BQ7790509PWR [TI]

3 至 5 节串联锂离子和锂磷酸盐超低功耗堆叠式电池保护器 | PW | 20 | -40 to 85;
BQ7790509PWR
型号: BQ7790509PWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3 至 5 节串联锂离子和锂磷酸盐超低功耗堆叠式电池保护器 | PW | 20 | -40 to 85

电池 光电二极管
文件: 总49页 (文件大小:2241K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
BQ77904BQ77905 3-20 节串联超低功耗电压、电流、温度和断线可堆叠锂离  
子电池保护器  
此器件可通过集成的独立 CHG DSG 低侧 NMOS  
FET 驱动器实现电池组保护这些驱动器可通过两个  
控制引脚禁用。这些控制引脚还能够以简单经济的方式  
1 特性  
• 正常模式6µAbQ77904 bQ77905)  
• 整套电压、电流和温度保护功能  
• 电池节数可扩展支持3 节串联20 节或更多  
节数串联  
为更多节串联电池6 节以上提供电池保护解决方  
案。为此只需将上级器件的 CHG DSG 输出级联  
到下级器件控制引脚。为减少元件数量所有保护故障  
均使用内部延迟计时器。  
• 电压保护精度±10mV)  
– 过压3V 4.575V  
– 欠压1.2V 3V  
• 开路电池和断线检(OW)  
• 电流保护  
器件信息  
器件型号(1)  
BQ77904  
BQ77905  
封装尺寸标称值)  
封装  
TSSOP (20)  
6.50mm × 4.40mm  
– 过流放1-10mV -85mV  
– 过流放2-20mV +170mV  
– 短路放电-40mV +340mV  
– 整个温度范围内20mV 时的精度为  
±20%> 20mV 时的精度±30%  
• 温度保护  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
PACK+  
VDD  
VTB  
VC5  
TS  
– 过热充电45°C 50°C  
– 过热放电65°C 70°C  
– 欠温充电-5°C 0°C  
bq77094/5  
LD  
Vss  
SRP SRN  
DSG  
CHGU  
CTRC  
– 低温放电-20°C -10°C  
• 附加特性  
CTRD  
– 独立充(CHG) 和放(DSG) FET 驱动器  
– 每节电池输入的绝对最大额定电压36V  
– 内置自检功能实现高可靠性  
• 关断模式0.5µA最大值)  
提供功能安全  
VDD  
VTB  
TS  
VC5  
bq77094/5  
LD  
Vss  
SRP  
SRN  
DSG  
CHG  
可帮助进行功能安全系统设计的文档  
PACK-  
2 应用  
Copyright © 2017, Texas Instruments Incorporated  
Copyright © 2017, Texas Instruments Incorporated  
电动工具、园艺工具  
启停电池组  
简化版原理图  
(PbA) 备用电池  
轻型电动车辆  
储能系统、不间断电(UPS)  
10.8V 72V 电池组  
3 说明  
BQ77904 BQ77905 器件为低功耗电池组保护器,  
无需微控制器 (MCU) 控制即可实现一系列电压、电流  
和温度保护。该器件的可堆叠接口可进行简单扩展支  
持从 3 节串联到 20 节或更多节数串联的电池应用。保  
护阈值和延迟均为出厂编程设定有多种配置可供选  
用。为提升灵活性还提供了单独的过热和欠温放电阈  
OTD UTD以及过热和欠温充电阈值OTC  
UTC。  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSCM3  
 
 
 
 
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
Table of Contents  
8.4 Device Functional Modes..........................................26  
9 Application and Implementation..................................27  
9.1 Application Information............................................. 27  
9.2 Typical Application.................................................... 32  
9.3 System Examples..................................................... 36  
10 Power Supply Recommendations..............................36  
11 Layout...........................................................................37  
11.1 Layout Guidelines................................................... 37  
11.2 Layout Example...................................................... 37  
12 Device and Documentation Support..........................38  
12.1 Documentation Support.......................................... 38  
12.2 Receiving Notification of Documentation Updates..38  
12.3 Support Resources................................................. 38  
12.4 Trademarks.............................................................38  
12.5 Electrostatic Discharge Caution..............................38  
12.6 Glossary..................................................................38  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison.........................................................4  
6 Pin Configuration and Functions...................................5  
Pin Functions.................................................................... 5  
7 Specifications.................................................................. 6  
7.1 Absolute Maximum Ratings........................................ 6  
7.2 ESD Ratings............................................................... 6  
7.3 Recommended Operating Conditions.........................6  
7.4 Thermal Information....................................................7  
7.5 Electrical Characteristics.............................................7  
7.6 Timing Requirements................................................10  
7.7 Typical Characteristics.............................................. 11  
8 Detailed Description......................................................13  
8.1 Overview...................................................................13  
8.2 Functional Block Diagram.........................................14  
8.3 Feature Description...................................................14  
Information.................................................................... 38  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision J (April 2020) to Revision K (July 2020)  
Page  
Add the BQ7790521 evice in the Device Comparison table...............................................................................4  
Changes from Revision I (December 2019) to Revision J (February 2020)  
Page  
Changed the BQ7790518 device to a catalog device in the Device Comparison table......................................4  
Changes from Revision H (September 2018) to Revision I (December 2019)  
Page  
Added the BQ7790522 device to the Device Comparison table.........................................................................4  
Changes from Revision G (September 2017) to Revision H (September 2018)  
Page  
• 为简洁明了更改了整个数据表中的一些措辞....................................................................................................1  
Added the BQ7790518 device to the BQ77905 Device Comparison table........................................................ 4  
Changes from Revision F (May 2017) to Revision G (September 2017)  
Page  
Added BQ7790511 and BQ7790512 to the Device Comparison table...............................................................4  
Changes from Revision E (March 2017) to Revision F (May 2017)  
Page  
Changed the BQ7790400 setting: OV delay from 1 s to 2 s. UV from 2800 mV to 2200 mV, UV delay from 1 s  
to 2 s, UV Hyst from 200 to 400 mV, UV load recovery from N to Y. OCD2 from 80 mV to 60 mV, OCD2 delay  
from 700 to 350 ms. SCD from 160 mV to 100 mV.............................................................................................4  
Added BQ7790508 and BQ7790509 to the Device Comparison table...............................................................4  
Changes from Revision D (March 2017) to Revision E (March 2017)  
Page  
Added BQ7790505 to the Device Comparison table..........................................................................................4  
Changed UTC(REC) at 5°C typ from 68.8 to 69.73 %VTB. Changed UTC(REC) at 10°C typ from 64.23 to  
65.52 %VTB........................................................................................................................................................7  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: BQ77904 BQ77905  
 
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
Changes from Revision C (February 2017) to Revision D (March 2017)  
Page  
Changed VOTD, VOTD(REC), VOTC, VOTC(REC), VUTD, VUTD(REC), VUTC, VUTC(REC) MIN and MAX  
specification values.............................................................................................................................................7  
Changes from Revision B (November 2016) to Revision C (February 2017)  
Page  
Added values in the Thermal Information table to align with JEDEC standards.................................................7  
Changes from Revision A (June 2016) to Revision B (November 2016)  
Page  
• 更改了中所列项的顺序................................................................................................................................1  
5-1 and 5-2, Changed OTC To: UTC in last column under Temperature. Changed BQ7790400 and  
BQ7790503 to Production Data. Updated the BQ7790503 configuration ......................................................... 4  
Changed pin number from 16-pin to 20-pin .......................................................................................................5  
Corrected max value on the UTD at 20°C spec..............................................................................................7  
Changed comparator flowcharts with new flowcharts.......................................................................................14  
Corrected CTRC and CTRD delay time entries................................................................................................18  
Changes from Revision * (June 2016) to Revision A (June 2016)  
Page  
• 将器件从“产品预发布”更改为“量产”...........................................................................................................1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: BQ77904 BQ77905  
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
5 Device Comparison  
NUMBER OF  
TYPICAL NORMAL  
MODE CURRENT (µA)  
DEVICE  
CELLS  
PROTECTIONS  
PACKAGE  
BQ77904  
BQ77905  
3, 4  
OV, UV, OW, OTD, OTC, UTD, UTC, OCD1,  
OCD2, SCD, CTRC, CTRD  
6
20-TSSOP  
3, 4, 5  
Unless otherwise specified, the devices in 5-1 and 5-2 come, by default, with the state comparator enabled  
with a 2-mV threshold. Filtered fault detection is used by default. Contact Texas Instruments for new  
configuration options or devices in preview.  
5-1. BQ77904 Device Comparison  
OV  
Delay(s)  
UV  
OW  
OCD1  
Threshold  
Part Number  
Thresh  
(mV)  
Load Removal  
Recovery (Y/N)  
Threshold (mV)  
Hyst (mV)  
Delay(s)  
Hyst (mV)  
400  
Current (nA)  
0 (disable)  
Delay (ms)  
(mV)  
BQ7790400  
4225  
2
100  
2200  
2
Y
40  
1420  
OCD2  
Delay (ms)  
350  
SCD  
Threshold (mV)  
100  
Current Fault Recovery  
Method  
Temperature (°C)(1)  
Part Number  
Delay (s)  
OTD  
OTC  
UTD  
UTC  
BQ7790400  
0
Load Removal  
70  
50  
20  
5  
(1) These thresholds are target based on temperature, but they are dependent on external components that could vary based on customer  
selection. The circuit is based on the 103AT NTC thermistor connected to TS and VSS, and a 10-kΩresistor connected to VTB and  
TS. Actual thresholds must be determined in mV. Refers to the overtemperature and undertemperature mV threshold in the Electrical  
Characteristics table.  
5-2. BQ77905 Device Comparison  
OV  
UV  
OW  
OCD1  
Load  
Removal  
Recovery  
(Y/N)  
Part Number  
Threshold  
(mV)  
Thresh  
(mV)  
Threshold  
(mV)  
Delay(s)  
Hyst (mV)  
Delay(s)  
Hyst (mV)  
Current (nA)  
Delay (ms)  
BQ7790500  
4200  
4250  
4200  
4250  
3900  
4250  
4250  
4175  
4250  
3700  
4250  
0.5  
1
100  
200  
100  
200  
200  
100  
200  
100  
100  
200  
100  
2600  
2700  
2700  
2700  
2000  
2500  
2700  
2800  
2750  
2500  
2800  
1
1
2
1
1
1
1
1
1
1
1
400  
200  
400  
200  
400  
400  
200  
400  
200  
200  
200  
Y
Y
Y
N
Y
Y
Y
Y
Y
Y
Y
100  
100  
100  
0
30  
85  
80  
60  
50  
50  
50  
75  
70  
70  
80  
1420  
700  
1420  
10  
BQ7790502  
BQ7790503  
BQ7790505  
BQ7790508  
BQ7790509  
BQ7790511  
BQ7790512  
BQ7790518  
BQ7790521  
BQ7790522  
1
1
1
100  
100  
100  
100  
100  
100  
100  
700  
700  
350  
1420  
180  
180  
700  
1
1
1
1
1
1
OCD2  
SCD  
Current Fault Recovery  
Temperature (°C)(1)  
Threshold  
(mV)  
Part Number  
Delay (ms)  
Threshold (mV)  
Delay (s)  
Method  
OTD  
70  
70  
70  
65  
70  
70  
65  
65  
70  
70  
70  
OTC  
50  
50  
50  
45  
50  
50  
45  
45  
50  
50  
50  
UTD  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
UTC  
BQ7790500  
BQ7790502  
BQ7790503  
BQ7790505  
BQ7790508  
BQ7790509  
BQ7790511  
BQ7790512  
BQ7790518  
BQ7790521  
BQ7790522  
50  
700  
350  
350  
5
120  
240  
320  
100  
200  
200  
280  
300  
300  
320  
300  
1
Load Removal + Delay  
Load Removal  
0
120  
160  
80  
5  
5  
0
9
Load Removal  
Load Removal + Delay  
Load Removal + Delay  
Load Removal + Delay  
Load Removal  
100  
100  
120  
150  
140  
140  
100  
90  
1
5  
5  
0
90  
1
90  
1
350  
20  
Load Removal + Delay  
Load Removal  
0
1
0
20  
1
Load Removal  
0
350  
1
Load Removal  
5  
(1) These thresholds are target based on temperature, but they are dependent on external components that could vary based on customer  
selection. Circuit is based on 103AT NTC thermistor connected to TS and VSS, and a 10-kΩresistor connected to VTB and TS. Actual  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: BQ77904 BQ77905  
 
 
 
 
 
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
thresholds must be determined in mV. Refers to the overtemperature and undertemperature mV threshold in the Electrical  
Characteristics table.  
6 Pin Configuration and Functions  
VDD  
AVDD  
VC5  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
DVSS  
CTRD  
CTRC  
CCFG  
VTB  
VC4  
VC3  
VC2  
TS  
VC1  
LD  
AVSS  
SRP  
SRN  
CHG  
CHGU  
DSG  
Not to scale  
6-1. PW Package 20-Pin TSSOP Top View  
Pin Functions  
PIN  
NAME  
I/O(1)  
DESCRIPTION  
NO.  
2
AVDD  
O
P
I
Analog supply (only connect to a capacitor)  
Analog ground  
AVSS  
8
CCFG  
17  
Cell in series-configuration input  
CHG FET driver. Use on a single device or on the bottom device of a stack  
configuration.  
CHG  
13  
12  
O
O
CHG FET signal. Use for the upper device of a stack configuration to feed the CHG  
signal to the CTRC pin of the lower device.  
CHGU  
CTRC  
CTRD  
DSG  
DVSS  
LD  
18  
19  
11  
20  
14  
10  
9
I
I
CHG and DSG override inputs  
O
P
I
DSG FET driver  
Digital ground  
PACKload removal detection  
SRN  
SRP  
I
Current sense input connecting to the PACKside of sense resistor  
Current sense input connecting to the battery side of sense resistor  
I
Thermistor measurement input. Connect a 10-kΩresistor to AVSS pin if the function is  
not used.  
TS  
15  
I
VC1  
VC2  
VC3  
VC4  
VC5  
VDD  
VTB  
7
6
I
I
Cell voltage sense inputs  
5
I
4
I
3
I
Cell voltage sense inputs (Pin 3 must be connected to Pin 4 on the BQ77904 device.)  
1
P
O
Supply voltage  
16  
Thermistor bias output  
(1) I = Input, O = Output, P = Power  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: BQ77904 BQ77905  
 
 
 
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted). All values are referenced to VSS unless otherwise  
noted.(1)  
MIN  
0.3  
30  
0.3  
0.3  
30  
0.3  
MAX  
36  
20  
3.6  
20  
20  
3.6  
500  
1
UNIT  
VDD, VC5, VC4, VC3, VC2, VC1, CCFG, CTRD, CTRC  
V
VI  
Input voltage  
LD  
V
SRN, SRP, TS, AVDD, CCFG  
V
DSG, CHGU  
CHG  
V
VO  
Output voltage range  
V
VTB  
V
II  
Input current  
Input current  
Output current  
Output current  
LD, CHG  
CHGU, DSG  
CHG  
µA  
mA  
mA  
mA  
°C  
II  
IO  
IO  
1
CHGU, DSG  
1
Storage temperature, Tstg  
150  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
7.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
VBAT  
Supply voltage  
VDD  
3
25  
5
V
VC5-VC4, VC4-VC3, VC3-VC2, VC2-VC1,  
VC1-VSS  
0
CTRD, CTRC  
CCFG  
0
(VDD + 5)  
0
0.2  
0
AVDD  
0.8  
16  
VI  
Input voltage  
V
SRN, SRP  
LD  
TS  
0
VTB  
16  
CHG, CHGU, DSG  
VTB, AVDD  
0
VO  
TA  
Output voltage  
V
0
3
Operating free-range temperature  
85  
°C  
40  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: BQ77904 BQ77905  
 
 
 
 
 
 
 
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
7.4 Thermal Information  
bq77904  
bq77905  
THERMAL METRIC(1)  
UNITS  
PW (TSSOP)  
20 PINS  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
98.4  
37  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
49.3  
2.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
48.7  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
Typical values stated at TA = 25°C and VDD = 16 V (bq77904) or 20 V (bq77905). MIN and MAX values stated with TA = –  
40°C to +85°C and VDD = 3 to 20 V (bq77904) or VDD = 3 to 25 V (bq77905) unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY VOLTAGE  
V(POR)  
POR threshold  
VDD rising, 0 to 6 V  
4
3.25  
3.25  
V
V
V
V(SHUT)  
Shutdown threshold  
AVDD voltage  
VDD falling, 6 to 0 V  
C(VDD) = 1 µF  
2
V(AVDD)  
2.1  
2.5  
SUPPLY AND LEAKAGE CURRENT  
NORMAL mode current  
(bq77904/bq77905)  
Cell1 through Cell5 = 4 V,  
VDD = 20 V (bq77905)  
ICC  
6
8
9
µA  
I(CFAULT)  
IOFF  
Fault condition current  
State comparator on  
12  
µA  
µA  
SHUTDOWN mode current VDD < VSHUT  
0.5  
Input leakage current at VCx All cell voltages = 4 V,  
ILKG(OW_DIS)  
ILKG(100nA)  
ILKG(200nA)  
ILKG(400nA)  
0
110  
210  
425  
100  
175  
315  
640  
nA  
nA  
nA  
nA  
100  
30  
pins  
Open-wire disable configuration  
Open-wire sink current at  
VCx pins  
All cell voltages = 4 V,  
100-nA configuration  
Open-wire sink current at  
VCx pins  
All cell voltages = 4 V,  
200-nA configuration  
95  
Open-wire sink current at  
VCx pins  
All cell voltages = 4 V,  
400-nA configuration  
220  
PROTECTION ACCURACIES  
Overvoltage programmable  
threshold range  
VOV  
VUV  
3000  
1200  
4575  
3000  
mV  
mV  
Undervoltage programmable  
threshold range  
TA = 25°C, OV detection accuracy  
TA = 25°C, UV detection accuracy  
TA = 0 to 60°C  
10  
18  
26  
40  
mV  
mV  
mV  
mV  
10  
18  
28  
40  
V(VA)  
OV, UV, detection accuracy  
TA = 40 to 85°C  
OV hysteresis  
programmable threshold  
range  
VHYS(OV)  
VHYS(UV)  
VOTD  
0
400  
800  
mV  
mV  
UV hysteresis programmable  
threshold range  
200  
Overtemperature in  
discharge programmable  
Threshold for 65°C(1)  
Threshold for 70°C (1)  
19.71%  
17.36%  
20.56%  
18.22%  
21.86%  
19.51%  
V
VTB  
threshold (ratio of VTB  
)
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: BQ77904 BQ77905  
 
 
 
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
Typical values stated at TA = 25°C and VDD = 16 V (bq77904) or 20 V (bq77905). MIN and MAX values stated with TA = –  
40°C to +85°C and VDD = 3 to 20 V (bq77904) or VDD = 3 to 25 V (bq77905) unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Recovery threshold at 55°C for  
when VOTD is at 65°C(1)  
25.24%  
26.12%  
27.44%  
VTB  
Overtemperature in  
discharge recovery (ratio of  
VTB  
VOTD(REC)  
Recovery threshold at 60°C for  
when VOTD is at 70°C(1)  
)
22.12%  
23.2%  
24.24%  
VTB  
Overtemperature in charge  
programmable threshold  
Threshold for 45°C(1)  
32.14%  
29.15%  
32.94%  
29.38%  
34.54%  
31.45%  
VTB  
VTB  
VOTC  
Threshold for 50°C(1)  
(ratio of VTB  
)
Recovery threshold at 35°C when  
VOTD is at 45°C(1)  
38.63%  
36.18%  
40.97%  
36.82%  
40.99%  
38.47%  
VTB  
VTB  
Overtemperature in charge  
VOTC(REC)  
recovery (ratio of VTB  
)
Recovery threshold at 40°C when  
VOTD is at 50°C(1)  
Threshold for 20°C(1)  
Threshold for 10°C(1)  
Undertemperature in  
discharge programmable  
threshold (ratio of VTB  
86.41%  
80.04%  
87.14%  
80.94%  
89.72%  
83.10%  
VTB  
VTB  
VUTD  
)
Recovery threshold at 10°C  
when VUTD is at 20°C(1)  
80.04%  
71.70%  
80.94%  
73.18%  
83.10%  
74.86%  
VTB  
VTB  
Undertemperature in  
VUTD(REC)  
discharge recovery (ratio of  
VTB  
Recovery threshold at 0°C when  
VUTD is at 10°C(1)  
)
Threshold for 5°C(1)  
Undertemperature in charge  
programmable threshold  
75.06%  
71.70%  
77.22%  
73.18%  
78.32%  
74.86%  
VTB  
VTB  
VUTC  
Threshold for 0°C(1)  
(ratio of VTB  
)
Recovery threshold at 5°C when  
68.80%  
64.67%  
69.73%  
65.52%  
71.71%  
67.46%  
VTB  
VTB  
VUTC is at 5°C(1)  
Undertemperature in Charge  
Recovery (ratio of VTB  
VUTC(REC)  
)
Recovery threshold at 10°C when  
VUTC is at 0°C(1)  
Overcurrent discharge 1  
programmable threshold  
range,  
VOCD1  
mV  
85  
20  
10  
(VSRP VSRN  
)
Overcurrent discharge 2  
programmable threshold  
range,  
VOCD2  
mV  
mV  
170  
(VSRP VSRN  
)
Short circuit discharge programmable threshold range, (VSRP  
VSCD  
40  
30%  
20%  
340  
30%  
VSRN  
)
OCD1 detection accuracy at  
lower thresholds  
VCCAL  
VCCAH  
VOCD1 > 20 mV  
OCD1 20 mV; all OCD2 and  
OCD1, OCD2, SCD  
detection accuracy  
V
20%  
SCD threshold ranges  
Open-wire fault voltage  
threshold at VCx per cell  
with respect to VCx-1  
Voltage falling on VCx, 3.6 V to  
0 V  
VOW  
450  
500  
100  
550  
mV  
mV  
Voltage rising on VCx, 0 V to  
3.6 V  
VOW(HYS)  
Hysteresis for open wire fault  
CHARGE AND DISCHARGE FET DRIVERS  
11  
12  
14  
VDD  
0.5  
V
V
V
VDD 12 V, CL = 10 nF  
V(FETON)  
CHG/CHGU/DSG on  
CHG/CHGU/DSG off  
VDD < 12 V, CL = 10 nF  
VDD 1  
V(FETOFF)  
No load when CHG/CHGU/DSG is  
off.  
CHG off for > tCHGPDN and pin held  
at 2 V  
R(CHGOFF)  
CHG off resistance  
0.5  
10  
kΩ  
R(DSGOFF)  
CHGU/DSG off resistance  
CHG clamp current  
CHGU/DSG off and pin held at 2 V  
CHG off and pin held at 18 V  
16  
Ω
ICHG(CLAMP)  
450  
µA  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: BQ77904 BQ77905  
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
Typical values stated at TA = 25°C and VDD = 16 V (bq77904) or 20 V (bq77905). MIN and MAX values stated with TA = –  
40°C to +85°C and VDD = 3 to 20 V (bq77904) or VDD = 3 to 25 V (bq77905) unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
18  
50  
2
MAX  
20.5  
150  
75  
UNIT  
V
VCHG(CLAMP)  
tCHGON  
CHG clamp voltage  
ICHG(CLAMP) = 300 µA  
16  
CHG on rise time  
CL = 10 nF, 10% to 90%  
CL = 10 nF, 10% to 90%  
CL = 10 nF, 90% to 10%  
CL = 10 nF, 90% to 10%  
µs  
tDSGON  
CHGU/DSG on rise time  
CHG off fall time  
µs  
tCHGOFF  
tDSGOFF  
15  
5
30  
µs  
CHGU/DSG off fall time  
15  
µs  
CTRC AND CTRD CONTROL  
With respect to VSS. Enabled <  
MAX  
VCTR1  
Enable FET driver (VSS)  
0.6  
V
VCTR2  
Enable FET driver (Stacked) Enabled > MIN  
VDD + 2.2  
2.04  
V
V
VCTR(DIS)  
Disable FET driver  
Disabled between MIN and MAX  
ICTR = 600 nA  
VDD + 0.7  
VDD + 5  
CTRC and CTRD clamp  
voltage  
VCTR(MAXV)  
tCTRDEG_ON)  
tCTRDEG_OFF  
VDD + 2.8  
VDD + 4  
V
CTRC and CTRD deglitch  
for ON signal  
(2)  
(2)  
7
7
ms  
ms  
CTRC and CTRD deglitch  
for OFF signal  
CURRENT STATE COMPARATOR  
Discharge qualification  
V(STATE_D1)  
Measured at SRP-SRN  
Measured at SRP-SRN  
mV  
mV  
ms  
3  
2  
1  
3
threshold1  
Charge qualification  
threshold1  
V(STATE_C1)  
1
2
State detection qualification  
time  
(2)  
tSTATE  
1.2  
LOAD REMOVAL DETECTION  
VLD(CLAMP)  
ILD(CLAMP)  
VLDT  
LD clamp voltage  
I(LDCLAMP) = 300 µA  
16  
18  
20.5  
450  
V
µA  
V
LD clamp current  
LD threshold  
V(LDCLAMP) = 18 V  
Load removed < when VLDT  
1.25  
160  
1
1.3  
250  
1.5  
1.35  
LD input resistance when  
enabled  
RLD(INT)  
Measured to VSS  
375  
2.3  
kΩ  
tLD_DEG  
LD detection deglitch  
ms  
CCFG PIN  
CCFG threshold low (ratio of  
V(CCFGL)  
V(CCFGH)  
V(CCFGHZ)  
3-cell configuration  
4-cell configuration  
10%  
100%  
45%  
V
V
VAVDD  
CCFG threshold high (ratio  
of VAVDD  
)
65%  
25%  
)
CFG threshold high-Z (ratio 5-cell configuration, CCFG floating,  
33%  
6
V
of VAVDD  
CCFG deglitch  
CUSTOMER TEST MODE (CTM)  
)
internally biased  
(2)  
tCCFG_DEG  
ms  
Customer test mode entry  
voltage at VDD  
V(CTM)  
VDD > VC5 + V(CTM), TA = 25°C  
VDD > VC5 + V(CTM), TA = 25°C  
TA = 25°C  
8.5  
50  
10  
V
Delay time to enter and exit  
Customer Test Mode  
(3)  
(3)  
tCTM_ENTRY  
tCTM_DELAY  
ms  
ms  
Delay time of faults while in  
Customer Test Mode  
200  
100  
Fault recovery time of  
OCD1, OCD2, and SCD  
faults while in Customer Test  
Mode  
(3)  
tCTM_OC_REC  
1 s and 8 s options, TA = 25°C  
ms  
(1) Based on a 10-KΩpull-up and 103AT thermistor  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: BQ77904 BQ77905  
 
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
(2) Not production tested parameters. Specified by design  
(3) The device is in a no fault state prior to entering Customer Test Mode.  
7.6 Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
PROTECTION DELAYS (2)  
0.5-s delay option  
0.4  
0.8  
1.8  
4
0.5  
1
0.8  
1.4  
2.7  
5.2  
1.5  
2.7  
5.5  
10.2  
5.3  
1-s delay option  
tOVn_DELAY  
Overvoltage detection delay time  
s
2-s delay option  
4.5-s delay option  
1-s delay option  
2-s delay option  
4.5-s delay option  
9-s delay option  
2
4.5  
1
0.8  
1.8  
4
2
tUVn_DELAY  
Undervoltage detection delay time  
Open-wire detection delay time  
s
4.5  
9
8
tOWn_DELAY  
tOTC_DELAY  
3.6  
4.5  
s
s
Overtemperature charge detection  
delay time  
3.6  
3.6  
3.6  
3.6  
4.5  
4.5  
4.5  
4.5  
5.3  
5.3  
5.3  
5.3  
Undertemperature charge detection  
delay time  
tUTC_DELAY  
tOTD_DELAY  
tUTD_DELAY  
s
s
s
Overtemperature discharge  
detection delay time  
Undertemperature discharge  
detection delay time  
10-ms delay option  
20-ms delay option  
45-ms delay option  
90-ms delay option  
180-ms delay option  
350-ms delay option  
700-ms delay option  
1420-ms delay option  
5-ms delay option  
10-ms delay option  
20-ms delay option  
45-ms delay option  
90-ms delay option  
180-ms delay option  
350-ms delay option  
700-ms delay option  
360-µs delay option  
1-s option  
8
17  
10  
20  
15  
26  
36  
45  
52  
78  
90  
105  
205  
405  
825  
1620  
8
tOCD1_DELAY  
Overcurrent 1 detection delay time  
ms  
155  
320  
640  
1290  
4
180  
350  
700  
1420  
5
8
10  
15  
17  
20  
26  
36  
45  
52  
tOCD2_DELAY  
Overcurrent 2 detection delay time  
Short-circuit detection delay time  
ms  
78  
90  
105  
205  
405  
825  
610  
1.4  
10.2  
155  
320  
640  
220  
0.8  
8
180  
350  
700  
400  
1
tSCD_RELAY  
tCD_REC  
µs  
s
Overcurrent 1, Overcurrent 2, and  
Short-circuit recovery delay time  
9-s option  
9
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: BQ77904 BQ77905  
 
 
 
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
7.7 Typical Characteristics  
7.5  
7
0.25  
0.2  
6.5  
6
0.15  
0.1  
5.5  
5
0.05  
4.5  
4
0
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (èC)  
D002  
Temperature (èC)  
D001  
7-2. Shutdown Current  
7-1. NORMAL Mode Current  
15  
10  
5
10  
5
0
0
-5  
-5  
-10  
-15  
-20  
-10  
-15  
-20  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (èC)  
Temperature (èC)  
D003  
D004  
7-3. OV Error at 4.25-V Threshold  
7-4. UV Error at 2.8-V Threshold  
0.1  
0.05  
0
0.2  
2.5  
2
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0.0  
-0.05  
-0.1  
œ0.2  
œ0.4  
œ0.6  
œ0.8  
œ1.0  
1.5  
1
-0.15  
-0.2  
-0.25  
-0.3  
0.5  
0
Error (in mV)  
Error (in %)  
Error (in mV)  
Error (in %)  
-0.35  
0
20  
40  
60  
80  
0
20  
40  
60  
80  
œ40  
œ20  
œ40  
œ20  
Temperature (ºC)  
Temperature (ºC)  
C001  
C002  
7-5. OCD1 Error at 40-mV Threshold  
7-6. OCD2 Error at 60-mV Threshold  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: BQ77904 BQ77905  
 
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
2.5  
2
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.5  
1
0.5  
0
Error (in mV)  
Error (in %)  
0
20  
40  
60  
80  
œ40  
œ20  
Temperature (ºC)  
C003  
7-7. SCD Error at 160-mV Threshold  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: BQ77904 BQ77905  
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The BQ77904 and BQ77905 families are full-feature stackable primary protectors for Li-ion/Li-Polymer batteries.  
The devices implement a suite of protections, including:  
Cell voltage: overvoltage, undervoltage  
Current: Overcurrent discharge 1 and 2, short circuit discharge  
Temperature: overtemperature and undertemperature in charge and discharge  
PCB: cell open-wire connection  
FET body diode protection  
Protection thresholds and delays are factory-programmed and available in a variety of configurations.  
The BQ77904 supports 3-series-to4-series cell configuration and BQ77905 supports 3-series-to5-series cell  
configuration. Up to four devices can be stacked to support 6-series cell configurations, providing protections  
up to 20-series cell configurations.  
The device has built-in CHG and DSG drivers for low-side N-channel FET protection, which automatically open  
up the CHG and/or DSG FETs after protection delay time when a fault is detected. A set of CHG/DSG overrides  
is provided to allow disabling of CHG and/or DSG driver externally. Although the host system can use this  
function to disable the FETs' control, the main use of these pins is to channel down the FET control signal from  
the upper device to the lower device in a cascading configuration in 6-series battery packs.  
8.1.1 Device Functionality Summary  
In this and subsequent sections, a number of abbreviations are used to identify specific fault conditions. The  
fault descriptor abbreviations and their meanings are defined in 8-1.  
8-1. Device Functionality Summary  
FAULT DESCRIPTOR  
FAULT DETECTION THRESHOLD and DELAY OPTIONS  
FAULT RECOVERY METHOD and SETTING OPTIONS  
OV  
UV  
Overvoltage  
3 V to 4.575 V (25-mV step)  
0.5, 1, 2, 4.5 s  
1, 2, 4.5, 9 s  
Hysteresis  
0, 100, 200, 400 mV  
1.2 V to 3 V  
(100-mV step for < 2.5 V,  
50-mV step for 2.5 V)  
Hysteresis OR  
Hysteresis + Load Removal  
Undervoltage  
200, 400 mV  
Open wire (cell to pcb  
disconnection)  
0 (disabled), 100, 200, or 400  
nA  
OW  
4.5 s  
4.5 s  
4.5 s  
4.5 s  
4.5s  
Restore bad VCx to pcb connection  
Hysteresis  
VCx > VOW  
10°C  
Overtemperature during  
discharge  
OTD(1)  
OTC(1)  
UTD(1)  
UTC (1)  
OCD1  
65°C or 70°C  
45°C or 50°C  
Overtemperature during  
charge  
Hysteresis  
10°C  
Undertemperature during  
discharge  
Hysteresis  
10°C  
20°C or 10°C  
5°C or 0°C  
Undertemperature during  
charge  
Hysteresis  
10°C  
Overcurrent1 during  
discharge  
10, 20, 45, 90, 180, 350, 700,  
1420 ms  
10 mV to 85 mV (5-mV step)  
Delay OR  
Delay + Load Removal OR  
Load Removal  
Overcurrent1 during  
discharge  
5, 10, 20, 45, 90, 180, 350, 700  
ms  
1 s or 9 s  
OCD2  
SCD  
20 mV to 170 mV (10-mV step)  
40 mV to 340 mV (20-mV step)  
Short circuit discharge  
360 µs  
Disable via external control or  
via CHGU signal from the upper  
device in the stack  
Enable via external control or via CHGU  
signal from the upper device in the stack  
configuration.  
CTRC  
CTRD  
CHG signal override control  
tCTRDEG_ON  
tCTRDEG_OFF  
configuration.  
Disable via external control or  
via DSG signal from the upper  
device in the stack  
Enable via external control or via DSG  
signal from the upper device in the stack  
configuration.  
DSG signal override control  
tCTRDEG_ON  
tCTRDEG_OFF  
configuration.  
(1) These thresholds are target based on temperature, but they are dependent on external components that could vary based on customer  
selection. The circuit is based on a 103AT NTC thermistor connected to TS and VSS, and a 10-kΩresistor connected to VTB and TS.  
Actual thresholds must be determined in mV. Refers to the overtemperature and undertemperature mV threshold in the Electrical  
Characteristics table.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: BQ77904 BQ77905  
 
 
 
 
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
8.2 Functional Block Diagram  
VDD  
AVDD  
CCFG  
VDIG  
REGULATOR  
AND  
VTB  
TS  
BG  
REFERENCE  
BIAS  
CONFIG  
LOGIC  
POR  
SHUTDOWN  
VC5  
VC4  
EEPROM  
COMPARE  
1
VC3  
MUX  
CTRC  
CTRD  
VC2  
VC1  
STACK  
INTERFACE  
CONTROL  
LOGIC  
OPEN  
WIRE  
CHG  
CHG  
DRIVER  
CHGU  
MUX  
COMPARE  
DSG  
DRIVER  
DSG  
LD  
2
SRP  
SRN  
LOAD  
DETECTION  
STATE  
COMPARE  
CLOCK  
and  
WDT  
AVSS  
DVSS  
Copyright © 2018, Texas Instruments Incorporated  
8.3 Feature Description  
8.3.1 Protection Summary  
The BQ77904 and BQ77905 have two comparators. Both are time multiplexed to detect all protection fault  
conditions. Each of the comparators runs on a time-multiplexed schedule and cycles through the assigned  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: BQ77904 BQ77905  
 
 
 
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
protection-fault checks. Comparator 1 checks for OV, UV, and OW protection faults. Comparator 2 checks for  
OCD1, OCD2, SCD, OTC, OTD, UTC, and UTD protection faults. For OV, UV, and OW protection faults, every  
cell is checked individually in round-robin fashion, starting with cell 1 and ending with the highest-selected cell.  
The number of the highest cell is configured using the CCFG pin.  
Devices can be ordered with various timing and hysteresis settings. See the 5 section for a summary of  
options available per device type.  
Check OV VCELL1  
Check OV VCELL2  
n = the highest call  
configured by CCFG pin  
Check OV VCELLn  
NO  
NO  
Time to check  
UV?  
Time to check  
OW?  
YES  
YES  
x starts  
from 1  
at POR  
Check OW VCELLx,  
x = x +1  
Check UV VCELL1  
Check UV VCELL2  
Check UV VCELLn  
Reset x = 1, if x >  
the highest cell  
configured via  
CCFG pin  
Turn off Comp1 until  
next cycle start  
8-1. Comparator 1 Flowchart  
Check SCD  
NO  
NO  
NO  
NO  
Time to check  
OCD1?  
Time to check  
OCD2?  
Time to check  
OT?  
Time to check  
UT?  
YES  
YES  
Check UT  
YES  
YES  
Check  
OCD1  
Check  
OCD2  
Check OT  
8-2. Comparator 2 Flowchart  
8.3.2 Fault Operation  
8.3.2.1 Operation in OV  
An OV fault detection is when at least one of the cell voltages is measured above the OV threshold, VOV. The  
CHG pin is turned off if the fault condition lasts for a duration of OV Delay, tOVn_DELAY. The OV fault recovers  
when the voltage of the cell in fault is below the (OV threshold OV hysteresis, VHYS_OV) for a time of OV  
Delay.  
The BQ77904 and BQ77905 assume OV fault after device reset.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: BQ77904 BQ77905  
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
8.3.2.2 Operation in UV  
An UV fault detection is when at least one of the cell voltages is measured below the UV threshold, VUV. The  
DSG is turned off if the fault condition lasts for a duration of UV Delay, tUVn_DELAY. The UV fault recovers when:  
The cell voltage in fault is above the (UV threshold + UV hysteresis, VHYS_UV) for a time of UV Delay only OR  
The cell voltage in fault is above the (UV threshold + UV hysteresis) for a time of UV Delay AND load removal  
is detected.  
If load removal is enabled as part of the UV recovery requirement, the CHG FET RGS value should change to  
around 3 MΩ. Refer to the 9.1.1.4 section of this document for more detail. This requirement applies to load  
removal enabled for UV recovery only. Therefore, if load removal is selected for current fault recovery, but not for  
the UV recovery, a lower CHG FET RGS value (typical of 1MΩ) can be used to reduce the CHG FET turn off  
time.  
To minimize supply current, the device disables all overcurrent detection blocks any time the DSG FET is turned  
off (due to a fault or CTRD being driven to the DISABLED state). Upon recovery from a fault or when CTRD is no  
longer externally driven, all overcurrent detection blocks reactivate before the DSG FET turns back on.  
8.3.2.3 Operation in OW  
An OW fault detection is when at least one of the cell voltages is measured below the OW threshold, VOW. Both  
CHG and DSG are turned off if the fault condition lasts for a duration of OW Delay, tOWn_DELAY. The OW fault  
recovers when the cell voltage in fault is above the OW threshold + OW hysteresis, VOW_HYS for a time of OW  
Delay.  
The tOWn_DELAY time starts when voltage at a given cell is detected below the VOW threshold and is not from the  
time that the actual event of open wire occurs. During an open-wire event, it is common that the device detects  
an undervoltage and/or overvoltage fault before detecting an open-wire fault. This may happen due to the  
differences in fault thresholds, fault delays, and the VCx pin filter capacitor values. To ensure both CHG and  
DSG return to normal operation mode, the OW, OV, and UV faults recovery conditions must be met.  
8.3.2.4 Operation in OCD1  
An OCD1 fault is when the discharge load is high enough that the voltage across the RSNS resistor, (VSRP-VSRN),  
is measured below the OCD1 voltage threshold, VOCD1. Both CHG and DSG are turned off if the fault condition  
lasts for a duration of OCD1 Delay, tOCD1_DELAY  
.
The OCD1 fault recovers when:  
Load removal is detected only, VLD < VLDT OR  
Overcurrent Recovery Timer, tCD_REC, expiration only OR  
Overcurrent Recovery Timer expiration and load removal are detected.  
8.3.2.5 Operation in OCD2  
An OCD2 fault is when the discharge load is high enough that the voltage across the RSNS resistor, (VSRP-VSRN),  
is measured below the OCD2 voltage threshold, VOCD2. Both CHG and DSG are turned off if the fault condition  
lasts for a duration of OCD2 Delay, tOCD2_DELAY  
.
The OCD2 fault recovers when:  
Load removal detected only, VLD < VLDT OR  
Overcurrent Recovery Timer, tCD_REC, expiration only OR  
Overcurrent Recovery Timer expiration and load removal are detected.  
8.3.2.6 Operation in SCD  
An SCD fault is when the discharge load is high enough that the voltage across the RSNS resistor, (VSRP-VSRN),  
is measured below the SCD voltage threshold, VSCD. Both CHG and DSG are turned off if the fault condition  
lasts for a duration of SCD Delay, tSCD_DELAY  
.
The SCD fault recovers when:  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: BQ77904 BQ77905  
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
Load removal detected only, VLD < VLDT OR  
Overcurrent Recovery Timer, tCD_REC, expiration only OR  
Overcurrent Recovery Timer expiration and load removal are detected.  
8.3.2.7 Overcurrent Recovery Timer  
The timer expiration method activates an internal recovery timer as soon as the initial fault condition exceeds the  
OCD1/OCD2/SCD time. When the recovery timer reaches its limit, both CHG and DSG drivers are turned back  
on. If the combination option of timer expiration AND load removal is used, then the load removal condition is  
only evaluated upon expiration of the recovery timer, which can have an expiration period of tCD_REC  
.
8.3.2.8 Load Removal Detection  
The load removal detection feature is implemented with the LD pin (see 8-2). When no undervoltage fault and  
current fault conditions are present, the LD pin is held in an open-drain state. Once any UV, OCD1, OCD2, or  
SCD fault occurs and load removal is selected as part of the recovery conditions, a high impedance pull-down  
path to VSS is enabled on the LD pin. With an external load still present, the LD pin will be externally pulled high:  
It is internally clamped to VLDCLAMP and should also be resistor-limited through RLD externally to avoid  
conducting excessive current. If the LD pin exceeds VLDT, this is interpreted as a load present condition. When  
the load is eventually removed, the internal high-impedance path to VSS should be sufficient to pull the LD pin  
below VLDT for tLD_DEG. This is interpreted as a load removed condition and is one of the recovery mechanisms  
selectable for undervoltage and overcurrent faults.  
PACK+  
bq77094/5  
When load detect is  
VLDT  
enabled, the LD pin is  
connected to Vss via the  
RLD_INT.  
Load Detect  
block  
LD  
pin  
RLD_INT  
The load, RLD and RLD_INT  
create a resister divider,  
which the load detect  
LOAD  
RLD  
circuit is used to detect  
when the load is removed.  
PACK-  
8-3. Load Detection Circuit for Current Faults Recovery  
8-2. Load State  
LD PIN  
VLDT  
LOAD STATE  
Load present  
Load removed  
< VLOT for tLD_DEG  
8.3.2.9 Load Removal Detection in UV  
During a UV fault, only the DSG FET driver is turned off while the CHG FET driver remains on. When load  
removal is selected as part of the UV recovery condition, the active CHG FET driver would alter the resistor  
divider ratio of the load detection circuit. To ensure the load status can still be detected properly, it is required to  
increase the CHG FET external RGS value to about 3 MΩ. Refer to the 9.1.1.4 section for more detail. Note  
that if load removal is only selected for the current fault recovery (and is not used for UV recovery), it is not  
required to use a larger CHG FET RGS value.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: BQ77904 BQ77905  
 
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
8.3.2.10 Operation in OTC  
An OTC Fault occurs when the temperature increases such that the voltage across an NTC thermistor goes  
below the OTC voltage threshold, VOTC. CHG is turned off if the fault condition lasts for an OTC delay time,  
tOTC_DELAY. The state comparator is turned on when CHG is turned off. If a discharge current is detected, the  
device immediately switches the CHG back on. The response time of the state comparator is typically in 700 µs  
and should not pose any disturbance in the discharge event. The OTC fault recovers when the voltage across  
thermistor gets above OTC recovery threshold, VOTC_REC, for OTC delay time.  
8.3.2.11 Operation in OTD  
An OTD fault is when the temperature increases such that the voltage across an NTC thermistor goes below the  
OTD voltage threshold, VOTD. Both CHG and DSG are turned off if the fault condition lasts for an OTD delay  
time, tOTD_DELAY. The OTD fault recovers when the voltage across thermistor gets above OTD recovery  
threshold, VOTD_REC, a time of an OTD delay.  
8.3.2.12 Operation in UTC  
A UTC fault occurs when the temperature decreases such that the voltage across an NTC thermistor gets above  
the UTC voltage threshold, VUTC. CHG is turned off if the fault condition lasts for a time of a UTC delay,  
tUTC_DELAY. The state comparator is turned on when CHG is turned off. If a discharge current is detected, the  
device will immediately switch CHG back on. The response time of the state comparator is typically in 700 µs  
and should not pose any disturbance in the discharge event. The UTC fault recovers when the voltage across  
thermistor gets below UTC recovery threshold, VUTC_REC, a time of a UTC delay.  
8.3.2.13 Operation in UTD  
A UTD fault occurs when the temperature decreases such that the voltage across an NTC thermistor goes  
above the UTD voltage threshold, VUTD. Both CHG and DSG are turned off if the fault condition lasts for a UTD  
delay time. The UTD fault recovers when the voltage across the thermistor gets below the UTD recovery  
threshold, VUTD_REC, a time of the UTD delay.  
8.3.3 Protection Response and Recovery Summary  
8-3 summarizes how each fault condition affects the state of the DSG and CHG output signals, as well as the  
recovery conditions required to resume charging and/or discharging. As a rule, the CHG and DSG output drivers  
are enabled only when no respective fault conditions are present. When multiple simultaneous faults (such as an  
OV and OTD) are present, all faults must be cleared before the FET can resume operation.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: BQ77904 BQ77905  
 
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
8-3. Fault Condition, State, and Recovery Methods  
RECOVERY  
DELAY  
FAULT  
CTRC disabled  
CTRD disabled  
OV  
FAULT TRIGGER CONDITION CHG  
DSG  
RECOVERY METHOD  
TRIGGER DELAY  
CTRC disabled for deglitch  
delay time  
OFF  
CTRC must be enabled for deglitch delay time  
tCTRDEG_ON  
tCTRDEG_OFF  
CTRD disabled for deglitch  
delay time  
OFF CTRD must be enabled for deglitch delay time  
V(Cell) drops below VOV VHYS_OV for delay  
V(Cell) rises above VOV for  
delay time  
OFF  
tOVn_DELAY  
tUVn_DELAY  
tOWn_DELAY  
V(Cell) drops below VUV for  
delay time  
UV  
OFF V(Cell) rises above VUV + VHYS_UV for delay  
VCX VCX1 < VOW for delay  
time  
Bad VCX recovers such that VCX VCX1 >  
VOW + VOW_HYS for delay  
OW  
OFF  
OFF  
(VSRP - VSRN) < VOCD1,  
VOCD2, or VSCD for delay  
time  
Recovery delay expires OR  
OFF LD detects < VLDT OR  
tOCD1_DELAY,  
tOCD2_DELAY,  
tSCD_DELAY,  
OCD1, OCD2,  
SCD  
OFF  
tCD_REC  
Recovery delay expires + LD detects < VLDT  
Temperature rises above TOTC  
for delay time  
OTC(1)  
OTD(1)  
UTC(1)  
UTD(1)  
OFF  
OFF  
OFF  
OFF  
tOTC_DELAY  
tOTD_DELAY  
tUTC_DELAY  
tUTD_DELAY  
Temp drops below TOTC TOTC_REC for delay  
Temperature rises above TOTD  
for delay time  
OFF  
Temp drops below TOTD TOTD_REC for delay  
Temperature drops below TUTC  
for delay time  
Temperature rises above TUTC + TUTC_REC for  
delay  
Temp drops below TUTD for  
delay time  
OFF Temp rises above TUTD + TUTD_REC for delay  
(1) TUTC, TUTD, TUTC_REC, and TUTD_REC correspond to the temperature produced by VUTC, VUTD, VUTC_REC, and VUTD_REC of the selected  
thermistor resistance.  
For BQ77904 and BQ77905 devices to prevent CHG FET damage, there are times when the CHG FET may be  
enabled even though an OV, UTC, OTC, or CTRC low event has occurred. See the State Comparator section for  
details.  
8.3.4 Configuration CRC Check and Comparator Built-In-Self-Test  
To improve reliability, the device has built in CRC check for all the factory-programmable configurations, such as  
the thresholds and delay time setting. When the device is set up in the factory, a corresponding CRC value is  
also programmed to the memory. During normal operation, the device compares the configuration setting against  
the programmed CRC periodically. A CRC error will reset the digital circuitry and increment the CRC fault  
counter. The digital reset forces the device to reload the configuration as an attempt to correct the  
configurations. A correct CRC check reduces the CRC fault counter. Three CRC faults counts will turn off both  
the CHG and DSG drivers. If FETs are opened due to a CRC error, only a POR can recover the FET state and  
reset the CRC fault.  
In addition to the CRC check, the device also has built-in-self-test (BIST) on the comparators. The BIST runs in a  
scheduler, and each comparator is checked for a period of time. If a fault is detected for the entire check period,  
the particular comparator is considered at fault, and both the CHG and DSG FETs is turned off. The BIST  
continues to run by the scheduler even if a BIST fault is detected. If the next BIST result is good, the FET driver  
resumes normal operation.  
The CRC check and BIST check do not affect the normal operation of the device. However, there is not a  
specific indication when a CRC or BIST error is detected besides turning off the CHG and DSG drivers. If there  
is no voltage, current, or temperature fault condition present, but CHG and DSG drivers remain off, it is possible  
that either a CRC or BIST error is detected. Users can power-on reset (POR) the device.  
8.3.5 Fault Detection Method  
8.3.5.1 Filtered Fault Detection  
The device detects a fault once the applicable fault is triggered after accumulating sufficient trigger sample  
counts. The filtering scheme is based on a simple add/subtract. Starting with the triggered sample count cleared,  
the counts go up for a sample that is taken across the tested condition (for example, above the fault threshold  
when looking for a fault) and the counts go down for a sample that is taken before the tested condition (that is,  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: BQ77904 BQ77905  
 
 
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
below the fault threshold). 8-4 shows an example of a signal that triggers a fault when accumulating five  
counts above the fault threshold. Once a fault has been triggered, the triggered sample counts reset, and counts  
are incremented for every sample that is found to be below the recovery threshold.  
Note  
With a filtered detection, when the input signal falls below the fault threshold, the sample count does  
not reset, but only counts down as shown in 8-4. Therefore, it is normal to observe a longer delay  
time if a signal is right at the detection threshold. The noise can push the delay count to be counting  
up and down, resulting a longer time for the delay counter to reach its final accumulated trigger target.  
Based on Fault Trigger After 5 Counts  
Fault Threshold  
Recovery Threshold  
FAULT  
FAULT  
Sample  
0
1 2 3 4 3 2 1 2 3 4 5 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 2 3 4 5 0 0 0  
Triggered Sample Count  
Looking for a Fault  
Looking for a Recovery  
Looking for a Fault  
8-4. Fault Trigger Filtering  
8.3.6 State Comparator  
A small, low-offset analog state comparator monitors the sense-resistor voltage (SRP-SRN) to determine when  
the pack is in a DISCHARGE state less than a minimum threshold, VSTATE_D or a CHARGE state greater than a  
maximum threshold, VSTATE_C. The state comparator is used to turn the CHG FET on to prevent damage or  
overheating during discharge in fault states that call for having only the CHG FET off, and vice versa for the DSG  
FET during charging in fault states that call for having only the DSG FET off.  
8-4 summarizes when the state comparator is operational. The state comparator is only on during faults  
detected that call for only one FET driver to be turned off.  
8-4. State Comparator Operation Summary  
STATE COMP  
OFF  
CHG  
DSG  
MODE  
ON  
ON  
Normal  
VSTATE_C Detection  
VSTATE_D Detection  
OFF  
ON  
OFF  
ON  
UV, CTRD  
OFF  
OFF  
OV, UTC, OTC, CTRC  
OFF  
OCD1, OCD2, SCD, UTD, OTD, OW  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: BQ77904 BQ77905  
 
 
 
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
PACK IS CHARGING  
PACK IS DISCHARGING  
SRP - SRN  
VSTATE_D  
VSTATE_C  
0 V  
8-5. State Comparator Thresholds  
8.3.7 DSG FET Driver Operation  
The DSG pin is driven high only when no related faults (UV, OW, OTD, UTD, OCD1, OCD2, SCD, and CTRD  
are disabled) are present. It is a fast switching driver with a target on resistance of about 1520 Ω and an off  
resistance of RDSGOFF. It is designed to allow users to select the optimized RGS value to archive the desirable  
FET rise and fall time per the application requirement and the choice of FET characteristics. When the DSG FET  
is turned off, the DSG pin drives low and all overcurrent protections (OCD1, OCD2, SCD) are disabled to better  
conserve power. These resume operation when the DSF FET is turned on. The device provides FET body diode  
protection through the state comparator if one FET driver is on and the other FET driver is off.  
The DSG driver may be turned on to prevent FET damage if the battery pack is charging while a discharge  
inhibit fault condition is present. This is done with the state comparator. The state comparator (with the VSTATE_C  
threshold) remains on for the entire duration of a DSG fault with no CHG fault event.  
If (SRP-SRN) VSTATE_C and no charge event is detected, the DSG FET output will remain OFF due to the  
present of a DSG fault.  
If (SRP-SRN) > VSTATE_C and a charge event is detected, the DSG FET output will turn ON for body diode  
protection.  
See the 8.3.6 section for details.  
The presence of any related faults, as shown in 8-6, results in the DSGFET_OFF signal .  
DSGFET_OFF_UVn  
DSGFET_OFF_OCD1  
DSGFET_OFF_OCD2  
DSGFET_OFF_SCD  
DSGFET_OFF  
DSGFET_OFF_UTD  
DSGFET_OFF_OTD  
OWn  
CTRD  
8-6. Faults that Can Qualify DSGFET_OFF  
8.3.8 CHG FET Driver Operation  
The CHG and CHGU pins are driven high only when no related faults (OV, OW, OTC, UTC, OTD, UTD, OCD1,  
OCD2, SCD, and CTRC are disabled) are present or the pack has a discharge current where (SRP-SRN) <  
VSTATE_D1 . The CHG pin drives the CHG FET, which is for use on the single device configuration or by the  
bottom device in a stack configuration. The CHGU pin has the same logic state as the CHG pin and is for use in  
the upper device (in a multi-stack configuration) to provide the drive signal to the CTRC pin of the lower device.  
The CHGU pin should never connect to the CHG FET directly.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: BQ77904 BQ77905  
 
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
Turning off the CHG pin has no influence on the overcurrent protection circuitry. The CHG pin is designed to  
switch on quickly and the target on resistance is about 2 kΩ. When the pin is turned off, the CHG driver pin is  
actively driven low and will fall together with PACK.  
The CHG FET may be turned on to protect the FET's body diode if the pack is discharging, even if a charging  
inhibit fault condition is present. This is done through the state comparator. The state comparator (with the  
VSTATE_D threshold) remains on for the entire duration of a DSG fault with no CHG fault event.  
If (SRP-SRN) > VSTATE_D and no discharge event is detected, the CHG FET output will remain OFF due to  
the present of a CHG fault.  
If (SRP-SRN) VSTATE_D and a charge event is detected, the CHG FET output will turn ON for body diode  
protection.  
The CHGFET_OFF signal is a result of the presence of any related faults, as shown in 8-7.  
CHGFET_OFF_OVn  
CHGFET_OFF_UTC  
CHGFET_OFF_OTC  
CHGFET_OFF_OCD1  
CHGFET_OFF_OCD2  
CHGFET_OFF  
CHGFET_OFF_SCD  
CHGFET_OFF_UTD  
CHGFET_OFF_OTD  
OWn  
CTRC  
8-7. Faults That Can Qualify CHGFET OFF  
8.3.9 External Override of CHG and DSG Drivers  
The device allows direct disabling of the CHG and DSG drivers through the CTRC and CTRD pins, respectively.  
The operation of the CTRC and CTRD pins is shown in 8-8. To support the simple-stack solution for higher-  
cell count packs, these pins are designed to operate above the devices VDD level. Simply connect a 10-MΩ  
resistor between a lower device CTRC and CTRD input pins to an upper device CHGU and DSG output pins  
(see the schematics in 8.3.11.  
CTRC only enables or disables the CHG pin, while CTRD only enables or disables the DSG pin. When the CTRx  
pin is in the DISABLED region, the respective FET pin will be off, regardless of the state of the protection  
circuitry. When the CTRx pin is in either ENABLED region, the protection circuitry determines the state of the  
FET driver.  
Both CTRx pins apply the fault-detection filtered method to improve the robustness of the signal detection: The  
counter counts up if an ENABLED signal is sampled; the counter counts down if a DISABLED signal is sampled.  
When the counter counts up from 0% to > 70% of its full range, which takes about 7 ms typical of a solid signal,  
the CTRx pins take the signal as ENABLED. If the counter counts down from 100% to < 30%, of its full range,  
which takes about 7 ms typical of a solid signal, the CTRx pins take the signal as DISABLED. From a 0 count  
counter (solid DISABLE), a solid ENABLE signal takes about tCTRDEG_ON time to deglitch. From a 100% count  
(solid ENABLE), a solid DISABLE signal takes about tCTRDEG_OFF time to deglitch. Although such a filter scheme  
provides a certain level of noise tolerance, it is highly recommended to shield the CTRx traces and keep the  
traces as short as possible in the PCB layout design. The CTRx deglitch time will add onto the FET response  
timing on the OV, UV, and OW faults in a stack configuration. The tCTRDEG_OFF time adds an additional delay to  
the fault detection timing and the tCTRDEG_ON time adds an additional delay to the fault recovery timing.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: BQ77904 BQ77905  
 
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
ENABLED  
VCTR2  
VCTRDIS (max)  
VDD  
DISABLED  
(FET OFF)  
VCTRDIS (min)  
VCTR1  
ENABLED  
VSS  
CHG driver set by CTRC  
DSG driver set by CTRD  
8-8. External Override of CHG and DSG Drivers  
8.3.10 Configuring 3-S, 4-S, or 5-S Mode  
The BQ77904 supports 3-S and 4-S packs, while the BQ77905 supports 3-S, 4-S, and 5-S packs. To avoid  
accidentally detecting a UV fault on unused (shorted) cell inputs, the device must be configured for the specific  
cell count of the pack. This is set with the configuration pin, CCFG, which is mapped as in 8-5. The device  
periodically checks the CCFG status and takes tCCFG_DEG time to detect the pin status.  
8-5. CCFG Configurations  
CCFG  
CONFIGURATION  
CONNECT TO  
AVSS  
< VCCFGL for tCCFG_DEG  
Within VCCFGM for tCCFG_DEG  
> VCCFGH for tCCFG_DEG  
3 cells  
4 cells  
AVDD  
5 cells  
Floating  
The CCFG pin should be tied to the recommended net from 8-5. The device compares the CCFG input  
voltage to the AVDD voltage and should never be set above the AVDD voltage. When the device configuration is  
for 5 S, leave the CCFG pin floating. The internal pin bias is approximately 30% of the AVDD voltage for the 5-S  
configuration. Note that the BQ77904 should not be configured in 5-S mode, as this results in a permanent UV  
fault.  
8.3.11 Stacking Implementations  
Higher than 5-S cell packs may be supported by daisy-chaining multiple devices. Each device ensures OV, UV,  
OTC, OTD, UTC, and UTD protections of its directly monitored cells, while any fault conditions automatically  
disable the global CHG and/or DSG FET driver. Note that upper devices do not provide OCD1, OCD2, or SCD  
protections, as these are based on pack current. For the BQ77904 and BQ77905 devices used on the upper  
stack, the SRP and SRN pins should be shorted to prevent false detection.  
8-6. Stacking Implementation Configurations  
CONFIGURATION  
Bottom or single device  
Upper stack  
CHG PIN  
CHGU PIN  
Connect to CHG FET  
Leave unconnected  
Leave unconnected  
Connect to CTRC of the lower device  
To configure higher-cell packs, follow this procedure:  
Each device must have a connection on at least three lowest-cell input pins.  
TI recommends to connect a higher-cell count to the upper devices (for example, for a 7-S configuration,  
connect four cells on the upper device and three cells on the bottom device). This provides a stronger CRTx  
signal to the bottom device.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: BQ77904 BQ77905  
 
 
 
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
Ensure that each devices CCFG pin is configured appropriately for its specific number of cells (three, four,  
or five cells).  
For the bottom device, the CHG pin should be used to drive the CHG FET and leave the CHGU pin  
unconnected. For the upper device, the CHGU pin should be used to connect to lower devices CTRC pin  
with a RCTRx and leave the CHG pin unconnected.  
Connect the upper DSG pins with a RCTRx to the immediate lower device CTRD pin.  
All upper devices should have the SRP and SRN to its AVSS pin.  
If load removal is not used for UV recovery, connect the upper device LD pin to its AVSS pin, as shown in 图  
8-9 and 8-10. Otherwise, refer to 9-7 for proper LD connection.  
PACK+  
RVDD  
CVDD  
VDD  
AVDD  
VC5  
DVSS  
CVDD  
CTRD  
CTRC  
CCFG  
VTB  
RIN  
CIN  
VC4  
RTS_PU  
VC3  
RTS  
RIN  
RIN  
RIN  
bq77905  
CIN  
VC2  
TS  
LD  
VC1  
CIN  
CHG  
AVSS  
SRP  
CHGU  
DSG  
CIN  
SRN  
RIN  
CIN  
RVDD  
CVDD  
CVDD  
VDD  
AVDD  
VC5  
DVSS  
RCTRD  
CTRD  
CTRC  
CCFG  
VTB  
RCTRC  
RIN  
CIN  
VC4  
RTS_PU  
VC3  
RIN  
RIN  
RIN  
RTS  
bq77905  
CIN  
TS  
VC2  
VC1  
LD  
CHG  
CIN  
AVSS  
SRP  
RCHG  
CHGU  
DSG  
CIN  
SRN  
RDSG  
RLD  
RIN  
CIN  
RGS_DSG  
RGS_CHG  
RSNS  
PACK-  
8-9. 10S Pack Using Two BQ77905 Devices  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: BQ77904 BQ77905  
 
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
PACK+  
RVDD  
CVDD  
VDD  
AVDD  
VC5  
DVSS  
CVDD  
RIN  
RIN  
RIN  
RIN  
CIN  
CTRD  
CTRC  
CCFG  
VTB  
CIN  
CIN  
VC4  
RTS_PU  
VC3  
RTS  
bq77905  
VC2  
TS  
LD  
VC1  
CIN  
AVSS  
SRP  
CHG  
CHGU  
DSG  
RIN  
SRN  
CIN  
RVDD  
CVDD  
VDD  
AVDD  
VC5  
DVSS  
CVDD  
RCTRD  
CTRD  
CTRC  
CCFG  
VTB  
RCTRC  
RIN  
RIN  
RIN  
RIN  
CIN  
VC4  
RTS_PU  
VC3  
RTS  
bq77905  
CIN  
VC2  
TS  
LD  
VC1  
CIN  
AVSS  
SRP  
CHG  
CHGU  
DSG  
CIN  
SRN  
RIN  
CIN  
RVDD  
VDD  
AVDD  
VC5  
DVSS  
CVDD  
RCTRD  
CVDD  
CTRD  
CTRC  
RCTRC  
CCFG  
VTB  
VC4  
RTS_PU  
VC3  
RTS  
bq77905  
VC2  
TS  
VC1  
LD  
CHG  
RIN  
RIN  
RIN  
CIN  
AVSS  
SRP  
RCHG  
CHGU  
DSG  
CIN  
SRN  
RDSG  
RLD  
CIN  
RGS  
RGS  
RSNS  
PACK-  
8-10. 13S Pack Using Three BQ77905 Devices  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: BQ77904 BQ77905  
 
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
8.3.12 Zero-Volt Battery Charging Inhibition  
Once the device is powered up, it can pull the CHG pin up if the VDD VSHUT, which varies from about 1 V per  
cell on a 3-S configuration to about 0.6 V per cell on a 5-S configuration. If the battery stack voltage falls below  
VSHUT, the device is in SHUTDOWN mode and the CHG driver is no longer active and charging is not allowed  
unless VDD rises above VPOR again.  
8.4 Device Functional Modes  
8.4.1 Power Modes  
8.4.1.1 Power-On Reset (POR)  
The device powers up when VDD VPOR. At POR, the following events occur:  
A typical 5-ms hold-off delay applies to both CHG and DSG drivers, keeping both drivers in the OFF state.  
This provides time for the internal LDO voltage to ramp up.  
CTRC and CTRD deglitch occurs. During the deglitch time, the CHG and DSG driver remains off. Note that  
deglitch time masks out the 5-ms hold-off delay.  
The device assumes OV fault at POR; thus, the CHG driver is off for OV recovery time if all the cell voltages  
are < (VOV VHYS_OV). The OV recovery time starts after the 5-ms hold-off delay. If the device reset occurs  
when any cell voltage is above the OV hysteresis range, the CHG driver will remain off until an OV recovery  
condition is met.  
8.4.1.2 FAULT Mode  
If any configured protection fault is detected, the device enters the FAULT mode. In this mode, the CHG and/or  
DSG driver can be turned off depending on the fault. Refer to the fault response summary, 8.4.1.2, for detail.  
When one of the FET drivers (either CHG or DSG) is turned off, while the other FET driver is still on, the state  
comparator is activated for FET body diode protection.  
8.4.1.3 SHUTDOWN Mode  
This is the lowest power consumption state of the device when VDD falls below VSHUT. In this mode, all fault  
detections and theCHG and DSG drivers are disabled. The device will wake up and enter NORMAL mode when  
VDD rises above VPOR  
.
8.4.1.4 Customer Fast Production Test Modes  
The BQ7790x device supports the ability to greatly reduce production test time by cutting down on protection  
fault delay times. To shorten fault times, place the BQ7790x device into Customer Test Mode (CTM). CTM is  
triggered by raising VDD to VCTM voltage above the highest cell input pin (that is, VC5) for tCTM_ENTRY time.  
The CTM is expected to be used in single-chip designs only. CTM is not supported for stacked designs. Once  
the device is in CTM, all fault delay and non-current fault's recovery delay times reduce to a value of tCTM_DELAY  
The fault recovery time for overcurrent faults (OCD1, OCD2, and SCD) is reduced to tCTM_OC_REC  
.
.
Verification of protection fault functionality can be accomplished in a reduced time frame in CTM. Reducing the  
VDD voltage to the same voltage applied to the highest-cell input pin for tCTM_ENTRY will exit CTM.  
In CTM, with reduced time for all internal delays, qualification of all faults will be reduced to a single instance.  
Thus in this mode, fault condition qualification is more susceptible to transients, so take care to have fault  
conditions clearly and cleanly applied during test mode to avoid false triggering of fault conditions during CTM.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: BQ77904 BQ77905  
 
 
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The BQ77904 and BQ77905 devices are low-power stackable battery pack protectors with an integrated low-  
side NMOS FET driver. The BQ77904 and BQ77905 devices provide voltage, current, temperature, and open-  
wire protections. All the devices protect and recover without MCU control. The following section highlights  
several recommended implementation when using these devices.  
9.1.1 Recommended System Implementation  
9.1.1.1 CHG and DSG FET Rise and Fall Time  
The CHG and DSG FET drivers are designed to have fast switching time. Users should select a proper gate  
resistor (RCHG and RDSG in the reference schematic) to set to the desired rise/fall time.  
DSG  
CHG  
Select proper gate  
resistor to adjust  
the desired rise/fall  
time  
R
R
DSG  
CHG  
R
GS_DSG  
R
GS_CHG  
Q2 Q1  
R
SNS  
PACK-  
9-1. Select Proper Gate Resistor for FET Rise and Fall Time  
The CHG FET fall time is generally slower, because it is connected to the PACKterminal. The CHG driver will  
pull to VSS quickly when the driver is signaled to turn off. Once the gate of the CHG FET reaches ground or  
Vgsth, the PACKwill start to fall below ground and the CHG signal will follow suit in order to turn off the CHG  
FET. This portion of the fall time is strongly dependent on the FET characteristic, the number of FETs in parallel,  
and the value of gate-source resistor (RGS_CHG).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: BQ77904 BQ77905  
 
 
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
Strong pull down by the CHG driver  
when the device is initially signaled to  
turn off CHG.  
Once the CFET gate voltage reach PACK-, PACK-  
voltage starts to fall below ground. The gate  
voltage is then relying on RGS_CHG to fall with  
PACK- to keep the CHG FET off.  
9-2. CHG FET Fall Time  
9.1.1.2 Protecting CHG and LD  
Because both CHG and LD are connected to the PACKterminal, these pins are specially designed to sustain  
an absolute max of 30 V. However, the device can be used in a wide variety of applications, and it is possible  
to expose the pins lower than 30 V absolute max rating.  
To protect the pins, TI recommends to put a PMOS FET in series of the CHG pin and a diode in series of the LD  
pin as shown below.  
DSG  
CHG  
LD  
Q3 and the LD pin diode are used to  
keep CHG and LD away from any  
voltages below VSS. Apply these  
components when CHG and LD pins can  
be exposed beyond the absolute -30V.  
Q3  
RDSG  
RCHG  
RLD  
Q3 will allow RGS_CHG to keeps Q1 OFF,  
since all voltages below this FET can  
^(}oo}Á_ t!/Y- as it goes below VSS.  
RGS_DSG  
RGS_CHG  
Q2 Q1  
RSNS  
PACK-  
9-3. Protecting CHG and LD  
9.1.1.3 Protecting CHG FET  
When the CHG driver is off, CHG is pulled to VSS, the PACKterminal can be pullup to the PACK+ level when a  
load is connected. This can put the gate-source voltage above the absolute max of the MOSFET rating. Hence,  
it is common to place a Zener diode across the CHG FETs gate-source to protect the CHG FET. Additional  
components are added when a Zener is used to limit current going into the CHG pin, as well as reducing the  
impact on rise time. See 9-4 for details.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: BQ77904 BQ77905  
 
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
DSG  
CHG  
This diode allows CHG to  
pull the Q1 gate high,  
bypassing the path through  
RCHG and RGS_CHG which will  
divide down the CHG ON  
voltage  
RCHG drops the voltage and limits the  
current going into the CHG pin when  
PACK- is pulled high and zener across Q1  
RCHG  
(1M) Vgs is used.  
RDSG  
This zener clamp may be  
needed to prevent the Vgs of Q1  
excesses absolute max rating.  
RGS_CHG  
16V  
RGS_DSG  
(>=1M)  
Q2  
Q1  
RSNS  
PACK-  
9-4. Protect CHG FET from a High Voltage on PACK–  
LD  
DSG  
CHG  
Q3  
RCHG  
(1M)  
RLD  
RDSG  
RGS_CHG  
(>=1M)  
16V  
RGS_DSG  
Q2 Q1  
RSNS  
PACK-  
9-5. Optional Components Combining Protecting CHG and LD and Protecting CHG FET Protections  
9.1.1.4 Using Load Detect for UV Fault Recovery  
A larger CHG FET gate-source resistor is required if load removal is enabled as part of the UV recovery criteria.  
When the load removal circuit is enabled, the device is internally connected to Vss. Because in a UV fault the  
CHG driver remains on, it creates a resistor divider path to the load detect circuit.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: BQ77904 BQ77905  
 
 
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
PACK+  
bq77094/5  
VLDT  
Load Detect  
block  
LD  
pin  
RLD_INT  
LOAD  
CHG  
pin  
FET driver  
block  
VFETON  
RCHG  
RLD  
16V  
RGS_CHG  
CFET  
PACK-  
9-6. Load Detect Circuit During UV Fault  
To ensure load removal is detected properly during a UV fault, TI recommends to use 3.3 MΩ for RGS_CHG  
(instead of a typical of 1 MΩ when load removal is NOT required for UV recovery). RCHG can stay in 1 MΩ as  
recommended when using CHG FET protection components. The CHG FET rise time impact is minimized as  
described in the Protecting CHG FET section. On a stacked configuration, connect the LD pin, as shown in 图  
9-7 if load removal is used for a UV fault recovery. If load detection is not required for a UV fault recovery, a  
larger value of RGS_CHG can be used (that is, 10 MΩ) and the LD pin on the upper devices can be left floating.  
Ra is used to keep the LD pin pull  
bq77094/5  
down when load detect circuit is  
not activated  
LD  
pin  
Upper  
device  
Ra  
(1M)  
Vss  
Must have block  
diode on the upper  
pin  
device.  
RLD  
bq77094/5  
LD  
pin  
Diode for the bottom  
device is optional.  
Bottom  
Use if the LD pin will  
be exposed lower  
than -30V.  
device  
Vss  
pin  
RLD  
PACK-  
9-7. Simplified Circuit: LD Connection on Upper Device When Using for UV Fault Recovery  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: BQ77904 BQ77905  
 
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
9.1.1.5 Temperature Protection  
The device detects temperature by checking the voltage divided by RTS_PU and RTS, with the assumption of  
using 10-KΩ RTS_PU and 103AT NTC for RTS. System designers should always check the thermistor resistance  
characteristics and refer to the temperature protection threshold specifications in the Electrical Characteristics  
table to determine if a different pullup resistor should be used. If a different temperature trip point is required, it is  
possible to scale the threshold using this equation: Temperature Protection Threshold = RTS / (RTS + RTS_PU).  
Example: Scale OTC trip points from 50°C to 55°C  
The OTC protection can be set to 45°C or 50°C. When the device's OTC threshold is set to 50°C, it is referred to  
configure the VOTC parameter to 29.38% of VTB (typical), with the assumption of RTS_PU = 10 KΩ and RTS  
=
103AT or similar NTC (which the NTC resistance at 50°C = 4.16 KΩ). The VOTC specification is the resistor  
divider ratio of RTS_PU and RTS.  
The VOTC, VOTD, VUTC, and VUTD configuration options are fixed in the device; thus, the actual temperature trip  
point can only adjust by using a different B-value NTC and/or using a different RTS_PU  
.
In this example, the 103AT NTC resistance at 55°C is 3.536 KΩ. By changing the RTS_PU from 10 KΩ to 8.5  
KΩ, users can scale the actual OTC temperature trip point from 50°C to 55°C. Because the RTS_PU value is  
smaller, this change affects all the other temperature trip points and scales OTD, UTC, and UTD to ~5°C higher  
as well.  
9.1.1.6 Adding Filter to Sense Resistor  
Current fault is sense through voltage across a sense resistor. Optional RC filters can be added to the sense  
resistor to improve stability.  
SRP  
SRN  
0.1 µF  
0.1 µF  
0.1 µF  
100 Ω  
100 Ω  
PACK-  
RSNS  
9-8. Optional Filters Improve Current Measurement  
9.1.1.7 Using a State Comparator in an Application  
The state comparator does not have built-in hysteresis. It is normal to observe the FET body diode protection  
toggling on and off with the VSTATE_C1 or VSTATE_D1 accuracy range. In a typical application, the sense resistor is  
selected according to the application current, which usually is not close to the state comparator threshold.  
9.1.1.7.1 Examples  
As an example, using a 5-Ah battery, with 1C-rate (5 A) charge and 2C-rate (10 A) discharge, the sense resistor  
is 3 mΩ or less. The typical current to turn on the FET body diode protection is 667 mA using this example.  
Because there is no built-in hysteresis, noise can reset the state comparator counter and toggle off the FET body  
diode protection and vice versa; thus, it is normal to observe the device toggles the FET body diode protection  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: BQ77904 BQ77905  
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
on or off within a 1-mV to 3-mV range. With a 3-mΩsense resistor, it is about 330 mA to 1 A. As this behavior is  
due to noise from the system, the FET toggling behavior usually occurs right at the typical 2-mV state  
comparator threshold. As current increases or decreases from the typical value, the detection is more solid and  
has less frequent FET toggling. Using this example, either charge or discharge should provide a solid FET body  
diode protection detection.  
Look at the device behavior during an OV event (and no other fault is detected). In an OV event, CHG FET is off  
and DSG FET is on. If a discharge of > 1 A occurs, the device would turn on the CHG FET immediately to  
allow the full discharge current to pass through. Once the overcharged cell is discharged to the OV recovery  
level, the OV fault is recovered and the CHG driver turns on (or remains on in this scenario) and the state  
comparator is turned off.  
If the discharge current is < 1 A when the device is still in an OV fault, the CHG FET may toggle on and off until  
the overcharged cell voltage is reduced down to the OV recovery level. When the OV fault recovers, the CHG  
FET is solidly turned on and the state comparator is off.  
Without the FET body diode protection, if a discharge occurs during an OV fault state, the discharge current can  
only pass through the CHG FET body diode until the OV fault is recovered. This increases the risk of damaging  
the CHG FET if the MOSFET is not rated to sustain this amount of current through its body diode. It also  
increases the FET temperature as current is now carried through the body diode.  
9.2 Typical Application  
PACK+  
RVDD  
CVDD  
CVDD  
VDD  
AVDD  
VC5  
DVSS  
CTRD  
CTRC  
CCFG  
VTB  
VC4  
RIN  
RTS_PU  
bq77905  
bq77904  
VC3  
RTS  
CIN  
VC2  
TS  
LD  
RIN  
RIN  
RIN  
VC1  
CIN  
AVSS  
SRP  
CHG  
CHGU  
DSG  
RCHG  
CIN  
SRN  
RDSG  
RLD  
CIN  
RGS  
RGS  
RSNS  
PACK-  
Copyright © 2016, Texas Instruments Incorporated  
9-9. BQ77904 and BQ77905 with Four Cells  
9.2.1 Design Requirements  
For this design example, use the parameters shown in 9-1.  
9-1. Design Parameters  
PARAMETER  
DESCRIPTION  
VALUES  
1 kΩ±5%  
0.1 µF ±10%  
1 kΩ±5%  
RIN  
Cell voltage sensing (VCx pins) filter resistor  
CIN  
Cell voltage sensing (VCx pins) filter capacitor  
Supply voltage filter resistor  
RVDD  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: BQ77904 BQ77905  
 
 
 
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
9-1. Design Parameters (continued)  
PARAMETER  
CVDD  
DESCRIPTION  
VALUES  
1 µF ±20%  
Supply voltage filter capacitor  
NTC thermistor  
RTS  
103AT, 10 kΩ±3%  
RTS_PU  
Thermistor pullup resistor to VTB pin, assuming using 103AT NTC or NTC with similar  
resistance-temperature characteristics  
10 kΩ±1%  
RGS_CHG  
CHG FET gate-source Load removal is enabled for UV recovery.  
3.3 MΩ±5%  
1 MΩ±5%  
1 MΩ±5%  
resistor  
Load removal is disabled for UV recovery.  
RGS_DSG  
RCHG  
DSG FET gate-source resistor  
CHG gate resistor  
System designers should adjust this parameter to meet the  
desired FET rise/fall time.  
1 kΩ±5%  
1 MΩ±5%  
4.5 kΩ±5%  
If additional components are used to protect the CHG FET  
and/or to enable load removal detection for UV recovery.  
RDSG  
DSG gate resistor, system designers should adjust this parameter to meet the desired  
FET rise/fall time.  
RCRTC and RCTRD  
CTRC and CTRD current limit resistor  
LD resistor for load removal detection  
10 MΩ±5%  
450 KΩ±5%  
RLD  
RSNS  
Current sense resistor for current protection. System designers should change this  
parameter according to the application current protection requirements.  
1 mΩ±1%  
9.2.2 Detailed Design Procedure  
The following is the detailed design procedure.  
1. Based on the application current, select the proper sense resistor value. The sense resistor should allow  
detection of the highest current protection, short circuit current.  
2. Temperature protection is set with the assumption of using a 103AT NTC (or NTC with similar specification).  
If a different type of NTC is used, a different RTS_PU may be used for the application. Refer to the actual  
temperature detection threshold voltage to determine the RTS_PU value.  
3. Connect the CCFG pin correctly based on the number of cells in series.  
4. Review the Recommended Application Implementation to determine if optional components should be added  
to the schematic.  
9.2.2.1 Design Example  
To design the protection for a 36-V Li-ion battery pack using 4.2-V LiCoO2 cells with the following protection  
requirements:  
Voltage Protection  
OV at 4.3 V, recover at 4.1 V  
UV at 2.6 V, recover at 3 V and when load is removed.  
Current Protection  
OCD1 at 40 A with 300-ms400-ms delay  
OCD2 at 80 A with the shortest delay option  
SCD at 100 A with < 500-µs delay  
Requires load removal for recovery  
Temperature Protection  
Charge OTC at 50°C, UTC at 5°C  
Discharge OTD at 70°C, UTD at 10°C  
To start the design:  
1. Start the schematic.  
A 36-V pack using LiCoO2 cells requires 10-S configuration; thus, two BQ77905 devices in a stackable  
configuration is needed.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: BQ77904 BQ77905  
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
Follow the 10-S reference schematic in this document. Follow the recommended design parameters  
listed in the 9.2.1 section of this document.  
The power FET used in this type of application usually has an absolute of 20 V Vgs. For a 36-V pack  
design, TI recommends to use the additional components to protect the CHG FET Vgs. See the 节  
9.1.1.4 section for details.  
Because load removal for UV recovery is required, a 3-MΩRGS_CHG should be used for the schematic.  
2. Decide the value of the sense resistor, RSNS  
.
When selecting the value of RSNS, ensure the voltage drop across SRP and SRN is within the available  
current protection threshold range.  
In this example, select RSNS = 1 mΩ(any value 2 mΩwill work in this example).  
3. Determine all of the BQ77905 protection configurations (see 9-2).  
4. Review the available released or preview devices in the 5 section to determine if a suitable option is  
available. If not, contact TI representative for further assistance.  
9-2. Design Example Configuration  
Protection  
OV  
Threshold  
4.3 V  
Hysteresis  
Delay  
Recovery Method  
200 mV  
1 s (default setting)  
1 s (default setting)  
Hysteresis  
UV  
2.6 V  
400 mV  
Hysteresis + load removal  
100 nA  
(default setting)  
OW  
(VCx VCx1) > 600 mV (typical)  
OCD1  
OCD2  
SCD  
OTC  
OTD  
UTC  
40 mV  
80 mV  
100 mV  
50°C  
350 ms  
5 ms  
Load removal only  
Load removal only  
Load removal only  
Hysteresis  
Fixed at 360 µs  
4.5 s  
10°C  
10°C  
70°C  
4.5 s  
Hysteresis  
10°C  
10°C  
4.5 s  
Hysteresis  
5°C  
10°C  
UTD  
4.5 s  
Hysteresis  
9.2.3 Application Curves  
DSG remains on  
DSG remains on  
CHG recovers after  
2nd OV fault is removed  
CHG falls due to  
detection of 1st OV fault  
2nd Fault removed  
1st Fault removed  
1st OV Fault  
9-10. OV Fault Protection  
9-11. OV Fault Recovery  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: BQ77904 BQ77905  
 
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
Device is set to recovery after  
current recovery delay. Both  
CHG/DSG turns back on, but  
device detects OCD2 fault and  
turns off both FET driver again  
State comparator detects discharge and  
turns CHG back on even OV fault is present  
Both CHG/DSG are  
off in OCD2 fault  
CHG falls due to OV fault.  
State comparator is on to detect any  
discharge activity  
OCD2 fault inserted  
OV fault  
9-13. Detect OTC Fault While in 30-A Discharge  
9-12. OV and OCD2 Faults Protection  
In real application, OV and UV are usually  
triggered first in an open wire event, masking out  
the OW protection. This capture is to demonstrate  
the OW protection by observing the CHG delay  
time  
DSG falls due to  
UV fault on VC2  
DSG falls after ~ 1s due to  
UV fault on VC2  
CHG falls after  
~5s due to OW  
CHG falls after ~ 1s due to  
OV fault on VC3  
Relay opens œ open cell2 to pcb connection  
VC2 ramped to 0V, while other cell  
voltages stay in normal  
In real application, an open wire event will deplete the filter  
capacitor connects to the device cell voltage sensing pin. The  
depleted capacitor will trigger the UV fault. It also causes the
cell voltage sensing pin to see a sum of 2 cell voltages, which
trigger an OV fault.  
OV and UV delays are shorter than OW delay, hence, the OV
UV will triggered before OW protection activates.  
9-14. OW Fault ProtectionOpen Cell2 To PCB  
9-15. OW Fault ProtectionRamping Down  
Connection  
Cell2 Voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: BQ77904 BQ77905  
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
9.3 System Examples  
PACK+  
RVDD  
CVDD  
CVDD  
VDD  
AVDD  
VC5  
DVSS  
CTRD  
CTRC  
CCFG  
VTB  
RIN  
CIN  
VC4  
RTS_PU  
VC3  
RIN  
RTS  
bq77905  
CIN  
VC2  
TS  
LD  
VC1  
RIN  
RIN  
CIN  
AVSS  
SRP  
CHG  
CHGU  
DSG  
RCHG  
CIN  
SRN  
RDSG  
RLD  
RIN  
CIN  
RGS  
RGS  
RSNS  
PACK-  
Copyright © 2016, Texas Instruments Incorporated  
9-16. BQ77905 with Five Cells  
10 Power Supply Recommendations  
The recommended cell voltage range is up to 5 V. If three cells in series are connecting to BQ77905, the unused  
VCx pins should be shorted to the highest unused VCx pin. The recommended VDD range is from 3 V25 V.  
This implies the device is still operational when cell voltage is depleted down to approximately 1.5-V range.  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: BQ77904 BQ77905  
 
 
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
1. Match SRN and SRP traces.  
2. RIN filters, VDD, AVDD filters, and the CVDD capacitor should be placed close to the device pins.  
3. Separate the device ground plane (low current ground) from the high current path. Filter capacitors should  
reference to the low current ground path or device Vss.  
4. In a stack configuration, the RCTRD and RCTRC should be placed closer to the lower device CTRD and CTRC  
pins.  
5. RGS should be placed near the FETs.  
11.2 Layout Example  
PACK+  
High current Path  
Please filters  
DVSS  
close to IC pins  
VDD  
Connect AVSS and DVSS  
to device ground plane  
AVDD  
VC5  
:
:
RC  
Filters  
Low current, local  
ground for each device  
VC1  
CHGU  
DSG  
AVSS  
Connect the device ground at  
šZꢀ o}ÁꢀŒ ꢁꢀoo[• ꢁꢀoo- on each  
cell group  
Please filters  
close to IC pins  
DVSS  
VDD  
Please CTRs  
CTRD  
CTRC  
resistors close to  
the lower device  
AVDD  
VC5  
:
RC  
:
Filters  
Low current, local  
device ground.  
Separate from high  
power path  
VC1  
AVSS  
Connect the bottom  
device ground at BAT-.  
Using BAT- as the mutual  
point to connect high  
and low current path  
PACK-  
11-1. Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: BQ77904 BQ77905  
 
 
 
BQ77904, BQ77905  
ZHCSF60K JUNE 2016 REVISED JULY 2020  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to order now.  
12-1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
BQ77904  
BQ77905  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: BQ77904 BQ77905  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Jul-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ7790400PW  
BQ7790400PWR  
BQ7790500PW  
BQ7790500PWR  
BQ7790502PW  
BQ7790502PWR  
BQ7790503PW  
BQ7790503PWR  
BQ7790505PW  
BQ7790505PWR  
BQ7790508PW  
BQ7790508PWR  
BQ7790509PW  
BQ7790509PWR  
BQ7790511PW  
BQ7790511PWR  
BQ7790512PW  
BQ7790512PWR  
BQ7790518PW  
BQ7790518PWR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
70  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
B7790400  
2000 RoHS & Green  
70 RoHS & Green  
2000 RoHS & Green  
70 RoHS & Green  
2000 RoHS & Green  
70 RoHS & Green  
2000 RoHS & Green  
70 RoHS & Green  
2000 RoHS & Green  
70 RoHS & Green  
2000 RoHS & Green  
70 RoHS & Green  
2000 RoHS & Green  
70 RoHS & Green  
2000 RoHS & Green  
70 RoHS & Green  
2000 RoHS & Green  
70 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
B7790400  
B7790500  
B7790500  
B7790502  
B7790502  
B7790503  
B7790503  
B7790505  
B7790505  
B7790508  
B7790508  
B7790509  
B7790509  
B7790511  
B7790511  
B7790512  
B7790512  
B7790518  
B7790518  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Jul-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ7790521PW  
BQ7790521PWR  
BQ7790522PW  
BQ7790522PWR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
PW  
20  
20  
20  
20  
70  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
B7790521  
2000 RoHS & Green  
70 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
B7790521  
B7790522  
B7790522  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Jul-2021  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ7790400PWR  
BQ7790500PWR  
BQ7790502PWR  
BQ7790503PWR  
BQ7790505PWR  
BQ7790508PWR  
BQ7790509PWR  
BQ7790511PWR  
BQ7790512PWR  
BQ7790518PWR  
BQ7790521PWR  
BQ7790522PWR  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
6.95  
6.95  
6.95  
6.95  
6.95  
6.95  
6.95  
6.95  
6.95  
6.95  
6.95  
6.95  
7.1  
7.1  
7.1  
7.1  
7.1  
7.1  
7.1  
7.1  
7.1  
7.1  
7.1  
7.1  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ7790400PWR  
BQ7790500PWR  
BQ7790502PWR  
BQ7790503PWR  
BQ7790505PWR  
BQ7790508PWR  
BQ7790509PWR  
BQ7790511PWR  
BQ7790512PWR  
BQ7790518PWR  
BQ7790521PWR  
BQ7790522PWR  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
356.0  
356.0  
356.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
356.0  
356.0  
356.0  
43.0  
43.0  
43.0  
43.0  
43.0  
43.0  
43.0  
43.0  
43.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
BQ7790400PW  
BQ7790500PW  
BQ7790502PW  
BQ7790503PW  
BQ7790505PW  
BQ7790508PW  
BQ7790509PW  
BQ7790511PW  
BQ7790512PW  
BQ7790518PW  
BQ7790521PW  
BQ7790522PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
530  
530  
530  
530  
530  
530  
530  
530  
530  
530  
530  
530  
10.2  
10.2  
10.2  
10.2  
10.2  
10.2  
10.2  
10.2  
10.2  
10.2  
10.2  
10.2  
3600  
3600  
3600  
3600  
3600  
3600  
3600  
3600  
3600  
3600  
3600  
3600  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
Pack Materials-Page 3  
PACKAGE OUTLINE  
PW0020A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
18X 0.65  
20  
1
2X  
5.85  
6.6  
6.4  
NOTE 3  
10  
B
11  
0.30  
20X  
4.5  
4.3  
NOTE 4  
0.19  
1.2 MAX  
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220206/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0020A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
20X (1.5)  
(R0.05) TYP  
20  
1
20X (0.45)  
SYMM  
18X (0.65)  
11  
10  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220206/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0020A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
20X (1.5)  
SYMM  
(R0.05) TYP  
20  
1
20X (0.45)  
SYMM  
18X (0.65)  
10  
11  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220206/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY