CC113LRGPT [TI]

超值系列低于 1GHz 无线接收器 | RGP | 20 | -40 to 85;
CC113LRGPT
型号: CC113LRGPT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

超值系列低于 1GHz 无线接收器 | RGP | 20 | -40 to 85

电话 蜂窝 无线 电信 蜂窝电话电路 电信电路
文件: 总77页 (文件大小:5139K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
WISDOM FUTURE  
WIRELESS WORLD  
来  
线界  
TI线册  
CC113L  
便式  
馈 。凡译手 册注明“ ”的作品,为 信达 (RF-star®)公使经 本公司授转  
式 用用 途。经 本公司授使 使, 本公有  
。  
Shenzhen RF-star Technology Co.,Ltd.  
TEL: 0755-86329829 FAX:0755-86329413  
http://www.szrfstar.com  
WISDOM FUTURE  
WIRELESS WORLD  
来  
线界  
介  
达 科RF-star)是低  
耗射频 LPRF 和低功耗 MCU 领域,公司成立于2010年,作为中国区唯一具有美国 TI 公司授予的 LPRF  
Product Reseller Third Party 双重资质的公司,一直引领着 LPRF 技术在国内的推广和应用,是国内唯一  
 LPRF 案 和核心元;  
西处  
以 及 SMT 。  
无线射频器件用于低于1GHz 2.4GHz 频段、ANT、蓝牙(Bluetooth)、低功耗蓝牙、射频识别(RFID、  
PurePath 无线音频、ZigBeeIEEE802.15.4Zigbee RF4CE6LoWPANWi-Fi 的射频集成电路( RF IC )  
议  
产品市场应用:ZigBee 无线传感网络,各种数据采集及遥测监控(含数据, 语音,图像等),可应用于安防、  
、 能、 水线线防  
全自动报警、煤矿安全监控及人员定位;汽车防盗、胎压检测,四轮定位;无线键盘、鼠标、打印机、游戏  
杆、遥控玩具、机器人等广泛的领域。适用于合乎全世界免费频段315MHz433 MHz470MHz868  
MHz915 MHz2.4GHz,符合 FCCCESGSRoHs 认证规范,产品和信誉受到国内外顾客的一致好  
评。  
RF-star 将一如既往,为客户提供更多、更好的产品,更具优势的技术服务,良好的商务服务,和更完善  
的物流服务。RF-star 将跨上一个新的平台,获得更大的发展空间RF-star 将继续本着务实、诚信、学习、  
创新的专业精神,团结一致、奋勇开拓、锐意进取,为成为全球 无线射频技术绝对第一之产品、服务及解决  
。  
和  
。  
为  
线贡 献。专来  
Shenzhen RF-star Technology Co.,Ltd.  
TEL: 0755-86329829 FAX:0755-86329413  
http://www.szrfstar.com  
WISDOM FUTURE  
WIRELESS WORLD  
来  
线界  
CC113L  
www.ti.com.cn  
ZHCS268A MAY 2011REVISED SEPTEMBER 2011  
超值系列 (Value Line) 接收器  
1
特性  
应用  
射频 (RF) 性能  
工作于 315 / 433 / 868 / 915 MHz ISM / SRD 频段  
的超低功耗无线应用  
无线报警和安全系统  
工业监测和控制  
遥控  
接收灵敏度低至 116 dBm(在 0.6 kbps 数据  
速率下)  
可编程数据速率:范围是 0.6 600 kbps  
频段:300 - 348 MHz387 - 464 MHz 779  
- 928 MHz  
玩具  
支持 2-FSK4-FSKGFSKMSK OOK  
家庭和楼宇自动化  
数字特性  
常规  
可灵活地支持面向分组的系统  
极少的外部组件;完全集成于芯片之上的频率合成  
对同步字插入、灵活和分组长度及自动 CRC 计  
算提供了片上支持  
器,无需外部滤波器或 RF 开关  
低功耗特性  
绿色环保型封装:符合 RoHS 标准,并且不含锑或  
200nA 睡眠模式电流消耗  
快速启动时间;240 μs(从睡眠模式到接收  
[RX] 模式)  
小尺寸(采用 QLP 4x4 mm 封装,20 引脚)  
适合那些旨在符合 EN 300 220(欧洲)和 FCC  
CFR Part 15(美国)标准的系统  
64 字节接收 (RX) FIFO  
支持异步及同步串行发送模式,以返回兼容现有的  
射频通信协议  
说明  
CC113L 是一款成本优化的 sub-1 GHz RF 接收器,适用于 300 - 348 MHz387 - 464 MHz 779 - 928 MHz 频  
段。 该电路基于受欢迎的 CC1101 RF 收发器,而且 RF 性能特征相同。 CC115L 发送器与 CC113L 接收器一起  
实现了低成本的 RF 链路。  
RF 接收器与一个具有高度可配置性的基带解调器实现了集成。 该调制解调器支持各种调制格式,并且具有高达  
600 kbps 的可配置数据速率。  
CC113L 提供了针对分组处理、数据缓冲和突发传输的丰富硬件支持。  
CC113L 的主要工作参数及 64 字节接收 FIFO 可通过一个 SPI 接口进行控制。 在一般系统中,CC113L 将与微控  
制器及少量的附加无源组件配合使用。  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
HTTP://WWW.SZRFSTAR.COM  
TEL:0755-86329829 FAX:0755-86329413  
CC113L  
Abbreviations  
Abbreviations used in this data sheet are described below.  
2-FSK  
4-FSK  
ADC  
Binary Frequency Shift Keying  
Quaternary Frequency Shift Keying  
Analog to Digital Converter  
LSB  
Least Significant Bit  
Microcontroller Unit  
Most Significant Bit  
MCU  
MSB  
AFC  
AGC  
AMR  
Automatic Frequency Compensation  
Automatic Gain Control  
Automatic Meter Reading  
N/A  
NRZ  
OOK  
Not Applicable  
Non Return to Zero (Coding)  
On-Off Keying  
BER  
BT  
Bit Error Rate  
PCB  
PD  
Printed Circuit Board  
Power Down  
Bandwidth-Time product  
Code of Federal Regulations  
Cyclic Redundancy Check  
Carrier Sense  
CFR  
CRC  
CS  
PER  
PLL  
Packet Error Rate  
Phase Locked Loop  
Power-On Reset  
POR  
PTAT  
QLP  
QPSK  
RC  
DC  
Direct Current  
Proportional To Absolute Temperature  
Quad Leadless Package  
Quadrature Phase Shift Keying  
Resistor-Capacitor  
DVGA  
ESR  
FCC  
FIFO  
FS  
Digital Variable Gain Amplifier  
Equivalent Series Resistance  
Federal Communications Commission  
First-In-First-Out  
RF  
Radio Frequency  
Frequency Synthesizer  
Gaussian shaped Frequency Shift Keying  
Intermediate Frequency  
In-Phase/Quadrature  
RSSI  
RX  
Received Signal Strength Indicator  
Receive, Receive Mode  
Surface Mount Device  
Serial Peripheral Interface  
Short Range Devices  
GFSK  
IF  
SMD  
SPI  
I/Q  
ISM  
LC  
Industrial, Scientific, Medical  
Inductor-Capacitor  
SRD  
VCO  
XOSC  
XTAL  
Voltage Controlled Oscillator  
Crystal Oscillator  
LNA  
LO  
Low Noise Amplifier  
Local Oscillator  
Crystal  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
CC113L  
Table Of Contents  
APPLICATIONS..................................................................................................................................................1  
KEY FEATURES .................................................................................................................................................1  
RF PERFORMANCE ..........................................................................................................................................1  
DIGITAL FEATURES.........................................................................................................................................1  
LOW-POWER FEATURES................................................................................................................................1  
GENERAL ............................................................................................................................................................1  
PRODUCT DESCRIPTION................................................................................................................................1  
ABBREVIATIONS...............................................................................................................................................2  
TABLE OF CONTENTS .....................................................................................................................................3  
1
2
3
ABSOLUTE MAXIMUM RATINGS.....................................................................................................5  
OPERATING CONDITIONS .................................................................................................................5  
GENERAL CHARACTERISTICS.........................................................................................................5  
4
ELECTRICAL SPECIFICATIONS .......................................................................................................6  
CURRENT CONSUMPTION ............................................................................................................................6  
RF RECEIVE SECTION..................................................................................................................................8  
CRYSTAL OSCILLATOR.............................................................................................................................. 12  
FREQUENCY SYNTHESIZER CHARACTERISTICS.......................................................................................... 12  
DC CHARACTERISTICS .............................................................................................................................. 13  
POWER-ON RESET.....................................................................................................................................13  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
5
6
PIN CONFIGURATION........................................................................................................................ 13  
CIRCUIT DESCRIPTION .................................................................................................................... 15  
7
APPLICATION CIRCUIT .................................................................................................................... 15  
BIAS RESISTOR ..........................................................................................................................................15  
BALUN AND RF MATCHING....................................................................................................................... 15  
CRYSTAL ................................................................................................................................................... 18  
REFERENCE SIGNAL ..................................................................................................................................18  
POWER SUPPLY DECOUPLING.................................................................................................................... 18  
PCB LAYOUT RECOMMENDATIONS...........................................................................................................19  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
8
CONFIGURATION OVERVIEW........................................................................................................20  
CONFIGURATION SOFTWARE........................................................................................................21  
4-WIRE SERIAL CONFIGURATION AND DATA INTERFACE .................................................. 21  
9
10  
10.1 CHIP STATUS BYTE ...................................................................................................................................22  
10.2 REGISTER ACCESS.....................................................................................................................................23  
10.3 SPI READ .................................................................................................................................................. 23  
10.4 COMMAND STROBES .................................................................................................................................23  
10.5 RX FIFO ACCESS......................................................................................................................................24  
11  
MICROCONTROLLER INTERFACE AND PIN CONFIGURATION ..........................................25  
11.1 CONFIGURATION INTERFACE..................................................................................................................... 25  
11.2 GENERAL CONTROL AND STATUS PINS .....................................................................................................25  
12  
13  
14  
DATA RATE PROGRAMMING..........................................................................................................25  
RECEIVER CHANNEL FILTER BANDWIDTH ..............................................................................25  
DEMODULATOR, SYMBOL SYNCHRONIZER, AND DATA DECISION..................................26  
14.1 FREQUENCY OFFSET COMPENSATION........................................................................................................26  
14.2 BIT SYNCHRONIZATION............................................................................................................................. 27  
14.3 BYTE SYNCHRONIZATION.......................................................................................................................... 27  
15  
PACKET HANDLING HARDWARE SUPPORT ..............................................................................27  
15.1 PACKET FORMAT.......................................................................................................................................27  
15.2 PACKET FILTERING....................................................................................................................................29  
15.3 PACKET HANDLING ...................................................................................................................................30  
15.4 PACKET HANDLING IN FIRMWARE.............................................................................................................30  
16  
MODULATION FORMATS.................................................................................................................30  
16.1 FREQUENCY SHIFT KEYING....................................................................................................................... 30  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
HTTP://WWW.SZRFSTAR.COM  
TEL:0755-86329829 FAX:0755-86329413  
 
CC113L  
16.2 AMPLITUDE MODULATION ........................................................................................................................ 31  
17  
RECEIVED SIGNAL QUALIFIERS AND RSSI................................................................................31  
17.1 SYNC WORD QUALIFIER............................................................................................................................ 31  
17.2 RSSI.......................................................................................................................................................... 32  
17.3 CARRIER SENSE (CS).................................................................................................................................33  
18  
RADIO CONTROL................................................................................................................................ 35  
18.1 POWER-ON START-UP SEQUENCE.............................................................................................................36  
18.2 CRYSTAL CONTROL...................................................................................................................................37  
18.3 VOLTAGE REGULATOR CONTROL..............................................................................................................37  
18.4 RECEIVE MODE (RX) ................................................................................................................................ 37  
18.5 RX TERMINATION .....................................................................................................................................37  
18.6 TIMING ...................................................................................................................................................... 38  
19  
20  
21  
RX FIFO.................................................................................................................................................. 38  
FREQUENCY PROGRAMMING........................................................................................................40  
VCO ......................................................................................................................................................... 40  
21.1 VCO AND PLL SELF-CALIBRATION ..........................................................................................................40  
22  
23  
24  
VOLTAGE REGULATORS .................................................................................................................40  
GENERAL PURPOSE / TEST OUTPUT CONTROL PINS............................................................. 41  
ASYNCHRONOUS AND SYNCHRONOUS SERIAL OPERATION..............................................43  
24.1 ASYNCHRONOUS SERIAL OPERATION........................................................................................................43  
24.2 SYNCHRONOUS SERIAL OPERATION ..........................................................................................................43  
25  
SYSTEM CONSIDERATIONS AND GUIDELINES.........................................................................43  
25.1 SRD REGULATIONS...................................................................................................................................43  
25.2 CALIBRATION IN MULTI-CHANNEL SYSTEMS............................................................................................ 44  
26  
CONFIGURATION REGISTERS........................................................................................................45  
26.1 CONFIGURATION REGISTER DETAILS - REGISTERS WITH PRESERVED VALUES IN SLEEP STATE ...............49  
26.2 CONFIGURATION REGISTER DETAILS - REGISTERS THAT LOOSE PROGRAMMING IN SLEEP STATE ..........63  
26.3 STATUS REGISTER DETAILS....................................................................................................................... 64  
27  
28  
29  
DEVELOPMENT KIT ORDERING INFORMATION .....................................................................66  
REFERENCES .......................................................................................................................................67  
GENERAL INFORMATION................................................................................................................68  
29.1 DOCUMENT HISTORY ................................................................................................................................ 68  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
HTTP://WWW.SZRFSTAR.COM  
TEL:0755-86329829 FAX:0755-86329413  
CC113L  
1
Absolute Maximum Ratings  
Under no circumstances must the absolute maximum ratings given in Table 1 be violated. Stress  
exceeding one or more of the limiting values may cause permanent damage to the device.  
Parameter  
Min  
Max  
Units Condition  
Supply voltage  
0.3  
3.9  
V
V
All supply pins must have the same voltage  
Voltage on any digital pin  
0.3 VDD + 0.3,  
max 3.9  
Voltage on the pins RF_P, RF_N,  
DCOUPL, RBIAS  
0.3  
50  
2.0  
V
Voltage ramp-up rate  
Input RF level  
120  
+10  
150  
260  
750  
kV/µs  
dBm  
C
Storage temperature range  
Solder reflow temperature  
ESD  
According to IPC/JEDEC J-STD-020  
C
V
According to JEDEC STD 22, method A114, Human  
Body Model (HBM)  
ESD  
400  
V
According to JEDEC STD 22, C101C, Charged Device  
Model (CDM)  
Table 1: Absolute Maximum Ratings  
Caution! ESD sensitive device. Precaution should be  
used when handling the device in order to prevent  
permanent damage.  
2
Operating Conditions  
The operating conditions for CC113L are listed in Table 2 below.  
Parameter  
Min  
40  
1.8  
Max  
85  
Unit  
C
Condition  
Operating temperature  
Operating supply voltage  
3.6  
V
All supply pins must have the same voltage  
Table 2: Operating Conditions  
3
General Characteristics  
Parameter  
Min  
300  
387  
Max  
348  
464  
Unit  
MHz  
MHz  
Condition/Note  
Frequency range  
If using a 27 MHz crystal, the lower frequency limit for this band  
is 392 MHz  
779  
0.6  
0.6  
0.6  
928  
500  
250  
300  
MHz  
Data rate  
kBaud  
kBaud  
kBaud  
2-FSK  
GFSK and OOK  
4-FSK (the data rate in kbps will be twice the baud rate)  
Optional Manchester encoding (the data rate in kbps will be half  
the baud rate)  
Table 3: General Characteristics  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
 
 
CC113L  
4
Electrical Specifications  
4.1  
Current Consumption  
TA = 25 C, VDD = 3.0 V if nothing else stated. All measurement results are obtained using [1] and [2]. Reduced current settings  
(MDMCFG2.DEM_DCFILT_OFF=1) gives a slightly lower current consumption at the cost of a reduction in sensitivity. See Table  
5 for additional details on current consumption and sensitivity.  
Parameter  
Min  
Typ Max Unit Condition  
Current consumption  
in power down modes  
0.2  
1
Voltage regulator to digital part off, register values retained (SLEEP  
state). All GDO pins programmed to 0x2F (HW to 0)  
A
100  
Voltage regulator to digital part off, register values retained, XOSC  
A
running (SLEEP state with MCSM0.OSC_FORCE_ONset)  
165  
1.7  
Voltage regulator to digital part on, all other modules in power down  
(XOFF state)  
A
Current consumption  
mA  
Only voltage regulator to digital part and crystal oscillator running (IDLE  
state)  
8.4  
mA  
The current consumption for the intermediate states when going from  
IDLE to RX, including the calibration state  
Current consumption,  
315 MHz  
15.4  
14.4  
mA  
mA  
Receive mode, 1.2 kBaud, reduced current, input at sensitivity limit  
Receive mode, 1.2 kBaud, register settings optimized for reduced  
current, input well above sensitivity limit  
15.2  
14.3  
16.5  
15.1  
16.0  
15.0  
15.7  
15.0  
17.1  
15.7  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Receive mode, 38.4 kBaud, register settings optimized for reduced  
current, input at sensitivity limit  
Receive mode, 38.4 kBaud, register settings optimized for reduced  
current, input well above sensitivity limit  
Receive mode, 250 kBaud, register settings optimized for reduced  
current, input at sensitivity limit  
Receive mode, 250 kBaud, register settings optimized for reduced  
current, input well above sensitivity limit  
Current consumption,  
433 MHz  
Receive mode, 1.2 kBaud, register settings optimized for reduced  
current, input at sensitivity limit  
Receive mode, 1.2 kBaud, register settings optimized for reduced  
current, input well above sensitivity limit  
Receive mode, 38.4 kBaud, register settings optimized for reduced  
current, input at sensitivity limit  
Receive mode, 38.4 kBaud, register settings optimized for reduced  
current, input well above sensitivity limit  
Receive mode, 250 kBaud, register settings optimized for reduced  
current, input at sensitivity limit  
Receive mode, 250 kBaud, register settings optimized for reduced  
current, input well above sensitivity limit  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
CC113L  
Parameter  
Min  
Typ Max Unit Condition  
Current consumption,  
868/915 MHz  
15.7  
14.7  
15.6  
14.6  
16.9  
15.6  
mA  
mA  
mA  
mA  
mA  
mA  
Receive mode, 1.2 kBaud, register settings optimized for reduced  
current, input at sensitivity limit. See Figure 1 for current consumption  
with register settings optimized for sensitivity.  
Receive mode, 1.2 kBaud, register settings optimized for reduced  
current, input well above sensitivity limit. See Figure 1 for current  
consumption with register settings optimized for sensitivity.  
Receive mode, 38.4 kBaud, register settings optimized for reduced  
current, input at sensitivity limit. See Figure 1 for current consumption  
with register settings optimized for sensitivity.  
Receive mode, 38.4 kBaud, register settings optimized for reduced  
current, input well above sensitivity limit. See Figure 1 for current  
consumption with register settings optimized for sensitivity.  
Receive mode, 250 kBaud, register settings optimized for reduced  
current, input at sensitivity limit. See Figure 1 for current consumption  
with register settings optimized for sensitivity.  
Receive mode, 250 kBaud, register settings optimized for reduced  
current, input well above sensitivity limit. See Figure 1 for current  
consumption with register settings optimized for sensitivity.  
Table 4: Current Consumption  
17,8  
17,6  
17,4  
17,2  
17  
-40C  
+25C  
+85C  
16,8  
16,6  
16,4  
16,2  
-110  
-90  
-70  
-50  
-30  
-10  
-20  
-20  
Input Power Level [dBm]  
1.2 kBaud GFSK  
17,8  
17,6  
17,4  
17,2  
17,0  
16,8  
16,6  
16,4  
16,2  
-40C  
+25C  
+85C  
-100  
-80  
-60  
-40  
Input Power Level [dBm]  
38.4 kBaud GFSK  
19,5  
19  
18,5  
18  
-40C  
+25C  
+85C  
17,5  
17  
16,5  
-100  
-80  
-60  
-40  
Input Power Level [dBm]  
250 kBaud GFSK  
Figure 1: Typical RX Current Consumption over Temperature and Input Power Level,  
868/915 MHz, Sensitivity Optimized Setting  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
CC113L  
4.2  
RF Receive Section  
TA = 25 C, VDD = 3.0 V if nothing else stated. All measurement results are obtained using [1] and [2].  
Parameter  
Min  
Typ  
Max  
Unit Condition/Note  
Digital channel  
filter bandwidth  
58  
812  
kHz User programmable. The bandwidth limits are proportional to crystal  
frequency (given values assume a 26.0 MHz crystal)  
dBm 25 MHz - 1 GHz  
Spurious  
emissions  
68  
66  
57  
47  
(Maximum figure is the ETSI EN 300 220 V2.3.1 limit)  
dBm Above 1 GHz  
(Maximum figure is the ETSI EN 300 220 V2.3.1 limit)  
Typical radiated spurious emission is 49 dBm measured at the VCO  
frequency  
RX latency  
9
bit  
Serial operation. Time from start of reception until data is available on the  
receiver data output pin is equal to 9 bit  
315 MHz  
1.2 kBaud data rate, sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF=0  
(2-FSK, 1% packet error rate, 20 bytes packet length, 5.2 kHz deviation, 58 kHz digital channel filter bandwidth)  
Receiver  
sensitivity  
111  
dBm Sensitivity can be traded for current consumption by setting  
MDMCFG2.DEM_DCFILT_OFF=1. The typical current consumption is then  
reduced from 17.2 mA to 15.4 mA at the sensitivity limit. The sensitivity is  
typically reduced to -109 dBm  
433 MHz  
0.6 kBaud data rate, sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF=0  
(GFSK, 1% packet error rate, 20 bytes packet length, 14.3 kHz deviation, 58 kHz digital channel filter bandwidth)  
Receiver  
116  
dBm  
sensitivity  
1.2 kBaud data rate, sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF=0  
(GFSK, 1% packet error rate, 20 bytes packet length, 5.2 kHz deviation, 58 kHz digital channel filter bandwidth)  
Receiver  
sensitivity  
112  
dBm Sensitivity can be traded for current consumption by setting  
MDMCFG2.DEM_DCFILT_OFF=1. The typical current consumption is then  
reduced from 18.0 mA to 16.0 mA at the sensitivity limit. The sensitivity is  
typically reduced to 110 dBm  
38.4 kBaud data rate, sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF=0  
(GFSK, 1% packet error rate, 20 bytes packet length, 20 kHz deviation, 100 kHz digital channel filter bandwidth)  
Receiver  
104  
dBm  
sensitivity  
250 kBaud data rate, sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF=0  
(GFSK, 1% packet error rate, 20 bytes packet length, 127 kHz deviation, 540 kHz digital channel filter bandwidth)  
Receiver  
95  
dBm  
sensitivity  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
CC113L  
Parameter  
Min  
Typ  
Max  
Unit Condition/Note  
868/915 MHz  
1.2 kBaud data rate, sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF=0  
(GFSK, 1% packet error rate, 20 bytes packet length, 5.2 kHz deviation, 58 kHz digital channel filter bandwidth)  
Receiver sensitivity  
112  
dBm Sensitivity can be traded for current consumption by setting  
MDMCFG2.DEM_DCFILT_OFF=1. The typical current  
consumption is then reduced from 17.7 mA to 15.7 mA at  
sensitivity limit. The sensitivity is typically reduced to 109 dBm  
Saturation  
14  
dBm  
FIFOTHR.CLOSE_IN_RX=0.See more in DN010 [5]  
Adjacent channel rejection  
±100 kHz offset  
Desired channel 3 dB above the sensitivity limit.  
100 kHz channel spacing  
37  
31  
dB  
dB  
See Figure 2 for selectivity performance at other offset  
frequencies  
Image channel rejection  
IF frequency 152 kHz  
Desired channel 3 dB above the sensitivity limit  
Blocking  
Desired channel 3 dB above the sensitivity limit  
±2 MHz offset  
±10 MHz offset  
50  
40  
dBm See Figure 2 for blocking performance at other offset  
dBm frequencies  
38.4 kBaud data rate, sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF=0  
(GFSK, 1% packet error rate, 20 bytes packet length, 20 kHz deviation, 100 kHz digital channel filter bandwidth)  
Receiver sensitivity  
104  
dBm Sensitivity can be traded for current consumption by setting  
MDMCFG2.DEM_DCFILT_OFF=1. The typical current  
consumption is then reduced from 17.7 mA to 15.6 mA at the  
sensitivity limit. The sensitivity is typically reduced to -102 dBm  
Saturation  
16  
dBm  
FIFOTHR.CLOSE_IN_RX=0.See more in DN010 [5]  
Adjacent channel rejection  
200 kHz offset  
+200 kHz offset  
Desired channel 3 dB above the sensitivity limit.  
200 kHz channel spacing  
See Figure 3 for blocking performance at other offset  
frequencies  
12  
25  
dB  
dB  
Image channel rejection  
23  
dB  
IF frequency 152 kHz  
Desired channel 3 dB above the sensitivity limit  
Blocking  
Desired channel 3 dB above the sensitivity limit  
±2 MHz offset  
±10 MHz offset  
50  
40  
dBm See Figure 3 for blocking performance at other offset  
dBm frequencies  
250 kBaud data rate, sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF=0  
(GFSK, 1% packet error rate, 20 bytes packet length, 127 kHz deviation, 540 kHz digital channel filter bandwidth)  
Receiver sensitivity  
95  
dBm Sensitivity can be traded for current consumption by setting  
MDMCFG2.DEM_DCFILT_OFF=1. The typical current  
consumption is then reduced from 18.9 mA to 16.9 mA at the  
sensitivity limit. The sensitivity is typically reduced to 91 dBm  
Saturation  
17  
dBm  
dB  
FIFOTHR.CLOSE_IN_RX=0. See more in DN010 [5]  
Adjacent channel rejection  
25  
Desired channel 3 dB above the sensitivity limit.  
750 kHz channel spacing  
See Figure 4 for blocking performance at other offset  
frequencies  
Image channel rejection  
14  
dB  
IF frequency 304 kHz  
Desired channel 3 dB above the sensitivity limit  
Blocking  
Desired channel 3 dB above the sensitivity limit  
±2 MHz offset  
±10 MHz offset  
50  
40  
dBm See Figure 4 for blocking performance at other offset  
dBm frequencies  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
CC113L  
Parameter  
Min  
Typ  
Max  
Unit  
Condition/Note  
4-FSK, 125 kBaud data rate (250 kbps), sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF=0  
(1% packet error rate, 20 bytes packet length, 127 kHz deviation, 406 kHz digital channel filter bandwidth)  
Receiver sensitivity  
96  
dBm  
4-FSK, 250 kBaud data rate (500 kbps), sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF=0  
(1% packet error rate, 20 bytes packet length, 254 kHz deviation, 812 kHz digital channel filter bandwidth  
Receiver sensitivity  
91  
dBm  
4-FSK, 300 kBaud data rate (600 kbps), sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF=0  
(1% packet error rate, 20 bytes packet length, 228 kHz deviation, 812 kHz digital channel filter bandwidth)  
Receiver sensitivity  
89  
dBm  
Table 5: RF Receive Section  
Supply Voltage  
VDD = 1.8 V  
Supply Voltage  
VDD = 3.0 V  
Supply Voltage  
VDD = 3.6 V  
Temperature [°C]  
40  
113  
105  
97  
25  
85  
40  
113  
105  
97  
25  
85  
40  
25  
85  
Sensitivity [dBm] 1.2 kBaud  
Sensitivity [dBm] 38.4 kBaud  
Sensitivity [dBm] 250 kBaud  
Sensitivity [dBm] 500 kBaud  
112  
104  
96  
110  
102  
92  
112  
104  
95  
110  
102  
92  
113  
105  
97  
112  
104  
94  
110  
102  
92  
91  
90  
86  
91  
90  
86  
91  
90  
86  
Table 6: Typical Sensitivity over Temperature and Supply Voltage, 868 MHz,  
Sensitivity Optimized Setting  
Supply Voltage  
VDD = 1.8 V  
Supply Voltage  
VDD = 3.0 V  
Supply Voltage  
VDD = 3.6 V  
Temperature [°C]  
40  
113  
105  
97  
25  
85  
40  
113  
104  
97  
25  
85  
40  
113  
105  
97  
25  
85  
Sensitivity [dBm] 1.2 kBaud  
Sensitivity [dBm] 38.4 kBaud  
Sensitivity [dBm] 250 kBaud  
Sensitivity [dBm] 500 kBaud  
112  
104  
94  
110  
102  
92  
112  
104  
95  
110  
102  
92  
112  
104  
95  
110  
102  
92  
91  
89  
86  
91  
90  
86  
91  
89  
86  
Table 7: Typical Sensitivity over Temperature and Supply Voltage, 915 MHz,  
Sensitivity Optimized Setting  
80  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
-10  
-1 -0,9 -0,8 -0,7 -0,6 -0,5 -0,4 -0,3 -0,2 -0,1  
0
0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9  
1
-20  
-10  
Offset [MHz]  
Offset [MHz]  
Figure 2: Typical Selectivity at 1.2 kBaud Data Rate, 868.3 MHz, GFSK, 5.2 kHz Deviation.  
IF Frequency is 152.3 kHz and the Digital Channel Filter Bandwidth is 58 kHz  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
CC113L  
70  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
-1 -0,9 -0,8 -0,7 -0,6 -0,5 -0,4 -0,3 -0,2 -0,1  
0
0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9  
1
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
-10  
-20  
-10  
-20  
Offset [MHz]  
Offset [MHz]  
Figure 3: Typical Selectivity at 38.4 kBaud Data Rate, 868 MHz, GFSK, 20 kHz Deviation.  
IF Frequency is 152.3 kHz and the Digital Channel Filter Bandwidth is 100 kHz  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
-2  
-1,5  
-1  
-0,5  
0
0,5  
1
1,5  
2
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
-10  
-20  
-10  
-20  
Offset [MHz]  
Offset [MHz]  
Figure 4: Typical Selectivity at 250 kBaud Data Rate, 868 MHz, GFSK,  
IF Frequency is 304 kHz and the Digital Channel Filter Bandwidth is 540 kHz  
60  
50  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
-2  
-1,5  
-1  
-0,5  
0
0,5  
1
1,5  
2
-10  
-20  
-30  
-10  
-20  
Offset [MHz]  
Offset [MHz]  
Figure 5: Typical Selectivity at 500 kBaud Data Rate, 868 MHz, GFSK,  
IF Frequency is 355 kHz and the Digital Channel Filter Bandwidth is 812 kHz  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
CC113L  
4.3 Crystal Oscillator  
TA = 25 C, VDD = 3.0 V if nothing else is stated. All measurement results obtained using [1] and [2].  
Parameter  
Min Typ Max Unit Condition/Note  
Crystal  
26  
26  
27  
MHz For compliance with modulation bandwidth requirements under EN 300 220  
frequency  
V2.3.1 in the 863 to 870 MHz frequency range it is recommended to use a 26  
MHz crystal for frequencies below 869 MHz and a 27 MHz crystal for frequencies  
above 869 MHz  
Tolerance  
±40  
13  
ppm This is the total tolerance including a) initial tolerance, b) crystal loading, c)  
aging, and d) temperature dependence. The acceptable crystal tolerance  
depends on RF frequency and channel spacing / bandwidth.  
Load  
10  
20  
pF  
Simulated over operating conditions  
capacitance  
ESR  
100  
Start-up time  
150  
µs  
This parameter is to a large degree crystal dependent. Measured on [1] and [2]  
using crystal AT-41CD2 from NDK  
Table 8: Crystal Oscillator Parameters  
4.4 Frequency Synthesizer Characteristics  
TA = 25 C, VDD = 3.0 V if nothing else is stated. All measurement results are obtained using [1] and [2]. Min figures are given  
using a 27 MHz crystal. Typ. and max figures are given using a 26 MHz crystal  
Parameter  
Min  
Typ  
Max  
Unit  
Condition/Note  
Programmed frequency  
resolution  
397  
FXOSC/216  
412  
Hz  
26 - 27 MHz crystal. The resolution (in Hz) is equal for all  
frequency bands  
Synthesizer frequency  
tolerance  
±40  
ppm  
Given by crystal used. Required accuracy (including  
temperature and aging) depends on frequency band and  
channel bandwidth / spacing  
RF carrier phase noise  
RF carrier phase noise  
RF carrier phase noise  
RF carrier phase noise  
RF carrier phase noise  
RF carrier phase noise  
RF carrier phase noise  
RF carrier phase noise  
92  
92  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
s
@ 50 kHz offset from carrier  
@ 100 kHz offset from carrier  
@ 200 kHz offset from carrier  
@ 500 kHz offset from carrier  
@ 1 MHz offset from carrier  
@ 2 MHz offset from carrier  
@ 5 MHz offset from carrier  
@ 10 MHz offset from carrier  
92  
98  
107  
113  
119  
129  
75  
PLL turn-on time  
( See Table 26)  
72  
75  
Time from leaving the IDLE state until arriving in the RX  
state, when not performing calibration. Crystal oscillator  
running.  
PLL calibration time  
(See Table 27)  
685  
712  
724  
Calibration can be initiated manually or automatically  
before entering or after leaving RX  
s
Table 9: Frequency Synthesizer Parameters  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
 
CC113L  
4.5 DC Characteristics  
TA = 25 C if nothing else stated.  
Digital Inputs/Outputs  
Min  
Max  
0.7  
Unit  
V
Condition  
Logic "0" input voltage  
0
Logic "1" input voltage  
Logic "0" output voltage  
Logic "1" output voltage  
Logic "0" input current  
Logic "1" input current  
VDD 0.7  
0
VDD  
0.5  
V
V
For up to 4 mA output current  
For up to 4 mA output current  
Input equals 0 V  
VDD 0.3  
N/A  
VDD  
50  
50  
V
nA  
nA  
N/A  
Input equals VDD  
Table 10: DC Characteristics  
4.6 Power-On Reset  
For proper Power-On-Reset functionality the power supply should comply with the requirements in  
Table 11 below. Otherwise, the chip should be assumed to have unknown state until transmitting an  
SRESstrobe over the SPI interface. See Section 18.1 on page 36 for further details.  
Parameter  
Min  
Typ  
Max  
Unit  
Condition/Note  
Power-up ramp-up time  
Power off time  
5
ms  
ms  
From 0V until reaching 1.8V  
1
Minimum time between power-on and power-off  
Table 11: Power-On Reset Requirements  
5
Pin Configuration  
The CC113L pin-out is shown in Figure 6 and Table 12. See Section 23 for details on the I/O  
configuration.  
20 19 18 17 16  
SCLK 1  
SO (GDO1) 2  
GDO2 3  
15 AVDD  
14 AVDD  
13 RF_N  
12 RF_P  
11 AVDD  
DVDD 4  
DCOUPL 5  
GND  
Exposed die  
attach pad  
6
7
8
9 10  
Figure 6: Pinout Top View  
Note: The exposed die attach pad must be connected to a solid ground plane as this is the main  
ground connection for the chip  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
HTTP://WWW.SZRFSTAR.COM  
TEL:0755-86329829 FAX:0755-86329413  
 
 
CC113L  
Pin #  
Pin Name  
Pin type  
Description  
1
2
SCLK  
Digital Input  
Digital Output  
Serial configuration interface, clock input  
Serial configuration interface, data output  
Optional general output pin when CSn is high  
Digital output pin for general use:  
Test signals  
SO  
(GDO1)  
3
GDO2  
Digital Output  
FIFO status signals  
Clock output, down-divided from XOSC  
Serial output RX data  
4
5
DVDD  
Power (Digital)  
Power (Digital)  
1.8 - 3.6 V digital power supply for digital I/O‟s and for the digital core voltage  
regulator  
DCOUPL  
1.6 - 2.0 V digital power supply output for decoupling  
NOTE: This pin is intended for use with the CC113L only. It cannot be used to provide  
supply voltage to other devices  
6
GDO0  
Digital I/O  
Digital output pin for general use:  
Test signals  
FIFO status signals  
Clock output, down-divided from XOSC  
Serial output RX data  
7
CSn  
Digital Input  
Serial configuration interface, chip select  
Crystal oscillator pin 1, or external clock input  
1.8 - 3.6 V analog power supply connection  
Crystal oscillator pin 2  
8
XOSC_Q1 Analog I/O  
9
AVDD  
Power (Analog)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
XOSC_Q2 Analog I/O  
AVDD  
RF_P  
RF_N  
AVDD  
AVDD  
GND  
Power (Analog)  
1.8 - 3.6 V analog power supply connection  
Positive RF input signal to LNA in receive mode  
Negative RF input signal to LNA in receive mode  
1.8 - 3.6 V analog power supply connection  
1.8 - 3.6 V analog power supply connection  
RF I/O  
RF I/O  
Power (Analog)  
Power (Analog)  
Ground (Analog) Analog ground connection  
RBIAS  
DGUARD  
GND  
Analog I/O  
External bias resistor for reference current  
Power (Digital)  
Ground (Digital)  
Digital Input  
Power supply connection for digital noise isolation  
Ground connection for digital noise isolation  
Serial configuration interface, data input  
SI  
Table 12: Pinout Overview  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
CC113L  
6
Circuit Description  
RADIO CONTROL  
SCLK  
ADC  
ADC  
RF_P  
SO (GDO1)  
LNA  
SI  
RF_N  
CSn  
FREQ  
SYNTH  
0
GDO0  
GDO2  
90  
BIAS  
XOSC  
XOSC_Q1 XOSC_Q2  
RBIAS  
Figure 7: CC113L Simplified Block Diagram  
signals to the down-conversion mixers in  
receive mode.  
A simplified block diagram of CC113L is shown  
in Figure 7.  
A crystal is to be connected to XOSC_Q1 and  
XOSC_Q2. The crystal oscillator generates the  
reference frequency for the synthesizer, as  
well as clocks for the ADC and the digital part.  
CC113L features a low-IF receiver. The received  
RF signal is amplified by the low-noise  
amplifier (LNA) and down-converted in  
quadrature (I and Q) to the intermediate  
frequency (IF). At IF, the I/Q signals are  
digitised by the ADCs. Automatic gain control  
(AGC), fine channel filtering, demodulation,  
and bit/packet synchronization are performed  
digitally.  
A 4-wire SPI serial interface is used for  
configuration and data buffer access.  
The digital baseband includes support for  
channel configuration, packet handling, and  
data buffering.  
The frequency synthesizer includes  
a
completely on-chip LC VCO and a 90 degree  
phase shifter for generating the I and Q LO  
7
Application Circuit  
Figure 8 shows the low cost CC113LEM  
application circuit ([10] and [11]) (see Table 13  
for component values).  
The designs in [1] and [2] were used for CC113L  
characterization. The application circuits are  
shown in Figure 9 and Figure 10 (see Table 14  
for component values).  
7.1 Bias Resistor  
The 56 kΩ bias resistor R171 is used to set an  
accurate bias current  
7.2 Balun and RF Matching  
The balun component values and their  
placement are important to keep the  
performance optimized. Gerber files and  
schematics for the reference designs are  
available for download from the TI website  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
CC113L  
7.2.1 Balun and RF Matching (low cost  
application circuit)  
differential RF signal on CC113L. C124 is  
needed for DC blocking.  
The components between the RF_N/RF_P  
pins and the point where the two signals are  
joined together (C131, L132, C122, L122, see  
Figure 8) form a balun that converts single-  
The balun components also matches the  
CC113L input impedance to a 50  
source.  
C126 provides DC blocking and is only  
needed if there is a DC path in the antenna.  
ended RF signal at the antenna to  
a
1.8 V - 3.6 V  
power supply  
R171  
SI  
Antenna  
(50 Ohm)  
SCLK  
1 SCLK  
AVDD 15  
C131  
SO (GDO1)  
2 SO  
(GDO1)  
AVDD 14  
RF_N 13  
RF_P 12  
AVDD 11  
L132  
C126  
GDO2 (optional)  
CC113L  
3 GDO2  
DIE ATTACH PAD:  
4 DVDD  
C122  
5 DCOUPL  
L122  
C124  
C51  
GDO0 (optional)  
CSn  
XTAL  
C81  
C101  
Figure 8: Low Cost Application Circuit and Evaluation Circuit 315/433/868/915 MHz  
(excluding supply decoupling capacitors) ([10] and [11])  
Component Value at 315 MHz Value at 433 MHz Value at 868/915 MHz  
C124  
C122  
C126  
C131  
L122  
L132  
220 pF  
6.8 pF  
220 pF  
6.8 pF  
33 nH  
33 nH  
220 pF  
3.9 pF  
220 pF  
3.9 pF  
27 nH  
27 nH  
100 pF  
2.2 pF  
100 pF  
2.2 pF  
12 nH  
12 nH  
Table 13: External Components (low cost application circuit)  
C126 provides DC blocking and is only  
needed if there is a DC path in the antenna.  
7.2.2 Balun  
and  
RF  
Matching  
(characterization circuit)  
Note that the 315/433 MHz design [1] use  
Murata LQG15 multi-layer inductors while the  
868/915 MHz design [2] use Murata LQW15  
wire-wound inductors.  
The components between the RF_N/RF_P  
pins and the point where the two signals are  
joined together (C131, C122, L122, and L132  
in Figure 9 and L121, L131, C121, L122,  
C131, C122, and L132 in Figure 10) form a  
balun that converts single-ended RF signal at  
the antenna to a differential RF signal on  
CC113L. C124 is needed for DC blocking.  
L123, L124, and C123 ( plus C125 in Figure 9)  
form an LC low-pass filter. This filter is not  
required for an RX-only design and can be  
omitted.  
The balun components also matches the  
CC113L input impedance to a 50  
source.  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
CC113L  
1.8 V - 3.6 V  
power supply  
R171  
SI  
Antenna  
(50 Ohm)  
SCLK  
1 SCLK  
AVDD 15  
C131  
L132  
SO  
2 SO  
(GDO1)  
AVDD 14  
RF_N 13  
RF_P 12  
AVDD 11  
(GDO1)  
GDO2  
(optional)  
C126  
C125  
CC113L  
3 GDO2  
DIE ATTACH PAD:  
4 DVDD  
L123  
L124  
C123  
C122  
5 DCOUPL  
L122  
C124  
C51  
GDO0  
(optional)  
CSn  
XTAL  
C81  
C101  
Figure 9: Characterization Circuit 315/433 MHz (excluding supply decoupling capacitors) ([1])  
1.8 V - 3.6 V  
power supply  
R171  
SI  
Antenna  
(50 Ohm)  
C131  
L132  
SCLK  
1 SCLK  
AVDD 15  
SO  
2 SO  
(GDO1)  
L131  
L121  
AVDD 14  
RF_N 13  
RF_P 12  
AVDD 11  
(GDO1)  
GDO2  
(optional)  
C126  
3 GDO2  
L123  
L124  
CC113L  
C121 C122  
4 DVDD  
DIE ATTACH PAD:  
5 DCOUPL  
C123  
L122  
C124  
C51  
GDO0  
(optional)  
CSn  
XTAL  
C81  
C101  
Figure 10: Characterization Circuit 868/915 MHz (excluding supply decoupling capacitors) ([2])  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
HTTP://WWW.SZRFSTAR.COM  
TEL:0755-86329829 FAX:0755-86329413  
CC113L  
Component Value at 315 MHz Value at 433 MHz Value at 868/915 MHz  
C121  
C122  
C123  
C124  
C125  
C126  
C131  
L121  
L122  
L123  
L124  
L131  
L132  
1 pF  
6.8 pF  
12 pF  
3.9 pF  
8.2 pF  
220 pF  
5.6 pF  
220 pF  
3.9 pF  
1.5 pF  
3.3 pF  
100 pF  
220 pF  
6.8 pF  
220 pF  
6.8 pF  
100 pF  
1.5 pF  
12 nH  
18 nH  
12 nH  
12 nH  
12 nH  
18 nH  
33 nH  
18 nH  
33 nH  
27 nH  
22 nH  
27 nH  
33 nH  
27 nH  
Table 14: External Components (characterization circuits)  
7.3 Crystal  
A crystal in the frequency range 26 - 27 MHz  
must be connected between the XOSC_Q1and  
XOSC_Q2 pins. The oscillator is designed for  
parallel mode operation of the crystal. In  
addition, loading capacitors (C81 and C101)  
for the crystal are required. The loading  
capacitor values depend on the total load  
capacitance, CL, specified for the crystal. The  
total load capacitance seen between the  
crystal terminals should equal CL for the  
crystal to oscillate at the specified frequency.  
up the oscillations. When the amplitude builds  
up, the current is reduced to what is necessary  
to maintain approximately 0.4 Vpp signal  
swing. This ensures a fast start-up, and keeps  
the drive level to a minimum. The ESR of the  
crystal should be within the specification in  
order to ensure  
a
reliable start-up  
(see Section 4.3 on page 12).  
The initial tolerance, temperature drift, aging  
and load pulling should be carefully specified  
in order to meet the required frequency  
accuracy in a certain application.  
1
CL  
Cparasitic  
1
1
Avoid routing digital signals with sharp edges  
close to XOSC_Q1 PCB track or underneath  
the crystal Q1 pad as this may shift the crystal  
dc operating point and result in duty cycle  
variation.  
C81 C101  
The parasitic capacitance is constituted by pin  
input capacitance and PCB stray capacitance.  
Total parasitic capacitance is typically 2.5 pF.  
The crystal oscillator is amplitude regulated.  
This means that a high current is used to start  
7.4 Reference Signal  
The chip can alternatively be operated with a  
reference signal from 26 - 27 MHz instead of a  
crystal. This input clock can either be a full-  
swing digital signal (0 V to VDD) or a sine  
wave of maximum 1 V peak-peak amplitude.  
The reference signal must be connected to the  
XOSC_Q1 input. The sine wave must be  
connected to XOSC_Q1 using  
a
serial  
capacitor. When using a full-swing digital  
signal, this capacitor can be omitted. The  
XOSC_Q2 line must be left un-connected. C81  
and C101 can be omitted when using a  
reference signal.  
7.5  
Power Supply Decoupling  
The power supply must be properly decoupled  
close to the supply pins. Note that decoupling  
capacitors are not shown in the application  
circuit. The placement and the size of the  
decoupling capacitors are very important to  
achieve the optimum performance. The  
CC113LEM reference designs ([10] and [11])  
should be followed closely.  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
CC113L  
7.6  
PCB Layout Recommendations  
The top layer should be used for signal  
routing, and the open areas should be filled  
with metallization connected to ground using  
several vias.  
Each decoupling capacitor ground pad should  
be connected to the ground plane by separate  
vias. Direct connections between neighboring  
power pins will increase noise coupling and  
should be avoided unless absolutely  
necessary. Routing in the ground plane  
underneath the chip or the balun/RF matching  
circuit, or between the chip‟s ground vias and  
the decoupling capacitor‟s ground vias should  
be avoided. This improves the grounding and  
ensures the shortest possible current return  
path.  
The area under the chip is used for grounding  
and shall be connected to the bottom ground  
plane with several vias for good thermal  
performance and sufficiently low inductance to  
ground.  
In the CC113LEM reference designs ([10] and  
[11]), 5 vias are placed inside the exposed die  
attached pad. These vias should be “tented”  
(covered with solder mask) on the component  
side of the PCB to avoid migration of solder  
through the vias during the solder reflow  
process.  
Avoid routing digital signals with sharp edges  
close to XOSC_Q1 PCB track or underneath  
the crystal Q1 pad as this may shift the crystal  
dc operating point and result in duty cycle  
variation.  
The solder paste coverage should not be  
100%. If it is, out gassing may occur during the  
reflow process, which may cause defects  
(splattering, solder balling). Using “tented” vias  
reduces the solder paste coverage below  
100%. See Figure 11 for top solder resist and  
top paste masks.  
The external components should ideally be as  
small as possible (0402 is recommended) and  
surface  
mount  
devices  
are  
highly  
recommended. Please note that components  
with different sizes than those specified may  
have differing characteristics.  
Precaution should be used when placing the  
microcontroller in order to avoid noise  
interfering with the RF circuitry.  
Each decoupling capacitor should be placed  
as close as possible to the supply pin it is  
supposed to decouple. Each decoupling  
capacitor should be connected to the power  
line (or power plane) by separate vias. The  
best routing is from the power line (or power  
plane) to the decoupling capacitor and then to  
the CC113L supply pin. Supply power filtering is  
very important.  
A CC11xL Development Kit with a fully  
assembled CC113L Evaluation Module is  
available. It is strongly advised that this  
reference layout is followed very closely in  
order to get the best performance. The  
schematic, BOM and layout Gerber files are all  
available from the TI website ([10] and [11]).  
Figure 11: Left: Top Solder Resist Mask (Negative). Right: Top Paste Mask. Circles are Vias  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
HTTP://WWW.SZRFSTAR.COM  
TEL:0755-86329829 FAX:0755-86329413  
 
CC113L  
8
Configuration Overview  
CC113L can be configured to achieve optimum  
performance for many different applications.  
Configuration is done using the SPI interface.  
See Section 10 for more description of the SPI  
interface. The following key parameters can be  
programmed:  
RX channel filter bandwidth  
Data buffering with the 64-byte RX FIFO  
Packet radio hardware support  
Details of each configuration register can be  
found in Section 26 starting on page 45.  
Figure 12 shows a simplified state diagram  
that explains the main CC113L states together  
with typical usage and current consumption.  
For detailed information on controlling the  
CC113L state machine, and a complete state  
diagram, see Section 18, starting on page 35.  
Power-down / power up mode  
Crystal oscillator power-up / power-down  
Receive mode  
Carrier Frequency / RF channel  
Data rate  
Modulation format  
Lowest power mode. Most  
Sleep  
register values are retained.  
Typ. current consumption:  
SPWD  
SIDLE  
200 nA  
Default state when the radio is not  
receiving. Typ. current  
CSn = 0  
consumption: 1.7 mA.  
IDLE  
SXOFF  
SCAL  
Used for calibrating frequency  
synthesizer upfront (entering  
receive mode can then be  
done quicker). Transitional  
state. Typ. current  
CSn = 0  
All register values are  
Crystal  
Manual freq.  
synth. calibration  
retained. Typ. current  
oscillator off  
SRX  
consumption: 165 µA.  
consumption: 8.4 mA.  
Frequency  
synthesizer startup,  
optional calibration,  
settling  
Frequency synthesizer is turned on, can optionally be  
calibrated, and then settles to the correct frequency.  
Transitional state. Typ. current consumption: 8.4 mA.  
Typ. current  
consumption:  
from 14.7 mA (strong  
input signal) to 15.7 mA  
(weak input signal).  
Receive mode  
In Normal mode, this state is  
entered if the RX FIFO  
overflows. Typ. current  
consumption: 1.7 mA.  
RXOFF_MODE = 00  
RX FIFO  
overflow  
Optional freq.  
Optional transitional state. Typ.  
synth. calibration  
current consumption: 8.4 mA.  
SFRX  
IDLE  
Figure 12: Simplified Radio Control State Diagram, with Typical Current Consumption at  
1.2 kBaud Data Rate and MDMCFG2.DEM_DCFILT_OFF=1(current optimized).  
Frequency Band = 868 MHz  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
CC113L  
9
Configuration Software  
After chip reset, all the registers have default  
values as shown in the tables in Section 26.  
The optimum register setting might differ from  
the default value. After a reset all registers that  
shall be different from the default value  
therefore needs to be programmed through  
the SPI interface.  
CC113L can be configured using the SmartRF™  
Studio software [4]. The SmartRF Studio  
software is highly recommended for obtaining  
optimum register settings, and for evaluating  
performance and functionality.  
10 4-wire Serial Configuration and Data Interface  
cancelled. The timing for the address and data  
transfer on the SPI interface is shown in Figure  
13 with reference to Table 15.  
CC113L is configured via a simple 4-wire SPI-  
compatible interface (SI, SO, SCLK and CSn)  
where CC113L is the slave. This interface is also  
used to read buffered data. All transfers on the  
SPI interface are done most significant bit first.  
When CSn is pulled low, the MCU must wait  
until CC113L SO pin goes low before starting to  
transfer the header byte. This indicates that  
the crystal is running. Unless the chip was in  
the SLEEP or XOFF states, the SO pin will  
always go low immediately after taking CSn  
low.  
All transactions on the SPI interface start with  
a header byte containing a R/W¯ bit, a burst  
access bit (B), and a 6-bit address (A5 - A0).  
The CSn pin must be kept low during transfers  
on the SPI bus. If CSn goes high during the  
transfer of a header byte or during read/write  
from/to  
a
register, the transfer will be  
tsp  
tch  
tcl  
tsd  
thd  
tns  
SCLK:  
CSn:  
Write to register:  
X
0
B
B
DW  
7
DW  
6
DW  
5
DW  
4
DW  
3
DW  
2
DW  
1
DW  
0
A5  
S5  
A4  
S4  
A3  
S3  
A2  
A1  
S1  
A0  
S0  
X
X
SI  
Hi-Z S7  
S2  
S6  
S2  
Hi-Z  
Hi-Z  
S7  
S5  
S4  
S3  
S1  
S0  
SO  
Read from register:  
X
1
X
B
B
A5  
S5  
A4  
S4  
A3  
S3  
A2  
S2  
A1  
S1  
A0  
S0  
SI  
Hi-Z  
S7  
DR7  
DR6  
DR5  
DR4  
DR3  
DR2  
DR1  
DR0  
SO  
Figure 13: Configuration Registers Write and Read Operations  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
 
CC113L  
Parameter Description  
Min Max Units  
fSCLK  
SCLK frequency  
-
10  
MHz  
100 ns delay inserted between address byte and data byte (single access), or between  
address and data, and between each data byte (burst access).  
SCLK frequency, single access. No delay between address and data byte  
-
-
9
SCLK frequency, burst access. No delay between address and data byte, or between data  
bytes  
6.5  
tsp,pd  
tsp  
CSn low to positive edge on SCLK, in power-down mode  
150  
20  
50  
50  
-
-
-
s
ns  
ns  
ns  
ns  
ns  
ns  
CSn low to positive edge on SCLK, in active mode  
tch  
Clock high  
-
tcl  
Clock low  
-
trise  
tfall  
tsd  
Clock rise time  
Clock fall time  
40  
40  
-
-
Setup data (negative SCLK edge) to positive edge on SCLK  
(tsd applies between address and data bytes, and between data bytes)  
Single access  
Burst access  
55  
76  
20  
20  
-
thd  
tns  
Hold data after positive edge on SCLK  
Negative edge on SCLK to CSn high.  
-
ns  
ns  
-
Table 15: SPI Interface Timing Requirements  
Note: The minimum tsp,pd figure in Table 15 can be used in cases where the user does not read  
the CHIP_RDYnsignal. CSn low to positive edge on SCLK when the chip is woken from power-  
down depends on the start-up time of the crystal being used. The 150 μs in Table 15 is the  
crystal oscillator start-up time measured on [1] and [2] using crystal AT-41CD2 from NDK.  
10.1 Chip Status Byte  
When the header byte, data byte, or command  
strobe is sent on the SPI interface, the chip  
status byte is sent by the CC113L on the SO pin.  
The status byte contains key status signals,  
useful for the MCU. The first bit, s7, is the  
CHIP_RDYnsignal and this signal must go low  
before the first positive edge of SCLK. The  
CHIP_RDYn signal indicates that the crystal is  
running.  
The last four bits (3:0) in the status byte  
contains FIFO_BYTES_AVAILABLE. For  
these bits to give any valid information, the  
R/W¯ bit in the header byte must be set to 1.  
The FIFO_BYTES_AVAILABLE field will then  
contain the number of bytes that can be read  
from  
the  
RX  
FIFO.  
When  
FIFO_BYTES_AVAILABLE=15, 15 or more  
bytes can be read. The RX FIFO should not be  
emptied before the complete packet has been  
received (see the CC113L Errata Notes [3] for  
more details).  
Bits 6, 5, and 4 comprise the STATE value.  
This value reflects the state of the chip. The  
XOSC and power to the digital core are on in  
the IDLE state, but all other modules are in  
power down. The frequency and channel  
configuration should only be updated when the  
chip is in this state.  
Table 16 gives a status byte summary.  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
 
CC113L  
Bits Name  
Description  
7
CHIP_RDYn  
Stays high until power and crystal have stabilized. Should always be low when using  
the SPI interface.  
6:4  
STATE[2:0]  
Indicates the current main state machine mode  
Value State  
Description  
000  
IDLE  
IDLE state (Also reported for some transitional  
states instead of SETTLING or CALIBRATE)  
001  
010  
011  
100  
101  
110  
RX  
Receive mode  
Reserved  
Reserved  
CALIBRATE  
SETTLING  
Frequency synthesizer calibration is running  
PLL is settling  
RXFIFO_OVERFLOW RX FIFO has overflowed. Read out any useful  
data, then flush the FIFO with SFRX  
111  
Reserved  
3:0  
FIFO_BYTES_AVAILABLE[3:0] The number of bytes available in the RX FIFO  
Table 16: Status Byte Summary  
10.2 Register Access  
Registers with consecutive addresses can be  
accessed in an efficient way by setting the  
burst bit (B) in the header byte. The address  
bits (A5 - A0) set the start address in an  
internal address counter. This counter is  
incremented by one each new byte (every 8  
clock pulses). The burst access is either a  
read or a write access and must be terminated  
by setting CSn high.  
The configuration registers on the CC113L are  
located on SPI addresses from 0x00 to 0x2E.  
Table 31 on page 46 lists all configuration  
registers. It is highly recommended to use  
SmartRF Studio [4] to generate optimum  
register settings. The detailed description of  
each register is found in Section 26.1 and  
Section 26.2, starting on page 49. All  
configuration registers can be both written to  
and read. The R/W¯ bit controls if the register  
should be written to or read. When writing to  
registers, the status byte is sent on the SO pin  
each time a header byte or data byte is  
transmitted on the SI pin. When reading from  
registers, the status byte is sent on the SO pin  
each time a header byte is transmitted on the  
SI pin.  
For register addresses in the range  
0x30 - 0x3D, the burst bit is used to select  
between status registers when burst bit is one,  
and command strobes when burst bit is zero.  
See more in Section 10.3 below. Because of  
this, burst access is not available for status  
registers and they must be accessed one at a  
time. The status registers can only be read.  
10.3 SPI Read  
When reading register fields over the SPI  
interface while the register fields are updated  
by the radio hardware (e.g. MARCSTATE or  
is being corrupt. As an example, the  
probability of any single read from RXBYTES  
being corrupt, assuming the maximum data  
rate is used, is approximately 80 ppm. Refer to  
the CC113L Errata Notes [3] for more details.  
RXBYTES), there is  
a
small, but finite,  
probability that a single read from the register  
10.4 Command Strobes  
Command Strobes may be viewed as single  
byte instructions to CC113L. By addressing a  
command strobe register, internal sequences  
will be started. These commands are used to  
disable the crystal oscillator, enable receive  
mode, enable calibration etc. The 8 command  
strobes  
on page 45.  
are  
listed  
in  
Table  
30  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
 
CC113L  
are written. The R/W¯ bit should be set to one if  
the FIFO_BYTES_AVAILABLE field in the  
status byte should be interpreted.  
Note: An SIDLE strobe will clear all  
pending command strobes until IDLE  
state is reached. This means that if for  
example an SIDLE strobe is issued  
while the radio is in RX state, any other  
command strobes issued before the  
radio reaches IDLE state will be  
ignored.  
When writing command strobes, the status  
byte is sent on the SO pin.  
A command strobe may be followed by any  
other SPI access without pulling CSn high.  
However, if an SRES strobe is being issued,  
one will have to wait for SO to go low again  
before the next header byte can be issued as  
shown in Figure 14. The command strobes are  
executed immediately, with the exception of  
the SPWD and the SXOFF strobes, which are  
executed when CSn goes high.  
The command strobe registers are accessed  
by transferring a single header byte (no data is  
being transferred). That is, only the R/W¯ bit,  
the burst access bit (set to 0), and the six  
address bits (in the range 0x30 through 0x3D)  
CSn  
SO  
SI  
HeaderSRES  
HeaderAddr  
Data  
Figure 14: SRES Command Strobe  
10.5 RX FIFO Access  
The 64-byte RX FIFO is accessed through the  
0x3F address. The RX FIFO is write-only and  
the R/W¯ bit should therefore be one.  
The following header bytes access the  
RX FIFO:  
0xBF: Single byte access to RX FIFO  
0xFF: Burst access to RX FIFO  
The burst bit is used to determine if the  
RX FIFO access is a single byte access or a  
burst access. The single byte access method  
expects a header byte with the burst bit set to  
zero and one data byte. After the data byte, a  
new header byte is expected; hence, CSn can  
remain low. The burst access method expects  
one header byte and then consecutive data  
bytes until terminating the access by setting  
CSn high.  
The RX FIFO may be flushed by issuing a  
SFRX command strobe. A SFRX command  
strobe can only be issued in the IDLE, or  
RXFIFO_OVERFLOW states. The RX FIFO is  
flushed when going to the SLEEP state.  
Figure 15 gives a brief overview of different  
register access types possible.  
Csn  
Command strobe(s)  
HeaderStrobe  
HeaderReg  
HeaderStrobe  
Data  
HeaderStrobe  
HeaderReg  
Data n + 1  
Read or write register(s)  
Data  
HeaderReg  
Data  
. . . . . . . . .  
Read or write  
consecutive register(s)  
HeaderReg n  
HeaderRX FIFO  
HeaderReg  
Datan  
Datan + 2  
DataByte 2  
HeaderReg  
. . . . . . . . .  
Write n + 1 bytes to the  
RX FIFO  
DataByte 0  
Data  
DataByte 1  
. . . . . . . . .  
Data  
DataByte n - 1  
HeaderStrobe  
DataByte n  
. . . . . . . . .  
DataByte 0  
Combinations  
HeaderStrobe  
HeaderRX FIFO  
DataByte 1  
. . . .  
Figure 15: Register Access Types  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
 
 
CC113L  
11 Microcontroller Interface and Pin Configuration  
In a typical system, CC113L will interface to a  
microcontroller. This microcontroller must be  
able to:  
Read buffered data  
Read back status information via the 4-wire  
SPI-bus configuration interface (SI, SO,  
SCLK and CSn)  
Program CC113L into different modes  
11.1 Configuration Interface  
The microcontroller uses four I/O pins for the  
SPI configuration interface (SI, SO, SCLK and  
CSn). The SPI is described in Section 10 on  
page 21.  
11.2 General Control and Status Pins  
GDO1 is shared with the SO pin in the SPI  
interface. The default setting for GDO1/SO is  
3-state output. By selecting any other of the  
programming options, the GDO1/SO pin will  
become a generic pin. When CSn is low, the  
pin will always function as a normal SO pin.  
The CC113L has two dedicated configurable  
pins (GDO0 and GDO2) and one shared pin  
(GDO1) that can output internal status  
information useful for control software. These  
pins can be used to generate interrupts on the  
MCU. See Section 23 on page 41 for more  
details on the signals that can be  
programmed.  
12 Data Rate Programming  
The data rate expected in receive mode is  
programmed by the MDMCFG3.DRATE_M and  
The data rate can be set from 0.6 kBaud to  
500 kBaud with the minimum step size  
according to Table 17 below. See Table 3 for  
the minimum and maximum data rates for the  
different modulation formats.  
the  
MDMCFG4.DRATE_E  
configuration  
registers. The data rate is given by the formula  
below. As the formula shows, the programmed  
data rate depends on the crystal frequency.  
Min Data  
Rate  
Typical  
Data Rate  
[kBaud]  
Max Data  
Rate  
Data rate  
Step Size  
[kBaud]  
[kBaud]  
[kBaud]  
(256 DRATE _ M ) 2DRATE _ E  
0.6  
1.0  
0.79  
1.58  
3.17  
6.33  
12.7  
25.3  
50.7  
101.4  
202.8  
405.5  
500  
0.0015  
0.0031  
0.0062  
0.0124  
0.0248  
0.0496  
0.0992  
0.1984  
0.3967  
0.7935  
1.5869  
RDATA  
fXOSC  
228  
0.79  
1.59  
3.17  
6.35  
12.7  
25.4  
50.8  
101.6  
203.1  
406.3  
1.2  
2.4  
4.8  
The following approach can be used to find  
suitable values for a given data rate:  
9.6  
RDATA 220  
DRATE _ E og2  
fXOSC  
19.6  
38.4  
76.8  
153.6  
250  
500  
RDATA 228  
fXOSC 2DRATE _ E  
DRATE _ M  
56  
If DRATE_M is rounded to the nearest integer  
and becomes 256, increment DRATE_E and  
use DRATE_M = 0.  
Table 17: Data Rate Step Size  
(assuming a 26 MHz crystal)  
13 Receiver Channel Filter Bandwidth  
In order to meet different channel width  
requirements, the receiver channel filter is  
programmable. The MDMCFG4.CHANBW_E and  
MDMCFG4.CHANBW_M configuration registers  
control the receiver channel filter bandwidth,  
which scales with the crystal oscillator  
frequency.  
The following formula gives the relation  
between the register settings and the channel  
filter bandwidth:  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
 
 
CC113L  
bandwidth. The following example illustrates  
this:  
fXOSC  
BWchannel  
8 (4 CHANBW _ M )·2CHANBW _ E  
With the channel filter bandwidth set to  
500 kHz, the signal should stay within 80% of  
500 kHz, which is 400 kHz. Assuming  
915 MHz frequency and ±20 ppm frequency  
uncertainty for both the transmitting device and  
the receiving device, the total frequency  
uncertainty is ±40 ppm of 915 MHz, which is  
±37 kHz. If the whole transmitted signal  
bandwidth is to be received within 400 kHz,  
the transmitted signal bandwidth should be  
maximum 400 kHz - 2·37 kHz, which is  
326 kHz.  
Table 18 lists the channel filter bandwidths  
supported by the CC113L.  
MDMCFG4.  
MDMCFG4.CHANBW_E  
00 01 10 11  
812 406 203 102  
CHANBW_M  
00  
01  
10  
11  
650 325 162  
541 270 135  
464 232 116  
81  
68  
58  
Table 18: Channel Filter Bandwidths [kHz]  
(assuming a 26 MHz crystal)  
By compensating for  
a frequency offset  
between the transmitter and the receiver, the  
filter bandwidth can be reduced and the  
sensitivity can be improved, see more in  
DN005 [9] and in Section 14.1.  
For best performance, the channel filter  
bandwidth should be selected so that the  
signal bandwidth occupies at most 80% of the  
channel filter bandwidth. The channel centre  
tolerance due to crystal inaccuracy should also  
be subtracted from the channel filter  
14 Demodulator, Symbol Synchronizer, and Data Decision  
(see Section 17.2 for more information), the  
CC113L contains an advanced and highly  
configurable demodulator. Channel filtering  
and frequency offset compensation is  
performed digitally. To generate the RSSI level  
signal level in the channel is estimated. Data  
filtering is also included for enhanced  
performance.  
14.1 Frequency Offset Compensation  
since the algorithm may drift to the boundaries  
when trying to track noise.  
The CC113L has  
a
very fine frequency  
resolution (see Table 9). This feature can be  
used to compensate for frequency offset and  
drift.  
The tracking loop has two gain factors, which  
affects the settling time and noise sensitivity of  
the algorithm. FOCCFG.FOC_PRE_K sets the  
gain before the sync word is detected, and  
FOCCFG.FOC_POST_K selects the gain after  
the sync word has been found.  
When using 2-FSK, GFSK, or 4-FSK  
modulation, the demodulator will compensate  
for the offset between the transmitter and  
receiver frequency within certain limits, by  
estimating the centre of the received data. The  
frequency offset compensation configuration is  
controlled from the FOCCFG register. By  
compensating for a large frequency offset  
between the transmitter and the receiver, the  
sensitivity can be improved, see DN005 [9].  
Note: Frequency offset compensation is  
not supported for OOK modulation  
The estimated frequency offset value is  
available in the FREQEST status register. This  
can be used for permanent frequency offset  
compensation. By writing the value from  
The tracking range of the algorithm is  
selectable as fractions of the channel  
bandwidth with the FOCCFG.FOC_LIMIT  
configuration register.  
FREQEST into  
FSCTRL0.FREQOFF, the  
frequency synthesizer will automatically be  
adjusted according to the estimated frequency  
offset. More details regarding this permanent  
frequency compensation algorithm can be  
found in DN015 [6].  
If the FOCCFG.FOC_BS_CS_GATE bit is set,  
the offset compensator will freeze until carrier  
sense asserts. This may be useful when the  
radio is in RX for long periods with no traffic,  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
 
CC113L  
14.2 Bit Synchronization  
The bit synchronization algorithm extracts the  
clock from the incoming symbols. The  
algorithm requires that the expected data rate  
is programmed as described in Section 12 on  
page 25. Re-synchronization is performed  
continuously to adjust for error in the incoming  
symbol rate.  
14.3 Byte Synchronization  
Byte synchronization is achieved by  
a
sync word will be received if the sync word  
detection is enabled in register MDMCFG2 (see  
Section 17.1). The sync word detector  
correlates against the user-configured 16 or 32  
bit sync word. The correlation threshold can be  
set to 15/16, 16/16, or 30/32 bits match. The  
sync word can be further qualified using the  
continuous sync word search. The sync word  
is a 16 bit configurable field (can be repeated  
to get a 32 bit) that must be inserted at the  
start of the packet by the transmitter (for  
example the CC115L, CC110L, or CC1101). The  
MSB in the sync word must be transmitted  
first. The demodulator uses this field to find the  
byte boundaries in the stream of bits. The sync  
word will also function as a system identifier,  
since only packets with the correct predefined  
preamble  
quality  
indicator  
mechanism  
described below and/or  
a
carrier sense  
condition. The sync word is configured through  
the SYNC1 and SYNC0 registers.  
15 Packet Handling Hardware Support  
The CC113L has built-in hardware support for  
packet oriented radio protocols and the packet  
handler can be configured to implement the  
following (if enabled):  
Bit Field Name  
Description  
RSSI value  
7:0 RSSI  
Table 19: Received Packet Status Byte 1  
(first byte appended after the data)  
Preamble detection  
Sync word detection  
CRC computation and CRC check  
One byte address check  
Bit Field Name  
CRC_OK  
Description  
7
1: CRC for received data OK (or  
CRC disabled)  
Packet length check (length byte checked  
against a programmable maximum length)  
0: CRC error in received data  
6:0 Reserved  
Optionally, two status bytes (see Table 19 and  
Table 20) with RSSI value and CRC status can  
be appended in the RX FIFO.  
Table 20: Received Packet Status Byte 2  
(second byte appended after the data)  
Note: Register fields that control the  
packet handling features should only be  
altered when CC113L is in the IDLE state.  
15.1 Packet Format  
The CC113L can be configured to receive  
packets of different format and the packet  
should consists of the following items (see  
Figure 16):  
Synchronization word  
Optional length byte  
Optional address byte  
Payload  
Optional 2 byte CRC  
Preamble  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
 
CC113L  
Legend:  
Processed and removed by the  
radio  
Optional CRC-16 calculation  
Data field  
OptIonal user-provided fields (processed by the  
radio, but not removed)  
Preamble bits  
(1010...1010)  
Unprocessed user data  
8
8
8 x n bits  
16/32 bits  
8 x n bits  
16 bits  
bits bits  
Figure 16: Packet Format  
The preamble pattern is an alternating  
sequence of ones and zeros that the receiver  
uses for bit synchronisation.  
Note: The minimum packet length  
supported (excluding the optional length  
byte and CRC) is one byte of payload  
data.  
The synchronization word is a two-byte value  
set in the SYNC1 and SYNC0 registers. The  
sync word provides byte synchronization of the  
incoming packet. A one-byte sync word can be  
emulated by setting the SYNC1 value to the  
preamble pattern. It is also possible to emulate  
15.1.1 Arbitrary Length Field Configuration  
The packet length register, PKTLEN, can be  
reprogrammed during RX. In combination with  
a
32  
bit  
sync  
word  
by  
setting  
fixed  
packet  
length  
mode  
MDMCFG2.SYNC_MODE to 3 or 7. The sync  
word searched for is the two-byte sync word  
repeated twice.  
(PKTCTRL0.LENGTH_CONFIG=0), this opens  
the possibility to have a different length field  
configuration than supported for variable  
length packets (in variable packet length mode  
the length byte is the first byte after the sync  
word). At the start of reception, the packet  
length is set to a large value. The MCU reads  
out enough bytes to interpret the length field in  
the packet. Then the PKTLEN value is set  
according to this value. The end of packet will  
occur when the byte counter in the packet  
handler is equal to the PKTLEN register. Thus,  
the MCU must be able to program the correct  
length, before the internal counter reaches the  
packet length.  
CC113L supports both constant packet length  
protocols and variable length protocols.  
Variable or fixed packet length mode can be  
used for packets up to 255 bytes. For longer  
packets, infinite packet length mode must be  
used.  
Fixed packet length mode is selected by  
setting PKTCTRL0.LENGTH_CONFIG=0. The  
desired packet length is set by the PKTLEN  
register. This value must be different from 0.  
In  
variable  
packet  
length  
mode,  
PKTCTRL0.LENGTH_CONFIG=1, the packet  
length is configured by the first byte after the  
sync word. The packet length is defined as the  
payload data, excluding the length byte and  
the optional CRC. The PKTLEN register is  
used to set the maximum packet length  
allowed. Any packet received with a length  
byte with a value greater than PKTLEN will be  
discarded. The PKTLEN value must be  
different from 0.  
15.1.2 Packet Length > 255  
The packet automation control register,  
PKTCTRL0, can be reprogrammed during  
RX. This opens the possibility to receive  
packets that are longer than 256 bytes and still  
be able to use the packet handling hardware  
support. At the start of the packet, the infinite  
packet  
length  
mode  
(PKTCTRL0.LENGTH_CONFIG=2) must be  
active. When receiving, the MCU reads out  
enough bytes to interpret the length field in the  
packet and sets the PKTLEN register to  
mod(length, 256). When less than 256 bytes  
remains of the packet, the MCU disables  
infinite packet length mode and activates fixed  
With PKTCTRL0.LENGTH_CONFIG=2, the  
packet length is set to infinite and reception  
will continue until turned off manually. As  
described in the next section, this can be used  
to support packet formats with different length  
configuration than natively supported by  
CC113L.  
packet  
length  
mode  
(PKTCTRL0.LENGTH_CONFIG=0). When the  
internal byte counter reaches the PKTLEN  
value, the reception ends (the radio enters the  
state determined by RXOFF_MODE). Automatic  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
CC113L  
CRC appending/checking can also be used  
Program the PKTLEN  
register to  
(by setting PKTCTRL0.CRC_EN=1).  
mod(600, 256) = 88.  
Receive at least 345 bytes (600 - 255)  
When for example a 600-byte packet is to be  
received, the MCU should do the following  
(see also Figure 17)  
Set PKTCTRL0.LENGTH_CONFIG=0.  
The reception ends when the packet  
counter reaches 88. A total of 600 bytes  
have been received.  
Set PKTCTRL0.LENGTH_CONFIG=2.  
Receive enough bytes to interpret the  
length field  
Internal byte counter in packet handler counts from 0 to 255 and then starts at 0 again  
0, 1............, 88, .............................................255, 0, ........, 88, .............................................255, 0, ........, 88, .............................................255, 0, ..  
Infinite packet length mode enabled  
600 bytes received  
Fixed packet length mode anbled when  
less than 256 bytes remains of packet  
Length field received. PKTLEN set to  
mod(600, 256) = 88  
Figure 17: Packet Length > 255  
15.2 Packet Filtering  
used to set the maximum allowed packet  
length. If the received length byte has a larger  
value than this, the packet is discarded and  
receive mode restarted (regardless of the  
MCSM1.RXOFF_MODEsetting).  
CC113L supports three different types of packet  
filtering; address filtering, maximum length  
filtering, and CRC filtering.  
15.2.1 Address Filtering  
Setting PKTCTRL1.ADR_CHK to any other  
value than zero enables the packet address  
filter. The packet handler engine will compare  
the destination address byte in the packet with  
the programmed node address in the ADDR  
register and the 0x00 broadcast address when  
PKTCTRL1.ADR_CHK=10 or both the 0x00  
and 0xFF broadcast addresses when  
PKTCTRL1.ADR_CHK=11. If the received  
address matches a valid address, the packet  
is received and written into the RX FIFO. If the  
address match fails, the packet is discarded  
and receive mode restarted (regardless of the  
MCSM1.RXOFF_MODEsetting).  
15.2.3 CRC Filtering  
The filtering of a packet when CRC check fails  
is  
enabled  
by  
setting  
PKTCTRL1.CRC_AUTOFLUSH=1. The CRC  
auto flush function will flush the entire  
RX FIFO if the CRC check fails. After auto  
flushing the RX FIFO, the next state depends  
on the MCSM1.RXOFF_MODEsetting.  
When using the auto flush function, the  
maximum packet length is 63 bytes in variable  
packet length mode and 64 bytes in fixed  
packet length mode. Note that when  
PKTCTRL1.APPEND_STATUS is enabled, the  
maximum allowed packet length is reduced by  
two bytes in order to make room in the RX  
FIFO for the two status bytes appended at the  
end of the packet. Since the entire RX FIFO is  
flushed when the CRC check fails, the  
previously received packet must be read out of  
the RX FIFO before receiving the current  
packet. The MCU must not read from the  
current packet until the CRC has been  
checked as OK.  
If the received address matches a valid  
address when using infinite packet length  
mode and address filtering is enabled, 0xFF  
will be written into the RX FIFO followed by the  
address byte and then the payload data.  
15.2.2 Maximum Length Filtering  
In  
variable  
packet  
length  
mode,  
the  
PKTCTRL0.LENGTH_CONFIG=1,  
PKTLEN.PACKET_LENGTH register value is  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
 
CC113L  
15.3 Packet Handling  
In RX mode, the demodulator and packet  
handler will search for a valid sync word.  
When found, the demodulator has obtained  
both bit and byte synchronization and will  
receive the first payload byte.  
Next, the packet handler optionally checks the  
address and only continues the reception if the  
address matches. If automatic CRC check is  
enabled, the packet handler computes CRC  
and matches it with the appended CRC  
checksum.  
When variable packet length mode is enabled,  
the first byte is the length byte. The packet  
handler stores this value as the packet length  
and receives the number of bytes indicated by  
the length byte. If fixed packet length mode is  
used, the packet handler will accept the  
programmed number of bytes.  
At the end of the payload, the packet handler  
will optionally write two extra packet status  
bytes (see Table 19 and Table 20) that contain  
CRC status, link quality indication, and RSSI  
value.  
15.4 Packet Handling in Firmware  
When implementing a packet oriented radio  
protocol in firmware, the MCU needs to know  
b) SPI Polling  
The PKTSTATUS register can be polled at a  
given rate to get information about the current  
GDO2 and GDO0 values respectively. The  
RXBYTESregister can be polled at a given rate  
to get information about the number of bytes in  
the RX FIFO. Alternatively, the number of  
bytes in the RX FIFO can be read from the  
chip status byte returned on the MISO line  
each time a header byte, data byte, or  
command strobe is sent on the SPI bus.  
when  
a
packet has been received.  
Additionally, for packets longer than 64 bytes,  
the RX FIFO needs to be read while in RX  
mode. This means that the MCU needs to  
know the number of bytes that can be read  
from the RX FIFO. There are two possible  
solutions to get the necessary status  
information:  
a) Interrupt Driven Solution  
The GDO pins can be used to give an interrupt  
when a sync word has been received or when  
a complete packet has been received by  
setting IOCFGx.GDOx_CFG=0x06. In addition,  
there are two configurations for the  
IOCFGx.GDOx_CFG register that can be used  
as an interrupt source to provide information  
on how many bytes that are in the RX FIFO  
It is recommended to employ an interrupt  
driven solution since high rate SPI polling  
reduces the RX sensitivity. Furthermore, as  
explained in Section 10.3 and the CC113L  
Errata Notes [3], when using SPI polling, there  
is a small, but finite, probability that a single  
read from registers PKTSTATUS, and  
RXBYTES is being corrupt. The same is the  
case when reading the chip status byte.  
(IOCFGx.GDOx_CFG=0x00  
and  
IOCFGx.GDOx_CFG=0x01). See Table 29 for  
more information.  
16 Modulation Formats  
decoded by the demodulator. This option is  
CC113L supports amplitude, frequency, and  
phase shift modulation formats. The desired  
enabled  
by  
setting  
MDMCFG2.MANCHESTER_EN=1.  
modulation  
format  
is  
set  
in  
the  
MDMCFG2.MOD_FORMAT register.  
Note: Manchester encoding is not  
supported at the same time as using 4-  
FSK modulation  
Optionally, if the data has been Manchester  
coded on the transmitter side it can be  
16.1 Frequency Shift Keying  
When 2-FSK/GFSK/4-FSK modulation is used,  
the DEVIATN register specifies the expected  
frequency deviation of incoming signals in RX  
and should be the same as the deviation of the  
CC113L supports 2-(G)FSK and 4-FSK  
modulation. When selecting 4-FSK, the  
preamble and sync word to be received needs  
to be 2-FSK (see Figure 13).  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
CC113L  
transmitted signal for demodulation to be  
performed reliably and robustly.  
Format  
Symbol Coding  
2-FSK/GFSK „0‟  
Deviation  
The frequency deviation is programmed with  
the DEVIATION_M and DEVIATION_E values  
in the DEVIATN register. The value has an  
exponent/mantissa form, and the resultant  
deviation is given by:  
„1‟  
+ Deviation  
4-FSK  
„01‟  
Deviation  
„00‟  
„10‟  
„11‟  
1/3∙Deviation  
+1/3∙Deviation  
+ Deviation  
fxosc  
217  
fdev  
(8 DEVIATION _ M) 2DEVIATION _ E  
Table 21: Symbol Encoding for 2-FSK/GFSK  
and 4-FSK Modulation  
The symbol encoding is shown in Table 21.  
1/Baud Rate  
1/Baud Rate  
1/Baud Rate  
+1  
+1/3  
-1/3  
-1  
1
0
1
0
1
0
1
0
1
1
0
1
0
0
1
1
00 01 01 11 10 00 11 01  
Preamble  
0xAA  
Sync  
0xD3  
Data  
0x17 0x8D  
Figure 18: Data Sent Over the Air (MDMCFG2.MOD_FORMAT=100)  
16.2 Amplitude Modulation  
settings are not optimum. DN022 [8] gives  
guidelines on how to find optimum OOK  
settings from the preferred settings in  
SmartRF Studio [4]. The DEVIATN register  
setting has no effect when using OOK.  
The amplitude modulation supported by CC113L  
is On-Off Keying (OOK).  
When using OOK, the AGC settings from the  
SmartRF Studio [4] preferred FSK  
17 Received Signal Qualifiers and RSSI  
CC113L has several qualifiers that can be used  
to increase the likelihood that a valid sync  
word is detected:  
Sync Word Qualifier  
RSSI  
Carrier Sense  
17.1 Sync Word Qualifier  
If sync word detection is enabled in the  
MDMCFG2 register, the CC113L will not start  
filling the RX FIFO and perform the packet  
filtering described in Section 15.2 before a  
valid sync word has been detected. The sync  
MDMCFG2.  
SYNC_MODE  
Sync Word Qualifier Mode  
000  
001  
010  
011  
100  
No preamble/sync  
15/16 sync word bits detected  
16/16 sync word bits detected  
30/32 sync word bits detected  
word  
qualifier  
mode  
is  
set  
by  
MDMCFG2.SYNC_MODE and is summarized in  
Table 22. Carrier sense in Table 22 is  
described in Section 17.3.  
No preamble/sync + carrier sense  
above threshold  
101  
110  
111  
15/16 + carrier sense above threshold  
16/16 + carrier sense above threshold  
30/32 + carrier sense above threshold  
Table 22: Sync Word Qualifier Mode  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
 
 
CC113L  
17.2 RSSI  
The RSSI value is an estimate of the signal  
power level in the chosen channel. This value  
is based on the current gain setting in the RX  
chain and the measured signal level in the  
channel.  
2 BWchannel  
8 2FILTER _ LENGTH  
fRSSI  
If PKTCTRL1.APPEND_STATUS is enabled,  
the last RSSI value of the packet is  
automatically added to the first byte appended  
after the payload.  
In RX mode, the RSSI value can be read  
continuously from the RSSI status register  
until the demodulator detects a sync word  
(when sync word detection is enabled). At that  
point the RSSI readout value is frozen until the  
next time the chip enters the RX state.  
The RSSI value read from the RSSI status  
register is a 2‟s complement number. The  
following procedure can be used to convert the  
RSSI reading to an absolute power level  
(RSSI_dBm)  
Note: It takes some time from the radio  
enters RX mode until a valid RSSI value is  
present in the RSSI register. Please see  
DN505 [7] for details on how the RSSI  
response time can be estimated.  
1) Read the RSSIstatus register  
2) Convert the reading from a hexadecimal  
number to a decimal number (RSSI_dec)  
3) If RSSI_dec ≥ 128 then RSSI_dBm =  
(RSSI_dec - 256)/2 RSSI_offset  
The RSSI value is given in dBm with a ½ dB  
4) Else if RSSI_dec < 128 then RSSI_dBm =  
resolution. The RSSI update rate, fRSSI  
,
(RSSI_dec)/2 RSSI_offset  
depends on the receiver filter bandwidth  
(BWchannel is defined in Section 13) and  
AGCCTRL0.FILTER_LENGTH.  
Table 23 gives typical values for the  
RSSI_offset. Figure 19 and Figure 20 show  
typical plots of RSSI readings as a function of  
input power level for different data rates.  
Data rate [kBaud] RSSI_offset [dB], 433 MHz RSSI_offset [dB], 868 MHz  
1.2  
74  
74  
74  
74  
74  
74  
74  
74  
38.4  
250  
500  
Table 23: Typical RSSI_offset Values  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-120  
-110  
-100  
-90  
-80  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Input Power [dBm]  
1.2 kBaud  
38.4 kBaud  
250 kBaud  
500 kBaud  
Figure 19: Typical RSSI Value vs. Input Power Level for Different Data Rates at 433 MHz  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
HTTP://WWW.SZRFSTAR.COM  
TEL:0755-86329829 FAX:0755-86329413  
 
 
CC113L  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-120  
-110  
-100  
-90  
-80  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Input Power [dBm]  
1.2 kBaud  
500 kBaud  
250 kBaud  
38.4 kBaud  
Figure 20: Typical RSSI Value vs. Input Power Level for Different Data Rates at 868 MHz  
17.3 Carrier Sense (CS)  
Carrier sense (CS) is used as a sync word  
qualifier and can be asserted based on two  
conditions which can be individually adjusted:  
AGCCTRL2.MAX_LNA_GAIN  
AGCCTRL2.MAX_DVGA_GAIN  
AGCCTRL1.CARRIER_SENSE_ABS_THR  
AGCCTRL2.MAGN_TARGET  
CS is asserted when the RSSI is above a  
programmable absolute threshold, and de-  
asserted when RSSI is below the same  
threshold (with hysteresis). See more in  
Section 17.3.1.  
For given AGCCTRL2.MAX_LNA_GAIN and  
AGCCTRL2.MAX_DVGA_GAIN settings, the  
absolute threshold can be adjusted ±7 dB in  
steps  
of  
1
dB  
using  
CS is asserted when the RSSI has  
increased with a programmable number of  
dB from one RSSI sample to the next, and  
de-asserted when RSSI has decreased  
with the same number of dB. This setting  
is not dependent on the absolute signal  
level and is thus useful to detect signals in  
environments with time varying noise floor.  
See more in Section 17.3.2.  
CARRIER_SENSE_ABS_THR.  
The MAGN_TARGET setting is a compromise  
between blocker tolerance/selectivity and  
sensitivity. The value sets the desired signal  
level in the channel into the demodulator.  
Increasing this value reduces the headroom  
for blockers, and therefore close-in selectivity.  
It is strongly recommended to use SmartRF  
Studio  
[4]  
to  
generate  
the  
correct  
Carrier sense can be used as a sync word  
qualifier that requires the signal level to be  
higher than the threshold for a sync word  
search to be performed and is set by setting  
MDMCFG2 . The carrier sense signal can be  
observed on one of the GDO pins by setting  
IOCFGx.GDOx_CFG=14 and in the status  
register bit PKTSTATUS.CS.  
MAGN_TARGET setting. Table 24 and Table 25  
show the typical RSSI readout values at the  
CS threshold at 2.4 kBaud and 250 kBaud  
data rate respectively. The default reset value  
for CARRIER_SENSE_ABS_THR= 0 (0 dB) has  
been used. MAGN_TARGET = 3 (33 dB) and  
7 (42 dB) have been used for 2.4 kBaud and  
250 kBaud data rate respectively. For other  
data rates, the user must generate similar  
tables to find the CS absolute threshold.  
17.3.1 CS Absolute Threshold  
The absolute threshold related to the RSSI  
value depends on the following register fields:  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
 
CC113L  
If the threshold is set high, i.e. only strong  
signals are wanted, the threshold should be  
adjusted upwards by first reducing the  
MAX_LNA_GAIN value and then the  
MAX_DVGA_GAIN value. This will reduce  
power consumption in the receiver front end,  
since the highest gain settings are avoided.  
MAX_DVGA_GAIN[1:0]  
00 01 10  
000 97.5 91.5 85.5 79.5  
001 94 88 82.5 76  
010 90.5 84.5 78.5 72.5  
011 88 82.5 76.5 70.5  
100 85.5  
11  
17.3.2 CS Relative Threshold  
80  
78  
73.5  
72  
68  
66  
64  
61  
The relative threshold detects sudden changes  
in the measured signal level. This setting does  
not depend on the absolute signal level and is  
thus useful to detect signals in environments  
with a time varying noise floor. The register  
field AGCCTRL1.CARRIER_SENSE_REL_THR  
is used to enable/disable relative CS, and to  
select threshold of 6 dB, 10 dB, or 14 dB RSSI  
change.  
101  
110  
111  
84  
82  
79  
76  
70  
73.5  
67  
Table 24: Typical RSSI Value in dBm at CS  
Threshold with MAGN_TARGET= 3 (33 dB) at  
2.4 kBaud, 868 MHz  
MAX_DVGA_GAIN[1:0]  
00  
01  
10  
11  
000 90.5 84.5 78.5 72.5  
001  
88  
82  
76  
72  
70  
68  
66  
64  
62  
70  
66  
64  
62  
60  
58  
56  
010 84.5 78.5  
011 82.5 76.5  
100 80.5 74.5  
101  
78  
72  
70  
68  
110 76.5  
111 74.5  
Table 25: Typical RSSI Value in dBm at CS  
Threshold with MAGN_TARGET= 7 (42 dB) at  
250 kBaud, 868 MHz  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
CC113L  
18 Radio Control  
SIDLE  
SPWD  
SLEEP  
0
CAL_COMPLETE  
MANCAL  
3,4,5  
IDLE  
1
CSn = 0  
SXOFF  
SCAL  
CSn = 0  
XOFF  
2
SRX  
FS_WAKEUP  
6,7  
FS_AUTOCAL = 01  
&
SRX  
FS_AUTOCAL = 00 | 10 | 11  
&
SRX  
CALIBRATE  
8
CAL_COMPLETE  
SETTLING  
9,10,11  
SRX  
RXOFF_MODE =  
11  
RX  
13,14,15  
RXFIFO_OVERFLOW  
RXOFF_MODE = 00  
&
FS_AUTOCAL = 10 | 11  
RXOFF_MODE = 00  
&
FS_AUTOCAL = 00 | 01  
RX_OVERFLOW  
17  
CALIBRATE  
12  
SFRX  
IDLE  
1
Figure 21: Complete Radio Control State Diagram  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
CC113L  
shown in Figure 12 on page 20. The complete  
radio control state diagram is shown in Figure  
21. The numbers refer to the state number  
readable in the MARCSTATE status register.  
This register is primarily for test purposes.  
CC113L has a built-in state machine that is used  
to switch between different operational states  
(modes). The change of state is done either by  
using command strobes or by internal events  
such as RX FIFO overflow.  
A simplified state diagram, together with  
typical usage and current consumption, is  
18.1 Power-On Start-Up Sequence  
When the power supply is turned on, the  
system must be reset. This is achieved by one  
of the two sequences described below, i.e.  
automatic power-on reset (POR) or manual  
reset. After the automatic power-on reset or  
manual reset, it is also recommended to  
change the signal that is output on the GDO0  
pin. The default setting is to output a clock  
signal with a frequency of CLK_XOSC/192.  
However, to optimize performance in RX, an  
alternative GDO setting from the settings  
found in Table 29 on page 42 should be  
selected.  
18.1.2 Manual Reset  
The other global reset possibility on CC113L  
uses the SRES command strobe. By issuing  
this strobe, all internal registers and states are  
set to the default, IDLE state. The manual  
power-up sequence is as follows (see Figure  
23):  
Set SCLK = 1 and SI = 0.  
Strobe CSn low / high.  
Hold CSn low and then high for at least  
40 µs relative to pulling CSn low  
Pull CSn low and wait for SO to go low  
(CHIP_RDYn).  
18.1.1 Automatic POR  
A power-on reset circuit is included in the  
CC113L. The minimum requirements stated in  
Table 11 must be followed for the power-on  
reset to function properly. The internal power-  
up sequence is completed when CHIP_RDYn  
goes low. CHIP_RDYn is observed on the SO  
pin after CSn is pulled low. See Section 10.1  
for more details on CHIP_RDYn.  
Issue the SRESstrobe on the SI line.  
When SO goes low again, reset is  
complete and the chip is in the IDLE state.  
XOSC and voltage regulator switched on  
40 us  
CSn  
When the CC113L reset is completed, the chip  
will be in the IDLE state and the crystal  
oscillator will be running. If the chip has had  
sufficient time for the crystal oscillator to  
stabilize after the power-on-reset, the SO pin  
will go low immediately after taking CSn low. If  
CSn is taken low before reset is completed,  
the SO pin will first go high, indicating that the  
crystal oscillator is not stabilized, before going  
low as shown in Figure 22.  
SO  
XOSC Stable  
SRES  
SI  
Figure 23: Power-On Reset with SRES  
Note that the above reset procedure is  
only required just after the power supply is  
first turned on. If the user wants to reset  
the CC113L after this, it is only necessary to  
issue an SREScommand strobe.  
CSn  
SO  
XOSC Stable  
Figure 22: Power-On Reset  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
 
CC113L  
18.2 Crystal Control  
The crystal oscillator (XOSC) is either  
automatically controlled or always on, if  
MCSM0.XOSC_FORCE_ONis set.  
state machine will then go to the IDLE state.  
The SO pin on the SPI interface must be  
pulled low before the SPI interface is ready to  
be used as described in Section 10.1 on  
page 22.  
In the automatic mode, the XOSC will be  
turned off if the SXOFF or SPWD command  
strobes are issued; the state machine then  
goes to XOFF or SLEEP respectively. This  
can only be done from the IDLE state. The  
XOSC will be turned off when CSn is released  
(goes high). The XOSC will be automatically  
turned on again when CSn goes low. The  
If the XOSC is forced on, the crystal will  
always stay on even in the SLEEP state.  
Crystal oscillator start-up time depends on  
crystal ESR and load capacitances. The  
electrical specification for the crystal oscillator  
can be found in Section 4.3 on page 12.  
18.3 Voltage Regulator Control  
The voltage regulator to the digital core is  
controlled by the radio controller. When the  
chip enters the SLEEP state which is the state  
with the lowest current consumption, the  
voltage regulator is disabled. This occurs after  
CSn is released when a SPWD command  
strobe has been sent on the SPI interface. The  
chip is then in the SLEEP state. Setting CSn  
low again will turn on the regulator and crystal  
oscillator and make the chip enter the IDLE  
state.  
18.4 Receive Mode (RX)  
Receive mode is activated directly by the MCU  
IDLE  
by using the SRXcommand strobe.  
RX: Start search for a new packet  
The frequency synthesizer must be calibrated  
regularly. CC113L has one manual calibration  
option (using the SCAL strobe), and three  
automatic calibration options that are  
controlled by the MCSM0.FS_AUTOCALsetting:  
Note: When MCSM1.RXOFF_MODE=11  
and a packet has been received, it will  
take some time before a valid RSSI value  
is present in the RSSIregister again even  
if the radio has never exited RX mode.  
This time is the same as the RSSI  
response time discussed in DN505 [7].  
Calibrate when going from IDLE to RX  
Calibrate when going from RX to IDLE  
automatically1  
The SIDLE command strobe can always be  
used to force the radio controller to go to the  
IDLE state.  
Calibrate every fourth time when going  
from RX to IDLE automatically1  
If the radio goes from RX to IDLE by issuing  
an SIDLE strobe, calibration will not be  
performed. The calibration takes a constant  
number of XOSC cycles; see Table 26 for  
timing details regarding calibration.  
18.5 RX Termination  
If the system expects the transmission to have  
started when entering RX mode, the  
MCSM2.RX_TIME_RSSIfunction can be used.  
The radio controller will then terminate RX if  
the first valid carrier sense sample indicates  
no carrier (RSSI below threshold). See Section  
17.3 on page 33 for details on Carrier Sense.  
When RX is activated, the chip will remain in  
receive mode until a packet is successfully  
received or until RX mode terminated due to  
lack of carrier sense (see Section 18.5). The  
probability that a false sync word is detected  
can be reduced by using CS together with  
maximum sync word length as described in  
Section 17. After a packet is successfully  
received, the radio controller goes to the state  
indicated by the MCSM1.RXOFF_MODE setting.  
The possible destinations are:  
For OOK modulation, lack of carrier sense is  
only considered valid after eight symbol  
periods. Thus, the MCSM2.RX_TIME_RSSI  
function can be used in OOK mode when the  
distance between two “1” symbols is eight or  
less.  
If RX terminates due to no carrier sense when  
the MCSM2.RX_TIME_RSSI function is used,  
the radio will always go back to IDLE,  
1
Not forced in IDLE by issuing an SIDLE  
strobe  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
 
CC113L  
setting.  
regardless of the MCSM1.RXOFF_MODE  
18.6 Timing  
18.6.1 Overall State Transition Times  
The crystal oscillator frequency, fxosc  
The main radio controller needs to wait in  
certain states in order to make sure that the  
internal analog/digital parts have settled down  
and are ready to operate in the new states. A  
number of factors are important for the state  
transition times:  
The value of the TEST0, TEST1, and  
FSCAL3registers  
Table 26 shows timing in crystal clock cycles  
for key state transitions.  
Description  
Transition Time  
1953/fxosc  
Transition Time [µs]  
IDLE to RX, no calibration  
75.1  
IDLE to RX, with calibration 1953/fxosc + FS calibration Time 799  
RX to IDLE, no calibration  
RX to IDLE, with calibration 2/fxosc + FS calibration Time  
Manual calibration 283/fxosc + FS calibration Time  
2/fxosc  
~0.1  
724  
735  
Table 26: Overall State Transition Times (Example for 26 MHz crystal oscillator, 250 kBaud data  
rate, and TEST0= 0x0B (maximum calibration time)).  
18.6.2 Frequency Synthesizer Calibration  
Time  
SmartRF Studio software [4]. The possible  
values for TEST0when operating with different  
frequency bands are 0x09 and 0x0B. The  
SmartRF Studio software [4] always sets  
FSCAL3.CHP_CURR_CAL_ENto 10b.  
Table  
27  
summarizes  
the  
frequency  
synthesizer (FS) calibration times for possible  
settings  
of  
TEST0  
and  
FSCAL3.CHP_CURR_CAL_EN.  
Setting  
The calibration time can be reduced from  
712/724 µs to 145/157 µs. See Section 25.2  
on page 44 for more details.  
FSCAL3.CHP_CURR_CAL_EN to 00b disables  
the charge pump calibration stage. TEST0 is  
set to the values recommended by  
TEST0 FSCAL3.CHP_CURR_CAL_EN  
FS Calibration Time FS Calibration Time  
fxosc = 26 MHz  
fxosc = 27 MHz  
0x09  
0x09  
0x0B  
0x0B  
00b  
10b  
00b  
10b  
3764/fxosc = 145 us  
18506/fxosc = 712 us  
4073/fxosc = 157 us  
18815/fxosc = 724 us  
3764/fxosc = 139 us  
18506/fxosc = 685 us  
4073/fxosc = 151 us  
18815/fxosc = 697 us  
Table 27. Frequency Synthesizer Calibration Times (26/27 MHz crystal)  
19 RX FIFO  
RX FIFO underflow will result in an error in the  
data read out of the RX FIFO.  
The CC113L contains a 64-byte RX FIFO for  
received data and the SPI interface is used to  
read the RX FIFO (see Section 10.5 for more  
details). The FIFO controller will detect  
overflow in the RX FIFO.  
The chip status byte that is available on the  
SO pin while transferring the SPI header  
contains the fill grade of the RX FIFO  
(R/W¯ = 1). Section 10.1 on page 22 contains  
more details on this.  
When reading the RX FIFO the MCU must  
avoid reading it past its empty value since a  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
 
CC113L  
FIFO_THR  
The number of bytes in the RX FIFO can also  
be read from the status register  
Bytes in  
RX FIFO  
0 (0000)  
1 (0001)  
2 (0010)  
3 (0011)  
4 (0100)  
5 (0101)  
6 (0110)  
7 (0111)  
8 (1000)  
9 (1001)  
10 (1010)  
11 (1011)  
12 (1100)  
13 (1101)  
14 (1110)  
15 (1111)  
4
RXBYTES.NUM_RXBYTES. If a received data  
byte is written to the RX FIFO at the exact  
same time as the last byte in the RX FIFO is  
read over the SPI interface, the RX FIFO  
pointer is not properly updated and the last  
read byte will be duplicated. To avoid this  
problem, the RX FIFO should never be  
emptied before the last byte of the packet is  
received.  
8
12  
16  
20  
24  
28  
32  
36  
40  
44  
48  
52  
56  
60  
64  
For packet lengths less than 64 bytes it is  
recommended to wait until the complete  
packet has been received before reading it out  
of the RX FIFO.  
If the packet length is larger than 64 bytes, the  
MCU must determine how many bytes can be  
read  
from  
the  
RX  
FIFO  
(RXBYTES.NUM_RXBYTES-1). The following  
Table 28: FIFO_THRSettings and the  
software routine can be used:  
Corresponding RX FIFO Thresholds  
1. Read  
RXBYTES.NUM_RXBYTES  
A signal will assert when the number of bytes  
in the RX FIFO is equal to or higher than the  
programmed threshold. This signal can be  
viewed on the GDO pins (see Table 29 on  
page 42).  
repeatedly at a rate specified to be at least  
twice that of which RF bytes are received  
until the same value is returned twice;  
store value in n.  
2. If n < # of bytes remaining in packet, read  
n-1 bytes from the RX FIFO.  
Figure 24 shows the number of bytes in the  
RX FIFO when the threshold signal toggles in  
the case of FIFO_THR=13. Figure 25 shows  
the signal on the GDO pin as the RX FIFO is  
filled above the threshold, and then drained  
below in the case of FIFO_THR=13.  
3. Repeat steps 1 and 2 until n = # of bytes  
remaining in packet.  
4. Read the remaining bytes from the RX  
FIFO.  
Overflow  
margin  
The 4-bit FIFOTHR.FIFO_THRsetting is used  
to program threshold points in the FIFOs.  
FIFO_THR=13  
Table 28 lists the 16 FIFO_THR settings and  
the corresponding thresholds for the RX FIFO.  
56 bytes  
RX FIFO  
Figure 24: Example of RX FIFO at Threshold  
NUM_RXBYTES  
53 54 55 56 57 56 55 54 53  
GDO  
Figure 25: Number of Bytes in RX FIFO vs.  
the GDO Signal  
(GDOx_CFG=0x00and FIFO_THR=13)  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
 
 
CC113L  
20 Frequency Programming  
by the 24 bit frequency word located in the  
FREQ2, FREQ1, and FREQ0 registers. This  
word will typically be set to the centre of the  
lowest channel frequency that is to be used.  
The frequency programming in CC113L is  
designed to minimize the programming  
needed when changing frequency.  
To set up a system with channel numbers, the  
desired channel spacing is programmed with  
The desired channel number is programmed  
with the 8-bit channel number register,  
CHANNR.CHAN, which is multiplied by the  
channel offset. The resultant carrier frequency  
is given by:  
the  
MDMCFG0.CHANSPC_M  
and  
MDMCFG1.CHANSPC_E registers. The channel  
spacing registers are mantissa and exponent  
respectively. The base or start frequency is set  
fXOSC  
216  
fcarrier  
(FREQ CHAN ((256 CHANSPC _ M) 2CHANSPC _ E ))  
With a 26 MHz crystal the maximum channel  
spacing is 405 kHz. To get e.g. 1 MHz channel  
spacing, one solution is to use 333 kHz  
channel spacing and select each third channel  
in CHANNR.CHAN.  
fXOSC  
fIF  
FREQ_ IF  
210  
If any frequency programming register is  
altered when the frequency synthesizer is  
running, the synthesizer may give an  
undesired response. Hence, the frequency  
should only be updated when the radio is in  
the IDLE state  
The preferred IF frequency is programmed  
with the FSCTRL1.FREQ_IF register. The IF  
frequency is given by:  
21 VCO  
The VCO is completely integrated on-chip.  
21.1 VCO and PLL Self-Calibration  
The VCO characteristics vary with temperature  
and supply voltage changes as well as the  
desired operating frequency. In order to  
ensure reliable operation, CC113L includes  
frequency synthesizer self-calibration circuitry.  
This calibration should be done regularly, and  
must be performed after turning on power and  
before using a new frequency (or channel).  
The number of XOSC cycles for completing  
the PLL calibration is given in Table 26 on  
page 38.  
Note:  
The  
calibration  
values  
are  
maintained in SLEEP mode, so the  
calibration is still valid after waking up from  
SLEEP mode unless supply voltage or  
temperature has changed significantly.  
To check that the PLL is in lock, the user can  
program register IOCFGx.GDOx_CFG  
to  
0x0A, and use the lock detector output  
available on the GDOx pin as an interrupt for  
the MCU (x = 0,1, or 2). A positive transition  
on the GDOx pin means that the PLL is in  
lock. As an alternative the user can read  
register FSCAL1. The PLL is in lock if the  
register content is different from 0x3F. Refer  
also to the CC113L Errata Notes [3].  
The calibration can be initiated automatically  
or manually. The synthesizer can be  
automatically calibrated each time the  
synthesizer is turned on, or each time the  
synthesizer is turned off automatically. This is  
configured with the MCSM0.FS_AUTOCAL  
register setting. In manual mode, the  
calibration is initiated when the SCAL  
command strobe is activated in the IDLE  
mode.  
For more robust operation, the source code  
could include a check so that the PLL is re-  
calibrated until PLL lock is achieved if the PLL  
does not lock the first time.  
22 Voltage Regulators  
can be viewed as integral parts of the various  
modules. The user must however make sure  
that the absolute maximum ratings and  
CC113L contains several on-chip linear voltage  
regulators that generate the supply voltages  
needed by low-voltage modules. These  
voltage regulators are invisible to the user, and  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
CC113L  
required pin voltages in Table 1 and Table 12  
are not exceeded.  
If the chip is programmed to enter power-down  
mode (SPWD strobe issued), the power will be  
turned off after CSn goes high. The power and  
crystal oscillator will be turned on again when  
CSn goes low.  
By setting the CSn pin low, the voltage  
regulator to the digital core turns on and the  
crystal oscillator starts. The SO pin on the SPI  
interface must go low before the first positive  
edge of SCLK (setup time is given in  
Table 15).  
The voltage regulator for the digital core  
requires one external decoupling capacitor.  
The voltage regulator output should only be  
used for driving the C113L.  
23 General Purpose / Test Output Control Pins  
The three digital output pins GDO0, GDO1,  
and GDO2 are general control pins configured  
at power-on-reset, this can be used to clock  
the MCU in systems with only one crystal.  
When the MCU is up and running, it can  
change the clock frequency by writing to  
IOCFG0.GDO0_CFG.  
with  
IOCFG0.GDO0_CFG,  
IOCFG1.GDO1_CFG, and IOCFG2.GDO2_CFG  
respectively. Table 29 shows the different  
signals that can be monitored on the GDO  
pins. These signals can be used as inputs to  
the MCU.  
If the IOCFGx.GDOx_CFG setting is less than  
0x20 and IOCFGx_GDOx_INV is 0 (1), the  
GDO0 and GDO2 pins will be hardwired to 0  
(1), and the GDO1 pin will be hardwired to 1  
(0) in the SLEEP state. These signals will be  
hardwired until the CHIP_RDYn signal goes  
low.  
GDO1 is the same pin as the SO pin on the  
SPI interface, thus the output programmed on  
this pin will only be valid when CSn is high.  
The default value for GDO1 is 3-stated which  
is useful when the SPI interface is shared with  
other devices.  
If the IOCFGx.GDOx_CFG setting is 0x20 or  
higher, the GDO pins will work as programmed  
also in SLEEP state. As an example, GDO1 is  
The default value for  
GDO0 is  
a
135 - 141 kHz clock output (XOSC frequency  
divided by 192). Since the XOSC is turned on  
high  
impedance  
in  
all  
states  
if  
IOCFG1.GDO1_CFG=0x2E.  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
CC113L  
GDOx_CFG[5:0]  
Description  
0 (0x00)  
Associated to the RX FIFO: Asserts when RX FIFO is filled at or above the RX FIFO threshold. De-  
asserts when RX FIFO is drained below the same threshold.  
1 (0x01)  
Associated to the RX FIFO: Asserts when RX FIFO is filled at or above the RX FIFO threshold or the  
end of packet is reached. De-asserts when the RX FIFO is empty.  
2 (0x02) - 3 (0x03)  
Reserved - used for test.  
4 (0x04)  
5 (0x05)  
6 (0x06)  
Asserts when the RX FIFO has overflowed. De-asserts when the FIFO has been flushed.  
Reserved - used for test.  
Asserts when sync word has been received, and de-asserts at the end of the packet. The pin will  
also de-assert when a packet is discarded due to address or maximum length filtering or when the  
radio enters RXFIFO_OVERFLOW state.  
7 (0x07)  
Asserts when a packet has been received with CRC OK. De-asserts when the first byte is read from  
the RX FIFO.  
8 (0x08) - 9 (0x09)  
10 (0x0A)  
Reserved - used for test.  
Lock detector output. The PLL is in lock if the lock detector output has a positive transition or is  
constantly logic high. To check for PLL lock the lock detector output should be used as an interrupt  
for the MCU.  
11 (0x0B)  
Serial Clock. Synchronous to the data in synchronous serial mode.  
Data is set up on the falling edge by CC113L when GDOx_INV=0.  
12 (0x0C)  
Serial Synchronous Data Output. Used for synchronous serial mode.  
Serial Data Output. Used for asynchronous serial mode.  
13 (0x0D)  
14 (0x0E)  
Carrier sense. High if RSSI level is above threshold. Cleared when entering IDLE mode.  
CRC_OK. The last CRC comparison matched. Cleared when entering/restarting RX mode.  
Reserved - used for test.  
15 (0x0F)  
16 (0x10) - 27 (0x1B)  
28 (0x1C)  
LNA_PD. Note: LNA_PD will have the same signal level in SLEEP and RX states. To control an  
external LNA in applications where the SLEEP state is used it is recommended to use  
GDOx_CFGx=0x2Finstead.  
Reserved - used for test.  
29 (0x1D) 38 (0x26)  
39 (0x27)  
CLK_32k.  
40 (0x28)  
Reserved - used for test.  
41 (0x29)  
CHIP_RDYn.  
42 (0x2A)  
43 (0x2B)  
44 (0x2C) 45 (0x2D)  
46 (0x2E)  
47 (0x2F)  
Reserved - used for test.  
XOSC_STABLE.  
Reserved - used for test.  
High impedance (3-state).  
HW to 0 (HW1 achieved by setting GDOx_INV=1). Can be used to control an external LNA  
48 (0x30)  
CLK_XOSC/1  
CLK_XOSC/1.5  
CLK_XOSC/2  
CLK_XOSC/3  
CLK_XOSC/4  
CLK_XOSC/6  
CLK_XOSC/8  
CLK_XOSC/12  
CLK_XOSC/16  
CLK_XOSC/24  
CLK_XOSC/32  
CLK_XOSC/48  
CLK_XOSC/64  
CLK_XOSC/96  
CLK_XOSC/128  
CLK_XOSC/192  
Note: There are 3 GDO pins, but only one CLK_XOSC/n can be selected as an  
output at any time. If CLK_XOSC/n is to be monitored on one of the GDO pins,  
the other two GDO pins must be configured to values less than 0x30. The  
GDO0 default value is CLK_XOSC/192.  
49 (0x31)  
50 (0x32)  
51 (0x33)  
To optimize RF performance, these signals should not be used while the radio is  
in RX mode.  
52 (0x34)  
53 (0x35)  
54 (0x36)  
55 (0x37)  
56 (0x38)  
57 (0x39)  
58 (0x3A)  
59 (0x3B)  
60 (0x3C)  
61 (0x3D)  
62 (0x3E)  
63 (0x3F)  
Table 29: GDOx Signal Selection (x = 0, 1, or 2)  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
CC113L  
24 Asynchronous and Synchronous Serial Operation  
Several features and modes of operation have  
been included in the CC113L to provide  
backward compatibility with previous Chipcon  
products and other existing RF communication  
systems. For new systems, it is recommended  
to use the built-in packet handling features, as  
they can give more robust communication,  
significantly offload the microcontroller, and  
simplify software development.  
24.1 Asynchronous Serial Operation  
Asynchronous transfer is included in the  
CC113L for backward compatibility with systems  
that are already using the asynchronous data  
transfer.  
does proper oversampling and that it can  
handle the jitter on the data output line. The  
MCU should tolerate a jitter of ±1/8 of a bit  
period as the data stream is time-discrete  
using 8 samples per bit.  
When asynchronous transfer is enabled, all  
packet handling support is disabled and it is  
not possible to use Manchester encoding.  
In asynchronous serial mode there will be  
glitches of 37 - 38.5 ns duration (1/XOSC)  
occurring infrequently and with random  
periods. A simple RC filter can be added to the  
data output line between CC113L and the MCU  
to get rid of the 37 - 38.5 ns glitches if  
considered a problem. The filter 3 dB cut-off  
frequency needs to be high enough so that the  
data is not filtered and at the same time low  
enough to remove the glitch. As an example,  
for 2.4 kBaud data rate a 1 kresistor and  
2.7 nF capacitor can be used. This gives a 3  
dB cut-off frequency of 59 kHz.  
Asynchronous serial mode is enabled by  
setting PKTCTRL0.PKT_FORMAT to 3. Data  
output can be on GDO0, GDO1, or GDO2.  
This is set by the IOCFG0.GDO0_CFG,  
IOCFG1.GDO1_CFG and IOCFG2.GDO2_CFG  
fields.  
In asynchronous serial mode no data decision  
is done on-chip and the raw data is put on the  
data output line. When using asynchronous  
serial mode make sure the interfacing MCU  
24.2 Synchronous Serial Operation  
Setting  
PKTCTRL0.PKT_FORMAT  
to  
1
CC113L provides a clock that is used to sample  
data on the data output line. The data output  
pin can be any of the GDO pins. This is set by  
enables synchronous serial mode. When using  
this mode, sync detection should be disabled  
together  
(MDMCFG2.SYNC_MODE=000  
with  
CRC  
calculation  
and  
the  
IOCFG0.GDO0_CFG,  
IOCFG1.GDO1_CFG, and IOCFG2.GDO2_CFG  
PKTCTRL0.CRC_EN=0).  
Infinite  
be  
(PKTCTRL0.LENGTH_CONFIG=10b).  
packet  
used  
fields. The RX latency is 9 bits.  
length  
mode  
should  
The MCU must handle preamble and sync  
word detection in software, together with CRC  
calculation.  
In synchronous serial mode, data is  
transferred on a two-wire serial interface. The  
25 System Considerations and Guidelines  
25.1 SRD Regulations  
International regulations and national laws  
regulate the use of radio receivers and  
transmitters. Short Range Devices (SRDs) for  
license free operation below 1 GHz are usually  
operated in the 315 MHz, 433 MHz, 868 MHz  
or 915 MHz frequency bands. The CC113L is  
specifically designed for such use with its  
300 - 348 MHz, 387 - 464 MHz, and  
779 - 928 MHz operating ranges. The most  
important regulations when using the CC113L in  
the 315 MHz, 433 MHz, 868 MHz, or 915 MHz  
frequency bands are EN 300 220 V2.3.1  
(Europe) and FCC CFR47 part 15 (USA).  
For compliance with modulation bandwidth  
requirements under EN 300 220 V2.3.1 in the  
863 to 870 MHz frequency range it is  
recommended to use a 26 MHz crystal for  
frequencies below 869 MHz and a 27 MHz  
crystal for frequencies above 869 MHz.  
Please note that compliance with regulations  
is dependent on the complete system  
performance. It is the customer‟s responsibility  
to ensure that the system complies with  
regulations.  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
CC113L  
25.2 Calibration in Multi-Channel Systems  
disable the charge pump calibration. After  
writing to FSCAL3[5:4], strobe SRX with  
CC115L is highly suited for multi-channel  
systems due to its agile frequency synthesizer  
and effective communication interface.  
MCSM0.FS_AUTOCAL=1  
for  
each  
new  
frequency. That is, VCO current and VCO  
capacitance calibration is done, but not charge  
pump current calibration. When charge pump  
current calibration is disabled the calibration  
time is reduced from 712/724 µs to 145/157 µs  
(26 MHz crystal and TEST0 = 0x09/0B, see  
Table 27). The blanking interval between each  
frequency hop is then 220/232 µs.  
Charge pump current, VCO current, and VCO  
capacitance array calibration data is required  
for each frequency when implementing a multi-  
channel system. There are 3 ways of obtaining  
the calibration data from the chip:  
1) Calibration for every frequency change. The  
PLL calibration time is 712/724 µs (26 MHz  
crystal and TEST0 = 0x09/0B, see Table 27).  
The blanking interval between each frequency  
is then 787/799 µs.  
There is a trade-off between blanking time and  
memory space needed for storing calibration  
data in non-volatile memory. Solution 2) above  
gives the shortest blanking interval, but  
requires more memory space to store  
calibration values. This solution also requires  
that the supply voltage and temperature do not  
vary much in order to have a robust solution.  
Solution 3) gives 567 µs smaller blanking  
interval than solution 1).  
2) Perform all necessary calibration at startup  
and store the resulting FSCAL3, FSCAL2, and  
FSCAL1 register values in MCU memory. The  
VCO capacitance calibration FSCAL1 register  
value must be found for each RF frequency to  
be used. The VCO current calibration value  
and the charge pump current calibration value  
available in FSCAL2 and FSCAL3 respectively  
are not dependent on the RF frequency, so the  
same value can therefore be used for all RF  
frequencies for these two registers. Between  
each frequency change, the calibration  
process can then be replaced by writing the  
FSCAL3, FSCAL2 and FSCAL1register values  
that corresponds to the next RF frequency.  
The PLL turn on time is approximately 75 µs  
(Table 26). The blanking interval between  
each frequency hop is then approximately  
75 µs.  
The  
recommended  
settings  
change  
for  
with  
TEST0.VCO_SEL_CAL_EN  
frequency. This means that one should always  
use SmartRF Studio [4] to get the correct  
settings for a specific frequency before doing a  
calibration, regardless of which calibration  
method is being used.  
Note: The content in the TEST0 register is  
not retained in SLEEP state, thus it is  
necessary to re-write this register when  
returning from the SLEEP state.  
3) Run calibration on a single frequency at  
startup. Next write 0 to FSCAL3[5:4] to  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
CC113L  
26 Configuration Registers  
There are also 8 status registers that are listed  
in Table 32. These registers, which are read-  
only, contain information about the status of  
CC113L.  
The configuration of CC113L is done by  
programming 8-bit registers. The optimum  
configuration data based on selected system  
parameters are most easily found by using the  
SmartRF Studio software [4]. Complete  
descriptions of the registers are given in the  
following tables. After chip reset, all the  
registers have default values as shown in the  
tables. The optimum register setting might  
differ from the default value. After a reset, all  
registers that shall be different from the default  
value therefore needs to be programmed  
through the SPI interface.  
The RX FIFO is accessed through one 8-bit  
register. During the header byte transfer and  
while writing data to a register, a status byte is  
returned on the SO line. This status byte is  
described in Table 16 on page 23.  
Table 33 summarizes the SPI address space.  
The address to use is given by adding the  
base address to the left and the burst and  
read/write bits on the top. Note that the burst  
bit has different meaning for base addresses  
above and below 0x2F.  
There are 8 command strobe registers, listed  
in Table 30. Accessing these registers will  
initiate the change of an internal state or  
mode. There are 43 normal 8-bit configuration  
registers listed in Table 31, and SmartRF  
Studio [4] will provide recommended settings  
for these registers2.  
“Reserved” must be configured according to  
SmartRF Studio  
2 Addresses marked as “Not Used” can be part  
of a burst access and one can write a dummy  
value to them. Addresses marked as  
Address  
0x30  
Strobe Name  
SRES  
Description  
Reset chip.  
0x31  
Reserved  
SXOFF  
0x32  
Turn off crystal oscillator.  
0x33  
SCAL  
Calibrate frequency synthesizer and turn it off. SCALcan be strobed from IDLE mode  
without setting manual calibration mode (MCSM0.FS_AUTOCAL=0)  
0x34  
SRX  
In IDLE state: Enable RX. Perform calibration first if MCSM0.FS_AUTOCAL=1.  
0x35  
Reserved  
SIDLE  
0x36  
Enter IDLE state  
0x37 - 0x38  
0x39  
Reserved  
SPWD  
SFRX  
Enter power down mode when CSn goes high.  
0x3A  
Flush the RX FIFO buffer. Only issue SFRXin IDLE or RXFIFO_OVERFLOW states.  
0x3B - 0x3C  
0x3D  
Reserved  
SNOP  
No operation. May be used to get access to the chip status byte.  
Table 30: Command Strobes  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
 
 
 
 
 
 
 
 
CC113L  
Address  
Register  
Description  
Preserved in  
SLEEP State  
Details on  
Page Number  
0x00  
IOCFG2  
IOCFG1  
IOCFG0  
FIFOTHR  
SYNC1  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
49  
49  
49  
50  
51  
51  
51  
51  
52  
52  
52  
52  
53  
53  
53  
53  
53  
53  
54  
55  
55  
55  
55  
55  
56  
57  
58  
59  
60  
61  
GDO2output pin configuration  
GDO1output pin configuration  
GDO0output pin configuration  
RX FIFO threshold  
0x01  
0x02  
0x03  
0x04  
Sync word, high byte  
0x05  
SYNC0  
Sync word, low byte  
0x06  
PKTLEN  
PKTCTRL1  
PKTCTRL0  
ADDR  
Packet length  
0x07  
Packet automation control  
Packet automation control  
Device address  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
CHANNR  
FSCTRL1  
FSCTRL0  
FREQ2  
Channel number  
Frequency synthesizer control  
Frequency synthesizer control  
Frequency control word, high byte  
Frequency control word, middle byte  
Frequency control word, low byte  
Modem configuration  
FREQ1  
FREQ0  
MDMCFG4  
MDMCFG3  
MDMCFG2  
MDMCFG1  
MDMCFG0  
DEVIATN  
MCSM2  
0x11  
Modem configuration  
0x12  
Modem configuration  
0x13  
Modem configuration  
0x14  
Modem configuration  
0x15  
Modem deviation setting  
Main Radio Control State Machine configuration  
Main Radio Control State Machine configuration  
Main Radio Control State Machine configuration  
Frequency Offset Compensation configuration  
Bit Synchronization configuration  
AGC control  
0x16  
0x17  
MCSM1  
0x18  
MCSM0  
0x19  
FOCCFG  
BSCFG  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E - 0x1F  
0x20  
AGCTRL2  
AGCTRL1  
AGCTRL0  
Not Used  
RESERVED  
FREND1  
Not Used  
FSCAL3  
FSCAL2  
FSCAL1  
FSCAL0  
Not Used  
RESERVED  
TEST2  
AGC control  
AGC control  
Yes  
Yes  
61  
62  
0x21  
Front end RX configuration  
0x22  
0x23  
Frequency synthesizer calibration  
Frequency synthesizer calibration  
Frequency synthesizer calibration  
Frequency synthesizer calibration  
Yes  
Yes  
Yes  
Yes  
62  
62  
62  
62  
0x24  
0x25  
0x26  
0x27 - 0x28  
0x29 - 0x2B  
0x2C  
0x2D  
0x2E  
No  
No  
No  
No  
63  
63  
63  
63  
Various test settings  
Various test settings  
Various test settings  
TEST1  
TEST0  
Table 31: Configuration Registers Overview  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
CC113L  
Address  
Register  
PARTNUM  
VERSION  
FREQEST  
CRC_REG  
RSSI  
Description  
Details on page number  
0x30 (0xF0)  
0x31 (0xF1)  
0x32 (0xF2)  
0x33 (0xF3)  
0x34 (0xF4)  
0x35 (0xF5)  
64  
64  
64  
64  
64  
65  
Part number for CC113L  
Current version number  
Frequency Offset Estimate  
CRC OK  
Received signal strength indication  
MARCSTATE Control state machine state  
Reserved  
0x36 - 0x37  
(0xF6 - 0xF7)  
0x38 (0xF8)  
PKTSTATUS  
Reserved  
Current GDOx status and packet status  
66  
0x39 - 0x3A  
(0xF9 - 0xFA)  
0x3B (0xFB)  
RXBYTES  
Reserved  
Overflow and number of bytes in the RX FIFO 66  
0x3C - 0x3D  
(0xFC - 0xFD)  
Table 32: Status Registers Overview  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
CC113L  
Write  
Single Byte  
+0x00  
Read  
Burst  
+0x40  
Single Byte  
+0x80  
Burst  
+0xC0  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
IOCFG2  
IOCFG1  
IOCFG0  
FIFOTHR  
SYNC1  
SYNC0  
PKTLEN  
PKTCTRL1  
PKTCTRL0  
ADDR  
CHANNR  
FSCTRL1  
FSCTRL0  
FREQ2  
FREQ1  
FREQ0  
MDMCFG4  
MDMCFG3  
MDMCFG2  
MDMCFG1  
MDMCFG0  
DEVIATN  
MCSM2  
MCSM1  
MCSM0  
FOCCFG  
BSCFG  
AGCCTRL2  
AGCCTRL1  
AGCCTRL0  
Not Used  
Not Used  
RESERVED  
FREND1  
Not Used  
FSCAL3  
FSCAL2  
FSCAL1  
FSCAL0  
Not Used  
Not Used  
RESERVED  
RESERVED  
RESERVED  
TEST2  
TEST1  
TEST0  
Not Used  
SRES  
Reserved  
SXOFF  
SCAL  
SRX  
Reserved  
SIDLE  
Reserved  
Reserved  
SPWD  
SRES  
PARTNUM  
VERSION  
FREQEST  
CRC_REG  
RSSI  
MARCSTATE  
Reserved  
Reserved  
PKTSTATUS  
Reserved  
Reserved  
RXBYTES  
Reserved  
Reserved  
Reserved  
RX FIFO  
Reserved  
SXOFF  
SCAL  
SRX  
Reserved  
SIDLE  
Reserved  
Reserved  
SPWD  
SFRX  
SFRX  
Reserved  
Reserved  
SNOP  
Reserved  
Reserved  
Reserved  
Reserved  
SNOP  
Reserved  
RX FIFO  
Table 33: SPI Address Space  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
CC113L  
26.1 Configuration Register Details - Registers with preserved values in SLEEP state  
0x00: IOCFG2 - GDO2 Output Pin Configuration  
Bit  
7
Field Name  
Reset  
R/W  
R0  
Description  
Not used  
6
0
R/W  
Invert output, i.e. select active low (1) / high (0)  
GDO2_INV  
5:0  
41 (101001)  
R/W  
Default is CHP_RDYn(See Table 29 on page 42).  
GDO2_CFG[5:0]  
0x01: IOCFG1 - GDO1 Output Pin Configuration  
Bit  
7
Field Name  
GDO_DS  
Reset  
R/W  
R/W  
R/W  
R/W  
Description  
0
Set high (1) or low (0) output drive strength on the GDO pins.  
Invert output, i.e. select active low (1) / high (0)  
Default is 3-state (See Table 29 on page 42).  
6
0
GDO1_INV  
5:0  
46 (101110)  
GDO1_CFG[5:0]  
0x02: IOCFG0 - GDO0 Output Pin Configuration  
Bit  
7
Field Name  
Reset  
R/W  
R/W  
R/W  
R/W  
Description  
0
Use setting from SmartRF Studio [4]  
Invert output, i.e. select active low (1) / high (0)  
Default is CLK_XOSC/192 (See Table 29 on page 42).  
6
0
GDO0_INV  
5:0  
63 (0x3F)  
GDO0_CFG[5:0]  
It is recommended to disable the clock output in initialization, in  
order to optimize RF performance.  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
 
CC113L  
0x03: FIFOTHR - RX FIFO Thresholds  
Bit Field Name  
Reset  
R/W  
R/W  
R/W  
Description  
7
0
0
Use setting from SmartRF Studio [4]  
6
ADC_RETENTION  
0: TEST1 = 0x31 and TEST2= 0x88 when waking up from SLEEP  
1: TEST1 = 0x35 and TEST2 = 0x81 when waking up from SLEEP  
Note that the changes in the TEST registers due to the ADC_RETENTION bit  
setting are only seen INTERNALLY in the analog part. The values read from  
the TEST registers when waking up from SLEEP mode will always be the  
reset value.  
The ADC_RETENTION bit should be set to 1before going into SLEEP mode if  
settings with an RX filter bandwidth below 325 kHz are wanted at time of  
wake-up.  
5:4 CLOSE_IN_RX[1:0] 0 (00)  
R/W  
For more details, please see DN010 [5]  
Setting  
0 (00)  
1 (01)  
2 (10)  
3 (11)  
RX Attenuation, Typical Values  
0 dB  
6 dB  
12 dB  
18 dB  
3:0 FIFO_THR[3:0]  
7 (0111)  
R/W  
Set the threshold for the RX FIFO. The threshold is exceeded when the  
number of bytes in the RX FIFO is equal to or higher than the threshold value.  
Setting  
Bytes in RX FIFO  
0 (0000)  
1 (0001)  
2 (0010)  
3 (0011)  
4 (0100)  
5 (0101)  
6 (0110)  
7 (0111)  
8 (1000)  
9 (1001)  
10 (1010)  
11 (1011)  
12 (1100)  
13 (1101)  
14 (1110)  
15 (1111)  
4
8
12  
16  
20  
24  
28  
32  
36  
40  
44  
48  
52  
56  
60  
64  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
CC113L  
0x04: SYNC1 - Sync Word, High Byte  
Bit Field Name  
Reset  
211 (0xD3)  
R/W Description  
7:0 SYNC[15:8]  
R/W 8 MSB of 16-bit sync word  
0x05: SYNC0 - Sync Word, Low Byte  
Bit Field Name  
Reset  
R/W  
Description  
7:0 SYNC[7:0]  
145 (0x91)  
R/W  
8 LSB of 16-bit sync word  
0x06: PKTLEN - Packet Length  
Bit Field Name  
Reset  
R/W  
Description  
7:0 PACKET_LENGTH  
255 (0xFF)  
R/W  
Indicates the packet length when fixed packet length mode is enabled.  
If variable packet length mode is used, this value indicates the  
maximum packet length allowed. This value must be different from 0.  
0x07: PKTCTRL1 - Packet Automation Control  
Bit Field Name  
Reset  
R/W  
R/W  
R0  
Description  
7:5  
4
0 (000)  
Use setting from SmartRF Studio [4]  
Not Used.  
0
0
3
CRC_AUTOFLUSH  
APPEND_STATUS  
R/W  
Enable automatic flush of RX FIFO when CRC is not OK. This requires  
that only one packet is in the RX FIFO and that packet length is limited  
to the RX FIFO size.  
2
1
R/W  
R/W  
When enabled, two status bytes will be appended to the payload of the  
packet. The status bytes contain the RSSI value, as well as CRC OK.  
1:0 ADR_CHK[1:0]  
0 (00)  
Controls address check configuration of received packages.  
Setting  
0 (00)  
1 (01)  
2 (10)  
3 (11)  
Address check configuration  
No address check  
Address check, no broadcast  
Address check and 0 (0x00) broadcast  
Address check and 0 (0x00) and 255 (0xFF) broadcast  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
CC113L  
0x08: PKTCTRL0 - Packet Automation Control  
Bit Field Name  
Reset  
R/W  
R0  
Description  
7
Not used  
6
1
R/W  
R/W  
Use setting from SmartRF Studio [4]  
Format of RX data  
5:4 PKT_FORMAT[1:0]  
0 (00)  
Setting  
0 (00)  
1 (01)  
Packet format  
Normal mode, use RX FIFO  
Synchronous serial mode, Data out on either of the  
GDOx pins  
2 (10)  
3 (11)  
Reserved  
Asynchronous serial mode, Data out on either of the  
GDOx pins  
3
0
1
R0  
Not used  
2
CRC_EN  
R/W  
1: CRC calculation enabled  
0: CRC calculation disabled  
Configure the packet length  
1:0 LENGTH_CONFIG[1:0]  
1 (01)  
R/W  
Setting  
0 (00)  
Packet length configuration  
Fixed packet length mode. Length configured in  
PKTLENregister  
1 (01)  
Variable packet length mode. Packet length configured  
by the first byte received after sync word  
2 (10)  
3 (11)  
Infinite packet length mode  
Reserved  
0x09: ADDR - Device Address  
Bit Field Name  
Reset  
R/W  
Description  
7:0 DEVICE_ADDR[7:0]  
0 (0x00)  
R/W  
Address used for packet filtration. Optional broadcast addresses are  
0 (0x00) and 255 (0xFF).  
0x0A: CHANNR - Channel Number  
Bit Field Name  
Reset  
R/W  
Description  
7:0 CHAN[7:0]  
0 (0x00)  
R/W  
The 8-bit unsigned channel number, which is multiplied by the channel  
spacing setting and added to the base frequency.  
0x0B: FSCTRL1 - Frequency Synthesizer Control  
Bit Field Name  
Reset  
R/W  
R0  
Description  
7:6  
Not used  
5
0
R/W  
Use setting from SmartRF Studio [4]  
4:0 FREQ_IF[4:0]  
15 (01111) R/W  
The desired IF frequency to employ in RX. Subtracted from FS base  
frequency in RX and controls the digital complex mixer in the  
demodulator.  
fXOSC  
210  
fIF  
FREQ _ IF  
The default value gives an IF frequency of 381kHz, assuming a 26.0  
MHz crystal.  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
CC113L  
0x0C: FSCTRL0 - Frequency Synthesizer Control  
Bit Field Name  
Reset  
R/W  
Description  
7:0 FREQOFF[7:0]  
0 (0x00)  
R/W  
Frequency offset added to the base frequency before being used by the  
frequency synthesizer. (2s-complement).  
Resolution is FXTAL/214 (1.59 kHz - 1.65kHz); range is ±202 kHz to ±210  
kHz, dependent of XTAL frequency.  
0x0D: FREQ2 - Frequency Control Word, High Byte  
Bit  
Field Name  
Reset  
R/W  
Description  
7:6  
FREQ[23:22]  
0 (00)  
R
FREQ[23:22]is always 0 (the FREQ2register is less than 36 with  
26 - 27 MHz crystal)  
5:0  
FREQ[21:16]  
30  
(011110)  
R/W  
FREQ[23:0]is the base frequency for the frequency synthesiser in  
increments of fXOSC/216.  
fXOSC  
216  
fcarrier  
FREQ[23:0]  
0x0E: FREQ1 - Frequency Control Word, Middle Byte  
Bit  
Field Name  
Reset  
R/W  
Description  
7:0  
FREQ[15:8]  
196 (0xC4)  
R/W  
Ref. FREQ2register  
0x0F: FREQ0 - Frequency Control Word, Low Byte  
Bit  
Field Name  
Reset  
R/W  
Description  
7:0  
FREQ[7:0]  
236 (0xEC) R/W  
Ref. FREQ2register  
0x10: MDMCFG4 - Modem Configuration  
Bit  
7:6  
5:4  
Field Name  
Reset  
2 (10)  
0 (00)  
R/W  
R/W  
R/W  
Description  
CHANBW_E[1:0]  
CHANBW_M[1:0]  
Sets the decimation ratio for the delta-sigma ADC input stream and thus  
the channel bandwidth.  
fXOSC  
BWchannel  
8 (4 CHANBW _ M)·2CHANBW _ E  
The default values give 203 kHz channel filter bandwidth, assuming a 26.0  
MHz crystal.  
3:0  
DRATE_E[3:0]  
12 (1100)  
R/W  
The exponent of the user specified symbol rate  
0x11: MDMCFG3 - Modem Configuration  
Bit  
Field Name  
Reset  
R/W  
Description  
7:0  
DRATE_M[7:0]  
34 (0x22)  
R/W  
The mantissa of the user specified symbol rate. The symbol rate is  
configured using an unsigned, floating-point number with 9-bit mantissa  
and 4-bit exponent. The 9th bit is a hidden „1‟. The resulting data rate is:  
(256 DRATE _ M ) 2DRATE _ E  
RDATA  
fXOSC  
228  
The default values give a data rate of 115.051 kBaud (closest setting to  
115.2 kBaud), assuming a 26.0 MHz crystal.  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
CC113L  
0x12: MDMCFG2 - Modem Configuration  
Bit Field Name  
Reset  
R/W  
Description  
7
DEM_DCFILT_OFF  
0
R/W  
Disable digital DC blocking filter before demodulator.  
0 = Enable (better sensitivity)  
1 = Disable (current optimized). Only for data rates ≤ 250 kBaud  
The recommended IF frequency changes when the DC blocking is disabled.  
Please use SmartRF Studio [4] to calculate correct register setting.  
6:4 MOD_FORMAT[2:0]  
0 (000)  
R/W  
The modulation format of the radio signal  
Setting  
0 (000)  
1 (001)  
2 (010)  
3 (011)  
4 (100)  
5 (101)  
6 (110)  
7 (111)  
Modulation format  
2-FSK  
GFSK  
Reserved  
OOK  
4-FSK  
Reserved  
Reserved  
Reserved  
4-FSK modulation cannot be used together with Manchester encoding  
3
MANCHESTER_EN  
0
R/W  
R/W  
Enables Manchester decoding.  
0 = Disable  
1 = Enable  
Manchester encoding cannot be used when using asynchronous serial  
mode or 4-FSK modulation  
2:0 SYNC_MODE[2:0]  
2 (010)  
Combined sync-word qualifier mode.  
The values 0 and 4 disables preamble and sync word detection  
The values 1, 2, 5, and 6 enables 16-bit sync word detection. Only 15 of 16  
bits need to match when using setting 1 or 5. The values 3 and 7 enables  
32-bits sync word detection (only 30 of 32 bits need to match).  
Setting  
0 (000)  
1 (001)  
2 (010)  
3 (011)  
4 (100)  
5 (101)  
6 (110)  
7 (111)  
Sync-word qualifier mode  
No preamble/sync  
15/16 sync word bits detected  
16/16 sync word bits detected  
30/32 sync word bits detected  
No preamble/sync, carrier-sense above threshold  
15/16 + carrier-sense above threshold  
16/16 + carrier-sense above threshold  
30/32 + carrier-sense above threshold  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
CC113L  
0x13: MDMCFG1 - Modem Configuration  
Bit  
7
Field Name  
Reset  
R/W  
R/W  
R0  
Description  
0
Use setting from SmartRF Studio [4]  
Not used  
6:2  
1:0  
CHANSPC_E[1:0]  
2 (10)  
R/W  
2 bit exponent of channel spacing  
0x14: MDMCFG0 - Modem Configuration  
Bit  
Field Name  
Reset  
R/W  
Description  
7:0  
CHANSPC_M[7:0]  
248 (0xF8) R/W  
8-bit mantissa of channel spacing. The channel spacing is multiplied by  
the channel number CHANand added to the base frequency. It is  
unsigned and has the format:  
fXOSC  
218  
CHANNEL  
(256 CHANSPC _ M) 2CHANSPC _ E  
The default values give 199.951 kHz channel spacing (the closest  
setting to 200 kHz), assuming 26.0 MHz crystal frequency.  
0x15: DEVIATN - Modem Deviation Setting  
Bit  
Field Name  
Reset  
R/W  
R0  
Description  
Not used.  
7
6:4  
3
DEVIATION_E[2:0]  
DEVIATION_M[2:0]  
4 (100)  
7 (111)  
R/W  
R0  
Deviation exponent.  
Not used.  
2:0  
R/W  
2-FSK/  
GFSK/  
4-FSK  
OOK  
Specifies the expected frequency deviation of  
incoming signal, must be approximately right for  
demodulation to be performed reliably and robustly.  
This setting has no effect.  
0x16: MCSM2 - Main Radio Control State Machine Configuration  
Bit  
7:5  
4
Field Name  
Reset  
R/W  
R0  
Description  
Not used  
RX_TIME_RSSI  
0
R/W  
Direct RX termination based on RSSI measurement (carrier sense).  
For OOK modulation, RX times out if there is no carrier sense in the  
first 8 symbol periods.  
3:0  
7 (0111)  
R/W  
Use setting from SmartRF Studio [4]  
0x17: MCSM1 - Main Radio Control State Machine Configuration  
Bit  
7:6  
5:4  
3:2  
Field Name  
Reset  
R/W  
R0  
Description  
Not used  
3 (11)  
0 (00)  
R/W  
R/W  
Use setting from SmartRF Studio [4]  
Select what should happen when a packet has been received.  
RXOFF_MODE[1:0]  
Setting  
0 (00)  
1 (01)  
2 (10)  
3 (11)  
Next state after finishing packet reception  
IDLE  
Reserved  
Reserved  
Stay in RX  
1:0  
0 (00)  
R/W  
Use setting from SmartRF Studio [4]  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
 
CC113L  
0x18: MCSM0 - Main Radio Control State Machine Configuration  
Bit  
7:6  
5:4  
Field Name  
Reset  
R/W  
R0  
Description  
Not used  
FS_AUTOCAL[1:0]  
0 (00)  
R/W  
Automatically calibrate when going to to/from RX mode  
Setting  
0 (00)  
1 (01)  
2 (10)  
3 (11)  
When to perform automatic calibration  
Never (manually calibrate using SCALstrobe)  
When going from IDLE to RX  
When going from RX back to IDLE automatically  
Every 4th time when going from RX to IDLE automatically  
3:2  
PO_TIMEOUT  
1 (01)  
R/W  
Programs the number of times the six-bit ripple counter must expire after  
the XOSC has settled before CHP_RDYngoes low. 3  
If XOSC is on (stable) during power-down, PO_TIMEOUTshall be set so  
that the regulated digital supply voltage has time to stabilize before  
CHP_RDYngoes low (PO_TIMEOUT=2recommended). Typical start-up  
time for the voltage regulator is 50 μs.  
For robust operation it is recommended to use PO_TIMEOUT = 2 or 3  
when XOSC is off during power-down.  
Setting  
0 (00)  
1 (01)  
2 (10)  
3 (11)  
Expire count  
Timeout after XOSC start  
Approx. 2.3 - 2.4 μs  
Approx. 37 - 39 μs  
1
16  
64  
256  
Approx. 149 - 155 μs  
Approx. 597 - 620 μs  
Exact timeout depends on crystal frequency.  
Use setting from SmartRF Studio [4]  
1
0
0
0
R/W  
R/W  
XOSC_FORCE_ON  
Force the XOSC to stay on in the SLEEP state.  
3
Note that the XOSC_STABLE signal will be asserted at the same time as the CHIP_RDYn signal;  
i.e. the PO_TIMEOUT delays both signals and does not insert a delay between the signals.  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
HTTP://WWW.SZRFSTAR.COM  
TEL:0755-86329829 FAX:0755-86329413  
CC113L  
0x19: FOCCFG - Frequency Offset Compensation Configuration  
Bit Field Name  
Reset R/W Description  
7:6  
R0  
Not used  
5
FOC_BS_CS_GATE  
1
R/W If set, the demodulator freezes the frequency offset compensation and clock  
recovery feedback loops until the CS signal goes high.  
4:3 FOC_PRE_K[1:0]  
2 (10) R/W The frequency compensation loop gain to be used before a sync word is  
detected.  
Setting  
0 (00)  
1 (01)  
2 (10)  
3 (11)  
Freq. compensation loop gain before sync word  
K
2K  
3K  
4K  
2
FOC_POST_K  
1
R/W The frequency compensation loop gain to be used after a sync word is detected.  
Setting  
Freq. compensation loop gain after sync word  
0
1
Same as FOC_PRE_K  
K/2  
1:0 FOC_LIMIT[1:0]  
2 (10) R/W The saturation point for the frequency offset compensation algorithm:  
Setting  
0 (00)  
1 (01)  
2 (10)  
3 (11)  
Saturation point (max compensated offset)  
±0 (no frequency offset compensation)  
±BWCHAN/8  
±BWCHAN/4  
±BWCHAN/2  
Frequency offset compensation is not supported for OOK. Always use  
FOC_LIMIT=0 with this modulation format.  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
CC113L  
0x1A: BSCFG - Bit Synchronization Configuration  
Bit Field Name  
Reset R/W Description  
7:6 BS_PRE_KI[1:0]  
1 (01) R/W The clock recovery feedback loop integral gain to be used before a sync word is  
detected (used to correct offsets in data rate):  
Setting  
0 (00)  
1 (01)  
2 (10)  
3 (11)  
Clock recovery loop integral gain before sync word  
KI  
2KI  
3KI  
4KI  
5:4 BS_PRE_KP[1:0] 2 (10) R/W The clock recovery feedback loop proportional gain to be used before a sync word  
is detected.  
Setting  
0 (00)  
1 (01)  
2 (10)  
3 (11)  
Clock recovery loop proportional gain before sync word  
KP  
2KP  
3KP  
4KP  
3
2
BS_POST_KI  
BS_POST_KP  
1
1
R/W The clock recovery feedback loop integral gain to be used after a sync word is  
detected.  
Setting  
Clock recovery loop integral gain after sync word  
0
1
Same as BS_PRE_KI  
KI /2  
R/W The clock recovery feedback loop proportional gain to be used after a sync word is  
detected.  
Setting  
Clock recovery loop proportional gain after sync word  
0
1
Same as BS_PRE_KP  
KP  
1:0 BS_LIMIT[1:0]  
0 (00) R/W The saturation point for the data rate offset compensation algorithm:  
Setting  
0 (00)  
1 (01)  
2 (10)  
3 (11)  
Data rate offset saturation (max data rate difference)  
±0 (No data rate offset compensation performed)  
±3.125 % data rate offset  
±6.25 % data rate offset  
±12.5 % data rate offset  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
CC113L  
0x1B: AGCCTRL2 - AGC Control  
Bit Field Name  
Reset  
R/W  
Description  
7:6 MAX_DVGA_GAIN[1:0] 0 (00)  
R/W  
Reduces the maximum allowable DVGA gain.  
Setting  
0 (00)  
1 (01)  
2 (10)  
3 (11)  
Allowable DVGA settings  
All gain settings can be used  
The highest gain setting cannot be used  
The 2 highest gain settings cannot be used  
The 3 highest gain settings cannot be used  
5:3 MAX_LNA_GAIN[2:0]  
0 (000)  
R/W  
Sets the maximum allowable LNA + LNA 2 gain relative to the maximum  
possible gain.  
Setting  
0 (000)  
1 (001)  
2 (010)  
3 (011)  
4 (100)  
5 (101)  
6 (110)  
7 (111)  
Maximum allowable LNA + LNA 2 gain  
Maximum possible LNA + LNA 2 gain  
Approx. 2.6 dB below maximum possible gain  
Approx. 6.1 dB below maximum possible gain  
Approx. 7.4 dB below maximum possible gain  
Approx. 9.2 dB below maximum possible gain  
Approx. 11.5 dB below maximum possible gain  
Approx. 14.6 dB below maximum possible gain  
Approx. 17.1 dB below maximum possible gain  
2:0 MAGN_TARGET[2:0]  
3 (011)  
R/W  
These bits set the target value for the averaged amplitude from the digital  
channel filter (1 LSB = 0 dB).  
Setting  
0 (000)  
1 (001)  
2 (010)  
3 (011)  
4 (100)  
5 (101)  
6 (110)  
7 (111)  
Target amplitude from channel filter  
24 dB  
27 dB  
30 dB  
33 dB  
36 dB  
38 dB  
40 dB  
42 dB  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
CC113L  
0x1C: AGCCTRL1 - AGC Control  
Bit Field Name  
Reset  
R/W  
R0  
Description  
7
Not used  
6
AGC_LNA_PRIORITY  
1
R/W  
Selects between two different strategies for LNA and LNA 2  
gain adjustment. When 1, the LNA gain is decreased first.  
When 0, the LNA 2 gain is decreased to minimum before  
decreasing LNA gain.  
5:4 CARRIER_SENSE_REL_THR[1:0] 0 (00)  
R/W  
Sets the relative change threshold for asserting carrier sense  
Setting  
0 (00)  
1 (01)  
2 (10)  
3 (11)  
Carrier sense relative threshold  
Relative carrier sense threshold disabled  
6 dB increase in RSSI value  
10 dB increase in RSSI value  
14 dB increase in RSSI value  
3:0 CARRIER_SENSE_ABS_THR[3:0] 0 (0000)  
R/W  
Sets the absolute RSSI threshold for asserting carrier sense.  
The 2-complement signed threshold is programmed in steps  
of 1 dB and is relative to the MAGN_TARGET setting.  
Setting  
Carrier sense absolute threshold  
(Equal to channel filter amplitude when AGC  
has not decreased gain)  
-8 (1000)  
-7 (1001)  
Absolute carrier sense threshold disabled  
7 dB below MAGN_TARGETsetting  
-1 (1111)  
0 (0000)  
1 (0001)  
1 dB below MAGN_TARGETsetting  
At MAGN_TARGETsetting  
1 dB above MAGN_TARGETsetting  
7 (0111)  
7 dB above MAGN_TARGETsetting  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
CC113L  
0x1D: AGCCTRL0 - AGC Control  
Bit  
Field Name  
Reset  
R/W  
Description  
7:6  
HYST_LEVEL[1:0]  
2 (10)  
R/W  
Sets the level of hysteresis on the magnitude deviation (internal  
AGC signal that determine gain changes).  
Setting  
0 (00)  
1 (01)  
Description  
No hysteresis, small symmetric dead zone, high gain  
Low hysteresis, small asymmetric dead zone, medium  
gain  
2 (10)  
Medium hysteresis, medium asymmetric dead zone,  
medium gain  
3 (11)  
Large hysteresis, large asymmetric dead zone, low gain  
5:4  
WAIT_TIME[1:0]  
1 (01)  
R/W  
Sets the number of channel filter samples from a gain adjustment  
has been made until the AGC algorithm starts accumulating new  
samples.  
Setting  
0 (00)  
1 (01)  
2 (10)  
3 (11)  
Channel filter samples  
8
16  
24  
32  
3:2  
AGC_FREEZE[1:0]  
0 (00)  
R/W  
Control when the AGC gain should be frozen.  
Setting  
0 (00)  
1 (01)  
Function  
Normal operation. Always adjust gain when required.  
The gain setting is frozen when a sync word has been  
found.  
2 (10)  
3 (11)  
Manually freeze the analogue gain setting and continue  
to adjust the digital gain.  
Manually freezes both the analogue and the digital gain  
setting. Used for manually overriding the gain.  
1:0  
FILTER_LENGTH[1:0]  
1 (01)  
R/W  
2-FSK and 4-FSK: Sets the averaging length for the amplitude from  
the channel filter.  
OOK: Sets the OOK decision boundary for OOK reception.  
Setting  
0 (00)  
1 (01)  
2 (10)  
3 (11)  
Channel filter samples  
OOK decision boundary  
8
4 dB  
16  
32  
64  
8 dB  
12 dB  
16 dB  
0x20: RESERVED  
Bit  
7:3  
2
Field Name  
Reset  
R/W  
R/W  
R0  
Description  
31 (11111)  
Use setting from SmartRF Studio [4]  
Not used  
1:0  
0 (00)  
R/W  
Use setting from SmartRF Studio [4]  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
CC113L  
0x21: FREND1 - Front End RX Configuration  
Bit Field Name  
Reset  
1 (01)  
1 (01)  
1 (01)  
2 (10)  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
7:6 LNA_CURRENT[1:0]  
5:4 LNA2MIX_CURRENT[1:0]  
3:2 LODIV_BUF_CURRENT_RX[1:0]  
1:0 MIX_CURRENT[1:0]  
Adjusts front-end LNA PTAT current output  
Adjusts front-end PTAT outputs  
Adjusts current in RX LO buffer (LO input to mixer)  
Adjusts current in mixer  
0x23: FSCAL3 - Frequency Synthesizer Calibration  
Bit Field Name  
Reset  
R/W  
Description  
7:6 FSCAL3[7:6]  
2 (10)  
R/W  
Frequency synthesizer calibration configuration. The value  
to write in this field before calibration is given by the  
SmartRF Studio software [4].  
5:4 CHP_CURR_CAL_EN[1:0]  
3:0 FSCAL3[3:0]  
2 (10)  
R/W  
R/W  
Disable charge pump calibration stage when 0.  
9 (1001)  
Frequency synthesizer calibration result register. Digital bit  
vector defining the charge pump output current, on an  
exponential scale: I_OUT = I0·2FSCAL3[3:0]/4  
Please see Section 25.2 for more details.  
0x24: FSCAL2 - Frequency Synthesizer Calibration  
Bit Field Name  
Reset  
R/W  
R0  
Description  
7:6  
Not used  
5
VCO_CORE_H_EN  
0
R/W  
R/W  
Choose high (1) / low (0) VCO  
4:0 FSCAL2[4:0]  
10 (01010)  
Frequency synthesizer calibration result register. VCO  
current calibration result and override value.  
Please see Section 25.2 for more details.  
0x25: FSCAL1 - Frequency Synthesizer Calibration  
Bit Field Name  
7:6  
Reset  
R/W  
R0  
Description  
Not used  
5:0 FSCAL1[5:0]  
32 (0x20)  
R/W  
Frequency synthesizer calibration result register. Capacitor  
array setting for VCO coarse tuning.  
Please see Section 25.2 for more details.  
0x26: FSCAL0 - Frequency Synthesizer Calibration  
Bit Field Name  
7
Reset  
R/W  
R0  
Description  
Not used  
6:0 FSCAL0[6:0]  
13 (0x0D)  
R/W  
Frequency synthesizer calibration control. The value to use  
in this register is given by the SmartRF Studio software [4].  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
CC113L  
26.2 Configuration Register Details - Registers that Loose Programming in SLEEP State  
0x29: RESERVED  
Bit Field Name  
Reset  
R/W  
Description  
7:0  
89 (0x59)  
R/W  
Use setting from SmartRF Studio [4]  
0x2A: RESERVED  
Bit Field Name  
Reset  
R/W  
Description  
7:0  
127 (0x7F)  
R/W  
Use setting from SmartRF Studio [4]  
0x2B: RESERVED  
Bit Field Name  
Reset  
R/W  
Description  
7:0  
63 (0x3F)  
R/W  
Use setting from SmartRF Studio [4]  
0x2C: TEST2 - Various Test Settings  
Bit Field Name  
Reset  
R/W  
Description  
7:0 TEST2[7:0]  
136 (0x88)  
R/W  
Use setting from SmartRF Studio [4]  
This register will be forced to 0x88 or 0x81 when it wakes up from SLEEP  
mode, depending on the configuration of FIFOTHR.ADC_RETENTION.  
Note that the value read from this register when waking up from SLEEP  
always is the reset value (0x88) regardless of the ADC_RETENTION  
setting. The inverting of some of the bits due to the ADC_RETENTION  
setting is only seen INTERNALLY in the analog part.  
0x2D: TEST1 - Various Test Settings  
Bit Field Name  
Reset  
R/W  
Description  
7:0 TEST1[7:0]  
49 (0x31)  
R/W  
Use setting from SmartRF Studio [4]  
This register will be forced to 0x31 or 0x35 when it wakes up from SLEEP  
mode, depending on the configuration of FIFOTHR.ADC_RETENTION.  
Note that the value read from this register when waking up from SLEEP  
always is the reset value (0x31) regardless of the ADC_RETENTION  
setting. The inverting of some of the bits due to the ADC_RETENTION  
setting is only seen INTERNALLY in the analog part.  
0x2E: TEST0 - Various Test Settings  
Bit Field Name  
Reset  
R/W  
R/W  
R/W  
R/W  
Description  
7:2 TEST0[7:2]  
2 (000010)  
Use setting from SmartRF Studio [4]  
Enable VCO selection calibration stage when 1  
Use setting from SmartRF Studio [4]  
1
0
VCO_SEL_CAL_EN  
TEST0[0]  
1
1
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
CC113L  
26.3 Status Register Details  
0x30 (0xF0): PARTNUM - Chip ID  
Bit Field Name  
Reset  
R/W  
Description  
7:0 PARTNUM[7:0]  
0 (0x00)  
R
Chip part number  
0x31 (0xF1): VERSION - Chip ID  
Bit Field Name  
Reset  
R/W  
Description  
7:0 VERSION[7:0]  
8 (0x08)  
R
Chip version number.  
0x32 (0xF2): FREQEST - Frequency Offset Estimate from Demodulator  
Bit Field Name  
Reset  
R/W  
Description  
7:0 FREQOFF_EST  
R
The estimated frequency offset (2‟s complement) of the carrier. Resolution is  
FXTAL/214 (1.59 - 1.65 kHz); range is ±202 kHz to ±210 kHz, depending on XTAL  
frequency.  
Frequency offset compensation is only supported for 2-FSK, GFSK, and 4-FSK  
modulation. This register will read 0 when using OOK modulation.  
0x33 (0xF3): CRC_REG - CRC OK  
Bit Field Name  
Reset  
R/W  
Description  
7
CRC OK  
R
R
The last CRC comparison matched. Cleared when entering/restarting RX mode.  
Reserved  
6:0  
0x34 (0xF4): RSSI - Received Signal Strength Indication  
Bit Field Name  
Reset  
R/W  
Description  
7:0 RSSI  
R
Received signal strength indicator  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
CC113L  
0x35 (0xF5): MARCSTATE - Main Radio Control State Machine State  
Bit  
7:5  
4:0  
Field Name  
Reset  
R/W  
R0  
R
Description  
Not used  
MARC_STATE[4:0]  
Main Radio Control FSM State  
Value  
State name  
SLEEP  
State (Figure 21, page 35)  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
8 (0x08)  
9 (0x09)  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
16 (0x10)  
17 (0x11)  
SLEEP  
IDLE  
IDLE  
XOFF  
XOFF  
VCOON_MC  
REGON_MC  
MANCAL  
VCOON  
MANCAL  
MANCAL  
MANCAL  
FS_WAKEUP  
FS_WAKEUP  
CALIBRATE  
SETTLING  
SETTLING  
SETTLING  
CALIBRATE  
RX  
REGON  
STARTCAL  
BWBOOST  
FS_LOCK  
IFADCON  
ENDCAL  
RX  
RX_END  
RX_RST  
RX  
RX  
Reserved  
RXFIFO_OVERFLOW  
Reserved  
RXFIFO_OVERFLOW  
18 (0x12)  
-
22 (0x16)  
Note: it is not possible to read back the SLEEP or XOFF state numbers  
because setting CSn low will make the chip enter the IDLE mode from the  
SLEEP or XOFF states.  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
CC113L  
0x38 (0xF8): PKTSTATUS - Current GDOx Status and Packet Status  
Bit Field Name  
Reset  
R/W  
Description  
7
CRC_OK  
R
The last CRC comparison matched. Cleared when entering/restarting RX  
mode.  
6
5
4
3
CS  
R
R
R
R
Carrier sense. Cleared when entering IDLE mode.  
Reserved  
Reserved  
SFD  
Start of Frame Delimiter. This bit is asserted when sync word has been  
received and de-asserted at the end of the packet. It will also de-assert  
when a packet is discarded due to address or maximum length filtering or  
the radio enters RXFIFO_OVERFLOW state.  
2
GDO2  
R
Current GDO2 value. Note: the reading gives the non-inverted value  
irrespective of what IOCFG2.GDO2_INVis programmed to.  
It is not recommended to check for PLL lock by reading PKTSTATUS[2]  
with GDO2_CFG=0x0A.  
1
0
R0  
R
Not used  
GDO0  
Current GDO0 value. Note: the reading gives the non-inverted value  
irrespective of what IOCFG0.GDO0_INVis programmed to.  
It is not recommended to check for PLL lock by reading PKTSTATUS[0]  
with GDO0_CFG=0x0A.  
0x3B (0xFB): RXBYTES - Overflow and Number of Bytes  
Bit Field Name  
Reset  
R/W  
R
Description  
7
RXFIFO_OVERFLOW  
6:0 NUM_RXBYTES  
R
Number of bytes in RX FIFO  
27 Development Kit Ordering Information  
Orderable Evaluation Module  
CC11xLDK-868-915  
Description  
Minimum Order Quantity  
CC11xL Development Kit, 868/915 MHz  
CC11xL Evaluation Module Kit, 433 MHz  
1
1
CC11xLEMK-433  
Figure 26: Development Kit Ordering Information  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
 
CC113L  
28 References  
[1]  
Characterization Design 315 - 433 MHz  
(Identical to the CC1101EM 315 - 433 MHz Reference Design (swrr046.zip))  
Characterization Design 868 - 915 MHz  
[2]  
(Identical to the CC1101EM 868 - 915 MHz Reference Design (swrr045.zip))  
CC113L Errata Notes (swrz038.pdf)  
[3]  
[4]  
[5]  
[6]  
[7]  
[8]  
[9]  
SmartRF Studio (swrc176.zip)  
DN010 Close-in Reception with CC1101 (swra147.pdf)  
DN015 Permanent Frequency Offset Compensation (swra159.pdf)  
DN505 RSSI Interpretation and Timing (swra114.pdf)  
DN022 CC11xx OOK/ASK register settings (swra215.pdf)  
DN005 CC11xx Sensitivity versus Frequency Offset and Crystal Accuracy (swra122.pdf)  
[10] CC113LEM 433 MHz Reference Design (swrr083.zip)  
[11] CC113LEM 868 - 915 MHz Reference Design (swrr084.zip)  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
CC113L  
29 General Information  
29.1 Document History  
Revision  
Date  
Description/Changes  
SWRS108  
SWRS108A  
05.24.2011  
08.09.2011  
Initial Release  
Added three registers (CHANNR, MDMCFG1, and MDMCFG0). Changes made to  
Section 20. Hyperlinks added to the CC113LEM 433 MHz Reference Design and the  
CC113LEM 868 - 915 MHz Reference Design  
Table 34: Document History  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Sep-2011  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
CC113LRTKR  
CC113LRTKT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RTK  
RTK  
20  
20  
3000  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
CC113LRTKR  
CC113LRTKT  
VQFN  
VQFN  
RTK  
RTK  
20  
20  
3000  
250  
330.0  
330.0  
12.4  
12.4  
4.3  
4.3  
4.3  
4.3  
1.5  
1.5  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Sep-2011  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
CC113LRTKR  
CC113LRTKT  
VQFN  
VQFN  
RTK  
RTK  
20  
20  
3000  
250  
340.5  
340.5  
333.0  
333.0  
20.6  
20.6  
Pack Materials-Page 2  
重要声明  
德州仪器(TI) 及其下属子公司有权在不事先通知的情况下, 随时对所提供的产品和服务进行更正、修改、增强、改进或其它更改,  
并有权随时中止提供任何产品和服务。客户在下订单前应获取最新的相关信息 , 并验证这些信息是否完整且是最新的。所有产品的  
销售都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的硬件产品的性能符合TI 标准保修的适用规范。仅在TI 保证的范围内 , TI 认为有必要时才会使用测试或其它质  
量控制技术。除非政府做出了硬性规定 , 否则没有必要对每种产品的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用TI 组件的产品和应用自行负责。为尽量减小与客户产品和应用相关  
的风险,客户应提供充分的设计与操作安全措施。  
TI 不对任何TI 专利权、版权、屏蔽作品权或其它与使用了TI 产品或服务的组合设备、机器、流程相关的TI 知识产权中授予的直接  
或隐含权限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从TI 获得使用这些产品或服务的许可、授  
权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是TI 的专利权或其它知识产权方面的许可。  
对于TI 的产品手册或数据表,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况下才允许进行复制。在复制  
信息的过程中对内容的篡改属于非法的、欺诈性商业行为。TI 对此类篡改过的文件不承担任何责任。  
在转售TI 产品或服务时,如果存在对产品或服务参数的虚假陈述,则会失去相关TI 产品或服务的明示或暗示授权,且这是非法的、  
欺诈性商业行为。TI 对此类虚假陈述不承担任何责任。  
TI 产品未获得用于关键的安全应用中的授权,例如生命支持应用(在该类应用中一旦TI 产品故障将预计造成重大的人员伤亡),除  
非各方官员已经达成了专门管控此类使用的协议。购买者的购买行为即表示,他们具备有关其应用安全以及规章衍生所需的所有专业  
技术和知识,并且认可和同意,尽管任何应用相关信息或支持仍可能由TI 提供,但他们将独力负责满足在关键安全应用中使用其产 品及TI  
产品所需的所有法律、法规和安全相关要求。此外,购买者必须全额赔偿因在此类关键安全应用中使用TI 产品而对TI 及其 代表造成的损失。  
TI 产品并非设计或专门用于军事/航空应用,以及环境方面的产品,除非TI 特别注明该产品属于军用增强型塑料产品。只 有TI  
指定的军用产品才满足军用规格。购买者认可并同意,对TI 未指定军用的产品进行军事方面的应用,风险由购买者单独承担,  
并且独力负责在此类相关使用中满足所有法律和法规要求。  
TI 产品并非设计或专门用于汽车应用以及环境方面的产品,除非TI 特别注明该产品符合ISO/TS 16949 要求。购买者认可并同意,  
如果他们在汽车应用中使用任何未被指定的产品,TI 对未能满足应用所需要求不承担任何责任。  
可访问以下URL 地址以获取有关其它TI 产品和应用解决方案的信息:  
产品  
www.ti.com.cn/audio  
应用  
www.ti.com.cn/telecom  
数字音频  
通信与电信  
放大器和线性器件  
http://www.ti.com.cn/amplifiers  
计算机及周边  
www.ti.com.cn/computer  
http://www.ti.com.cn/dataconvert  
ers  
数据转换器  
消费电子  
www.ti.com/consumer-apps  
DLP® 产品  
www.dlp.com  
能源  
www.ti.com/energy  
DSP - 数字信号处理器  
http://www.ti.com.cn/dsp  
工业应用  
www.ti.com.cn/industrial  
http://www.ti.com.cn/clockandtim  
ers  
时钟和计时器  
医疗电子  
www.ti.com.cn/medical  
接口  
http://www.ti.com.cn/interface  
http://www.ti.com.cn/logic  
http:///www.ti.com.cn/power  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
逻辑  
电源管理  
http://www.ti.com.cn/microcontroll  
ers  
微控制器 (MCU)  
无线通信  
www.ti.com.cn/wireless  
RFID 系统  
http://www.ti.com.cn/rfidsys  
www.ti.com.cn/radiofre  
TI E2E 工程师社区  
RF/IF ZigBee® 解决方案  
http://e2e.ti.com/cn/  
IMPORTANT NOTICE  
SHENZHEN RF-STAR TECHNOLOGY CO.,LTD  
TEL:0755-86329829 FAX:0755-86329413  
HTTP://WWW.SZRFSTAR.COM  

相关型号:

CC113LRTKR

Value Line Receiver
TI

CC113LRTKT

Value Line Receiver
TI

CC1140M3M

For electrovalves, style A, 3p+G, female, with cable
SHIELD

CC1140M8M

For electrovalves, style A, 3p+G, female, with cable
SHIELD

CC1150

Single Chip Low Cost Low Power RF-Transmitter
TI

CC1150-RTR1

Low Power Sub-1 GHz RF Transmitter
TI

CC1150-RTY1

Low Power Sub-1 GHz RF Transmitter
TI

CC1150RGVR

适用于低功耗无线应用的高度集成式多通道无线发送器 | RGV | 16 | -40 to 85
TI

CC1150RGVT

Highly integrated multichannel wireless transmitter designed for low-power wireless applications 16-VQFN -40 to 85
TI

CC1150RST

Low Power Sub-1 GHz RF Transmitter
TI

CC1150RSTG3

Low Power Sub-1 GHz RF Transmitter
TI

CC1150RSTR

Low Power Sub-1 GHz RF Transmitter
TI