BUF802IRGTR [TI]

宽带宽、2.3nV/√Hz、高输入阻抗 JFET 缓冲器 | RGT | 16 | -40 to 85;
BUF802IRGTR
型号: BUF802IRGTR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

宽带宽、2.3nV/√Hz、高输入阻抗 JFET 缓冲器 | RGT | 16 | -40 to 85

文件: 总39页 (文件大小:2305K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BUF802  
ZHCSOA7C JUNE 2021 REVISED MARCH 2022  
BUF802 宽带宽、2.3 nV/√Hz、高输入阻抗缓冲器  
1 特性  
3 说明  
• 大信号带(1VPP)3.1 GHz  
• 压摆率7000 V/μs  
• 输入电压噪声2.3nV/Hz  
1% 稳定时间0.7ns  
• 输入阻抗50GΩ|| 2.4pF  
• 能够驱50Ω载  
• 可调静态电流用于功率和性能权衡  
• 具有快速过驱恢复功能的集成输入和输出钳位  
• 电压电源±4.5V ±6.5V  
BUF802 器件是一款具有 JFET 输入级的开环、单位增  
益缓冲器能够为数据采集系统 (DAQ) 前端提供低噪  
声、高阻抗缓冲。BUF802 支持直流至 3.1 GHz 的带  
同时在整个频率范围内提供出色的失真和噪声性  
能。  
BUF802 可在需要更高精度性能的应用中与精密放大器  
一同用于复合环路。BUF802 采用创新架构来简化高精  
度、宽带宽复合环路的设计。  
BUF802 具有可调静态电流引脚让设计人员能够以带  
宽和失真来换取较低的静态电流因此适用于宽频率范  
围。BUF802 具有集成的输入和输出钳位能够保护器  
件及其后续信号链免受过驱电压的影响。  
2 应用  
示波器前端  
高频数据采集  
高输入阻抗和高压摆T&M 系统  
示波器编码器和前端附加卡  
有源探头  
器件信息(1)  
封装尺寸标称值)  
器件型号  
BUF802  
封装  
VQFN (16)  
3.00mm × 3.00mm  
• 无损检(NDT)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
.
.
.
.
0.8  
Input  
Output  
.
0.6  
0.4  
0.2  
0
.
.
.
-0.2  
-0.4  
-0.6  
-0.8  
+ 6V  
IN  
50 Ω  
OUT  
50 Ω  
BUF802  
- 6V  
>1 G Impedance  
Time (500 ps/div)  
瞬态响应  
阻抗变换电路使BUF802  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS998  
 
 
 
 
BUF802  
www.ti.com.cn  
ZHCSOA7C JUNE 2021 REVISED MARCH 2022  
Table of Contents  
8.3 Feature Description...................................................17  
8.4 Device Functional Modes..........................................20  
9 Application and Implementation..................................23  
9.1 Application Information............................................. 23  
9.2 Typical Application.................................................... 23  
10 Power Supply Recommendations..............................28  
11 Layout...........................................................................28  
11.1 Layout Guidelines................................................... 28  
11.2 Layout Example...................................................... 29  
12 Device and Documentation Support..........................31  
12.1 Documentation Support.......................................... 31  
12.2 接收文档更新通知................................................... 31  
12.3 支持资源..................................................................31  
12.4 Trademarks.............................................................31  
12.5 Electrostatic Discharge Caution..............................31  
12.6 术语表..................................................................... 31  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics: Wide Bandwidth Mode.......6  
6.6 Electrical Characteristics: Low Quiescent  
Current Mode................................................................ 8  
6.7 Typical Characteristics................................................9  
7 Parameter Measurement Information .........................15  
8 Detailed Description......................................................16  
8.1 Overview...................................................................16  
8.2 Functional Block Diagram.........................................16  
Information.................................................................... 31  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (February 2022) to Revision C (March 2022)  
Page  
Relaxed DC Gain specifications......................................................................................................................... 6  
Relaxed DC Gain specifications......................................................................................................................... 8  
Changes from Revision A (December 2021) to Revision B (February 2022)  
Page  
Updated the Application and Implementation section.......................................................................................25  
Changes from Revision * (June 2021) to Revision A (December 2021)  
Page  
• 将数据表的状态从预告信更改为量产数..................................................................................................... 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: BUF802  
 
BUF802  
www.ti.com.cn  
ZHCSOA7C JUNE 2021 REVISED MARCH 2022  
5 Pin Configuration and Functions  
CLH  
NC  
CLL  
NC  
13  
16  
15  
14  
13  
14  
15  
16  
VS+  
IN  
1
2
3
12  
11  
10  
VSO+  
OUT  
12  
11  
10  
1
2
3
Clamp  
Diode  
Output  
Stage  
JFET  
THERMAL PAD  
VSO-  
IN_Bias  
I2  
I1  
4
9
9
4
IN_Aux  
NC  
6
7
8
5
5
8
7
6
8
VS-  
VS-  
Aux_Bias R_Bias  
*Pin 5 and Pin 8 Internally Shorted  
5-1. RGT Package, 16-Pin VQFN  
(Top View and Bottom View)  
5-1. Pin Functions  
PIN  
Operating  
Mode(1) (2)  
TYPE(4)  
DESCRIPTION  
NAME  
Aux_Bias  
CLH  
NO.  
6
P
I
CL  
BF, CL  
BF, CL  
BF, CL  
CL  
Connect to VS- to enable control of OUT through the In_Aux.  
Input pin for setting positive clamp voltage  
Input pin for setting negative clamp voltage  
Signal input  
15  
CLL  
14  
I
IN  
2
I
In_Aux  
In_Bias  
NC  
4
I
Auxiliary input for controlling OUT through an external amplifier.  
JFET biasing pin  
3
I
CL  
16, 13, 9  
Do not connect.  
O
I
OUT  
11  
7
BF, CL  
BF, CL  
BF, CL  
Signal output  
R_Bias  
VS+  
Output stage bias current setting pin  
Positive power supply connection for Input Stage.  
1
P
Negative power supply connection for Input Stage. Pin 5 and Pin 8 are  
internally shorted.  
VS-  
5, 8  
P
BF, CL  
(3)  
VSO+  
12  
10  
P
P
BF, CL  
BF, CL  
Positive power supply connection for Output Stage.  
Negative power supply connection for Output Stage.  
(3)  
VSO-  
The thermal pad is electrically isolated from the die and pins. Connect the  
thermal pad to any potential.  
Thermal Pad  
(1) See 8.4 for more information on Buffer Mode (BF) and Composite Loop Mode (CL) functional modes.  
(2) Pins specified as CL should only be used when operating in Composite Loop Mode and left floating when operating in Buffer Mode.  
(3) VSO and VS should be tied to the same potential since they are internally connected to each other through back-to-back diodes.  
(4) I = input, O= output, P= power, NC = no connect.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: BUF802  
 
 
 
 
 
BUF802  
www.ti.com.cn  
ZHCSOA7C JUNE 2021 REVISED MARCH 2022  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
14  
UNIT  
VS = (VS+) (VS–  
)
Supply voltage(2)  
V
VSO = (VSO+) (VSO–  
)
Maximum dVS/dT for supply turn-on and turn-off  
Input  
0.1  
V/µs  
V
IN  
(VS+) to (VS) 0.5  
CLH  
CLL  
Positive Clamp  
Mid-supply  
VS+  
Negative Clamp  
VS–  
Mid-supply  
100  
V
Input Clamp Diode  
mA  
°C  
°C  
TJ  
Junction temperature  
Storage temperature  
150  
Tstg  
150  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not  
sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality,  
performance, and shorten the device lifetime.  
(2) VSO and VS should be tied to the same potential. VSO and VS are internally connected to each other through back to back diodes.  
6.2 ESD Ratings  
VALUE  
±1000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
±4.5  
9
NOM  
±5  
MAX  
±6.5  
13  
UNIT  
V
Dual Supply voltage  
Single Supply voltage  
Ambient temperature  
(1)  
VS = (VS+) (VS–  
)
10  
V
TA  
25  
85  
°C  
40  
(1) BUF802 can be used with any possible combination of VS+ and VS, provided the recommended operating condition is not exceeded  
6.4 Thermal Information  
BUF802  
THERMAL METRIC(1)  
RGT (VQFN)  
UNIT  
16 PINS  
53  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
61  
27  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
2.7  
27  
ΨJB  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: BUF802  
 
 
 
 
 
 
 
 
 
 
BUF802  
www.ti.com.cn  
ZHCSOA7C JUNE 2021 REVISED MARCH 2022  
BUF802  
THERMAL METRIC(1)  
RGT (VQFN)  
16 PINS  
13  
UNIT  
RθJC(bot)  
Junction-to-case (bottom) thermal resistance  
°C/W  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: BUF802  
 
BUF802  
www.ti.com.cn  
ZHCSOA7C JUNE 2021 REVISED MARCH 2022  
6.5 Electrical Characteristics: Wide Bandwidth Mode  
at TA = 25°C, VS = ±6V, RL = 100 Ω|| 400 fF, RS = 25 , VOCM = 0V (mid-supply), CLH and CLL tied to VS+ and VS–  
respectively, Wide Bandwidth Mode unless otherwise specified (R_Bias = 17.8 k)  
PARAMETER  
Test Condition  
MIN  
TYP  
MAX UNIT  
AC PERFORMANCE  
SSBW  
LSBW  
Small-Signal Bandwidth  
Large-Signal Bandwidth  
VOUT = 100 mVPP  
VOUT = 1 VPP  
3.1  
3.1  
VOUT = 2 VPP  
1.6  
GHz  
Bandwidth for 0.1 dB flatness  
Bandwidth for -1 dB flatness  
Bandwidth for -2 dB flatness  
Slew rate  
0.6  
1.8  
VOUT = 1 VPP  
2.4  
RL = 50 Ω  
SR  
VOUT = 1.2-V step, VIN-SR = 13000 V/µs  
VOUT = 1.2-V step (10% to 90%)  
VOUT = 0.25-V step (10% to 90%)  
7000  
0.16  
0.15  
1.3  
V/µs  
ns  
Rise and fall time  
Settling time to 0.1%  
Settling time to 1%  
VOUT = 1.2-V step, VIN-SR = 13000 V/µs  
ns  
0.7  
1/f corner  
18  
kHz  
en  
in  
Voltage noise  
Current noise  
f = 100 MHz in BF Mode and CL Mode  
2.3  
nV/Hz  
pA/Hz  
f = 10 kHz  
1.5  
68/–  
VOUT = 2 VPP  
f = 500 MHz  
f = 1 GHz  
58  
55/–  
59  
HD2/HD3 Harmonic distortion  
dBc  
45/–  
VOUT = 1 VPP  
f = 2 GHz  
49  
43/–  
f = 2 GHz, RL = 50 Ω  
41  
DC PERFORMANCE  
V
OUT VIN  
600  
800  
mV  
VOS  
Input offset voltage  
Input offset voltage drift  
Input bias current  
TA = 40to 85℃  
TA = 40to 85℃  
900  
dVOS/dT  
IB  
±700  
3
±1330  
25  
µV/℃  
pA  
220  
TA = 40to 85℃  
TA = 40to 85℃  
VOUT = ± 0.5 V  
44  
140  
IAB  
Auxiliary Input bias current  
µA  
200  
0.97  
0.96  
0.95  
0.97  
0.96  
0.94  
0.978  
0.971  
0.961  
0.99  
0.98  
0.97  
0.99  
0.98  
0.97  
RL = 200 Ω  
RL = 100 Ω  
RL = 50 Ω  
RL = 200 Ω  
RL = 100 Ω  
RL = 50 Ω  
G
DC Gain  
V/V  
VOUT = ± 0.5 V ,TA = 40℃  
to 85℃  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: BUF802  
 
 
BUF802  
www.ti.com.cn  
ZHCSOA7C JUNE 2021 REVISED MARCH 2022  
6.5 Electrical Characteristics: Wide Bandwidth Mode (continued)  
at TA = 25°C, VS = ±6V, RL = 100 Ω|| 400 fF, RS = 25 , VOCM = 0V (mid-supply), CLH and CLL tied to VS+ and VS–  
respectively, Wide Bandwidth Mode unless otherwise specified (R_Bias = 17.8 k)  
PARAMETER  
Test Condition  
MIN  
TYP  
MAX UNIT  
INPUT  
ZIN  
Input impedance  
Input Clamp current rating  
VCLH range(1)  
f = 100 MHz  
50 || 2.4  
100  
GΩ|| pF  
Continous Current Rating  
mA  
0
VS+  
V
VCLL range(1)  
VS–  
0
CLH Clamping Time  
CLL Clamping Time  
Time taken to clamp VOUT to VCLH during overdrive  
Time taken to clamp VOUT to VCLL during overdrive  
f = 500 MHz  
0.2  
0.2  
4.5  
2.1  
1.2  
nsec  
VPP  
Input Voltage Range  
f = 1 GHz  
f = 2 GHz  
THD = 40 dBc  
OUTPUT  
VS+ –  
1.9  
TA = 25℃  
VS–  
+
3.4  
Output Swing  
V
VS+ –  
2.0  
TA = 40to 85℃  
VS–  
+
3.4  
ZO  
Output impedance  
f = 100 MHz  
1.2  
AUXILIARY INPUT  
0.18  
0.26  
0.23  
V/V  
V/V  
GAUX VOUT to In_Aux Gain  
TA = 40to 85℃  
VS–  
+
VS–  
+
Default voltage at In_Aux  
VS+ 3  
V
V
2.3  
3.8  
VS–  
+
VS–  
+
In_Aux Input Voltage Range  
1.0  
5.0  
VOUT to In_Aux Bandwidth  
RHF  
800  
100  
MHz  
Resistance between In_Bias to JFET source  
kΩ  
POWER SUPPLY  
VS Operating voltage range  
±4.5  
±6.5  
37  
V
34  
35.5  
36  
IQ  
Quiescent current  
mA  
IOUT = 0 (R_bias = 17.8 k) TA = 40to 85℃  
CL Mode enabled  
40  
PSRR at 100 kHz on VS+  
49  
PSRR  
Power-supply rejection ratio  
dB  
PSRR at 100 kHz on VS–  
38  
(1) The 0-V limits are for bipolar and balanced power supplies. For other supply configurations mid-supply will set the minimum limit for  
VCLH and maximum limit for VCLL  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: BUF802  
 
BUF802  
www.ti.com.cn  
ZHCSOA7C JUNE 2021 REVISED MARCH 2022  
6.6 Electrical Characteristics: Low Quiescent Current Mode  
at TA = 25°C, VS = ±6 V, RL = 100 Ω|| 400 fF. RS = 25 , VOCM = 0 V (mid-supply), CLH and CLL tied to VS+ and VS–  
respectively, Low Quiescent Current Mode unless otherwise specified (R_Bias = 35.7 k)  
PARAMETER  
Test Condition  
MIN  
TYP  
MAX UNIT  
AC PERFORMANCE  
SSBW  
LSBW  
Small-Signal Bandwidth  
Large-Signal Bandwidth  
VOUT = 100 mVPP  
VOUT = 1 VPP  
2.6  
2
VOUT = 2 VPP  
0.7  
0.45  
1.4  
5500  
0.3  
0.16  
1.4  
0.8  
10  
GHz  
Bandwidth for 0.1 dB flatness  
Bandwidth for -1 dB flatness  
Slew rate  
VOUT = 1 VPP  
SR  
VOUT = 1.2-V step, VIN-SR = 13000 V/µs  
VOUT = 1.2-V step (10% to 90%)  
VOUT = 0.25-V step (10% to 90%)  
V/µs  
ns  
Rise and fall time  
Settling time to 0.1%  
Settling time to 1%  
VOUT = 1.2-V step, VIN-SR = 13000 V/µs  
ns  
1/f corner  
kHz  
en  
in  
Voltage noise  
Current noise  
f = 100 MHz  
f = 10 kHz  
2.2  
1.5  
nV/Hz  
pA/Hz  
35/–  
VOUT = 2 VPP  
f = 500 MHz  
f = 100 MHz  
f = 500 MHz  
32  
80/–  
HD2/HD3 Harmonic distortion  
dBc  
77  
VOUT = 1 VPP  
56/–  
54  
DC PERFORMANCE  
0.96  
0.95  
0.96  
0.95  
0.975  
0.963  
0.99  
RL = 200 Ω  
RL = 100 Ω  
RL = 200 Ω  
RL = 100 Ω  
VOUT = ± 0.5 V  
0.98  
V/V  
0.99  
G
DC Gain  
VOUT = ± 0.5 V ,TA = 40℃  
to 85℃  
0.98  
nsec  
INPUT  
CLH Clamping Time  
CLL Clamping Time  
Time taken to clamp VOUT to VCLH during overdrive  
Time taken to clamp VOUT to VCLL during overdrive  
0.3  
0.7  
OUTPUT  
ZO  
Output impedance  
f = 100 MHz  
1.2  
POWER SUPPLY  
VS  
Operating voltage range  
±4.5  
±6.5  
24  
V
21  
22  
IQ  
Quiescent current  
mA  
IOUT = 0 (R_bias = 35.7 k)  
TA = 40to 85℃  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: BUF802  
 
 
BUF802  
www.ti.com.cn  
ZHCSOA7C JUNE 2021 REVISED MARCH 2022  
6.7 Typical Characteristics  
At TA = 25°C, VS = ±6 V, RL = 100 Ω|| 400 fF, RS = 25 , VOCM = 0 V (mid-supply), VOUT = 1 VPP, CLH and CLL tied to VS+  
and VS- respectively, Wide Bandwidth Mode unless otherwise specified (R_Bias = 17.8 k).  
3
3
0
0
-3  
-3  
-6  
-6  
VOUT = 20 mVPP  
VOUT = 100 mVPP  
VOUT = 1 VPP  
VOUT = 20 mVPP  
VOUT = 100 mVPP  
VOUT = 1 VPP  
-9  
-9  
VOUT = 2 VPP  
VOUT = 2 VPP  
-12  
-12  
100M  
1G  
10G  
100M  
1G  
10G  
Frequency (Hz)  
Frequency (Hz)  
Wide Bandwidth Mode  
Low Quiescent Current Mode  
6-1. Frequency Response vs Output Voltage  
6-2. Frequency Response vs Output Voltage  
0
3
VOUT = 20 mVPP  
VOUT = 100 mVPP  
VOUT = 1 VPP  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
0
-3  
-6  
-9  
VS = 4.5 V  
VS = 5 V  
VS = 6 V  
-12  
100M  
1M  
10M  
100M  
Frequency (Hz)  
1G  
10G  
1G  
10G  
Frequency (Hz)  
Wide Bandwidth Mode  
.
6-3. Frequency Response vs Output Voltage,  
6-4. Frequency Response vs Supply Voltage  
0.1 dB Flatness  
3
0
3
0
-3  
-3  
-6  
-6  
RL = 100   
RL = 200   
-9  
-9  
R_Bias = 17.8 k  
RL = 1 k  
RL = 2 k  
R_Bias = 35.7 k  
R_Bias = 100 k  
-12  
100M  
-12  
100M  
1G  
10G  
1G  
10G  
Frequency (Hz)  
Frequency (Hz)  
.
.
6-5. Frequency Response vs Output Load  
6-6. Frequency Response vs R_Bias Resistance  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: BUF802  
 
 
BUF802  
www.ti.com.cn  
ZHCSOA7C JUNE 2021 REVISED MARCH 2022  
6.7 Typical Characteristics (continued)  
At TA = 25°C, VS = ±6 V, RL = 100 Ω|| 400 fF, RS = 25 , VOCM = 0 V (mid-supply), VOUT = 1 VPP, CLH and CLL tied to VS+  
and VS- respectively, Wide Bandwidth Mode unless otherwise specified (R_Bias = 17.8 k).  
6
3
0
3
-3  
0
-6  
-3  
-6  
-9  
CL = 400 fF  
CL = 1 pF  
CL = 3 pF  
CL = 3 pF, RISO = 22   
CL = 1 pF, RISO = 39   
-12  
100M  
-9  
100M  
1G  
10G  
1G  
10G  
Frequency (Hz)  
Frequency (Hz)  
.
.
6-8. Frequency Response vs Cap Load with Recommended  
6-7. Frequency Response vs Capacitive Load  
RISO  
0.8  
0.6  
0.4  
0.2  
0
0.8  
Input  
Wide Bandwidth Mode  
Low IQ Mode  
0.6  
0.4  
0.2  
0
-0.2  
-0.2  
-0.4  
-0.6  
-0.8  
-0.4  
Input  
-0.6  
-0.8  
Wide Bandwidth Mode  
Low IQ Mode  
Time (200 ps/div)  
Time (200 ps/div)  
Rising edge, VOUT = 1.2 VPP  
Falling edge, VOUT = 1.2 VPP  
6-9. Large-Signal Transient Response  
6-10. Large-Signal Transient Response  
0.2  
0.2  
Input  
Wide Bandwidth Mode  
Low IQ Mode  
0.15  
0.1  
0.15  
0.1  
0.05  
0
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
-0.05  
-0.1  
-0.15  
-0.2  
Input  
Wide Bandwidth Mode  
Low IQ Mode  
Time (200 ps/div)  
Time (200 ps/div)  
Rising edge, VOUT = 250 mVPP  
Falling edge, VOUT = 250 mVPP  
6-12. Small-Signal Transient Response  
6-11. Small-Signal Transient Response  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: BUF802  
BUF802  
www.ti.com.cn  
ZHCSOA7C JUNE 2021 REVISED MARCH 2022  
6.7 Typical Characteristics (continued)  
At TA = 25°C, VS = ±6 V, RL = 100 Ω|| 400 fF, RS = 25 , VOCM = 0 V (mid-supply), VOUT = 1 VPP, CLH and CLL tied to VS+  
and VS- respectively, Wide Bandwidth Mode unless otherwise specified (R_Bias = 17.8 k).  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
10  
0
HD2, Wide Bandwidth Mode  
HD3, Wide Bandwidth Mode  
HD2, Low IQ Mode  
HD2, Wide Bandwidth Mode  
HD3, Wide Bandwidth Mode  
HD2, Low IQ Mode  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
HD3, Low IQ Mode  
HD3, Low IQ Mode  
100M  
1G  
100M  
1G  
Frequency (Hz)  
Frequency (Hz)  
VOUT = 2 VPP  
VOUT = 1 VPP  
6-14. Harmonic Distortion vs Frequency  
6-13. Harmonic Distortion vs Frequency  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-35  
HD2, VOCM = 0.5 V  
HD2, VOCM = +0.5 V  
HD3, VOCM = 0.5 V  
HD3, VOCM = +0.5 V  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
HD2, Wide Bandwidth Mode  
HD3, Wide Bandwidth Mode  
HD2, Low IQ Mode  
HD3, Low IQ Mode  
100M  
1G  
4.5 V  
5 V  
Supply (VS)  
5.5 V  
6 V  
Frequency (Hz)  
.
f = 500 MHz  
6-16. Harmonic Distortion vs Output Common Mode Voltage  
6-15. Harmonic Distortion vs Supply Voltage  
-40  
-40  
HD2  
HD3  
HD2  
HD3  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-45  
-50  
-55  
-60  
-65  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
10  
100  
RL ()  
1k  
Output Voltage (VPP  
)
f = 1 GHz  
f = 1 GHz  
6-17. Harmonic Distortion vs Output Voltage  
6-18. Harmonic Distortion vs Output Load  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: BUF802  
BUF802  
www.ti.com.cn  
ZHCSOA7C JUNE 2021 REVISED MARCH 2022  
6.7 Typical Characteristics (continued)  
At TA = 25°C, VS = ±6 V, RL = 100 Ω|| 400 fF, RS = 25 , VOCM = 0 V (mid-supply), VOUT = 1 VPP, CLH and CLL tied to VS+  
and VS- respectively, Wide Bandwidth Mode unless otherwise specified (R_Bias = 17.8 k).  
-9  
-12  
-15  
-18  
-21  
-24  
-27  
-30  
1M  
10M  
100M  
Frequency (Hz)  
.
With RC pole of 2 kΩand 10 pF at IN_Aux pin  
6-20. Auxiliary Path Frequency Response  
6-19. Voltage and Current Noise Density vs Frequency  
10k  
35  
Wide Bandwidth Mode  
Low IQ Mode  
30  
25  
20  
15  
10  
5
1k  
100  
10  
1
0
10M  
100M  
1G  
10M  
100M  
1G  
Frequency (Hz)  
Frequency (Hz)  
.
.
6-21. Input Impedance vs Frequency  
6-22. Output Impedance vs Frequency  
250  
200  
150  
100  
50  
0
-50  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature (°C)  
μ= 3.1 pA, σ= 1.03 pA  
40 units  
6-23. Input Bias Current Distribution  
6-24. Input Bias Current vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: BUF802  
BUF802  
www.ti.com.cn  
ZHCSOA7C JUNE 2021 REVISED MARCH 2022  
6.7 Typical Characteristics (continued)  
At TA = 25°C, VS = ±6 V, RL = 100 Ω|| 400 fF, RS = 25 , VOCM = 0 V (mid-supply), VOUT = 1 VPP, CLH and CLL tied to VS+  
and VS- respectively, Wide Bandwidth Mode unless otherwise specified (R_Bias = 17.8 k).  
200  
50  
45  
40  
35  
30  
25  
20  
15  
10  
0
-200  
-400  
-600  
-800  
-1000  
-5  
-4  
-3  
-2  
-1  
0
1
2
3
4
5
-50  
-25  
0
25  
50  
75  
100  
Input Common Mode Voltage (V)  
Ambient Temperature (°C)  
.
Wide Bandwdith Mode and Low IQ Mode  
6-26. Quiescent Current vs Temperature  
6-25. Input Bias Current vs Input Common Mode Voltage  
12000  
10000  
8000  
6000  
4000  
2000  
0
0.976  
0.975  
0.974  
0.973  
0.972  
0.971  
0.97  
0.969  
0.968  
0.967  
0.966  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature (°C)  
Gain (V/V)  
Normalized to 25 °C values, 40 units  
.
μ= 0.971 V/V, σ= 0.000485 V/V  
6-28. DC Gain vs Temperature  
6-27. DC Gain Histogram  
10000  
9000  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
630  
620  
610  
600  
590  
580  
570  
560  
550  
-50  
-25  
0
25  
50  
75  
100  
Input Offset Voltage (mV)  
Ambient Temperature (°C)  
Normalized to 25 °C values, 40 units  
6-30. Offset Voltage vs Temperature  
μ= 587.668 mV, σ= 8.80778 mV  
6-29. Offset Voltage Histogram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: BUF802  
BUF802  
www.ti.com.cn  
ZHCSOA7C JUNE 2021 REVISED MARCH 2022  
6.7 Typical Characteristics (continued)  
At TA = 25°C, VS = ±6 V, RL = 100 Ω|| 400 fF, RS = 25 , VOCM = 0 V (mid-supply), VOUT = 1 VPP, CLH and CLL tied to VS+  
and VS- respectively, Wide Bandwidth Mode unless otherwise specified (R_Bias = 17.8 k).  
4
3
20k  
15k  
10k  
5k  
Input  
Output, VCLH/VCLL = 2 V  
2
1
0
-1  
-2  
-3  
-4  
0
-4  
-3  
-2  
-1  
0
1
2
3
4
Clamp Voltage Error (%)  
Time (500 ps/div)  
.
.
6-32. Clamp Voltage Error Histogram  
6-31. Transient Clamp Response  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: BUF802  
BUF802  
www.ti.com.cn  
ZHCSOA7C JUNE 2021 REVISED MARCH 2022  
7 Parameter Measurement Information  
7-1 through 7-3 show the various test setup configurations for the BUF802.  
+6 V  
+6 V  
+ 6 V  
+ 6 V  
1 M  
VS+  
VS+  
CLH  
CLH  
50  
Cable  
50  
RISO  
50  
RS  
OUT  
VSO+  
VSO–  
VSO+  
VSO–  
IN  
IN  
OUT  
400 fF  
100 nF  
R_Bias  
VS–  
R_Bias  
VS–  
50  
50  
CL  
Hi-Z  
CLL  
100  
CLL  
400 fF  
Variable  
Voltage Source  
–6 V  
DC Parameters Measurment  
–6 V  
DMM  
-6 V  
Source  
Spectrum Analyzer  
-6 V  
AC Parameters Measurment  
7-1. Main Path Electrical Characteristics Measurement  
CLH  
CLL  
+6 V  
+6 V  
Main path  
Aux path  
VS+  
VSO+  
Variable voltage  
source  
VS+  
CLH  
DMM  
Output  
Driver  
IN  
IN  
OUT  
VSOœ  
VSO+  
OUT  
In_Bias  
VSOœ  
In_Aux  
In_Bias  
R_Bias  
100  
VSœ  
Hi-Z  
CLL  
In_Aux  
VSœ  
R_Bias  
VSœ  
Aux_Bias  
œ6 V  
œ6 V  
7-3. Auxiliary Path Electrical Characteristics  
7-2. Main Path and Auxiliary Path  
Measurement  
7-2 shows the two inputs for BUF802 (IN and In_Aux) which control the output. The IN pin controls the output  
of BUF802 through the Main Path, whereas the In_Aux pin controls the output through the Auxiliary Path. Either  
the Main Path or the Auxiliary Path, can be used to steer the output. The electrical characteristics of the Main  
Path and the Auxiliary Path is specified in 6.7.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: BUF802  
 
 
 
BUF802  
www.ti.com.cn  
ZHCSOA7C JUNE 2021 REVISED MARCH 2022  
8 Detailed Description  
8.1 Overview  
The BUF802 device is a high input-impedance, open-loop buffer that can be used in signal acquisition front-end  
applications. The BUF802 can be used as a standalone buffer, Buffer Mode (BF Mode), or in a composite loop  
with a precision amplifier, Composite Loop Mode (CL Mode), to achieve DC precision and a wide, large-signal  
bandwidth. The low output impedance and high output current drive strength enables the BUF802 to drive loads  
as high as 50 Ω. The BUF802 comes with adjustable quiescent current to customize system level power and  
performance trade-off.  
8.2 Functional Block Diagram  
Input Stage  
Clamp Stage  
CLL  
Diamond Buffer / Output Stage  
VSO+  
VS+  
CLH  
JFET  
IN  
Ra  
100 k  
RHF  
In_Bias  
OUT  
VBIAS  
VCCS  
In_Aux  
I2  
I1  
VSOœ  
Aux_Bias  
VSœ  
CLH  
R_Bias  
8-1. Functional Block Diagram  
8-1 shows an overview of the internal structure of the BUF802. The internal schematic of the BUF802 can be  
divided into the following 3 parts:  
Input Stage, which consists of a low noise JFET and its biasing circuitry. The Input Stage can be configured  
in two modes, BF Mode and CL Mode. Choosing one of the two modes affects the circuit operation of the  
Input Stage. The Clamp and Output Stage operation are unaffected by the mode selection. 8.4 describes  
the two modes in greater detail.  
Clamp Stage, which provides the following functions:  
1. Protects the input of the BUF802 against large input signal transients through diode clamps to VS- and  
CLH respectively.  
2. Ensures the output voltage of the BUF802 does not exceed the voltage at the CLH and CLL.  
Output Stage, which tracks the JFET source voltage and is optimized to drive a 50 and 100 load while  
maintaining signal fidelity.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: BUF802  
 
 
 
 
BUF802  
www.ti.com.cn  
ZHCSOA7C JUNE 2021 REVISED MARCH 2022  
8.3 Feature Description  
8.3.1 Input and Output Over-Voltage Clamp  
+6 V  
1 k  
1 F  
VZ = 2 V  
Input clamp  
circuit  
Output clamp  
circuit  
CLH  
D1  
Q1  
Q2  
Output  
JFET  
OUT  
pre-driver  
+
clamp  
IN  
+
Clamp  
diode  
œ
D2  
CLL  
1 k  
VZ = œ2 V  
œ6 V  
8-2. Internal Input and Output Over-Voltage Clamp  
The BUF802 device integrates an input and output clamp circuit. The input clamp protects the BUF802 from  
large input transients and the output clamp protects the subsequent stages from being overdriven.  
Input Clamp Circuit:  
8-2 shows the input of the BUF802 tied to pins CLH and VS- through two internal clamp diodes, D1 and  
D2. The diodes are rated for 100 mA of continuous current but can withstand much higher transient  
currents. If the JFET input voltage exceeds the voltage at CLH or VS-, the diodes get forward biased,  
clamping the JFET to CLH and VS-. A 1 μF capacitor connected in parallel to the zener diode, helps in  
transient absorption travelling through the D1 diode.  
8-3 shows how the external clamping diodes can be used in cases where the 100 mA current rating of  
D1 and D2 is insufficient. When using external clamping, disable the internal protection of the BUF802 by  
connecting CLH and CLL to VS+ and VS-.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: BUF802  
 
 
BUF802  
www.ti.com.cn  
ZHCSOA7C JUNE 2021 REVISED MARCH 2022  
+6 V  
Input clamp  
circuit  
Output  
clamp circuit  
VS+  
CLH  
Q1  
Q2  
Output  
D1  
JFET  
OUT  
pre-driver  
+
clamp  
IN  
+
Clamp  
diode  
œ
D2  
CLL  
VS-  
œ6 V  
8-3. External Input Clamp Circuit  
Output Clamp Circuit:  
The output protection circuit prevents the stages following the BUF802 from being overdriven and also  
ensures that the BUF802 recovers rapidly from a saturated state resulting from an input or output  
overdrive condition. In a typical data-acquisition system, the BUF802 would be followed by a variable gain  
amplifier (VGA). High-speed VGAs are typically designed on 5 V processes making it susceptible to  
potential damage from the 12 V BUF802. The voltage applied to the CLH and CLL pins dictate the  
maximum output swing of the BUF802.  
As shown in 8-3, the internal clamps can be disabled by connecting CLH and CLL to VS+ and VS-  
respectively. When the clamps are disabled, the maximum output swing is limited by the output swing  
specification described in 6.5. The response time and accuracy of the output clamp is shown in 6.7.  
The output THD of the BUF802 degrades when VCLH and VCLL are set close to the expected VOUT peak  
value. To prevent signal degradation, maintain at least a 1.5 V difference between the expected peak  
output voltage and the clamp voltage applied at the CLH and CLL pins. 8-4 shows the relation between  
the absolute clamp voltage value and THD for a 1 VPP output.  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
4
3
THD, f = 500 MHz  
THD, f = 1 GHz  
Input  
Output, VCLH/VCLL = 2 V  
2
1
0
-1  
-2  
-3  
-4  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Clamp Voltage (+VCLH / VCLL  
)
Time (500 ps/div)  
8-4. THD vs VCLH / VCLL for VOUT = 1 VPP  
8-5. Transient Clamp Response  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: BUF802  
 
 
BUF802  
www.ti.com.cn  
ZHCSOA7C JUNE 2021 REVISED MARCH 2022  
8.3.2 Adjustable Quiescent Current  
The BUF802 includes an adjustable quiescent current feature to allow the system designer to trade-off the  
current consumed versus the distortion performance obtained. As shown in 8-1, connect a resistor between  
R_Bias and VS- to set the bias point operating current of the output stages. 8-6 shows the quiescent current  
variation as a function of R_Bias value.  
55  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
2100  
1800  
1500  
1200  
900  
600  
300  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
THD, f = 500 MHz  
THD, f = 1 GHz  
1dB flatness frequency range  
10k  
100k  
R_Bias (W)  
1M  
D003  
10k  
30k  
R_Bias ()  
100k  
.
8-7. THD and Bandwidth vs R_Bias  
8-6. Quiescent Current vs R_Bias  
8-7 shows that changing the resistor between R_Bias and VS- primarily affects the THD of the output signal.  
6.5 and 6.6 specify the AC and DC parameters of the BUF802 at two different R_Bias values. The DC  
parameters are independent of the quiescent current setting.  
8.3.3 ESD Structure  
8-8 shows the internal ESD structure of the BUF802. VSO and VS supply pins are internally shorted to each  
other through back-to-back diodes. Refer to 10 for further information. The input ESD diodes D1 and D2 are  
optimized to carry 100 mA of continuous current while the remaining ESD diodes are rated for 10 mA.  
VSO+  
VS+  
CLH  
JFET  
D1  
D2  
IN  
In_Bias  
In_Aux  
RHF  
100 k  
Supply  
ESD  
Supply  
ESD  
OUT  
I2  
I1  
VS-  
VSO-  
R_Bias  
Aux_Bias  
8-8. Internal ESD Structure  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: BUF802  
 
 
BUF802  
www.ti.com.cn  
ZHCSOA7C JUNE 2021 REVISED MARCH 2022  
8.4 Device Functional Modes  
CLH  
CLL  
Main path  
Aux path  
VS+  
VSO+  
OUT  
VSOœ  
Output  
Driver  
IN  
In_Bias  
In_Aux  
VSœ  
R_Bias  
VSœ  
Aux_Bias  
8-9. Main Path and Auxiliary Path  
The BUF802 has been designed to operate in two modes, Buffer Mode (BF Mode) and Composite Loop Mode  
(CL Mode):  
In BF Mode, the BUF802 uses the JFET, output driver and bipolar transistors in the Main Path to reproduce the  
signal, applied on IN, at the output of the BUF802. 8-9 shows the Main Path and the Auxiliary Path of the  
BUF802. The BUF802 can operate from DC to high-frequency and can therefore be used as a standalone buffer.  
While being used in BF Mode, only the Main Path of the BUF802 is used.  
In CL Mode, the BUF802 utilizes the Auxiliary signal path and the Main Path to control the output voltage. As the  
name suggests in the Composite Loop Mode, the BUF802 is used in a composite loop with a precision amplifier  
to achieve DC precision and a wide, large-signal bandwidth simultaneously. The composite loop splits the  
applied signal to low-frequency and high-frequency components and passes them over to different circuits with  
suitable transfer function. The low-frequency and high-frequency signal components then recombine inside the  
BUF802 and are repoduced at the OUT pin.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: BUF802  
 
 
 
BUF802  
www.ti.com.cn  
ZHCSOA7C JUNE 2021 REVISED MARCH 2022  
8.4.1 Buffer Mode (BF Mode)  
VS+  
VSO+  
CLH  
OUT  
IN  
I1  
VSO-  
VS-  
R_Bias  
8-10. Internal Schematic BF Mode  
The wide large-signal bandwidth and fast slew rate of the BUF802 coupled with Hi-Z input are useful in a variety  
of high-frequency signal chain applications. As shown in 8-10 the BUF802 uses the Main Path and operates  
the JFET and transistors as source follower and emitter followers to reproduce signal applied on IN, at the output  
of BUF802. The pins associated with only CL Mode (Pin No. 6, 4, and 3) are left floating while operating in BF  
Mode.  
+6V  
1k  
VZ = 2V  
CLH  
C1pF  
+6V  
OUT  
Input  
IN  
BUF802  
k  
kꢀ  
800  
200  
R1  
1M  
CLL  
+
Precision  
Amp  
1k  
VZ = -2V  
-
- 6V  
R2  
R3  
-6V  
C2  
Rx  
Ry  
8-11. Composite Loop Using BF Mode  
8-11 shows how the BUF802 can also be used in a composite loop while being operated in BF Mode. The  
operation of BUF802 in 8-11 would still be called BF Mode since the signal is being transferred through the  
Main Path only. The Auxiliary path and the pins associated with the Auxiliary path and CL Mode are kept  
disabled. The low-frequency and high-frequency signal components are combined externally through the  
discrete components R1 and C1 prior to being applied at the IN pin.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: BUF802  
 
 
BUF802  
www.ti.com.cn  
ZHCSOA7C JUNE 2021 REVISED MARCH 2022  
8.4.2 Composite Loop Mode (CL Mode)  
VS+  
9
6
G ( Main Path )  
330 pF  
JFET  
3
IN  
Signal_In  
0
Ra  
-3  
10M  
100 k  
Cross-Over  
Frequency  
Region  
Diamond  
Buffer  
-6  
In_Bias  
RHF  
VS+  
-9  
network  
OUT  
-12  
-15  
-18  
-21  
-24  
-27  
-30  
GAUX ( Auxiliary Path )  
In_Aux  
+
Precision  
Amp  
Q1  
-
Rb  
I2  
I1  
High Frequency Region  
Low Frequency Region  
VS-  
Aux_Bias  
1
10 100 1k 10k 100k 1M 10M 100M 1G 10G  
Frequency (Hz)  
β
network  
D004  
8-13. CL Mode Frequency Response  
8-12. Internal Schematic CL Mode  
The 330 pF input series capacitor shown in 8-12 splits the input signal into a low-frequency and high-  
frequency component. These signals are applied to In_Aux and IN respectively. The IN pin controls the output of  
BUF802 through the Main Path, whereas the In_Aux pin controls the output through the Auxiliary Path.  
The transfer function of the composite loop in CL Mode can be split into the following 3 frequency regions:  
1. Low Frequency Region: The gain of the composite loop in the low-frequency region is α/β(determined by  
αand βnetwork). In the low-frequency region the 330 pF input capacitor presents a high-impedance in the  
Main Path, causing the signal to flow through the precision amplifier and the In_Aux pin. This region spans  
from DC to fLF. fLF is the pole resulting from the gain bandwidth of the precision amplifier, the Auxiliary Path  
bandwidth, and parasitic capacitance of the components along the path.  
2. High Frequency Region: In the high-frequency region, the precision amplifier and the Auxiliary Path run out  
of bandwidth. The net gain of the composite loop in this region is determined solely by the Main Path gain of  
the BUF802, which is denoted by G. This region spans from the pole created at fHF till the LSBW of the  
BUF802. The fHF is the pole resulting from the 330 pF series capacitor and the 10 MΩresistor on the  
In_Bias pin.  
3. Cross-over Frequency Region: the Main Path and Auxiliary Path work in conjunction to determine the gain  
in the crossover region. To maintain a flat frequency response in this region, the following conditions have to  
be met:  
a. α/β= G  
b. High frequency response pole fHF<< Low frequency pole fLF  
A detailed analysis of discrete component selection to achieve a flat frequency response is discussed further  
in 9.1.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: BUF802  
 
BUF802  
www.ti.com.cn  
ZHCSOA7C JUNE 2021 REVISED MARCH 2022  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The BUF802 offers a wide large-signal bandwidth, high-slew rate along with high-input impedance making it  
ideal for data acquisition systems. In applications where DC precision is not needed or in cases where the input  
is AC coupled, the BUF802 can be used as a standalone input buffer in BF Mode. In case the precision required  
is higher than that offered by the BUF802, operate the BUF802 in CL Mode with a precision amplifier in a  
composite loop.  
9.2 Typical Application  
9.2.1 Oscilloscope Front-End Amplifier Design  
+ 6 V  
1 k  
VZ = 2 V  
1
F
CLH  
IN  
30  
Input  
330 pF  
To VGA  
10 M  
OUT  
R_Bias  
In_Bias  
In_Aux  
+6 V  
R
2 800 k  
1 200 k  
Aux_Bias  
17.8 k  
CLL  
+
2 k  
R
OPA140  
50  
1 k  
100 pF  
V
–6 V  
VZ = –2 V  
6.8 nH  
CF 56 pF  
R
2 80 k  
RPOT  
9-1. Oscilloscope Front-End Amplifier  
9.2.1.1 Design Requirements  
The following table shows the target specification for a 1-GHz oscilloscope front-end and precision amplifier.  
Specification  
Value  
Input Impedance  
1 MΩ/ 50 Ω  
S Parameters (f = 1 GHz)  
Offset Drift  
S11 = 15 dB, S21 = 1.5 dB  
1 µV/°C maximum  
80 µVRMS  
Noise at Highest Resolution (50 ΩInput)  
9.2.1.2 Detailed Design Procedure  
Input Impedance: The JFET-input stage of the BUF802 offers giga ohm's of input impedance and therefore  
enables the front-end to be terminated with a 1 MΩresistor without affecting performance. A 50 Ω  
resistance can also be switched in offering matched termination for high-frequency signals. The BUF802  
therefore enables the designer to use both 1 MΩand 50 Ωtermination in the same signal chain.  
Noise: The total noise of the front-end amplifier is the function of the voltage and current noise of the  
BUF802, OPA140, and the resistors thermal noise. The dominant noise source, however, is contributed by  
the voltage noise of the BUF802 due to its presence across the complete bandwidth. Thus, the total RMS  
noise of the front-end amplifier shall be approximately equal to the voltage noise of BUF802 over 1 GHz.  
The specified input referred voltage noise of the BUF802, as shown in 6.5, is 2.3 nV/Hz. The total input  
referred RMS noise in a bandwidth of 1 GHz is given by the following equation:  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: BUF802  
 
 
 
 
BUF802  
www.ti.com.cn  
ZHCSOA7C JUNE 2021 REVISED MARCH 2022  
EnRMS = 2.3 nV/Hz × (1 GHz × 1.22) = 80 µVRMS  
.
(1)  
1.22 = Brickwall correction factor. Detailed calculations can be found on TI Precision Labs Op Amps: Noise  
Spectral Density.  
Total input refered spot noise as a function of frequency is shown in 9-3. Assuming the oscilloscope has 8  
divisions on the screen and a highest resolution of 1 mV, the full-scale reading is 8 mVPP or 2.82 mVRMS  
Thus, the SNR of the front-end amplifier stage at the highest-resolution setting is:  
.
20 × log (2.82 mVRMS / 80 µVRMS) = 31 dB.  
(2)  
S11 Optimzation: The front-end amplifier circuit should have a perfect 50 Ωtermination to achieve the  
required S11 parameter of -15 dB across the frequency. While it is possible to mount an exact 50 Ω  
resistance at the input of the front-end composite loop circuit, the parasitic capacitance of the BUF802  
appears in parallel to this 50 Ωresistance resulting in a net imperfect termination.  
The parasitic input capacitance of BUF802 (IN pin) is 2.4 pF. At 1 GHz this parasitic capacitance reduces  
down to an impedance of 66.3 Ω. Thus, the net input impedance as seen by the signal at the input is the  
following:  
66.3 Ω|| 50 Ω= 28.5 Ω  
(3)  
This results in an imperfect termination for the 50 Ωsource resulting in poor S11. The addition of a 30 Ω  
resistance in series with the input trace and a 6.8 nH inductor in series with the onboard 50 Ωtermination  
helps isolate the input parasitic capacitance as well as ensures the net input impedance is maintained at 50  
Ω. The S11 response of this modified circuit is shown in 9-4.  
+ 6V  
30  
Input  
OUT  
BUF802  
- 6V  
50  
2.4 pF  
6.8 nH  
9-2. Net Input Impedance  
Uniform Gain Across Frequency: The front-end amplifier circuit is designed with BUF802 and OPA140  
connected in a composite loop. The loop splits the input signal into low- and high-frequency components,  
taking both components to the output through two different circuits (transfer functions) and recombining them  
to reproduce a net output signal. The end goal is to achieve a smooth transition between the two circuits and  
ensure a flat frequency response from DC till the frequency of interest.  
CL Mode of BUF802 simplifies this design for achieving a flat frequency response from DC till the frequency  
of interest (1 GHz in this case). To achieve a flat response, the following two conditions have to be met:  
1. α/β= G  
2. High frequency response pole fHF<< low frequency pole fLF  
αis the input attenuation factor and βis the inverse of the non-inverting gain of the precision amplifier. G is  
the DC gain of the Main Path of the BUF802. Since G can vary from device-to-device, trimming either αor  
βis recommended to achieve a flat frequency response. In 9-1, βmay be trimmed using the RPOT.  
Since G is 1 V/V and αis 1/5 (200 kΩ/ (200 kΩ+ 800 kΩ)), RPOT should be trimmed so that β1/5.  
For the βnetwork, it is recommended to use resistors which are an order of magnitude of resistance lower  
than the resistors used in the αnetwork. Therefore βresistor values of 80 kΩand 20 kΩhave been  
chosen.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: BUF802  
BUF802  
www.ti.com.cn  
ZHCSOA7C JUNE 2021 REVISED MARCH 2022  
fHF is the pole resulting from the 330 pF series capacitor and the 10 MΩresistor on the In_Bias pin.  
fHF = 1/(2 × pi × R × C) = 1/(2 × 3.14 × 10 MΩ× 330 pF) = 48 Hz  
(4)  
(5)  
fLF is the pole resulting from the gain bandwidth of the precision amplifier (OPA140), the Auxiliary Path  
bandwidth and other parasitic capacitance of the resistor network.  
fLF = GBW × GAUX × β= 440 kHz  
Where GBW is the gain bandwidth product of the precision amplifier (OPA140) = 11 MHz. GAUX is the gain  
from In_Aux to OUT = 0.2 V/V. 1/βis the external non-inverting gain set for the precision amplifier = 5 V/V.  
Based on the above value of fHF and fLF, the required condition of fHF<< fLF is met. CF, connected across the  
precision amplifier, is required to compensate for the parasitic capacitance and to make the overall poles and  
zeros cancel each other. The value of CF can be found by using the following equation:  
CF = CINPA × ((G × Rα2 / Rβ2) 1)).  
(6)  
Where CINPA is the common mode input capacitance of the precision amplifier, OPA140 in this case.  
Plugging in the value of these components arrives at CF = 56 pF. In the final system, based on the quality of  
the flat band response needed, CF may or may not be trimmed along with RPOT in the final production flow.  
9.2.1.3 Application Curves  
1000  
100  
10  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
S11  
S21  
1
10M  
100M  
Frequency (Hz)  
1G  
10k  
100k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
9-4. S11 and S21 Response  
9-3. Front-End Composite Loop Noise  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
9-5. Frequency Response Flatness: Cross-Over Frequency Region  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: BUF802  
 
 
BUF802  
www.ti.com.cn  
ZHCSOA7C JUNE 2021 REVISED MARCH 2022  
9.2.2 Transforming a Wide-Bandwidth, 50 ΩInput Signal Chain to High-Input Impedance  
+6 V  
BUF802 EVM  
TIDA-01022  
VZ = 2V  
1 k  
+2.5 V  
+2.5 V  
2.2-GHz LOW PASS FILTER  
LMH5401  
25  
LMH6401  
1 μF  
127  
3.9nF  
365  
5.6 nF  
Input  
30 Ω  
330 pF  
4.99  
CLH  
IN  
VIN+  
0.01 uF  
IN+  
10  
10  
10  
10  
50 Ω  
22.6  
40  
10 M  
_
1 pF  
1 pF  
2.4 pF  
2.4 pF  
1.21 k  
OUT  
RBias  
Aux_Bias  
In_Bias  
+
+6 V  
ADC  
In_Aux  
CLL  
800 k  
IN-  
_
ADC12DJ3200  
1.21 k  
+
+
2 k  
40  
22.6  
VIN-  
127  
25  
OPA140  
200 k  
3.9 nF  
5.6 nF  
50  
4.99  
1 k  
100 pF  
0.01 uF  
+2.5 V  
0.01 uF  
-
25  
365  
VOCM  
VOCM  
-6 V  
SCK, SDI  
SDO, CSb  
-6 V  
VZ = -2V  
2 K  
6.8 nH  
PD  
-2.5 V  
PD  
-2.5 V  
50  
56pF  
VCM  
2 K  
80 k  
Rx  
Offset Control  
DAC  
R
-2.5 V  
9-6. BUF802 + TIDA-01022: Signal Chain  
9.2.2.1 Detailed Design Results  
TIDA-01022 reference design primarily focuses on a multichannel high-speed analog front-end, which is typically  
used in end equipment like a digital storage oscilloscope (DSO), wireless communication test equipment  
(WCTE), and radars. A 50 Ωinput data acquisition (DAQ) signal chain like that of TIDA-01022 can be converted  
into a high-input impedance DAQ system by inserting the BUF802 at the front.  
TIDA-01022 orginally features the following:  
LMH5401 is a high-performance, differential amplifier with an usable bandwidth from DC to 2 GHz. It is used  
as single to differential conversion amplifier in this signal chain. The device offers excellent linearity  
performance at a fixed 12-dB gain.  
LMH6401 is a wideband digitally controlled variable gain, differential in and differential out, amplifier. The  
noise and distortion performance are optimized to drive ultra-wideband ADCs. The device offers DC to 4.5-  
GHz bandwidth with a gain range from 6 dB to 26 dB in 1-dB steps. The gain can be controlled using a  
standard serial peripheral interface (SPI).  
The ADC12DJ5200RF device is a 12 bit, giga-sample, analog-to-digital converter (ADC) that can directly  
sample input frequencies from DC to above 10 GHz. ADC12DJ5200RF can be configured as a dual-channel,  
5.2 GSPS ADC or single-channel, 10.4 GSPS ADC.  
The BUF802 along with offering high-input impedance and low-noise for the front-end amplifier, holds capability  
of driving matched loads of 50 Ω, making it easy to retrofit with predesigned analog front-end signal chains. 图  
9-7 to 9-9 shows the comparison of native performance of the TI design TIDA-01022 and performance  
achieved post addition of BUF802 at the front-end. Adding BUF802 at the input of TIDA-01022 translates the  
original 50 Ω input imepdance TI design to a high-input impedance DAQ signal chain. A simplified schematic of  
BUF802 + TIDA-01022 is shown in 9-6.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: BUF802  
 
BUF802  
www.ti.com.cn  
ZHCSOA7C JUNE 2021 REVISED MARCH 2022  
9.2.2.2 Application Curves  
3
60  
56  
52  
48  
44  
40  
BUF802 + TIDA-01022  
TIDA-01022 only  
BUF802 + TIDA-01022  
TIDA-01022 only  
0
-3  
-6  
-9  
1M  
10M  
100M  
Frequency (Hz)  
1G  
100k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
9-8. Total Harmonic Distortion (THD) vs  
9-7. Gain vs Frequency  
Frequency  
56  
54  
52  
50  
48  
46  
44  
BUF802 + TIDA-01022  
TIDA-01022 only  
42  
1M  
10M  
100M  
Frequency (Hz)  
1G  
9-9. Signal To Noise Ratio (SNR) vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: BUF802  
 
 
BUF802  
www.ti.com.cn  
ZHCSOA7C JUNE 2021 REVISED MARCH 2022  
10 Power Supply Recommendations  
The BUF802 is intended to operate with supplies ranging from ±4.5 V to ±6.5 V. The BUF802 can operate on  
either single-sided supplies or split supplies. When using split supplies, the supplies may be symmetrically  
balanced around GND or asymmetric. For best AC performance, the input and output signal should be centered  
around the mid-supply.  
Minimize the distance between the power-supply pins and decoupling capacitors. The high frequency capacitors  
(< 0.1 µF) should be placed close to the supply-pins on the same side of the PCB as the BUF802. Larger  
capacitors (> 1 µF) can be placed further away from the device. 11 has additional details on decoupling  
capacitor layout and routing.  
The BUF802 has two sets of supply pins: VS+ and VS-; VSO+ and VSO-. The separation of the input and output  
stage supply pins minimize spurious cross-talk and maximizes transient decoupling between the two stages. 图  
8-1 shows how both sets of supply pins are internally connected through back-to-back diodes. It is therefore  
imperative that the supply pins for the input and output stages are connected to the same potential. As shown in  
11, maintain separate and individual decoupling capacitors for all the supply pins.  
11 Layout  
11.1 Layout Guidelines  
Achieving optimum performance with the BUF802 requires careful attention to board layout, parasitics, and  
passive component selection. Consider the following:  
Peaking in the S21 transfer function: keeping the trace length minimum is of prime importance to ensure  
no peaking occurs in the S21 transfer function of the BUF802. The trace inductance can form a resonant  
circuit with the input capacitance of the BUF802, causing peaking in the S21 response. Add a small resistor  
(R5 in 11-1) in series with the DC blocking capacitor to dampen the LC resonance created by the trace  
inductance and the input capacitance of the BUF802. Choose series capacitors (C7 in 11-1) with low  
equivalent series inductance (ESL) to minimize total inductance.  
Power-supply bypass capacitors: mount the power-supply bypass capacitors as close to the supply pins as  
possible and on the same side of the PCB as the BUF802. As shown in 11-1, choose low-inductance LICC  
capacitors (C5, C6, C13, and C10) to minimize high frequency impedance between the BUF802 and the  
bypass capacitors. Use multiple vias between the bypass capacitor and GND to reduce series inductance. As  
shown in 11-1, also use multiple vias to GND on the 50 input termination resistor (R3). Connect the  
bypass and termination vias to a solid GND plane.  
High precision signal path, consisting of the precision op amp along with discrete components, can be  
adjusted and moved around to give precedence to the above two points. In the 11-3, the precision  
components were placed on the opposite side of the PCB as the BUF802.  
Thermal pad of the BUF802 is thermally conductive but electrically insulated to the die. This gives the circuit  
designer flexibility in connecting the thermal pad to any voltage. Choose a power or GND plane with the  
highest thermal mass for effective heat dissipation.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: BUF802  
 
 
 
 
 
BUF802  
www.ti.com.cn  
ZHCSOA7C JUNE 2021 REVISED MARCH 2022  
11.2 Layout Example  
VCC  
VCC1  
GND1  
VEE1  
Pin1  
OPA  
Pin12  
Pin1  
Pin12  
CLH  
CLL  
C5  
0.1uF  
25V  
C6  
0.1uF  
25V  
C1  
2.2µF  
50V  
C3  
16V  
0.22uF  
C15  
16V  
0.22uF  
C4  
16V  
0.22uF  
D1  
MMSZ4679T1G  
2V  
C17  
16V  
0.22uF  
D2  
MMSZ4679T1G  
2V  
C18  
16V  
0.22uF  
TP1  
TP2  
C13  
0.1uF  
25V  
C10  
0.1uF  
25V  
C2  
2.2µF  
50V  
C9  
16V  
0.22uF  
C8  
16V  
0.22uF  
C14  
16V  
0.22uF  
5012  
5012  
GND  
VEE  
R14  
0
R19  
0
Pin8910  
OPA  
Pin5  
Pin5  
Pin8910  
GND  
GND  
U1  
VCC  
R7  
50  
OUT  
1
1
11  
15  
14  
VCC  
VOUT  
VCH  
VCL  
VCC  
12  
2
VCC2  
VIN  
R1  
J1  
CLH  
CLL  
C7  
R5  
R6  
50  
1
IN  
J2  
1.00k  
VEE  
VEE  
30.9  
R2  
100V  
330pF  
IN_Aux  
IN_Bias  
R_Bias  
GND  
4
VIN_AUX  
VIN_BIAS  
RBIAS  
R3  
50  
R4  
13.0k  
1.00k  
R8  
VEE  
3
GND  
5
10.0M  
VEE  
VEE  
GND  
VEE  
R11  
7
8
R9  
787k  
10  
6
17.8k  
VEE2  
VEE_B  
R12  
0
L1  
6.8nH  
VEE  
Aux_Bias  
GND  
9
13  
16  
NC  
NC  
NC  
OPA140AIDBVT  
3
U2  
CLL  
CLH  
17  
PAD  
R10  
1
R20  
200k  
4
BUF802IRGT  
2.00k  
R13  
200k  
TP5  
C12  
50V  
GND  
C19  
16V  
100pF  
VCC  
5012  
GND  
0.22uF  
GND  
C11  
GND  
GND  
25V  
56pF  
R21  
R15  
10.0k  
78.7k  
R17  
R18  
R16  
1
32.4k  
0
C16  
100nF  
50V  
J3  
GND  
GND  
GND  
11-1. Layout Example: Schematic for Layout Reference  
Ord rable: Ch geMe in varia  
ID N/A  
Number AMPS131  
SVN Rev: No in versio co tro  
Rev:  
xa Instrume ts  
warra th this sign will me th sp cificatio s, will  
lice sors warra th th sign is ro ctio worth  
/o its lice sors  
warra th ccuracy complete ss this sp cificatio  
suita le fo yo licatio fit fo rticula  
sh ld completely valid te test yo  
informatio co tain th rein  
rp se will rate in impleme tatio  
sign impleme tatio to co firm th syste fu ctio lity fo yo  
xa Instrume ts  
/o its lice sors  
/o its  
licatio  
xa Instrume ts  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: BUF802  
 
 
BUF802  
www.ti.com.cn  
ZHCSOA7C JUNE 2021 REVISED MARCH 2022  
11-2. Layout Example: Top Layer  
11-3. Layout Example: Bottom Layer  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: BUF802  
 
BUF802  
www.ti.com.cn  
ZHCSOA7C JUNE 2021 REVISED MARCH 2022  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Flexible 3.2-GSPS multi-channel AFE reference design for DSOs, radar and 5G wireless  
test systems reference designs  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: BUF802  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-May-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BUF802IRGTR  
ACTIVE  
VQFN  
RGT  
16  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 85  
BUF802  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BUF802IRGTR  
VQFN  
RGT  
16  
3000  
330.0  
12.4  
3.3  
3.3  
1.1  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN RGT 16  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 35.0  
BUF802IRGTR  
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RGT0016C  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
SIDE WALL  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
1.0  
0.8  
C
SEATING PLANE  
0.08  
0.05  
0.00  
1.68 0.07  
(DIM A) TYP  
5
8
EXPOSED  
THERMAL PAD  
12X 0.5  
4
9
4X  
SYMM  
1.5  
1
12  
0.30  
16X  
0.18  
13  
16  
0.1  
C A B  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.05  
0.5  
0.3  
16X  
4222419/D 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGT0016C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.68)  
SYMM  
13  
16  
16X (0.6)  
1
12  
16X (0.24)  
SYMM  
(2.8)  
(0.58)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
(0.58) TYP  
8
(R0.05)  
ALL PAD CORNERS  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222419/D 04/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGT0016C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.55)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
(2.8)  
12X (0.5)  
9
4
METAL  
ALL AROUND  
5
8
SYMM  
(2.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 17:  
85% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4222419/D 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY