CC2564CRVMR [TI]

具有基本速率 (BR)、增强数据速率 (EDR) 和低功耗 (LE) 模块的 Bluetooth® 4.2 | RVM | 76 | -40 to 85;
CC2564CRVMR
型号: CC2564CRVMR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有基本速率 (BR)、增强数据速率 (EDR) 和低功耗 (LE) 模块的 Bluetooth® 4.2 | RVM | 76 | -40 to 85

电信 电信集成电路
文件: 总55页 (文件大小:1343K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
CC2564C  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
CC2564C 双模 Bluetooth® 控制器  
1 器件概述  
1.1 特性  
1
• TI 的单片 蓝牙®解决方案支持蓝牙基本速率 (BR)、  
增强型数据速率 (EDR) 以及低功耗 (LE);提供两种  
型号:  
先级处理  
链路层拓扑散射网功能 - 可以同时作为外围设备  
和中央设备  
符合标准的蓝牙 4.2 组件(声明 IDD032801);  
最高可兼容 HCI 层  
最多支持 10 个器件的网络  
最大程度提升通道利用率的时间线优化算法  
针对尺寸受限和低成本设计进行了高度优化:  
单端 50Ω 射频 (RF) 接口  
最佳蓝牙 (RF) 性能(TX 功率、RX 灵敏度、阻  
断)  
封装尺寸:76 引脚,间距为 0.6  
mm8mm×8mm (VQFNP-MR)  
• BR EDR 特性 包括:  
最多可支持七个有源器件  
第一类 TX 功率高达 +12dBm  
内部温度检测和补偿,确保 RF 性能在温度范围  
内变化最小,无需使用外部校准  
适应时间最短的改进型自适应跳频 (AFH) 算法  
散射网:支持多达三个微微网同时运行,其中一  
个作为主网络,另外两个作为从网络  
范围更大,涵盖其他仅提供低功耗模式的解决方  
案范围的二倍  
同一微微网中支持多达两条同步面向连接 (SCO)  
链路  
延长电池寿命并简化设计的高级电源管理  
片上电源管理,包括直接连接电池  
激活、待机和扫描蓝牙模式的功耗较低  
可最大程度降低功耗的关断和休眠模式  
物理接口:  
支持所有语音空中编码 - 连续可变斜率增量  
(CVSD) 编码、A 律编码、μ 律编码、改良型子带  
编码 (mSBC) 以及透明编码(未编码)  
HFP 1.6 宽带语音配置文件 (WBS) A2DP  
配置文件提供辅助模式,旨在降低主机处理负荷  
和功耗  
支持最高蓝牙数据速率的 UART 接口  
最高速率为 4Mbps UART 传输层 (H4)  
最高速率为 4Mbps 的三线制 UART 传输层  
以增强的 QoS 支持多种蓝牙配置文件  
低耗能 特性 包括:  
(H5)  
完全可编程数字脉冲编码调制 (PCM) - 集成电路  
内置音频总线 (I2S) 编解码器接口  
支持在 MCU MPU  
多种嗅探实例紧密结合,最大程度降低功耗  
针对低功耗模型进行独立缓冲,允许大量实施多  
种不同连接,同时不影响 BR EDR 性能  
• CC256x 蓝牙硬件评估工具:  
适用于 BREDR 和低功耗模式的内置共存和优  
评估器件 RF 性能并配置服务包的 PC 应用程序  
1.2 应用  
无线音频解决方案  
mPOS  
穿戴式设备  
传感器集线器,传感器网关  
家庭与工厂自动化  
医疗设备  
机顶盒 (STB)  
1.3 说明  
TI CC2564C 器件是一款完备的 Bluetooth® BREDR 和低功耗 HCI 解决方案,能够降低设计工作量并缩短  
上市时间。基于 TI 第七代蓝牙核心,CC2564C 器件提供久经验证的解决方案,符合蓝牙 4.2 标准。当与微  
控制器单元 (MCU) 结合使用时,该 HCI 器件可提供最佳 RF 性能,射频范围约为其他蓝牙低功耗解决方案  
的两倍。此外,TI 的电源管理硬件和软件算法可显著降低所有常用蓝牙 BREDR 和低功耗运行模式的功  
耗。  
TI 双模蓝牙协议栈软件经认证并免收版税,适用于 MCU MPUiPod (Mfi) 协议 由®附加软件包提供支  
持。有关详细信息,请参见 TI 双模蓝牙协议栈。支持多种配置文件和示例 应用, 包括以下内容:  
串行端口配置 (SPP)  
高级音频分配配置 (A2DP)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SWRS199  
 
 
 
 
 
CC2564C  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
音频/视频远程控制配置文件 (AVRCP)  
免提配置文件 (HFP)  
人机界面设备 (HID)  
通用属性配置文件 (GATT)  
多种蓝牙低功耗配置文件和服务  
器件信息(1)  
封装  
产品型号  
封装尺寸  
CC2564CRVM  
RVM (76)  
8.00mm × 8.00mm × 0.60mm  
(1) 有关此类器件的详细信息,请参见9。  
空白  
1.4 功能框图  
CC2564C  
2.4-GHz  
band-pass filter  
Coprocessor  
(See Note)  
PCM-I2S  
I/O  
interface  
Modem  
arbitrator  
DRP  
BR/EDR  
main processor  
UART  
HCI  
Power  
management  
Clock  
management  
Power  
Shutdown  
Slow  
clock  
Fast  
clock  
Copyright © 2016, Texas Instruments Incorporated  
Note: 以下技术和辅助模式无法与协处理器同时使用:蓝牙低功耗、HFP 1.6 (WBS) 辅助模式以及 A2DP 辅助模式每次仅可使  
用一种技术或辅助模式。  
1-1. 功能框图  
2
器件概述  
版权 © 2016, Texas Instruments Incorporated  
 
 
CC2564C  
www.ti.com.cn  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
内容  
1
器件概.................................................... 1  
6.1 Overview ............................................ 23  
6.2 Functional Block Diagram........................... 23  
6.3 Clock Inputs ......................................... 23  
6.4 Functional Blocks.................................... 27  
6.5 Bluetooth BR and EDR Features ................... 38  
6.6 Bluetooth low energy Description ................... 39  
6.7 Bluetooth Transport Layers ......................... 40  
1.1 特性 ................................................... 1  
1.2 应用 ................................................... 1  
1.3 说明 ................................................... 1  
1.4 功能框图 .............................................. 2  
修订历史记录............................................... 3  
Device Comparison ..................................... 4  
3.1 Related Products ..................................... 4  
Terminal Configuration and Functions ............. 5  
4.1 VQFN-MR Pin Diagram............................... 5  
Specifications ............................................ 8  
5.1 Absolute Maximum Ratings .......................... 8  
5.2 ESD Ratings.......................................... 8  
5.3 Power-On Hours...................................... 8  
5.4 Recommended Operating Conditions ................ 9  
5.5 Power Consumption Summary ....................... 9  
5.6 Electrical Characteristics............................ 11  
2
3
6.8  
Changes from the CC2564B Device to the  
CC2564C Device.................................... 40  
4
5
7
8
Applications, Implementation, and Layout........ 41  
7.1  
Reference Design Schematics and BOM for Power  
and Radio Connections ............................. 41  
7.2 PCB Layout Guidelines ............................. 43  
器件和文档支持 .......................................... 47  
8.1 Third-Party Products Disclaimer .................... 47  
8.2 工具与软件 .......................................... 47  
8.3 器件命名规则 ........................................ 47  
8.4 Community Resources.............................. 47  
8.5 商标.................................................. 48  
8.6 静电放电警告 ........................................ 48  
8.7 Glossary ............................................. 48  
机械、封装和可订购信息................................ 49  
5.7  
Thermal Resistance Characteristics for VQFN-MR  
(RVM) Package .................................... 11  
5.8 Timing and Switching Characteristics............... 12  
6
Detailed Description ................................... 23  
9
2 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from April 8, 2016 to October 27, 2016  
Page  
已将文档状态更新至量产数据..................................................................................................... 1  
Copyright © 2016, Texas Instruments Incorporated  
修订历史记录  
3
Submit Documentation Feedback  
Product Folder Links: CC2564C  
 
CC2564C  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
3 Device Comparison  
Table 3-1 lists the features of the CC2564C device.  
Table 3-1. CC2564C Device Features  
ASSISTED MODES  
SUPPORTED(1)  
TECHNOLOGY SUPPORTED  
DEVICE  
DESCRIPTION  
LOW  
HFP 1.6  
BR, EDR  
A2DP  
ENERGY  
(WBS)  
CC2564C  
Bluetooth 4.2 + Bluetooth low energy  
(1) The assisted modes (HFP 1.6 and A2DP) are not supported simultaneously. Furthermore, the assisted modes are not supported  
simultaneously with Bluetooth low energy.  
3.1 Related Products  
Wireless Connectivity The wireless connectivity portfolio offers a wide selection of low-power RF  
solutions suitable for a broad range of application. The offerings range from fully customized  
solutions to turnkey offerings with precertified hardware and software (protocol).  
Companion Products Review products that are frequently purchased or used with the CC2564C product.  
Reference Designs for CC2564 The TI Designs Reference Design Library is a robust reference design  
library spanning analog, embedded processor, and connectivity. Created by TI experts to  
help you jump-start your system design, all TI Designs include schematic or block diagrams,  
BOMs and design files to speed your time to market. Search and download designs at  
ti.com/tidesigns.  
4
Device Comparison  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
 
CC2564C  
www.ti.com.cn  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
4 Terminal Configuration and Functions  
4.1 VQFN-MR Pin Diagram  
Figure 4-1 shows the bottom view of the pin diagram (VQFN-MR package).  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
NC  
NC  
DIG_LDO_OUT  
HCI_CTS  
DIG_LDO_OUT  
VSS  
A30  
A29  
A28  
A27  
A26  
A25  
A24  
A23  
A22  
A21  
B27  
B26  
B25  
B24  
B23  
B22  
B21  
B20  
B19  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
SRAM_LDO_OUT  
DIG_LDO_OUT  
MLDO_OUT  
DIG_LDO_OUT  
VSS_FREF  
VDD_IO  
NC  
XTALM/FREFM  
XTALP/FREFP  
MLDO_OUT  
TX_DBG  
HCI_RX  
NC  
MLDO_IN  
SLOW_CLK  
VDD_IO  
VSS  
nSHUTD  
CL1.5_LDO_IN  
CL1.5_LDO_OUT  
MLDO_OUT  
VDD_IO  
NC  
ADC_PPA_LDO_OUT  
BT_RF  
NC  
NC  
MLDO_OUT  
VDD_IO  
NC  
B9  
NC  
NC  
SWRS121-002  
Figure 4-1. VQFN-MR Package Pin Diagram  
Bottom View  
Copyright © 2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
5
Submit Documentation Feedback  
Product Folder Links: CC2564C  
 
CC2564C  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
4.1.1 Pin Attributes (VQFN-MR Package)  
Table 4-1 describes the pin attributes for the VQFN-MR package.  
SPACER  
Table 4-1. Pin Attributes (VQFN-MR Package)  
PULL AT  
RESET  
DEF.  
I/O  
NAME  
NO.  
DESCRIPTION  
DIR.(1)  
Type(2)  
I/O Signals  
HY, 4  
mA  
AUD_CLK  
B32  
PD  
I/O  
PCM clock  
Fail-safe  
AUD_FSYNC  
AUD_IN  
A35  
B34  
B33  
PD  
PD  
PD  
I/O  
I
4 mA  
4 mA  
4 mA  
PCM frame-sync signal  
PCM data input  
Fail-safe  
Fail-safe  
Fail-safe  
AUD_OUT  
O
PCM data output  
HCI UART clear-to-send  
HCI_CTS  
HCI_RX  
A29  
A26  
PU  
PU  
I
I
8 mA  
8 mA  
The device is allowed to send data  
when HCI_CTS is low.  
HCI universal asynchronous  
receiver/transmitter (UART) data  
receive  
HCI UART request-to-send  
The host is allowed to send data when  
HCI_RTS is low.  
HCI_RTS  
HCI_TX  
A32  
A33  
B24  
PU  
PU  
PU  
O
O
O
8 mA  
8 mA  
2 mA  
HCI UART data transmit  
TI internal debug messages. TI  
recommends leaving an internal test  
point.  
TX_DBG  
Clock Signals  
SLOW_CLK  
A25  
B4  
I
I
32.768-kHz clock in  
Fail-safe  
Fail-safe  
Fast clock in analog (sine wave)  
Output terminal of fast-clock crystal  
XTALP/FREFP  
XTALM/FREFM  
Fast clock in digital (square wave)  
Input terminal of fast-clock crystal  
A4  
I
Fail-safe  
Analog Signals  
BT_RF  
B8  
A6  
I/O  
I
Bluetooth RF I/O  
nSHUTD  
PD  
Shutdown input (active low)  
Power and Ground Signals  
ADC_PPA_LDO_OUT  
A8  
B6  
O
I
ADC/PPA LDO output  
Power amplifier (PA) LDO input  
Connect directly to battery  
CL1.5_LDO_IN  
CL1.5_LDO_OUT  
DCO_LDO_OUT  
A7  
O
O
PA LDO output  
A12  
DCO LDO output  
A2, A3,  
B15,  
B26,  
B27,  
B35, B36  
Digital LDO output  
QFN pin B26 or B27 must be shorted  
to other DIG_LDO_OUT pins on the  
PCB.  
DIG_LDO_OUT  
O
Main LDO input  
Connect directly to battery  
MLDO_IN  
B5  
I
A5, A9,  
B2, B7  
MLDO_OUT  
I/O  
O
Main LDO output (1.8-V nominal)  
SRAM LDO output  
SRAM_LDO_OUT  
B1  
(1) I = input; O = output; I/O = bidirectional  
(2) I/O Type: Digital I/O cells. HY = input hysteresis, current = typical output current  
6
Terminal Configuration and Functions  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
 
 
CC2564C  
www.ti.com.cn  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
Table 4-1. Pin Attributes (VQFN-MR Package) (continued)  
PULL AT  
RESET  
DEF.  
I/O  
NAME  
NO.  
DESCRIPTION  
DIR.(1)  
Type(2)  
A17,  
A34,  
A38,  
VDD_IO  
B18,  
I
I/O power supply (1.8-V nominal)  
B19,  
B21,  
B22, B25  
VSS  
A24, A28  
B11  
I
I
I
Ground  
VSS_DCO  
VSS_FREF  
DCO ground  
Fast clock ground  
B3  
4.1.2 Connections for Unused Signals (VQFN-MR Package)  
Section 4.1.2 lists the connections for unused signals for the VQFN-MR package.  
SPACER  
FUNCTION  
PIN NUMBER  
DESCRIPTION  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
A1  
Not connected  
Not connected  
Not connected  
Not connected  
Not connected  
Not connected  
Not connected  
Not connected  
Not connected  
Not connected  
Not connected  
Not connected  
Not connected  
Not connected  
Not connected  
Not connected  
Not connected  
Not connected  
Not connected  
Not connected  
TI internal use  
TI internal use  
TI internal use  
TI internal use  
TI internal use  
TI internal use  
TI internal use  
TI internal use  
TI internal use  
TI internal use  
TI internal use  
TI internal use  
TI internal use  
A10  
A11  
A14  
A18  
A19  
A20  
A21  
A22  
A23  
A27  
A30  
A31  
A40  
B9  
B10  
B16  
B17  
B20  
B23  
A13  
A15  
A16  
A36  
A37  
A39  
B12  
B13  
B14  
B29  
B30  
B31  
B28  
Copyright © 2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
7
Submit Documentation Feedback  
Product Folder Links: CC2564C  
 
CC2564C  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
5 Specifications  
Unless otherwise indicated, all measurements are taken at the device pins of the TI test evaluation board  
(EVB). All specifications are over process, voltage, and temperature, unless otherwise indicated.  
5.1 Absolute Maximum Ratings(1)  
Over operating free-air temperature range (unless otherwise indicated). All parameters are measured as follows:  
VDD_IN = 3.6 V and VDD_IO = 1.8 V (unless otherwise indicated).  
MIN  
–0.5  
–0.5  
–0.5  
–0.5  
MAX  
UNIT  
V(2)  
V
VDD_IN  
4.8  
Supply voltage  
VDDIO_1.8 V  
2.145  
Input voltage to analog pins(3)  
Input voltage to all other pins  
Bluetooth RF inputs  
2.1  
V
VDD_IO + 0.5  
V
10  
85  
dBm  
°C  
(4)  
Operating ambient temperature, TA  
Storage temperature, Tstg  
–40  
–55  
125  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Maximum allowed depends on accumulated time at that voltage: VDD_IN is defined in Section 7.1.  
(3) Analog pins: BT_RF, XTALP, and XTALM  
(4) The reference design supports a temperature range of –20°C to +70°C because of the operating conditions of the crystal.  
5.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±500  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
5.3 Power-On Hours  
DEVICE  
CONDITIONS  
POWER-ON HOURS  
15,400 (7 years)  
Duty cycle = 25% active and 75% sleep  
Tambient = 85ºC  
CC2564C  
8
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
CC2564C  
www.ti.com.cn  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
5.4 Recommended Operating Conditions  
MIN  
MAX  
4.8  
UNIT  
VDD_IN  
VDD_IO  
VIH  
Power supply voltage  
I/O power supply voltage  
High-level input voltage  
Low-level input voltage  
1.7  
V
V
V
V
1.62  
0.65 × VDD_IO  
0
1.92  
Default condition  
Default condition  
VDD_IO  
VIL  
0.35 × VDD_IO  
I/O input rise and all times,  
10% to 90%—asynchronous mode  
tr and tf  
1
1
10  
ns  
ns  
I/O input rise and fall times,  
10% to 90%—synchronous mode (PCM)  
2.5  
Condition: 0 to 0.1 MHz  
Condition: 0.1 to 0.5 MHz  
Condition: 0.5 to 2.5 MHz  
Condition: 2.5 to 3.0 MHz  
Condition: > 3.0 MHz  
60  
50  
30  
15  
5
Maximum ripple on VDD_IN (sine wave) for  
1.8 V (DC-DC) mode  
mVp-p  
Voltage dips on VDD_IN (VBAT)  
Duration = 577 µs to 2.31 ms, period = 4.6 ms  
Maximum ambient operating temperature(1)  
400  
85  
mV  
°C  
(2)  
–40  
(1) The device can be reliably operated for 7 years at Tambient of 85°C, assuming 25% active mode and 75% sleep mode (15,400  
cumulative active power-on hours).  
(2) A crystal-based solution is limited by the temperature range required for the crystal to meet 20 ppm.  
5.5 Power Consumption Summary  
5.5.1 Static Current Consumption  
OPERATIONAL MODE  
MIN  
TYP  
1
MAX  
7
UNIT  
Shutdown mode(1)  
Deep sleep mode(2)  
µA  
µA  
40  
105  
1
Total I/O current consumption in active mode  
Continuous transmission—GFSK(3)  
Continuous transmission—EDR(4)(5)  
mA  
mA  
mA  
107  
112.5  
(1) VBAT + VIO + VSHUTDOWN  
(2) VBAT + VIO  
(3) At maximum output power dBm  
(4) At maximum output power dBm  
(5) Both π/4 DQPSK and 8DPSK  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
9
Submit Documentation Feedback  
Product Folder Links: CC2564C  
CC2564C  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
5.5.2 Dynamic Current Consumption  
5.5.2.1 Current Consumption for Different Bluetooth BR and EDR Scenarios  
Conditions: VDD_IN = 3.6 V, 25°C, 26-MHz XTAL, nominal unit, 10-dBm output power  
OPERATIONAL MODE  
MASTER AND SLAVE  
Master and slave  
Master and slave  
Master and slave  
Master and slave  
Master and slave  
Master and slave  
Master and slave  
Master and slave  
AVERAGE CURRENT  
UNIT  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
SCO link HV3  
13.7  
13.2  
10  
Extended SCO (eSCO) link EV3 64 kbps, no retransmission  
eSCO link 2-EV3 64 kbps, no retransmission  
GFSK full throughput: TX = DH1, RX = DH5  
EDR full throughput: TX = 2-DH1, RX = 2-DH5  
EDR full throughput: TX = 3-DH1, RX = 3-DH5  
Sniff, four attempts, 1.28 seconds  
40.5  
41.2  
41.2  
145  
320  
Page or inquiry scan 1.28 seconds, 11.25 ms  
µA  
Page (1.28 seconds) and inquiry (2.56 seconds) scans,  
11.25 ms  
Master and slave  
445  
µA  
A2DP source  
Master  
Master  
Master  
Master  
13.9  
15.2  
16.9  
18.1  
mA  
mA  
mA  
mA  
A2DP sink  
Assisted A2DP source  
Assisted A2DP sink  
Assisted WBS EV3; retransmit effort = 2;  
maximum latency = 8 ms  
Master and slave  
Master and slave  
17.5 and 18.5  
11.9 and 13  
mA  
mA  
Assisted WBS 2EV3; retransmit effort = 2;  
maximum latency = 12 ms  
5.5.2.2 Current Consumption for Different Low-Energy Scenarios  
Conditions: VDD_IN = 3.6 V, 25°C, nominal unit, 10-dBm output power  
AVERAGE  
CURRENT  
MODE  
DESCRIPTION  
UNIT  
Advertising in all three channels  
1.28-seconds advertising interval  
15 bytes advertise data  
Advertising, nonconnectable  
114  
µA  
Advertising in all three channels  
1.28-seconds advertising interval  
15 bytes advertise data  
Advertising, discoverable  
Scanning  
138  
324  
µA  
µA  
µA  
Listening to a single frequency per window  
1.28-seconds scan interval  
11.25-ms scan window  
Master role  
Slave role  
500-ms connection interval  
0-ms slave connection latency  
Empty TX and RX LL packets  
169  
199  
Connected  
10  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
CC2564C  
www.ti.com.cn  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
5.6 Electrical Characteristics  
RATING  
CONDITION  
At 2, 4, 8 mA  
MIN  
MAX  
VDD_IO  
UNIT  
0.8 × VDD_IO  
High-level output voltage, VOH  
Low-level output voltage, VOL  
V
At 0.1 mA  
VDD_IO – 0.2  
VDD_IO  
At 2, 4, 8 mA  
At 0.1 mA  
0
0
1
0.2 × VDD_IO  
0.2  
V
Resistance  
Capacitance  
CL = 20 pF  
Typical = 6.5  
Typical = 27  
Typical = 100  
Typical = 100  
MΩ  
pF  
ns  
I/O input impedance  
5
10  
Output rise and fall times, 10% to 90% (digital pins)  
PU  
PD  
PU  
PD  
3.5  
9.5  
50  
9.7  
55  
PCM–I2S bus, TX_DBG  
I/O pull  
µA  
currents  
300  
360  
All others  
50  
5.7 Thermal Resistance Characteristics for VQFN-MR (RVM) Package  
over operating free-air temperature range (unless otherwise noted)  
THERMAL METRICS(1)  
C/W(2)  
Rθja  
Junction-to-free-air  
34.6  
17.9  
1.6  
Rθjctop  
Rθjcbottom  
Rθjb  
Junction-to-case-top  
Junction-to-case-bottom  
Junction-to-board  
12.0  
0.2  
φjt  
Junction-to-package-top  
Junction-to-package-bottom  
φjb  
12.0  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these  
EIA/JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
Power dissipation of 2 W and an ambient temperature of 70ºC is assumed.  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
11  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
CC2564C  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
5.8 Timing and Switching Characteristics  
5.8.1 Device Power Supply  
The CC2564C power-management hardware and software algorithms provide significant power savings,  
which is a critical parameter in an MCU-based system.  
The power-management module is optimized for drawing extremely low currents.  
5.8.1.1 Power Sources  
The CC2564C device requires two power sources:  
VDD_IN: main power supply for the device  
VDD_IO: power source for the 1.8-V I/O ring  
The HCI module includes several on-chip voltage regulators for increased noise immunity and can be  
connected directly to the battery.  
5.8.1.2 Device Power-Up and Power-Down Sequencing  
The device includes the following power-up requirements (see Figure 5-1):  
nSHUTD must be low. VDD_IN and VDD_IO are don't care I/O pins when nSHUTD is low. However,  
signals are not allowed on the I/O pins if I/O power is not supplied, because the I/Os are not fail-safe.  
Exceptions are SLOW_CLK_IN and AUD_xxx, which are fail-safe and can tolerate external voltages  
with no VDD_IO and VDD_IN.  
VDD_IO and VDD_IN must be stable before releasing nSHUTD.  
The fast clock must be stable within 20 ms of nSHUTD going high.  
The slow clock must be stable within 2 ms of nSHUTD going high.  
The device indicates that the power-up sequence is complete by asserting RTS low, which occurs up to  
100 ms after nSHUTD goes high. If RTS does not go low, the device is not powered up. In this case,  
ensure that the sequence and requirements are met.  
12  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
CC2564C  
www.ti.com.cn  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
Shut down  
before  
VDD_IO  
removed  
20 µs max  
nSHUTD  
VDD_IO  
VDD_IN  
2 ms max  
SLOW CLOCK  
20 ms max  
FAST CLOCK  
HCI_RTS  
ꢀ00 ms  
CC256x ready  
Copyright © 20ꢀ6, Texas Instruments Incorporated  
Figure 5-1. Power-Up and Power-Down Sequencing  
5.8.1.3 Power Supplies and Shutdown—Static States  
The nSHUTD signal puts the device in ultra-low-power mode and performs an internal reset to the device.  
The rise time for nSHUTD must not exceed 20 µs; nSHUTD must be low for a minimum of 5 ms.  
To prevent conflicts with external signals, all I/O pins are set to the high-impedance (Hi-Z) state during  
shutdown and power up of the device. The internal pull resistors are enabled on each I/O pin, as  
described in Section 4.1.1. Table 5-1 lists and describes the static operation states.  
Table 5-1. Power Modes  
(1)  
VDD_IN  
VDD_IO(1)  
nSHUTD(1)  
PM_MODE  
COMMENTS  
I/O state is undefined. No I/O voltages  
are allowed on nonfail-safe pins.  
1
2
3
None  
None  
Asserted  
Shutdown  
I/O state is undefined. No I/O voltages  
are allowed on nonfail-safe pins.  
None  
None  
None  
Deasserted  
Asserted  
Not allowed  
Shutdown  
I/Os are defined as tri-state pins with  
internal pullup or pulldown enabled.  
Present  
I/O state is undefined. No I/O voltages  
are allowed on nonfail-safe pins.  
4
5
6
None  
Present  
None  
Deasserted  
Asserted  
Not allowed  
Shutdown  
Present  
Present  
I/O state is undefined.  
I/O state is undefined. No I/O voltages  
are allowed on nonfail-safe pins.  
None  
Deasserted  
Not allowed  
I/Os are defined as tri-state pins with  
internal pullup or pulldown enabled.  
7
8
Present  
Present  
Present  
Present  
Asserted  
Shutdown  
Active  
Deasserted  
See Section 5.8.1.4.  
(1) The terms None or Asserted can imply any of the following conditions: directly pulled to ground or driven low, pulled to ground through a  
pulldown resistor, or left NC or floating (high-impedance output stage).  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
13  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
 
CC2564C  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
5.8.1.4 I/O States in Various Power Modes  
CAUTION  
Some device I/Os are not fail-safe (see Section 4.1.1). Fail-safe means that the  
pins do not draw current from an external voltage applied to the pin when I/O  
power is not supplied to the device. External voltages are not allowed on these  
I/O pins when the I/O supply voltage is not supplied because of possible  
damage to the device.  
Table 5-2 lists the I/O states in various power modes.  
Table 5-2. I/O States in Various Power Modes  
SHUTDOWN(1)  
DEFAULT ACTIVE(1)  
I/O State Pull  
DEEP SLEEP(1)  
I/O NAME  
HCI_RX  
I/O State  
Pull  
PU  
PU  
PU  
PU  
PD  
PD  
PD  
PD  
PU  
I/O State  
Pull  
Z
Z
Z
Z
Z
Z
Z
Z
Z
I
PU  
I
O
O
I
PU  
HCI_TX  
O-H  
HCI_RTS  
HCI_CTS  
AUD_CLK  
AUD_FSYNC  
AUD_IN  
O-H  
I
I
PU  
PD  
PD  
PD  
PD  
PU  
PD  
PD  
PD  
PD  
I
I
I
I
I
AUD_OUT  
TX_DBG  
Z
O
Z
(1) I = input, O = output, Z = Hi-Z, – = no pull, PU = pullup, PD = pulldown, H = high, L = low  
5.8.1.5 nSHUTD Requirements  
PARAMETER  
MIN  
1.42  
0
MAX  
1.98  
0.4  
UNIT  
(1)  
VIH  
VIL  
Operation mode level  
Shutdown mode level  
V
V
(1)  
Minimum time for nSHUT_DOWN low to reset the device  
Rise and fall times  
5
ms  
µs  
tr and tf  
20  
(1) An internal pulldown retains shutdown mode when no external signal is applied to this pin.  
14  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
 
CC2564C  
www.ti.com.cn  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
5.8.2 Clock Specifications  
5.8.2.1 Slow Clock Requirements  
An external source must supply the slow clock and connect to the SLOW_CLK_IN pin (for example, the  
host or external crystal oscillator). The source must be a digital signal in the range of 0 to 1.8 V. The  
accuracy of the slow-clock frequency must be 32.768 kHz ±250 ppm for Bluetooth use (as specified in the  
Bluetooth specification). The external slow clock must be stable within 64 slow-clock cycles (2 ms)  
following the release of nSHUTD.  
space  
CHARACTERISTICS  
CONDITION  
MIN  
TYP  
MAX  
UNIT  
Input slow-clock frequency  
32768  
Hz  
Input slow-clock accuracy  
(Initial + temp + aging)  
Bluetooth  
±250  
200  
ppm  
ns  
Input transition time tr and tf  
(10% to 90%)  
tr and tf  
Frequency input duty cycle  
15%  
50%  
85%  
VDD_IO  
VIH  
VIL  
0.65 × VDD_IO  
V peak  
V peak  
MΩ  
Square wave,  
DC-coupled  
Slow-clock input voltage limits  
0
1
0.35 × VDD_IO  
Input impedance  
Input capacitance  
5
pF  
5.8.2.2 External Fast Clock Crystal Requirements and Operation  
space  
CHARACTERISTICS  
CONDITION  
MIN  
TYP  
MAX  
UNIT  
fin  
Supported crystal frequencies  
26, 38.4  
MHz  
Frequency accuracy  
(Initial + temperature + aging)  
±20  
ppm  
26 MHz, external capacitance = 8 pF  
Iosc = 0.5 mA  
650  
490  
940  
710  
Crystal oscillator negative resistance  
Ω
26 MHz, external capacitance = 20 pF  
Iosc = 2.2 mA  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
15  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
 
CC2564C  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
5.8.2.3 Fast Clock Source Requirements (–40°C to +85°C)  
space  
CHARACTERISTICS  
Supported frequencies, FREF  
Reference frequency accuracy  
CONDITION  
MIN  
TYP  
MAX  
UNIT  
MHz  
ppm  
V
26, 38.4  
Initial + temp + aging  
±20  
0.37  
2.1  
VIL  
VIH  
–0.2  
1.0  
0.4  
0.4  
0.0  
Square wave, DC-coupled  
V
Fast-clock input voltage limits  
Sine wave, AC-coupled  
Sine wave, DC-coupled  
1.6  
Vp-p  
Vp-p  
V
1.6  
Sine wave input limits, DC-coupled  
1.6  
Fast-clock input rise time  
(as % of clock period)  
Square wave, DC-coupled  
10%  
Duty cycle  
35%  
50%  
65%  
–123.4  
–133.4  
–138.4  
@ offset = 1 kHz  
@ offset = 10 kHz  
@ offset = 100 kHz  
Phase noise for 26 MHz  
dBc/Hz  
5.8.3 Peripherals  
5.8.3.1 UART  
Figure 5-2 shows the UART timing diagram.  
HCI_RTS  
t1  
t2  
t6  
HCI_RX  
HCI_CTS  
t3  
t4  
HCI_TX  
Start bit  
Stop bit  
10 bits  
td_uart_swrs064  
Figure 5-2. UART Timing  
Table 5-3 lists the UART timing characteristics.  
Table 5-3. UART Timing Characteristics  
SYMBOL  
CHARACTERISTICS  
CONDITION  
MIN  
37.5  
TYP  
MAX UNIT  
Baud rate  
4000  
1.5%  
kbps  
Baud rate accuracy per byte  
Baud rate accuracy per bit  
RTS low to RX_DATA on  
RTS high to RX_DATA off  
CTS low to TX_DATA on  
CTS high to TX_DATA off  
CTS-high pulse width  
Receive and transmit  
–2.5%  
–12.5%  
0
Receive and transmit  
Interrupt set to 1/4 FIFO  
Hardware flow control  
12.5%  
t1  
t2  
t3  
t4  
t6  
2
2
µs  
byte  
µs  
16  
1
0
1
byte  
bit  
16  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
 
 
CC2564C  
www.ti.com.cn  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
Figure 5-3 shows the UART data frame.  
tb  
TX  
STR  
D0  
D1  
Dn  
PAR  
STP  
D2  
td_uart_swrs064  
Figure 5-3. Data Frame  
Table 5-4 describes the symbols used in Figure 5-3.  
Table 5-4. Data Frame Key  
SYMBOL  
STR  
DESCRIPTION  
Start bit  
D0...Dn  
PAR  
Data bits (LSB first)  
Parity bit (optional)  
Stop bit  
STP  
5.8.3.2 PCM  
Figure 5-4 shows the interface timing for the PCM.  
Tclk  
Tw  
Tw  
AUD_CLK  
tis  
tih  
AUD_IN / FSYNC_IN  
top  
AUD_OUT / FSYNC_OUT  
td_aud_swrs064  
Figure 5-4. PCM Interface Timing  
Table 5-5 lists the associated PCM master parameters.  
Table 5-5. PCM Master  
SYMBOL  
PARAMETER  
CONDITION  
MIN  
MAX  
UNIT  
244.14  
(4.096 MHz)  
15625  
(64 kHz)  
tclk  
Cycle time  
ns  
tw  
tis  
High or low pulse width  
AUD_IN setup time  
50% of Tclk min  
ns  
ns  
ns  
ns  
ns  
25  
0
tih  
AUD_IN hold time  
top  
top  
AUD_OUT propagation time  
FSYNC_OUT propagation time  
40-pF load  
40-pF load  
0
10  
10  
0
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
17  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
 
 
 
 
CC2564C  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
Table 5-6 lists the associated PCM slave parameters.  
Table 5-6. PCM Slave  
SYMBOL  
PARAMETER  
CONDITION  
MIN  
MAX  
UNIT  
66.67  
(15 MHz)  
tclk  
Cycle time  
ns  
tw  
Tis  
tih  
High or low pulse width  
AUD_IN setup time  
40% of Tclk  
ns  
ns  
ns  
ns  
ns  
ns  
8
0
8
0
0
AUD_IN hold time  
tis  
AUD_FSYNC setup time  
AUD_FSYNC hold time  
AUD_OUT propagation time  
tih  
top  
40-pF load  
21  
18  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
 
CC2564C  
www.ti.com.cn  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
5.8.4 RF Performance  
5.8.4.1 Bluetooth BR and EDR RF Performance  
All parameters in this section that are fast-clock dependent are verified using a 26-MHz XTAL and  
38.4-MHz TCXO.  
5.8.4.1.1 Bluetooth Receiver—In-Band Signals  
BLUETOOTH  
SPECIFICATION  
CHARACTERISTICS  
CONDITION  
MIN  
TYP  
MAX  
UNIT  
Operation frequency range  
Channel spacing  
2402  
2480  
MHz  
MHz  
Ω
1
50  
Input impedance  
GFSK, BER = 0.1%  
–91.5  
–90.5  
–81  
–95  
–70  
–70  
Sensitivity, dirty TX on(1)  
π/4-DQPSK, BER = 0.01%  
8DPSK, BER = 0.01%  
π/4-DQPSK  
–94.5  
–87.5  
1E–7  
dBm  
–70  
1E–6  
1E–6  
–5  
1E–5  
1E–5  
–20  
BER error floor at sensitivity +  
10 dB, dirty TX off  
8DPSK  
GFSK, BER = 0.1%  
π/4-DQPSK, BER = 0.1%  
8DPSK, BER = 0.1%  
Level of interferers (for n = 3, 4, and 5)  
GFSK, cochannel  
Maximum usable input power  
Intermodulation characteristics  
–10  
dBm  
dBm  
–10  
–36  
–30  
8
–39  
11  
10  
11  
π/4-DQPSK  
9.5  
13  
EDR, cochannel  
8DPSK  
16.5  
–10  
–10  
–5  
20  
21  
GFSK, adjacent ±1 MHz  
EDR, adjacent ±1 MHz, (image)  
GFSK, adjacent +2 MHz  
EDR, adjacent, +2 MHz  
GFSK, adjacent –2 MHz  
EDR, adjacent –2 MHz  
GFSK, adjacent |±3| MHz  
EDR, adjacent |±3| MHz  
–5  
0
π/4-DQPSK  
–5  
0
8DPSK  
–1  
5
–38  
–38  
–38  
–28  
–28  
–22  
–45  
–45  
–44  
–10  
–63  
–35  
–35  
–30  
–20  
–20  
–13  
–43  
–43  
–36  
–30  
–30  
–25  
–20  
–20  
–13  
–40  
–40  
–33  
C/I performance(2)  
Image = –1 MHz  
π/4-DQPSK  
dB  
8DPSK  
π/4-DQPSK  
8DPSK  
π/4-DQPSK  
8DPSK  
RF return loss  
dB  
RX mode LO leakage  
Frf = (received RF – 0.6 MHz)  
–58  
dBm  
(1) Sensitivity degradation up to 3 dB may occur for minimum and typical values where the Bluetooth frequency is a harmonic of the fast  
clock.  
(2) Numbers show ratio of desired signal to interfering signal. Smaller numbers indicate better C/I performance.  
5.8.4.1.2 Bluetooth Receiver—General Blocking  
CHARACTERISTICS  
CONDITION  
30 to 2000 MHz  
MIN  
TYP  
–6  
UNIT  
2000 to 2399 MHz  
2484 to 3000 MHz  
3 to 12.75 GHz  
–6  
Blocking performance over full range, according to Bluetooth  
specification  
dBm  
(1)  
–6  
–6  
(1) Exceptions are taken out of the total 24 allowed in the Bluetooth specification.  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
Specifications  
19  
CC2564C  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
5.8.4.1.3 Bluetooth Transmitter—GFSK  
BLUETOOTH  
SPECIFICATION  
CHARACTERISTICS  
MIN  
TYP  
MAX  
UNIT  
VDD_IN = VBAT  
12  
10  
Maximum RF output  
power(1)  
dBm  
VDD_IN = external regulator to 1.8 V  
Power variation over Bluetooth band  
Gain control range  
–1  
1
dB  
dB  
30  
5
Power control step  
2 to 8  
–20  
–40  
dB  
Adjacent channel power |M–N| = 2  
Adjacent channel power |M–N| > 2  
–45  
–50  
dBm  
dBm  
(1) To modify maximum output power, use an HCI VS command.  
5.8.4.1.4 Bluetooth Transmitter—EDR  
BLUETOOTH  
SPECIFICATION  
CHARACTERISTICS  
MIN  
TYP  
MAX  
UNIT  
VDD_IN = VBAT  
5.5  
5.5  
5.5  
5.5  
π/4-DQPSK  
VDD_IN = external regulator to 1.8 V  
VDD_IN = VBAT  
EDR output  
power(1)  
dBm  
8DPSK  
VDD_IN = external regulator to 1.8 V  
EDR relative power  
–2  
–1  
1
–4 to +1  
dB  
dB  
Power variation over Bluetooth band  
Gain control range  
1
30  
5
dB  
Power control step  
2 to 8  
–26  
–20  
–40  
dB  
Adjacent channel power |M–N| = 1  
Adjacent channel power |M–N| = 2  
Adjacent channel power |M–N| > 2  
–36  
–30  
–42  
dBc  
dBm  
dBm  
(1) To modify maximum output power, use an NCI VS command.  
5.8.4.1.5 Bluetooth Modulation—GFSK  
BLUETOOTH  
SPECIFICATION  
CHARACTERISTICS  
CONDITION  
MIN  
TYP MAX  
UNIT  
–20-dB bandwidth  
GFSK  
925  
1000  
kHz  
Mod data = 4 1 s,  
4 0 s:  
111100001111...  
F1 avg  
F2 max  
Δf1avg  
165  
130  
140 to 175  
kHz  
kHz  
Modulation characteristics  
Δf2max limit for at  
least 99.9% of all  
Δf2max  
Mod data = 1010101...  
> 115  
Δf2avg, Δf1avg  
DH1  
88%  
25  
> 80%  
< ±25  
< ±40  
< 20  
–25  
–35  
Absolute carrier frequency  
drift  
kHz  
DH3 and DH5  
35  
Drift rate  
15  
kHz/50 µs  
kHz  
Initial carrier frequency  
tolerance  
f0–fTX  
–75  
+75  
< ±75  
20  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
CC2564C  
www.ti.com.cn  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
5.8.4.1.6 Bluetooth Modulation—EDR  
BLUETOOTH  
SPECIFICATION  
CHARACTERISTICS  
CONDITION  
MIN  
TYP  
MAX  
UNIT  
Carrier frequency stability  
±5  
10  
±75  
kHz  
kHz  
Initial carrier frequency tolerance  
±75  
π/4-DQPSK  
6%  
6%  
20%  
13%  
30%  
20%  
35%  
25%  
(1)  
RMS DEVM  
8DPSK  
π/4-DQPSK  
8DPSK  
30%  
20%  
99% DEVM(1)  
π/4-DQPSK  
8DPSK  
14%  
16%  
(1)  
Peak DEVM  
(1) Maximum performance refers to maximum TX power.  
5.8.4.1.7 Bluetooth Transmitter—Out-of-Band and Spurious Emissions  
CHARACTERISTICS  
Second harmonic(1)  
Third harmonic(1)  
CONDITION  
TYP  
MAX  
–2  
UNIT  
–14  
–10  
–19  
dBm  
dBm  
dBm  
Measured at maximum output power  
–6  
Fourth harmonics(1)  
–11  
(1) Meets FCC and ETSI requirements with external filter shown in Figure 7-1.  
5.8.4.2 Bluetooth low energy RF Performance  
All parameters in this section that are fast-clock dependent are verified using a 26-MHz XTAL and a  
38.4-MHz TCXO.  
5.8.4.2.1 Bluetooth low energy Receiver—In-Band Signals  
BLUETOOTH  
CHARACTERISTIC  
CONDITION  
MIN  
TYP  
MAX  
low energy  
UNIT  
SPECIFICATION  
Operation frequency range  
Channel spacing  
2402  
2480  
MHz  
MHz  
Ω
2
50  
Input impedance  
Sensitivity, dirty TX on(1)  
PER = 30.8%; dirty TX on  
GMSK, PER = 30.8%  
–96  
–70  
–10  
dBm  
dBm  
Maximum usable input power  
–5  
Level of interferers  
(for n = 3, 4, 5)  
Intermodulation characteristics  
–30  
–50  
dBm  
GMSK, cochannel  
8
–5  
21  
15  
GMSK, adjacent ±1 MHz  
GMSK, adjacent +2 MHz  
GMSK, adjacent –2 MHz  
GMSK, adjacent |±3| MHz  
Frf = (received RF – 0.6 MHz)  
C/I performance(2)  
Image = –1 MHz  
–45  
–22  
–47  
–63  
–17  
–15  
–27  
dB  
RX mode LO leakage  
dBm  
(1) Sensitivity degradation up to 3 dB may occur where the Bluetooth low energy frequency is a harmonic of the fast clock.  
(2) Numbers show wanted signal-to-interfering signal ratio. Smaller numbers indicate better C/I performance.  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
21  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
CC2564C  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
5.8.4.2.2 Bluetooth low energy Receiver—General Blocking  
BLUETOOTH  
low energy  
SPECIFICATION  
CHARACTERISTICS  
CONDITION  
30 to 2000 MHz  
MIN  
TYP  
UNIT  
–15  
–15  
–15  
–15  
–30  
–35  
–35  
–30  
Blocking performance over full  
range, according to Bluetooth  
low energy specification(1)  
2000 to 2399 MHz  
2484 to 3000 MHz  
3 to 12.75 GHz  
dBm  
(1) Exceptions are taken out of the total 10 allowed in the Bluetooth low energy specification.  
5.8.4.2.3 Bluetooth low energy Transmitter  
BLUETOOTH  
CHARACTERISTICS  
MIN  
TYP  
MAX  
low energy  
UNIT  
SPECIFICATION  
VDD_IN = VBAT  
12(1)  
10  
10  
10  
RF output power  
dBm  
VDD_IN = External regulator to 1.8 V  
Power variation over Bluetooth low energy band  
Adjacent channel power |M-N| = 2  
1
dB  
–45  
–50  
–20  
–30  
dBm  
dBm  
Adjacent channel power |M-N| > 2  
(1) To achieve the Bluetooth low energy specification of 10-dBm maximum, an insertion loss of > 2 dB is assumed between the RF ball and  
the antenna. Otherwise, use an HCI VS command to modify the output power.  
5.8.4.2.4 Bluetooth low energy Modulation  
BLUETOOTH  
CHARACTERISTICS  
CONDITION  
Mod data = 4 1s, 4 0 s:  
MIN  
240  
185  
TYP MAX  
low energy  
SPECIFICATION  
UNIT  
kHz  
Δf1 avg  
Δf1avg  
250  
260  
225 to 275  
1111000011110000...  
Modulation  
Δf2max limit for at  
least 99.9% of all  
Δf2max  
characteristics  
Mod data = 1010101...  
210  
0.9  
185  
kHz  
Δf2 max  
Δf2avg, Δf1avg  
0.85  
–25  
0.8  
±50  
20  
Absolute carrier  
frequency drift  
25  
15  
kHz  
Drift rate  
kHz/50 ms  
Initial carrier  
frequency  
tolerance  
–75  
75  
±100  
kHz  
5.8.4.2.5 Bluetooth low energy Transceiver, Out-Of-Band and Spurious Emissions  
CHARACTERISTICS  
Second harmonic(1)  
Third harmonic(1)  
CONDITION  
TYP  
–14  
–10  
–19  
MAX  
–2  
UNIT  
dBm  
dBm  
dBm  
Measured at maximum output power  
–6  
Fourth harmonics(1)  
–11  
(1) Meets FCC and ETSI requirements with external filter shown in Figure 7-1.  
22  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
CC2564C  
www.ti.com.cn  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
6 Detailed Description  
6.1 Overview  
The CC2564C architecture comprises a DRP and a point-to-multipoint baseband core. The architecture is  
based on a single-processor ARM7TDMI® core. The device includes several on-chip peripherals to enable  
easy communication with a host system and the Bluetooth BR, EDR, and low energy core.  
6.2 Functional Block Diagram  
CC2564C  
2.4-GHz  
band-pass filter  
Coprocessor  
(See Note)  
PCM-I2S  
I/O  
interface  
Modem  
arbitrator  
DRP  
BR/EDR  
main processor  
UART  
HCI  
Power  
management  
Clock  
management  
Power  
Shutdown  
Slow  
clock  
Fast  
clock  
Copyright © 2016, Texas Instruments Incorporated  
NOTE: The following technologies and assisted modes cannot be used simultaneously with the coprocessor: Bluetooth low  
energy, assisted HFP 1.6 (WBS), and assisted A2DP. Only one technology or assisted mode can be used at a time.  
Figure 6-1. CC2564C Functional Block Diagram  
6.3 Clock Inputs  
This section describes the available clock inputs. For specifications, see Section 5.8.2.  
6.3.1 Slow Clock  
An external source must supply the slow clock and connect to the SLOW_CLK_IN pin (for example, the  
host or external crystal oscillator). The source must be a digital signal in the range of 0 V to 1.8 V. The  
accuracy of the slow-clock frequency must be 32.768 kHz ±250 ppm for Bluetooth use (as specified in the  
Bluetooth specification). The external slow clock must be stable within 64 slow-clock cycles (2 ms)  
following the release of nSHUTD.  
6.3.2 Fast Clock Using External Clock Source  
An external clock source is fed to an internal pulse-shaping cell to provide the fast-clock signal for the  
device. The device incorporates an internal, automatic clock-scheme detection mechanism that  
automatically detects the fast-clock scheme used and configures the FREF cell accordingly. This  
mechanism ensures that the electrical characteristics (loading) of the fast-clock input remain static  
regardless of the scheme used and eliminates any power-consumption penalty-versus-scheme used.  
The frequency variation of the fast-clock source must not exceed ±20 ppm (as defined by the Bluetooth  
specification).  
The external clock can be AC- or DC-coupled, sine or square wave.  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
23  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
 
CC2564C  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
6.3.2.1 External FREF DC-Coupled  
Figure 6-2 and Figure 6-3 show the clock configuration when using a square wave, DC-coupled external  
source for the fast-clock input.  
NOTE  
A shunt capacitor with a range of 10 nF must be added on the oscillator output to reject high  
harmonics and shape the signal to be close to a sinusoidal waveform.  
TI recommends using only a dedicated LDO to feed the oscillator. Do not use the same VIO  
for the oscillator and the CC2564C device.  
FREFP  
CC2564C  
FREFM  
Copyright © 2016, Texas Instruments Incorporated  
Figure 6-2. Clock Configuration (Square Wave, DC-Coupled)  
VFref [V]  
2.1  
Vhigh_min  
1.0  
Vlow_max  
0.37  
–0.2  
t
clksqtd_wrs064  
Figure 6-3. External Fast Clock (Square Wave, DC-Coupled)  
Figure 6-4 and Figure 6-5 show the clock configuration when using a sine wave, DC-coupled external  
source for the fast clock input.  
FREFP  
CC2564C  
FREFM  
VDD_IO  
Copyright © 2016, Texas Instruments Incorporated  
Figure 6-4. Clock Configuration (Sine Wave, DC-Coupled)  
24  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
 
 
 
CC2564C  
www.ti.com.cn  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
VIN  
1.6 V  
VPP = 0.4 – 1.6 Vp-p  
Vdc = 0.2 – 1.4 V  
0
t
SWRS097-023  
Figure 6-5. External Fast Clock (Sine Wave, DC-Coupled)  
6.3.2.2 External FREF Sine Wave, AC-Coupled  
Figure 6-6 and Figure 6-7 show the configuration when using a sine wave, AC-coupled external source for  
the fast-clock input.  
FREFP  
68 pF  
CC2564C  
FREFM  
VDD_IO  
Copyright © 2016, Texas Instruments Incorporated  
Figure 6-6. Clock Configuration (Sine Wave, AC-Coupled)  
VIN [V]  
1 V  
VPP = 0.4 – 1.6 Vp-p  
0.8  
0.2  
0
t
–0.2  
–0.8  
SWRS097-022  
Figure 6-7. External Fast Clock (Sine Wave, AC-Coupled)  
In cases where the input amplitude is greater than 1.6 Vp-p, the amplitude can be reduced to within limits.  
Using a small series capacitor forms a voltage divider with the internal input capacitance of approximately  
2 pF to provide the required amplitude at the device input.  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
25  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
 
 
CC2564C  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
6.3.2.3 Fast Clock Using External Crystal  
The CC2564C device incorporates an internal crystal oscillator buffer to support a crystal-based fast-clock  
scheme. The supported crystal frequencies are 26 and 38.4 MHz.  
The frequency accuracy of the fast-clock source must not exceed ±20 ppm (including the accuracy of the  
capacitors, as specified in the Bluetooth specification).  
Figure 6-8 shows the recommended fast-clock circuitry.  
CC2564C  
C1  
XTAL  
C2  
XTALM  
XTALP  
Oscillator  
buffer  
Copyright © 2016, Texas Instruments Incorporated  
Figure 6-8. Fast-Clock Crystal Circuit  
Table 6-1 lists component values for the fast-clock crystal circuit.  
Table 6-1. Fast-Clock Crystal Circuit  
Component Values  
FREQ (MHz)  
C1 (pF)(1)  
C2 (pF)(1)  
26  
12  
12  
(1) To achieve the required accuracy, values for C1 and C2 must be  
taken from the crystal manufacturer's data sheet and layout  
considerations.  
26  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
 
 
CC2564C  
www.ti.com.cn  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
6.4 Functional Blocks  
6.4.1 RF  
The CC2564C device is the third generation of Bluetooth single-chip devices using DRP architecture from  
TI. Modifications and new features added to the DRP further improve radio performance.  
Figure 6-9 shows the DRP block diagram.  
Transmitter path  
Amplitude  
TX digital data  
Digital  
ADPLL  
DPA  
Phase  
Receiver path  
IFA  
RX digital data  
Demodulation  
Filter  
ADC  
LNA  
SWRS092-005  
Copyright © 2016, Texas Instruments Incorporated  
Figure 6-9. DRP Block Diagram  
6.4.1.1 Receiver  
The receiver uses near-zero-IF architecture to convert the RF signal to baseband data. The signal  
received from the external antenna is input to a single-ended low-noise amplifier (LNA) and passed to a  
mixer that downconverts the signal to IF, followed by a filter and amplifier. The signal is then quantized by  
a sigma-delta analog-to-digital converter (ADC) and further processed to reduce the interference level.  
The demodulator digitally downconverts the signal to zero-IF and recovers the data stream using an  
adaptive-decision mechanism. The demodulator includes EDR processing with:  
State-of-the-art performance  
A maximum-likelihood sequence estimator (MLSE) to improve the performance of basic-rate GFSK  
sensitivity  
Adaptive equalization to enhance EDR modulation  
New features include:  
LNA input range narrowed to increase blocking performance  
Active spur cancellation to increase robustness to spurs  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
27  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
 
CC2564C  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
6.4.1.2 Transmitter  
The transmitter is an all-digital, sigma-delta phase-locked loop (ADPLL) based with a digitally controlled  
oscillator (DCO) at 2.4 GHz as the RF clock. The transmitter directly modulates the digital PLL. The power  
amplifier is also digitally controlled. The transmitter uses the polar-modulation technique. While the phase-  
modulated control word is fed to the ADPLL, the amplitude-modulated controlled word is fed to the class-E  
amplifier to generate a Bluetooth standard-compliant RF signal.  
New features include:  
Improved TX output power  
LMS algorithm to improve the differential error vector magnitude (DEVM)  
6.4.2 Host Controller Interface  
The CC2564C device incorporates one UART module dedicated to the HCI transport layer. The HCI  
transports commands, events, and ACL between the device and the host using HCI data packets.  
The CC2564C device supports the H4 protocol (4-wire UART) with hardware flow control and the H5  
protocol (3-wire UART) with software flow control. The CC2564C device automatically detects the protocol  
on reception of the first command.  
The maximum baud rate of the UART module is 4 Mbps; however, the default baud rate after power up is  
set to 115.2 kbps. The baud rate can thereafter be changed with a VS command. The device responds  
with a command complete event (still at 115.2 kbps), after which the baud rate change occurs.  
The UART module includes the following features:  
Receiver detection of break, idle, framing, FIFO overflow, and parity error conditions  
Transmitter underflow detection  
CTS and RTS hardware flow control (H4 protocol)  
XON and XOFF software flow control (H5 protocol)  
Table 6-2 lists the UART module default settings.  
Table 6-2. UART Module Default Settings  
PARAMETER  
Bit rate  
VALUE  
115.2 kbps  
8 bits  
Data length  
Stop bit  
1
Parity  
None  
28  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
 
CC2564C  
www.ti.com.cn  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
6.4.2.1 4-Wire UART Interface—H4 Protocol  
The H4 UART Interface includes four signals:  
TX  
RX  
CTS  
RTS  
Flow control between the host and the CC2564C device is bytewise by hardware.  
Figure 6-10 shows the H4 UART interface.  
HCI_RX  
HCI_TX  
Host_RX  
Host_TX  
Host  
CC2564C  
HCI_CTS  
HCI_RTS  
Host_CTS  
Host_RTS  
Copyright © 2016, Texas Instruments Incorporated  
Figure 6-10. H4 UART Interface  
When the UART RX buffer of the device passes the flow control threshold, it sets the HCI_RTS signal  
high to stop transmission from the host.  
When the HCI_CTS signal is set high, the device stops transmission on the interface. If HCI_CTS is set  
high while transmitting a byte, the device finishes transmitting the byte and stops the transmission.  
The H4 protocol device includes a mechanism that handles the transition between active mode and sleep  
mode. The protocol occurs through the CTS and RTS UART lines and is known as the enhanced HCI low  
level (eHCILL) power-management protocol.  
For more information on the H4 UART protocol, see Volume 4 Host Controller Interface, Part A UART  
Transport  
Layer  
of  
the  
Bluetooth  
Core  
Specifications  
(www.bluetooth.org/en-us/specification/adoptedspecifications).  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
Detailed Description  
29  
 
CC2564C  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
6.4.2.2 3-Wire UART Interface—H5 Protocol  
The H5 UART interface consists of three signals (see Figure 6-11):  
TX  
RX  
GND  
HCI_RX  
HCI_TX  
Host_RX  
Host_TX  
Host  
CC2564C  
GND  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 6-11. H5 UART Interface  
The H5 protocol supports the following features:  
Software flow control (XON/XOFF)  
Power management using the software messages:  
WAKEUP  
WOKEN  
SLEEP  
CRC data integrity check  
For more information on the H5 UART protocol, see Volume 4 Host Controller Interface, Part D Three-  
Wire UART Transport Layer of the Bluetooth Core Specifications  
(www.bluetooth.org/en-us/specification/adoptedspecifications).  
6.4.3 Digital Codec Interface  
The codec interface is a fully programmable port to support seamless interfacing with different PCM and  
I2S codec devices. The interface includes the following features:  
Two voice channels  
Master and slave modes  
All voice coding schemes defined by the Bluetooth specification: linear, A-Law, and µ-Law  
Long and short frames  
Different data sizes, order, and positions  
High flexibility to support a variety of codecs  
Bus sharing: Data_Out is in the Hi-Z state when the interface is not transmitting voice data.  
30  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
 
CC2564C  
www.ti.com.cn  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
6.4.3.1 Hardware Interface  
The interface includes four signals:  
Clock: configurable direction (input or output)  
Frame_Sync and Word_Sync: configurable direction (input or output)  
Data_In: input  
Data_Out: output or tri-state signal  
The CC2564C device can be the master of the interface when generating the Clock and Frame_Sync  
signals or the slave when receiving these two signals.  
For slave mode, clock input frequencies of up to 15 MHz are supported. At clock rates above 12 MHz, the  
maximum data burst size is 32 bits.  
For master mode, the device can generate any clock frequency from 64 kHz to 4.096 MHz.  
6.4.3.2 I2S  
When the codec interface is configured to support the I2S protocol, these settings are recommended:  
Bidirectional, full-duplex interface  
Two time slots per frame: time slot 0 for the left channel audio data; and time slot 1 for the right  
channel audio data  
The length of each time slot is configurable up to 40 serial clock cycles, and the length of the frame is  
configurable up to 80 serial clock cycles  
6.4.3.3 Data Format  
The data format is fully configurable:  
The data length can be from 8 to 320 bits in 1-bit increments when working with 2 channels, or up to  
640 bits when working with 1 channel. The data length can be set independently for each channel.  
The data position within a frame is also configurable within 1 clock (bit) resolution and can be set  
independently (relative to the edge of the Frame_Sync signal) for each channel.  
The Data_In and Data_Out bit order can be configured independently. For example; Data_In can start  
with the most significant bit (MSB); Data_Out can start with the least significant bit (LSB). Each  
channel is separately configurable. The inverse bit order (that is, LSB first) is supported only for  
sample sizes up to 24 bits.  
Data_In and Data_Out are not required to be the same length.  
The Data_Out line is configured to Hi-Z output between data words. Data_Out can also be set for  
permanent Hi-Z output, regardless of the data output. This configuration allows the device to be a bus  
slave in a multislave PCM environment. At power up, Data_Out is configured as Hi-Z output.  
6.4.3.4 Frame-Idle Period  
The codec interface handles frame-idle periods, during which the clock pauses and becomes 0 at the end  
of the frame after all data are transferred.  
The device supports frame-idle periods both as master and slave of the codec bus.  
When the device is the master of the interface, the frame-idle period is configurable. There are two  
configurable parameters:  
Clk_Idle_Start: indicates the number of clock cycles from the beginning of the frame to the beginning of  
the frame-idle period. After Clk_Idle_Start clock cycles, the clock becomes 0.  
Clk_Idle_End: indicates the time from the beginning of the frame to the end of the frame-idle period.  
The time is given in multiples of clock periods.  
The delta between Clk_Idle_Start and Clk_Idle_End is the clock idle period.  
For example, for clock rate = 1 MHz, frame sync period = 10 kHz, Clk_Idle_Start = 60, Clk_Idle_End = 90.  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
31  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
CC2564C  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
Between both Frame_Sync signals there are 70 clock cycles (instead of 100). The clock idle period starts  
60 clock cycles after the beginning of the frame and lasts 90 – 60 = 30 clock cycles. Thus, the idle period  
ends 100 – 90 = 10 clock cycles before the end of the frame. The data transmission must end before the  
beginning of the idle period.  
Figure 6-12 shows the frame idle timing.  
Frame period  
Frame_Sync  
Data_In  
Data_Out  
Frame idle  
Clock  
Clk_Idle_Start  
Clk_Idle_End  
frmidle_swrs064  
Figure 6-12. Frame Idle Period  
6.4.3.5 Clock-Edge Operation  
The codec interface of the device can work on the rising or the falling edge of the clock and can sample  
the Frame_Sync signal and the data at inversed polarity.  
Figure 6-13 shows the operation of a falling-edge-clock type of codec. The codec is the master of the bus.  
The Frame_Sync signal is updated (by the codec) on the falling edge of the clock and is therefore  
sampled (by the device) on the next rising clock. The data from the codec is sampled (by the device) on  
the falling edge of the clock.  
PCM FSYNC  
PCM CLK  
D7  
D6  
D5  
D4  
D2  
D1  
D0  
D3  
PCM DATA IN  
CC256x  
SAMPLE TIME  
SWRS121-004  
Copyright © 2016, Texas Instruments Incorporated  
Figure 6-13. Negative Clock Edge Operation  
6.4.3.6 Two-Channel Bus Example  
Figure 6-14 shows a 2-channel bus in which the two channels have different word sizes and arbitrary  
positions in the bus frame.  
32  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
 
 
CC2564C  
www.ti.com.cn  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
...  
...  
Clock  
FT  
2
127 0  
1
3
4
5
6
7
8
9
42 43 44  
127 0  
Fsync  
MSB  
bit bit bit bit bit bit bit bit  
MSB  
LSB  
LSB  
bit bit bit bit bit bit bit bit bit bit bit  
10  
...  
...  
Data_Out  
Data_In  
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
bit bit bit bit bit bit bit bit bit bit bit  
10  
bit bit bit bit bit bit bit bit  
1
0
1
2
3
4
5
6
7
8
9
0
2
3
4
5
6
7
PCM_data_window  
CH2 data  
start FT = 43  
CH1 data start FT = 0  
CH1 data length = 11  
CH2 data  
length = 8  
Fsync period = 128  
Fsync length = 1  
twochpcm_swrs064  
NOTE: FT stands for frame timer.  
Figure 6-14. 2-Channel Bus Timing  
6.4.4 Assisted Modes  
The CC2564C device contains an embedded coprocessor that can be used for multiple purposes (see  
1-1). The CC2564C device uses the coprocessor to perform the LE functionality or to execute the  
assisted HFP 1.6 (WBS) or assisted A2DP functions. Only one of these functions can be executed at a  
time because they all use the same resources (that is, the coprocessor; see Table 3-1 for the modes of  
operation supported by each device).  
This section describes the assisted HFP 1.6 (WBS) and assisted A2DP modes of operation. These modes  
of operation minimize host processing and power by taking advantage of the device coprocessor to  
perform the voice and audio SBC processing required in HFP 1.6 (WBS) and A2DP profiles. This section  
also compares the architecture of the assisted modes with the common implementation of the HFP 1.6  
and A2DP profiles.  
The assisted HFP 1.6 (WBS) and assisted A2DP modes of operation comply fully with the HFP 1.6 and  
A2DP Bluetooth specifications. For more information on these profiles, see the corresponding Bluetooth  
Profile Specification (www.bluetooth.org/en-us/specification/adopted-specifications).  
6.4.4.1 Assisted HFP 1.6 (WBS)  
The HFP 1.6 Profile Specification adds the requirement for WBS support. The WBS feature allows twice  
the voice quality versus legacy voice coding schemes at the same air bandwidth (64 kbps). This feature is  
achieved using a voice sampling rate of 16 kHz, a modified subband coding (mSBC) scheme, and a  
packet loss concealment (PLC) algorithm. The mSBC scheme is a modified version of the mandatory  
audio coding scheme used in the A2DP profile with the parameters listed in Table 6-3.  
Table 6-3. mSBC Parameters  
PARAMETER  
Channel mode  
VALUE  
Mono  
16 kHz  
Loudness  
8
Sampling rate  
Allocation method  
Subbands  
Block length  
Bitpool  
15  
26  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
33  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
 
CC2564C  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
The assisted HFP 1.6 mode of operation implements this WBS feature on the embedded CC2564C  
coprocessor. That is, the mSBC voice coding scheme and the PLC algorithm are executed in the  
CC2564C coprocessor rather than in the host, thus minimizing host processing and power. One WBS  
connection at a time is supported, and WBS and NBS connections cannot be used simultaneously in this  
mode of operation. Figure 6-15 shows the architecture comparison between the common implementation  
of the HFP 1.6 profile and the assisted HFP 1.6 solution.  
HFP 1.6 Architecture  
Assisted HFP 1.6 Architecture  
Host Processor  
Host Processor  
16 kHz  
16 bits  
PCM  
/
I2S  
Audio  
codec  
HFP1.6  
Profile  
HFP1.6  
Profile  
mSBC  
+ PLC  
Control  
Control  
Data  
Bluetooth Stack  
Bluetooth Stack  
SCO  
L2CAP  
L2CAP  
HCI  
HCI  
HCI  
Control  
Data  
Control  
HCI  
16 kHz  
16 bits  
PCM  
/
I2S  
Audio  
codec  
5ata  
CC256x  
Bluetooth Controller  
CC256x  
Bluetooth Controller  
mSBC  
+ PLC  
Copyright © 2016, Texas Instruments Incorporated  
Figure 6-15. HFP 1.6 Architecture Versus Assisted HFP 1.6 Architecture  
For detailed information on the HFP 1.6 profile, see the Hands-Free Profile 1.6 Specification  
(www.bluetooth.org/en-us/specification/adopted-specifications).  
6.4.4.2 Assisted A2DP  
The advanced audio distribution profile (A2DP) enables wireless transmission of high-quality mono or  
stereo audio between two devices. A2DP defines two roles:  
A2DP source is the transmitter of the audio stream.  
A2DP sink is the receiver of the audio stream.  
A typical use case streams music from a tablet, phone, or PC (the A2DP source) to headphones or  
speakers (the A2DP sink). This section describes the architecture of these roles and compares them with  
the corresponding assisted-A2DP architecture. To use the air bandwidth efficiently, the audio data must be  
compressed in a proper format. The A2DP mandates support of the SBC scheme. Other audio coding  
algorithms can be used; however, both Bluetooth devices must support the same coding scheme. SBC is  
the only coding scheme spread out in all A2DP Bluetooth devices; thus, it is the only coding scheme  
supported in the assisted A2DP modes. Table 6-4 lists the recommended parameters for the SBC scheme  
in the assisted A2DP modes.  
34  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
 
CC2564C  
www.ti.com.cn  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
Table 6-4. Recommended Parameters for the SBC Scheme in Assisted A2DP Modes  
SBC  
MID QUALITY  
HIGH QUALITY  
JOINT STEREO  
ENCODER  
SETTINGS(1)  
MONO  
JOINT STEREO  
MONO  
Sampling  
frequency  
(kHz)  
44.1  
19  
48  
44.1  
48  
33  
79  
44.1  
31  
48  
44.1  
48  
51  
Bitpool value  
18  
44  
35  
83  
29  
66  
53  
Resulting  
frame length  
(bytes)  
46  
70  
119  
115  
Resulting bit  
rate (Kbps)  
127  
132  
229  
237  
193  
198  
328  
345  
(1) Other settings: Block length = 16; allocation method = loudness; subbands = 8.  
The SBC scheme supports a wide variety of configurations to adjust the audio quality. Table 6-5 through  
Table 6-12 list the supported SBC capabilities in the assisted A2DP modes.  
Table 6-5. Channel Modes  
CHANNEL MODE  
STATUS  
Supported  
Supported  
Supported  
Supported  
Mono  
Dual channel  
Stereo  
Joint stereo  
Table 6-6. Sampling Frequency  
SAMPLING FREQUENCY (kHz)  
STATUS  
Supported  
Supported  
Supported  
16  
44.1  
48  
Table 6-7. Block Length  
BLOCK LENGTH  
STATUS  
Supported  
Supported  
Supported  
Supported  
4
8
12  
16  
Table 6-8. Subbands  
SUBBANDS  
STATUS  
Supported  
Supported  
4
8
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
35  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
 
CC2564C  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
Table 6-9. Allocation Method  
ALLOCATION METHOD  
STATUS  
SNR  
Supported  
Supported  
Loudness  
Table 6-10. Bitpool Values  
BITPOOL RANGE  
STATUS  
Supported  
Supported  
Assisted A2DP sink: 2–54  
Assisted A2DP source: 2–57  
Table 6-11. L2CAP MTU Size  
L2CAP MTU SIZE (BYTES)  
Assisted A2DP sink: 260–800  
Assisted A2DP source: 260–1021  
STATUS  
Supported  
Supported  
Table 6-12. Miscellaneous Parameters  
ITEM  
A2DP content protection  
AVDTP service  
VALUE  
Protected  
STATUS  
Not supported  
Supported  
Supported  
Supported  
Basic type  
L2CAP mode  
Basic mode  
L2CAP flush  
Nonflushable  
For detailed information on the A2DP profile, see the A2DP Profile Specification at Adopted Bluetooth  
Core Specifications.  
6.4.4.2.1 Assisted A2DP Sink  
The role of the A2DP sink is to receive the audio stream in an A2DP Bluetooth connection. In this role, the  
A2DP layer and its underlying layers are responsible for link management and data decoding. To handle  
these tasks, two logic transports are defined:  
Control and signaling logic transport  
Data packet logic transport  
The assisted A2DP takes advantage of this modularity to handle the data packet logic transport in the  
CC2564C device. First, the assisted A2DP implements a light L2CAP layer (L-L2CAP) and light AVDTP  
layer (L-AVDTP) to defragment the packets. Then the assisted A2DP performs the SBC decoding on-chip  
to deliver raw audio data through the device PCM–I2S interface. Figure 6-16 shows the comparison  
between a common A2DP sink architecture and the assisted A2DP sink architecture.  
36  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
CC2564C  
www.ti.com.cn  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
A2DP Sink Architecture  
Assisted A2DP Sink Architecture  
Host Processor  
Bluetooth Stack  
Host Processor  
Bluetooth Stack  
44.1 kHz  
48 kHz  
PCM  
/
I2S  
Audio  
codec  
16 bits  
A2DP  
Profile  
A2DP  
Profile  
SBC  
AVDTP  
AVDTP  
L2CAP  
Control  
Data  
Control  
L2CAP  
HCI  
HCI  
Contro  
l
Control  
Data  
5ata  
44.1 kHz  
HCI  
HCI  
PCM  
/
48 kHz  
Audio  
codec  
16 bits  
I2S  
CC256x  
Bluetooth Controller  
CC256x  
Bluetooth Controller  
SBC  
L-AVDTP  
L-L2CAP  
Copyright © 2016, Texas Instruments Incorporated  
Figure 6-16. A2DP Sink Architecture Versus Assisted A2DP Sink Architecture  
For more information on the A2DP sink role, see the A2DP Profile Specification at Adopted Bluetooth  
Core Specifications.  
6.4.4.2.2 Assisted A2DP Source  
The role of the A2DP source is to transmit the audio stream in an A2DP Bluetooth connection. In this role,  
the A2DP layer and its underlying layers are responsible for link management and data encoding. To  
handle these tasks, two logic transports are defined:  
Control and signaling logic transport  
Data packet logic transport  
The assisted A2DP takes advantage of this modularity to handle the data packet logic transport in the  
CC2564C device. First, the assisted A2DP encodes the raw data from the CC2564C PCM–I2S interface  
using an on-chip SBC encoder. Then the assisted A2DP implements an L-L2CAP layer and an L-AVDTP  
layer to fragment and packetize the encoded audio data. Figure 6-17 shows the comparison between a  
common A2DP source architecture and the assisted A2DP source architecture.  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
37  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
CC2564C  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
A2DP Source Architecture  
Assisted A2DP Source Architecture  
Host Processor  
Host Processor  
Bluetooth Stack  
Bluetooth Stack  
44.1 kHz  
48 kHz  
PCM  
/
I2S  
Audio  
codec  
16 bits  
A2DP  
Profile  
A2DP  
Profile  
SBC  
AVDTP  
AVDTP  
/ontrol  
5ata  
/ontrol  
L2CAP  
HCI  
L2CAP  
HCI  
/ontrol  
5ata  
/ontrol  
5ata  
44.1 kHz  
48 kHz  
HCI  
HCI  
PCM  
/
I2S  
Audio  
codec  
16 bits  
CC256x  
Bluetooth Controller  
CC256x  
Bluetooth Controller  
SBC  
L-AVDTP  
L-L2CAP  
Copyright © 2016, Texas Instruments Incorporated  
Figure 6-17. A2DP Source Architecture Versus Assisted A2DP Source Architecture  
For more information on the A2DP source role, see the A2DP Profile Specification at Adopted Bluetooth  
Core Specifications.  
6.5 Bluetooth BR and EDR Features  
The CC2564C device complies with the Bluetooth 4.2 specification up to the HCI layer (for family  
members and technology supported, see Table 3-1):  
Up to seven active devices  
Scatternet: Up to three piconets simultaneously, one as master and two as slaves  
Up to two SCO links on the same piconet  
Very fast AFH algorithm for asynchronous connection-oriented link (ACL) and eSCO link  
Supports typical 12-dBm TX power without an external power amplifier (PA), thus improving Bluetooth  
link robustness  
DRP single-ended 50-Ω I/O for easy RF interfacing  
Internal temperature detection and compensation to ensure minimal variation in RF performance over  
temperature  
Includes a 128-bit hardware encryption accelerator as defined by the Bluetooth specifications  
38  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
CC2564C  
www.ti.com.cn  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
Flexible PCM and I2S digital codec interface:  
Full flexibility of data format (linear, A-Law, µ-Law)  
Data width  
Data order  
Sampling  
Slot positioning  
Master and slave modes  
High clock rates up to 15 MHz for slave mode (or 4.096 MHz for master mode)  
Support for all voice air-coding  
CVSD  
A-Law  
µ-Law  
Transparent (uncoded)  
mSBC  
The CC2564C device provides an assisted mode for the HFP 1.6 (wideband speech [WBS]) profile or  
A2DP profile to reduce host processing and power.  
6.6 Bluetooth low energy Description  
The CC2564C device complies with the Bluetooth 4.2 specification up to the HCI layer (for the family  
members and technology supported, see Table 3-1):  
Solution optimized for proximity and sports use cases  
Supports up to 10 simultaneous connections  
Multiple sniff instances that are tightly coupled to achieve minimum power consumption  
Independent buffering for low energy, allowing large numbers of multiple connections without affecting  
BR or EDR performance  
Built-in coexistence and prioritization handling  
NOTE  
The assisted modes (HFP 1.6 and A2DP) are not available when Bluetooth low energy is  
enabled.  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
39  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
CC2564C  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
6.7 Bluetooth Transport Layers  
Figure 6-18 shows the Bluetooth transport layers.  
UART transport layer  
Host controller interface  
General  
modules:  
Data  
Control  
Event  
HCI vendor-  
specific  
HCI data handler  
HCI command handler  
Trace  
Timers  
Sleep  
Data  
Link manager  
Data  
Link controller  
RF  
SWRS121-016  
Copyright © 2016, Texas Instruments Incorporated  
Figure 6-18. Bluetooth Transport Layers  
6.8 Changes from the CC2564B Device to the CC2564C Device  
The CC2564C device includes the following changes:  
Support added for standard HCI command for WBS to replace HCI VS command sequence  
Part of the Core Specification Addendum 2 (CSA2)  
Easy PCM interface integration when using both WBS (16 kHz) and NBS (8 kHz)  
PLC support added for NBS (8 kHz) when working at 16-kHz PCM clock  
Option added to start and stop the PCM clock as master on the PCM bus even when voice call is not  
active or set a timer to extend the clock after voice or audio is removed  
Link layer topology support—Acts concurrently as peripheral and central low-energy device  
AFH algorithm enhancements—Improvements to the automatic frequency hopping algorithms  
40  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
 
CC2564C  
www.ti.com.cn  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
7 Applications, Implementation, and Layout  
NOTE  
Information in the following Applications section is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes. Customers should validate and test  
their design implementation to confirm system functionality.  
7.1 Reference Design Schematics and BOM for Power and Radio Connections  
Figure 7-1 shows the reference schematics for the VQFN-MR package. For complete schematics and  
PCB layout guidelines, contact your TI representative.  
Copyright © 2016, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
41  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
CC2564C  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
CC256XRVM  
NC  
Figure 7-1. Reference Schematics  
42  
Applications, Implementation, and Layout  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
CC2564C  
www.ti.com.cn  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
Table 7-1 lists the BOM for the VQFN-MR package.  
Table 7-1. Bill of Materials  
REF.  
DES.  
MANUFACTURER  
PART NUMBER  
ALT  
PART  
QTY  
VALUE  
NA  
DESCRIPTION  
MANUFACTURER  
NOTES  
Chip  
antenna  
Copper antenna  
on PCB  
1
6
2
2
2
ANT1  
ANT_IIFA_CC2420_32mil_MIR NA  
Capacitor, ceramic; 0.1-µF  
IIFA_CC2420  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
0.1 µF  
1.0 µF  
12 pF  
0.47 µF  
Kemet  
C0402C104K9RACTU  
JMK105BJ105KV-F  
6.3-V 10% X7R 0402  
Capacitor, ceramic; 1.0-µF  
6.3-V 10% X5R 0402  
Taiyo Yuden  
Capacitor, ceramic; 12 pF  
6.3-V X5R 10% 0402  
Murata Electronics  
Taiyo Yuden  
GRM1555C1H120JZ01D  
JMK105BJ474KV-F  
Capacitor, ceramic; 0.47-µF  
6.3-V X5R ±10% 0402  
DEA162450  
BT_1260B3  
(TDK)  
Filter, ceramic bandpass,  
2.45-GHz SMD  
Place brown  
marking up  
1
FL1  
2.45 GHz  
Murata Electronics  
LFB212G45SG8C341  
Oscillator; 32.768-kHz 15-pF  
1.5-V 3.3-V SMD  
Abracon  
Corporation  
1
1
OSC1  
U5  
32.768 kHz 15 pF  
CC2564CRVM  
ASH7K-32.768KHZ-T  
CC2564CRVM  
Optional  
CC2564C dual-mode Bluetooth  
controller  
Texas Instruments  
NDK  
TZ1325D  
(Tai-Saw  
TST)  
1
1
Y1  
26 MHz  
22 pF  
Crystal, 26 MHz  
NX2016SA  
Capacitor, ceramic; 22-pF  
25-V 5% NP0 0201  
Murata Electronics  
North America  
GRM0335C1E220JD01D  
(EXS00A-CS06025)  
C31  
7.2 PCB Layout Guidelines  
This section describes the PCB guidelines to speed up the PCB design using the CC256x VQFN device.  
Following these guidelines ensures that the design will pass Bluetooth SIG certification and also minimizes  
risk for regulatory certifications including FCC, ETSI, and CE. For more information, see CC256x QFN  
PCB Guidelines.  
7.2.1 General PCB Guidelines  
General PCB guidelines follow:  
You must verify the recommended PCB stackup in the PCB Design guidelines.  
You must verify the dimensions of the QFN PCB footprint in the QFN Package Information section of  
CC256x QFN PCB Guidelines and in Section 6.  
The decoupling capacitors must be as close as possible to the QFN device.  
Copyright © 2016, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
43  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
 
CC2564C  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
7.2.2 Power Supply Guidelines  
Guidelines for the power supply follow:  
The trace width must be at least 10 mils for the VBAT and VIO traces.  
The length of the traces must be as short as possible (pin to pin).  
Decoupling capacitors must be as close as possible to the QFN device:  
The MLDO_IN capacitor must be close to pin B5.  
The VDD_IO capacitor must be close to pins B18 and A17.  
Guidelines for the LDOs follow:  
The trace width for the trace between x_LDO_x pins and decoupling capacitors is at least 5 mils;  
where possible, the recommended trace width is 10 mils.  
Place the decoupling capacitor of MLDO_OUT (C20) as close as possible to pin A5.  
These capacitors must close to the following pins:  
The DIG_LDO_OUT capacitor must be close to ball B15.  
The DIG_LDO_OUT capacitor must be close to ball B27.  
The DIG_LDO_OUT capacitor must be close to ball B36.  
The DIG_LDO_OUT capacitor connected to ball B36 must be isolated from the top layer GND (see the  
Low-Dropout Capacitors section in CC256x QFN PCB Guidelines).  
The decoupling capacitors for SRAM, ADCPPA, and CL1.5 LDO_OUT must be as close as possible to  
their corresponding pins on the CC256x device.  
Place the device and capacitors together on the top side.  
The ground connection of each capacitor must be directly connected to solid ground layer (layer 2).  
The capacitor that is directly connected to pin A12 should be close to the device.  
Connect the DCO_LDO_OUT capacitor isolated from layer 1 ground directly to layer 2 solid ground.  
Guidelines for the ground layer follow:  
Layer 2 must be a solid ground plane.  
Isolate VSS_FREF from ground on the top layer and route it directly to ground on the second layer  
(see the Key VSS Ball section in CC256x QFN PCB Guidelines).  
Isolate VSS_DCO (ball B11) from ground. Include VSS_DCO in the illustration of the DCO_LDO_OUT  
capacitor (see the DCO_LDO_OUT section in CC256x QFN PCB Guidelines).  
A minimum of 13 vias on the thermal pad are required to increase ground coupling.  
Connect VSS_FREF (ball B3) directly to solid ground, not to the thermal pad.  
44  
Applications, Implementation, and Layout  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
CC2564C  
www.ti.com.cn  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
7.2.3 User Interfaces  
Guidelines for the UART follow:  
The trace width for the UART must be at least 5 mils.  
Run the four UART lines as a bus interface.  
Determine if clocks, DC supply, or RF traces are not near these UART traces.  
The ground plane on layer 2 is solid below these lines and there is ground around these traces on the  
top layer.  
Guidelines for the PCM follow:  
The trace width for the PCM must be at least 5 mils.  
Run the four PCM lines as a bus interface and approximately the same length.  
Determine if clocks, DC supply, RF traces, and LDO capacitors are not near these PCM traces.  
The ground plane on layer 2 is solid below these lines and there is ground around these traces on the  
top layer.  
Guidelines for TX_DBG follow:  
Check for an accessible test point on the board from TX_DBG pin B24.  
7.2.4 Clock Interfaces  
Guidelines for the slow clock follow:  
The trace width for the slow clock must be at least 5 mils.  
The signal lines for the slow clock must be as short as possible.  
The ground plane on layer 2 is solid below these lines and there is ground around these traces on the  
top layer.  
Guidelines for the fast clock follow:  
The trace width for the fast clock must be at least 5 mils.  
Ensure that crystal tuning capacitors are close to crystal pads.  
Make both traces (XTALM and XTALP) parallel as much as possible and approximately the same  
length.  
The ground plane on layer 2 is solid below these lines and there is ground around these traces on the  
top layer.  
Copyright © 2016, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
45  
Submit Documentation Feedback  
Product Folder Links: CC2564C  
CC2564C  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
7.2.5 RF Interface  
Guidelines for the RF Interface follow:  
TI recommends using an RF shield (not mandatory).  
Verify that RF traces are routed on the top layer and matched at 50 Ω with reference to ground.  
Route the RF line between these NC pins:  
NC_2 (A10)  
NC_3 (A11)  
NC_14 (B9)  
NC_15 (B10)  
These NC pins are grounded for better RF isolation.  
NOTE  
These pins are NC at the chip level, but TI recommends grounding them on the PCB layout  
for better RF isolation.  
Ensure the area underneath the BPF pads is grounded on layer 1 and layer 2.  
Keep RF_IN and RF_OUT of the BPF pads clear of any ground fill (see the RF Trace section in  
CC256x QFN PCB Guidelines).  
Follow guidelines specified in the vendor-specific antenna design guides (including placement of  
antenna).  
Follow guidelines specified in the vendor-specific BPF design guides.  
Verify that the Bluetooth RF trace is a 50-Ω, impedance-controlled trace with reference to solid ground.  
Ensure that the RF trace length is as short as possible.  
46  
Applications, Implementation, and Layout  
版权 © 2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: CC2564C  
CC2564C  
www.ti.com.cn  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
8 器件和文档支持  
8.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES  
NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR  
SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR  
SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
8.2 工具与软件  
设计套件与评估模块  
CC256x Bluetooth® 硬件评估工具 这款直观的用户友好型 TI 工具用于评估 TI 蓝牙芯片,能够以完整软件  
包的形式从 TI 网站下载。具体而言,该工具用于通过服务包 (SP) 配置蓝牙芯片属性,同时支  
持测试 RF 性能。  
有关开发支持工具的完整列表,请参见 TI CC256x wiki。有关定价和购买信息,请联系最近的 TI 销售办事  
处或授权分销商。  
8.3 器件命名规则  
为了标明产品开发周期的阶段,TI 为所有部件号分配了前缀。这些前缀代表了产品开发的发展阶段,即从工  
程原型直到完全合格的生产器件。  
器件开发进化流程:  
X
试验器件不一定代表最终器件的电气规范标准并且不可使用生产组装流程。  
原型器件不一定是最终芯片模型并且不一定符合最终电气标准规范。  
完全合格的芯片模型的生产版本。  
P
CC2564C xxx  
x
R = Large Reel  
T = Small Reel  
Prefix  
CC2564C  
X = Experimental device  
Blank = Qualified device  
YM7  
ZLLL G3  
Package Designator  
RVM = VQFNP-MR  
YFV = DSBGA  
Generic Part Number  
Copyright © 2016, Texas Instruments Incorporated  
Y
M
7
= Last digit of the year  
= Month in hex number, 1-C for Jan-Dec  
= Primary site code for ANM  
= Secondary site code for ANM  
Z
LLL = Assembly lot code  
= Pin 1 indicator  
8-1. CC2564C 器件命名规则  
8-2. 芯片标记(VQFN-MR 封装)  
8.4 Community Resources  
下列链接提供到 TI 社区资源的连接。 链接的内容由各个分销商按照原样提供。 这些内容并不构成 TI 技术  
规范和标准且不一定反映 TI 的观点;请见 TI 使用条款。  
TI E2E™ Online Community The TI engineer-to-engineer (E2E) community was created to foster  
collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge,  
explore ideas and help solve problems with fellow engineers.  
TI Embedded Processors Wiki Established to help developers get started with Embedded Processors  
from Texas Instruments and to foster innovation and growth of general knowledge about the  
hardware and software surrounding these devices.  
版权 © 2016, Texas Instruments Incorporated  
器件和文档支持  
47  
提交文档反馈意见  
产品主页链接: CC2564C  
CC2564C  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
www.ti.com.cn  
8.5 商标  
E2E is a trademark of Texas Instruments.  
ARM7TDMI is a registered trademark of ARM Limited.  
is a registered trademark of Apple, Inc.  
蓝牙 is a registered trademark of Bluetooth SIG, Inc.  
All other trademarks are the property of their respective owners.  
8.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
8.7 Glossary  
TI Glossary This glossary lists and explains terms, acronyms, and definitions.  
48  
器件和文档支持  
版权 © 2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: CC2564C  
CC2564C  
www.ti.com.cn  
ZHCSFX3A APRIL 2016REVISED NOVEMBER 2016  
9 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知  
且不对本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏  
版权 © 2016, Texas Instruments Incorporated  
机械、封装和可订购信息  
49  
提交文档反馈意见  
产品主页链接: CC2564C  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Dec-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CC2564CRVMR  
CC2564CRVMT  
ACTIVE  
ACTIVE  
VQFNP-MR  
VQFNP-MR  
RVM  
RVM  
76  
76  
2500 RoHS & Green  
250 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
CC2564C  
CC2564C  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Dec-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
CC2564CRVMR  
VQFNP-  
MR  
RVM  
76  
2500  
330.0  
16.4  
8.35  
8.35  
1.7  
12.0  
16.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFNP-MR RVM 76  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
CC2564CRVMR  
2500  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY