CC2540TF256RHAR [TI]

具有工业级工作温度范围的低功耗 (LE) Bluetooth® 无线 MCU | RHA | 40 | -40 to 125;
CC2540TF256RHAR
型号: CC2540TF256RHAR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有工业级工作温度范围的低功耗 (LE) Bluetooth® 无线 MCU | RHA | 40 | -40 to 125

无线 外围集成电路
文件: 总37页 (文件大小:1431K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Reference  
Design  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
CC2540T  
ZHCSCZ3A JULY 2014REVISED NOVEMBER 2015  
CC2540T 扩展工业温度 Bluetooth® 智能无线 MCU  
1 器件概述  
1.1 特性  
1
真正的单芯片蓝牙低能耗 (BLE) 解决方  
外设  
具有 8 通道和可配置分辨率的 12 位模数转换器  
案:CC2540T 既能够运行应用程序,也能够运行  
BLE 协议栈,包括可连接各类传感器等元件的外设  
(ADC)  
工作温度最高达 125°C  
• 6mm × 6mm 封装  
射频 (RF)  
集成超低功耗比较器  
通用定时器(1 16 位,2 8 位)  
– 21 个通用 I/O (GPIO) 引脚  
19 x 4mA2 x 20mA)  
Bluetooth®低能耗技术  
优异的链路预算(最高可达 97dB), 支持 不带  
外部前端的远距离应用  
具有捕捉功能的 32kHz 睡眠定时器  
– 2 个功能强大、支持几种串行协议的通用异步接  
收发器 (UART)  
精确的数字接收信号强度指示器 (RSSI)  
适用于符合全球射频规范的系统:  
全速 USB 接口  
ETSI EN 300 328 EN 300 440 2 类(欧  
洲)  
红外 (IR) 生成电路  
功能强大的 5 通道直接内存访问 (DMA)  
高级加密标准 (AES) 安全协处理器  
电池监视器和温度传感器  
FCC CFR47 15 部分(美国)  
ARIB STD-T66(日本)  
布局  
每个 CC2540T 均包含唯一的 48 IEEE 地址  
极少的外部组件  
提供参考设计  
符合针对单模式蓝牙低能耗 (BLE) 解决方案的符合  
蓝牙4.0 协议的堆栈  
完全功率优化堆栈,包括控制器和主机  
– 6mm x 6mm VQFN40 封装  
GAP:中央设备、外设、观察者或广播者(包  
括组合角色)  
低功耗  
有源模式 RX 低至 19.6mA  
有源模式 TX (–6dBm)24mA  
功率模式 13µs 唤醒时间):235μA  
功率模式 2(睡眠定时器打开):0.9µA  
功率模式 3(外部中断):0.4µA  
宽电源电压范围 (2V-3.6V)  
属性协议 (ATT) 和通用属性配置文件  
(GATT):客户端和服务器  
对称式对多重处理 (SMP)AES-128 加密和  
解密  
L2CAP  
示例 应用 和配置文件  
在所有功率模式下具有完全 RAM 和寄存器保持  
针对 GAP 中心 和外围作用 的一般应用  
距离临近、加速计、简单关键字和电池 GATT  
服务  
兼容 TPS62730,  
工作模式下功耗较低  
– RX 低至 15.8mA3V 电源)  
– TX (–6dBm)18.6mA (3V 电源)  
微控制器  
多重配置选项  
单芯片配置,允许应用在 CC2540T 上运行  
针对外部微处理器所运行 应用程序 的网络处  
理器接口  
高性能、低功耗的 8051 微控制器内核  
– 256KB 系统内可编程闪存  
– 8KB SRAM  
– BTool:评估、开发和测试的 Windows PC 应用  
开发工具  
– CC2540T 迷你开发套件  
– SmartRF™软件  
由用于 8051 IAR Embedded Workbench™软  
件提供支持  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SWRS172  
 
 
 
CC2540T  
ZHCSCZ3A JULY 2014REVISED NOVEMBER 2015  
www.ti.com.cn  
1.2 应用  
2.4GHz 蓝牙低能耗系统  
照明  
电动工具  
维护  
电机监控  
无线 HMI 和远程显示  
USB 软件狗  
智能手机连接  
接近传感  
电缆更换  
1.3 说明  
CC2540T 器件是一款真正具备成本效益的低功耗无线 MCU,适用于蓝牙低能耗 应用。CC2540T 可在总物  
料成本低廉的前提下构建耐用的 BLE 主控或受控节点,工作温度最高可达 125°CCC2540T 将一款性能出  
色的 RF 收发器、一个符合行业标准的增强型 8051 MCU、系统内置可编程闪存存储器、8KB RAM 及其他  
功能强大的支持 特性 及外设组合在一起。CC2540T 适用于要求超低功耗的系统。提供有超低功耗睡眠模  
式。运行模式间的切换时间短,有助于实现更低功耗。  
CC2540TF256 与德州仪器的 (TI) 蓝牙低能耗协议栈相结合,提供市面上最灵活、最经济高效的单模式蓝牙  
低能耗解决方案。  
1-1. 器件信息(1)  
产品型号  
CC2540TF256RHAR  
封装  
封装尺寸(标称值)  
6.00mm x 6.00mm  
6.00mm x 6.00mm  
VQFN (40)  
VQFN (40)  
CC2540TF256RHAT  
(1) 更多信息请参见8机械封装和可订购信息。  
2
器件概述  
版权 © 2014–2015, Texas Instruments Incorporated  
 
 
CC2540T  
www.ti.com.cn  
ZHCSCZ3A JULY 2014REVISED NOVEMBER 2015  
1.4 功能方框图  
1-1 所示为 CC2540T 器件的功能框图。  
VDD (2 V–3.6 V)  
WATCHDOG  
TIMER  
ON-CHIP VOLTAGE  
RESET_N  
RESET  
REGULATOR  
DCOUPL  
XOSC_Q2  
XOSC_Q1  
32-MHz  
POWER-ON RESET  
BROWN OUT  
CRYSTAL OSC  
CLOCK MUX  
and  
CALIBRATION  
P2_4  
P2_3  
P2_2  
P2_1  
P2_0  
32.768-kHz  
CRYSTAL OSC  
SLEEP TIMER  
HIGH-  
32-kHz  
SPEED  
DEBUG  
INTERFACE  
RC-OSC  
RC-OSC  
POWER MANAGEMENT CONTROLLER  
PDATA  
XRAM  
IRAM  
SFR  
P1_7  
P1_6  
P1_5  
P1_4  
P1_3  
P1_2  
P1_1  
P1_0  
8051 CPU  
CORE  
MEMORY  
ARBITRATOR  
FLASH  
FLASH  
UNIFIED  
DMA  
IRQ CTRL  
FLASH CTRL  
1 KB SRAM  
P0_7  
P0_6  
P0_5  
P0_4  
P0_3  
P0_2  
P0_1  
P0_0  
ANALOG COMPARATOR  
OP-AMP  
FIFOCTRL  
RADIO REGISTERS  
AES  
ENCRYPTION  
AND  
DECRYPTION  
DS  
ADC  
Link Layer Engine  
AUDIO/DC  
DEMODULATOR  
MODULATOR  
USB_N  
USB_P  
USB  
USART 0  
USART 1  
RECEIVE  
TRANSMIT  
TIMER 1 (16-Bit)  
TIMER 2  
(BLE LL TIMER)  
RF_P  
RF_N  
TIMER 3 (8-Bit)  
TIMER 4 (8-Bit)  
DIGITAL  
ANALOG  
MIXED  
B0301-05  
1-1. 功能方框图  
版权 © 2014–2015, Texas Instruments Incorporated  
器件概述  
3
 
 
CC2540T  
ZHCSCZ3A JULY 2014REVISED NOVEMBER 2015  
www.ti.com.cn  
内容  
1
器件概.................................................... 1  
1.1 特性 ................................................... 1  
1.2 应用 ................................................... 2  
1.3 说明 ................................................... 2  
1.4 功能方框图............................................ 3  
修订历史记录............................................... 4  
Terminal Configuration and Functions.............. 5  
3.1 Pin Attributes ......................................... 6  
Specifications ............................................ 7  
4.1 Absolute Maximum Ratings .......................... 7  
4.2 ESD Ratings.......................................... 7  
4.3 Recommended Operating Conditions ................ 7  
4.4 Electrical Characteristics ............................. 8  
4.20 SPI AC Characteristics.............................. 15  
4.21 Debug Interface AC Characteristics ................ 16  
4.22 Timer Inputs AC Characteristics .................... 17  
4.23 DC Characteristics .................................. 17  
4.24 Typical Characteristics .............................. 18  
4.25 Typical Current Savings............................. 20  
Detailed Description ................................... 21  
5.1 Overview ............................................ 21  
5.2 Functional Block Diagram........................... 21  
5.3 Block Descriptions................................... 22  
Applications, Implementation, and Layout........ 25  
6.1 Application Information.............................. 25  
6.2 Input/Output Matching............................... 26  
6.3 Crystal ............................................... 26  
2
3
5
6
4
4.5  
Thermal Resistance Characteristics for RHA  
Package .............................................. 8  
6.4  
On-Chip 1.8-V Voltage Regulator Decoupling ...... 26  
Power-Supply Decoupling and Filtering............. 26  
4.6 General Characteristics .............................. 9  
4.7 RF Receive Section .................................. 9  
4.8 RF Transmit Section ................................ 10  
4.9 Current Consumption With TPS62730.............. 10  
4.10 32-MHz Crystal Oscillator ........................... 11  
4.11 32.768-kHz Crystal Oscillator ....................... 11  
4.12 32-kHz RC Oscillator................................ 11  
4.13 16-MHz RC Oscillator ............................... 12  
4.14 RSSI Characteristics ................................ 12  
4.15 Frequency Synthesizer Characteristics ............. 12  
4.16 Analog Temperature Sensor ........................ 12  
4.17 Comparator Characteristics ......................... 12  
4.18 ADC Characteristics................................. 13  
4.19 Control Input AC Characteristics.................... 14  
6.5  
6.6 Reference Design ................................... 27  
器件和文档支持 .......................................... 28  
7.1 文档支............................................. 28  
7.2 德州仪器 (TI) 低功耗射频网站....................... 28  
7.3 德州仪器 (TI) 低功耗射频开发者网络 ............... 28  
7.4 低功耗射频电子新闻简报 ............................ 29  
7.5 商标.................................................. 29  
7.6 静电放电警告 ........................................ 29  
7.7 出口管制提示 ........................................ 29  
7.8 Glossary ............................................. 29  
机械、封装和可订购信息................................ 29  
8.1 封装信............................................. 29  
7
8
2 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from July 2, 2015 to November 30, 2015  
Page  
已更改 中的部分项特性 .............................................................................................................. 1  
Changed from Handling Ratings table to ESD Ratings table .................................................................. 7  
Added MIN value for output power in the RF Transmit Section table ....................................................... 10  
Added Bluetooth Low Energy Light Reference Design to the document. ................................................... 27  
4
修订历史记录  
Copyright © 2014–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2540T  
 
CC2540T  
www.ti.com.cn  
ZHCSCZ3A JULY 2014REVISED NOVEMBER 2015  
3 Terminal Configuration and Functions  
The CC2540T pinout is shown in Figure 3-1, and a short description of the pins follows in Section 3.1.  
40 39 38 37 36 35 34 33 32 31  
DGND_USB  
USB_P  
USB_N  
DVDD_USB  
P1_5  
R_BIAS  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
AVDD4  
AVDD1  
AVDD2  
RF_N  
3
4
5
GND  
Ground Pad  
P1_4  
RF_P  
6
P1_3  
7
AVDD3  
P1_2  
XOSC_Q2  
XOSC_Q1  
8
P1_1  
9
10  
DVDD2  
AVDD5  
11 12 13 14 15 16 17 18 19 20  
P0076-05  
NOTE: The exposed ground pad must be connected to a solid ground plane, as this is the ground connection for the chip.  
Figure 3-1. CC2540T  
RHA Package (VQFN)  
Top View  
Copyright © 2014–2015, Texas Instruments Incorporated  
Terminal Configuration and Functions  
5
Submit Documentation Feedback  
Product Folder Links: CC2540T  
 
CC2540T  
ZHCSCZ3A JULY 2014REVISED NOVEMBER 2015  
www.ti.com.cn  
3.1 Pin Attributes  
Table 3-1. Pin Attributes  
NAME  
NO.  
28  
27  
24  
29  
21  
31  
40  
TYPE  
DESCRIPTION  
AVDD1  
AVDD2  
AVDD3  
AVDD4  
AVDD5  
AVDD6  
Power (analog)  
Power (analog)  
Power (analog)  
Power (analog)  
Power (analog)  
Power (analog)  
2-V to 3.6-V analog power-supply connection  
2-V to 3.6-V analog power-supply connection  
2-V to 3.6-V analog power-supply connection  
2-V to 3.6-V analog power-supply connection  
2-V to 3.6-V analog power-supply connection  
2-V to 3.6-V analog power-supply connection  
1.8-V digital power-supply decoupling. Do not use for supplying external  
circuits.  
DCOUPL  
Power (digital)  
DGND_USB  
DVDD_USB  
DVDD1  
DVDD2  
GND  
1
Ground pin  
Power (digital)  
Power (digital)  
Power (digital)  
Ground  
Connect to GND  
4
2-V to 3.6-V digital power-supply connection  
39  
10  
19  
18  
17  
16  
15  
14  
13  
12  
11  
9
2-V to 3.6-V digital power-supply connection  
2-V to 3.6-V digital power-supply connection  
The ground pad must be connected to a solid ground plane.  
P0_0  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Port 0.0  
P0_1  
Port 0.1  
P0_2  
Port 0.2  
P0_3  
Port 0.3  
P0_4  
Port 0.4  
P0_5  
Port 0.5  
P0_6  
Port 0.6  
P0_7  
Port 0.7  
P1_0  
Port 1.0: 20-mA drive capability  
P1_1  
Port 1.1: 20-mA drive capability  
P1_2  
8
Port 1.2  
Port 1.3  
Port 1.4  
Port 1.5  
Port 1.6  
Port 1.7  
Port 2.0  
Port 2.1  
Port 2.2  
P1_3  
7
P1_4  
6
P1_5  
5
P1_6  
38  
37  
36  
35  
34  
33  
32  
30  
20  
26  
P1_7  
P2_0  
P2_1  
P2_2  
P2_3/ XOSC32K_Q2  
P2_4/ XOSC32K_Q1  
RBIAS  
RESET_N  
Digital I/O, Analog I/O Port 2.3/32.768 kHz XOSC  
Digital I/O, Analog I/O Port 2.4/32.768 kHz XOSC  
Analog I/O  
External precision bias resistor for reference current  
Digital input  
Reset, active-low  
Negative RF input signal to LNA during RX  
Negative RF output signal from PA during TX  
RF_N  
RF_P  
RF I/O  
RF I/O  
25  
Positive RF input signal to LNA during RX  
Positive RF output signal from PA during TX  
USB_N  
3
2
Digital I/O  
Digital I/O  
Analog I/O  
Analog I/O  
USB N  
USB_P  
USB P  
XOSC_Q1  
XOSC_Q2  
22  
23  
32-MHz crystal oscillator pin 1 or external-clock input  
32-MHz crystal oscillator pin 2  
6
Terminal Configuration and Functions  
Copyright © 2014–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2540T  
CC2540T  
www.ti.com.cn  
ZHCSCZ3A JULY 2014REVISED NOVEMBER 2015  
4 Specifications  
4.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
MAX  
UNIT  
Supply voltage  
All supply pins must have the same voltage  
–0.3  
3.9  
V
VDD + 0.3,  
Voltage on any digital pin  
–0.3  
V
3.9  
Input RF level  
Tstg  
10  
dBm  
°C  
Storage temperature  
–40  
125  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
4.2 ESD Ratings  
VALUE  
UNIT  
Human Body Model (HBM), per ANSI/ESDA/JEDEC JS001(1)  
±2000  
V
Electrostatic discharge (ESD)  
performance  
VESD  
Charged Device Model (CDM),  
All pins  
±750  
V
per JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
4.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX UNIT  
Operating ambient temperature range, TA  
Operating supply voltage  
–40  
2
125  
3.6  
°C  
V
Copyright © 2014–2015, Texas Instruments Incorporated  
Specifications  
7
Submit Documentation Feedback  
Product Folder Links: CC2540T  
CC2540T  
ZHCSCZ3A JULY 2014REVISED NOVEMBER 2015  
www.ti.com.cn  
4.4 Electrical Characteristics  
Measured on the TI CC2540 EM reference design with TA = 25°C and VDD = 3 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
Power mode 1. Digital regulator on; 16-MHz RCOSC and 32-MHz  
crystal oscillator off; 32.768-kHz XOSC, POR, BOD and sleep timer  
active; RAM and register retention  
235  
Power mode 2. Digital regulator off; 16-MHz RCOSC and 32-MHz  
crystal oscillator off; 32.768-kHz XOSC, POR, and sleep timer active;  
RAM and register retention  
µA  
0.9  
Core current  
consumption  
Icore  
Power mode 3. Digital regulator off; no clocks; POR active; RAM and  
register retention  
0.4  
Low MCU activity: 32-MHz XOSC running. No radio or peripherals. No  
flash access, no RAM access.  
6.7  
mA  
Timer 1. Timer running, 32-MHz XOSC used  
Timer 2. Timer running, 32-MHz XOSC used  
Timer 3. Timer running, 32-MHz XOSC used  
Timer 4. Timer running, 32-MHz XOSC used  
Sleep timer, including 32.753-kHz RCOSC  
ADC, when converting  
90  
90  
60  
µA  
Peripheral current  
consumption(1)  
Iperi  
70  
0.6  
1.2  
mA  
(1) Adds to core current Icore for each peripheral unit activated.  
4.5 Thermal Resistance Characteristics for RHA Package  
NAME  
RΘJC  
RΘJB  
RΘJA  
RΘJMA  
PsiJT  
DESCRIPTION  
°C/W(1) (2)  
AIR FLOW (m/s)(3)  
Junction-to-case  
16.1  
5.5  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
Junction-to-board  
Junction-to-free air  
Junction-to-moving air  
Junction-to-package top  
Junction-to-board  
30.6  
0.2  
5.4  
PsiJB  
1.0  
(1) °C/W = degrees Celsius per watt.  
(2) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these  
EIA/JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
Power dissipation of 2 W and an ambient temperature of 70ºC is assumed.  
(3) m/s = meters per second.  
8
Specifications  
Copyright © 2014–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2540T  
CC2540T  
www.ti.com.cn  
ZHCSCZ3A JULY 2014REVISED NOVEMBER 2015  
4.6 General Characteristics  
Measured on the TI CC2540 EM reference design with TA = 25°C and VDD = 3 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
WAKE-UP AND TIMING  
Digital regulator on, 16-MHz RCOSC and 32-MHz crystal  
oscillator off. Start-up of 16-MHz RCOSC  
Power mode 1 Active  
4
120  
410  
µs  
µs  
µs  
Digital regulator off, 16-MHz RCOSC and 32-MHz crystal  
oscillator off. Start-up of regulator and 16-MHz RCOSC  
Power mode 2 or 3 Active  
Crystal ESR = 16 Ω. Initially running on 16-MHz RCOSC,  
with 32-MHz XOSC OFF  
Active TX or RX  
With 32-MHz XOSC initially on  
160  
150  
µs  
µs  
RX/TX turnaround  
RADIO PART  
RF frequency range  
Data rate and modulation format  
Programmable in 2-MHz steps  
2402  
2480  
MHz  
1 Mbps, GFSK, 250-kHz deviation  
4.7 RF Receive Section  
Measured on the TI CC2540 EM reference design with TA = 25°C, VDD = 3 V, fc = 2440 MHz  
1 Mbps, GFSK, 250-kHz deviation, Bluetooth low energy mode, and 0.1% BER(1)  
.
PARAMETER  
Receiver sensitivity(2)  
Receiver sensitivity(2)  
Saturation(3)  
Co-channel rejection(3)  
Adjacent-channel rejection(3)  
Alternate-channel rejection(3)  
Blocking(3)  
Frequency error tolerance(4)  
Symbol rate error tolerance(5)  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
dBm  
dBm  
dBm  
dB  
High-gain mode  
Standard mode  
–93  
–87  
6
–5  
±1 MHz  
±2 MHz  
–5  
30  
dB  
dB  
–30  
dBm  
kHz  
ppm  
Including both initial tolerance and drift  
–250  
–80  
250  
80  
Conducted measurement with a 50-Ω single-ended load.  
Complies with EN 300 328, EN 300 440 class 2, FCC CFR47,  
Part 15 and ARIB STD-T-66  
Spurious emission. Only largest spurious  
emission stated within each band.  
–75  
dBm  
RX mode, standard mode, no peripherals active, low MCU  
activity, MCU at 250 kHz  
19.6  
22.1  
RX mode, high-gain mode, no peripherals active, low MCU  
activity, MCU at 250 kHz  
Current consumption  
mA  
RX mode, high-gain mode, no peripherals active, low MCU  
activity, MCU at 250 kHz;  
TA = –40°C to 125°C, VDD = 2 V to 3.6 V, and fc = 2402 MHz  
to 2480 MHz  
30.5  
(1) 0.1% BER maps to 30.8% PER  
(2) The receiver sensitivity setting is programmable using a TI BLE stack vendor-specific API command. The default value is standard  
mode.  
(3) Results based on standard gain mode  
(4) Difference between center frequency of the received RF signal and local oscillator frequency  
(5) Difference between incoming symbol rate and the internally generated symbol rate  
Copyright © 2014–2015, Texas Instruments Incorporated  
Specifications  
9
Submit Documentation Feedback  
Product Folder Links: CC2540T  
CC2540T  
ZHCSCZ3A JULY 2014REVISED NOVEMBER 2015  
www.ti.com.cn  
4.8 RF Transmit Section  
Measured on the TI CC2540 EM reference design with TA = 25°C, VDD = 3 V and fc = 2440 MHz.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Delivered to a single-ended 50-Ω load through a balun using  
maximum recommended output power setting  
1
4
Output power  
dBm  
Delivered to a single-ended 50-Ω load through a balun using minimum  
recommended output power setting  
–23  
27  
Programmable output power  
range  
Delivered to a single-ended 50 Ω load through a balun  
dB  
Conducted measurement with a 50-Ω single-ended load. Complies  
with EN 300 328, EN 300 440 class 2, FCC CFR47, Part 15 and ARIB  
STD-T-66(1)  
Spurious emissions  
–41  
dBm  
TX mode, –23-dBm output power, no peripherals active, low MCU  
activity, MCU at 250 kHz  
21.1  
23.8  
27  
TX mode, –6-dBm output power, no peripherals active, low MCU  
activity, MCU at 250 kHz  
TX mode, 0-dBm output power, no peripherals active, low MCU  
activity, MCU at 250 kHz  
Current consumption  
mA  
TX mode, 4-dBm output power, no peripherals active, low MCU  
activity, MCU at 250 kHz  
31.6  
TX mode, 4-dBm output power, no peripherals active, low MCU  
activity, MCU at 250 kHz;  
TA = –40°C to 125°C, VDD = 2 V to 3.6 V, and fc = 2402 MHz to  
2480 MHz  
39.6  
Differential impedance as seen from the RF port (RF_P and RF_N)  
toward the antenna  
Optimum load impedance  
70 + j30  
Ω
(1) Designs with antenna connectors that require conducted ETSI compliance at 64 MHz should insert an LC resonator in front of the  
antenna connector. Use a 1.6-nH inductor in parallel with a 1.8-pF capacitor. Connect both from the signal trace to a good RF ground.  
4.9 Current Consumption With TPS62730  
Measured on the TI CC2540TPS62730 EM reference design with TA = 25°C, VDD = 3 V, and fc = 2440 MHZ.  
1 Mbps, GFSK, 250-kHz deviation, Bluetooth low energy mode, 1% BER(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
RX mode, standard mode, no peripherals active, low MCU activity,  
MCU at 1 MHZ  
15.8  
RX mode, high-gain mode, no peripherals active, low MCU activity,  
MCU at 1 MHZ  
17.8  
16.5  
18.6  
21  
TX mode, –23-dBm output power, no peripherals active, low MCU activity,  
MCU at 1 MHZ  
Current consumption  
mA  
TX mode, –6-dBm output power, no peripherals active, low MCU activity,  
MCU at 1 MHZ  
TX mode, 0-dBm output power, no peripherals active, low MCU activity,  
MCU at 1 MHZ  
TX mode, 4-dBm output power, no peripherals active, low MCU activity,  
MCU at 1 MHZ  
24.6  
(1) 0.1% BER maps to 30.8% PER  
10  
Specifications  
Copyright © 2014–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2540T  
CC2540T  
www.ti.com.cn  
ZHCSCZ3A JULY 2014REVISED NOVEMBER 2015  
4.10 32-MHz Crystal Oscillator  
Measured on the TI CC2540 EM reference design with TA = 25°C and VDD = 3 V.  
PARAMETER  
Crystal frequency  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
32  
MHz  
Crystal frequency accuracy  
requirement(1)  
–40  
40  
ppm  
ESR  
C0  
Equivalent series resistance  
Crystal shunt capacitance  
Crystal load capacitance  
Start-up time  
6
1
60  
7
Ω
pF  
pF  
ms  
CL  
10  
16  
0.25  
The crystal oscillator must be in power down for  
a guard time before it is used again. This  
requirement is valid for all modes of operation.  
The need for power-down guard time can vary  
with crystal type and load.  
Power-down guard time  
3
ms  
(1) Including aging and temperature dependency, as specified by [1]  
4.11 32.768-kHz Crystal Oscillator  
Measured on the TI CC2540 EM reference design with TA = 25°C and VDD = 3 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
Crystal frequency  
32.768  
kHz  
ppm  
kΩ  
pF  
Crystal frequency accuracy requirement(1)  
Equivalent series resistance  
Crystal shunt capacitance  
Crystal load capacitance  
Start-up time  
–40  
40  
ESR  
C0  
40 130  
0.9  
12  
2
CL  
16  
pF  
0.4  
s
(1) Including aging and temperature dependency, as specified by [1]  
4.12 32-kHz RC Oscillator  
Measured on the TI CC2540 EM reference design with TA = 25°C and VDD = 3 V.  
PARAMETER  
Calibrated frequency(1)  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
32.753  
±0.2%  
0.4  
kHz  
Frequency accuracy after calibration  
Temperature coefficient(2)  
Supply-voltage coefficient(3)  
Calibration time(4)  
%/°C  
%/V  
ms  
3
2
(1) The calibrated 32-kHz RC oscillator frequency is the 32-MHz XTAL frequency divided by 977.  
(2) Frequency drift when temperature changes after calibration  
(3) Frequency drift when supply voltage changes after calibration  
(4) When the 32-kHz RC oscillator is enabled, it is calibrated when a switch from the 16-MHz RC oscillator to the 32-MHz crystal oscillator  
is performed while SLEEPCMD.OSC32K_CALDIS is set to 0.  
Copyright © 2014–2015, Texas Instruments Incorporated  
Specifications  
11  
Submit Documentation Feedback  
Product Folder Links: CC2540T  
 
CC2540T  
ZHCSCZ3A JULY 2014REVISED NOVEMBER 2015  
www.ti.com.cn  
4.13 16-MHz RC Oscillator  
Measured on the TI CC2540 EM reference design with TA = 25°C and VDD = 3 V.  
PARAMETER  
Frequency(1)  
TEST CONDITIONS  
MIN  
TYP  
16  
MAX  
UNIT  
MHz  
Uncalibrated frequency accuracy  
Calibrated frequency accuracy  
Start-up time  
±18%  
±0.6%  
10  
µs  
µs  
Initial calibration time(2)  
50  
(1) The calibrated 16-MHz RC oscillator frequency is the 32-MHz XTAL frequency divided by 2.  
(2) When the 16-MHz RC oscillator is enabled, it is calibrated when a switch from the 16-MHz RC oscillator to the 32-MHz crystal oscillator  
is performed while SLEEPCMD.OSC_PD is set to 0.  
4.14 RSSI Characteristics  
Measured on the TI CC2540 EM reference design with TA = 25°C and VDD = 3 V.  
PARAMETER  
TEST CONDITIONS  
High-gain mode  
MIN  
TYP MAX  
–99 to –44  
UNIT  
Useful RSSI range(1)  
dBm  
Standard mode  
High-gain mode  
–90 to –35  
Absolute uncalibrated RSSI accuracy(1)  
Step size (LSB value)  
±4  
1
dB  
dB  
(1) Assuming CC2540 EM reference design. Other RF designs give an offset from the reported value.  
4.15 Frequency Synthesizer Characteristics  
Measured on the TI CC2540 EM reference design with TA = 25°C, VDD = 3 V and fc = 2440 MHz.  
PARAMETER  
TEST CONDITIONS  
At ±1-MHz offset from carrier  
MIN  
TYP  
–109  
–112  
–119  
MAX  
UNIT  
Phase noise, unmodulated  
carrier  
At ±3-MHz offset from carrier  
At ±5-MHz offset from carrier  
dBc/Hz  
4.16 Analog Temperature Sensor  
Measured on the TI CC2540 EM reference design with TA = 25°C and VDD = 3 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1480  
4.5  
1
MAX  
UNIT  
12-bit  
/ 1°C  
/ 0.1 V  
°C  
Output  
Temperature coefficient  
Voltage coefficient  
Measured using integrated ADC, internal band-gap  
voltage reference, and maximum resolution  
Initial accuracy without calibration  
Accuracy using 1-point calibration  
Current consumption when enabled  
±10  
±5  
°C  
0.5  
mA  
4.17 Comparator Characteristics  
TA = 25°C, VDD = 3 V. All measurement results are obtained using the CC2540T reference designs, post-calibration.  
PARAMETER  
Common-mode maximum voltage  
Common-mode minimum voltage  
Input offset voltage  
TEST CONDITIONS  
MIN  
TYP  
VDD  
–0.3  
1
MAX  
UNIT  
V
mV  
µV/°C  
mV/V  
nA  
Offset versus temperature  
Offset versus operating voltage  
Supply current  
16  
4
230  
0.15  
Hysteresis  
mV  
12  
Specifications  
Copyright © 2014–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2540T  
CC2540T  
www.ti.com.cn  
ZHCSCZ3A JULY 2014REVISED NOVEMBER 2015  
4.18 ADC Characteristics  
TA = 25°C and VDD = 3 V  
PARAMETER  
TEST CONDITIONS  
VDD is voltage on AVDD5 pin  
VDD is voltage on AVDD5 pin  
VDD is voltage on AVDD5 pin  
Simulated using 4-MHz clock speed  
Peak-to-peak, defines 0 dBFS  
Single-ended input, 7-bit setting  
Single-ended input, 9-bit setting  
Single-ended input, 10-bit setting  
Single-ended input, 12-bit setting  
Differential input, 7-bit setting  
Differential input, 9-bit setting  
Differential input, 10-bit setting  
Differential input, 12-bit setting  
10-bit setting, clocked by RCOSC  
12-bit setting, clocked by RCOSC  
7-bit setting, both single and differential  
MIN  
0
TYP  
MAX  
VDD  
VDD  
VDD  
UNIT  
V
Input voltage  
External reference voltage  
0
V
External reference voltage differential  
0
V
Input resistance, signal  
Full-scale signal(1)  
197  
2.97  
5.7  
kΩ  
V
7.5  
9.3  
10.3  
6.5  
ENOB(1)  
Effective number of bits  
bits  
8.3  
10  
11.5  
9.7  
10.9  
0–20  
Useful power bandwidth  
Total harmonic distortion  
kHz  
dB  
Single ended input, 12-bit setting, –6  
dBFS(1)  
–75.2  
–86.6  
THD  
Differential input, 12-bit setting, –6  
dBFS(1)  
Single-ended input, 12-bit setting(1)  
Differential input, 12-bit setting(1)  
70.2  
79.3  
Single-ended input, 12-bit setting, –6  
dBFS(1)  
Signal to nonharmonic ratio  
dB  
dB  
78.8  
88.9  
>84  
>84  
Differential input, 12-bit setting, –6  
dBFS(1)  
Differential input, 12-bit setting, 1-kHz  
sine (0 dBFS), limited by ADC resolution  
CMRR  
Common-mode rejection ratio  
Crosstalk  
Single ended input, 12-bit setting, 1-kHz  
sine (0 dBFS), limited by ADC resolution  
dB  
Offset  
Midscale  
–3  
0.68%  
0.05  
0.9  
mV  
Gain error  
12-bit setting, mean(1)  
12-bit setting, maximum(1)  
12-bit setting, mean(1)  
12-bit setting, maximum(1)  
DNL  
INL  
Differential nonlinearity  
Integral nonlinearity  
LSB  
LSB  
4.6  
13.3  
10  
12-bit setting, mean, clocked by RCOSC  
12-bit setting, max, clocked by RCOSC  
Single ended input, 7-bit setting(1)  
Single ended input, 9-bit setting(1)  
Single ended input, 10-bit setting(1)  
Single ended input, 12-bit setting(1)  
Differential input, 7-bit setting(1)  
Differential input, 9-bit setting(1)  
Differential input, 10-bit setting(1)  
Differential input, 12-bit setting(1)  
29  
35.4  
46.8  
57.5  
66.6  
40.7  
51.6  
61.8  
70.8  
SINAD  
(–THD+N)  
Signal-to-noise-and-distortion  
dB  
(1) Measured with 300-Hz sine-wave input and VDD as reference.  
Copyright © 2014–2015, Texas Instruments Incorporated  
Specifications  
13  
Submit Documentation Feedback  
Product Folder Links: CC2540T  
CC2540T  
ZHCSCZ3A JULY 2014REVISED NOVEMBER 2015  
www.ti.com.cn  
ADC Characteristics (continued)  
TA = 25°C and VDD = 3 V  
PARAMETER  
TEST CONDITIONS  
7-bit setting  
MIN  
TYP  
20  
MAX  
UNIT  
9-bit setting  
10-bit setting  
12-bit setting  
36  
Conversion time  
µs  
68  
132  
1.2  
4
Power consumption  
mA  
mV/V  
mV/10°C  
V
Internal reference VDD coefficient  
Internal reference temperature coefficient  
Internal reference voltage  
0.4  
1.24  
4.19 Control Input AC Characteristics  
TA = –40°C to 125°C, VDD = 2 V to 3.6 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
The undivided system clock is 32 MHz when crystal oscillator is used.  
The undivided system clock is 16 MHz when calibrated 16-MHz RC  
oscillator is used.  
System clock, fSYSCLK  
tSYSCLK = 1 / fSYSCLK  
16  
32  
MHz  
See item 1 in Figure 4-1. This is the shortest pulse that is recognized  
as a complete reset pin request. Note that shorter pulses may be  
recognized but do not lead to complete reset of all modules within the  
chip.  
RESET_N low duration  
Interrupt pulse duration  
1
µs  
ns  
See item 2 in Figure 4-1. This is the shortest pulse that is recognized  
as an interrupt request.  
20  
RESET_N  
1
2
Px.n  
T0299-01  
Figure 4-1. Control Input AC Characteristics  
14  
Specifications  
Copyright © 2014–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2540T  
 
CC2540T  
www.ti.com.cn  
ZHCSCZ3A JULY 2014REVISED NOVEMBER 2015  
4.20 SPI AC Characteristics  
TA = –40°C to 125°C, VDD = 2 V to 3.6 V  
PARAMETER  
TEST CONDITIONS  
MIN  
250  
250  
TYP  
MAX UNIT  
Master, RX and TX  
Slave, RX and TX  
Master  
t1  
SCK period  
ns  
SCK duty cycle  
SSN low to SCK  
50%  
Master  
63  
63  
63  
63  
t2  
t3  
ns  
ns  
Slave  
Master  
SCK to SSN high  
Slave  
t4  
t5  
t6  
t7  
MOSI early out  
MOSI late out  
MISO setup  
MISO hold  
Master, load = 10 pF  
Master, load = 10 pF  
Master  
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
90  
10  
Master  
SCK duty cycle  
MOSI setup  
MOSI hold  
Slave  
50%  
t10  
t11  
t9  
Slave  
35  
10  
Slave  
MISO late out  
Slave, load = 10 pF  
Master, TX only  
Master, RX and TX  
Slave, RX only  
Slave, RX and TX  
95  
8
4
Operating frequency  
MHz  
8
4
SCK  
t2  
t3  
SSN  
t4  
t5  
MOSI  
D0  
X
D1  
t6  
t7  
MISO  
X
D0  
X
T0478-01  
Figure 4-2. SPI Master AC Characteristics  
SCK  
t2  
t3  
SSN  
t8  
t9  
MISO  
D0  
X
D1  
t10  
t11  
MOSI  
X
D0  
X
T0479-01  
Figure 4-3. SPI Slave AC Characteristics  
Copyright © 2014–2015, Texas Instruments Incorporated  
Specifications  
15  
Submit Documentation Feedback  
Product Folder Links: CC2540T  
CC2540T  
ZHCSCZ3A JULY 2014REVISED NOVEMBER 2015  
www.ti.com.cn  
4.21 Debug Interface AC Characteristics  
TA = –40°C to 125°C, VDD = 2 V to 3.6 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
12  
UNIT  
MHz  
ns  
fclk_dbg  
Debug clock frequency (see Figure 4-4)  
Allowed high pulse on clock (see Figure 4-4)  
Allowed low pulse on clock (see Figure 4-4)  
t1  
t2  
35  
35  
ns  
EXT_RESET_N low to first falling edge on debug  
clock (see Figure 4-6)  
t3  
t4  
t5  
167  
83  
ns  
ns  
ns  
Falling edge on clock to EXT_RESET_N high  
(see Figure 4-6)  
EXT_RESET_N high to first debug command  
(see Figure 4-6)  
83  
t6  
t7  
t8  
Debug data setup (see Figure 4-5)  
Debug data hold (see Figure 4-5)  
Clock-to-data delay (see Figure 4-5)  
2
4
ns  
ns  
ns  
Load = 10 pF  
30  
Time  
DEBUG_CLK  
P2_2  
t1  
t2  
1/fclk_dbg  
T0436-01  
Figure 4-4. Debug Clock–Basic Timing  
Time  
DEBUG_CLK  
P2_2  
RESET_N  
t3  
t4  
t5  
T0437-01  
Figure 4-5. Debug Enable Timing  
16  
Specifications  
Copyright © 2014–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2540T  
 
 
CC2540T  
www.ti.com.cn  
ZHCSCZ3A JULY 2014REVISED NOVEMBER 2015  
Time  
DEBUG_CLK  
P2_2  
DEBUG_DATA  
(to CC2540)  
P2_1  
DEBUG_DATA  
(from CC2540)  
P2_1  
t6  
t7  
t8  
T0438-02  
Figure 4-6. Data Setup and Hold Timing  
4.22 Timer Inputs AC Characteristics  
TA = –40°C to 125°C, VDD = 2 V to 3.6 V  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
Synchronizers determine the shortest input pulse that can be  
recognized. The synchronizers operate at the current system clock  
rate (16 MHz or 32 MHz).  
Input capture pulse duration  
1.5  
tSYSCLK  
4.23 DC Characteristics  
TA = 25°C, VDD = 3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
Logic-0 input voltage  
0.5  
Logic-1 input voltage  
2.5  
–50  
–50  
V
Logic-0 input current  
Input equals 0 V  
Input equals VDD  
50  
50  
nA  
nA  
kΩ  
V
Logic-1 input current  
I/O-pin pullup and pulldown resistors  
Logic-0 output voltage, 4-mA pins  
Logic-1 output voltage, 4-mA pins  
20  
Output load 4 mA  
Output load 4 mA  
0.5  
2.4  
V
Copyright © 2014–2015, Texas Instruments Incorporated  
Specifications  
17  
Submit Documentation Feedback  
Product Folder Links: CC2540T  
CC2540T  
ZHCSCZ3A JULY 2014REVISED NOVEMBER 2015  
www.ti.com.cn  
4.24 Typical Characteristics  
21  
20.5  
20  
33  
32.5  
32  
19.5  
19  
31.5  
31  
18.5  
18  
30.5  
30  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
Gain = Standard Setting  
Input = –70 dBm  
VCC = 3 V  
TX Power Setting = 4 dBm  
VCC = 3 V  
Figure 4-7. RX Current in Wait for Sync vs Temperature  
Figure 4-8. TX Current vs Temperature  
-72  
-74  
-76  
-78  
-80  
-82  
-84  
-86  
-88  
-90  
-92  
7
6
5
4
3
2
1
0
-1  
-2  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
Gain = Standard Setting  
VCC = 3 V  
TX Power Setting = 4 dBm  
VCC = 3 V  
Figure 4-9. RX Sensitivity vs Temperature  
Figure 4-10. TX Power vs Temperature  
19.7  
32  
31.9  
31.8  
31.7  
31.6  
31.5  
31.4  
31.3  
31.2  
31.1  
31  
19.68  
19.66  
19.64  
19.62  
19.6  
19.58  
19.56  
19.54  
19.52  
19.5  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
Supply Voltage (V)  
Supply Voltage (V)  
Gain = Standard Setting  
Input = –70 dBm  
TA = 25°C  
TA = 25°C  
TX Power Setting = 4 dBm  
Figure 4-11. RX Current in Wait for Sync vs Supply Voltage  
Figure 4-12. TX Current vs Supply Voltage  
18  
Specifications  
Copyright © 2014–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2540T  
CC2540T  
www.ti.com.cn  
ZHCSCZ3A JULY 2014REVISED NOVEMBER 2015  
Typical Characteristics (continued)  
-87  
-87.2  
-87.4  
-87.6  
-87.8  
-88  
5
4.8  
4.6  
4.4  
4.2  
4
-88.2  
-88.4  
-88.6  
-88.8  
-89  
3.8  
3.6  
3.4  
3.2  
3
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
Supply Voltage (V)  
Supply Voltage (V)  
Gain = Standard Setting  
TA = 25°C  
TA = 25°C  
TX Power Setting = 4 dBm  
Figure 4-14. TX Power vs Supply Voltage  
Figure 4-13. RX Sensitivity vs Supply Voltage  
70  
60  
50  
40  
30  
20  
10  
0
-87  
-87.2  
-87.4  
-87.6  
-87.8  
-88  
-88.2  
-88.4  
-88.6  
-88.8  
-89  
-10  
2400  
2420  
2440  
2460  
2480  
2400  
2420  
2440  
2460  
2480  
Frequency (MHz)  
Frequency (MHz)  
Gain = Standard Setting  
TA = 25°C  
TA = 25°C  
Wanted  
Signal at  
2426 MHz  
with –67  
VCC = 3 V  
dBm Level  
Figure 4-15. RX Sensitivity vs Frequency  
VCC = 3 V  
Gain = Standard Setting  
Figure 4-16. RX Interferer Rejection (Selectivity) vs Interferer  
Frequency  
5
4.8  
4.6  
4.4  
4.2  
4
3.8  
3.6  
3.4  
3.2  
3
2400  
2420  
2440  
2460  
2480  
Frequency (MHz)  
TA = 25°C  
TX Power Setting = 4 dBm  
VCC = 3 V  
Figure 4-17. TX Power vs Frequency  
Copyright © 2014–2015, Texas Instruments Incorporated  
Specifications  
19  
Submit Documentation Feedback  
Product Folder Links: CC2540T  
CC2540T  
ZHCSCZ3A JULY 2014REVISED NOVEMBER 2015  
www.ti.com.cn  
Table 4-1. Output Power and Current Consumption(1)(2)  
TYPICAL  
CURRENT CONSUMPTION  
(mA)  
TYPICAL CURRENT  
CONSUMPTION  
WITH TPS62730 (mA)  
TYPICAL  
OUTPUT POWER (dBm)  
4
0
32  
27  
24  
21  
24.6  
21  
–6  
–23  
18.5  
16.5  
(1) Measured on Texas Instruments CC2540 EM reference design with TA = 25°C, VDD = 3 V and  
fc = 2440 MHz. See SWRU191 for recommended register settings.  
(2) Measured on Texas Instruments CC2540TPS62730 EM reference design with TA = 25°C, VDD = 3 V  
and fc = 2440 MHz. See SWRU191 for recommended register settings.  
4.25 Typical Current Savings  
CC2540 Current Consumption  
TX 4dBm  
CC2540 Current Consumption  
RX SG CLKCONMOD0x80  
35  
30  
25  
20  
40  
35  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
30  
25  
DC/DC ON  
DC/DC ON  
20  
15  
10  
DC/DC OFF  
DC/DC OFF  
15  
10  
5
Current Savings  
% Current Savings  
5
0
0
0
0
2.1  
2.4  
2.7  
3
3.3  
3.6  
2.1  
2.4  
2.7  
3
3.3  
3.6  
Supply (V)  
Supply (V)  
Figure 4-18. Current Savings in TX at Room Temperature  
Figure 4-19. Current Savings in RX at Room Temperature  
See the application note (SWRA365) for information regarding the CC2540T and TPS62730 como board and the  
current savings that can be achieved using the como board.  
20  
Specifications  
Copyright © 2014–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2540T  
CC2540T  
www.ti.com.cn  
ZHCSCZ3A JULY 2014REVISED NOVEMBER 2015  
5 Detailed Description  
5.1 Overview  
The modules of the CC2540T device can be roughly divided into one of three categories:  
CPU-related modules  
Modules related to power, test, and clock distribution  
Radio-related modules  
A short description of each module is given in the following subsections.  
5.2 Functional Block Diagram  
A block diagram of the CC2540T is shown in Figure 5-1.  
Copyright © 2014–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Detailed Description  
21  
Product Folder Links: CC2540T  
CC2540T  
ZHCSCZ3A JULY 2014REVISED NOVEMBER 2015  
www.ti.com.cn  
VDD (2 V–3.6 V)  
DCOUPL  
WATCHDOG  
TIMER  
ON-CHIP VOLTAGE  
REGULATOR  
RESET_N  
RESET  
XOSC_Q2  
XOSC_Q1  
32-MHz  
POWER-ON RESET  
BROWN OUT  
CRYSTAL OSC  
CLOCK MUX  
and  
CALIBRATION  
P2_4  
P2_3  
P2_2  
P2_1  
P2_0  
32.768-kHz  
CRYSTAL OSC  
SLEEP TIMER  
HIGH-  
32-kHz  
SPEED  
DEBUG  
INTERFACE  
RC-OSC  
RC-OSC  
POWER MANAGEMENT CONTROLLER  
PDATA  
XRAM  
IRAM  
SFR  
P1_7  
P1_6  
P1_5  
P1_4  
P1_3  
P1_2  
P1_1  
P1_0  
8051 CPU  
CORE  
MEMORY  
ARBITRATOR  
FLASH  
FLASH  
UNIFIED  
DMA  
IRQ CTRL  
FLASH CTRL  
1 KB SRAM  
P0_7  
P0_6  
P0_5  
P0_4  
P0_3  
P0_2  
P0_1  
P0_0  
ANALOG COMPARATOR  
OP-AMP  
FIFOCTRL  
RADIO REGISTERS  
AES  
ENCRYPTION  
AND  
DECRYPTION  
DS  
ADC  
Link Layer Engine  
AUDIO/DC  
DEMODULATOR  
MODULATOR  
USB_N  
USB_P  
USB  
USART 0  
USART 1  
RECEIVE  
TRANSMIT  
TIMER 1 (16-Bit)  
TIMER 2  
(BLE LL TIMER)  
RF_P  
RF_N  
TIMER 3 (8-Bit)  
TIMER 4 (8-Bit)  
DIGITAL  
ANALOG  
MIXED  
B0301-05  
Figure 5-1. CC2540T Block Diagram  
5.3 Block Descriptions  
5.3.1 CPU and Memory  
The 8051 CPU core is a single-cycle 8051-compatible core. It has three different memory access busses  
(SFR, DATA, and CODE/XDATA), a debug interface, and an 18-input extended interrupt unit.  
22  
Detailed Description  
Copyright © 2014–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2540T  
 
CC2540T  
www.ti.com.cn  
ZHCSCZ3A JULY 2014REVISED NOVEMBER 2015  
The memory arbiter is at the heart of the system, as it connects the CPU and DMA controller with the  
physical memories and all peripherals through the SFR bus. The memory arbiter has four memory-access  
points, access of which can map to one of three physical memories: an SRAM, flash memory, with  
XREG/SFR registers. It is responsible for performing arbitration and sequencing between simultaneous  
memory accesses to the same physical memory.  
The SFR bus is drawn conceptually in Figure 5-1 as a common bus that connects all hardware  
peripherals to the memory arbiter. The SFR bus in the block diagram also provides access to the radio  
registers in the radio register bank, even though these are indeed mapped into XDATA memory space.  
The 8-KB SRAM maps to the DATA memory space and to parts of the XDATA memory spaces. The  
SRAM is an ultralow-power SRAM that retains its contents even when the digital part is powered off  
(power modes 2 and 3).  
The 256-KB flash block provides in-circuit programmable non-volatile program memory for the device,  
and maps into the CODE and XDATA memory spaces.  
5.3.2 Peripherals  
Writing to the flash block is performed through a flash controller that allows page-wise erasure and  
4-bytewise programming. See the User's Guide (SWRU191) for details on the flash controller.  
A versatile five-channel DMA controller is available in the system, accesses memory using the XDATA  
memory space, and thus has access to all physical memories. Each channel (trigger, priority, transfer  
mode, addressing mode, source and destination pointers, and transfer count) is configured with DMA  
descriptors that can be located anywhere in memory. Many of the hardware peripherals (AES core, flash  
controller, USARTs, timers, ADC interface, and so forth) can be used with the DMA controller for efficient  
operation by performing data transfers between a single SFR or XREG address and flash/SRAM.  
Each CC2540T contains a unique 48-bit IEEE address that can be used as the public device address for a  
Bluetooth device. Designers are free to use this address, or provide their own, as described in the  
Bluetooth specification.  
The interrupt controller services a total of 18 interrupt sources, divided into six interrupt groups, each of  
which is associated with one of four interrupt priorities. I/O and sleep timer interrupt requests are serviced  
even if the device is in a sleep mode (power modes 1 and 2) by bringing the CC2540T back to the active  
mode.  
The debug interface implements a proprietary two-wire serial interface that is used for in-circuit  
debugging. Through this debug interface, it is possible to erase or program the entire flash memory,  
control which oscillators are enabled, stop and start execution of the user program, execute instructions  
on the 8051 core, set code breakpoints, and single-step through instructions in the code. Using these  
techniques, it is possible to perform in-circuit debugging and external flash programming elegantly.  
The I/O controller is responsible for all general-purpose I/O pins. The CPU can configure whether  
peripheral modules control certain pins or whether they are under software control, and if so, whether  
each pin is configured as an input or output and if a pullup or pulldown resistor in the pad is connected.  
Each peripheral that connects to the I/O pins can choose between two different I/O pin locations to ensure  
flexibility in various applications.  
The sleep timer is an ultralow-power timer that can either use an external 32.768-kHz crystal oscillator or  
an internal 32.753-kHz RC oscillator. The sleep timer runs continuously in all operating modes except  
power mode 3. Typical applications of this timer are as a real-time counter or as a wake-up timer to get  
out of power modes 1 or 2.  
A built-in watchdog timer allows the CC2540T to reset itself if the firmware hangs. When enabled by  
software, the watchdog timer must be cleared periodically; otherwise, it resets the device when it times  
out.  
Copyright © 2014–2015, Texas Instruments Incorporated  
Detailed Description  
23  
Submit Documentation Feedback  
Product Folder Links: CC2540T  
CC2540T  
ZHCSCZ3A JULY 2014REVISED NOVEMBER 2015  
www.ti.com.cn  
Timer 1 is a 16-bit timer with timer/counter/PWM functionality. It has a programmable prescaler, a 16-bit  
period value, and five individually programmable counter/capture channels, each with a 16-bit compare  
value. Each of the counter and capture channels can be used as a PWM output or to capture the timing of  
edges on input signals. It can also be configured in IR generation mode, where it counts timer 3 periods  
and the output is ANDed with the output of timer 3 to generate modulated consumer IR signals with  
minimal CPU interaction.  
Timer 2 is a 40-bit timer used by the Bluetooth low energy stack. It has a 16-bit counter with a  
configurable timer period and a 24-bit overflow counter that can be used to keep track of the number of  
periods that have transpired. A 40-bit capture register is also used to record the exact time at which a  
start-of-frame delimiter is received or transmitted, or it is used to record the exact time at which  
transmission ends. There are two 16-bit timer-compare registers and two 24-bit overflow-compare  
registers that can be used to give exact timing for the start of RX or TX to the radio or general interrupts.  
Timer 3 and timer 4 are 8-bit timers with timer/counter/PWM functionality. They have a programmable  
prescaler, an 8-bit period value, and one programmable counter channel with an 8-bit compare value.  
Each of the counter channels can be used as PWM output.  
USART 0 and USART 1 are each configurable as either an SPI master or slave, or as a UART. They  
provide double buffering on both RX and TX and hardware flow control and are thus well suited to high-  
throughput full-duplex applications. Each USART has its own high-precision baud-rate generator, which  
leaves the ordinary timers free for other uses. When configured as SPI slaves, the USARTs sample the  
input signal using SCK directly instead of using some oversampling scheme, and are thus well-suited for  
high data rates.  
The AES encryption/decryption core allows the user to encrypt and decrypt data using the AES  
algorithm with 128-bit keys. The AES core also supports ECB, CBC, CFB, OFB, CTR, and CBC-MAC, as  
well as hardware support for CCM.  
The ADC supports 7 to 12 bits of resolution with a corresponding range of bandwidths from 30-kHz to  
4-kHz, respectively. DC and audio conversions with up to eight input channels (I/O controller pins) are  
possible. The inputs can be selected as single-ended or differential. The reference voltage can be internal,  
AVDD, or a single-ended or differential external signal. The ADC also has a temperature-sensor input  
channel. The ADC can automate the process of periodic sampling or conversion over a sequence of  
channels.  
The ultralow-power analog comparator enables applications to wake up from PM2 or PM3 based on an  
analog signal. Both inputs are brought out to pins; the reference voltage must be provided externally. The  
comparator output is connected to the I/O controller interrupt detector and can be treated by the MCU as a  
regular I/O pin interrupt.  
24  
Detailed Description  
Copyright © 2014–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2540T  
CC2540T  
www.ti.com.cn  
ZHCSCZ3A JULY 2014REVISED NOVEMBER 2015  
6 Applications, Implementation, and Layout  
NOTE  
Information in the following Applications section is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes. Customers should validate and test  
their design implementation to confirm system functionality.  
6.1 Application Information  
Few external components are required for the operation of the CC2540T. A typical application circuit is  
shown in Figure 6-1.  
32-kHz Crystal(1)  
C331  
2-V to 3.6-V Power Supply  
C401  
C321  
R301  
RBIAS 30  
DGND_USB  
USB_P  
USB_N  
DVDD_USB  
P1_5  
1
2
3
4
5
6
7
8
9
L251  
C252  
AVDD4 29  
AVDD1 28  
AVDD2 27  
Antenna  
(50 W)  
C251  
C261  
L252  
L253  
C253  
RF_N  
RF_P  
26  
25  
CC2540T  
L261  
C262  
P1_4  
DIE ATTACH PAD  
AVDD3 24  
P1_3  
XOSC_Q2  
23  
22  
P1_2  
XOSC_Q1  
P1_1  
AVDD5 21  
10 DVDD2  
XTAL1  
C221  
C231  
Power Supply Decoupling Capacitors are Not Shown  
Digital I/O Not Connected  
S0383-03  
(1) 32-kHz crystal is mandatory when running the chip in low-power modes, except if the link layer is in the standby  
state (Vol. 6 Part B Section 1.1, see [1]).  
NOTE: Different antenna alternatives will be provided as reference designs.  
Figure 6-1. CC2540T Application Circuit  
Copyright © 2014–2015, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
25  
Submit Documentation Feedback  
Product Folder Links: CC2540T  
 
CC2540T  
ZHCSCZ3A JULY 2014REVISED NOVEMBER 2015  
www.ti.com.cn  
Table 6-1. Overview of External Components (Excluding Supply Decoupling Capacitors)  
COMPONENT  
C221  
C231  
C251  
C252  
C253  
C261  
C262  
C321  
C331  
C401  
L251  
DESCRIPTION  
32-MHz XTAL loading capacitor  
VALUE  
12 pF  
12 pF  
18 pF  
1 pF  
32-MHz XTAL loading capacitor  
Part of the RF matching network  
Part of the RF matching network  
Part of the RF matching network  
Part of the RF matching network  
Part of the RF matching network  
32-kHz XTAL loading capacitor  
32-kHz XTAL loading capacitor  
Decoupling capacitor for the internal digital regulator  
Part of the RF matching network  
Part of the RF matching network  
Part of the RF matching network  
Part of the RF matching network  
Resistor used for internal biasing  
1 pF  
18 pF  
1 pF  
15 pF  
15 pF  
1 µF  
2 nH  
L252  
1 nH  
L253  
3 nH  
L261  
2 nH  
R301  
56 kΩ  
6.2 Input/Output Matching  
When using an unbalanced antenna such as a monopole, a balun should be used to optimize  
performance. The balun can be implemented using low-cost discrete inductors and capacitors. The  
recommended balun shown consists of C262, L261, C252, and L252.  
6.3 Crystal  
An external 32-MHz crystal, XTAL1, with two loading capacitors (C221 and C231) is used for the 32-MHz  
crystal oscillator. See Section 4.10 for details. The load capacitance seen by the 32-MHz crystal is given  
by Equation 1:  
1
CL =  
+ Cparasitic  
1
1
+
C221 C231  
(1)  
XTAL2 is an optional 32.768-kHz crystal, with two loading capacitors (C321 and C331) used for the  
32.768-kHz crystal oscillator. The 32.768-kHz crystal oscillator is used in applications where both very low  
sleep-current consumption and accurate wake-up times are needed. The load capacitance seen by the  
32.768-kHz crystal is given by Equation 2:  
1
CL =  
+ Cparasitic  
1
1
+
C321 C331  
(2)  
A series resistor may be used to comply with the ESR requirement.  
6.4 On-Chip 1.8-V Voltage Regulator Decoupling  
The 1.8-V on-chip voltage regulator supplies the 1.8-V digital logic. This regulator requires a decoupling  
capacitor (C401) for stable operation.  
6.5 Power-Supply Decoupling and Filtering  
Proper power-supply decoupling must be used for optimum performance. The placement and size of the  
decoupling capacitors and the power supply filtering are very important to achieve the best performance in  
an application. TI provides a compact reference design that should be followed very closely (see  
Section 6.6).  
26  
Applications, Implementation, and Layout  
版权 © 2014–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: CC2540T  
 
 
CC2540T  
www.ti.com.cn  
ZHCSCZ3A JULY 2014REVISED NOVEMBER 2015  
6.6 Reference Design  
Bluetooth Low Energy Light Reference Design  
This reference design is an example of using the SimpleLink™ Bluetooth low energy CC2540T high  
temperature range, wireless microcontroller in lighting applications. The board includes RGBW LEDs  
controlled by the CC2540T and is USB powered. The board can be controlled out-of-the-box by the TI  
BLE Multitool smart phone app.  
版权 © 2014–2015, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
27  
提交文档反馈意见  
产品主页链接: CC2540T  
CC2540T  
ZHCSCZ3A JULY 2014REVISED NOVEMBER 2015  
www.ti.com.cn  
7 器件和文档支持  
7.1 文档支持  
7.1.1 相关文档  
以下文档介绍了 CC2540T 处理器。在 www.ti.com 内提供这些文档的副本。  
[1]  
SWRU191 CC253x 适用于 2.4GHz IEEE 802.15.4  
Bluetooth® Core 技术规范,核心版本 4.0》  
ZigBee® 应用程序的片上系统解决方  
案,CC2540/41 适用于 2.4Ghz 蓝牙低能耗应用的片上系统 应用程序》  
SWRA365 使用 TPS62730 节省 CC254x 电流  
7.1.2 社区资源  
下列链接提供到 TI 社区资源的连接。 链接的内容由各个分销商按照原样提供。 这些内容并不构成 TI 技术  
规范和标准且不一定反映 TI 的观点;请见 TI 使用条款。  
TI E2E™ 在线社区 TI 工程师对工程师 (E2E) 社区。 此社区的创建目的是为了促进工程师之间协作。 在  
e2e.ti.com 中,您可以咨询问题、共享知识、探索思路,在同领域工程师的帮助下解决问题。  
德州仪器 (TI) 嵌入式处理器维基网站 德州仪器 (TI) 嵌入式处理器维基网站。 此网站的建立是为了帮助开发  
人员从德州仪器 (TI) 嵌入式处理器入门并且也为了促进与这些器件相关的硬件和软件的总体  
知识的创新和增长。  
7.2 德州仪器 (TI) 低功耗射频网站  
论坛、视频和博客  
射频设计帮助  
E2E 交流互动  
访问 www.ti.com/lprf-forum 立即体验。  
7.3 德州仪器 (TI) 低功耗射频开发者网络  
德州仪器 (TI) 建立了一个大型低功耗射频开发合作伙伴网络,帮助客户加快应用开发。此网络中包括推荐的  
公司、射频顾问和独立设计工作室,他们可提供一系列硬件模块产品和设计服务,其中包括:  
射频电路、低功耗射频和 ZigBee®设计服务  
低功耗射频和 ZigBee 模块解决方案以及开发工具  
射频认证服务和射频电路制造  
是否需要有关模块、工程服务或开发工具的帮助?  
请搜索低功耗射频开发者网络工具查找适合的合作伙伴。  
www.ti.com/lprfnetwork  
28  
器件和文档支持  
版权 © 2014–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: CC2540T  
CC2540T  
www.ti.com.cn  
ZHCSCZ3A JULY 2014REVISED NOVEMBER 2015  
7.4 低功耗射频电子新闻简报  
通过低功耗射频电子新闻简报,用户能够了解到最新的产品、新闻稿、开发者相关新闻以及关于德州仪器  
(TI) 低功耗射频产品其它新闻和活动。低功耗射频电子新闻简报文章包含可获取更多在线信息的链接。  
访问  
www.ti.com/lprfnewsletter 立即注册  
7.5 商标  
SmartRF, SimpleLink, E2E are trademarks of Texas Instruments.  
Bluetooth is a registered trademark of Bluetooth SIG, Inc.  
IAR Embedded Workbench is a trademark of IAR Systems AB.  
ZigBee is a registered trademark of ZigBee Alliance, Inc.  
All other trademarks are the property of their respective owners.  
7.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
7.7 出口管制提示  
接收方同意:如果美国或其他适用法律限制或禁止将通过非披露义务的披露方获得的任何产品或技术数据  
(其中包括软件)(见美国、欧盟和其他出口管理条例之定义)、或者其他适用国家条例限制的任何受管制  
产品或此项技术的任何直接产品出口或再出口至任何目的地,那么在没有事先获得美国商务部和其他相关政  
府机构授权的情况下,接收方不得在知情的情况下,以直接或间接的方式将其出口。  
7.8 Glossary  
TI Glossary This glossary lists and explains terms, acronyms, and definitions.  
8 机械、封装和可订购信息  
8.1 封装信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知  
且不对本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014–2015, Texas Instruments Incorporated  
机械、封装和可订购信息  
29  
提交文档反馈意见  
产品主页链接: CC2540T  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CC2540TF256RHAR  
CC2540TF256RHAT  
ACTIVE  
VQFN  
VQFN  
RHA  
40  
40  
2500 RoHS & Green NIPDAU | NIPDAUAG Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
CC2540T  
F256  
Samples  
Samples  
ACTIVE  
RHA  
250 RoHS & Green NIPDAU | NIPDAUAG Level-3-260C-168 HR  
CC2540T  
F256  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
CC2540TF256RHAR  
CC2540TF256RHAR  
CC2540TF256RHAT  
CC2540TF256RHAT  
RHA  
RHA  
RHA  
RHA  
VQFN  
VQFN  
VQFN  
VQFN  
40  
40  
40  
40  
2500  
2500  
250  
35 X 14  
35 X 14  
35 X 14  
35 X 14  
150  
150  
150  
150  
315 135.9 7620  
315 135.9 7620  
315 135.9 7620  
315 135.9 7620  
8.8  
8.8  
8.8  
8.8  
7.9  
7.9  
7.9  
7.9  
8.15  
8.15  
8.15  
8.15  
250  
Pack Materials-Page 1  
GENERIC PACKAGE VIEW  
RHA 40  
6 x 6, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225870/A  
www.ti.com  
PACKAGE OUTLINE  
RHA0040H  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
2
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
6.1  
5.9  
B
0.5  
0.3  
A
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
PIN 1 INDEX AREA  
6.1  
5.9  
(0.1)  
SIDE WALL DETAIL  
OPTIONAL METAL THICKNESS  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
(0.2) TYP  
2X 4.5  
EXPOSED  
THERMAL PAD  
11  
20  
36X 0.5  
10  
21  
SEE SIDE WALL  
DETAIL  
2X  
41  
SYMM  
4.5  
4.5 0.1  
SEE TERMINAL  
DETAIL  
1
30  
0.3  
0.2  
40X  
40  
31  
PIN 1 ID  
(OPTIONAL)  
0.1  
0.05  
C A B  
SYMM  
0.5  
0.3  
40X  
4219055/B 08/22/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHA0040H  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
4.5)  
SYMM  
40  
31  
40X (0.6)  
1
30  
40X (0.25)  
4X  
(1.27)  
(
0.2) TYP  
VIA  
(0.73)  
(5.8)  
TYP  
4X  
41  
SYMM  
(1.46)  
36X (0.5)  
10  
21  
(R0.05)  
TYP  
11  
(0.73) TYP  
4X (1.46)  
20  
4X (1.27)  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219055/B 08/22/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHA0040H  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.46) TYP  
9X ( 1.26)  
(R0.05) TYP  
40  
31  
40X (0.6)  
1
30  
40X (0.25)  
41  
(1.46)  
TYP  
SYMM  
(5.8)  
36X (0.5)  
10  
21  
METAL  
TYP  
11  
20  
SYMM  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 41:  
70% PRINTED SOLDER COVERAGE BY AREA  
SCALE:15X  
4219055/B 08/22/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

CC2540TF256RHAT

具有工业级工作温度范围的低功耗 (LE) Bluetooth® 无线 MCU | RHA | 40 | -40 to 125
TI

CC2541

TI德州仪器低功耗蓝牙BLE4.0射频片上系统SOC
TI

CC2541-Q1

符合汽车标准的 SimpleLink 低功耗 Bluetooth® 无线 MCU
TI

CC2541EMK

Bluetooth® Low Energy CC2540 Development Kit
TI

CC2541F128RHAR

2.4-GHz Bluetooth™ low energy and Proprietary System-on-Chip
TI

CC2541F128RHAT

2.4-GHz Bluetooth low energy and Proprietary System-on-Chip
TI

CC2541F256RHAR

2.4-GHz Bluetooth™ low energy and Proprietary System-on-Chip
TI

CC2541F256RHAT

2.4-GHz Bluetooth low energy and Proprietary System-on-Chip
TI

CC2541F256TRHARQ1

符合汽车标准的 SimpleLink 低功耗 Bluetooth® 无线 MCU | RHA | 40 | -40 to 105
TI

CC2541F256TRHATQ1

符合汽车标准的 SimpleLink 低功耗 Bluetooth® 无线 MCU | RHA | 40 | -40 to 105
TI

CC2541_12

2.4-GHz Bluetooth? low energy and Proprietary System-on-Chip
TI

CC2543

System-on-Chip for 2.4-GHz RF Applications
TI