  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
SUPPLY CURRENTS  
NORMAL mode: ADC off,  
CC off  
40  
60  
60  
90  
NORMAL mode: ADC on,  
CC off  
Sum of ICC_BAT and ICC_REGSRC  
currents  
IDD  
NORMAL mode: ADC off,  
CC on  
110  
130  
165  
195  
NORMAL mode: ADC on,  
CC on  
µA  
NORMAL mode: ADC off  
NORMAL mode: ADC on  
NORMAL mode: CC off  
NORMAL mode: CC on  
30  
50  
10  
80  
45  
75  
ICC_BAT  
Into BAT pin  
15  
ICC_REGSRC  
Into REGSRC pin  
120  
Device in full shutdown, only VSTUP/BG  
and BOOT detector on  
ISHIP  
SHIP/SHUTDOWN mode  
0.6  
1.8  
LEAKAGE AND OFFSET CURRENTS  
NORMAL mode supply  
current offset  
dINOM  
±2.5  
±0.1  
15  
5
1.0  
25  
5  
Measured into VC5x (BQ76930,  
BQ76940) and VC10x (BQ76940)  
SHIP mode supply current  
dISHIP  
offset  
1.0  
Supply current when  
ALERT active  
Measured into VC5x (BQ76930,  
BQ76940) or added to BAT (BQ76920)  
dIALERT  
µA  
Measured into VC0VC15 except VC5,  
VC10, VC15  
±0.1  
0.3  
0.3  
Cell measurement input  
current  
dICELL  
Measured into VC5, VC10, VC15  
0.5  
1
ILKG  
10  
Terminal input leakage  
Submit Document Feedback  
Copyright © 2022 Texas Instruments Incorporated  
Product Folder Links: BQ76920 BQ76930 BQ76940  
 
 
 
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
Typical conditions are measured at 25°C with nominal BAT voltages of 18 V (BQ76920), 36 V (BQ76930), or 48 V (BQ76940)  
with VCELL = 4 V. Min and max values include full recommended operating condition temperature range from 40°C to  
+85°C. Certain characteristics may be shown at different voltage or temperature ranges, as clarified in the Test Condition  
sections.  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
INTERNAL POWER CONTROL (STARTUP and SHUTDOWN)  
VPORA  
VSHUT  
Analog POR threshold  
Shutdown voltage  
VBAT rising. See (4)  
VBAT falling. See (4)  
.
4
5
V
V
.
3.6  
Time delay after boot  
Delay after boot sequence when I2C  
communication is allowed  
tI2CSTARTUP  
signal on TS1 before I2C  
communications allowed  
1
ms  
Delay after boot signal when device has  
completed full boot-up sequence  
tBOOTREADY  
TSHUTD  
Device boot startup delay  
Thermal shutdown voltage  
10  
ms  
°C  
100  
250  
150  
MEASUREMENT SCHEDULE  
Cell voltage measurement  
interval  
tVCELL  
BQ76920, BQ76930, BQ76940  
Per cell, balancing off  
Per cell, balancing on  
50  
Individual cell  
measurement time  
tINDCELL  
12.5  
Cell balancing relaxation  
time before cell voltage  
measured  
ms  
tCB_RELAX  
12.5  
Temperature measurement Measurement duration for temperature  
tTEMP_DEC  
tBAT  
12.5  
250  
2
decimation time  
reading  
Pack voltage calculation  
interval  
Temperature measurement Period of measurement of either  
interval TS1/TS2/TS3 or internal die temp  
tTEMP  
s
14-BIT ADC FOR CELL VOLTAGE AND TEMPERATURE MEASUREMENT  
ADC measurement  
recommend operation  
range  
VCELL measurements  
2
5
3
V
V
ADCRANGE  
ADCLSB  
TS/Temp measurements  
0.3  
ADC LSB value  
382  
±10  
±15  
±25  
±20  
±25  
±35  
µV  
VCELL = 3.6 V 4.3 V  
VCELL = 3.2 V 4.6 V  
VCELL = 2.0 V 5.0 V  
VCELL = 3.6 V 4.3 V  
VCELL = 3.2 V 4.6 V  
VCELL = 2.0 V 5.0 V  
VCELL = 3.6 V 4.3 V  
VCELL = 3.2 V 4.6 V  
VCELL = 2.0 V 5.0 V  
ADC cell voltage accuracy  
at 25°C  
ADC cell voltage accuracy  
0°C to 60°C  
ADC  
mV  
40  
40  
50  
40  
40  
50  
ADC cell voltage accuracy  
40°C to 85°C  
16-BIT CC FOR PACK CURRENT MEASUREMENT  
CCRANGE  
CCFSR  
CC input voltage range  
CC full scale range  
CC LSB value  
200  
270  
mV  
mV  
µV  
200  
270  
CCLSB  
CC running constantly  
Single conversion  
8.44  
250  
tCCREAD  
Conversion time  
ms  
16-bit, best fit over input voltage range ±  
200 mV  
CCINL  
Integral nonlinearity  
Offset error  
± 2  
± 1  
± 40  
± 3  
LSB  
LSB  
CCOFFSET  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: BQ76920 BQ76930 BQ76940  
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
Typical conditions are measured at 25°C with nominal BAT voltages of 18 V (BQ76920), 36 V (BQ76930), or 48 V (BQ76940)  
with VCELL = 4 V. Min and max values include full recommended operating condition temperature range from 40°C to  
+85°C. Certain characteristics may be shown at different voltage or temperature ranges, as clarified in the Test Condition  
sections.  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
CCGAIN  
Gain error  
Over input voltage range  
± 0.5%  
± 1.5%  
FSR  
CCGAINDRIFT  
CCRIN  
Gain error drift  
Effective input resistance  
Over input voltage range  
150 PPM / °C  
2.5  
10  
MΩ  
THERMISTOR BIAS  
RTS  
Pull-up resistance  
TA = 25°C  
9.85  
9.7  
10.15  
kΩ  
kΩ  
Pull-up resistance across  
temp  
RTSDRIFT  
10.3  
TA = 40°C to 85°C  
DIETEMP  
VDIETEMP25  
Die temperature voltage  
TA = 25°C  
1.20  
V
Die temperature voltage  
drift  
VDIETEMPDRIFT  
mV/°C  
4.2  
INTEGRATED HARDWARE PROTECTIONS  
OVRANGE  
UVRANGE  
OV threshold range  
UV threshold range  
0x2008  
0x1000  
0x2FF8  
0x1FF0  
ADC  
ADC  
OV and UV threshold step  
size  
OVUVSTEP  
UVMINQUAL  
16  
LSB  
UV minimum value to  
qualify  
Below UVMINQUAL, the cell is shorted  
(unused)  
0x0518  
ADC  
OV delay = 1 s  
OV delay = 2 s  
OV delay = 4 s  
OV delay = 8 s  
UV delay = 1 s  
UV delay = 4 s  
UV delay = 8 s  
UV delay = 16 s  
Measured across (SRPSRN)(2)  
RSNS = 0  
0.7  
1.6  
3.5  
7
1
2
1.75  
2.75  
5
OVDELAY  
OV delay timer options  
UV delay timer options  
4
8
10  
s
0.7  
3.5  
7
1
1.75  
5
4
UVDELAY  
8
10  
14  
8
16  
20  
OCDRANGE  
OCDSTEP  
OCD threshold options  
OCD threshold step size  
100  
mV  
mV  
mV  
ms  
mV  
mV  
mV  
µs  
2.78  
5.56  
RSNS = 1  
OCDDELAY  
SCDRANGE  
OCD delay options  
See Note(3)  
8
1280  
200  
Measured across (SRPSRN)(2)  
RSNS = 0  
SCD threshold options  
22  
11.1  
22.2  
70  
SCDSTEP  
SCD threshold step size  
RSNS = 1  
35  
50  
105  
150  
260  
520  
20%  
100  
200  
400  
µs  
SCDDELAY  
SCD delay options  
140  
µs  
280  
µs  
tPROTACC  
Delay accuracy for OCD  
20%  
OCD and SCD voltage  
offset  
OCOFFSET  
2.5  
mV  
2.5  
OCD and SCD scale  
accuracy  
OCSCALEERR  
10%  
10%  
CHARGE AND DISCHARGE DRIVERS  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: BQ76920 BQ76930 BQ76940  
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
Typical conditions are measured at 25°C with nominal BAT voltages of 18 V (BQ76920), 36 V (BQ76930), or 48 V (BQ76940)  
with VCELL = 4 V. Min and max values include full recommended operating condition temperature range from 40°C to  
+85°C. Certain characteristics may be shown at different voltage or temperature ranges, as clarified in the Test Condition  
sections.  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
REGSRC 12 V with load resistance of  
10 MΩ  
10  
12  
14  
V
VFETON  
CHG and DSG on  
REGSRC < 12 V with load resistance of  
10 MΩ  
REGSRC  
REGSRC –  
REGSRC  
250  
V
2  
1
CHG/DSG driving an equivalent load  
capacitance of 10 nF, measured from  
10% to 90% of VFETON  
CHG and DSG ON rise  
time  
tFET_ON  
200  
µs  
DSG driving an equivalent load  
capacitance of 10 nF, measured from  
90% to 10%  
DSG pull-down OFF fall  
time  
tDSG_OFF  
60  
90  
µs  
CHG pull-down OFF  
resistance to VSS  
RCHG_OFF  
When CHG disabled, CHG held at 12 V  
When DSG disabled, DSG held at 12 V  
750  
1000  
1250  
kΩ  
DSG pull-down OFF  
resistance to VSS  
RDSG_OFF  
1.75  
0.4  
2.50  
0.7  
4.25  
1.0  
kΩ  
VLOAD_DETECT  
Load detection threshold  
V
If the CHG pin externally pulled high  
(through PACK, if load applied), 500-  
µA max sink current into CHG pin. With  
CHG_ON bit cleared.  
VCHG_CLAMP  
CHG clamp voltage  
18  
20  
22  
V
ALERT PIN  
REGOUT x  
0.75  
VALERT_OH  
ALERT output voltage high IOL = 1 mA  
ALERT output voltage low Unloaded  
V
V
REGOUT  
x 0.25  
VALERT_OL  
VALERT_IH  
RALERT_PD  
ALERT externally forced high when  
internally driven low. See note (1)  
ALERT input high  
1
1.5  
8
V
.
ALERT pin weak pulldown Measured into ALERT pin with ALERT =  
resistance when driven low REGOUT  
0.8  
2.5  
MΩ  
CELL BALANCING DRIVER  
Internal cell balancing  
RDSFET  
VCELL = 3.6 V  
Every 250 ms  
1
5
10  
Ω
driver resistance  
Cell balancing duty cycle  
when enabled  
XBAL  
70%  
EXTERNAL REGULATOR  
2.45  
3.20  
2.50  
3.30  
2.55  
3.40  
V
V
External LDO voltage  
options  
Nominal values, TI factory programmed,  
unloaded, across temp  
VEXTLDO  
REGSRC pin stepped from 6 to 25 V,  
with 10-mA load, in 100 µs  
VEXTLDO_LN  
VEXTLDO_LD  
Line regulation  
Load regulation  
100  
4%  
mV  
IREGOUT = 0 mA to 10 mA  
4%  
2.4  
REGOUT = 10-mA DC, 2.5-V version  
REGOUT = 20-mA DC, 2.5-V version  
REGOUT = 10-mA DC, 3.3-V version  
REGOUT = 20-mA DC, 3.3-V version  
V
V
2.3  
External LDO minimum  
voltage under DC load  
VEXTLDO_DC  
3.15  
3.05  
30  
V
V
IEXTLDO_LIMIT  
External LDO current limit REGOUT = 0 V  
38  
45  
mA  
BOOT DETECTOR  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: BQ76920 BQ76930 BQ76940  
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
Typical conditions are measured at 25°C with nominal BAT voltages of 18 V (BQ76920), 36 V (BQ76930), or 48 V (BQ76940)  
with VCELL = 4 V. Min and max values include full recommended operating condition temperature range from 40°C to  
+85°C. Certain characteristics may be shown at different voltage or temperature ranges, as clarified in the Test Condition  
sections.  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
Measured at TS1 pin with device in SHIP  
mode. Below MIN, the device does not  
boot up. Above MAX, the device boots  
up.  
VBOOT  
Boot threshold voltage  
300  
1000  
mV  
Measured at TS1 pin. Below MIN, the  
device does not boot up. Above MAX,  
the device boots up.  
Boot threshold application  
time  
tBOOT_max  
10  
2000  
µs  
(1) MIN specifies the threshold below which the device will never register that an external alert has occurred. MAX specifies the minimum  
threshold above which the device will always register that an external alert has occurred.  
(2) Values indicate nominal thresholds only. For min and max variation, apply OCOFFSET and OCSCALERR  
.
(3) Values indicate nominal thresholds only. For min and max variation, apply tPROTACC  
.
(4) Measured at each VBAT  
7.6 Timing Requirements  
I2C COMPATIBLE INTERFACE  
MIN  
TYP  
MAX  
UNIT  
REGOUT x  
0.25  
VIL  
VIH  
Input low logic threshold  
Input high logic threshold  
V
REGOUT x  
0.75  
V
V
VOL  
Output low logic drive  
0.20  
0.40  
N/A  
tf  
SCL, SDA fall time  
VOH  
Output high logic drive (not applicable due to open-drain outputs)  
SCL pulse width high  
N/A  
4.0  
4.7  
4.7  
4.0  
250  
0
V
µs  
µs  
µs  
µs  
ns  
µs  
µs  
µs  
ns  
ns  
kHz  
tHIGH  
tLOW  
SCL pulse width low  
tSU;STA  
tHD;STA  
tSU;DAT  
tHD;DAT  
tSU;STO  
tBUF  
Setup time for START condition  
START condition hold time after which first clock pulse is generated  
Data setup time  
Data hold time  
Setup time for STOP condition  
Time the bus must be free before new transmission can start  
Clock low to data out valid  
4.0  
4.7  
tVD;DAT  
tHD;DAT  
fSCL  
900  
100  
Data out hold time after clock low  
Clock frequency  
0
0
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: BQ76920 BQ76930 BQ76940  
 
 
 
 
 
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
SCL  
SDA  
SCL  
SDA  
SCL  
SDA  
7-1. I2C Timing  
7.7 Typical Characteristics  
30  
±0±2±  
±0±18  
±0±16  
±0±14  
±0±12  
±0±1±  
±0±±8  
±0±±6  
±0±±4  
±0±±2  
±0±±±  
±±0±±2  
±±0±±4  
VC1 Error  
VC2 Error  
VC3 Error  
VC4 Error  
VC5 Error  
25  
20  
15  
10  
5
0
œ5  
10  
35  
60  
85  
œ40  
œ15  
20±± 203± 206± 209± 302± 305± 308± 401± 404± 407± 50±±  
Temperature (°C)  
VCx Input (V)  
C005  
C±±1  
7-3. Coulomb Counter Gain Error Temperature  
Drift (from 0.2 V to 0.2 V)  
7-2. BQ76930 VCx Error Across Input Range at  
25°C with VIN at 3.6 V  
0.0  
œ0.1  
œ0.2  
œ0.3  
œ0.4  
œ0.5  
œ0.6  
œ0.7  
0.0  
œ0.2  
œ0.4  
œ0.6  
œ0.8  
œ1.0  
œ1.2  
œ1.4  
œ1.6  
10  
35  
60  
85  
10  
35  
60  
85  
œ40  
œ15  
œ40  
œ15  
Temperature (°C)  
Temperature (°C)  
C003  
C002  
7-4. Coulomb Counter Gain Error (from 0.2 V  
7-5. Coulomb Counter Offset  
to 0.2 V)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: BQ76920 BQ76930 BQ76940  
 
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
0.01  
0.005  
0
-0.005  
-0.01  
-0.015  
-0.02  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
7-6. OV Protection Detection Error (0xFF Setting)  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: BQ76920 BQ76930 BQ76940  
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
In the BQ769x0 family of analog front-end (AFE) devices, the BQ76920 device supports up to 5-series cells, the  
BQ76930 device supports up to 10-series cells, and the BQ76940 device supports up to 15-series cells. Through  
I2C, a host controller can use the BQ769x0 to implement battery pack management functions, such as  
monitoring (cell voltages, pack current, pack temperatures), protection (controlling charge/discharge FETs), and  
balancing. Integrated A/D converters enable a purely digital readout of critical system parameters including cell  
voltages and internal or external temperature, with calibration handled in TIs manufacturing process. For an  
additional degree of pack reliability, the BQ769x0 includes hardware protections for voltage (OV, UV) and current  
(OCD, SCD).  
The BQ769x0 provides two low-side FET drivers, charge (CHG) and discharge (DSG), which may be used to  
directly manipulate low-side power NCH FETs, or as signals that control an external circuit that enables high-side  
PCH or NCH FETs. A dedicated ALERT input/output pin serves as an interrupt signal to the host microcontroller,  
quickly informing the microcontroller of an updated status in the AFE. This may include a fault event or that a  
coulomb counter sample is available for reading. An available ALERT pin may also be driven externally by a  
secondary protector to provide a redundant means of disabling the CHG and DSG signals and higher system  
visibility.  
8.2 Functional Block Diagram  
REG  
SRC  
CAP  
Bandgap  
IBIAS  
VSTUP/POR  
BAT  
Cell Balance  
Drivers/FETs  
BOOT  
Internal 3.3-V  
LDO  
External  
2.5/3.3-V LDO  
REG  
OUT  
14-bit ADC  
Modulator  
ALERT  
256 kHz  
FET  
DRIVER and  
CHG  
DSG  
Digital core  
Die temp  
TS  
LOAD  
DETECT  
CC VREF  
SCL  
SDA  
16-bit ACC  
Modulator  
2
I C  
TS  
SCD  
comp  
BOOT  
EEPROM  
OCD  
comp  
To POR  
VSS  
SRP SRN  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: BQ76920 BQ76930 BQ76940  
 
 
 
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Subsystems  
BQ769x0 consists of three major subsystems: Measurement, Protection, and Control. These work together to  
ensure that the fundamental battery pack parametersvoltage, current and temperatureare accurately  
captured and easily available to a host controller, while ensuring a baseline or secondary level of hardware  
protection in the event that a host controller is unable or unavailable to manage certain fault conditions.  
备注  
The BQ769x0 is intended to serve as an analog front-end (AFE) as part of a chipset system solution:  
A companion microcontroller is required to oversee and control this AFE.  
The Measurement subsystems core responsibility is to digitize the cell voltages, pack current (integrated  
into a passed charge calculation), external thermistor temperature, and internal die temperature. It also  
performs an automatic calculation of the total battery stack voltage, by simply adding up all measured cell  
voltages.  
The Protection subsystem provides a baseline or secondary level of hardware protections to better support a  
battery packs FMEA requirements in the event of a loss of host control or simply if a host is unable to  
respond to a certain fault event in time. Integrated protections include pack-level faults such as OV, UV, OCD,  
SCD, detection of an external secondary protector fault, and internal logic watchdog-style device fault  
(XREADY). Protection events will trigger toggling of the ALERT pin, as well as automatic disabling of the  
DSG or CHG FET driver (depending on the fault). Recovery from a fault event must be handled by the host  
microcontroller.  
The Control subsystem implements a suite of useful pack features, including direct low-side NCH FET  
drivers, cell balancing drivers, the ALERT digital output, an external LDO and more.  
The following sections describe each subsystem in greater detail, as well as explaining the various power states  
that are available.  
8.3.1.1 Measurement Subsystem Overview  
The monitoring subsystem ensures that all cell voltages, temperatures, and pack current may be easily  
measured by the host. All ADCs are trimmed by TI.  
ADC and CC data are always returned as atomic values if both high and low registers are read in the same  
transaction (using address auto-increment).  
8.3.1.1.1 Data Transfer to the Host Controller  
The BQ769x0 has a fully digital interface: All information is transferred through I2C, simply by reading and/or  
writing to the appropriate register(s) storing the relevant data. Block reads and writes, buffered by an 8-bit CRC  
code per byte, ensure a fast and robust transmission of data.  
8.3.1.1.2 14-Bit ADC  
Each BQ769x0 device measures cell voltages and temperatures using a 14-bit ADC. This ADC measures all  
differential cell voltages, thermistors and/or die temperature with a nominal full-scale unsigned range of 06.275  
V and LSB of 382 µV.  
To enable the ADC, the [ADC_EN] bit in the SYS_CTRL1 register must be set. This bit is set automatically  
whenever the device enters NORMAL mode. When enabled, the ADC ensures that the integrated OV and UV  
protections are functional.  
For each contiguous set of five cells (VC1 to VC5, VC6 to VC10), when no cells in that particular set are being  
balanced, each cell is measured over a 50-ms decimation window and a complete update is available every 250  
ms. In the BQ76930 and BQ76940, every set of five cells above the primary five cells is measured in parallel.  
The 50-ms decimation greatly assists with removing the aliasing effects present in a noisy motor environment.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: BQ76920 BQ76930 BQ76940  
 
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
When any cells in a contiguous set of 5 cells are being balanced, those affected cells are measured in a reduced  
12.5-ms decimation period, to allow the cell balancing to function properly without affecting the integrated OV  
and UV protections. Since cell balancing is typically only performed during pack charge or idle periods, the  
shortened decimation periods should not impact accuracy as the system noise during these times is greatly  
reduced. This reduced decimation period is only applied to sets where one of the cells is being balanced. The  
following summarizes this for the BQ76920BQ76940 devices:  
VC1 to VC5 measurements are each taken in a 50-ms decimation period when all bits in CELLBAL1 register  
are 0, and a 12.5-ms decimation period when any bits in CELLBAL1 register are 1.  
VC6 to VC10 measurements are each taken in a 50-ms decimation period when all bits in CELLBAL2 register  
are 0, and a 12.5-ms decimation period when any bits in CELLBAL2 register are 1.  
VC11 to VC15 measurements are each taken in a 50-ms decimation period when all bits in CELLBAL3  
register are 0, and a 12.5-ms decimation period when any bits in CELLBAL3 register are 1.  
Total update interval is 250 ms.  
Each differential cell input is factory-trimmed for gain or offset, such that the resulting reading through I2C is  
always consistent from part-to-part and requires no additional calibration or correction factor application.  
The ADC is required to be enabled in order for the integrated OV and UV protections to be operating.  
The following shows how to convert the 14-bit ADC reading into an analog voltage. Each device is factory  
calibrated, with a GAIN and OFFSET stored into EEPROM.  
The ADC transfer function is a linear equation defined as follows:  
V(cell) = GAIN x ADC(cell) + OFFSET  
(1)  
GAIN is stored in units of µV/LSB, while OFFSET is stored in mV units.  
Some example cell voltage calculations are provided in the table below. For illustration purposes, the example  
uses a hypothetical GAIN of 380 µV/LSB (ADCGAIN<4:0> = 0x0F) and OFFSET of 30 mV (ADCOFFSET<7:0>  
= 0x1E).  
14-Bit ADC Result  
0x1800  
ADC Result in Decimal  
GAIN (µV/LSB)  
OFFSET (mV)  
Cell Voltage (mV)  
6144  
7952  
380  
380  
30  
30  
2365  
3052  
0x1F10  
备注  
When entering NORMAL mode from SHIP mode, please allow for the following times before reading  
out initial cell voltage data:  
BQ76920: 250 ms  
BQ76930: 400 ms  
BQ76940: 800 ms  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: BQ76920 BQ76930 BQ76940  
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
8.3.1.1.2.1 Optional Real-Time Calibration Using the Host Microcontroller  
The performance of the cell voltage values measured by the 14-bit ADC has a factory-calibrated accuracy, as  
follows:  
+/10 mV TYP, +/40 mV MIN and MAX from 3.6 to 4.3 V,  
+/15 mV TYP, +/40 mV MIN and MAX from 3.2 to 4.6 V, and  
+/50 mV MIN and MAX from 2.0 to 5.0 V  
While this is suitable for the majority of pack protection and basic monitoring applications the BQ769x0 AFE  
family is intended to support, certain systems may require a higher accuracy performance.  
To achieve this, use an available ADC channel and general purpose output terminal on the host microcontroller  
paired with the BQ769x0. A simple external circuit consisting of two precision resistors and a small-signal FET is  
activated by the host microcontroller to determine the total stack voltage, VSTACK. This is then compared against  
the sum of the individual cell voltages as measured by the internal ADC of the BQ769x0. The resulting transfer  
function coefficient, GAIN2, is simply applied to each cell voltage ADC value for improved accuracy.  
Host microcontroller  
A/D input  
Gen. purpose output  
8-1. External Real-Time Calibration Circuit to Host Microcontroller  
The process is as follows:  
1. Periodically measure VSTACK  
.
a. VSTACK = VAD × (R1 + R2) / R1  
2. Read out all VCELL ADC readings from the BQ769x0 and apply the standard GAIN and OFFSET values  
stored in the BQ769x0.  
a. V(1) = GAIN x ADC1 + OFFSET, V(2) = GAIN x ADC2 + OFFSET, and so on  
3. Sum up all VCELL values, VSUM  
.
a. VSUM = V(1) + V(2) + V(3) …  
4. Calculate GAIN2.  
a. GAIN2 = VSTACK / VSUM  
As a general recommendation, a new GAIN2 function should be generated when the cell voltages increase or  
decrease by more than 100 mV. With GAIN2, each cell voltage calculation becomes:  
V(cell) = GAIN2 × (GAIN x ADC(cell) + OFFSET)  
(2)  
For systems that do not require this additional in-use calibration function, GAIN2 is simply 1.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: BQ76920 BQ76930 BQ76940  
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
8.3.1.1.3 16-Bit CC  
A 16-bit integrating ADC, commonly referred to as the coulomb counter (CC), provides measurements of  
accumulated charge across the current sense resistor. The integration period for this reading is 250 ms.  
The CC may be operated in one of two modes: ALWAYS ON and 1-SHOT.  
In ALWAYS ON mode, the CC runs at 100%, gathering a fresh reading every 250 ms. The conclusion of each  
reading sets the CC_READY bit, which toggles the ALERT pin high to inform the microcontroller that a new  
reading is available. To enable Always On mode, set [CC_EN] = 1.  
In 1-SHOT mode, the CC performs a single 250-ms reading, and similarly sets the CC_READY bit when  
completed. This mode is intended for non-gauging usages, where the host simply desires to check the pack  
current.  
To enable a 1-SHOT reading, ensure [CC_EN] = 0 and set [CC_ONESHOT] = 1.  
The fullscale range of the CC is ± 270 mV, with a max recommended input range of ± 200 mV, thus yielding an  
LSB of approximately 8.44 µV.  
The following equation shows how to convert the 16-bit CC reading into an analog voltage if no board-level  
calibration is performed:  
CC Reading (in µV) = [16-bit 2s Complement Value] × (8.44 µV/LSB)  
(3)  
16-Bit CC Result  
0x0001  
ADC Result in Decimal  
CC Reading (in µV)  
8.44  
1
0x2710  
10000  
32000  
32000  
15536  
1  
84,400  
0x7D00  
270,080  
0x8300  
270,080  
131,123.84  
8.44  
0xC350  
0xFFFF  
8.3.1.1.4 External Thermistor  
One (BQ76920), two (BQ76930), or three (BQ76940) 10-kΩ NTC 103AT thermistors may be measured by the  
device. These are measured by applying a factory-trimmed internal 10-k pull-up resistance to an internal  
regulator value of nominally 3.3 V, the result of which can be read out from the TSx (TS1, TS2, TS3) registers.  
To select thermistor measurement mode, set [TEMP_SEL] = 1.  
Thermistor TS1 is connected between TS1 and VSS; TS2 is connected between TS2 and VC5x (BQ76930 and  
BQ76940 only); and TS3 is connected between TS3 and VC10x (BQ76940 only). These thermistors may be  
placed in various areas in the battery pack to measure such things as localized cell temperature, FET heating,  
and so forth.  
The thermistor impedance may be calculated using the 14-bit ADC reading in the TS1, TS2, and TS3 registers  
and 10-k internal pull-up resistance as follows:  
The following equations show how to use the 14-bit ADC readings in TS1, TS2, and TS3 to determine the  
resistance of the external 103AT thermistor:  
VTSX = (ADC in Decimal) x 382 µV/LSB  
(4)  
(5)  
RTS = (10,000 × VTSX) ÷ (3.3 VTSX)  
To convert the thermistor resistance into temperature, please refer to the thermistor component manufacturers  
data sheet.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: BQ76920 BQ76930 BQ76940  
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
8.3.1.1.5 Die Temperature Monitor  
备注  
When switching between external and internal temperature monitoring, a 2-s latency may be incurred  
due to the natural scheduler update interval.  
A die temperature block generates a voltage that is proportional to the die temperature, and provides a way of  
reducing component count if pack thermistors are not used or ensuring that the die power dissipation  
requirements are observed. The die is measured using the same on-board 14-bit ADC as the cell voltages.  
To select internal die temperature measurement mode, set [TEMP_SEL] = 0.  
For BQ76930 and BQ76940, multiple die temperature measurements are available. These are stored in TS2 and  
TS3.  
To convert a DIETEMP reading into temperature, refer to the following equation box. If more accurate  
temperature readings are needed from DIETEMP, the DIETEMP at room temperature value should be stored  
during production calibration.  
The following equation shows how to use the 14-bit ADC readings in TS1, TS2, and TS3 when [TEMPSEL] = 0  
to determine the internal die temperature:  
V25 = 1.200 V (nominal)  
(6)  
(7)  
(8)  
VTSX = (ADC in Decimal) x 382 µV/LSB  
TEMPDIE = 25° ((VTSX V25) ÷ 0.0042)  
8.3.1.1.6 16-Bit Pack Voltage  
Once converted to digital form, each cell voltage is added up and the summation result stored in the BAT  
registers. The sum is divided by 4 so that the result of summing 15 cells fits in the 16-bit value. This 16-bit value  
has a nominal LSB of 1.532 mV.  
The following shows how to convert the 16-bit pack voltage ADC reading into an analog voltage. This value also  
uses the GAIN and OFFSET stored into EEPROM.  
The ADC transfer function is a linear equation defined as follows:  
V(BAT) = 4 × GAIN × ADC(cell) + (#Cells x OFFSET)  
(9)  
GAIN is stored in units of µV/LSB, while OFFSET is stored in mV units.  
8.3.1.1.7 System Scheduler  
A master scheduler oversees the monitoring intervals, creating a full update every 250 ms. Temperature  
measurements are taken every 2 seconds. Pack voltage is calculated every 250 ms. More information on the  
System Scheduler can be found in the Embedded Scheduler in Cell Battery Monitor of the BQ769x0 application  
report.  
8.3.1.2 Protection Subsystem  
8.3.1.2.1 Integrated Hardware Protections  
Integrated hardware protections are provided as an extra degree of safety and are meant to supplement the  
standard protection feature set that would be incorporated into the host controller firmware. They should not be  
used as the sole means of protecting a battery pack, but are useful for FMEA purposes; for example, in the  
event that a host microcontroller is unable to react to any of the below protection situations. All hardware  
protection thresholds and delays should be loaded into the AFE by the host microcontroller during system  
startup. The AFE will also default to predefined threshold and delay settings, in case the host microcontroller is  
unable to or does not wish to program the protection settings.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: BQ76920 BQ76930 BQ76940  
 
 
 
 
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
Overcurrent in Discharge (OCD) and Short Circuit in Discharge (SCD) are implemented using sampled analog  
comparators that run at 32 kHz, and that continuously monitor the voltage across (SRPSRN) while the device  
is in NORMAL mode. Upon detection of a voltage that exceeds the programmed OCD or SCD threshold, a  
counter begins to count up to a programmed delay setting. If the counter reaches its target value, the SYS_STAT  
register is updated to indicate the fault condition, the FET state(s) are updated as shown in 8-1, and the  
ALERT pin is driven high to interrupt the host.  
The protection fault threshold and delay settings for OCD and SCD protections are configured through the  
PROTECT1 and PROTECT2 registers. See 8.5 for details about supported values.  
Overvoltage (OV) and undervoltage (UV) protections are handled digitally, by comparing the cell voltage  
readings against the 8-bit programmed thresholds in the OV and UV registers.  
The OV threshold is stored in the OV_TRIP register and is a direct mapping of 8 bits of the 14-bit ADC reading,  
with the upper 2 MSB preset to 10and the lower 4 LSB preset to 1000. In other words, the  
corresponding OV trip level is mapped to 10-XXXX-XXXX1000. The programmable range of OV  
thresholds is approximately 3.15 to 4.7 V, but this is subject to variation due to the (GAIN, OFFSET) linear  
equation used to map the ADC values.  
The UV threshold is stored in the UV_TRIP register and is a direct mapping of 8 bits of the 14-bit ADC reading,  
with the upper 2 MSB preset to 01and lower 4 LSB preset to 0000. In other words, the corresponding  
UV trip level is mapped to 01-XXXX-XXXX0000. The programmable range of UV thresholds is  
approximately 1.58 to 3.1 V, but this is subject to variation due to the (GAIN, OFFSET) linear equation used to  
map the ADC values.  
Protection  
OV  
Upper 2 MSB  
Middle 8 Bits  
Lower 4 LSB  
1000  
10  
01  
Set in OV_TRIP Register  
Set in UV_TRIP Register  
UV  
0000  
备注  
To support flexible cell configurations within BQ76920, BQ76930, and BQ76940, UV is ignored on any  
cells that have a reading under UVMINQUAL. This allows cell pins to be shorted in implementations  
where not all cells are needed (for example, 6-series cells using the BQ76930).  
Default protection thresholds and delays are shown in the register description at the end of this data sheet.  
These are loaded into the digital register (RAM) of the device when the device enters NORMAL mode. These  
RAM values may then be overwritten by the host controller to any other values, which they will retain until a POR  
event. It is recommended that the host controller reload these values during its standard power-up and/or  
reinitialization sequence.  
To calculate the correct OV_TRIP and UV_TRIP register values for a device, use the following procedure:  
1. Determine desired OV.  
2. Read out [ADCGAIN] and [ADCOFFSET] from their corresponding registers. Note that ADCGAIN is stored in  
units of µV/LSB, while ADCOFFSET is stored in mV.  
3. Calculate the full 14-bit ADC value needed to meet the desired OV and UV trip thresholds as follows:  
a. OV_TRIP_FULL = (OV ADCOFFSET) ÷ ADCGAIN  
b. UV_TRIP_FULL = (UV ADCOFFSET) ÷ ADCGAIN  
4. Remove the upper 2 MSB and lower 4 LSB from the full 14-bit value, retaining only the remaining middle 8  
bits. This can be done by shifting the OV_TRIP_FULL and UV_TRIP_FULL binary values 4 bits to the right  
and removing the upper 2 MSB.  
5. Write OV_TRIP and UV_TRIP to their corresponding registers.  
Both OV and UV protections require the ADC to be enabled. Ensure that the [ADC_EN] bit is set to 1 if OV and  
UV protections are needed.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: BQ76920 BQ76930 BQ76940  
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
8.3.1.2.2 Reduced Test Time  
A special debug and test configuration bit is provided in the SYS_CTRL2 register, called [DELAY_DIS]. Setting  
[DELAY_DIS] bypasses the OV/UV protection fault timers and allows a fault condition to be registered within 200  
ms after application of such a fault condition.  
8.3.1.3 Control Subsystem  
8.3.1.3.1 FET Driving (CHG AND DSG)  
Each BQ769x0 device provides two low-side FET drivers, CHG and DSG, which control NCH power FETs or  
may be used as a signal to enable various other circuits such as a high-side NCH charge pump circuit.  
Both DSG and CHG drivers have a fast pull-up to nominally 12 V when enabled. DSG uses a fast pull-down to  
VSS when disabled, while CHG utilizes a high impedance (nominally 1 MΩ) pull-down path when disabled.  
An additional internal clamp circuit ensures that the CHG pin does not exceed a maximum of 20 V.  
DSG  
CHG  
Q3 is a low-cost PCH FET and is used to keep CHG away  
from any voltages below VSS. When CHG is not being  
pulled high, PACKœ being pulled below VSS will not be  
seen by CHG as Q2 does not turn on. Q3 also allows R2 to  
keep Q1 OFF, since all voltages below this FET can  
"follow" PACKœ as it goes below VSS.  
Q3  
R1 drops the voltage when PACKœ is pulled high and  
limits the current going into the CHG pin. Since CHG  
clamps at ~ 18 V, R1 will limit current to approximately  
(V(PACKœ) - 18) / R1.  
R1  
(1M)  
This diode allows CHG  
to pull the Q1 gate high.  
This zener clamp may  
be needed to prevent  
Q1 from turning on  
R2  
(1M)  
R2  
too quickly (optional).  
Q1  
Q2  
BATœ  
PACKt  
R2 clamps Q1 when  
CHG is turned off.  
Rsns  
8-2. CHG and DSG FET Circuit  
The power path for the CHG and DSG pull-up circuit originates from the REGSRC pin, instead of BAT.  
To enable the CHG fet, set the [CHG_ON] register bit to 1; to disable, set [CHG_ON] = 0. The discharge FET  
may be similarly controlled through the [DSG_ON] register bit.  
Certain fault conditions or power state transitions will clear the state of the CHG/DSG FET controls. 8-1  
shows what action, if any, to take to [CHG_ON] and [DSG_ON] in response to various system events:  
8.3.1.3.1.1 High-Side FET Driving  
The BQ769x0 battery monitors provide low-side FET drivers that work well for many systems. For some  
systems, high-side FETs may also be beneficial. High-side FETs enable continuous communication between a  
host controller and the monitor, regardless of whether the FETs are on or off. This allows the controller to read  
critical pack parameters despite safety faults, enabling the system to access pack conditions before allowing  
normal operations to resume. The BQ769200 high-side N-channel FET driver can be used with the BQ769x0  
monitor in systems where high-side FETs are needed. See 9-4.  
8-1. CHG, DSG Response Under Various System Events  
EVENT  
OV Fault  
UV Fault  
OCD Fault  
[CHG_ON]  
Set to 0  
[DSG_ON]  
Set to 0  
Set to 0  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: BQ76920 BQ76930 BQ76940  
 
 
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
8-1. CHG, DSG Response Under Various System Events (continued)  
EVENT  
[CHG_ON]  
[DSG_ON]  
Set to 0  
Set to 0  
Set to 0  
Set to 0  
SCD Fault  
ALERT Override  
Set to 0  
Set to 0  
Set to 0  
DEVICE_XREADY is set  
Enter SHIP mode from NORMAL  
备注  
The host microcontroller must initiate all protection recovery. To resume FET operation after a fault  
condition, the host microcontroller must first clear the corresponding status bit in the SYS_STAT  
register, which will clear the ALERT pin, and then manually reenable the CHG and/or DSG bit. Certain  
faults, such as OV or UV, may immediately retoggle if such a condition still persists. Refer to 8-3 for  
details on clearing status bits.  
There are no conditions under which the BQ769x0 automatically sets either [CHG_ON] or [DSG_ON] to 1.  
8.3.1.3.2 Load Detection  
A load detection circuit is present on the CHG pin and activated whenever the CHG FET is disabled ([CHG_ON]  
= 0). This circuit detects if the CHG pin is externally pulled high when the high impedance (approximately 1 MΩ)  
pull-down path should actually be holding the CHG pin to VSS, and is useful for determining if the PACKpin  
(outside of the AFE) is being held at a high voltagefor example, if the load is present while the power FETs are  
off. The state of the load detection circuit is read from the [LOAD_PRESENT] bit of the SYS_CTRL1 register.  
After an OCD or SCD fault has occurred, the DSG FET will be disabled ([DSG_ON] cleared), and the CHG FET  
must similarly be explicitly disabled to activate the load detection circuit. The host microcontroller may  
periodically poll the [LOAD_PRESENT] bit to determine the state of the PACKpin and determine when the  
load is removed ([LOAD_PRESENT] = 0).  
8.3.1.3.3 Cell Balancing  
Both internal and external passive cell balancing options are fully supported by the BQ76920, while external cell  
balancing is recommended for BQ76930 and BQ76940. It is left to the host controller to determine the exact  
balancing algorithm to be used in any given system. Each BQ769x0 device provides the cell voltages and  
balancing drivers to enable this. If using the internal cell balance drivers, up to 50 mA may be balanced per cell.  
If using external cell balancing, much higher balancing currents may be employed.  
To activate a particular cell balancing channel, simply set the corresponding bit for that cell in the CELLBAL1,  
CELLBAL2, or CELLBAL3 register. For example, VC1VC0 is enabled by setting [CB1], while VC12VC11 is  
set through [CB12].  
Multiple cells may be simultaneously balanced. It is left to the users discretion to determine the ideal number  
of cells to concurrently balance. Adjacent cells should not be balanced simultaneously. This may cause cell pins  
to exceed their absolute maximum conditions and is also not recommended for external balancing  
implementations. Additionally, if internal balancing is used, care should be taken to avoid exceeding package  
power dissipation ratings.  
备注  
The host controller must ensure that no two adjacent cells are balanced simultaneously within each  
set of the following:  
VC1VC5  
VC6VC10  
VC11VC15  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: BQ76920 BQ76930 BQ76940  
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
The total duty cycle devoted to balancing is approximately 70% per 250 ms. This is because a portion of the 250  
ms is allotted for normal cell voltage measurements through the ADC.  
If [ADC_EN] =1, OV and UV protections are not affected by cell balancing, since the cell balancing is temporarily  
suspended for a small slice of time every 250 ms during which the cell voltage readings are taken. This ensures  
that the OV and UV protections do not accidentally trigger, or miss an actual OV/UV condition on the cells while  
balancing is enabled.  
备注  
All cell balancing control bits in CELLBAL1, CELLBAL2, and CELLBAL3 are automatically cleared  
under the following events, and must be explicitly rewritten by the host microcontroller following  
clearing of the event:  
DEVICE_XREADY is set  
Enters NORMAL mode from SHIP mode  
8.3.1.3.4 Alert  
The ALERT pin serves as an active high digital interrupt signal that can be connected to a GPIO port of the host  
microcontroller. This signal is an OR of all bits in the SYS_STAT register.  
In order to clear the ALERT signal, the source bit in the SYS_STAT register must first be cleared by writing a  
1to that bit. This will cause an automatic clear of the ALERT pin once all bits are cleared.  
The ALERT pin may also be driven by an external source; for example, the pack may include a secondary  
overvoltage protector IC. When the ALERT pin is forced high externally while low, the device will recognize this  
as an OVRD_ALERT fault and set the [OVRD_ALERT] bit. This triggers automatic disabling of both CHG and  
DSG FET drivers. The device cannot recognize the ALERT signal input high when it is already forcing the  
ALERT signal high from another condition.  
The ALERT pin has no internal debounce support so care should be taken to protect the pin from noise or other  
parasitic transients.  
备注  
It is highly recommended to place an external 500 kΩ–1 MΩ pull-down resistor from ALERT to VSS  
as close to the IC as possible. Additional recommendations are:  
a) To keep all traces between the IC and components connected to the ALERT pin very short.  
b) To include a guard ring around the components connected to the ALERT pin and the pin itself.  
8.3.1.3.5 Output LDO  
An adjustable output voltage regulator LDO is provided as a simple way to provide power to additional  
components in the battery pack, such as the host microcontroller or LEDs. The LDO is configured in EEPROM  
by TI during the production test process, and can support 2.5-V or 3.3-V options.  
A cascode small-signal FET must be added in the external path between BAT and REGSRC with the BQ76930  
and BQ76940. This helps drop most of the power dissipation outside of the package and cuts down on package  
power dissipation.  
8.3.1.4 Communications Subsystem  
The AFE implements a standard 100-kHz I2C interface and acts as a slave device. The I2C device address is 7-  
bits and is factory programmed. Consult the Device Comparison Table (5) of this data sheet for more  
information.  
A write transaction is shown in 8-3. Block writes are allowed by sending additional data bytes before the Stop.  
The I2C block will auto-increment the register address after each data byte.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: BQ76920 BQ76930 BQ76940  
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
When enabled, the CRC is calculated as follows:  
In a single-byte write transaction, the CRC is calculated over the slave address, register address, and data.  
In a block write transaction, the CRC for the first data byte is calculated over the slave address, register  
address, and data. The CRC for subsequent data bytes is calculated over the data byte only.  
The CRC polynomial is x8 + x2 + x + 1, and the initial value is 0.  
When the slave detects a bad CRC, the I2C slave will NACK the CRC, which causes the I2C slave to go to an  
idle state.  
SCL  
... A0  
... R0  
... D0  
... C0  
A6 A5  
R/W ACK  
R7 R6  
ACK  
D7 D6  
ACK  
C7 C6  
ACK  
SDA  
Register  
Address  
CRC  
(optional)  
Start  
Slave Address  
Stop  
Data  
8-3. I2C Write  
8-4 shows a read transaction using a Repeated Start.  
SCL  
... A0  
... R0  
... A0  
A6 A5  
A6 A5  
R/W ACK  
R7 R6  
ACK  
R/W ACK  
SDA  
Register  
Address  
Start  
Slave Address  
Slave Address  
Repeated  
Start  
... D0  
... C0 NACK  
D7 D6  
ACK  
C7 C6  
Slave  
Drives Data  
Slave  
Drives CRC  
(optional)  
Stop  
Master  
Drives NACK  
8-4. I2C Read with Repeated Start  
8-5 shows a read transaction where a Repeated Start is not used, for example if not available in hardware.  
For a block read, the master ACKs each data byte except the last and continues to clock the interface. The I2C  
block will auto-increment the register address after each data byte.  
When enabled, the CRC for a read transaction is calculated as follows:  
In a single-byte read transaction, the CRC is calculated after the second start and uses the slave address  
and data byte.  
In a block read transaction, the CRC for the first data byte is calculated after the second start and uses the  
slave address and data byte. The CRC for subsequent data bytes is calculated over the data byte only.  
The CRC polynomial is x8 + x2 + x + 1, and the initial value is 0.  
When the master detects a bad CRC, the I2C master will NACK the CRC, which causes the I2C slave to go to an  
idle state.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: BQ76920 BQ76930 BQ76940  
 
 
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
SCL  
... A0  
... R0  
... A0  
A6 A5  
R/W ACK  
R7 R6  
ACK  
A6 A5  
R/W ACK  
SDA  
Register  
Address  
Start  
Slave Address  
Stop Start Slave Address  
... D0  
... C0 NACK  
D7 D6  
ACK  
C7 C6  
Slave  
Drives Data  
Slave  
Drives CRC  
(optional)  
Stop  
Master  
Drives NACK  
8-5. I2C Read Without Repeated Start  
8.4 Device Functional Modes  
Each BQ769x0 device supports the following modes of operation.  
8-2. Supported Power Modes  
Mode  
Description  
Fully operational state. Both ADC and CC may be on, or disabled by host microcontroller.  
OV and UV protection enabled if ADC is on. OCD and SCD enabled. ADC and CC may  
be disabled to reduce power consumption, and CC may be operated in a 1-SHOT”  
mode for flexible power savings.  
NORMAL  
Lowest possible power state, intended for pack assembly and/or longterm pack storage.  
Must see a BOOT signal (> 1 VBOOT) on TS1 pin to boot from SHIP NORMAL. Note  
that the device always enters SHIP mode upon POR.  
SHIP  
8.4.1 NORMAL Mode  
NORMAL mode represents the fully operational mode where all blocks are enabled and the device sees its  
highest current consumption. In this mode, certain blocks/functions may be disabled to save powerthese  
include the ADC and CC. OV and UV are running continuously as long as the ADC is enabled. The OCD and  
SCD comparators may not be disabled in this mode.  
Transitioning from NORMAL to SHIP mode is also initiated by the host, and requires consecutive writes to two  
bits in the SYS_CTRL1 register.  
8.4.2 SHIP Mode  
SHIP mode is the basic and lowest power mode that BQ769x0 supports. SHIP mode is automatically entered  
during initial pack assembly and after every POR event. When the device is in NORMAL mode, it may enter  
SHIP by the host controller through a specific sequence of I2C commands.  
In SHIP mode, only a minimum of blocks is turned on, including the VSTUP power supply and primal boot  
detector. Waking from SHIP mode to NORMAL mode requires pulling the TS1 pin greater than VBOOT, which  
triggers the device boot-up sequence.  
To enter SHIP mode from NORMAL mode, the [SHUT_A] and [SHUT_B] bits in the SYS_CTRL1 register must  
be written with specific patterns across two consecutive writes:  
Write #1: [SHUT_A] = 0, [SHUT_B] = 1  
Write #2: [SHUT_A] = 1, [SHUT_B] = 0  
Note that [SHUT_A] and [SHUT_B] should each be in a 0 state prior to executing the shutdown command  
above. If this specific sequence is entered into the device, the device transitions into SHIP mode. If any other  
sequence is written to the [SHUT_A] and [SHUT_B] bits or if either of the two patterns is not correctly entered,  
the device will not enter SHIP mode.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: BQ76920 BQ76930 BQ76940  
 
 
 
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
CAUTION  
DO NOT OPERATE THE DEVICE BELOW POR. When designing with the BQ76940, the  
intermediate voltages (BATVC10x), (VC10xVC5x), and (VC5xVSS) must each never fall  
below VSHUT. When this occurs, a full device reset must be initiated by powering down all three  
intermediate voltages (BATVC10x), (VC10xVC5x), and (VC5xVSS) below VSHUT and  
rebooting by applying the appropriate VBOOT signal to the TS1 pin. When designing with the  
BQ76930, the intermediate voltages (BATVC5x) and (VC5xVSS) must each never fall below  
VSHUT. If this occurs, a full device reset must be initiated by powering down both intermediate  
voltages (BATVC5x) and (VC5xVSS) below VSHUT and rebooting by applying the appropriate  
VBOOT signal to the TS1 pin.  
The device will also enter SHIP mode during a POR event; however, this is not a recommended method of SHIP  
mode entry. If any of the supply-side voltages fall below VSHUT and then back up above VPORA, the device  
defaults into the SHIP mode state. This is similar to an initial pack assembly condition. In order to exit SHIP  
mode into NORMAL mode, the device must follow the standard boot sequence by applying a voltage greater  
than the VBOOT threshold on the TS1 pin. The BQ769x0 Boot Switch Alternatives Application Report details  
multiple methods for generating the needed signal on the TS1 pin.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: BQ76920 BQ76930 BQ76940  
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
8.5 Register Maps  
Name  
Addr  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SYS_STAT  
0x00  
CC_READY  
RSVD  
DEVICE_  
XREADY  
OVRD_  
ALERT  
UV  
OV  
SCD  
OCD  
CELLBAL1  
CELLBAL2(1)  
CELLBAL3(2)  
SYS_CTRL1  
0x01  
0x02  
0x03  
0x04  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
CB<5:1>  
CB<10:6>  
CB<15:11>  
RSVD  
LOAD_  
PRESENT  
ADC_EN  
TEMP_SEL  
RSVD  
SHUT_A  
DSG_ON  
SHUT_B  
CHG_ON  
SYS_CTRL2  
0x05  
DELAY_DIS  
CC_EN  
RSVD  
CC_  
ONESHOT  
PROTECT1  
PROTECT2  
PROTECT3  
OV_TRIP  
UV_TRIP  
CC_CFG  
VC1_HI  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
RSNS  
RSVD  
RSVD  
SCD_DELAY  
SCD_THRESH  
OCD_DELAY  
OCD_THRESH  
RSVD  
UV_DELAY  
OV_DELAY  
OV_THRESH  
UV_THRESH  
RSVD  
RSVD  
RSVD  
RSVD  
Must be programmed to 0x19  
<13:8>  
<13:8>  
<13:8>  
<13:8>  
<13:8>  
<13:8>  
<13:8>  
<13:8>  
<13:8>  
<13:8>  
<13:8>  
<13:8>  
<13:8>  
<13:8>  
<13:8>  
VC1_LO  
<7:0>  
<7:0>  
<7:0>  
<7:0>  
<7:0>  
<7:0>  
<7:0>  
<7:0>  
<7:0>  
<7:0>  
<7:0>  
<7:0>  
<7:0>  
<7:0>  
VC2_HI  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
VC2_LO  
VC3_HI  
VC3_LO  
VC4_HI  
VC4_LO  
VC5_HI  
VC5_LO  
VC6_HI(1)  
VC6_LO(1)  
VC7_HI(1)  
VC7_LO(1)  
VC8_HI(1)  
VC8_LO(1)  
VC9_HI(1)  
VC9_LO(1)  
VC10_HI(1)  
VC10_LO(1)  
VC11_HI(2)  
VC11_LO(2)  
VC12_HI(2)  
VC12_LO(2)  
VC13_HI(2)  
VC13_LO(2)  
VC14_HI(2)  
VC14_LO(2)  
VC15_HI(2)  
VC15_LO(2)  
BAT_HI  
<7:0>  
<15:8>  
<7:0>  
BAT_LO  
TS1_HI  
RSVD  
RSVD  
RSVD  
RSVD  
<13:8>  
<13:8>  
TS1_LO  
<7:0>  
TS2_HI(1)  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: BQ76920 BQ76930 BQ76940  
 
 
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
Name  
TS2_LO(1)  
TS3_HI(2)  
TS3_LO(2)  
CC_HI  
Addr  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x50  
0x51  
0x59  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
<7:0>  
RSVD  
RSVD  
<13:8>  
<7:0>  
<15:8>  
<7:0>  
CC_LO  
ADCGAIN1  
ADCOFFSET  
ADCGAIN2  
RSVD  
ADCGAIN<4:3>  
ADCOFFSET<7:0>  
RSVD  
ADCGAIN<2:0>  
RSVD  
(1) These registers are only valid for BQ76930 and BQ76940.  
(2) These registers are only valid for BQ76940.  
8.5.1 Register Details  
8-3. SYS_STAT (0x00)  
BIT  
7
6
5
4
3
2
1
0
NAME  
CC_READY  
RSVD  
DEVICE_  
XREADY  
OVRD_  
ALERT  
UV  
OV  
SCD  
OCD  
RESET  
0
0
0
0
0
0
0
0
ACCESS  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
备注  
Bits in SYS_STAT may be cleared by writing a "1" to the corresponding bit.  
Writing a "0" does not change the state of the corresponding bit.  
CC_READY (Bit 7): Indicates that a fresh coulomb counter reading is available. Note that if this bit is not cleared between two adjacent CC  
readings becoming available, the bit remains latched to 1. This bit may only be cleared (and not set) by the host.  
0 = Fresh CC reading not yet available or bit is cleared by host microcontroller.  
1 = Fresh CC reading is available. Remains latched high until cleared by host.  
RSVD (Bit 6): Reserved. Do not use.  
DEVICE_XREADY (Bit 5): Internal chip fault indicator. When this bit is set to 1, it should be cleared by the host. May be set due to  
excessive system transients. This bit may only be cleared (and not set) by the host.  
0 = Device is OK.  
Internal chip fault detected, recommend that host microcontroller clear this bit after waiting a few seconds. Remains latched  
high until cleared by the host.  
1 =  
OVRD_ALERT (Bit 4): External pull-up on the ALERT pin indicator. Only active when ALERT pin is not already being driven high by the  
AFE itself.  
0 = No external override detected  
1 = External override detected. Remains latched high until cleared by the host.  
UV (Bit 3): Undervoltage fault event indicator.  
0 = No UV fault is detected.  
1 = UV fault is detected. Remains latched high until cleared by the host.  
OV (Bit 2): Overvoltage fault event indicator.  
0 = No OV fault is detected.  
1 = OV fault is detected. Remains latched high until cleared by the host.  
SCD (Bit 1): Short circuit in discharge fault event indicator.  
0 = No SCD fault is detected.  
1 = SCD fault is detected. Remains latched high until cleared by the host.  
OCD (Bit 0): Over current in discharge fault event indicator.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: BQ76920 BQ76930 BQ76940  
 
 
 
 
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
0 = No OCD fault is detected.  
1 = OCD fault is detected. Remains latched high until cleared by the host.  
8-4. CELLBAL1 (0x01) for BQ76920, BQ76930, and BQ76940  
BIT  
7
6
5
4
CB5  
0
3
CB4  
0
2
CB3  
0
1
CB2  
0
0
CB1  
0
NAME  
0
0
0
RESET  
ACCESS  
R
R
R
RW  
RW  
RW  
RW  
RW  
CBx (Bits 40):  
0 =  
1 =  
Cell balancing on Cell xis disabled.  
Cell balancing on Cell xis enabled.  
8-5. CELLBAL2 (0x02) for BQ76930 and BQ76940  
BIT  
7
6
5
4
CB10  
0
3
CB9  
0
2
CB8  
0
1
CB7  
0
0
CB6  
0
NAME  
RESET  
0
0
0
ACCESS  
R
R
R
RW  
RW  
RW  
RW  
RW  
CBx (Bits 40):  
0 =  
1 =  
Cell balancing on Cell xis disabled.  
Cell balancing on Cell xis enabled.  
8-6. CELLBAL3 (0x03) for BQ76940  
BIT  
7
6
5
4
CB15  
0
3
CB14  
0
2
CB13  
0
1
CB12  
0
0
CB11  
0
NAME  
RESET  
0
0
0
ACCESS  
R
R
R
RW  
RW  
RW  
RW  
RW  
CBx (Bits 40):  
0 =  
1 =  
Cell balancing on Cell xis disabled.  
Cell balancing on Cell xis enabled.  
8-7. SYS_CTRL1 (0x04)  
BIT  
7
6
5
4
3
2
1
0
LOAD_  
PRESENT  
NAME  
RESET  
ADC_EN  
TEMP_SEL  
RSVD  
SHUT_A  
SHUT_B  
0
0
0
0
0
0
0
0
ACCESS  
R
R
R
RW  
RW  
RW  
RW  
RW  
LOAD_PRESENT (Bit 7): Valid only when [CHG_ON] = 0. Is high if CHG pin is detected to exceed VLOAD_DETECT while CHG_ON = 0,  
which suggests that external load is present. Note this bit is read-only and automatically clears when load is removed.  
0 = CHG pin < VLOAD_DETECT or [CHG_ON] = 1.  
1 = CHG pin >VLOAD_DETECT, while [CHG_ON] = 0.  
ADC_EN (Bit 4): ADC enable command  
0 = Disable voltage and temperature ADC readings (also disables OV protection)  
1 = Enable voltage and temperature ADC readings (also enables OV protection)  
TEMP_SEL (Bit 3): TSx_HI and TSx_LO temperature source  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: BQ76920 BQ76930 BQ76940  
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
0 = Store internal die temperature voltage reading in TSx_HI and TSx_LO  
1 = Store thermistor reading in TSx_HI and TSx_LO (all thermistor ports)  
RSVD (Bit 2): Reserved, do not set to 1.  
SHUT_A, SHUT_B (Bits 10): Shutdown command from host microcontroller. Must be written in a specific sequence, shown below:  
Starting from: [SHUT_A] = 0, [SHUT_B] = 0  
Write #1: [SHUT_A] = 0, [SHUT_B] = 1  
Write #2: [SHUT_A] = 1, [SHUT_B] = 0  
Other writes cause the command to be ignored.  
8-8. SYS_CTRL2 (0x05)  
BIT  
7
6
5
4
3
2
1
0
CC_  
ONESHOT  
NAME  
DELAY_DIS  
CC_EN  
RSVD  
RSVD  
RSVD  
DSG_ON  
CHG_ON  
RESET  
0
0
0
0
0
0
0
0
ACCESS  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
DELAY_DIS (Bit 7): Disable OV, UV, OCD, and SCD delays for faster customer production testing.  
0 = Normal delay settings  
1 = OV, UV, OCD, and SCD delay circuit is bypassed, creating zero delay (approximately 250 ms).  
CC_EN (Bit 6): Coulomb counter continuous operation enable command. If set high, [CC_ONESHOT] bit is ignored.  
0 = Disable CC continuous readings  
1 = Enable CC continuous readings and ignore [CC_ONESHOT] state  
CC_ONESHOT (Bit 5): Coulomb counter single 250-ms reading trigger command. If set to 1, the coulomb counter will be activated for a  
single 250-ms reading, and then turned back off. [CC_ONESHOT] will also be cleared at the conclusion of this reading, while [CC_READY]  
bit will be set to 1.  
0 = No action  
1 = Enable single CC reading (only valid if [CC_EN] = 0), and [CC_READY] = 0)  
RSVD (Bits 42): Reserved. Do not use.  
DSG_ON (Bit 1): Discharge FET driver (low side NCH) or discharge signal control  
0 = DSG is off.  
1 = DSG is on.  
CHG_ON (Bit 0): Discharge FET driver (low side NCH) or discharge signal control  
0 = CHG is off.  
1 = CHG is on.  
8-9. PROTECT1 (0x06)  
BIT  
7
RSNS  
0
6
5
RSVD  
0
4
SCD_D1  
0
3
SCD_D0  
0
2
SCD_T2  
0
1
SCD_T1  
0
0
SCD_T0  
0
NAME  
0
RESET  
ACCESS  
RW  
R
RW  
RW  
RW  
RW  
RW  
RW  
RSNS (Bit 7): Allows for doubling the OCD and SCD thresholds simultaneously  
0 = OCD and SCD thresholds at lower input range  
1 = OCD and SCD thresholds at upper input range  
RSVD (Bit 5): Reserved, do not set to 1.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: BQ76920 BQ76930 BQ76940  
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
SCD_D1:0 (Bits 43): Short circuit in discharge delay setting. A 400-µs setting is recommended only in systems using maximum cell  
measurement input resistance, Rc, of 1 kΩ(which corresponds to minimum internal cell balancing current or external cell balancing  
configuration).  
Code  
0x0  
(in µs)  
70  
0x1  
100  
200  
400  
0x2  
0x3  
SCD_T2:0 (Bits 20): Short circuit in discharge threshold setting  
Code  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
RSNS = 1 (in mV)  
RSNS = 0 (in mV)  
44  
67  
22  
33  
44  
56  
67  
78  
89  
100  
89  
111  
133  
155  
178  
200  
8-10. PROTECT2 (0x07)  
BIT  
7
6
5
OCD_D1  
0
4
OCD_D0  
0
3
OCD_T3  
0
2
1
0
OCD_T0  
0
NAME  
OCD_D2  
OCD_T2  
OCD_T1  
0
RESET  
ACCESS  
0
0
0
R
RW  
RW  
RW  
RW  
RW  
RW  
RW  
OCD_D2:0 (Bits 64): Overcurrent in discharge delay setting  
Code  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
(in ms)  
8
20  
40  
80  
160  
320  
640  
1280  
OCD_T3:0 (Bits 30): Overcurrent in discharge threshold setting  
Code  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
RSNS = 1 (in mV)  
(RSNS = 0 (in mV)  
17  
22  
28  
33  
39  
44  
50  
8
11  
14  
17  
19  
22  
25  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: BQ76920 BQ76930 BQ76940  
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
Code  
0x7  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
RSNS = 1 (in mV)  
(RSNS = 0 (in mV)  
56  
61  
67  
72  
78  
83  
89  
94  
100  
28  
31  
33  
36  
39  
42  
44  
47  
50  
8-11. PROTECT3 (0x08)  
BIT  
7
UV_D1  
0
6
5
OV_D1  
0
4
OV_D0  
0
3
RSVD  
0
2
RSVD  
0
1
RSVD  
0
0
RSVD  
0
NAME  
UV_D0  
0
RESET  
ACCESS  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
UV_D1:0 (Bits 76): Undervoltage delay setting  
Code  
0x0  
(in s)  
1
4
0x1  
0x2  
8
0x3  
16  
OV_D1:0 (Bits 54): Overvoltage delay setting  
Code  
0x0  
(in s)  
1
2
4
8
0x1  
0x2  
0x3  
RSVD (Bits 30): These bits are for TI internal debug use only and must be configured to the default settings indicated.  
8-12. OV_TRIP (0x09)  
BIT  
7
OV_T7  
1
6
OV_T6  
0
5
OV_T5  
1
4
OV_T4  
0
3
OV_T3  
1
2
OV_T2  
1
1
OV_T1  
0
0
OV_T0  
0
NAME  
RESET  
ACCESS  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
OV_T7:0 (Bits 70): Middle 8 bits of the direct ADC mapping of the desired OV protection threshold, with upper 2 MSB set to 10 and lower  
4 LSB set to 1000. The equivalent OV threshold is mapped to:  
10-OV_T<7:0>1000.  
By default, OV_TRIP is configured to a 0xAC setting.  
Note that OV_TRIP is based on the ADC voltage, which requires back-calculation using the GAIN and OFFSET values stored in  
ADCGAIN<4:0>and ADCOFFSET<7:0>.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: BQ76920 BQ76930 BQ76940  
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
8-13. UV_TRIP (0x0A)  
BIT  
7
UV_T7  
1
6
UV_T6  
0
5
UV_T5  
0
4
UV_T4  
1
3
UV_T3  
0
2
UV_T2  
1
1
UV_T1  
1
0
UV_T0  
1
NAME  
RESET  
ACCESS  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
UV_T7:0 (Bits 70): Middle 8 bits of the direct ADC mapping of the desired UV protection threshold, with upper 2 MSB set to 01 and lower  
4 LSB set to 0000. In other words, the equivalent OV threshold is mapped to: 01-UV_T<7:0>0000.  
By default, UV_TRIP is configured to a 0x97 setting.  
Note that UV_TRIP is based on the ADC voltage, which requires back-calculation using the GAIN and OFFSET values stored in  
ADCGAIN<4:0>and ADCOFFSET<7:0>.  
8-14. CC_CFG REGISTER (0x0B)  
BIT  
7
6
5
CC_CFG5  
0
4
CC_CFG4  
0
3
CC_CFG3  
0
2
CC_CFG2  
0
1
CC_CFG1  
0
0
CC_CFG0  
0
NAME  
0
0
RESET  
ACCESS  
R
R
RW  
RW  
RW  
RW  
RW  
RW  
CC_CFG5:0 (Bits 50): For optimal performance, these bits should be programmed to 0x19 upon device startup.  
8.5.2 Read-Only Registers  
8-15. CELL VOLTAGE REGISTERS  
VC1_HI, _LO (0x0C0x0D), VC2_HI, _LO (0x0E0x0F), VC3_HI, _LO (0x100x11), VC4_HI, _LO (0x120x13), VC5_HI, _LO  
(0x140x15) / BQ76930, BQ76940: VC6_HI, _LO (0x160x17), VC7_HI, _LO (0x180x19), VC8_HI, _LO (0x1A0x1B), VC9_HI,  
_LO (0x1C0x1D), VC10_HI, _LO (0x1E0x1F) / BQ76940: VC11_HI, _LO (0x200x21), VC12_HI, _LO (0x220x23), VC13_HI, _LO  
(0x240x25), VC14_HI, _LO (0x260x27), VC15_HI, _LO (0x280x29)  
BIT  
7
6
5
D13  
0
4
D12  
0
3
D11  
0
2
D10  
0
1
D9  
0
0
D8  
0
NAME  
RESET  
NAME  
RESET  
0
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
D11:8 (Bits 30): Cell xADC reading, upper 6 MSB. Always returned as an atomic value if both high and low registers are read in the  
same transaction (using address auto-increment).  
D7:0 (Bits 70): Cell xADC reading, lower 8 LSB.  
8-16. BAT_HI (0x2A) and BAT_LO (0x2B)  
BIT  
7
D15  
0
6
D14  
0
5
D13  
0
4
D12  
0
3
D11  
0
2
D10  
0
1
D9  
0
0
D8  
0
NAME  
RESET  
NAME  
RESET  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
D15:8 (Bits 70): BAT calculation based on adding up Cells 115, upper 8 MSB. Always returned as an atomic value if both high and low  
registers are read in the same transaction (using address auto-increment).  
D7:0 (Bits 70): BAT calculation based on adding up Cells 115, lower 8 LSB  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: BQ76920 BQ76930 BQ76940  
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
8-17. TS1_HI (0x2C) and TS1_LO (0x2D)  
BIT  
7
6
5
D13  
0
4
D12  
0
3
D11  
0
2
D10  
0
1
D9  
0
0
D8  
0
NAME  
RESET  
NAME  
RESET  
0
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
D11:8 (Bits 30): TS1 or DIETEMP ADC reading, upper 6 MSB. Always returned as an atomic value if both high and low registers are  
read in the same transaction (using address auto-increment).  
D7:0 (Bits 70): TS1 or DIETEMP ADC reading, lower 8 LSB  
8-18. TS2_HI (0x2E) and TS2_LO (0x2F)  
BIT  
7
6
5
D13  
0
4
D12  
0
3
D11  
0
2
D10  
0
1
D9  
0
0
D8  
0
NAME  
RESET  
NAME  
RESET  
0
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
D11:8 (Bits 30): TS2 ADC reading, upper 6 MSB. Always returned as an atomic value if both high and low registers are read in the same  
transaction (using address auto-increment).  
D7:0 (Bits 70): TS2 ADC reading, lower 8 LSB  
8-19. TS3_HI (0x30) and TS3_LO (0x31)  
BIT  
7
6
5
D13  
0
4
D12  
0
3
D11  
0
2
D10  
0
1
D9  
0
0
D8  
0
NAME  
RESET  
NAME  
RESET  
0
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
D11:8 (Bits 30): TS3 ADC reading, upper 6 MSB. Always returned as an atomic value if both high and low registers are read in the same  
transaction (using address auto-increment).  
D7:0 (Bits 70): TS3 ADC reading, lower 8 LSB  
8-20. CC_HI (0x32) and CC_LO (0x33)  
BIT  
7
CC15  
0
6
CC14  
0
5
CC13  
0
4
CC12  
0
3
CC11  
0
2
CC10  
0
1
CC9  
0
0
CC8  
0
NAME  
RESET  
NAME  
RESET  
CC7  
0
CC6  
0
CC5  
0
CC4  
0
CC3  
0
CC2  
0
CC1  
0
CC0  
0
CC15:8 (Bits 70): Coulomb counter upper 8 MSB. Always returned as an atomic value if both high and low registers are read in the same  
transaction (using address auto-increment).  
CC7:0 (Bits 70): Coulomb counter lower 8 LSB  
8-21. ADCGAIN1 (0x50)  
BIT  
7
6
5
4
3
ADCGAIN4  
2
ADCGAIN3  
1
0
NAME  
RESET  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: BQ76920 BQ76930 BQ76940  
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
8-21. ADCGAIN1 (0x50) (continued)  
BIT  
7
6
5
4
3
2
1
0
ACCESS  
R
R
R
R
R
R
R
R
8-22. ADCGAIN2 (0x59)  
BIT  
7
6
5
4
3
2
1
0
NAME  
ADCGAIN2  
ADCGAIN1  
ADCGAIN0  
R
R
R
R
R
RESET  
ACCESS  
R
R
R
ADCGAIN4:3 (Bits 32, address 0x50):  
ADC GAIN offset upper 2 MSB  
ADCGAIN2:0 (Bits 75, address 0x59):  
ADC GAIN offset lower 3 LSB  
ADCGAIN<4:0> is a production-trimmed value for the ADC transfer function, in units of µV/LSB. The range is  
365 µV/LSB to 396 µV/LSB, in steps of 1 µV/LSB, and may be calculated as follows:  
GAIN = 365 µV/LSB + (ADCGAIN<4:0>in decimal) × (1 µV/LSB)  
Alternately, a conversion table is provided below:  
ADC GAIN  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
Gain (µV/LSB)  
365  
ADC GAIN  
0x10  
0x11  
Gain (µV/LSB)  
381  
366  
382  
367  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
383  
368  
384  
369  
385  
370  
386  
371  
387  
372  
388  
373  
389  
374  
390  
375  
391  
376  
392  
377  
393  
378  
394  
379  
395  
380  
396  
8-23. ADCOFFSET (0x51)  
BIT  
7
6
5
4
3
2
1
0
NAME  
ADC  
ADC  
ADC  
ADC  
ADC  
ADC  
ADC  
ADC  
OFFSET7  
OFFSET6  
OFFSET5  
OFFSET4  
OFFSET3  
OFFSET2  
OFFSET1  
OFFSET0  
RESET  
ACCESS  
R
R
R
R
R
R
R
R
ADCOFFSET7:0 (Bits 70):  
ADC offset, stored in 2s complement format in mV units. Positive full-scale range corresponds to 0x7F and  
negative full-scale corresponds to 0x80. The full-scale input range is 128 mV to 127 mV, with an LSB of 1  
mV.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: BQ76920 BQ76930 BQ76940  
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
The table below shows example offsets.  
ADCOFFSET  
0x00  
Offset (mV)  
0
0x01  
1
0x7F  
127  
128  
127  
1  
0x80  
0x81  
0xFF  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: BQ76920 BQ76930 BQ76940  
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The BQ769x0 family of battery monitoring AFEs enabling cell parametric measurement and protection is a  
variety of 3-series to 15-series Li-ion/li-polymer battery packs.  
To evaluate the performance and configurations of the device users need the , BQ76940, BQ76930, and  
BQ76920 Evaluation Software tool to configure the internal registers for a specific battery pack and application.  
The Evaluation Software tool is a graphical user-interface tool installed on a PC during development. This can be  
used in conjunction with the BQ76920EVM, BQ76930EVM or BQ76940EVM.  
The BQ769x0 devices are expected to be implemented in a system with a microcontroller that can perform  
additional functions based on the data made collected. The BQ78350-R1 is one example of a companion to the  
BQ769x0 family. Additional application information is available in the BQ769x0 Family Top Design  
Considerations Application Report.  
9.1.1 Device Timing  
The device timeline accuracy is typically 3.5%. Each five-cell group in the BQ76930 and BQ76940 devices uses  
an independent 250-ms timeline, so voltage and temperature measurements of different groups drift with respect  
to one another.  
9.1.2 Random Cell Connection  
The device design anticipated transient conditions during cell connection, but that design did not result in unique  
specifications. The large component value ranges used in the application circuits may require special  
considerations for random cell connection. See additional information in the BQ769x0 Family Top Design  
Considerations Application Report.  
9.1.3 Power Pin Diodes  
The VC5X, VC10X, and BAT pins must have a diode from the top group input to the associated power pin, as  
shown in 9-2 and 9-3. These diodes limit the excursion of the input voltage above the supply. The diodes  
should be conventional diodes rather than Schottky type to allow some variation of the supply voltage without  
loading the cell input. When needed, two diodes may be used in series.  
9.1.4 Alert Pin  
The ALERT pin is an input and output. The input is sensitive to noise and may benefit from a RC filter at the pin  
to reduce noise at the pin. A maximum 250-μs time constant is suggested to allow the pin to fall when it is  
cleared as an output before it is sampled as an input. 500-kΩ and 470-pF values are commonly recommended.  
Guard traces around the traces may be helpful to avoid crosstalk to the ALERT trace.  
9.1.5 Sense Inputs  
The SRP input should operate near VSS, so VSS references the battery negative on the battery side of the  
sense resistor near the filter connection for SRP. The SRP and SRN have a common mode range to their supply  
from REGOUT and the VSS rail. When moving away from the recommended level due to high current or a buffer  
amplifier, the OCD and SCD may still trip, but accuracy could be compromised.  
9.1.6 TSn Pins  
The TSn pins must connect with a thermistor or resistor to the reference power pin for the associated cell group,  
as shown in the applications diagram. A resistor must be connected for normal operation even if external  
temperature measurement is not used. When thermistors are removable, they should be substituted with a test  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: BQ76920 BQ76930 BQ76940  
 
 
 
 
 
 
 
 
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
resistance at board test to prevent XREADY faults during test. The TSn pins should not be pulled below their  
reference power pin or the device may not start properly or the ADC may not operate properly.  
A capacitor across the thermistor is not required but may filter noise picked up by thermistor leads. The  
thermistor is biased 37.5 ms before measurement begins, so a 4.7-nF capacitor, such as is used on the  
evaluation module or smaller, allows many time constants for settling before measurement.  
备注  
The capacitor across the thermistor does not filter noise that may be picked up by the thermistor leads  
between different thermistors on the BQ76930 or BQ76940 devices.  
TS1 is also used to boot the part. A rising edge is required for boot. A high level maintained on TS1 does not  
prevent shutdown or waking the part. A voltage level maintained on the TS1 pin after boot affects the voltage on  
the thermistor and the temperature determined by the MCU if external temperature sensing is used in normal  
operation.  
9.1.7 Unused Pins  
Pins should be connected to the appropriate circuits, as shown in the simplified diagrams in Typical Applications  
and as described in the Pin Configuration and Functions section. See Pin Usage for additional comments.  
9-1. Pin Usage  
PIN NAME  
RECOMMENDATION  
DSG, CHG  
VSS  
DSG and CHG are outputs and may be left unconnected if not used.  
Must be used  
Must be used  
SDA, SCL  
TSn  
Must have a thermistor or pull down resistor to the group reference.  
TS1 must have a rising edge to boot the part.  
CAPn  
A capacitor must be installed.  
REGOUT  
REGOUT also supplies internal circuits. A capacitor must be  
installed even if REGOUT is not used for external circuitry.  
REGSRC  
BAT  
Must be supplied  
Primary power pin for the part, must be connected to the top cell  
through the power filter  
VC5x, VC10x  
NC  
Must connect to the appropriate cell through the power filter  
Some pins named NC must be connected to the appropriate CAPn  
pin. See Pin Configuration and Functions .  
VCn  
Cell voltage sense input pins. Must be connected through the input  
filter to the cells. When not all cells are needed, connect as  
described in Configuring Alternative Cell Counts.  
SRP, SRN  
ALERT  
Current sense inputs. When not used, connect to VSS.  
When not used, a pulldown is recommended. See Alert Pin.  
9.1.8 Configuring Alternative Cell Counts  
Each BQ769x0 family of IC's support a variety of cell counts. The following tables provide guidance on which  
device and which input pins to use, depending on the number of cells in the pack.  
9-2. Cell Connections for BQ76920  
Cell Input  
VC5VC4  
VC4VC3  
VC3VC2  
VC2VC1  
VC1VC0  
3 Cells  
CELL 3  
short  
4 Cells  
CELL 4  
short  
5 Cells  
CELL 5  
CELL 4  
CELL 3  
CELL 2  
CELL 1  
short  
CELL 3  
CELL 2  
CELL 1  
CELL 2  
CELL 1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: BQ76920 BQ76930 BQ76940  
 
 
 
 
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
9-3. Cell Connections for BQ76930  
Cell Input  
VC10VC9  
VC9VC8  
VC8VC7  
VC7VC6  
VC6VC5b  
VC5VC4  
VC4VC3  
VC3VC2  
VC2VC1  
VC1VC0  
6 Cells  
CELL 6  
short  
7 Cells  
CELL 7  
short  
8 Cells  
CELL 8  
short  
9 Cells  
CELL 9  
short  
10 Cells  
CELL 10  
CELL 9  
CELL 8  
CELL 7  
CELL 6  
CELL 5  
CELL 4  
CELL 3  
CELL 2  
CELL 1  
short  
short  
CELL 7  
CELL 6  
CELL 5  
CELL 4  
short  
CELL 8  
CELL 7  
CELL 6  
CELL 5  
CELL 4  
CELL 3  
CELL 2  
CELL 1  
CELL 5  
CELL 4  
CELL 3  
short  
CELL 6  
CELL 5  
CELL 4  
short  
short  
CELL 3  
CELL 2  
CELL 1  
CELL 3  
CELL 2  
CELL 1  
CELL 2  
CELL 1  
9-4. Cell Connections for BQ76940  
Cell Input  
VC15VC14  
VC14VC13  
VC13VC12  
VC12VC11  
VC11VC10b  
VC10VC9  
VC9VC8  
VC8VC7  
VC7VC6  
VC6VC5b  
VC5VC4  
VC4VC3  
VC3VC2  
VC2VC1  
VC1VC0  
9 Cells  
CELL 9  
short  
10 Cells  
CELL 10  
short  
11 Cells  
CELL 11  
short  
12 Cells  
CELL 12  
short  
13 Cells  
CELL 13  
short  
14 Cells  
CELL 14  
short  
15 Cells  
CELL 15  
CELL 14  
CELL 13  
CELL 12  
CELL 11  
CELL 10  
CELL 9  
CELL 8  
CELL 7  
CELL 6  
CELL 5  
CELL 4  
CELL 3  
CELL 2  
CELL 1  
short  
short  
short  
CELL 11  
CELL 10  
CELL 9  
CELL 8  
short  
CELL 12  
CELL 11  
CELL 10  
CELL 9  
short  
CELL 13  
CELL 12  
CELL 11  
CELL 10  
CELL 9  
CELL 8  
CELL 7  
CELL 6  
CELL 5  
CELL 4  
CELL 3  
CELL 2  
CELL 1  
CELL 8  
CELL 7  
CELL 6  
short  
CELL 9  
CELL 8  
CELL 7  
short  
CELL 10  
CELL 9  
CELL 8  
short  
short  
short  
CELL 7  
CELL 6  
CELL 5  
CELL 4  
short  
CELL 7  
CELL 6  
CELL 5  
CELL 4  
short  
CELL 8  
CELL 7  
CELL 6  
CELL 5  
CELL 4  
CELL 3  
CELL 2  
CELL 1  
CELL 5  
CELL 4  
CELL 3  
short  
CELL 6  
CELL 5  
CELL 4  
short  
short  
CELL 3  
CELL 2  
CELL 1  
CELL 3  
CELL 2  
CELL 1  
CELL 3  
CELL 2  
CELL 1  
CELL 2  
CELL 1  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: BQ76920 BQ76930 BQ76940  
 
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
9.2 Typical Applications  
CAUTION  
The external circuitries in the following schematics show minimum requirements to ensure device  
robustness during cell connection to the PCB and normal operation.  
PACK  
+
Rf  
BAT  
VC 5  
VC 4  
VC 3  
VC 2  
VC 1  
VC 0  
SRP  
REGSRC  
REGOUT  
Rc  
Rc  
Rc  
Rc  
Rc  
Cc  
Cc  
Cc  
CAP  
1
10 kΩ  
TS 1  
1 µF  
1 µF  
4.7 µF  
Cf  
SCL  
SDA  
VSS  
CHG  
DSG  
10  
k
SRN  
ALERT  
PUSH  
- BUTTON FOR BOOT  
Cc  
Cc  
VCC  
SCL  
SDA  
GPIO  
VSS  
Companion  
Controller  
Cc  
1 M  
Rc  
0 .1 µF  
100  
0 .1 µF  
0 .1 µF  
100  
1 M  
1 M  
Rsns  
PACK  
9-1. BQ76920 with BQ78350 Companion Controller IC  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: BQ76920 BQ76930 BQ76940  
 
 
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
PACK+  
Rc  
Cc  
Rc  
Cc  
Rc  
Cc  
Rf  
Rc  
BAT  
VC10  
Cc  
CAP2  
VC9  
VC8  
TS2  
NC  
NC  
Rc  
Cf  
Cc  
VC7  
10k  
1 µF  
VC5x  
VC6  
Cc  
Rc  
A
VC5b  
VC5x  
A
Rf  
VC5  
REGSRC  
Rc  
VC4  
REGOUT  
CAP1  
Cc  
VC3  
10 kΩ  
10k  
Rc  
VC2  
TS1  
1µF  
1µF  
Cf  
4.7 µF  
Cc  
VC1  
SCL  
SDA  
VSS  
Rc  
Rc  
Rc  
Rc  
VC0  
Cc  
SRP  
SRN  
CHG  
DSG  
PUSH-BUTTON FOR BOOT  
Cc  
Cc  
ALERT  
VCC  
SCL  
SDA  
GPIO  
VSS  
Companion  
Controller  
Cc  
1M  
0.1 µF  
100  
0.1 µF  
Rsns  
0.1µF  
100  
1M  
1M  
PACK-  
Copyright © 2016, Texas Instruments Incorporated  
9-2. BQ76930 With BQ78350 Companion Controller IC  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: BQ76920 BQ76930 BQ76940  
 
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
PACK+  
Rc  
Rc  
Cc  
Cc  
Cc  
Rc  
Rc  
Rc  
Cc  
Cc  
VC10  
x
Cc  
Rc  
Rf  
B
Rc  
Rc  
Rc  
Rc  
Rc  
Rc  
Cc  
Cc  
Cc  
VC15  
VC14  
VC13  
VC12  
VC11  
VC10b  
VC10  
VC9  
BAT  
CAP3  
TS3  
NC  
Cf  
10k  
1 µF  
NC  
VC10x  
CAP2  
B
Cc  
Cc  
Rf  
VC8  
TS2  
NC  
Cf  
VC7  
10k  
1 µF  
VC5x  
Cc  
VC6  
NC  
A
VC5b  
VC5  
VC5x  
A
Rf  
REGSRC  
REGOUT  
CAP1  
Rc  
Rc  
Rc  
Rc  
Rc  
Rc  
VC4  
Cc  
Cc  
Cc  
VC3  
10 kΩ  
10k  
VC2  
TS1  
1µF  
1µF  
Cf  
4.7 µF  
VC1  
SCL  
SDA  
VSS  
CHG  
DSG  
VC0  
SRP  
SRN  
PUSH-BUTTON FOR BOOT  
Cc  
Cc  
ALERT  
VCC  
SCL  
SDA  
GPIO  
VSS  
Companion  
Controller  
Cc  
1M  
0.1 µF  
100  
0.1 µF  
Rsns  
0.1 µF  
100  
1M  
1M  
PACK–  
Copyright © 2016, Texas Instruments Incorporated  
9-3. BQ76940 with BQ78350 Companion Controller IC  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: BQ76920 BQ76930 BQ76940  
 
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
1 M  
Rpchg  
10 Mꢀ  
Rgs  
Rc  
Cc  
PACK+  
10 Mꢀ  
Rgs  
10 Mꢀ  
Rgs  
Rc  
Cc  
Rc  
Cc  
Rc  
Cc  
Rc  
Cc  
VC10x  
Cc  
Rc  
B
Analog Front End  
Rf  
Rc  
470 nF  
CVDDCP  
100 ꢀ  
Rfilter  
Cc  
Cc  
Cc  
VC15  
VC14  
VC13  
VC12  
VC11  
VC10b  
VC10  
VC9  
bq76200  
VDDCP  
100 ꢀ  
Rfilter  
BAT  
CHG  
NC  
Rc  
Rc  
Rc  
CAP3  
BAT  
0.01 µF  
Cfilter  
TS3  
PCHG  
NC  
NC  
Cf  
10k  
1 µF  
Rf  
Rf  
CHG_EN  
CP_EN  
DSG_EN  
DSG  
PACK  
VC10x  
CAP2  
Cc  
Cc  
A
0.01 µF  
Cfilter  
PMON_EN PACKDIV  
VC8  
TS2  
Cf  
Rc  
PCHG_EN  
VSS  
bq76940  
VC7  
VC6  
VC5b  
VC5  
VC4  
VC3  
VC2  
VC1  
VC0  
SRP  
SRN  
ALERT  
VC5x  
10k  
1 µF  
Ra  
Cc  
Rc  
Rc  
Rc  
Rc  
Rc  
Rc  
Rc  
VC5x  
REGSRC  
REGOUT  
CAP1  
A
Cc  
Cc  
Cc  
10 kΩ  
10 kꢀ  
TS1  
1 µF  
Cf  
1 µF  
4.7 µF  
SCL  
SDA  
VSS  
CHG  
DSG  
Cc  
Cc  
GPIO  
GPIO  
GPIO  
VCC  
SCL  
PUSH-BUTTON FOR BOOT  
ADC_IN  
µC  
SDA  
GPIO  
VSS  
Cc  
Rb  
0.1 µF 0.1 µF 0.1 µF  
100 ꢀ  
100 ꢀ  
Rsns  
PACK-  
9-4. BQ76940 with BQ78350 Companion Controller IC and BQ76200 High-Side N-Channel FET Driver  
9.2.1 Design Requirements  
9-5. BQ769x0 Design Requirements  
DESIGN PARAMETER  
EXAMPLE VALUE at TA = 25°C  
Minimum system operating voltage  
Cell minimum operating voltage  
Series Cell Count  
24 V  
3.0 V  
8
Charge Voltage  
33.6 V  
3.0 A  
10.0 A  
4.30 V  
2s  
Maximum Charge Current  
Peak Discharge Current  
OV Protection Threshold  
OV Protection Delay  
UV Protection Threshold  
UV Protection Delay  
2.5 V  
4s  
OCD Protection Threshold Max  
OCD Protection Delay Time  
SCD Protection Threshold Max  
15 A  
320 ms  
25 A  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: BQ76920 BQ76930 BQ76940  
 
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
9-5. BQ769x0 Design Requirements (continued)  
DESIGN PARAMETER  
EXAMPLE VALUE at TA = 25°C  
SCD Protection Delay Time  
100 µs  
9.2.2 Detailed Design Procedure  
To begin the design process, there are some key steps required for component selection and protection  
configuration.  
9.2.2.1 Step-by-Step Design Procedure  
Determine the number of series cells.  
This value depends on the cell chemistry and the load requirements of the system. For example, to  
support a minimum battery voltage of 24 V using Li-CO2 type cells with a cell minimum voltage of 3.0 V,  
there needs to be at least 8-series cells.  
Select the correct BQ769x0 device.  
For 8-series cells, the BQ76930 is needed.  
For the correct cell connections, see 9-3.  
Select the correct protection FETs.  
The BQ76930 uses a low-side drive suitable for N-CH FETs.  
These FETs should be rated for the maximum:  
Voltage, which should be approximately 5 V (DC) 10 V (peak) per series cell: for example, 40 V.  
Current, which should be calculated based on both the maximum DC current and the maximum  
transient current with some margin: for example, 30 A.  
Power Dissipation, which can be a factor of the RDS(ON) rating of the FET, the FET package, and the  
PCB design: for example, 5 W, assuming 5 mΩRDS(ON).  
Select the correct sense resistor.  
The resistance value should be selected to maximize the input bandwidth use of the coulomb counter  
range, CCRANGE, as well as keeping the SCD and OCD thresholds in the available selections, and not  
exceed the absolute maximum ratings. The sense resistance RSNS is the threshold or input voltage  
divided by the current.  
Using the normal max discharge current, RSNS = 200 mV / 10.0 A = 20 mΩmaximum.  
However, considering the maximum SCD threshold of 200 mV and ISCD of 25 A , RSNS = 200 mV / 25  
A = 8 mΩmaximum.  
The maximum OCD threshold available is 100 mV, with the maximum current of 15 A, RSNS = 100  
mV / 15.0 A = 6.7 mΩmaximum.  
Further tolerance analysis (value tolerance, temperature variation, and so on) and PCB design margin  
should also be considered, so RSNS of 5 mΩwould be suitable with a 75-ppm temperature coefficient  
and power rating of 5 W.  
With VSS referenced at the SRP terminal charge current creates a negative voltage on SRN. The 5 mΩ  
with 3 A charge current is within the absolute maximum range.  
The BQ76930 is chosen, and so the REGSRC pin needs to be powered through a source follower circuit  
where the FET is used to provide current for REGSRC from the battery positive terminal while reducing the  
voltage to a suitable value for the IC.  
The FET also dissipates the power resulting from the load current and dropped voltage external to the IC  
and care should be taken to ensure the correct dissipation ratings are specified by the chosen FET.  
Configure the Current-based protection settings through PROTECT1 and PROTECT2:  
Ideal SCD Threshold = 25 A × 5 mΩ= 125 mV.  
However, the closest options are 111 mV (0x03) and 133 mV (0x04) providing 22.2 A and 26.6 A,  
respectively. Both options have the RSNS bit = 1.  
0x03 (22.2 A) will be used in this example.  
The SCD delay threshold setting for a 100 µs delay is 0x01.  
Therefore, PROTECT1 should be programmed with 0x8B.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: BQ76920 BQ76930 BQ76940  
 
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
Ideal OCD Threshold = 15 A × 5 mΩ= 75 mV.  
However, the closest options are 72 mV (0x0A) and 78 mV (0x0B), providing 14.4 A and 15.6 A,  
respectively. Both options have the RSNS bit = 1.  
0x0A (14.4A) will be used in this example.  
The OCD delay threshold setting for a 320-ms delay is 0x05.  
Therefore, PROTECT2 should be programmed with 0x5B.  
备注  
Care should be taken when determining the setting of OV_TRIP and UV_TRIP as these are ADC  
value outputs and correlation to cell voltage also requires consideration of the ADC GAIN and ADC  
OFFSET registers. More specific details can be found in 8.3.1.2.  
Configure the Voltage-based protection settings through OV_TRIP, UV_TRIP and PROTECT3:  
The selected OV Threshold is 4.30 V. If ADCOFFSET is 0 and GAIN is 382, the desired threshold is 11257  
or 0x2BF9.  
Therefore, OV_TRIP should be programmed with 0xBF.  
The selected UV Threshold is 2.5 V. If ADCOFFSET is 0 and GAIN is 382, the desired threshold is 6545  
or 0x1991.  
Therefore, UV_TRIP should be programmed with 0x99.  
The selected OV Delay is 2 s and the selected UV Delay is 4 s.  
Therefore, PROTECT3 should be programmed with 0x50.  
9.2.3 Application Curves  
0.0  
œ0.2  
œ0.4  
œ0.6  
œ0.8  
œ1.0  
œ1.2  
œ1.4  
œ1.6  
±0±2±  
±0±18  
±0±16  
±0±14  
±0±12  
±0±1±  
±0±±8  
±0±±6  
±0±±4  
±0±±2  
±0±±±  
±±0±±2  
±±0±±4  
VC1 Error  
VC2 Error  
VC3 Error  
VC4 Error  
VC5 Error  
10  
35  
60  
85  
œ40  
œ15  
20±± 203± 206± 209± 302± 305± 308± 401± 404± 407± 50±±  
Temperature (°C)  
VCx Input (V)  
C002  
C±±1  
9-6. Coulomb Counter Offset  
9-5. BQ76930 VCx Error Across Input Range at  
25°C  
10 Power Supply Recommendations  
The BQ769x0 devices are powered through the BAT and REGSRC pins but the BQ76930 and BQ76940 have  
additional Powerpins to provide the power to the entire device in the higher cell configurations.  
The use of Rf and Cf connected to the BAT pin, noted in the typical application diagrams, are required to filter  
system transients from disturbing the device power supply. These components should be placed as close as to  
the IC as possible.  
Additionally, for the BQ76930 and BQ76940 there are additional requirements to ensure a stable power supply to  
the device. The REGSRC pin is powered through a source follower circuit where the FET is used to provide  
current for REGSRC from the battery positive terminal while reducing the voltage to a suitable value for the IC.  
The FET also dissipates the power resulting from the load current and dropped voltage external to the IC and  
care should be taken to ensure the correct dissipation ratings are specified by the chosen FET.  
The BQ76920 does not use a FET because the battery voltage is within the REGSRC range.  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: BQ76920 BQ76930 BQ76940  
 
 
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
More information on this topic is available in the BQ769x0 Family Top Design Considerations Application Report.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: BQ76920 BQ76930 BQ76940  
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
It is strongly recommended for best measurement performance to keep high current signals from interfering with  
the measurement system inputs and ground.  
A second key recommendation is to ensure that the BQ769x0 input filtering capacitors and power capacitors are  
connected to a common ground with as little parasitic resistance between the connections as possible.  
11.2 Layout Example  
11-1 shows a guideline of how to place key components compared to respective ground zones, based on the  
BQ76920, BQ76930, and BQ76940 EVMs.  
Low Current Ground Plane Available Area  
Key components placed here  
bq78350  
bq76920/30/40  
Measurement Filter  
Ground  
Resistors and Capacitors  
interconnect  
BAT-  
PACK-  
PACK+  
RSNS  
DSG  
CHG  
Key components placed here  
Protection FETs  
Sense Resistor  
BAT+  
High Current Ground Plane Available Area  
11-1. System Component Placement Layout vs. Ground Zone Guide  
CAUTION  
Care should be taken when placing key power pin capacitors to minimize PCB trace impedances.  
These impedances could result in device resets or other unexpected operations when the device is  
at peak power consumption.  
Although not shown in the diagrams, this caution also applies to the resistor and capacitor network  
surrounding the current sense resistor.  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: BQ76920 BQ76930 BQ76940  
 
 
 
 
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
BATTERY–  
bq76920  
REGSRC  
REGOUT  
VC1  
VC0  
PCB Trace impedance  
VSS  
SENSE  
RESISTOR  
11-2. Good Layout: Input Capacitor Grounding With Low Parasitic PCB Impedance  
BATTERY–  
bq76920  
REGSRC  
REGOUT  
VC1  
VC0  
PCB Trace impedance  
VSS  
SENSE  
RESISTOR  
11-3. Weak Layout: Input Capacitor Grounding with High Parasitic PCB Impedance  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: BQ76920 BQ76930 BQ76940  
BQ76920, BQ76930, BQ76940  
ZHCSCE2I OCTOBER 2013 REVISED MARCH 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
12.2 Documentation Support  
For related documentation, see the following:  
BQ76200 High Voltage Battery Pack Front-End Charge/Discharge High-Side NFET Driver Data Sheet  
(SLUSC16)  
BQ769x0 Family Top Design Considerations Application Report (SLUA749)  
BQ769x0 Boot Switch Alternatives Application Report (SLUA769)  
BQ769x0 Pin Equivalent Diagrams (SLVA682)  
BQ769x0 BMS Configurations for Cordless Appliances (SLUA810)  
Fault Monitoring for High-Availability Systems Using the BQ769x0 (SLUA805)  
12.3 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
12-1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
BQ76920  
BQ76930  
BQ76940  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
12.4 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.5 Trademarks  
所有商标均为其各自所有者的财产。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: BQ76920 BQ76930 BQ76940  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Mar-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ7692000PW  
BQ7692000PWR  
BQ7692003PW  
BQ7692003PWR  
BQ7692006PW  
BQ7692006PWR  
BQ7693000DBT  
BQ7693000DBTR  
BQ7693001DBT  
BQ7693001DBTR  
BQ7693002DBT  
BQ7693002DBTR  
BQ7693003DBT  
BQ7693003DBTR  
BQ7693006DBT  
BQ7693006DBTR  
BQ7693007DBT  
BQ7693007DBTR  
BQ7694000DBT  
BQ7694000DBTR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
20  
20  
20  
20  
20  
20  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
44  
44  
70  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
BQ7692000  
2000 RoHS & Green  
70 RoHS & Green  
2000 RoHS & Green  
70 RoHS & Green  
2000 RoHS & Green  
60 RoHS & Green  
2000 RoHS & Green  
60 RoHS & Green  
2000 RoHS & Green  
60 RoHS & Green  
2000 RoHS & Green  
60 RoHS & Green  
2000 RoHS & Green  
60 RoHS & Green  
2000 RoHS & Green  
60 RoHS & Green  
2000 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
Call TI | NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
BQ7692000  
BQ7692003  
BQ7692003  
BQ7692006  
BQ7692006  
BQ7693000  
BQ7693000  
BQ7693001  
BQ7693001  
BQ7693002  
BQ7693002  
BQ7693003  
BQ7693003  
BQ7693006  
BQ7693006  
BQ7693007  
BQ7693007  
BQ7694000  
BQ7694000  
PW  
PW  
PW  
PW  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Mar-2022  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ7694001DBT  
BQ7694001DBTR  
BQ7694002DBT  
BQ7694002DBTR  
BQ7694003DBT  
BQ7694003DBTR  
BQ7694006DBT  
BQ7694006DBTR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
44  
44  
44  
44  
44  
44  
44  
44  
40  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
BQ7694001  
2000 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
BQ7694001  
BQ7694002  
BQ7694002  
BQ7694003  
BQ7694003  
BQ7694006  
BQ7694006  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Mar-2022  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Mar-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ7692000PWR  
BQ7692003PWR  
BQ7692006PWR  
BQ7693000DBTR  
BQ7693001DBTR  
BQ7693002DBTR  
BQ7693003DBTR  
BQ7693006DBTR  
BQ7693007DBTR  
BQ7694000DBTR  
BQ7694001DBTR  
BQ7694002DBTR  
BQ7694003DBTR  
BQ7694006DBTR  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
20  
20  
20  
30  
30  
30  
30  
30  
30  
44  
44  
44  
44  
44  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
24.4  
24.4  
24.4  
24.4  
24.4  
6.95  
6.95  
6.95  
6.95  
6.95  
6.95  
6.95  
6.95  
6.95  
6.8  
7.1  
7.1  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
8.0  
8.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
24.0  
24.0  
24.0  
24.0  
24.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
PW  
7.1  
8.0  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
8.3  
8.0  
8.3  
8.0  
8.3  
8.0  
8.3  
8.0  
8.3  
8.0  
8.3  
8.0  
11.7  
11.7  
11.7  
11.7  
11.7  
12.0  
12.0  
12.0  
12.0  
12.0  
6.8  
6.8  
6.8  
6.8  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Mar-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ7692000PWR  
BQ7692003PWR  
BQ7692006PWR  
BQ7693000DBTR  
BQ7693001DBTR  
BQ7693002DBTR  
BQ7693003DBTR  
BQ7693006DBTR  
BQ7693007DBTR  
BQ7694000DBTR  
BQ7694001DBTR  
BQ7694002DBTR  
BQ7694003DBTR  
BQ7694006DBTR  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
20  
20  
20  
30  
30  
30  
30  
30  
30  
44  
44  
44  
44  
44  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
43.0  
43.0  
43.0  
43.0  
43.0  
43.0  
43.0  
43.0  
43.0  
43.0  
43.0  
43.0  
PW  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Mar-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
BQ7692000PW  
BQ7692003PW  
BQ7692006PW  
BQ7693000DBT  
BQ7693001DBT  
BQ7693002DBT  
BQ7693003DBT  
BQ7693006DBT  
BQ7693007DBT  
BQ7694000DBT  
BQ7694001DBT  
BQ7694002DBT  
BQ7694003DBT  
BQ7694006DBT  
PW  
PW  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
20  
20  
20  
30  
30  
30  
30  
30  
30  
44  
44  
44  
44  
44  
70  
70  
70  
60  
60  
60  
60  
60  
60  
40  
40  
40  
40  
40  
530  
530  
530  
530  
530  
530  
530  
530  
530  
530  
530  
530  
530  
530  
10.2  
10.2  
10.2  
10.2  
10.2  
10.2  
10.2  
10.2  
10.2  
10.2  
10.2  
10.2  
10.2  
10.2  
3600  
3600  
3600  
3600  
3600  
3600  
3600  
3600  
3600  
3600  
3600  
3600  
3600  
3600  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
PW  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DBT0044A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
1
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
6.6  
6.2  
TYP  
C
A
0.1 C  
PIN 1 INDEX  
AREA  
42X 0.5  
44  
1
2X  
10.5  
11.1  
10.9  
NOTE 3  
22  
B
23  
0.27  
44X  
1.2 MAX  
0.17  
4.5  
4.3  
NOTE 4  
0.08  
C A B  
0.25  
GAGE PLANE  
0.15  
0.05  
(0.15) TYP  
SEE DETAIL A  
0.75  
0.50  
0 -8  
A
20  
DETAIL A  
TYPICAL  
4220223/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBT0044A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
44X (1.5)  
(R0.05) TYP  
44  
1
44X (0.3)  
42X (0.5)  
SYMM  
23  
22  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 8X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220223/A 02/2017  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBT0044A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
44X (1.5)  
SYMM  
(R0.05) TYP  
44  
1
44X (0.3)  
42X (0.5)  
SYMM  
22  
23  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 8X  
4220223/A 02/2017  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
PW0020A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
18X 0.65  
20  
1
2X  
5.85  
6.6  
6.4  
NOTE 3  
10  
B
11  
0.30  
20X  
4.5  
4.3  
NOTE 4  
0.19  
1.2 MAX  
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220206/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0020A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
20X (1.5)  
(R0.05) TYP  
20  
1
20X (0.45)  
SYMM  
18X (0.65)  
11  
10  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220206/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0020A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
20X (1.5)  
SYMM  
(R0.05) TYP  
20  
1
20X (0.45)  
SYMM  
18X (0.65)  
10  
11  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220206/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY