CC1350F128RHBT [TI]

具有 128kB 闪存的 SimpleLink™ 32 位 Arm Cortex-M3 多协议低于 1GHz 和 2.4GHz 无线 MCU | RHB | 32 | -40 to 85;
CC1350F128RHBT
型号: CC1350F128RHBT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 128kB 闪存的 SimpleLink™ 32 位 Arm Cortex-M3 多协议低于 1GHz 和 2.4GHz 无线 MCU | RHB | 32 | -40 to 85

无线 闪存
文件: 总75页 (文件大小:3708K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
CC1350  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
CC1350 SimpleLink™ 超低功耗 双频带无线 MCU  
1 器件概述  
1.1 特性  
1
空白  
世界上第一款双频带(低于 1GHz 2.4GHz)无  
线微控制器  
空白  
微控制器  
空白  
性能强大的 Arm® Cortex®-M3 处理器  
– EEMBC CoreMark®评分:142  
– EEMBC ULPBench™评分:158  
时钟速率最高可达 48MHz  
– 128KB 系统内可编程闪存  
空白  
外部系统  
片上内部直流/直流转换器  
无缝集成 SimpleLink™CC1190 CC2592 范围  
扩展器  
– 8KB 缓存静态随机存取存储器 (SRAM)  
(或用作通用 RAM)  
低功耗  
宽电源电压范围:1.8 3.8V  
– 20KB 超低泄漏 SRAM  
– 2 引脚 cJTAG JTAG 调试  
支持无线 (OTA) 升级  
– RX5.4mA(低于 1GHz),6.4mA(低功耗蓝  
牙,2.4GHz)  
– TX+10dBm 时):13.4mA(低于 1GHz)  
超低功耗传感器控制器  
可独立于系统其余部分自主运行  
– 16 位架构  
– TX+9dBm 时):22.3mA(低功耗蓝  
牙,2.4GHz)  
– TX+0dBm 时):10.5mA(低功耗蓝  
牙,2.4GHz)  
– Coremark 运行时的 48MHz 有源模式微控制器  
(MCU)2.5mA (51µA/MHz)  
有源模式 MCU48.5 CoreMark/mA  
– 2KB 超低泄漏代码和数据 SRAM  
有效的代码尺寸架构,在 ROM 中放置  
TI-RTOS、驱动程序、 Bluetooth® 低功耗控制器以  
及引导加载程序的部件  
有源模式传感器控制器(24 MHz):  
0.4mA + 8.2μA/MHz  
传感器控制器,每秒唤醒一次来执行一次 12 位  
ADC 采样:0.95µA  
待机电流:0.7μA(实时时钟 (RTC) 运行,RAM  
CPU 保持)  
RoHS 兼容的封装  
– 7mm × 7mm RGZ VQFN48 封装(30 个通用输  
/输出 (GPIO))  
– 5mm × 5mm RHB VQFN32 封装(15 个  
GPIO)  
– 4mm × 4mm RSM VQFN32 封装(10 个  
GPIO)  
关断电流:185nA(发生外部事件时唤醒)  
射频 (RF) 部分  
外设  
– 2.4GHz RF 收发器,符合低功耗蓝牙 4.2 规范  
所有数字外设引脚均可连接任意 GPIO  
出色的接收器灵敏度:远距离模式下为  
–124dBm50kbps 时为 –110dBm  
(低于 1GHz),  
低功耗蓝牙模式下为 –87dBm  
出色的可选择性 (±100kHz)56dB  
四个通用定时器模块  
8 × 16 位或 4 × 32 位,均采用脉宽调制  
(PWM))  
– 12 位模数转换器 (ADC)200MSPS8 通道模  
拟多路复用器  
出色的阻断性能 (±10MHz):  
持续时间比较器  
超低功耗时钟比较器  
可编程电流源  
– UART  
– 2 个同步串行接口 (SSI)SPIMICROWIRE 和  
TI)  
– I2CI2S  
90dB  
可编程输出功率:低于 1GHz 时最高可达  
+15dBm2.4GHz(低功耗蓝牙)时最高可达  
+9dBm  
单端或差分 RF 接口  
适用于符合全球射频规范的系统  
– ETSI EN 300 220 EN 303 204(欧洲)  
– EN 300 440 2 类(欧洲)  
– EN 300 328(欧洲)  
实时时钟 (RTC)  
– AES-128 安全模块  
真随机数发生器 (TRNG)  
支持八个电容感测按钮  
– FCC CFR47 15 部分(美国)  
– ARIB STD-T66(日本)  
集成温度传感器  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SWRS183  
 
 
 
CC1350  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
www.ti.com.cn  
– ARIB STD-T108(日本)  
无线 M-Bus (EN 13757-4) IEEE®802.15.4g  
– Sensor Controller Studio  
– SmartRF™Studio  
PHY  
工具和开发环境  
– SmartRF Flash Programmer 2  
– IAR Embedded Workbench®(适用于 Arm)  
– Code Composer Studio™(CCS) IDE  
– CCS UniFlash  
功能全面的低成本开发套件  
针对不同 RF 配置的多种参考设计  
数据包监听器 PC 软件  
1.2 应用  
315433470500779868915、  
920MHz 2.4GHz 工业、科学和医疗 (ISM) 及短  
程设备 (SRD) 系统  
无线医疗保健 应用  
无线传感器网络  
有源射频识别 (RFID)  
信道间隔为 50kHz 5MHz 的  
低功耗无线系统  
IEEE 802.15.4g、支持 IP 的智能对象  
(6LoWPAN)、无线仪表总线、KNX 系统、  
Wi-SUN™及专有系统  
家庭和楼宇自动化  
无线警报和安全系统  
工业用监控和控制  
低功耗蓝牙信标管理  
低功耗蓝牙调试  
能量收集 应用  
电子货架标签 (ESL)  
远距离传感器 应用  
热量分配表  
智能电网和自动抄表  
1.3 说明  
CC1350 器件是一款经济高效型超低功耗双频带射频器件,由 德州仪器 (TI)™倾力打造,属于 SimpleLink™  
微控制器 (MCU) 平台的组成部分。该平台包含 Wi-Fi®、低功耗 Bluetooth®、低于 1GHz、以太网、 Zigbee  
®Thread 和主机 MCU。所有这些器件均共用一个简单易用的通用开发环境,其中包含单个核心软件开发  
套件 (SDK) 和丰富的工具集。借助一次性集成的 SimpleLink 平台,用户可以将产品组合中的任何器件组合  
添加到自己的设计中,从而在设计要求变更时实现 100% 代码重用。有关更多信息,请访问  
www.ti.com.cn/simplelink。  
凭借极低的有源射频和 MCU 电流消耗以及灵活的低功耗模式, 器件可确保卓越的电池寿命,并能够在小型  
纽扣电池供电的情况下以及在能量采集应用中实现远距离 工作。  
CC1350 器件是 CC13xx CC26xx 系列经济高效型超低功耗无线 MCU 中的一员,能够同时支持低于  
1GHz 2.4GHz 射频。CC1350 器件在一个支持多个物理层和射频标准的平台上将灵活的超低功耗射频收  
发器与强大的 48MHz Arm® Cortex®-M3 微控制器结合在一起。专用无线电控制器 (Cortex®-M0) 可处理存储  
ROM RAM 中的低级射频协议命令,因而可确保超低功耗和灵活性以同时支持低于 1GHz 协议和  
2.4GHz 协议(例如低功耗蓝牙)。因此,可以将低于 1GHz 通信解决方案(提供绝佳的射频范围)与低功  
耗蓝牙智能手机通信连接(通过手机应用程序提供出色的用户体验)完美结合。该系列中唯一一款低于  
1GHz 的器件是 CC1310。  
CC1350 器件是高度集成的真正的单芯片解决方案,整合了完整的射频系统和片上直流/直流转换器。  
传感器可由专用的超低功耗自主 MCU 以超低功耗方式进行处理(该 MCU 可配置为处理模拟和数字传感  
器),因此主 MCU (Arm® Cortex®-M3) 能够最大限度延长睡眠时间。  
CC1350 器件的电源和时钟管理系统以及无线电系统需要采用特定配置并由软件处理才能正确运行,这已在  
TI-RTOS 中实现。TI 建议将此软件框架用于该器件的全部应用开发过程。完整的 TI-RTOS 和设备驱动程序  
均有免费的源代码可供使用。  
2
器件概述  
版权 © 2016–2018, Texas Instruments Incorporated  
 
 
CC1350  
www.ti.com.cn  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
器件信息(1)  
封装  
器件型号  
封装尺寸(标称值)  
7.00mm × 7.00mm  
5.00mm × 5.00mm  
4.00mm × 4.00mm  
CC1350F128RGZ  
CC1350F128RHB  
CC1350F128RSM  
VQFN (48)  
VQFN (32)  
VQFN (32)  
(1) 详细信息请见9。  
版权 © 2016–2018, Texas Instruments Incorporated  
器件概述  
3
CC1350  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
www.ti.com.cn  
1.4 功能框图  
1-1 所示为 CC1350 器件框图。  
SimpleLinkTM CC1350 Wireless MCU  
cJTAG  
RF core  
ROM  
Main CPU:  
ADC  
ADC  
Digital PLL  
ARM®  
Cortex®-M3  
128-KB  
Flash  
DSP Modem  
8-KB  
Cache  
4-KB  
SRAM  
ARM®  
Cortex®-M0  
20-KB  
SRAM  
ROM  
Sensor Controller  
General Peripherals / Modules  
Sensor Controller  
Engine  
I2C  
4x 32-Bit Timers  
2x SSI (SPI,µW,TI)  
Watchdog Timer  
TRNG  
UART  
12-Bit ADC, 200ks/s  
2x Analog Comparators  
SPI / I2C Digital Sensor IF  
Constant Current Source  
Time-to-Digital Converter  
2-KB SRAM  
I2S  
10 / 15 / 30 GPIOs  
AES  
Temp. / Batt. Monitor  
RTC  
32 ch. mDMA  
DC-DC Converter  
Copyright © 2016, Texas Instruments Incorporated  
1-1. CC1350 框图  
4
器件概述  
版权 © 2016–2018, Texas Instruments Incorporated  
 
 
 
CC1350  
www.ti.com.cn  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
内容  
1
器件概.................................................... 1  
5.19 DC Characteristics .................................. 31  
5.20 Thermal Characteristics............................. 32  
5.21 Timing and Switching Characteristics ............... 32  
5.22 Typical Characteristics .............................. 36  
5.23 Typical Characteristics – Sub-1 GHz ............... 37  
5.24 Typical Characteristics – 2.4 GHz .................. 42  
Detailed Description ................................... 44  
6.1 Overview ............................................ 44  
6.2 Main CPU ........................................... 44  
6.3 RF Core ............................................. 45  
6.4 Sensor Controller ................................... 46  
6.5 Memory.............................................. 47  
6.6 Debug ............................................... 47  
6.7 Power Management................................. 48  
6.8 Clock Systems ...................................... 49  
6.9 General Peripherals and Modules .................. 49  
6.10 Voltage Supply Domains............................ 50  
6.11 System Architecture................................. 50  
Application, Implementation, and Layout ......... 51  
7.1 Application Information.............................. 51  
7.2 TI Design or Reference Design ..................... 52  
器件和文档支持 .......................................... 53  
8.1 器件命名规则 ........................................ 53  
8.2 工具和软件 .......................................... 54  
8.3 文档支............................................. 56  
8.4 德州仪器 (TI) 低功耗射频网站....................... 56  
8.5 其他信............................................. 56  
8.6 社区资............................................. 56  
8.7 商标.................................................. 57  
8.8 静电放电警告 ........................................ 57  
8.9 出口管制提示 ........................................ 57  
8.10 术语表 ............................................... 57  
机械、封装和可订购信息................................ 57  
9.1 封装信............................................. 57  
1.1 特性 ................................................... 1  
1.2 应用 ................................................... 2  
1.3 说明 ................................................... 2  
1.4 功能框图 .............................................. 4  
修订历史记录............................................... 6  
Device Comparison ..................................... 7  
3.1 Related Products ..................................... 7  
Terminal Configuration and Functions.............. 8  
4.1 Pin Diagram – RSM Package ........................ 8  
4.2 Signal Descriptions – RSM Package................. 9  
4.3 Pin Diagram – RHB Package ....................... 10  
4.4 Signal Descriptions – RHB Package................ 11  
4.5 Pin Diagram – RGZ Package ....................... 12  
4.6 Signal Descriptions – RGZ Package................ 13  
Specifications ........................................... 15  
5.1 Absolute Maximum Ratings......................... 15  
5.2 ESD Ratings ........................................ 15  
5.3 Recommended Operating Conditions............... 15  
5.4 Power Consumption Summary...................... 16  
5.5 RF Characteristics .................................. 17  
2
3
6
4
5
7
8
5.6  
5.7  
5.8  
5.9  
Receive (RX) Parameters, 861 MHz to 1054 MHz . 17  
Receive (RX) Parameters, 431 MHz to 527 MHz .. 23  
Transmit (TX) Parameters, 861 MHz to 1054 MHz . 25  
Transmit (TX) Parameters, 431 MHz to 527 MHz .. 26  
5.10 1-Mbps GFSK (Bluetooth low energy) – RX ........ 26  
5.11 1-Mbps GFSK (Bluetooth low energy) – TX ........ 27  
5.12 PLL Parameters..................................... 28  
5.13 ADC Characteristics................................. 28  
5.14 Temperature Sensor ................................ 29  
5.15 Battery Monitor...................................... 29  
5.16 Continuous Time Comparator....................... 30  
5.17 Low-Power Clocked Comparator ................... 30  
5.18 Programmable Current Source ..................... 30  
9
版权 © 2016–2018, Texas Instruments Incorporated  
内容  
5
CC1350  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
www.ti.com.cn  
2 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from November 20, 2016 to July 13, 2018  
Page  
已更改 描述 部分 ..................................................................................................................... 2  
Changed Table 3-1 ................................................................................................................... 7  
Changed test conditions for Receiver sensitivity, 50 kbps in Section 5.6 ................................................... 17  
Added parameters to Section 5.6 ................................................................................................. 17  
Added Receiver sensitivity parameters to Section 5.7 ......................................................................... 23  
Changed ............................................................................................................................. 33  
Changed footnote in ................................................................................................................ 33  
已添加 软件部分 ................................................................................................................... 54  
Changes from June 20, 2016 to November 20, 2016  
Page  
已添加 4mm × 4mm 5mm × 5mm 封装 ........................................................................................ 1  
Added Figure 4-1 ..................................................................................................................... 8  
Added Figure 4-2.................................................................................................................... 10  
Added support for split supply rail to Section 5.3 ............................................................................... 15  
Added OOK modulation support to Section 5.4................................................................................. 16  
Added receive parameters for 431-MHz to 527-MHz band in Section 5.7 .................................................. 23  
Added transmit parameters for 431-MHz to 527-MHz band in Section 5.9 ................................................. 26  
Changed ADC reference voltage to correct value in Section 5.13 ........................................................... 29  
Added thermal characteristics for RHB and RSM packages in Section 5.20 ............................................... 32  
Added Figure 5-10 .................................................................................................................. 37  
Added Section 6.10 ................................................................................................................. 50  
已更改 8-1 ........................................................................................................................ 53  
6
修订历史记录  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
www.ti.com.cn  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
3 Device Comparison  
Table 3-1 lists the device family overview.  
Table 3-1. Device Family Overview  
FLASH  
(KB)  
RAM  
(KB)  
DEVICE  
RADIO SUPPORT  
GPIOs  
PACKAGE SIZE  
Proprietary, Wireless M-Bus,  
IEEE 802.15.4g,  
CC1350F128RGZ  
128  
128  
128  
20  
20  
20  
30  
15  
RGZ (7 mm × 7 mm VQFN48)  
Bluetooth low energy  
Proprietary, Wireless M-Bus,  
IEEE 802.15.4g,  
CC1350F128RHB  
CC1350F128RSM  
CC1310  
RHB (5 mm × 5 mm VQFN32)  
RSM (4 mm × 4 mm VQFN32)  
Bluetooth low energy  
Proprietary, Wireless M-Bus,  
IEEE 802.15.4g,  
10  
Bluetooth low energy  
Sub-1 GHz  
Proprietary, Wireless M-Bus,  
IEEE 802.15.4g  
RGZ (7 mm × 7 mm VQFN48)  
RHB (5 mm × 5 mm VQFN32)  
RSM (4 mm × 4 mm VQFN32)  
128  
64/32  
20  
16  
10-30  
RGZ (7 mm × 7 mm VQFN48)  
RHB (5 mm × 5 mm VQFN32)  
RSM (4 mm × 4 mm VQFN32)  
YFV (2.7 mm × 2.7 mm DSBGA34)  
Bluetooth 5 low energy  
2.4-GHz proprietary FSK-based formats  
CC2640R2  
CC1312R  
128  
352  
20  
80  
10-31  
30  
Sub-1 GHz  
Proprietary, Wireless M-Bus,  
IEEE 802.15.4g  
RGZ (7 mm × 7 mm VQFN48)  
Dual-band (2.4-GHz and Sub-1 GHz)  
Multiprotocol  
CC1352R  
CC2642R  
352  
352  
80  
80  
28  
31  
RGZ (7 mm × 7 mm VQFN48)  
RGZ (7 mm × 7 mm VQFN48)  
Bluetooth 5 low energy  
2.4-GHz proprietary FSK-based formats  
Multiprotocol  
Bluetooth 5 low energy  
Zigbee  
CC2652R  
352  
80  
31  
RGZ (7 mm × 7 mm VQFN48)  
Thread  
2.4-GHz proprietary FSK-based formats  
3.1 Related Products  
Wireless Connectivity The wireless connectivity portfolio offers a wide selection of low-power RF  
solutions suitable for a broad range of application. The offerings range from fully customized  
solutions to turnkey offerings with precertified hardware and software (protocol).  
Sub-1 GHz Long-range, low power wireless connectivity solutions are offered in a wide range of  
Sub-1 GHz ISM bands.  
Companion Products Review products that are frequently purchased or used with this product.  
Copyright © 2016–2018, Texas Instruments Incorporated  
Device Comparison  
7
Submit Documentation Feedback  
Product Folder Links: CC1350  
 
CC1350  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
www.ti.com.cn  
4 Terminal Configuration and Functions  
4.1 Pin Diagram – RSM Package  
Figure 4-1 shows the RSM pinout diagram.  
DIO_8 25  
DIO_9 26  
16 DIO_4  
15 DIO_3  
VDDS 27  
14 JTAG_TCKC  
13 JTAG_TMSC  
12 DCOUPL  
11 VDDS2  
VDDR 28  
VSS 29  
X24M_N 30  
X24M_P 31  
VDDR_RF 32  
10 DIO_2  
9
DIO_1  
Figure 4-1. RSM (4-mm × 4-mm) Pinout, 0.4-mm Pitch  
Top View  
I/O pins marked in Figure 4-1 in bold have high-drive capabilities; they are as follows:  
Pin 8, DIO_0  
Pin 9, DIO_1  
Pin 10, DIO_2  
Pin 13, JTAG_TMSC  
Pin 15, DIO_3  
Pin 16, DIO_4  
I/O pins marked in Figure 4-1 in italics have analog capabilities; they are as follows:  
Pin 22, DIO_5  
Pin 23, DIO_6  
Pin 24, DIO_7  
Pin 25, DIO_8  
Pin 26, DIO_9  
8
Terminal Configuration and Functions  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1350  
 
 
CC1350  
www.ti.com.cn  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
4.2 Signal Descriptions – RSM Package  
Table 4-1. Signal Descriptions – RSM Package  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
18  
12  
8
DCDC_SW  
DCOUPL  
DIO_0  
Power  
Power  
Output from internal DC/DC(1)  
1.27-V regulated digital-supply decoupling capacitor(2)  
GPIO, Sensor Controller, high-drive capability  
GPIO, Sensor Controller, high-drive capability  
GPIO, Sensor Controller, high-drive capability  
GPIO, high-drive capability, JTAG_TDO  
GPIO, high-drive capability, JTAG_TDI  
GPIO, Sensor Controller, analog  
GPIO, Sensor Controller, analog  
GPIO, Sensor Controller, analog  
GPIO, Sensor Controller, analog  
GPIO, Sensor Controller, analog  
Ground; exposed ground pad  
Digital I/O  
DIO_1  
9
Digital I/O  
DIO_2  
10  
15  
16  
22  
23  
24  
25  
26  
Digital I/O  
DIO_3  
Digital I/O  
DIO_4  
Digital I/O  
DIO_5  
Digital or analog I/O  
Digital or analog I/O  
Digital or analog I/O  
Digital or analog I/O  
Digital or analog I/O  
Power  
DIO_6  
DIO_7  
DIO_8  
DIO_9  
EGP  
JTAG_TMSC  
JTAG_TCKC  
RESET_N  
13  
14  
21  
Digital I/O  
JTAG TMSC  
JTAG TCKC(3)  
Digital I/O  
Digital input  
Reset, active low. No internal pullup.  
Negative RF input signal to LNA during RX  
Negative RF output signal from PA during TX  
RF_N  
RF_P  
2
1
RF I/O  
RF I/O  
Positive RF input signal to LNA during RX  
Positive RF output signal from PA during TX  
RX_TX  
4
RF I/O  
Power  
Power  
Power  
Power  
Power  
Optional bias pin for the RF LNA  
1.8-V to 3.8-V main chip supply(1)  
1.8-V to 3.8-V GPIO supply(1)  
VDDS  
27  
11  
19  
28  
32  
VDDS2  
VDDS_DCDC  
VDDR  
1.8-V to 3.8-V DC/DC supply  
1.7-V to 1.95-V supply, connect to output of internal DC/DC(2)(4)  
1.7-V to 1.95-V supply, connect to output of internal DC/DC(2)(5)  
VDDR_RF  
3, 7, 17,  
20, 29  
VSS  
Power  
Ground  
X32K_Q1  
X32K_Q2  
X24M_N  
X24M_P  
5
6
Analog I/O  
Analog I/O  
Analog I/O  
Analog I/O  
32-kHz crystal oscillator pin 1  
32-kHz crystal oscillator pin 2  
24-MHz crystal oscillator pin 1  
24-MHz crystal oscillator pin 2  
30  
31  
(1) See the technical reference manual listed in 8.3 for more details.  
(2) Do not supply external circuitry from this pin.  
(3) For design consideration regrading noise immunity for this pin, see the JTAG Interface chapter in the CC13x0, CC26x0 SimpleLink™  
Wireless MCU Technical Reference Manual.  
(4) If internal DC/DC is not used, this pin is supplied internally from the main LDO.  
(5) If internal DC/DC is not used, this pin must be connected to VDDR for supply from the main LDO.  
Copyright © 2016–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
9
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
www.ti.com.cn  
4.3 Pin Diagram – RHB Package  
Figure 4-2 shows the RHB pinout diagram.  
DIO_12 25  
DIO_13 26  
DIO_14 27  
VDDS 28  
16 DIO_6  
15 DIO_5  
14 JTAG_TCKC  
13 JTAG_TMSC  
12 DCOUPL  
11 VDDS2  
VDDR 29  
X24M_N 30  
X24M_P 31  
VDDR_RF 32  
10 DIO_4  
9
DIO_3  
Figure 4-2. RHB (5-mm × 5-mm) Pinout, 0.5-mm Pitch  
Top View  
I/O pins marked in Figure 4-2 in bold have high-drive capabilities; they are as follows:  
Pin 8, DIO_2  
Pin 9, DIO_3  
Pin 10, DIO_4  
Pin 15, DIO_5  
Pin 16, DIO_6  
I/O pins marked in Figure 4-2 in italics have analog capabilities; they are as follows:  
Pin 20, DIO_7  
Pin 21, DIO_8  
Pin 22, DIO_9  
Pin 23, DIO_10  
Pin 24, DIO_11  
Pin 25, DIO_12  
Pin 26, DIO_13  
Pin 27, DIO_14  
10  
Terminal Configuration and Functions  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1350  
 
CC1350  
www.ti.com.cn  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
4.4 Signal Descriptions – RHB Package  
Table 4-2. Signal Descriptions – RHB Package  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
17  
12  
6
DCDC_SW  
DCOUPL  
DIO_0  
Power  
Power  
Output from internal DC/DC(1)  
1.27-V regulated digital-supply decoupling(2)  
Digital I/O  
GPIO, Sensor Controller  
DIO_1  
7
Digital I/O  
GPIO, Sensor Controller  
DIO_2  
8
Digital I/O  
GPIO, Sensor Controller, high-drive capability  
GPIO, Sensor Controller, high-drive capability  
GPIO, Sensor Controller, high-drive capability  
GPIO, high-drive capability, JTAG_TDO  
GPIO, high-drive capability, JTAG_TDI  
GPIO, Sensor Controller, analog  
GPIO, Sensor Controller, analog  
GPIO, Sensor Controller, analog  
GPIO, Sensor Controller, Analog  
GPIO, Sensor Controller, analog  
GPIO, Sensor Controller, analog  
GPIO, Sensor Controller, analog  
GPIO, Sensor Controller, analog  
Ground; exposed ground pad  
DIO_3  
9
Digital I/O  
DIO_4  
10  
15  
16  
20  
21  
22  
23  
24  
25  
26  
27  
Digital I/O  
DIO_5  
Digital I/O  
DIO_6  
Digital I/O  
DIO_7  
Digital or analog I/O  
Digital or analog I/O  
Digital or analog I/O  
Digital or analog I/O  
Digital or analog I/O  
Digital or analog I/O  
Digital or analog I/O  
Digital or analog I/O  
Power  
DIO_8  
DIO_9  
DIO_10  
DIO_11  
DIO_12  
DIO_13  
DIO_14  
EGP  
JTAG_TMSC  
JTAG_TCKC  
RESET_N  
13  
14  
19  
Digital I/O  
JTAG TMSC, high-drive capability  
JTAG TCKC(3)  
Digital I/O  
Digital input  
Reset, active low. No internal pullup.  
Negative RF input signal to LNA during RX  
Negative RF output signal from PA during TX  
RF_N  
RF_P  
2
1
RF I/O  
RF I/O  
Positive RF input signal to LNA during RX  
Positive RF output signal from PA during TX  
RX_TX  
3
RF I/O  
Power  
Optional bias pin for the RF LNA  
VDDR  
29  
32  
28  
11  
18  
30  
31  
4
1.7-V to 1.95-V supply, connect to output of internal DC/DC(2)(4)  
1.7-V to 1.95-V supply, connect to output of internal DC/DC(2)(5)  
1.8-V to 3.8-V main chip supply(1)  
VDDR_RF  
VDDS  
Power  
Power  
VDDS2  
Power  
1.8-V to 3.8-V GPIO supply(1)  
VDDS_DCDC  
X24M_N  
X24M_P  
X32K_Q1  
X32K_Q2  
Power  
1.8-V to 3.8-V DC/DC supply  
Analog I/O  
Analog I/O  
Analog I/O  
Analog I/O  
24-MHz crystal oscillator pin 1  
24-MHz crystal oscillator pin 2  
32-kHz crystal oscillator pin 1  
5
32-kHz crystal oscillator pin 2  
(1) For more details, see the technical reference manual listed in 8.3.  
(2) Do not supply external circuitry from this pin.  
(3) For design consideration regrading noise immunity for this pin, see the JTAG Interface chapter in the CC13x0, CC26x0 SimpleLink™  
Wireless MCU Technical Reference Manual.  
(4) If internal DC/DC is not used, this pin is supplied internally from the main LDO.  
(5) If internal DC/DC is not used, this pin must be connected to VDDR for supply from the main LDO.  
Copyright © 2016–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
11  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
www.ti.com.cn  
4.5 Pin Diagram – RGZ Package  
Figure 4-3 shows the RGZ pinout diagram.  
DIO_24 37  
DIO_25 38  
DIO_26 39  
DIO_27 40  
DIO_28 41  
DIO_29 42  
24 JTAG_TMSC  
23 DCOUPL  
22 VDDS3  
21 DIO_15  
DIO_14  
DIO_13  
DIO_12  
DIO_11  
DIO_10  
DIO_9  
20  
19  
18  
17  
16  
15  
14  
DIO_30  
43  
VDDS 44  
VDDR 45  
X24M_N 46  
X24M_P 47  
VDDR_RF 48  
DIO_8  
13 VDDS2  
Figure 4-3. RGZ (7-mm × 7-mm) Pinout, 0.5-mm Pitch  
Top View  
I/O pins marked in Figure 4-3 in bold have high-drive capabilities; they are as follows:  
Pin 10, DIO_5  
Pin 11, DIO_6  
Pin 12, DIO_7  
Pin 24, JTAG_TMSC  
Pin 26, DIO_16  
Pin 27, DIO_17  
I/O pins marked in Figure 4-3 in italics have analog capabilities; they are as follows:  
Pin 36, DIO_23  
Pin 37, DIO_24  
Pin 38, DIO_25  
Pin 39, DIO_26  
Pin 40, DIO_27  
Pin 41, DIO_28  
Pin 42, DIO_29  
Pin 43, DIO_30  
12  
Terminal Configuration and Functions  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1350  
 
CC1350  
www.ti.com.cn  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
4.6 Signal Descriptions – RGZ Package  
Table 4-3. Signal Descriptions – RGZ Package  
PIN  
TYPE  
DESCRIPTION  
Output from internal DC/DC(1)(2)  
1.27-V regulated digital-supply (decoupling capacitor)(2)  
NAME  
NO.  
33  
23  
6
DCDC_SW  
DCOUPL  
DIO_1  
Power  
Power  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
GPIO, Sensor Controller  
DIO_2  
7
GPIO, Sensor Controller  
DIO_3  
8
GPIO, Sensor Controller  
DIO_4  
9
GPIO, Sensor Controller  
DIO_5  
10  
11  
12  
14  
15  
16  
17  
18  
19  
20  
21  
26  
27  
28  
29  
30  
31  
32  
36  
37  
38  
39  
40  
41  
42  
43  
GPIO, Sensor Controller, high-drive capability  
DIO_6  
GPIO, Sensor Controller, high-drive capability  
DIO_7  
GPIO, Sensor Controller, high-drive capability  
DIO_8  
GPIO  
DIO_9  
GPIO  
DIO_10  
DIO_11  
DIO_12  
DIO_13  
DIO_14  
DIO_15  
DIO_16  
DIO_17  
DIO_18  
DIO_19  
DIO_20  
DIO_21  
DIO_22  
DIO_23  
DIO_24  
DIO_25  
DIO_26  
DIO_27  
DIO_28  
DIO_29  
DIO_30  
EGP  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO, JTAG_TDO, high-drive capability  
GPIO, JTAG_TDI, high-drive capability  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
Digital or analog I/O GPIO, Sensor Controller, analog  
Digital or analog I/O GPIO, Sensor Controller, analog  
Digital or analog I/O GPIO, Sensor Controller, analog  
Digital or analog I/O GPIO, Sensor Controller, analog  
Digital or analog I/O GPIO, Sensor Controller, analog  
Digital or analog I/O GPIO, Sensor Controller, analog  
Digital or analog I/O GPIO, Sensor Controller, analog  
Digital or analog I/O GPIO, Sensor Controller, analog  
Power  
Ground; exposed ground pad  
JTAG TMSC, high-drive capability  
JTAG TCKC(3)  
JTAG_TMSC  
JTAG_TCKC  
RESET_N  
24  
25  
35  
Digital I/O  
Digital I/O  
Digital input  
Reset, active-low. No internal pullup.  
Negative RF input signal to LNA during RX  
Negative RF output signal from PA during TX  
RF_N  
RF_P  
2
1
RF I/O  
RF I/O  
Positive RF input signal to LNA during RX  
Positive RF output signal from PA during TX  
(1) See technical reference manual listed in 8.3 for more details.  
(2) Do not supply external circuitry from this pin.  
(3) For design consideration regrading noise immunity for this pin, see the JTAG Interface chapter in the CC13x0, CC26x0 SimpleLink™  
Wireless MCU Technical Reference Manual.  
Copyright © 2016–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
13  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
www.ti.com.cn  
Table 4-3. Signal Descriptions – RGZ Package (continued)  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
45  
48  
44  
13  
22  
34  
46  
47  
3
VDDR  
Power  
Power  
1.7-V to 1.95-V supply, connect to output of internal DC/DC(2)(4)  
1.7-V to 1.95-V supply, connect to output of internal DC/DC(2)(5)  
1.8-V to 3.8-V main chip supply(1)  
1.8-V to 3.8-V DIO supply(1)  
VDDR_RF  
VDDS  
Power  
VDDS2  
Power  
VDDS3  
Power  
1.8-V to 3.8-V DIO supply(1)  
VDDS_DCDC  
X24M_N  
X24M_P  
RX_TX  
Power  
1.8-V to 3.8-V DC/DC supply  
Analog I/O  
Analog I/O  
RF I/O  
24-MHz crystal oscillator pin 1  
24-MHz crystal oscillator pin 2  
Optional bias pin for the RF LNA  
X32K_Q1  
X32K_Q2  
4
Analog I/O  
Analog I/O  
32-kHz crystal oscillator pin 1  
5
32-kHz crystal oscillator pin 2  
(4) If internal DC/DC is not used, this pin is supplied internally from the main LDO.  
(5) If internal DC/DC is not used, this pin must be connected to VDDR for supply from the main LDO.  
14  
Terminal Configuration and Functions  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
www.ti.com.cn  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
5 Specifications  
5.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
Supply voltage (VDDS, VDDS2, and VDDS3)  
Voltage on any digital pin(3)(4)  
4.1  
V
V
V
VDDSn + 0.3, max 4.1  
Voltage on crystal oscillator pins X32K_Q1, X32K_Q2, X24M_N, and X24M_P  
Voltage scaling enabled  
VDDR + 0.3, max 2.25  
VDDS  
1.49  
Voltage on ADC input (Vin) Voltage scaling disabled, internal reference  
Voltage scaling disabled, VDDS as reference  
Input RF level  
V
VDDS / 2.9  
10  
dBm  
°C  
Storage temperature (Tstg  
)
–40  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to ground, unless otherwise noted.  
(3) Including analog-capable DIO.  
(4) Each pin is referenced to a specific VDDSn (VDDS, VDDS2 or VDDS3). For a pin-to-VDDS mapping table, see Table 6-3.  
5.2 ESD Ratings  
VALUE UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS001(1)  
Charged device model (CDM), per JESD22-C101(2)  
All pins  
All pins  
±3000  
±500  
VESD  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
5.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
Ambient temperature  
–40  
1.8  
1.8  
1.9  
0
85  
3.8  
3.8  
3.8  
100  
20  
°C  
V
Operating supply voltage (VDDS)  
For operation in battery-powered and  
Operating supply voltages (VDDS2 and VDDS3) 3.3-V systems (internal DC/DC can be  
VDDS < 2.7 V  
V
used to minimize power consumption)  
Operating supply voltages (VDDS2 and VDDS3)  
VDDS 2.7 V  
V
Rising supply voltage slew rate  
mV/µs  
mV/µs  
mV/µs  
Falling supply voltage slew rate  
Falling supply voltage slew rate, with low-power flash setting(1)  
0
3
No limitation for negative temperature gradient, or outside  
standby mode  
Positive temperature gradient in standby(2)  
5
°C/s  
(1) For small coin-cell batteries, with high worst-case end-of-life equivalent source resistance, a 22-µF VDDS input capacitor must be used  
to ensure compliance with this slew rate.  
(2) Applications using RCOSC_LF as sleep timer must also consider the drift in frequency caused by a change in temperature (see ).  
Copyright © 2016–2018, Texas Instruments Incorporated  
Specifications  
15  
Submit Documentation Feedback  
Product Folder Links: CC1350  
 
CC1350  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
www.ti.com.cn  
5.4 Power Consumption Summary  
Measured on the Texas Instruments CC1310EM-7XD-7793 reference design unless otherwise noted. Tc = 25°C, VDDS = 3.6 V  
with DC/DC enabled, unless otherwise noted. Using boost mode (increasing VDDR to 1.95 V), will increase currents in this  
table by 15% (does not apply to TX 14-dBm setting where this current is already included).  
PARAMETER  
TEST CONDITIONS  
TYP  
100  
185  
0.7  
UNIT  
Reset. RESET_N pin asserted or VDDS below power-on-reset  
threshold  
nA  
Shutdown. No clocks running, no retention  
Standby. With RTC, CPU, RAM, and (partial) register retention.  
RCOSC_LF  
Standby. With RTC, CPU, RAM, and (partial) register retention.  
XOSC_LF  
µA  
0.8  
Idle. Supply Systems and RAM powered.  
Active. MCU running CoreMark at 48 MHz  
Active. MCU running CoreMark at 48 MHz  
Active. MCU running CoreMark at 24 MHz  
570  
1.2 mA + 25.5 µA/MHz  
2.5  
1.9  
mA  
mA  
Radio RX, measured on CC1350EM-7XD-Dual Band reference  
design, 868 MHz  
5.4  
Radio RX, measured on CC1350EM-7XD-Dual Band reference  
design, Bluetooth low energy, 2440 MHz  
6.4  
mA  
mA  
mA  
mA  
mA  
Core current  
consumption  
Icore  
Radio TX, 10-dBm output power, (G)FSK, 868 MHz  
13.4  
14.2  
11.2  
23.5  
Radio TX, 10-dBm output power, measured on CC1350EM-7XD-  
DualBand reference design, 868 MHz  
Radio TX, OOK modulation, 10-dBm output power, AVG, 868 MHz  
Radio TX, boost mode (VDDR = 1.95 V), 14-dBm output power,  
(G)FSK, 868 MHz  
Radio TX, boost mode (VDDR = 1.95 V), 14-dBm output power,  
measured on CC1350EM-7XD-Dual Band reference design, 868 MHz  
24.4  
14.8  
10.5  
mA  
mA  
mA  
Radio TX, OOK modulation, boost mode (VDDR = 1.95 V), 14-dBm,  
AVG, 868 MHz  
Radio TX Bluetooth low energy, 0-dBm output power, measured on  
CC1350EM-7XD-DualBand reference design, 2440 MHz  
Radio TX Bluetooth low energy, boost mode (VDDR = 1.95 V), 9-dBm  
output power, measured on CC1350EM-7XD-Dual Band reference  
design, 2440 MHz  
22.3  
mA  
Radio TX, boost mode (VDDR = 1.95 V), 15-dBm output power,  
(G)FSK, measured on CC1310EM-7XD-4251, 433.92 MHz  
25.1  
13.2  
mA  
mA  
Radio TX, 10-dBm output power, measured on CC1310EM-7XD-  
4251, 433.92 MHz  
PERIPHERAL CURRENT CONSUMPTION  
Peripheral power  
domain  
Delta current with domain enabled  
20  
13  
Serial power  
domain  
Delta current with domain enabled  
Delta current with power domain enabled,  
clock enabled, RF core idle  
RF core  
237  
Iperi  
µA  
µDMA  
Timers  
I2C  
Delta current with clock enabled, module idle  
Delta current with clock enabled, module idle  
Delta current with clock enabled, module idle  
Delta current with clock enabled, module idle  
Delta current with clock enabled, module idle  
Delta current with clock enabled, module idle  
130  
113  
12  
I2S  
36  
SSI  
93  
UART  
164  
16  
Specifications  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
www.ti.com.cn  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
5.5 RF Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
287(1)  
359(1)  
431  
TYP  
MAX UNIT  
351(1)  
439(1)  
527  
MHz  
Frequency bands  
718(1)  
878(1)  
861  
1054  
2635  
2152  
(1) These frequency bands are functionally verified. Radio settings for specific physical layer parameters can be made available upon  
request.  
5.6 Receive (RX) Parameters, 861 MHz to 1054 MHz  
Measured on the Texas Instruments CC1310EM-7XD-7793 reference design with Tc = 25°C, VDDS = 3.0 V, DC/DC enabled,  
fRF = 868 MHz, unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX  
path.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Data rate  
Up to 4 Mbps  
bps  
50 kbps, GFSK, 25-kHz deviation, 100-kHz RX bandwidth  
(same modulation format as IEEE 802.15.4g mandatory  
mode), BER = 10–3  
Data rate offset tolerance,  
IEEE 802.15.4g PHY  
1600  
1.5  
ppm  
Data rate step size  
bps  
Digital channel filter programmable  
bandwidth  
Using VCO divide by 5 setting  
40  
4000 kHz  
50 kbps, GFSK, 25-kHz deviation, 100-kHz RX bandwidth  
(same modulation format as IEEE 802.15.4g mandatory  
mode), BER = 10–2. 868 MHz and 915 MHz  
Receiver sensitivity, 50 kbps  
Receiver saturation  
–110  
10  
dBm  
dBm  
50 kbps, GFSK, 25-kHz deviation, 100-kHz RX bandwidth  
(same modulation format as IEEE 802.15.4g mandatory  
mode), BER = 10–2  
Wanted signal 3 dB above sensitivity limit. 50 kbps,  
GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same  
modulation format as IEEE 802.15.4g mandatory mode),  
BER = 10–2  
Selectivity, ±200 kHz, 50 kbps  
Selectivity, ±400 kHz, 50 kbps  
Blocking ±1 MHz, 50 kbps  
Blocking ±2 MHz, 50 kbps  
Blocking ±5 MHz, 50 kbps  
Blocking ±10 MHz, 50 kbps  
44, 47  
48, 53  
59, 62  
64, 65  
67, 68  
dB  
dB  
dB  
dB  
dB  
Wanted signal 3 dB above sensitivity limit. 50 kbps,  
GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same  
modulation format as IEEE 802.15.4g mandatory mode),  
BER = 10–2  
Wanted signal 3 dB above sensitivity limit. 50 kbps,  
GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same  
modulation format as IEEE 802.15.4g mandatory mode),  
BER = 10–2  
Wanted signal 3 dB above sensitivity limit. 50 kbps,  
GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same  
modulation format as IEEE 802.15.4g mandatory mode),  
BER = 10–2  
Wanted signal 3 dB above sensitivity limit. 50 kbps,  
GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same  
modulation format as IEEE 802.15.4g mandatory mode),  
BER = 10–2  
Wanted signal 3 dB above sensitivity limit. 50 kbps,  
GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same  
modulation format as IEEE 802.15.4g mandatory mode),  
BER = 10–2  
76, 76  
–70  
dB  
Spurious emissions 1 GHz to 13 GHz  
(VCO leakage at 3.5 GHz) and  
30 MHz to 1 GHz  
Conducted emissions measured according to  
ETSI EN 300 220  
dBm  
Copyright © 2016–2018, Texas Instruments Incorporated  
Specifications  
17  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
www.ti.com.cn  
Receive (RX) Parameters, 861 MHz to 1054 MHz (continued)  
Measured on the Texas Instruments CC1310EM-7XD-7793 reference design with Tc = 25°C, VDDS = 3.0 V, DC/DC enabled,  
fRF = 868 MHz, unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX  
path.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Wanted signal 3 dB above sensitivity limit. 50 kbps,  
GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same  
modulation format as IEEE 802.15.4g mandatory mode),  
BER = 10–2  
Image rejection (image compensation  
enabled, the image compensation is  
calibrated in production), 50 kbps  
44  
dB  
50 kbps, GFSK, 25-kHz deviation, 100-kHz RX bandwidth  
(same modulation format as IEEE 802.15.4g mandatory  
mode). Starting from the sensitivity limit. This range will  
give an accuracy of ±2 dB.  
RSSI dynamic range  
RSSI accuracy  
95  
±2  
dB  
dB  
50 kbps, GFSK, 25-kHz deviation, 100-kHz RX bandwidth  
(same modulation format as IEEE 802.15.4g mandatory  
mode). Starting from the sensitivity limit across the given  
dynamic range.  
GFSK, 175-kHz deviation, 1.243-MHz RX bandwidth,  
BER = 10–2  
Receiver sensitivity, 500 kbps  
Blocking, ±2 MHz, 500 kbps  
–97  
dBm  
dB  
Wanted signal 3 dB above sensitivity limit. 500 kbps,  
GFSK, 175-kHz deviation, 1.243-MHz RX bandwidth,  
BER = 10–2  
35, 36  
Wanted signal 3 dB above sensitivity limit. 500 kbps,  
GFSK, 175-kHz deviation, 1.243-MHz RX bandwidth,  
BER = 10–2  
Blocking, ±10 MHz, 500 kbps  
55, 47  
–119  
dB  
dBm  
dBm  
dBm  
dB  
20 ksym/s, GFSK, 5-kHz deviation, FEC (half rate),  
Receiver sensitivity, long-range mode,  
5 kbps  
DSSS = 2, 49-kHz RX bandwidth, BER = 10–2  
868 MHz and 915 MHz  
.
20 ksym/s, GFSK, 5-kHz deviation, FEC (half rate),  
Receiver sensitivity, long-range mode,  
2.5 kbps  
DSSS = 4, 49-kHz RX bandwidth, BER = 10–2  
868 MHz and 915 MHz  
.
–120  
20 ksym/s, GFSK, 5-kHz deviation, FEC (half rate),  
Receiver sensitivity, long-range mode,  
1.25 kbps  
DSSS = 8, 49-kHz RX bandwidth, BER = 10–2  
868 MHz and 915 MHz  
.
–121  
Wanted signal 3 dB above sensitivity limit. 20 ksym/s,  
GFSK, 5-kHz deviation, FEC (half rate), DSSS = 2,  
49-kHz RX bandwidth, BER = 10–2  
Selectivity, ±100 kHz, long-range mode,  
5 kbps  
47, 47  
54, 55  
57, 56  
68, 67  
74, 74  
85, 85  
Wanted signal 3 dB above sensitivity limit. 20 ksym/s,  
GFSK, 5-kHz deviation, FEC (half rate), DSSS = 2,  
49-kHz RX bandwidth, BER = 10–2  
Selectivity, ±200 kHz, long-range mode,  
5 kbps  
dB  
Wanted signal 3 dB above sensitivity limit. 20 ksym/s,  
GFSK, 5-kHz deviation, FEC (half rate), DSSS = 2,  
49-kHz RX bandwidth, BER = 10–2  
Selectivity, ±300 kHz, long-range mode,  
5 kbps  
dB  
Wanted signal 3 dB above sensitivity limit. 20 ksym/s,  
GFSK, 5-kHz deviation, FEC (half rate), DSSS = 2,  
49-kHz RX bandwidth, BER = 10–2  
Blocking, ±1 MHz, long-range mode,  
5 kbps  
dB  
Wanted signal 3 dB above sensitivity limit. 20 ksym/s,  
GFSK, 5-kHz deviation, FEC (half rate), DSSS = 2,  
49-kHz RX bandwidth, BER = 10–2  
Blocking, ±2 MHz, long-range mode,  
5 kbps  
dB  
Wanted signal 3 dB above sensitivity limit. 20 ksym/s,  
GFSK, 5-kHz deviation, FEC (half rate), DSSS = 2,  
49-kHz RX bandwidth, BER = 10–2  
Blocking, ±10 MHz, long-range mode,  
5 kbps  
dB  
Image rejection (image compensation  
enabled, the image compensation is  
calibrated in production), long-range  
mode, 5 kbps  
Wanted signal 3 dB above sensitivity limit. 20 ksym/s,  
GFSK, 5-kHz deviation, FEC (half rate), DSSS = 2,  
49-kHz RX bandwidth, BER = 10–2  
52  
dB  
fRF = 868.3 MHz, 32.768 ksym/s, Manchester coding,  
FSK, 50-kHz deviation, 196-kHz RX bandwidth,  
BER = 10–2  
Receiver sensitivity, wM-BUS S2-mode,  
32.768 kbps  
–111  
dBm  
18  
Specifications  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
www.ti.com.cn  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
Receive (RX) Parameters, 861 MHz to 1054 MHz (continued)  
Measured on the Texas Instruments CC1310EM-7XD-7793 reference design with Tc = 25°C, VDDS = 3.0 V, DC/DC enabled,  
fRF = 868 MHz, unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX  
path.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Wanted signal 3 dB above sensitivity limit.  
fRF = 868.3 MHz, 32.768 ksym/s, Manchester coding,  
FSK, 50-kHz deviation, 196-kHz RX bandwidth,  
BER = 10–2  
Selectivity, ±200 kHz, wM-BUS  
S2-mode, 32.768 kbps  
42, 43  
dB  
Wanted signal 3 dB above sensitivity limit.  
fRF = 868.3 MHz, 32.768 ksym/s, Manchester coding,  
FSK, 50-kHz deviation, 196-kHz RX bandwidth,  
BER = 10–2  
Selectivity, ±400 kHz, wM-BUS  
S2-mode, 32.768 kbps  
41, 47  
43, 52  
52, 55  
68, 72  
43  
dB  
dB  
dB  
dB  
dB  
Wanted signal 3 dB above sensitivity limit.  
fRF = 868.3 MHz, 32.768 ksym/s, Manchester coding,  
FSK, 50-kHz deviation, 196-kHz RX bandwidth,  
BER = 10–2  
Blocking, ±1 MHz, wM-BUS S2-mode,  
32.768 kbps  
Wanted signal 3 dB above sensitivity limit.  
fRF = 868.3 MHz, 32.768 ksym/s, Manchester coding,  
FSK, 50-kHz deviation, 196-kHz RX bandwidth,  
BER = 10–2  
Blocking, ±2 MHz, wM-BUS S2-mode,  
32.768 kbps  
Wanted signal 3 dB above sensitivity limit.  
fRF = 868.3 MHz, 32.768 ksym/s, Manchester coding,  
FSK, 50-kHz deviation, 196-kHz RX bandwidth,  
BER = 10–2  
Blocking, ±10 MHz, wM-BUS S2-mode,  
32.768 kbps  
Image rejection (image compensation  
enabled, the image compensation is  
calibrated in production), wM-BUS  
S2-mode, 32.768 kbps  
Wanted signal 3 dB above sensitivity limit.  
fRF = 868.3 MHz, 32.768 ksym/s, Manchester coding,  
FSK, 50-kHz deviation, 196-kHz RX bandwidth,  
BER = 10–2  
Receiver sensitivity, wM-BUS C-mode,  
100 kbps  
fRF = 868.95 MHz, 100 ksym/s, NRZ coding, FSK,  
45-kHz deviation, 196-kHz RX bandwidth, BER = 10–2  
–107  
dBm  
dB  
Wanted signal 3 dB above sensitivity limit.  
Selectivity, ±400 kHz, wM-BUS C-mode,  
100 kbps  
fRF = 868.95 MHz, 100 ksym/s, NRZ coding, FSK,  
41, 46  
45-kHz deviation, 196-kHz RX bandwidth, BER = 10–2  
Wanted signal 3 dB above sensitivity limit.  
Selectivity, ±800 kHz, wM-BUS C-mode,  
100 kbps  
fRF = 868.95 MHz, 100 ksym/s, NRZ coding, FSK,  
41, 50  
43, 51  
51, 53  
55, 61  
dB  
dB  
dB  
dB  
45-kHz deviation, 196-kHz RX bandwidth, BER = 10–2  
Wanted signal 3 dB above sensitivity limit.  
Blocking, ±1 MHz, wM-BUS C-mode,  
100 kbps  
fRF = 868.95 MHz, 100 ksym/s, NRZ coding, FSK,  
45-kHz deviation, 196-kHz RX bandwidth, BER = 10–2  
Wanted signal 3 dB above sensitivity limit.  
Blocking, ±2 MHz, wM-BUS C-mode,  
100 kbps  
fRF = 868.95 MHz, 100 ksym/s, NRZ coding, FSK,  
45-kHz deviation, 196-kHz RX bandwidth, BER = 10–2  
Wanted signal 3 dB above sensitivity limit.  
Blocking, ±5 MHz, wM-BUS C-mode,  
100 kbps  
fRF = 868.95 MHz, 100 ksym/s, NRZ coding, FSK,  
45-kHz deviation, 196-kHz RX bandwidth, BER = 10–2  
Wanted signal 3 dB above sensitivity limit.  
Blocking, ±10 MHz, wM-BUS C-mode,  
100 kbps  
fRF = 868.95 MHz, 100 ksym/s, NRZ coding, FSK,  
67, 68  
–105  
dB  
dBm  
dB  
45-kHz deviation, 196-kHz RX bandwidth, BER = 10–2  
Receiver sensitivity, wM-BUS T-mode,  
100 kbps  
fRF = 868.95 MHz, 100 ksym/s, 3 out of 6 coding, FSK,  
45-kHz deviation, 196-kHz RX bandwidth, BER = 10–2  
Wanted signal 3 dB above sensitivity limit.  
Selectivity, ±400 kHz, wM-BUS T-mode,  
100 kbps  
fRF = 868.95 MHz, 100 ksym/s, 3 out of 6 coding, FSK,  
41, 46  
45-kHz deviation, 196-kHz RX bandwidth, BER = 10–2  
Wanted signal 3 dB above sensitivity limit.  
Selectivity, ±800 kHz, wM-BUS T-mode,  
100 kbps  
fRF = 868.95 MHz, 100 ksym/s, 3 out of 6 coding, FSK,  
41, 50  
42, 51  
dB  
dB  
45-kHz deviation, 196-kHz RX bandwidth, BER = 10–2  
Wanted signal 3 dB above sensitivity limit.  
Blocking, ±1 MHz, wM-BUS T-mode,  
100 kbps  
fRF = 868.95 MHz, 100 ksym/s, 3 out of 6 coding, FSK,  
45-kHz deviation, 196-kHz RX bandwidth, BER = 10–2  
Copyright © 2016–2018, Texas Instruments Incorporated  
Specifications  
19  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
www.ti.com.cn  
Receive (RX) Parameters, 861 MHz to 1054 MHz (continued)  
Measured on the Texas Instruments CC1310EM-7XD-7793 reference design with Tc = 25°C, VDDS = 3.0 V, DC/DC enabled,  
fRF = 868 MHz, unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX  
path.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Wanted signal 3 dB above sensitivity limit.  
Blocking, ±2 MHz, wM-BUS T-mode,  
100 kbps  
fRF = 868.95 MHz, 100 ksym/s, 3 out of 6 coding, FSK,  
51, 52  
dB  
45-kHz deviation, 196-kHz RX bandwidth, BER = 10–2  
Wanted signal 3 dB above sensitivity limit.  
Blocking, ±5 MHz, wM-BUS T-mode,  
100 kbps  
fRF = 868.95 MHz, 100 ksym/s, 3 out of 6 coding, FSK,  
54, 60  
67, 68  
–109  
dB  
dB  
45-kHz deviation, 196-kHz RX bandwidth, BER = 10–2  
Wanted signal 3 dB above sensitivity limit.  
Blocking, ±10 MHz, wM-BUS T-mode,  
100 kbps  
fRF = 868.95 MHz, 100 ksym/s, 3 out of 6 coding, FSK,  
45-kHz deviation, 196-kHz RX bandwidth, BER = 10–2  
fRF = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation,  
FEC (half rate), DSSS = 8, 622-kHz RX bandwidth,  
BER = 10–2  
Receiver sensitivity, WideBand-DSSS  
(WB-DSSS), 30 kbps  
dBm  
Wanted signal 3 dB above sensitivity limit.  
fRF = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation,  
FEC (half rate), DSSS = 8, 622-kHz RX bandwidth,  
BER = 10–2  
Blocking, ±1 MHz, WB-DSSS, 30 kbps  
Blocking, ±2 MHz, WB-DSSS, 30 kbps  
Blocking, ±5 MHz, WB-DSSS, 30 kbps  
Blocking, ±10 MHz, WB-DSSS, 30 kbps  
57, 57  
58, 58  
59, 57  
dB  
dB  
dB  
Wanted signal 3 dB above sensitivity limit.  
fRF = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation,  
FEC (half rate), DSSS = 8, 622-kHz RX bandwidth,  
BER = 10–2  
Wanted signal 3 dB above sensitivity limit.  
fRF = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation,  
FEC (half rate), DSSS = 8, 622-kHz RX bandwidth,  
BER = 10–2  
Wanted signal 3 dB above sensitivity limit.  
fRF = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation,  
FEC (half rate), DSSS = 8, 622-kHz RX bandwidth,  
BER = 10–2  
71, 68  
–108  
dB  
dBm  
dB  
fRF = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation,  
FEC (half rate), DSSS = 4, 622-kHz RX bandwidth,  
BER = 10–2  
Receiver sensitivity, WideBand-DSSS  
(WB-DSSS), 60 kbps  
Wanted signal 3 dB above sensitivity limit.  
fRF = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation,  
FEC (half rate), DSSS = 4, 622-kHz RX bandwidth,  
BER = 10–2  
Blocking, ±1 MHz, WB-DSSS, 60 kbps  
Blocking, ±2 MHz, WB-DSSS, 60 kbps  
Blocking, ±5 MHz, WB-DSSS, 60 kbps  
Blocking, ±10 MHz, WB-DSSS, 60 kbps  
56, 56  
Wanted signal 3 dB above sensitivity limit.  
fRF = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation,  
FEC (half rate), DSSS = 4, 622-kHz RX bandwidth,  
BER = 10–2  
57, 57  
57, 56  
dB  
dB  
Wanted signal 3 dB above sensitivity limit.  
fRF = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation,  
FEC (half rate), DSSS = 4, 622-kHz RX bandwidth,  
BER = 10–2  
Wanted signal 3 dB above sensitivity limit.  
fRF = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation,  
FEC (half rate), DSSS = 4, 622-kHz RX bandwidth,  
BER = 10–2  
70, 67  
–106  
dB  
dBm  
dB  
fRF = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation,  
FEC (half rate), DSSS = 2, 622-kHz RX bandwidth,  
BER = 10–2  
Receiver sensitivity, WideBand-DSSS  
(WB-DSSS), 120 kbps  
Wanted signal 3 dB above sensitivity limit.  
fRF = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation,  
FEC (half rate), DSSS = 2, 622-kHz RX bandwidth,  
BER = 10–2  
Blocking, ±1 MHz, WB-DSSS, 120 kbps  
Blocking, ±2 MHz, WB-DSSS, 120 kbps  
54, 54  
Wanted signal 3 dB above sensitivity limit.  
fRF = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation,  
FEC (half rate), DSSS = 2, 622-kHz RX bandwidth,  
BER = 10–2  
55, 55  
dB  
20  
Specifications  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
www.ti.com.cn  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
Receive (RX) Parameters, 861 MHz to 1054 MHz (continued)  
Measured on the Texas Instruments CC1310EM-7XD-7793 reference design with Tc = 25°C, VDDS = 3.0 V, DC/DC enabled,  
fRF = 868 MHz, unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX  
path.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Wanted signal 3 dB above sensitivity limit.  
fRF = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation,  
FEC (half rate), DSSS = 2, 622-kHz RX bandwidth,  
BER = 10–2  
Blocking, ±5 MHz, WB-DSSS, 120 kbps  
55, 54  
dB  
Wanted signal 3 dB above sensitivity limit.  
fRF = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation,  
FEC (half rate), DSSS = 2, 622-kHz RX bandwidth,  
BER = 10–2  
Blocking, ±10 MHz, WB-DSSS, 120 kbps  
69, 65  
–105  
dB  
dBm  
dB  
fRF = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation,  
FEC (half rate), DSSS = 1, 622-kHz RX bandwidth,  
BER = 10–2  
Receiver sensitivity, WideBand-DSSS  
(WB-DSSS), 240 kbps  
Wanted signal 3 dB above sensitivity limit.  
fRF = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation,  
FEC (half rate), DSSS = 1, 622-kHz RX bandwidth,  
BER = 10–2  
Blocking, ±1 MHz, WB-DSSS, 240 kbps  
Blocking, ±2 MHz, WB-DSSS, 240 kbps  
Blocking, ±5 MHz, WB-DSSS, 240 kbps  
Blocking, ±10 MHz, WB-DSSS, 240 kbps  
53, 53  
Wanted signal 3 dB above sensitivity limit.  
fRF = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation,  
FEC (half rate), DSSS = 1, 622-kHz RX bandwidth,  
BER = 10–2  
53, 54  
53, 54  
68, 64  
dB  
dB  
dB  
Wanted signal 3 dB above sensitivity limit.  
fRF = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation,  
FEC (half rate), DSSS = 1, 622-kHz RX bandwidth,  
BER = 10–2  
Wanted signal 3 dB above sensitivity limit.  
fRF = 915 MHz, 480 ksym/s, GFSK, 195-kHz deviation,  
FEC (half rate), DSSS = 1, 622-kHz RX bandwidth,  
BER = 10–2  
GFSK, 19-kHz deviation, 78-kHz RX bandwidth,  
BER = 10–2  
Receiver sensitivity, 10 kbps  
Selectivity, ±100 kHz, 10 kbps  
–114  
dBm  
dB  
Wanted signal 3 dB above sensitivity limit. 10 kbps,  
GFSK, 19-kHz deviation, 78-kHz RX bandwidth,  
BER = 10–2  
40, 40  
Wanted signal 3 dB above sensitivity limit. 10 kbps,  
GFSK, 19-kHz deviation, 78-kHz RX bandwidth,  
BER = 10–2  
Selectivity, ±200 kHz, 10 kbps  
Selectivity, ±400 kHz, 10 kbps  
Blocking, ±2 MHz, 10 kbps  
Blocking, ±10 MHz, 10 kbps  
46, 44  
50, 45  
62, 61  
76, 72  
dB  
dB  
dB  
dB  
Wanted signal 3 dB above sensitivity limit. 10 kbps,  
GFSK, 19-kHz deviation, 78-kHz RX bandwidth,  
BER = 10–2  
Wanted signal 3 dB above sensitivity limit. 10 kbps,  
GFSK, 19-kHz deviation, 78-kHz RX bandwidth,  
BER = 10–2  
Wanted signal 3 dB above sensitivity limit. 10 kbps,  
GFSK, 19-kHz deviation, 78-kHz RX bandwidth,  
BER = 10–2  
Image rejection (image compensation  
enabled, the image compensation is  
calibrated in production), 10 kbps  
Wanted signal 3 dB above sensitivity limit. 10 kbps,  
GFSK, 19-kHz deviation, 78-kHz RX bandwidth,  
BER = 10–2  
43  
–114  
dB  
dBm  
dB  
GFSK, 5.2-kHz deviation, 49-kHz RX bandwidth,  
BER = 10–2  
Receiver sensitivity, 4.8 kbps  
Wanted signal 3 dB above sensitivity limit. 4.8 kbps,  
GFSK, 5.2-kHz deviation, 49-kHz RX bandwidth,  
BER = 10–2  
Selectivity, ±100 kHz, 4.8 kbps  
44, 43  
Wanted signal 3 dB above sensitivity limit. 4.8 kbps,  
GFSK, 5.2-kHz deviation, 49-kHz RX bandwidth,  
BER = 10–2  
Selectivity, ±200 kHz, 4.8 kbps  
49, 48  
dB  
Copyright © 2016–2018, Texas Instruments Incorporated  
Specifications  
21  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
www.ti.com.cn  
Receive (RX) Parameters, 861 MHz to 1054 MHz (continued)  
Measured on the Texas Instruments CC1310EM-7XD-7793 reference design with Tc = 25°C, VDDS = 3.0 V, DC/DC enabled,  
fRF = 868 MHz, unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX  
path.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Wanted signal 3 dB above sensitivity limit. 4.8 kbps,  
GFSK, 5.2-kHz deviation, 49-kHz RX bandwidth,  
BER = 10–2  
Selectivity, ±400 kHz, 4.8 kbps  
52, 49  
dB  
Wanted signal 3 dB above sensitivity limit. 4.8 kbps,  
GFSK, 5.2-kHz deviation, 49-kHz RX bandwidth,  
BER = 10–2  
Blocking, ±2 MHz, 4.8 kbps  
Blocking, ±10 MHz, 4.8 kbps  
64, 63  
73, 72  
dB  
dB  
Wanted signal 3 dB above sensitivity limit. 4.8 kbps,  
GFSK, 5.2-kHz deviation, 49-kHz RX bandwidth,  
BER = 10–2  
Image rejection (image compensation  
enabled, the image compensation is  
calibrated in production), 4.8 kbps  
Wanted signal 3 dB above sensitivity limit. 4.8 kbps,  
GFSK, 5.2-kHz deviation, 49-kHz RX bandwidth,  
BER = 10–2  
43  
–116  
dB  
dBm  
dB  
Receiver sensitivity, CC1101 compatible GFSK, 5.2-kHz deviation (commonly used settings on  
mode, 2.4 kbps  
CC1101), 49-kHz RX bandwidth, BER = 10–2  
Wanted signal 3 dB above sensitivity limit. 2.4 kbps,  
GFSK, 5.2-kHz deviation (commonly used settings on  
CC1101), 49-kHz RX bandwidth, BER = 10–2  
Selectivity, ±100 kHz, CC1101  
compatible mode, 2.4 kbps  
45, 44  
Wanted signal 3 dB above sensitivity limit. 2.4 kbps,  
GFSK, 5.2-kHz deviation (commonly used settings on  
CC1101), 49-kHz RX bandwidth, BER = 10–2  
Selectivity, ±200 kHz, CC1101  
compatible mode, 2.4 kbps  
51, 47  
63, 62  
76, 71  
dB  
dB  
dB  
Wanted signal 3 dB above sensitivity limit. 2.4 kbps,  
GFSK, 5.2-kHz deviation (commonly used settings on  
CC1101), 49-kHz RX bandwidth, BER = 10–2  
Blocking, ±2 MHz, CC1101 compatible  
mode, 2.4 kbps  
Wanted signal 3 dB above sensitivity limit. 2.4 kbps,  
GFSK, 5.2-kHz deviation (commonly used settings on  
CC1101), 49-kHz RX bandwidth, BER = 10–2  
Blocking, ±10 MHz, CC1101 compatible  
mode, 2.4 kbps  
Image rejection (image compensation  
enabled, the image compensation is  
calibrated in production), CC1101  
compatible mode, 2.4 kbps  
Wanted signal 3 dB above sensitivity limit. 2.4 kbps,  
GFSK, 5.2-kHz deviation (commonly used settings on  
CC1101), 49-kHz RX bandwidth, BER = 10–2  
45  
dB  
Receiver sensitivity, CC1101 compatible GFSK, 5.2-kHz deviation (commonly used settings on  
mode, 1.2 kbps  
–117  
dBm  
dB  
CC1101), 49-kHz RX bandwidth, BER = 10–2  
Wanted signal 3 dB above sensitivity limit. 1.2 kbps,  
GFSK, 5.2-kHz deviation (commonly used settings on  
CC1101), 49-kHz RX bandwidth, BER = 10–2  
Selectivity, ±100 kHz, CC1101  
compatible mode, 1.2 kbps  
45, 44  
Wanted signal 3 dB above sensitivity limit. 1.2 kbps,  
GFSK, 5.2-kHz deviation (commonly used settings on  
CC1101), 49-kHz RX bandwidth, BER = 10–2  
Selectivity, ±200 kHz, CC1101  
compatible mode, 1.2 kbps  
51, 47  
63, 62  
81, 81  
dB  
dB  
dB  
Wanted signal 3 dB above sensitivity limit. 1.2 kbps,  
GFSK, 5.2-kHz deviation (commonly used settings on  
CC1101), 49-kHz RX bandwidth, BER = 10–2  
Blocking, ±2 MHz, CC1101 compatible  
mode, 1.2 kbps  
Wanted signal 3 dB above sensitivity limit. 1.2 kbps,  
GFSK, 5.2-kHz deviation (commonly used settings on  
CC1101), 49-kHz RX bandwidth, BER = 10–2  
Blocking, ±10 MHz, CC1101 compatible  
mode, 1.2 kbps  
Image rejection (image compensation  
enabled, the image compensation is  
calibrated in production), CC1101  
compatible mode, 1.2 kbps  
Wanted signal 3 dB above sensitivity limit. 1.2 kbps,  
GFSK, 5.2-kHz deviation (commonly used settings on  
CC1101), 49-kHz RX bandwidth, BER = 10–2  
45  
dB  
10 ksym/s, GFSK, 5-kHz deviation, FEC (half rate),  
Receiver sensitivity, legacy long-range  
mode, 625 bps  
DSSS = 8, 40-kHz RX bandwidth, BER = 10–2  
868 MHz and 915 MHz.  
.
–124  
56, 56  
73, 77  
dBm  
dB  
Wanted signal 3 dB above sensitivity limit. 10 ksym/s,  
GFSK, 5-kHz deviation, FEC (half rate), DSSS = 8,  
40-kHz RX bandwidth, BER = 10–2  
Selectivity, ±100 kHz, legacy long-range  
mode, 625 bps  
Wanted signal 3 dB above sensitivity limit. 10 ksym/s,  
GFSK, 5-kHz deviation, FEC (half rate), DSSS = 8,  
40-kHz RX bandwidth, BER = 10–2  
Blocking ±1 MHz, legacy long-range  
mode, 625 bps  
dB  
22  
Specifications  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
www.ti.com.cn  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
Receive (RX) Parameters, 861 MHz to 1054 MHz (continued)  
Measured on the Texas Instruments CC1310EM-7XD-7793 reference design with Tc = 25°C, VDDS = 3.0 V, DC/DC enabled,  
fRF = 868 MHz, unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX  
path.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Wanted signal 3 dB above sensitivity limit. 10 ksym/s,  
GFSK, 5-kHz deviation, FEC (half rate), DSSS = 8,  
40-kHz RX bandwidth, BER = 10–2  
Blocking ±2 MHz, legacy long-range  
mode, 625 bps  
79, 79  
dB  
Wanted signal 3 dB above sensitivity limit. 10 ksym/s,  
GFSK, 5-kHz deviation, FEC (half rate), DSSS = 8,  
40-kHz RX bandwidth, BER = 10–2  
Blocking ±10 MHz, legacy long-range  
mode, 625 bps  
91, 91  
–115  
dB  
4.8 kbps, OOK, 40-kHz RX bandwidth, BER = 10–2  
868 MHz and 915 MHz  
.
Receiver sensitivity, OOK, 4.8 kbps  
dBm  
5.7 Receive (RX) Parameters, 431 MHz to 527 MHz  
Measured on the Texas Instruments CC1310EM-7XD-4251 reference design with Tc = 25°C, VDDS = 3.0 V, DC/DC enabled,  
fRF = 433.92 MHz, unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX  
path.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
50 kbps, GFSK, 25-kHz deviation, 100-kHz RX bandwidth  
(same modulation format as IEEE 802.15.4g mandatory  
mode), BER = 10–2  
Receiver sensitivity, 50 kbps  
–110  
dBm  
50 kbps, GFSK, 25-kHz deviation, 100-kHz RX bandwidth  
(same modulation format as IEEE 802.15.4g mandatory  
mode), BER = 10–2  
Receiver saturation  
10  
dBm  
dB  
Wanted signal 3 dB above sensitivity limit. 50 kbps,  
GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same  
modulation format as IEEE 802.15.4g mandatory mode),  
BER = 10–2  
Selectivity, ±200 kHz, 50 kbps  
40, 42  
Wanted signal 3 dB above sensitivity limit. 50 kbps,  
GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same  
modulation format as IEEE 802.15.4g mandatory mode),  
BER = 10–2  
Selectivity, ±400 kHz, 50 kbps  
Blocking ±1 MHz, 50 kbps  
Blocking ±2 MHz, 50 kbps  
Blocking ±10 MHz, 50 kbps  
42, 50  
53, 58  
59, 60  
dB  
dB  
dB  
Wanted signal 3 dB above sensitivity limit. 50 kbps,  
GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same  
modulation format as IEEE 802.15.4g mandatory mode),  
BER = 10–2  
Wanted signal 3 dB above sensitivity limit. 50 kbps,  
GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same  
modulation format as IEEE 802.15.4g mandatory mode),  
BER = 10–2  
Wanted signal 3 dB above sensitivity limit. 50 kbps,  
GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same  
modulation format as IEEE 802.15.4g mandatory mode),  
BER = 10–2  
74, 74  
–74  
dB  
dBm  
dB  
Spurious emissions 1 GHz to 13 GHz  
(VCO leakage at 3.5 GHz) and  
30 MHz to 1 GHz  
Conducted emissions measured according to  
ETSI EN 300 220  
Wanted signal 3 dB above sensitivity limit. 50 kbps,  
GFSK, 25-kHz deviation, 100-kHz RX bandwidth (same  
modulation format as IEEE 802.15.4g mandatory mode),  
BER = 10–2  
Image rejection (image compensation  
enabled, the image compensation is  
calibrated in production), 50 kbps  
43  
Receiver sensitivity, long-range mode,  
5 kbps  
20 ksym/s, GFSK, 5-kHz deviation, FEC (half rate),  
–119  
–120  
–121  
dBm  
dBm  
dBm  
DSSS = 2, 49-kHz RX bandwidth, BER = 10–2. 433 MHz  
Receiver sensitivity, long-range mode,  
2.5 kbps  
20 ksym/s, GFSK, 5-kHz deviation, FEC (half rate),  
DSSS = 4, 49-kHz RX bandwidth, BER = 10–2. 433 MHz  
Receiver sensitivity, long-range mode,  
1.25 kbps  
20 ksym/s, GFSK, 5-kHz deviation, FEC (half rate),  
DSSS = 8, 49-kHz RX bandwidth, BER = 10–2. 433 MHz  
Copyright © 2016–2018, Texas Instruments Incorporated  
Specifications  
23  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
www.ti.com.cn  
Receive (RX) Parameters, 431 MHz to 527 MHz (continued)  
Measured on the Texas Instruments CC1310EM-7XD-4251 reference design with Tc = 25°C, VDDS = 3.0 V, DC/DC enabled,  
fRF = 433.92 MHz, unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX  
path.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
10 ksym/s, GFSK, 5-kHz deviation, FEC (half rate),  
Receiver sensitivity, legacy long-range  
mode, 625 bps  
DSSS = 8, 40-kHz RX bandwidth, BER = 10–2  
868 MHz and 915 MHZ.  
.
–124  
dBm  
Wanted signal 3 dB above sensitivity limit. 10 ksym/s,  
GFSK, 5-kHz deviation, FEC (half rate), DSSS = 8,  
40-kHz RX bandwidth, BER = 10–2  
Selectivity, ±100 kHz, legacy long-range  
mode, 625 bps  
56, 56  
62, 65  
68, 73  
74, 74  
88, 89  
dB  
dB  
dB  
dB  
dB  
Wanted signal 3 dB above sensitivity limit. 10 ksym/s,  
GFSK, 5-kHz deviation, FEC (half rate), DSSS = 8,  
40-kHz RX bandwidth, BER = 10–2  
Selectivity, ±200 kHz, legacy long-range  
mode, 625 bps  
Wanted signal 3 dB above sensitivity limit. 10 ksym/s,  
GFSK, 5-kHz deviation, FEC (half rate), DSSS = 8,  
40-kHz RX bandwidth, BER = 10–2  
Blocking ±1 MHz, legacy long-range  
mode, 625 bps  
Wanted signal 3 dB above sensitivity limit. 10 ksym/s,  
GFSK, 5-kHz deviation, FEC (half rate), DSSS = 8,  
40-kHz RX bandwidth, BER = 10–2  
Blocking ±2 MHz, legacy long-range  
mode, 625 bps  
Wanted signal 3 dB above sensitivity limit. 10 ksym/s,  
GFSK, 5-kHz deviation, FEC (half rate), DSSS = 8,  
40-kHz RX bandwidth, BER = 10–2  
Blocking ±10 MHz, legacy long-range  
mode, 625 bps  
Image rejection (image compensation  
enabled, the image compensation is  
calibrated in production), legacy long-  
range mode, 625 bps  
Wanted signal 3 dB above sensitivity limit. 10 ksym/s,  
GFSK, 5-kHz deviation, FEC (half rate), DSSS = 8,  
40-kHz RX bandwidth, BER = 10–2  
55  
dB  
24  
Specifications  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
www.ti.com.cn  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
5.8 Transmit (TX) Parameters, 861 MHz to 1054 MHz  
Measured on the Texas Instruments CC1310EM-7XD-7793 reference design with Tc = 25°C, VDDS = 3.0 V, DC/DC enabled,  
fRF = 868 MHz, unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX  
path.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VDDR = 1.95 V  
Maximum output power, boost mode  
Minimum VDDS for boost mode is 2.1 V  
868 MHz and 915 MHz  
14  
dBm  
Maximum output power  
868 MHz and 915 MHz  
12  
24  
dBm  
dB  
Output power programmable range  
Output power variation  
Tested at +10-dBm setting  
+14 dBm  
±0.9  
±0.5  
dB  
Output power variation, boost mode  
dB  
Transmitting +14 dBm  
ETSI restricted bands  
<–59  
<–51  
30 MHz to 1 GHz  
Spurious emissions  
Transmitting +14 dBm  
outside ETSI restricted bands  
dBm  
dBm  
(excluding harmonics)(1)  
Transmitting +14 dBm  
measured in 1-MHz bandwidth (ETSI)  
1 GHz to 12.75 GHz  
Second harmonic  
Third harmonic  
<–37  
Transmitting +14 dBm, conducted  
868 MHz, 915 MHz  
–52, –55  
–58, –55  
–56, –56  
<–66  
Transmitting +14 dBm, conducted  
868 MHz, 915 MHz  
Harmonics  
Transmitting +14 dBm, conducted  
868 MHz, 915 MHz  
Fourth harmonic  
30 MHz to 88 MHz  
(within FCC restricted bands)  
Transmitting +14 dBm, conducted  
Transmitting +14 dBm, conducted  
Transmitting +14 dBm, conducted  
88 MHz to 216 MHz  
(within FCC restricted bands)  
<–65  
216 MHz to 960 MHz  
(within FCC restricted bands)  
Spurious emissions  
out-of-band,  
<–65  
dBm  
915 MHz(1)  
960 MHz to 2390 MHz and  
above 2483.5 MHz (within  
FCC restricted band)  
Transmitting +14 dBm, conducted  
Transmitting +14 dBm, conducted  
<–52  
<–43  
1 GHz to 12.75 GHz  
(outside FCC restricted  
bands)  
Below 710 MHz  
(ARIB T-108)  
Transmitting +14 dBm, conducted  
Transmitting +14 dBm, conducted  
Transmitting +14 dBm, conducted  
Transmitting +14 dBm, conducted  
Transmitting +14 dBm, conducted  
Transmitting +14 dBm, conducted  
<–50  
<–60  
<–57  
<–57  
<–59  
<–45  
710 MHz to 900 MHz  
(ARIB T-108)  
900 MHz to 915 MHz  
(ARIB T-108)  
Spurious emissions  
out-of-band,  
dBm  
920.6 MHz(1)  
930 MHz to 1000 MHz  
(ARIB T-108)  
1000 MHz to 1215 MHz  
(ARIB T-108)  
Above 1215 MHz  
(ARIB T-108)  
(1) Suitable for systems targeting compliance with EN 300 220, EN 54-25, EN 303 204, FCC CFR47 Part 15, ARIB STD-T108.  
Copyright © 2016–2018, Texas Instruments Incorporated  
Specifications  
25  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
www.ti.com.cn  
5.9 Transmit (TX) Parameters, 431 MHz to 527 MHz  
Measured on the Texas Instruments CC1310EM-7XD-4251 reference design with Tc = 25°C, VDDS = 3.0 V, DC/DC enabled,  
fRF = 433.92 MHz, unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX  
path.  
PARAMETER  
Maximum output power, boost mode  
Maximum output power  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VDDR = 1.95 V  
Minimum VDDS for boost mode is 2.1 V  
15  
dBm  
14  
dBm  
Transmitting +10 dBm, 433 MHz  
Inside ETSI restricted bands  
<–63  
30 MHz to 1 GHz  
Transmitting +10 dBm, 433 MHz  
Outside ETSI restricted bands  
<–39  
<–52  
Spurious emissions  
Transmitting +10 dBm, 433 MHz  
Outside ETSI restricted bands, measured  
in 1-MHz bandwidth (ETSI)  
dBm  
(excluding harmonics)(1)  
1 GHz to 12.75 GHz  
Transmitting +10 dBm, 433 MHz  
Inside ETSI restricted bands, measured in  
1-MHz bandwidth (ETSI)  
<–58  
(1) Suitable for systems targeting compliance with EN 300 220, EN 54-25, EN 303 204, FCC CFR47 Part 15, ARIB STD-T108.  
5.10 1-Mbps GFSK (Bluetooth low energy) – RX  
Measured on the TI CC1350_7XD-Dual Band reference design with Tc = 25°C, VDDS = 3.0 V, fRF = 2440 MHz, unless  
otherwise noted. All tests with Bluetooth low energy PHY (1 Mbps), 37-byte payload unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Differential mode. Measured at the CC1350_7XD-  
Dual Band SMA connector,  
Receiver sensitivity  
–87  
dBm  
37-byte payload BER = 10–3  
Differential mode. Measured at the CC1350_7XD-  
Dual Band SMA connector,  
Receiver sensitivity  
–86  
0
dBm  
dBm  
255-byte payload BER = 10–3  
Differential mode. Measured at the CC1350_7XD-  
Dual Band SMA connector, BER = 10–3  
Receiver saturation  
Difference between the incoming carrier frequency  
and the internally generated carrier frequency.  
Input signal 10 dB above sensitivity limit  
Frequency error tolerance  
–350  
–750  
350  
750  
kHz  
Difference between incoming data rate and the  
internally generated data rate. Input signal 10 dB  
above sensitivity limit  
Data rate error tolerance  
ppm  
Wanted signal at –67 dBm, modulated interferer in  
channel, BER = 10–3  
Co-channel rejection(1)  
Selectivity, ±1 MHz(1)  
Selectivity, +2 MHz(1)  
–6  
7 / 4(2)  
38  
dB  
dB  
dB  
Wanted signal at –67 dBm, modulated interferer at  
±1 MHz, BER = 10–3  
Wanted signal at –67 dBm, modulated interferer at  
+2 MHz, BER = 10–3  
Wanted signal at –67 dBm, modulated interferer at  
±3 MHz, BER = 10–3  
Note that –3 MHz is –1 MHz from the image  
frequency.  
.
Selectivity, ±3 MHz(1)  
36 / 41(2)  
dB  
Wanted signal at –67 dBm, modulated interferer at  
±4 MHz, BER = 10–3  
Selectivity, ±4 MHz(1)  
39 / 38(2)  
35 / 39(2)  
42 / 37(2)  
55  
dB  
dB  
dB  
dB  
Wanted signal at –67 dBm, modulated interferer at  
±5 MHz, BER = 10–3  
Selectivity, ±5 MHz(1)  
Wanted signal at –67 dBm, modulated interferer at  
Selectivity, ±6 MHz(1)  
±6 MHz, BER = 10–3  
Wanted signal at –67 dBm, modulated interferer at  
Selectivity, ±15 MHz or more(1)  
±15 MHz or more, BER = 10–3  
(1) Numbers given as I/C dB.  
(2) X / Y, where X is +N MHz and Y is –N MHz.  
26 Specifications  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
www.ti.com.cn  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
1-Mbps GFSK (Bluetooth low energy) – RX (continued)  
Measured on the TI CC1350_7XD-Dual Band reference design with Tc = 25°C, VDDS = 3.0 V, fRF = 2440 MHz, unless  
otherwise noted. All tests with Bluetooth low energy PHY (1 Mbps), 37-byte payload unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Selectivity, Image frequency  
(image compensation enabled, Wanted signal at –67 dBm, modulated interferer at  
37  
dB  
the image compensation is  
image frequency, BER = 10–3  
calibrated in production)(1)  
Wanted signal at –67 dBm, modulated interferer at  
±1 MHz from image (–3 MHz and –1 MHz from  
wanted) frequency, BER = 10–3  
Selectivity, Image frequency  
±1 MHz(1)  
4 / 41(2)  
dB  
Out-of-band blocking(3)  
Out-of-band blocking  
Out-of-band blocking  
Out-of-band blocking  
30 MHz to 2000 MHz  
2003 MHz to 2399 MHz  
2484 MHz to 2997 MHz  
3000 MHz to 12.75 GHz  
–25  
>–20  
>–20  
>–30  
dBm  
dBm  
dBm  
dBm  
Wanted signal at 2402 MHz, –64 dBm. Two  
interferers at 2405 and 2408 MHz, respectively, at  
the given power level  
Intermodulation  
–30  
dBm  
Conducted measurement in a 50-Ω single-ended  
load. Suitable for systems targeting compliance  
with EN 300 328, EN 300 440 class 2, FCC  
CFR47, Part 15 and ARIB STD-T-66  
Spurious emissions,  
30 to 1000 MHz  
–72  
dBm  
Conducted measurement in a 50-Ω single-ended  
load. Suitable for systems targeting compliance  
with EN 300 328, EN 300 440 class 2, FCC  
CFR47, Part 15 and ARIB STD-T-66  
Spurious emissions,  
1 to 12.75 GHz  
–65  
dBm  
RSSI dynamic range  
RSSI accuracy  
70  
±4  
dB  
dB  
(3) Excluding one exception at Fwanted / 2, per Bluetooth Specification.  
5.11 1-Mbps GFSK (Bluetooth low energy) – TX  
Measured on the TI CC1350_7XD-Dual Band reference design with Tc = 25°C, VDDS = 3.0 V, fRF = 2440 MHz, unless  
otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Differential mode, delivered to a single-ended 50-Ω load  
through a balun.  
VDDR = 1.95 V  
Output power, boost mode  
9
dBm  
Minimum VDDS for boost mode is 2.1 V.  
Differential mode, delivered to a single-ended 50-Ω load  
through a balun.  
Output power  
5
dBm  
dBm  
Output power, lowest setting  
Delivered to a single-ended 50-Ω load through a balun  
f < 1 GHz, outside restricted bands  
f < 1 GHz, restricted bands ETSI  
–21  
–59  
–55  
–61  
–47  
Spurious emission conducted  
measurement(1)  
dBm  
f < 1 GHz, restricted bands FCC  
f > 1 GHz, including harmonics  
(1) Suitable for systems targeting compliance with worldwide radio-frequency regulations ETSI EN 300 328 and EN 300 440 Class 2  
(Europe), FCC CFR47 Part 15 (US), and ARIB STD-T66 (Japan).  
Copyright © 2016–2018, Texas Instruments Incorporated  
Specifications  
27  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
www.ti.com.cn  
5.12 PLL Parameters  
Measured on the Texas Instruments CC1310EM-7XD-7793 reference design with Tc = 25°C, VDDS = 3.0 V  
PARAMETER  
TEST CONDITIONS  
±100-kHz offset  
MIN  
TYP  
–101  
–108  
–115  
–124  
–131  
–140  
–98  
MAX  
UNIT  
±200-kHz offset  
±400-kHz offset  
±1000-kHz offset  
±2000-kHz offset  
±10000-kHz offset  
±100-kHz offset  
±200-kHz offset  
±400-kHz offset  
±1000-kHz offset  
±2000-kHz offset  
±10000-kHz offset  
Phase noise in the 868-MHz band  
dBc/Hz  
–106  
–114  
–122  
–130  
–140  
Phase noise in the 915-MHz band  
dBc/Hz  
5.13 ADC Characteristics  
Tc = 25°C, VDDS = 3.0 V, DC/DC disabled. Input voltage scaling enabled, unless otherwise noted.(1)  
PARAMETER  
Input voltage range  
Resolution  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
0
VDDS  
12  
Bits  
Sample rate  
Offset  
200 ksamples/s  
Internal 4.3-V equivalent reference(2)  
Internal 4.3-V equivalent reference(2)  
2.1  
LSB  
LSB  
Gain error  
–0.14  
Differential  
nonlinearity  
DNL(3)  
INL(4)  
>–1  
±2  
LSB  
LSB  
Integral nonlinearity  
Internal 4.3-V equivalent reference(2), 200 ksamples/s,  
9.6-kHz input tone  
10.0  
VDDS as reference, 200 ksamples/s, 9.6-kHz input  
tone  
Effective number of  
bits  
10.2  
11.1  
ENOB  
Bits  
Internal 1.44-V reference, voltage scaling disabled,  
32 samples average, 200 ksamples/s, 300-Hz input  
tone  
Internal 4.3-V equivalent reference(2), 200 ksamples/s,  
9.6-kHz input tone  
–65  
–72  
VDDS as reference, 200 ksamples/s, 9.6-kHz input  
tone  
Total harmonic  
distortion  
THD  
dB  
Internal 1.44-V reference, voltage scaling disabled,  
32 samples average, 200 ksamples/s, 300-Hz input  
tone  
–75  
Internal 4.3-V equivalent reference(2), 200 ksamples/s,  
9.6-kHz input tone  
62  
63  
SINAD  
and  
SNDR  
VDDS as reference, 200 ksamples/s, 9.6-kHz input  
tone  
Signal-to-noise and  
distortion ratio  
dB  
Internal 1.44-V reference, voltage scaling disabled,  
32 samples average, 200 ksamples/s, 300-Hz input  
tone  
69  
(1) Using IEEE Std 1241™ 2010 for terminology and test methods.  
(2) Input signal scaled down internally before conversion, as if voltage range was 0 to 4.3 V. Applied voltage must be within the absolute  
maximum ratings (see Section 5.1) at all times.  
(3) No missing codes. Positive DNL typically varies from 0.3 to 1.7, depending on the device (see Figure 5-7).  
(4) For a typical example, see Figure 5-6.  
28  
Specifications  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
www.ti.com.cn  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
ADC Characteristics (continued)  
Tc = 25°C, VDDS = 3.0 V, DC/DC disabled. Input voltage scaling enabled, unless otherwise noted.(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Internal 4.3-V equivalent reference(2), 200 ksamples/s,  
9.6-kHz input tone  
74  
VDDS as reference, 200 ksamples/s, 9.6-kHz input  
tone  
Spurious-free  
dynamic range  
75  
75  
SFDR  
dB  
Internal 1.44-V reference, voltage scaling disabled,  
32 samples average, 200 ksamples/s, 300-Hz input  
tone  
Conversion time  
Current consumption Internal 4.3-V equivalent reference(2)  
Including sampling time  
5
0.66  
0.75  
µs  
mA  
mA  
Current consumption VDDS as reference  
Equivalent fixed internal reference(voltage scaling  
(2)  
enabled)  
Reference voltage  
Reference voltage  
For best accuracy, the ADC conversion should be  
initiated through the TI-RTOS API in order to include  
the gain/offset compensation factors stored in FCFG1.  
4.3  
V
V
Fixed internal reference (input voltage scaling  
(2)  
disabled).  
For best accuracy, the ADC conversion should be  
initiated through the TI-RTOS API in order to include  
the gain/offset compensation factors stored in FCFG1.  
This value is derived from the scaled value (4.3 V) as  
follows:  
1.48  
Vref = 4.3 V × 1408 / 4095  
VDDS as reference (Also known as RELATIVE) (input  
voltage scaling enabled)  
Reference voltage  
Reference voltage  
VDDS  
V
V
VDDS as reference (Also known as RELATIVE) (input  
voltage scaling disabled)  
VDDS / 2.82  
200 ksamples/s, voltage scaling enabled. Capacitive  
input, input impedance depends on sampling frequency  
and sampling time  
Input Impedance  
>1  
MΩ  
5.14 Temperature Sensor  
Measured on the Texas Instruments CC1310EM-7XD-7793 reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise  
noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
°C  
Resolution  
Range  
4
–40  
85  
°C  
Accuracy  
±5  
°C  
Supply voltage coefficient(1)  
3.2  
°C/V  
(1) Automatically compensated when using supplied driver libraries.  
5.15 Battery Monitor  
Measured on the Texas Instruments CC1310EM-7XD-7793 reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise  
noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
mV  
V
Resolution  
Range  
50  
1.8  
3.8  
Accuracy  
13  
mV  
Copyright © 2016–2018, Texas Instruments Incorporated  
Specifications  
29  
Submit Documentation Feedback  
Product Folder Links: CC1350  
 
CC1350  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
www.ti.com.cn  
5.16 Continuous Time Comparator  
Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
0
TYP  
MAX  
VDDS  
VDDS  
UNIT  
V
Input voltage range  
External reference voltage  
0
V
Internal reference voltage  
Offset  
DCOUPL as reference  
1.27  
3
V
mV  
mV  
µs  
Hysteresis  
<2  
Decision time  
Current consumption when enabled(1)  
Step from –10 mV to 10 mV  
0.72  
8.6  
µA  
(1) Additionally, the bias module must be enabled when running in standby mode.  
5.17 Low-Power Clocked Comparator  
Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
Input voltage range  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0
VDDS  
V
Clock frequency  
32.8  
kHz  
Internal reference voltage, VDDS / 2  
Internal reference voltage, VDDS / 3  
Internal reference voltage, VDDS / 4  
Internal reference voltage, DCOUPL / 1  
Internal reference voltage, DCOUPL / 2  
Internal reference voltage, DCOUPL / 3  
Internal reference voltage, DCOUPL / 4  
Offset  
1.49 to 1.51  
1.01 to 1.03  
0.78 to 0.79  
1.25 to 1.28  
0.63 to 0.65  
0.42 to 0.44  
0.33 to 0.34  
<2  
V
V
V
V
V
V
V
mV  
Hysteresis  
<5  
mV  
Decision time  
Step from –50 mV to 50 mV  
1
clock-cycle  
nA  
Current consumption when enabled  
362  
5.18 Programmable Current Source  
Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Current source programmable output range  
Resolution  
0.25 to 20  
µA  
µA  
0.25  
Including current source at maximum  
programmable output  
Current consumption(1)  
23  
µA  
(1) Additionally, the bias module must be enabled when running in standby mode.  
30  
Specifications  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
www.ti.com.cn  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
5.19 DC Characteristics  
PARAMETER  
TA = 25°C, VDDS = 1.8 V  
GPIO VOH at 8-mA load  
GPIO VOL at 8-mA load  
GPIO VOH at 4-mA load  
GPIO VOL at 4-mA load  
GPIO pullup current  
TEST CONDITIONS  
MIN  
1.32  
1.32  
TYP  
MAX  
UNIT  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 1  
1.54  
0.26  
1.58  
0.21  
71.7  
21.1  
V
V
0.32  
0.32  
V
IOCURR = 1  
V
Input mode, pullup enabled, Vpad = 0 V  
Input mode, pulldown enabled, Vpad = VDDS  
µA  
µA  
GPIO pulldown current  
IH = 0, transition between reading 0 and reading  
1
GPIO high/low input transition, no hysteresis  
0.88  
V
GPIO low-to-high input transition, with hysteresis  
GPIO high-to-low input transition, with hysteresis  
IH = 1, transition voltage for input read as 0 1  
IH = 1, transition voltage for input read as 1 0  
1.07  
0.74  
V
V
IH = 1, difference between 0 1  
and 1 0 voltage transition points  
GPIO input hysteresis  
0.33  
V
TA = 25°C, VDDS = 3.0 V  
GPIO VOH at 8-mA load  
GPIO VOL at 8-mA load  
GPIO VOH at 4-mA load  
GPIO VOL at 4-mA load  
TA = 25°C, VDDS = 3.8 V  
GPIO pullup current  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 1  
2.68  
0.33  
2.72  
0.28  
V
V
V
V
IOCURR = 1  
Input mode, pullup enabled, Vpad = 0 V  
277  
113  
µA  
µA  
GPIO pulldown current  
Input mode, pulldown enabled, Vpad = VDDS  
IH = 0, transition between reading 0 and reading  
1
GPIO high/low input transition, no hysteresis  
1.67  
V
GPIO low-to-high input transition, with hysteresis  
GPIO high-to-low input transition, with hysteresis  
IH = 1, transition voltage for input read as 0 1  
IH = 1, transition voltage for input read as 1 0  
1.94  
1.54  
V
V
IH = 1, difference between 0 1 and 1 0  
voltage transition points  
GPIO input hysteresis  
0.4  
V
Lowest GPIO input voltage reliably interpreted as  
a High  
VIH  
VIL  
0.8 VDDS(1)  
VDDS(1)  
Highest GPIO input voltage reliably interpreted  
as a Low  
0.2  
(1) Each GPIO is referenced to a specific VDDS pin. See the technical reference manual listed in 8.3 for more details.  
Copyright © 2016–2018, Texas Instruments Incorporated  
Specifications  
31  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
www.ti.com.cn  
5.20 Thermal Characteristics  
CC1350  
RSM  
(VQFN)  
RHB  
(VQFN)  
RGZ  
(VQFN)  
THERMAL METRIC(1)  
UNIT(2)  
32 PINS  
36.9  
30.3  
7.6  
32 PINS  
32.8  
24.0  
6.8  
48 PINS  
29.6  
15.7  
6.2  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
RθJB  
ψJT  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.4  
0.3  
0.3  
ψJB  
7.4  
6.8  
6.2  
RθJC(bot) Junction-to-case (bottom) thermal resistance  
2.1  
1.9  
1.9  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) °C/W = degrees Celsius per watt.  
5.21 Timing and Switching Characteristics  
5.21.1 Reset Timing  
Table 5-1. Reset Timing  
PARAMETER  
MIN TYP  
MAX UNIT  
RESET_N low duration  
1
µs  
5.21.2 Wakeup Timing  
Table 5-2. Wakeup Timing  
Measured on the Texas Instruments CC1310EM-7XD-7793 reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise  
noted. The times listed here do not include RTOS overhead.  
PARAMETER  
MCU, Idle Active  
TEST CONDITIONS  
MIN  
TYP  
14  
MAX  
UNIT  
µs  
MCU, Standby Active  
MCU, Shutdown Active  
174  
1097  
µs  
µs  
32  
Specifications  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1350  
 
 
CC1350  
www.ti.com.cn  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
5.21.3 Clock Specifications  
Table 5-3. 24-MHz Crystal Oscillator (XOSC_HF)  
Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.Section 5.21.1  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
60  
UNIT  
Ω
ESR equivalent series resistanceSection 5.21.2  
ESR equivalent series resistanceSection 5.21.2  
6 pF < CL 9 pF  
5 pF < CL 6 pF  
20  
80  
Ω
Relates to load capacitance  
(CL in Farads)  
2
LM motional inductanceSection 5.21.2  
< 1.6 × 10–24 / CL  
H
CL crystal load capacitanceSection 5.21.2  
Crystal frequencySection 5.21.2  
Start-up time  
5
9
pF  
MHz  
µs  
24  
150  
Table 5-4. 32.768-kHz Crystal Oscillator (XOSC_LF)  
Measured on the Texas Instruments CC1310EM-7XD-7793 reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise  
noted.(1)  
MIN  
TYP  
32.768  
30  
MAX  
UNIT  
kHz  
kΩ  
Crystal frequency  
ESR equivalent series resistance  
Crystal load capacitance (CL)  
100  
12  
6
pF  
(1) Probing or otherwise stopping the crystal while the DC/DC converter is enabled may cause permanent damage to the device.  
Table 5-5. 48-MHz RC Oscillator (RCOSC_HF)  
Measured on the Texas Instruments CC1310EM-7XD-7793 reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise  
noted.  
MIN  
TYP  
48  
MAX  
UNIT  
Frequency  
MHz  
Uncalibrated frequency accuracy  
Calibrated frequency accuracy(1)  
Startup time  
±1%  
±0.25%  
5
µs  
(1) Accuracy relative to the calibration source (XOSC_HF)  
Table 5-6. 32-kHz RC Oscillator (RCOSC_LF)  
Measured on the Texas Instruments CC1310EM-7XD-7793 reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise  
noted.  
MIN  
TYP  
32.768  
50  
MAX  
UNIT  
kHz  
Calibrated frequency(1)  
Temperature coefficient  
ppm/°C  
(1) The frequency accuracy of the Real Time Clock (RTC) is not directly dependent on the frequency accuracy of the 32-kHz RC Oscillator.  
The RTC can be calibrated by measuring the frequency error of RCOSC_LF relative to XOSC_HF and compensating for the RTC tick  
speed.  
Copyright © 2016–2018, Texas Instruments Incorporated  
Specifications  
33  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
www.ti.com.cn  
5.21.4 Flash Memory Characteristics  
Table 5-7. Flash Memory Characteristics  
Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
k Cycles  
mA  
Supported flash erase cycles before failure  
Flash page or sector erase current  
Flash page or sector erase time(1)  
Flash page or sector size  
100  
Average delta current  
12.6  
8
ms  
4
KB  
Flash write current  
Flash write time(1)  
Average delta current, 4 bytes at a time  
4 bytes at a time  
8.15  
8
mA  
µs  
(1) This number is dependent on flash aging and increases over time and erase cycles.  
5.21.5 Synchronous Serial Interface (SSI) Characteristics  
Table 5-8. Synchronous Serial Interface (SSI) Characteristics  
Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
S1  
tclk_per  
tclk_high  
tclk_low  
SSIClk cycle time  
12  
65024 system clocks  
S2(1)  
S3(1)  
SSIClk high time  
SSIClk low time  
0.5 × tclk_per  
0.5 × tclk_per  
(1) See the SSI timing diagrams, Figure 5-1, Figure 5-2, and Figure 5-3.  
S1  
S2  
SSIClk  
S3  
SSIFss  
SSITx  
MSB  
LSB  
SSIRx  
4 to 16 bits  
Figure 5-1. SSI Timing for TI Frame Format (FRF = 01), Single Transfer Timing Measurement  
34  
Specifications  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1350  
 
CC1350  
www.ti.com.cn  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
S2  
S1  
SSIClk  
SSIFss  
SSITx  
SSIRx  
S3  
MSB  
LSB  
8-bit control  
0
MSB  
LSB  
4 to 16 bits output data  
Figure 5-2. SSI Timing for MICROWIRE Frame Format (FRF = 10), Single Transfer  
S1  
S2  
SSIClk  
(SPO = 0)  
S3  
SSIClk  
(SPO = 1)  
SSITx  
MSB  
LSB  
(Master)  
SSIRx  
MSB  
LSB  
(Slave)  
SSIFss  
Figure 5-3. SSI Timing for SPI Frame Format (FRF = 00), With SPH = 1  
Copyright © 2016–2018, Texas Instruments Incorporated  
Specifications  
35  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
www.ti.com.cn  
5.22 Typical Characteristics  
7
6
5
4
3
2
1
0
5
4.5  
4
Active Mode Current  
3.5  
3
2.5  
2
-40  
-20  
0
20  
40  
60  
80  
100110  
1.8  
2.3  
2.8  
VDDS (V)  
3.3  
3.8  
Temperature (èC)  
D037  
D007  
Figure 5-5. Standby MCU Current Consumption, 32-kHz Clock,  
RAM and MCU Retention  
Figure 5-4. Active Mode (MCU) Current Consumption vs  
Supply Voltage (VDDS)  
2
1.5  
1
1
0.5  
0
0
-1  
-2  
-0.5  
-1  
0
500 1000 1500 2000 2500 3000 3500 4000  
Digital Output Code  
0
500 1000 1500 2000 2500 3000 3500 4000  
Digital Output Code  
D007  
D008  
Figure 5-6. SoC ADC, Integral Nonlinearity vs  
Digital Output Code  
Figure 5-7. SoC ADC, Differential Nonlinearity vs  
Digital Output Code  
1007.5  
1006.4  
1006.2  
1006  
1007  
1006.5  
1006  
1005.8  
1005.6  
1005.4  
1005.2  
1005  
1005.5  
1005  
1004.5  
1004  
1003.5  
1004.8  
-40  
-20  
0
20  
40  
60  
80  
100  
1.8  
2.3  
2.8  
VDDS (V)  
3.3  
3.8  
Termperature (èC)  
D036  
D012  
Figure 5-9. SoC ADC Output vs Temperature  
(Fixed Input, Internal Reference, No Scaling)  
Figure 5-8. SoC ADC Output vs Supply Voltage  
(Fixed Input, Internal Reference, No Scaling)  
36  
Specifications  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
www.ti.com.cn  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
Figure 5-10. RX, (50-kbps) Packet Error Rate (PER) vs  
Input RF Level vs Frequency Offset, 868 MHz  
5.23 Typical Characteristics – Sub-1 GHz  
Unless otherwise stated, all performance figures represent an average over six typical parts at room temperature and with the  
internal DC/DC converter enabled.  
-100  
-102  
-104  
-106  
-108  
-110  
-112  
-100  
-102  
-104  
-106  
-108  
-110  
-112  
863  
865  
867  
869  
871  
873  
875 876  
903  
908  
913  
918  
923  
928  
Frequency (MHz)  
Frequency (MHz)  
D001  
D002  
Figure 5-11. RX (50 kbps) Sensitivity  
vs Frequency 863 MHz to 876 MHz  
Figure 5-12. RX (50 kbps) Sensitivity  
vs Frequency 902 MHz to 928 MHz  
Copyright © 2016–2018, Texas Instruments Incorporated  
Specifications  
37  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
www.ti.com.cn  
Unless otherwise stated, all performance figures represent an average over six typical parts at room temperature and with the  
internal DC/DC converter enabled.  
-104  
-106  
-108  
-110  
-112  
-106  
-107  
-108  
-109  
-110  
-111  
-112  
-40  
-20  
0
20  
40  
60  
80  
100110  
-40  
-20  
0
20  
40  
60  
80  
100110  
Temperature (èC)  
Temperature (èC)  
D003  
D004  
Figure 5-13. RX (50 kbps) Sensitivity vs Temperature 868 MHz  
Figure 5-14. RX (50 kbps) Sensitivity vs Temperature 915 MHz  
-107  
-107.5  
-108  
-107  
-107.5  
-108  
-108.5  
-109  
-108.5  
-109  
-109.5  
-110  
-109.5  
-110  
-110.5  
-111  
-110.5  
-111  
1.8  
2
2.2 2.4 2.6 2.8  
3
3.2 3.4 3.6 3.8  
1.8  
2
2.2 2.4 2.6 2.8  
3
3.2 3.4 3.6 3.8  
Voltage (V)  
Voltage (V)  
D005  
D006  
Figure 5-15. RX (50 kbps) Sensitivity vs Voltage 868 MHz  
Figure 5-16. RX (50 kbps) Sensitivity vs Voltage 915 MHz  
8
7.5  
7
8
7.5  
7
6.5  
6
6.5  
6
5.5  
5
5.5  
5
4.5  
4
4.5  
4
-40  
-20  
0
20  
40  
60  
80  
100110  
-40  
-20  
0
20  
40  
60  
80  
100110  
Temperature (èC)  
Temperature (èC)  
D007  
D008  
Figure 5-17. RX (50 kbps) Current vs Temperature at 868 MHz  
Figure 5-18. RX (50 kbps) Current vs Temperature at 915 MHz  
38  
Specifications  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
www.ti.com.cn  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
Unless otherwise stated, all performance figures represent an average over six typical parts at room temperature and with the  
internal DC/DC converter enabled.  
12  
11  
10  
9
12  
11  
10  
9
8
8
7
7
6
6
5
5
4
4
1.8  
2
2.2 2.4 2.6 2.8  
3
3.2 3.4 3.6 3.8  
1.8  
2
2.2 2.4 2.6 2.8  
3
3.2 3.4 3.6 3.8  
Voltage (V)  
Voltage (V)  
D009  
D010  
Figure 5-19. RX (50 kbps) Current vs Voltage at 868 MHz  
Figure 5-20. RX (50 kbps) Current vs Voltage at 915 MHz  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
-10  
-10  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
Frequency Offset (MHz)  
Frequency Offset (MHz)  
D011  
D012  
Figure 5-21. RX (50 kbps) Selectivity With Wanted Signal at  
868 MHz, 3 dB Above Sensitivity Limit  
Figure 5-22. RX (50 kbps) Selectivity With Wanted Signal at  
915 MHz, 3 dB Above Sensitivity Limit  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
-10  
-10  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
Frequency Offset (MHz)  
Frequency Offset (MHz)  
D013  
D014  
Figure 5-23. RX (50 kbps) Selectivity With Wanted Signal at  
868 MHz, –96 dBm  
Figure 5-24. RX (50 kbps) Selectivity With Wanted Signal at  
915 MHz, –96 dBm  
Copyright © 2016–2018, Texas Instruments Incorporated  
Specifications  
39  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
www.ti.com.cn  
Unless otherwise stated, all performance figures represent an average over six typical parts at room temperature and with the  
internal DC/DC converter enabled.  
15  
14.5  
14  
15  
14.5  
14  
13.5  
13  
13.5  
13  
12.5  
12.5  
12  
12  
863  
865  
867  
869  
871  
873  
875 876  
903  
908  
913  
918  
923  
928  
Frequency (MHz)  
Frequency (MHz)  
D015  
D016  
Figure 5-25. TX Maximum Output Power, 863 MHz to 876 MHz  
Figure 5-26. TX Maximum Output Power, 902 MHz to 928 MHz  
15  
15  
14.5  
14  
14.5  
14  
13.5  
13  
13.5  
13  
12.5  
12.5  
12  
12  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (èC)  
Temperature (èC)  
D017  
D018  
Figure 5-27. TX Maximum Output Power vs Temperature,  
868 MHz  
Figure 5-28. TX Maximum Output Power vs Temperature,  
915 MHz  
15  
14.5  
14  
15  
14.5  
14  
13.5  
13  
13.5  
13  
12.5  
12  
12.5  
12  
11.5  
11  
11.5  
11  
10.5  
10  
10.5  
10  
2.1  
2.3  
2.5  
2.7  
2.9  
3.1  
3.3  
3.5  
3.7  
2.1  
2.3  
2.5  
2.7  
2.9  
3.1  
3.3  
3.5  
3.7  
Voltage (V)  
Voltage (V)  
D019  
D020  
Figure 5-29. TX Maximum Output Power vs VDDS, 868 MHz  
Figure 5-30. TX Maximum Output Power vs VDDS, 915 MHz  
40  
Specifications  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
www.ti.com.cn  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
Unless otherwise stated, all performance figures represent an average over six typical parts at room temperature and with the  
internal DC/DC converter enabled.  
26  
25.5  
25  
26  
25.5  
25  
24.5  
24  
24.5  
24  
23.5  
23.5  
23  
23  
863  
865  
867  
869  
871  
873  
875 876  
903  
908  
913  
918  
923  
928  
Frequency (MHz)  
Frequency (MHz)  
D021  
D022  
Figure 5-31. TX Current With Maximum Output Power,  
863 MHz to 876 MHz  
Figure 5-32. TX Current With Maximum Output Power,  
902 MHz to 928 MHz  
27  
26.5  
26  
27  
26.5  
26  
25.5  
25  
25.5  
25  
24.5  
24  
24.5  
24  
23.5  
23  
23.5  
23  
22.5  
22  
22.5  
22  
-40  
-20  
0
20  
40  
60  
80  
100110  
-40  
-20  
0
20  
40  
60  
80  
100110  
Temperature (èC)  
Temperature (èC)  
D023  
D024  
Figure 5-33. TX Current With Maximum Output Power  
vs Temperature, 868 MHz  
Figure 5-34. TX Current With Maximum Output Power  
vs Temperature, 915 MHz  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
2.1  
2.3  
2.5  
2.7  
2.9  
3.1  
3.3  
3.5  
3.7  
2.1  
2.3  
2.5  
2.7  
2.9  
3.1  
3.3  
3.5  
3.7  
Voltage (V)  
Voltage (V)  
D025  
D026  
Figure 5-35. TX Current With Maximum Output Power  
vs Voltage, 868 MHz  
Figure 5-36. TX Current With Maximum Output Power  
vs Voltage, 915 MHz  
SPACER  
Copyright © 2016–2018, Texas Instruments Incorporated  
Specifications  
41  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
www.ti.com.cn  
Unless otherwise stated, all performance figures represent an average over six typical parts at room temperature and with the  
internal DC/DC converter enabled.  
5.24 Typical Characteristics – 2.4 GHz  
Unless otherwise stated, all performance figures represent an average over six typical parts at room temperature and with the  
internal DC/DC converter enabled.  
-80  
-81  
-82  
-83  
-84  
-85  
-86  
-87  
-88  
-89  
-90  
-80  
-81  
-82  
-83  
-84  
-85  
-86  
-87  
-88  
-89  
-90  
-40  
-20  
0
20 40  
Temperature (°C)  
60  
80  
100110  
2400 2410 2420 2430 2440 2450 2460 2470 2480  
Frequency (MHz)  
D028  
D027  
Figure 5-37. RX Bluetooth low energy Sensitivity  
vs Frequency 2402 MHz to 2480 MHz  
Figure 5-38. RX Bluetooth low energy Sensitivity  
vs Temperature 2440 MHz  
-80  
8
-81  
-82  
-83  
-84  
-85  
-86  
-87  
-88  
-89  
-90  
7.5  
7
6.5  
6
5.5  
5
1.8  
2
2.2 2.4 2.6 2.8  
3
3.2 3.4 3.6 3.8  
-40  
-20  
0
20  
40  
60  
80  
100110  
Voltage (V)  
Temperature (èC)  
D029  
D030  
Figure 5-39. RX Bluetooth low energy Sensitivity  
vs Voltage, 2440 MHz  
Figure 5-40. RX Bluetooth low energy Current  
vs Temperature at 2440 MHz  
42  
Specifications  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
www.ti.com.cn  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
Unless otherwise stated, all performance figures represent an average over six typical parts at room temperature and with the  
internal DC/DC converter enabled.  
14  
13  
12  
11  
10  
9
70  
60  
50  
40  
30  
20  
10  
0
8
7
6
5
-10  
1.8  
2
2.2 2.4 2.6 2.8  
3
3.2 3.4 3.6 3.8  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40 45  
Voltage (V)  
Frequency Offset (MHz)  
D031  
D032  
Figure 5-41. RX Bluetooth low energy Current vs Voltage at  
2440 MHz  
Figure 5-42. RX Bluetooth low energy Selectivity  
vs Frequency Offset  
10  
9.5  
9
10  
9.5  
9
8.5  
8
8.5  
8
7.5  
7
7.5  
6.5  
6
7
2400 2410 2420 2430 2440 2450 2460 2470 2480  
-40  
-20  
0
20  
40  
60  
80  
100110  
Frequency (MHz)  
Temperature (èC)  
D033  
D034  
Figure 5-43. TX Bluetooth low energy Maximum Output Power,  
2402 MHz to 2480 MHz  
Figure 5-44. TX Bluetooth low energy Maximum Output Power  
vs Temperature, 2440 MHz  
10  
9.5  
9
8.5  
8
7.5  
7
2.1  
2.3  
2.5  
2.7  
2.9  
3.1  
3.3  
3.5  
3.7  
Voltage (V)  
D035  
Figure 5-45. TX Bluetooth low energy Maximum Output Power  
vs VDDS, 2440 MHz  
Copyright © 2016–2018, Texas Instruments Incorporated  
Specifications  
43  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
www.ti.com.cn  
6 Detailed Description  
6.1 Overview  
1.4 shows a block diagram of the core modules of the CC13xx product family.  
6.2 Main CPU  
The CC1350 SimpleLink Wireless MCU contains an ARM Cortex-M3 (CM3) 32-bit CPU, which runs the  
application and the higher layers of the protocol stack.  
The CM3 processor provides a high-performance, low-cost platform that meets the system requirements  
of minimal memory implementation and low-power consumption, while delivering outstanding  
computational performance and exceptional system response to interrupts.  
The CM3 features include the following:  
32-bit ARM Cortex-M3 architecture optimized for small-footprint embedded applications  
Outstanding processing performance combined with fast interrupt handling  
ARM Thumb®-2 mixed 16- and 32-bit instruction set delivers the high performance expected of a 32-bit  
ARM core in a compact memory size usually associated with 8- and 16-bit devices, typically in the  
range of a few kilobytes of memory for microcontroller-class applications:  
Single-cycle multiply instruction and hardware divide  
Atomic bit manipulation (bit-banding), delivering maximum memory use and streamlined peripheral  
control  
Unaligned data access, enabling data to be efficiently packed into memory  
Fast code execution permits slower processor clock or increases sleep mode time  
Harvard architecture characterized by separate buses for instruction and data  
Efficient processor core, system, and memories  
Hardware division and fast digital-signal-processing oriented multiply accumulate  
Saturating arithmetic for signal processing  
Deterministic, high-performance interrupt handling for time-critical applications  
Enhanced system debug with extensive breakpoint and trace capabilities  
Serial wire trace reduces the number of pins required for debugging and tracing  
Migration from the ARM7™ processor family for better performance and power efficiency  
Optimized for single-cycle flash memory use  
Ultra-low power consumption with integrated sleep modes  
1.25 DMIPS per MHz  
44  
Detailed Description  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
www.ti.com.cn  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
6.3 RF Core  
The RF core is a highly flexible and capable radio system that interfaces the analog RF and baseband  
circuits, handles data to and from the system side, and assembles the information bits in a given packet  
structure.  
The RF core can autonomously handle the time-critical aspects of the radio protocols, thus offloading the  
main CPU and leaving more resources for the user application. The RF core offers a high-level,  
command-based API to the main CPU.  
The RF core supports a wide range of modulation formats, frequency bands, and accelerator features,  
which include the following:  
Wide range of data rates:  
From 625 bps (offering long range and high robustness) to as high as 4 Mbps  
Wide range of modulation formats:  
Multilevel (G) FSK and MSK  
On-Off Keying (OOK) with optimized shaping to minimize adjacent channel leakage  
Coding-gain support for long range  
Dedicated packet handling accelerators:  
Forward error correction  
Data whitening  
802.15.4g mode-switch support  
Automatic CRC  
Automatic listen-before-talk (LBT) and clear channel assist (CCA)  
Digital RSSI  
Highly configurable channel filtering, supporting channel spacing schemes from 40 kHz to 4 MHz  
High degree of flexibility, offering a future-proof solution  
The RF core interfaces a highly flexible radio, with a high-performance synthesizer that can support a wide  
range of frequency bands.  
Copyright © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
45  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
www.ti.com.cn  
6.4 Sensor Controller  
The Sensor Controller contains circuitry that can be selectively enabled in standby mode. The peripherals  
in this domain may be controlled by the Sensor Controller Engine, which is a proprietary power-optimized  
CPU. This CPU can read and monitor sensors or perform other tasks autonomously; thereby significantly  
reducing power consumption and offloading the main CM3 CPU.  
A PC-based development tool called Sensor Controller Studio is used to write, test, and debug code for  
the Sensor Controller. The tool produces C driver source code, which the System CPU application uses to  
control and exchange data with the Sensor Controller. Typical use cases may be (but are not limited to)  
the following:  
Analog sensors using integrated ADC  
Digital sensors using GPIOs with bit-banged I2C or SPI  
Capacitive sensing  
Waveform generation  
Pulse counting  
Key scan  
Quadrature decoder for polling rotational sensors  
The peripherals in the Sensor Controller include the following:  
The low-power clocked comparator can be used to wake the device from any state in which the  
comparator is active. A configurable internal reference can be used with the comparator. The output of  
the comparator can also be used to trigger an interrupt or the ADC.  
Capacitive sensing functionality is implemented through the use of a constant current source, a time-  
to-digital converter, and a comparator. The continuous time comparator in this block can also be used  
as a higher-accuracy alternative to the low-power clocked comparator. The Sensor Controller takes  
care of baseline tracking, hysteresis, filtering, and other related functions.  
The ADC is a 12-bit, 200-ksamples/s ADC with 8 inputs and a built-in voltage reference. The ADC can  
be triggered by many different sources, including timers, I/O pins, software, the analog comparator,  
and the RTC.  
The analog modules can be connected to up to eight different GPIOs (see Table 6-1).  
The peripherals in the Sensor Controller can also be controlled from the main application processor.  
46  
Detailed Description  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
www.ti.com.cn  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
Table 6-1. GPIOs Connected to the Sensor Controller(1)  
CC13x0  
ANALOG CAPABLE  
7 × 7 RGZ  
5 × 5 RHB  
4 × 4 RSM  
DIO NUMBER  
DIO NUMBER  
DIO NUMBER  
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
N
N
N
N
N
30  
29  
28  
27  
26  
25  
24  
23  
7
14  
13  
12  
11  
9
9
8
7
6
5
2
1
0
10  
8
7
4
6
3
5
2
4
1
3
0
2
1
0
(1) Depending on the package size, up to 15 pins can be connected to the Sensor Controller. Up to eight  
of these pins can be connected to analog modules.  
6.5 Memory  
The flash memory provides nonvolatile storage for code and data. The flash memory is in-system  
programmable.  
The SRAM (static RAM) is split into two 4-KB blocks and two 6-KB blocks and can be used to store data  
and execute code. Retention of the RAM contents in standby mode can be enabled or disabled  
individually for each block to minimize power consumption. In addition, if flash cache is disabled, the 8-KB  
cache can be used as general-purpose RAM.  
The ROM provides preprogrammed, embedded TI-RTOS kernel and Driverlib. The ROM also contains a  
bootloader that can be used to reprogram the device using SPI or UART.  
6.6 Debug  
The on-chip debug support is done through a dedicated cJTAG (IEEE 1149.7) or JTAG (IEEE 1149.1)  
interface.  
Copyright © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
47  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
www.ti.com.cn  
6.7 Power Management  
To minimize power consumption, the CC1350 device supports a number of power modes and power-  
management features (see Table 6-2).  
Table 6-2. Power Modes  
SOFTWARE-CONFIGURABLE POWER MODES  
RESET PIN  
HELD  
MODE  
ACTIVE  
IDLE  
Off  
STANDBY  
Off  
SHUTDOWN  
CPU  
Active  
Off  
Off  
Off  
Off  
Flash  
SRAM  
Radio  
On  
Available  
On  
Off  
On  
On  
Off  
Off  
Available  
Available  
On  
Off  
Off  
Off  
Supply System  
On  
Duty Cycled  
0.6 µA  
174 µs  
Partial  
Full  
Off  
Off  
Current  
1.2 mA + 25.5 µA/MHz  
570 µA  
14 µs  
Full  
185 nA  
1015 µs  
No  
0.1 µA  
1015 µs  
No  
Wake-up Time to CPU Active(1)  
Register Retention  
SRAM Retention  
Full  
Full  
Full  
No  
No  
XOSC_HF or  
RCOSC_HF  
XOSC_HF or  
RCOSC_HF  
High-Speed Clock  
Low-Speed Clock  
Off  
Off  
Off  
Off  
Off  
XOSC_LF or  
RCOSC_LF  
XOSC_LF or  
RCOSC_LF  
XOSC_LF or  
RCOSC_LF  
Peripherals  
Available  
Available  
Available  
Available  
Available  
Active  
Available  
Available  
Available  
Available  
Available  
Active  
Off  
Off  
Off  
Off  
Off  
Sensor Controller  
Available  
Available  
Available  
Available  
Duty Cycled  
Active  
Wake-up on RTC  
Off  
Off  
Wake-up on Pin Edge  
Wake-up on Reset Pin  
Brown Out Detector (BOD)  
Power On Reset (POR)  
Available  
Available  
Off  
Off  
Available  
N/A  
Active  
Active  
Active  
N/A  
(1) Not including RTOS overhead.  
In active mode, the application CM3 CPU is actively executing code. Active mode provides normal  
operation of the processor and all of the peripherals that are currently enabled. The system clock can be  
any available clock source (see Table 6-2).  
In idle mode, all active peripherals can be clocked, but the Application CPU core and memory are not  
clocked and no code is executed. Any interrupt event returns the processor to active mode.  
In standby mode, only the always-on (AON) domain is active. An external wake-up event, RTC event, or  
Sensor Controller event is required to return the device to active mode. MCU peripherals with retention do  
not need to be reconfigured when waking up again, and the CPU continues execution from where it went  
into standby mode. All GPIOs are latched in standby mode.  
In shutdown mode, the device is entirely turned off (including the AON domain and Sensor Controller),  
and the I/Os are latched with the value they had before entering shutdown mode. A change of state on  
any I/O pin defined as a wake from shutdown pin wakes up the device and functions as a reset trigger.  
The CPU can differentiate between reset in this way and reset-by-reset pin or POR by reading the reset  
status register. The only state retained in this mode is the latched I/O state and the flash memory  
contents.  
The Sensor Controller is an autonomous processor that can control the peripherals in the Sensor  
Controller independent of the main CPU. This means that the main CPU does not have to wake up, for  
example to execute an ADC sample or poll a digital sensor over SPI, thus saving both current and wake-  
up time that would otherwise be wasted. The Sensor Controller Studio lets the user configure the Sensor  
Controller and choose which peripherals are controlled and which conditions wake up the main CPU.  
48  
Detailed Description  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1350  
 
CC1350  
www.ti.com.cn  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
6.8 Clock Systems  
The CC1350 device supports two external and two internal clock sources.  
A 24-MHz external crystal is required as the frequency reference for the radio. This signal is doubled  
internally to create a 48-MHz clock.  
The 32.768-kHz crystal is optional. The low-speed crystal oscillator is designed for use with a 32.768-kHz  
watch-type crystal.  
The internal high-speed RC oscillator (48-MHz) can be used as a clock source for the CPU subsystem.  
The internal low-speed RC oscillator (32-kHz) can be used as a reference if the low-power crystal  
oscillator is not used.  
The 32-kHz clock source can be used as external clocking reference through GPIO.  
6.9 General Peripherals and Modules  
The I/O controller controls the digital I/O pins and contains multiplexer circuitry to assign a set of  
peripherals to I/O pins in a flexible manner. All digital I/Os are interrupt and wake-up capable, have a  
programmable pullup and pulldown function, and can generate an interrupt on a negative or positive edge  
(configurable). When configured as an output, pins can function as either push-pull or open-drain. Five  
GPIOs have high-drive capabilities, which are marked in bold in Section 4.  
The SSIs are synchronous serial interfaces that are compatible with SPI, MICROWIRE, and TI's  
synchronous serial interfaces. The SSIs support both SPI master and slave up to 4 MHz.  
The UART implements a universal asynchronous receiver and transmitter function. The UART supports  
flexible baud-rate generation up to a maximum of 3 Mbps.  
Timer 0 is a general-purpose timer module (GPTM) that provides two 16-bit timers. The GPTM can be  
configured to operate as a single 32-bit timer, dual 16-bit timers, or as a PWM module.  
Timer 1, Timer 2, and Timer 3 are also GPTMs; each timer is functionally equivalent to Timer 0.  
In addition to these four timers, a separate timer in the RF core handles timing for RF protocols; the RF  
timer can be synchronized to the RTC.  
The I2S interface is used to handle digital audio (for more information, see the CC13x0, CC26x0  
SimpleLink™ Wireless MCU Technical Reference Manual).  
The I2C interface is used to communicate with devices compatible with the I2C standard. The I2C interface  
can handle 100-kHz and 400-kHz operation, and can serve as both I2C master and I2C slave.  
The TRNG module provides a true, nondeterministic noise source for the purpose of generating keys,  
initialization vectors (IVs), and other random number requirements. The TRNG is built on 24 ring  
oscillators that create unpredictable output to feed a complex nonlinear-combinatorial circuit.  
The watchdog timer is used to regain control if the system fails due to a software error after an external  
device fails to respond as expected. The watchdog timer can generate an interrupt or a reset when a  
predefined time-out value is reached.  
Copyright © 2016–2018, Texas Instruments Incorporated  
Detailed Description  
49  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
www.ti.com.cn  
The device includes a direct memory access (µDMA) controller. The µDMA controller provides a way to  
offload data-transfer tasks from the CM3 CPU, thus allowing for more efficient use of the processor and  
the available bus bandwidth. The µDMA controller can perform transfer between memory and peripherals.  
The µDMA controller has dedicated channels for each supported on-chip module and can be programmed  
to automatically perform transfers between peripherals and memory when the peripheral is ready to  
transfer more data.  
Some features of the µDMA controller follow (this is not an exhaustive list):  
Highly flexible and configurable channel operation of up to 32 channels  
Transfer modes: memory-to-memory, memory-to-peripheral, peripheral-to-memory, and peripheral-to-  
peripheral  
Data sizes of 8, 16, and 32 bits  
The AON domain contains circuitry that is always enabled, except when in shutdown mode (where the  
digital supply is off). This circuitry includes the following:  
The RTC can be used to wake the device from any state where it is active. The RTC contains three  
compare registers and one capture register. With software support, the RTC can be used for clock and  
calendar operation. The RTC is clocked from the 32-kHz RC oscillator or crystal. The RTC can also be  
compensated to tick at the correct frequency even when the internal 32-kHz RC oscillator is used  
instead of a crystal.  
The battery monitor and temperature sensor are accessible by software and provide a battery status  
indication as well as a coarse temperature measure.  
6.10 Voltage Supply Domains  
The CC1350 device can interface to two or three different voltage domains depending on the package  
type. On-chip level converters ensure correct operation as long as the signal voltage on each input/output  
pin is set with respect to the corresponding supply pin (VDDS, VDDS2, or VDDS3). Table 6-3 lists the pin-  
to-VDDS mapping.  
Table 6-3. Pin Function to VDDS Mapping Table  
Package  
VQFN 7 × 7 (RGZ)  
VQFN 5 × 5 (RHB)  
VQFN 4 × 4 (RSM)  
DIO 23–30  
Reset_N  
DIO 7–14  
Reset_N  
DIO 5–9  
Reset_N  
VDDS(1)  
VDDS2  
DIO 0–6  
JTAG_TCKC  
JTAG_TMSC  
DIO 0–4  
JTAG_TCKC  
JTAG_TMSC  
DIO 1–11  
DIO 12–22  
JTAG_TCKC  
JTAG_TMSC  
VDDS3  
NA  
NA  
(1) The VDDS_DCDC pin must always be connected to the same voltage as the VDDS pin.  
6.11 System Architecture  
Depending on the product configuration, the CC1350 device can function as a wireless network processor  
(WNP – a device running the wireless protocol stack, with the application running on a separate host  
MCU), or as a system-on-chip (SoC) with the application and protocol stack running on the ARM CM3  
core inside the device.  
In the first case, the external host MCU communicates with the device using SPI or UART. In the second  
case, the application must be written according to the application framework supplied with the wireless  
protocol stack.  
50  
Detailed Description  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1350  
 
CC1350  
www.ti.com.cn  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
7 Application, Implementation, and Layout  
NOTE  
Information in the following Applications section is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes. Customers should validate and test  
their design implementation to confirm system functionality.  
7.1 Application Information  
Few external components are required for the operation of the CC1350 device. Figure 7-1 shows a typical  
application circuit.  
The board layout greatly influences the RF performance of the CC1350 device.  
On the Texas Instruments CC1350_7XD-Dual Band reference design, the optimal differential impedance  
seen from the RF pins into the balun and filter and antenna is 44 + j15.  
To VDDR pins  
Sub-1 GHz Antenna  
(50 Ohm)  
Optional  
inductor.  
Only  
needed for  
DCDC  
Sub-1 GHz Match  
RF_SW_VDDS  
RF_SW_CTL  
operation  
CC1350  
DCDC_SW  
Pin 2 (RF N)  
RF Switch  
VDDS_DCDC  
Pin 1 (RF P)  
Pin 3/4 (RXTX)  
input decoupling  
2.4 GHz Antenna  
(50 Ohm)  
24MHz  
XTAL  
(Load caps  
on chip)  
2.4 GHz Match  
Copyright © 2016, Texas Instruments Incorporated  
Figure 7-1 does not show decoupling capacitors for power pins. For a complete reference design, see the product  
folder on www.ti.com.  
Figure 7-1. CC1350 Application Circuits  
Copyright © 2016–2018, Texas Instruments Incorporated  
Application, Implementation, and Layout  
51  
Submit Documentation Feedback  
Product Folder Links: CC1350  
 
CC1350  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
www.ti.com.cn  
7.2 TI Design or Reference Design  
The TI Designs Reference Design Library is a robust reference design library spanning analog, embedded  
processor, and connectivity. Created by TI experts to help you jumpstart your system design, all TI  
Designs include schematic or block diagrams, BOMs, and design files to speed your time to market.  
Humidity and Temperature Sensor Node for Sub-1 GHz Star Networks Enabling 10+ Year Coin Cell  
Battery LifeSPACER  
This reference design uses TI's nano-power system timer, boost converter, SimpleLink™  
ultra-low-power Sub-1GHzwireless MCU platform, and humidity-sensing technologies to  
demonstrate an ultra-low-power method to duty-cycle sensor end nodes leading to extremely  
long battery life. The TI Design includes techniques for system design, detailed test results,  
and information to get the design operating running quickly.  
SimpleLink™ Sub-1 GHz Sensor to Cloud Gateway Reference Design for TI-RTOS SystemsSPACE  
R
This reference design demonstrates how to connect sensors to the cloud over a long-range  
Sub-1 GHz wireless network, suitable for industrial settings such as building control and  
asset tracking. The solution is based on a TI-RTOS gateway. This design provides a  
complete end-to-end solution for creating a Sub-1 GHz sensor network with an Internet of  
Things (IoT) gateway solution and cloud connectivity. The gateway solution is based on the  
low-power, SimpleLink™ Wi-Fi® CC3220 wireless microcontroller (MCU), which hosts the  
gateway application and the SimpleLink Sub-1 GHz CC1310/CC1312R or the multi-band  
CC1350/ CC1352R wireless MCU as the MAC Co-Processor. The reference design also  
includes sensor node example applications running on the SimpleLink Sub-1 GHz  
CC1312R/CC1310 and multi-band CC1352R/CC1350 wireless MCUs.  
Low-Power Wireless M-Bus Communications Module Reference DesignSPACER  
This reference design explains how to use the TI wireless M-Bus stack for CC1310 and  
CC1350 wireless MCUs and integrate it into a smart meter or data-collector product. This  
software stack is compatible with the Open Metering System (OMS) v3.0.1 specification.  
This design offers ready-to-use binary images for any of the wireless M-Bus S-, T-, or C-  
modes at 868 MHz with unidirectional (meter) or bidirectional configurations (both meter and  
data collector).  
Low-Power Water Flow Measurement With Inductive Sensing Reference DesignSPACER  
This reference design demonstrates a highly-integrated solution for this application using an  
inductive sensing technique enabled by the CC1310/CC1350 SimpleLink™ Wireless MCU  
and FemtoFET™ MOSFET. This reference design also provides the platform for integration  
of wireless communications such as wireless M-Bus, Sigfox™, or a proprietary protocol.  
Heat Cost Allocator with wM-Bus at 868 MHz Reference DesignSPACER  
This reference design implements a heat cost allocator system following the EN834 standard  
with the ‘two-sensor measurement method’. The solution achieves better than 0.5 degrees  
Celsius accuracy across a range of +20 to +85°C. Two analog temperature sensors are  
available as matched pairs to eliminate the need for calibration during manufacturing and  
lowering OEM system cost. The CC1310 wireless MCU provides a single-chip solution for  
heat measurement (control of the two temperature sensors) and RF communications  
(example code using 868 MHz wM-Bus S, T and C-modes “Meter” device).  
Sub-1 GHz Sensor to Cloud Industrial IoT Gateway Reference Design for Linux Systems SPACER  
This reference design demonstrates how to connect sensors to the cloud over a long-range  
Sub-1 GHz wireless network, suitable for industrial settings such as building control and  
asset tracking. This design provides a complete end-to-end solution for creating a Sub-1  
GHz sensor network with an Internet of Things (IoT) gateway solution and cloud connectivity.  
The gateway solution is based on the low-power, SimpleLink™ Wi-Fi® CC3220 wireless  
microcontroller (MCU), which hosts the gateway application and the SimpleLink Sub-1 GHz  
CC1312R/CC1310 or the multi-band CC1352R/CC1350 wireless MCU as the MAC Co-  
Processor.  
52  
Application, Implementation, and Layout  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC1350  
CC1350  
www.ti.com.cn  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
Commissioning Sensors in a Sub-1 GHz Network Over Bluetooth® low energy Reference DesignSP  
ACER  
This TI Design reference design demonstrates how to easily commission a Sub-1 GHz  
sensor node over Bluetooth® low energy, which enables quick connectivity with a  
smartphone or tablet device. The design is powered by the SimpleLink™ dual-band CC1350  
wireless microcontroller (MCU), which is the sensor node being commissioned. There is an  
added option to emulate a sensor network concentrator using a SimpleLink dual-band  
CC1350 or Sub-1 GHz CC1310 devices for a complete user experience.  
8 器件和文档支持  
TI 提供大量的开发工具。下面介绍用于评估器件性能、生成代码以及开发解决方案的工具和软件。  
8.1 器件命名规则  
为了标明产品开发周期的各个产品阶段,TI 为所有部件号和/或日期代码添加了前缀。每个器件都具有以下  
三个前缀/标识中的一个:XP 或无(无前缀)(例如 CC1350 正在批量生产,因此未分配前缀/标识)。  
器件开发进化流程:  
X
试验器件不一定代表最终器件的电气规范标准并且不可使用生产组装流程。  
原型器件不一定是最终芯片模型并且不一定符合最终电气标准规范。  
完全合格的芯片模型的生产版本。  
P
生产器件已进行完全特性化,并且器件的质量和可靠性已经完全论证。TI 的标准保修证书适用。  
预测显示原型器件(X 或者 P)的故障率大于标准生产器件。由于它们的预计的最终使用故障率仍未定义,  
德州仪器 (TI) 建议不要将这些器件用于任何生产系统。只有合格的产品器件将被使用。  
TI 器件的命名规则还包括一个带有器件系列名称的后缀。这个后缀表示封装类型(例如 RGZ)。  
要获得 CC1350 器件(采用RSM (4mm × 4mm)RHB (5mm × 5mm) RGZ (7mm × 7mm) 封装类型)的  
订购部件号,请参见本文档的封装选项附录TI 网站 www.ti.com),或者联系您的 TI 销售代表。  
CC1350 F128  
XXX (R/T)  
PREFIX  
X = Experimental device  
Blank = Qualified device  
R = Large Reel  
T = Small Reel  
DEVICE  
SimpleLink™ Ultra-Low-Power  
Dual-Band Wireless MCU  
PACKAGE  
FLASH SIZE  
128KB  
RGZ = 48-pin VQFN (Very Thin Quad Flatpack No-Lead)  
RHB = 32-pin VQFN  
RSM = 32-pin VQFN  
8-1. 器件命名规则  
版权 © 2016–2018, Texas Instruments Incorporated  
器件和文档支持  
53  
提交文档反馈意见  
产品主页链接: CC1350  
CC1350  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
www.ti.com.cn  
8.2 工具和软件  
开发套件:  
Simplelink™ 双频带 CC1350 无线 MCU LaunchPad™ 开发套件 空白  
CC1350 LaunchPad™开发套件将蓝牙智能无线电模块与低于 1GHz 无线电模块相结合,实现  
轻松手机集成与远距离连接的终极组合,在单个芯片上整合了 32 Arm Cortex-M3 处理器。  
CC1350 器件是一款面向低功耗远距离 无线应用的无线 MCU。  
CC1350 器件包含一个以 48MHz 频率运行的 32 Arm Cortex-M3 处理器作为主处理器,并  
具有丰富的外设功能集,其中包括一个独特的超低功耗传感器控制器。该传感器控制器非常适  
合连接外部传感器,还适合用于在系统其余部分处于睡眠模式的情况下自主收集模拟和数字数  
据。  
软件:  
SimpleLink™ CC13x0 SDK 空白  
SimpleLink™ 低于 1GHz CC13x0 软件开发套件 (SDK) 为低于 1GHz CC1310 和双频带  
CC1350 无线 MCU 提供全面的低于 1GHz 软件包,并且包括以下内容:  
TI 15.4-Stack - 面向低于 1GHz ISM 频带(433MHz868MHz 915MHz)的基于 IEEE  
802.15.4e/g 的星形拓扑网络解决方案。  
支持专有解决方案 - 基于射频驱动器和 EasyLink 抽象层的低于 1GHz 的专有射频示例。  
低功耗蓝牙 支持所有蓝牙核心规范 4.2 特性 的堆栈以及为使用双频带 CC1350 无线  
MCU 的客户提供支持的 BLE 微堆栈。  
SimpleLink CC13x0 SDK TI SimpleLink MCU 平台的一部分,可提供统一的开发环境,  
为客户开发有线和无线应用提供灵活的硬件、软件和 工具选项。有关 SimpleLink MCU 平台的  
更多信息,请访问 www.ti.com.cn/simplelink。  
软件工具:  
SmartRF™ Studio 7 空白  
SmartRF™ Studio 是一款 PC 应用程序,可帮助无线电系统的设计人员在设计过程的早期阶  
段轻松评估 RF-IC。  
测试无线数据包收发功能,连续波收发功能  
将相关数据写入支持的评估板或调试器,评估定制板上的 RF 性能  
可以不搭配任何硬件使用,但此时只能生成、编辑并导出无线配置设置  
可与德州仪器 (TI) CC1350 系列 RF-IC 的多款开发套件搭配使用  
Sensor Controller Studio 空白  
Sensor Controller Studio  
CC1350 中的一款专用功率优化型 CPU,可独立于系统 CPU 状态自主执行简单的后台任务。  
CC1350 传感器控制器提供开发环境。此传感器控制器是  
允许使用 C 语言这类编程语言实现传感器控制器任务算法  
输出传感器控制器接口驱动程序,其中整合了生成的传感器控制器机械代码和相关定义  
通过使用集成传感器控制器任务测试和调试功能实现快速开发这有助于实现有效的传感器  
数据和算法验证可视化。  
54  
器件和文档支持  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: CC1350  
CC1350  
www.ti.com.cn  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
IDE 和编译器:  
Code Composer Studio™ IDE 空白  
带有项目管理工具和编辑器的集成开发环境 (IDE)  
Code Composer Studio (CCS) 6.1 及更高版本内置支持 CC1350 系列器件的功能。  
优先支持的 XDS 调试器:XDS100v3XDS110 XDS200  
TI-RTOS 高度集成,支持 TI-RTOS 对象视图  
Code Composer Studio™ Cloud IDE 空白  
Code Composer Studio™ (CCS) Cloud 是基于 Web IDE,可用于创建、编辑和构建 CCS  
Energia 项目。成功构建项目后,您可以在互联 LaunchPad™ 开发套件上下载并运行该项  
目。CCS Cloud 现在支持 基本调试, 包括设置断点和查看变量值等功能。  
CCS UniFlash 空白  
CCS UniFlash 是一个独立的工具,可用于在 TI MCU 上对片上闪存进行编程。UniFlash 具有  
GUI、命令行和脚本接口。CCS UniFlash 免费提供。  
用于 Arm® IAR Embedded Workbench  
带有项目管理工具和编辑器的集成开发环境  
IAR EWARM 7.30.3 及更高版本内置支持 CC1350 系列器件的功能。  
支持大量调试器,包括支持 XDS100v3XDS200IAR I-jet®SEGGER J-Link™  
带有项目管理工具和编辑器的集成开发环境  
适用于 TI-RTOS RTOS 插件  
有关 CC1350 平台开发支持工具的完整列表,请访问德州仪器 (TI) 网站 www.ti.com.cn。有关定价和购买信  
息,请联系最近的 TI 销售办事处或授权分销商。  
版权 © 2016–2018, Texas Instruments Incorporated  
器件和文档支持  
55  
提交文档反馈意见  
产品主页链接: CC1350  
CC1350  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
www.ti.com.cn  
8.3 文档支持  
如需接收文档更新通知,请访问 ti.com 上的器件产品文件夹 (CC1350)。单击右上角的通知我进行注册,  
即可每周接收产品信息更改摘要。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
下面列出了介绍 CC2650CC2620CC1350 器件、相关外设和其他技术材料的最新文档。  
勘误表  
CC1350 SimpleLink™ 无线 MCU 器件勘误表》  
技术参考手册  
CC13xxCC26xx SimpleLink™ 无线 MCU 技术参考手册》  
参考指南  
CC26xx/CC13xx 电源管理软件开发者参考指南》  
8.4 德州仪器 (TI) 低功耗射频网站  
TI 的低功耗射频网站提供所有最新产品、应用和设计笔记、FAQ 部分、新闻资讯以及活动更新。请访问  
www.ti.com/longrange。  
8.5 其他信息  
德州仪器 (TI) 为汽车、工业和消费类应用中所使用的专有应用和标准无线 应用 提供各种经济实用的低功耗  
射频 解决方案。其中包括适用于 1GHz 以下频段和 2.4GHz 频段的射频收发器、射频发送器、射频前端和  
片上系统以及各种软件解决方案。  
此外,德州仪器 (TI) 还提供广泛的相关支持,例如开发工具、技术文档、参考设计、应用专业技术、客户支  
持、第三方服务以及大学计划。  
低功耗射频 E2E 在线社区设有技术支持论坛并提供视频和博客,您有机会在此与全球同领域工程师交流互  
动。  
凭借丰富的供选产品解决方案、可实现的最终应用以及广泛的技术支持,德州仪器 (TI) 能够为您提供最全面  
的低功耗射频产品组合。  
8.6 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术  
规范,并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社为了促进工程师之间的合作,我们创建了 TI 工程师对工程师 (E2E) 社区。在 e2e.ti.com  
中,您可以提问、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
TI 嵌入式处理器维基网页 德州仪器 (TI) 嵌入式处理器维基网站。此网站的建立是为了帮助开发人员从德州  
仪器 (TI) 的嵌入式处理器入门并且也为了促进与这些器件相关的硬件和软件的总体知识的创新  
和增长。  
56  
器件和文档支持  
版权 © 2016–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: CC1350  
CC1350  
www.ti.com.cn  
ZHCSFA6B JUNE 2016REVISED JULY 2018  
8.7 商标  
SimpleLink, SmartRF, Code Composer Studio, 德州仪器 (TI), FemtoFET, LaunchPad, E2E are trademarks  
of Texas Instruments.  
ARM7 is a trademark of ARM Limited (or its subsidiaries).  
Arm, Cortex, Thumb are registered trademarks of Arm Limited (or its subsidiaries).  
Bluetooth, Bluetooth are registered trademarks of Bluetooth SIG, Inc.  
ULPBench is a trademark of Embedded Microprocessor Benchmark Consortium.  
CoreMark is a registered trademark of Embedded Microprocessor Benchmark Consortium.  
IAR Embedded Workbench, I-jet are registered trademarks of IAR Systems AB.  
IEEE Std 1241 is a trademark of Institute of Electrical and Electronics Engineers, Incorporated.  
IEEE is a registered trademark of Institute of Electrical and Electronics Engineers, Incorporated.  
J-Link is a trademark of SEGGER Microcontroller GmbH.  
Wi-Fi is a registered trademark of Wi-Fi Alliance.  
Wi-SUN is a trademark of Wi-SUN Alliance, Inc.  
Zigbee is a registered trademark of Zigbee Alliance.  
All other trademarks are the property of their respective owners.  
8.8 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
8.9 出口管制提示  
接收方同意:如果美国或其他适用法律限制或禁止将通过非披露义务的披露方获得的任何产品或技术数据  
(其中包括软件)(见美国、欧盟和其他出口管理条例之定义)、或者其他适用国家条例限制的任何受管制  
产品或此项技术的任何直接产品出口或再出口至任何目的地,那么在没有事先获得美国商务部和其他相关政  
府机构授权的情况下,接收方不得在知情的情况下,以直接或间接的方式将其出口。  
8.10 术语表  
TI 术语表  
这份术语表列出并解释术语、缩写和定义。  
9 机械、封装和可订购信息  
9.1 封装信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通  
知,且不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016–2018, Texas Instruments Incorporated  
机械、封装和可订购信息  
57  
提交文档反馈意见  
产品主页链接: CC1350  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CC1350F128RGZR  
CC1350F128RGZT  
CC1350F128RHBR  
CC1350F128RHBT  
CC1350F128RSMR  
CC1350F128RSMT  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGZ  
48  
48  
32  
32  
32  
32  
2500 RoHS & Green NIPDAU | NIPDAUAG Level-3-260C-168 HR  
250 RoHS & Green NIPDAU | NIPDAUAG Level-3-260C-168 HR  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-3-260C-168 HR  
250 RoHS & Green NIPDAU | NIPDAUAG Level-3-260C-168 HR  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-3-260C-168 HR  
250 RoHS & Green NIPDAU | NIPDAUAG Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
CC1350  
F128  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
RGZ  
CC1350  
F128  
RHB  
CC1350  
F128  
RHB  
CC1350  
F128  
RSM  
RSM  
CC1350  
F128  
CC1350  
F128  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Jan-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
CC1350F128RGZR  
CC1350F128RGZT  
CC1350F128RHBR  
CC1350F128RHBT  
CC1350F128RSMR  
CC1350F128RSMT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGZ  
RGZ  
RHB  
RHB  
RSM  
RSM  
48  
48  
32  
32  
32  
32  
2500  
250  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
16.4  
16.4  
12.4  
12.4  
12.4  
12.4  
7.3  
7.3  
7.3  
7.3  
1.1  
1.1  
12.0  
12.0  
8.0  
16.0  
16.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
3000  
250  
5.3  
5.3  
1.1  
5.3  
5.3  
1.1  
8.0  
3000  
250  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
8.0  
8.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Jan-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
CC1350F128RGZR  
CC1350F128RGZT  
CC1350F128RHBR  
CC1350F128RHBT  
CC1350F128RSMR  
CC1350F128RSMT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGZ  
RGZ  
RHB  
RHB  
RSM  
RSM  
48  
48  
32  
32  
32  
32  
2500  
250  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
3000  
250  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Jan-2023  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
CC1350F128RGZR  
CC1350F128RGZR  
CC1350F128RGZT  
CC1350F128RHBR  
CC1350F128RHBT  
CC1350F128RSMR  
CC1350F128RSMR  
CC1350F128RSMT  
CC1350F128RSMT  
RGZ  
RGZ  
RGZ  
RHB  
RHB  
RSM  
RSM  
RSM  
RSM  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
48  
48  
48  
32  
32  
32  
32  
32  
32  
2500  
2500  
250  
26 x 10  
26 x 10  
26 x 10  
14 x 35  
14 x 35  
14 x 35  
14 x 35  
14 x 35  
14 x 35  
150  
150  
150  
150  
150  
150  
150  
150  
150  
315 135.9 7620 11.8  
315 135.9 7620 11.8  
315 135.9 7620 11.8  
10  
10  
10.35  
10.35  
10.35  
8.15  
8.15  
8.15  
8.15  
8.15  
8.15  
10  
3000  
250  
315 135.9 7620  
315 135.9 7620  
315 135.9 7620  
315 135.9 7620  
315 135.9 7620  
315 135.9 7620  
8.8  
8.8  
8.8  
8.8  
8.8  
8.8  
7.9  
7.9  
7.9  
7.9  
7.9  
7.9  
3000  
3000  
250  
250  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
RHB 32  
5 x 5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224745/A  
www.ti.com  
PACKAGE OUTLINE  
RHB0032E  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
(0.1)  
5.1  
4.9  
SIDE WALL DETAIL  
20.000  
OPTIONAL METAL THICKNESS  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
3.45 0.1  
9
EXPOSED  
THERMAL PAD  
16  
28X 0.5  
8
17  
SEE SIDE WALL  
DETAIL  
2X  
SYMM  
33  
3.5  
0.3  
0.2  
32X  
24  
0.1  
C A B  
C
1
0.05  
32  
25  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.5  
0.3  
32X  
4223442/B 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.45)  
SYMM  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
(1.475)  
28X (0.5)  
33  
SYMM  
(4.8)  
(
0.2) TYP  
VIA  
8
17  
(R0.05)  
TYP  
9
16  
(1.475)  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223442/B 08/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.49)  
(0.845)  
(R0.05) TYP  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
28X (0.5)  
(0.845)  
SYMM  
33  
(4.8)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33:  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4223442/B 08/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
GENERIC PACKAGE VIEW  
RGZ 48  
7 x 7, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUADFLAT PACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224671/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
A
7.1  
6.9  
B
(0.1) TYP  
7.1  
6.9  
SIDE WALL DETAIL  
OPTIONAL METAL THICKNESS  
PIN 1 INDEX AREA  
(0.45) TYP  
CHAMFERED LEAD  
CORNER LEAD OPTION  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 5.5  
5.15±0.1  
(0.2) TYP  
13  
24  
44X 0.5  
12  
25  
SEE SIDE WALL  
DETAIL  
SYMM  
2X  
5.5  
1
36  
0.30  
0.18  
PIN1 ID  
(OPTIONAL)  
48X  
48  
37  
SYMM  
0.1  
C A B  
C
0.5  
0.3  
48X  
0.05  
SEE LEAD OPTION  
4219044/D 02/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
2X (6.8)  
5.15)  
SYMM  
(
48X (0.6)  
37  
48  
48X (0.24)  
44X (0.5)  
1
36  
SYMM  
2X  
2X  
(5.5)  
(6.8)  
2X  
(1.26)  
2X  
(1.065)  
(R0.05)  
TYP  
25  
12  
21X (Ø0.2) VIA  
TYP  
24  
13  
2X (1.065)  
2X (1.26)  
2X (5.5)  
LAND PATTERN EXAMPLE  
SCALE: 15X  
SOLDER MASK  
OPENING  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4219044/D 02/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
2X (6.8)  
SYMM  
(
1.06)  
37  
48X (0.6)  
48  
48X (0.24)  
44X (0.5)  
1
36  
SYMM  
2X  
2X  
(5.5)  
(6.8)  
2X  
(0.63)  
2X  
(1.26)  
(R0.05)  
TYP  
25  
12  
24  
13  
2X  
(1.26)  
2X (0.63)  
2X (5.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
67% PRINTED COVERAGE BY AREA  
SCALE: 15X  
4219044/D 02/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
GENERIC PACKAGE VIEW  
RSM 32  
4 x 4, 0.4 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224982/A  
www.ti.com  
PACKAGE OUTLINE  
RSM0032B  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
B
4.1  
3.9  
A
0.45  
0.25  
0.25  
0.15  
PIN 1 INDEX AREA  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
4.1  
3.9  
(0.1)  
SIDE WALL DETAIL  
OPTIONAL METAL THICKNESS  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.8 0.05  
2X 2.8  
(0.2) TYP  
4X (0.45)  
28X 0.4  
9
16  
SEE SIDE WALL  
DETAIL  
8
17  
EXPOSED  
THERMAL PAD  
2X  
SYMM  
33  
2.8  
24  
0.25  
32X  
1
SEE TERMINAL  
DETAIL  
0.15  
0.1  
C A B  
25  
32  
PIN 1 ID  
(OPTIONAL)  
0.05  
SYMM  
0.45  
0.25  
32X  
4219108/B 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RSM0032B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.8)  
SYMM  
32  
25  
32X (0.55)  
1
32X (0.2)  
24  
(
0.2) TYP  
VIA  
(1.15)  
SYMM  
33  
(3.85)  
28X (0.4)  
17  
8
(R0.05)  
TYP  
9
16  
(1.15)  
(3.85)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219108/B 08/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RSM0032B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.715)  
4X ( 1.23)  
(R0.05) TYP  
25  
32  
32X (0.55)  
1
24  
32X (0.2)  
(0.715)  
(3.85)  
33  
SYMM  
28X (0.4)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(3.85)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 33:  
77% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219108/B 08/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY