CC2640R2FYFVT [TI]

具有 128kB 闪存和 275kB ROM 的 SimpleLink™ 32 位 Arm Cortex-M3 低功耗 Bluetooth® 无线 MCU | YFV | 34 | -40 to 85;
CC2640R2FYFVT
型号: CC2640R2FYFVT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 128kB 闪存和 275kB ROM 的 SimpleLink™ 32 位 Arm Cortex-M3 低功耗 Bluetooth® 无线 MCU | YFV | 34 | -40 to 85

无线 闪存
文件: 总72页 (文件大小:4442K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CC2640R2F  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
CC2640R2F  
SimpleLink™ 低功Bluetooth®5.1 线MCU  
• 外部系统  
1 特性  
– 片上内部直流/直流转换器  
• 微控制器  
CC2590 CC2592 范围扩展器无缝集成  
– 极少的外部组件  
– 与采用各VQFN 封装SimpleLink™  
CC2640 CC2650 器件引脚兼容  
– 与采7mm x 7mm VQFN 封装SimpleLink  
™ CC2642R CC2652R 器件引脚兼容  
– 与采4mm × 4mm 5mm × 5mm VQFN 封  
SimpleLink™ CC1350 器件引脚兼容  
– 功能强大Arm® Cortex®-M3  
EEMBC CoreMark® 评分142  
– 高48MHz 的时钟速度  
275KB 非易失性存储器128KB 系统内可  
编程闪存  
– 高28KB SRAM20KB 为超低泄漏  
SRAM  
8KB SRAM 作为缓存或系RAM 用途  
– 双引cJTAG JTAG 调试  
– 支持无线升(OTA)  
• 低功耗  
– 宽电源电压范围  
• 正常运行1.8 3.8 V  
• 外部稳压器模式1.7 1.95 V  
– 有源模RX5.9 mA  
– 有源模TX0dBm 条件下):6.1 mA  
– 有源模TX+5dBm 条件下):9.1 mA  
– 有源模MCU61µA/MHz  
• 超低功耗传感器控制器  
– 可独立于系统其余部分自主运行  
16 位架构  
2KB 超低泄漏电流代码和数SRAM  
• 高效代码大小架构ROM 中装载驱动程序、  
TI-RTOS Bluetooth® 软件让更多闪存供应用程  
序使用  
– 有源模MCU48.5CoreMark/mA  
– 有源模式传感器控制器:  
• 符RoHS 标准的封装  
0.4mA + 8.2µA/MHz  
2.7mm × 2.7mm YFV DSBGA34 封装14 个  
GPIO)  
– 待机1.1μARTC 运行RAM/CPU 保持)  
– 关断100nA发生外部事件时唤醒)  
• 射(RF) 部分  
4mm × 4mm RSM VQFN32 封装10 个  
GPIO)  
– 符合低功Bluetooth® 5.1 和早LE 规范的  
2.4GHz 射频收发器  
– 出色的接收器灵敏度BLE 97dBm、  
可选择性以及阻断性能  
– 链路预算102dB (BLE)  
– 高+5dBm 的可编程输出功率  
– 单端或差RF 接口  
– 适用于符合各项全球射频规范的系统  
ETSI EN 300 328欧洲)  
EN 300 440 2 欧洲)  
FCC CFR47 15 部分美国)  
ARIB STD-T66日本)  
5mm × 5mm RHB VQFN32 封装15 个  
GPIO)  
7mm × 7mm RGZ VQFN48 (31 GPIO)  
• 外设  
– 所有数字外设引脚均可连接任GPIO  
– 四个通用计时器模块  
8 16 位计时器4 32 位计时器均采  
PWM)  
12 ADC200ksps8 通道模拟多路复用器  
– 持续时间比较器  
– 超低功耗模拟比较器  
– 可编程电流源  
UARTI2C I2S  
2 个同步串行接(SSI)SPIMICROWIRE  
TI)  
– 实时时(RTC)  
• 开发工具和软件  
– 功能全面的开发套件  
– 多种参考设计  
SmartRFStudio  
Sensor Controller Studio  
AES-128 安全模块  
IAR Embedded Workbench® for Arm®  
Code Composer Studio集成式开发环(IDE)  
Code Composer Studio™ Cloud IDE  
– 真随机数发生(TRNG)  
– 支8 个电容式感应按钮  
– 集成温度传感器  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SWRS204  
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
• 健康和医疗  
电子温度计  
SpO2  
2 应用  
• 家庭和楼宇自动化  
联网电器  
照明  
智能锁  
网关  
安防系统  
工业  
血糖监测仪血压监测仪  
称重秤  
助听器  
• 运动和健身设备  
可穿戴健身和活动监测仪  
智能追踪器  
患者监护仪  
健身器  
工厂自动化  
资产跟踪和管理  
HMI  
HID  
门禁  
电子销售终(EPOS)  
游戏  
指针设备无线键盘和鼠标)  
电子货架标(ESL)  
3 说明  
CC2640R2F 器件是一款 2.4GHz 无线微控制器 (MCU)支持低功耗 Bluetooth® 5.1 和专有 2.4GHz 应用。该器  
件经过优化可在楼宇安全系统HVAC资产跟踪医疗市场以及需要工业性能的应用中实现低功耗无线通信和  
高级传感。该器件的突出特性包括:  
• 支Bluetooth ® 5.1 特性LE PHY远距离LE 2Mb PHY高速、广播扩展、多个广播集以及对  
Bluetooth ® 5.0 和早期低功耗规范的向后兼容性和支持。  
SimpleLink™ CC2640R2F 软件开发套(SDK) 附带完全合格Bluetooth ® 5.1 软件协议栈用于在强大的  
Arm® Cortex®-M3 处理器上开发应用。  
• 延长无线应用的电池寿命RAM 保持时低待机电流1.1µA。  
• 通过具有快速唤醒功能的可编程、自主式超低功耗传感器控制CPU 实现高级检测。例如传感器控制器能  
1µA 系统电流下进1Hz ADC 采样。  
• 软件控制的专用无线电控制(Arm® Cortex®-M0) 提供灵活的低功耗射频收发器功能支持多个物理层和射频  
标准如实时定(RTLS) 技术。  
• 出色的无线电敏感度和稳健性选择性与阻断性能适用于低功Bluetooth ®125kbps LE 编码  
PHY-103dBm。  
CC2640R2F 器件SimpleLink™ 微控制(MCU) 平台的一部分该平台包括  
Wi-Fi®、低功耗 Bluetooth ®ThreadZigBee®Sub-1GHz MCU 和主机 MCU它们共用一个通用、易于使用  
的开发环境其中包含单核软件开发套件 (SDK) 和丰富的工具集。借助一次性集成的 SimpleLink™ 平台可以将  
产品组合中的任何器件组合添加至您的设计中从而在设计要求变更时实现 100% 的代码重用。如需更多信息,  
请访SimpleLink™ MCU 平台。  
器件信息(1)  
封装尺寸标称值)  
器件型号  
封装  
CC2640R2FRGZ  
CC2640R2FRHB  
CC2640R2FRSM  
CC2640R2FYFV  
VQFN (48)  
VQFN (32)  
VQFN (32)  
7.00mm × 7.00mm  
5.00mm × 5.00mm  
4.00mm × 4.00mm  
2.70mm × 2.70mm  
芯片尺寸球状引脚栅格阵(DSBGA) (34)  
(1) 详细信息请参12。  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS204  
2
Submit Document Feedback  
Product Folder Links: CC2640R2F  
 
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
4 Functional Block Diagram  
4-1 shows a block diagram for the CC2640R2F device.  
SimpleLink CC26xx Wireless MCU  
RF Core  
cJTAG  
Main CPU:  
ROM  
ADC  
ADC  
ARM  
Cortex-M3  
128-KB  
Flash  
Digital PLL  
DSP modem  
4-KB  
8-KB  
cache  
Up to 48 MHz  
61 µA/MHz  
ARM  
Cortex-M0  
SRAM  
20-KB  
SRAM  
ROM  
General Peripherals / Modules  
Sensor Controller  
2
I C  
4× 32-bit Timers  
Sensor Controller Engine  
UART  
I2S  
2× SSI (SPI, µW, TI)  
Watchdog Timer  
12-bit ADC, 200 ks/s  
2× Comparator  
10 / 14 / 15 / 31 GPIOs  
AES  
TRNG  
2
SPI-I C Digital Sensor IF  
Temp. / Batt. Monitor  
Constant Current Source  
32 ch. µDMA  
RTC  
Time-to-digital Converter  
2-KB SRAM  
DC-DC Converter  
Copyright © 2016, Texas Instruments Incorporated  
4-1. Block Diagram  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: CC2640R2F  
English Data Sheet: SWRS204  
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
Table of Contents  
8.22 Low-Power Clocked Comparator............................26  
8.23 Programmable Current Source...............................26  
8.24 Synchronous Serial Interface (SSI).........................27  
8.25 DC Characteristics..................................................28  
8.26 Thermal Resistance Characteristics....................... 30  
8.27 Timing Requirements..............................................30  
8.28 Switching Characteristics........................................31  
8.29 Typical Characteristics............................................32  
9 Detailed Description......................................................36  
9.1 Overview...................................................................36  
9.2 Functional Block Diagram.........................................36  
9.3 Main CPU..................................................................37  
9.4 RF Core.................................................................... 37  
9.5 Sensor Controller......................................................38  
9.6 Memory.....................................................................39  
9.7 Debug....................................................................... 39  
9.8 Power Management..................................................39  
9.9 Clock Systems.......................................................... 40  
9.10 General Peripherals and Modules.......................... 40  
9.11 Voltage Supply Domains.........................................42  
9.12 System Architecture................................................42  
10 Application, Implementation, and Layout................. 43  
10.1 Application Information........................................... 43  
10.2 5 × 5 External Differential (5XD) Application  
1 特性................................................................................... 1  
2 应用................................................................................... 2  
3 说明................................................................................... 2  
4 Functional Block Diagram.............................................. 3  
5 Revision History.............................................................. 5  
6 Device Comparison.........................................................6  
6.1 Related Products........................................................ 6  
7 Terminal Configuration and Functions..........................7  
7.1 Pin Diagram RGZ Package....................................7  
7.2 Signal Descriptions RGZ Package.........................8  
7.3 Pin Diagram RHB Package..................................10  
7.4 Signal Descriptions RHB Package....................... 11  
7.5 Pin Diagram YFV (Chip Scale, DSBGA)  
Package...................................................................... 12  
7.6 Signal Descriptions YFV (Chip Scale,  
DSBGA) Package........................................................12  
7.7 Pin Diagram RSM Package..................................14  
7.8 Signal Descriptions RSM Package.......................15  
8 Specifications................................................................ 16  
8.1 Absolute Maximum Ratings...................................... 16  
8.2 ESD Ratings............................................................. 16  
8.3 Recommended Operating Conditions.......................17  
8.4 Power Consumption Summary................................. 17  
8.5 General Characteristics............................................ 18  
8.6 125-kbps Coded (Bluetooth 5) RX....................... 18  
8.7 125-kbps Coded (Bluetooth 5) TX........................19  
8.8 500-kbps Coded (Bluetooth 5) RX....................... 19  
8.9 500-kbps Coded (Bluetooth 5) TX........................20  
8.10 1-Mbps GFSK (Bluetooth low energy) RX..........21  
8.11 1-Mbps GFSK (Bluetooth low energy) TX.......... 22  
8.12 2-Mbps GFSK (Bluetooth 5) RX.........................22  
8.13 2-Mbps GFSK (Bluetooth 5) TX......................... 23  
8.14 24-MHz Crystal Oscillator (XOSC_HF)...................23  
8.15 32.768-kHz Crystal Oscillator (XOSC_LF)..............23  
8.16 48-MHz RC Oscillator (RCOSC_HF)......................24  
8.17 32-kHz RC Oscillator (RCOSC_LF)........................24  
8.18 ADC Characteristics................................................24  
8.19 Temperature Sensor............................................... 25  
8.20 Battery Monitor........................................................25  
8.21 Continuous Time Comparator.................................26  
Circuit.......................................................................... 45  
10.3 4 × 4 External Single-ended (4XS) Application  
Circuit.......................................................................... 47  
11 Device and Documentation Support..........................49  
11.1 Device Nomenclature..............................................49  
11.2 Tools and Software..................................................50  
11.3 Documentation Support.......................................... 51  
11.4 Texas Instruments Low-Power RF Website............ 51  
11.5 Low-Power RF eNewsletter.................................... 51  
11.6 支持资源..................................................................51  
11.7 Trademarks............................................................. 51  
11.8 静电放电警告...........................................................51  
11.9 Export Control Notice..............................................51  
11.10 术语表................................................................... 52  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 53  
12.1 Packaging Information............................................ 53  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: CC2640R2F  
English Data Sheet: SWRS204  
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
5 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (January 2018) to Revision C (September 2020)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Changed intermodulation interferer frequencies in 8.12 ............................................................................. 22  
Changed 8-20 in 8.29 .............................................................................................................................32  
Changed IDLE value for Current in 9.8 .......................................................................................................39  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: CC2640R2F  
English Data Sheet: SWRS204  
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
6 Device Comparison  
6-1. Device Family Overview  
Device  
PHY Support  
Flash (KB) RAM (KB)  
GPIO  
Package(1)  
Bluetooth low energy  
(Normal, High Speed, Long Range)  
CC2640R2Fxxx(2)  
128  
20  
31, 15, 14, 10  
RGZ, RHB, YFV, RSM  
CC2640F128xxx  
CC2650F128xxx  
CC2630F128xxx  
CC2620F128xxx  
Bluetooth low energy (Normal)  
Multi-Protocol(3)  
128  
128  
128  
128  
20  
20  
20  
20  
31, 15, 10  
31, 15, 10  
31, 15, 10  
31, 10  
RGZ, RHB, RSM  
RGZ, RHB, RSM  
RGZ, RHB, RSM  
RGZ, RSM  
IEEE 802.15.4 (/6LoWPAN)  
IEEE 802.15.4 (RF4CE)  
(1) Package designator replaces the xxx in device name to form a complete device name, RGZ is 7-mm × 7-mm VQFN48,  
RHB is 5-mm × 5-mm VQFN32, RSM is 4-mm × 4-mm VQFN32, and YFV is 2.7-mm × 2.7-mm DSBGA.  
(2) CC2640R2Fxxx devices contain Bluetooth Low Energy Host & Controller libraries in ROM, leaving more of the 128KB Flash memory  
available for the customer application when used with supported BLE-Stack software protocol stack releases. Actual use of ROM and  
Flash memory by the protocol stack may vary depending on device software configuration. See www.ti.com for more details.  
(3) The CC2650 device supports all PHYs and can be reflashed to run all the supported standards.  
6.1 Related Products  
TI's Wireless Connectivity The wireless connectivity portfolio offers a wide selection of low-power RF solutions  
suitable for a broad range of applications. The offerings range from fully customized  
solutions to turn key offerings with pre-certified hardware and software (protocol).  
TI's SimpleLink™ Sub-1  
GHz Wireless MCUs  
Long-range, low-power wireless connectivity solutions are offered in a wide range of  
Sub-1 GHz ISM bands.  
Companion Products  
Companion Products  
Review products that are frequently purchased or used in conjunction with this  
product.  
SimpleLink™ CC2640R2 The CC2640R2 LaunchPaddevelopment kit brings easy Bluetooth® low energy  
Wireless MCU LaunchPad (BLE) connection to the LaunchPad ecosystem with the SimpleLink ultra-low power  
™ Development Kit  
CC26xx family of devices. Compared to the CC2650 LaunchPad, the CC2640R2  
LaunchPad provides the following:  
More free flash memory for the user application in the CC2640R2 wireless MCU  
Out-of-the-box support for Bluetooth 4.2 specification  
4× faster Over-the-Air download speed compared to Bluetooth 4.1  
SimpleLink™ Bluetooth  
The new SensorTag IoT kit invites you to realize your cloud-connected product idea.  
low energy/Multi-standard The new SensorTag now includes 10 low-power MEMS sensors in a tiny red  
SensorTag  
package. And it is expandable with DevPacks to make it easy to add your own  
sensors or actuators.  
Reference Designs for  
CC2640  
TI Designs Reference Design Library is a robust reference design library spanning  
analog, embedded processor and connectivity. Created by TI experts to help you  
jump-start your system design, all TI Designs include schematic or block diagrams,  
BOMs, and design files to speed your time to market. Search and download designs  
at ti.com/tidesigns.  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: CC2640R2F  
English Data Sheet: SWRS204  
 
 
 
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
7 Terminal Configuration and Functions  
7.1 Pin Diagram RGZ Package  
DIO_24 37  
DIO_25 38  
DIO_26 39  
DIO_27 40  
DIO_28 41  
DIO_29 42  
DIO_30 43  
VDDS 44  
24 JTAG_TMSC  
23 DCOUPL  
22 VDDS3  
21 DIO_15  
20 DIO_14  
19 DIO_13  
18 DIO_12  
17 DIO_11  
16 DIO_10  
15 DIO_9  
VDDR 45  
X24M_N 46  
X24M_P 47  
VDDR_RF 48  
14 DIO_8  
13 VDDS2  
7-1. RGZ Package 48-Pin VQFN (7-mm × 7-mm) Pinout, 0.5-mm Pitch  
I/O pins marked in 7-1 in bold have high-drive capabilities; they are the following:  
Pin 10, DIO_5  
Pin 11, DIO_6  
Pin 12, DIO_7  
Pin 24, JTAG_TMSC  
Pin 26, DIO_16  
Pin 27, DIO_17  
I/O pins marked in 7-1 in italics have analog capabilities; they are the following:  
Pin 36, DIO_23  
Pin 37, DIO_24  
Pin 38, DIO_25  
Pin 39, DIO_26  
Pin 40, DIO_27  
Pin 41, DIO_28  
Pin 42, DIO_29  
Pin 43, DIO_30  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: CC2640R2F  
English Data Sheet: SWRS204  
 
 
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
7.2 Signal Descriptions RGZ Package  
7-1. Signal Descriptions RGZ Package  
NAME  
NO.  
33  
23  
5
TYPE  
DESCRIPTION  
DCDC_SW  
DCOUPL  
DIO_0  
Power  
Output from internal DC/DC(1)  
Power  
1.27-V regulated digital-supply decoupling capacitor(2)  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
GPIO, Sensor Controller  
DIO_1  
6
GPIO, Sensor Controller  
DIO_2  
7
GPIO, Sensor Controller  
DIO_3  
8
GPIO, Sensor Controller  
DIO_4  
9
GPIO, Sensor Controller  
DIO_5  
10  
11  
12  
14  
15  
16  
17  
18  
19  
20  
21  
26  
27  
28  
29  
30  
31  
32  
36  
37  
38  
39  
40  
41  
42  
43  
24  
25  
35  
GPIO, Sensor Controller, high-drive capability  
DIO_6  
GPIO, Sensor Controller, high-drive capability  
DIO_7  
GPIO, Sensor Controller, high-drive capability  
DIO_8  
GPIO  
DIO_9  
GPIO  
DIO_10  
DIO_11  
DIO_12  
DIO_13  
DIO_14  
DIO_15  
DIO_16  
DIO_17  
DIO_18  
DIO_19  
DIO_20  
DIO_21  
DIO_22  
DIO_23  
DIO_24  
DIO_25  
DIO_26  
DIO_27  
DIO_28  
DIO_29  
DIO_30  
JTAG_TMSC  
JTAG_TCKC  
RESET_N  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO, JTAG_TDO, high-drive capability  
GPIO, JTAG_TDI, high-drive capability  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital I/O  
Digital I/O  
Digital input  
JTAG TMSC, high-drive capability  
JTAG TCKC(3)  
Reset, active-low. No internal pullup.  
Positive RF input signal to LNA during RX  
Positive RF output signal to PA during TX  
RF_P  
RF_N  
1
2
RF I/O  
RF I/O  
Negative RF input signal to LNA during RX  
Negative RF output signal to PA during TX  
VDDR  
45  
48  
Power  
Power  
1.7-V to 1.95-V supply, typically connect to output of internal DC/DC(2) (4)  
1.7-V to 1.95-V supply, typically connect to output of internal DC/DC(2) (5)  
VDDR_RF  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: CC2640R2F  
English Data Sheet: SWRS204  
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
7-1. Signal Descriptions RGZ Package (continued)  
NAME  
NO.  
44  
13  
22  
34  
3
TYPE  
DESCRIPTION  
VDDS  
Power  
1.8-V to 3.8-V main chip supply(1)  
1.8-V to 3.8-V DIO supply(1)  
1.8-V to 3.8-V DIO supply(1)  
1.8-V to 3.8-V DC/DC supply  
32-kHz crystal oscillator pin 1  
32-kHz crystal oscillator pin 2  
24-MHz crystal oscillator pin 1  
24-MHz crystal oscillator pin 2  
Ground Exposed Ground Pad  
VDDS2  
Power  
VDDS3  
Power  
VDDS_DCDC  
X32K_Q1  
X32K_Q2  
X24M_N  
X24M_P  
EGP  
Power  
Analog I/O  
Analog I/O  
Analog I/O  
Analog I/O  
Power  
4
46  
47  
(1) For more details, see the technical reference manual (listed in 11.3).  
(2) Do not supply external circuitry from this pin.  
(3) For design consideration regarding noise immunity for this pin, see the JTAG Interface chapter in the CC13x0, CC26x0 SimpleLink™  
Wireless MCU Technical Reference Manual  
(4) If internal DC/DC is not used, this pin is supplied internally from the main LDO.  
(5) If internal DC/DC is not used, this pin must be connected to VDDR for supply from the main LDO.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: CC2640R2F  
English Data Sheet: SWRS204  
 
 
 
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
7.3 Pin Diagram RHB Package  
DIO_12 25  
DIO_13 26  
DIO_14 27  
VDDS 28  
16 DIO_6  
15 DIO_5  
14 JTAG_TCKC  
13 JTAG_TMSC  
12 DCOUPL  
11 VDDS2  
VDDR 29  
X24M_N 30  
X24M_P 31  
VDDR_RF 32  
10 DIO_4  
9
DIO_3  
7-2. RHB Package 32-Pin VQFN (5-mm × 5-mm) Pinout, 0.5-mm Pitch  
I/O pins marked in 7-2 in bold have high-drive capabilities; they are the following:  
Pin 8, DIO_2  
Pin 9, DIO_3  
Pin 10, DIO_4  
Pin 13, JTAG_TMSC  
Pin 15, DIO_5  
Pin 16, DIO_6  
I/O pins marked in 7-2 in italics have analog capabilities; they are the following:  
Pin 20, DIO_7  
Pin 21, DIO_8  
Pin 22, DIO_9  
Pin 23, DIO_10  
Pin 24, DIO_11  
Pin 25, DIO_12  
Pin 26, DIO_13  
Pin 27, DIO_14  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS204  
10  
Submit Document Feedback  
Product Folder Links: CC2640R2F  
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
7.4 Signal Descriptions RHB Package  
7-2. Signal Descriptions RHB Package  
NAME  
NO.  
17  
12  
6
TYPE  
DESCRIPTION  
DCDC_SW  
DCOUPL  
DIO_0  
Power  
Output from internal DC/DC(1)  
Power  
1.27-V regulated digital-supply decoupling(2)  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
GPIO, Sensor Controller  
DIO_1  
7
GPIO, Sensor Controller  
DIO_2  
8
GPIO, Sensor Controller, high-drive capability  
GPIO, Sensor Controller, high-drive capability  
GPIO, Sensor Controller, high-drive capability  
GPIO, High drive capability, JTAG_TDO  
GPIO, High drive capability, JTAG_TDI  
DIO_3  
9
DIO_4  
10  
15  
16  
20  
21  
22  
23  
24  
25  
26  
27  
13  
14  
19  
DIO_5  
DIO_6  
DIO_7  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
DIO_8  
DIO_9  
DIO_10  
DIO_11  
DIO_12  
DIO_13  
DIO_14  
JTAG_TMSC  
JTAG_TCKC  
RESET_N  
Digital I/O  
Digital I/O  
Digital input  
JTAG TMSC, high-drive capability  
JTAG TCKC(3)  
Reset, active-low. No internal pullup.  
Negative RF input signal to LNA during RX  
Negative RF output signal to PA during TX  
RF_N  
RF_P  
2
1
RF I/O  
RF I/O  
Positive RF input signal to LNA during RX  
Positive RF output signal to PA during TX  
RX_TX  
3
RF I/O  
Power  
Optional bias pin for the RF LNA  
VDDR  
29  
32  
28  
11  
18  
4
1.7-V to 1.95-V supply, typically connect to output of internal DC/DC(4) (2)  
1.7-V to 1.95-V supply, typically connect to output of internal DC/DC(2) (5)  
1.8-V to 3.8-V main chip supply(1)  
VDDR_RF  
VDDS  
Power  
Power  
VDDS2  
Power  
1.8-V to 3.8-V GPIO supply(1)  
VDDS_DCDC  
X32K_Q1  
X32K_Q2  
X24M_N  
X24M_P  
EGP  
Power  
1.8-V to 3.8-V DC/DC supply  
Analog I/O  
Analog I/O  
Analog I/O  
Analog I/O  
Power  
32-kHz crystal oscillator pin 1  
5
32-kHz crystal oscillator pin 2  
30  
31  
24-MHz crystal oscillator pin 1  
24-MHz crystal oscillator pin 2  
Ground Exposed Ground Pad  
(1) See technical reference manual (listed in 11.3) for more details.  
(2) Do not supply external circuitry from this pin.  
(3) For design consideration regarding noise immunity for this pin, see the JTAG Interface chapter in the CC13x0, CC26x0 SimpleLink™  
Wireless MCU Technical Reference Manual  
(4) If internal DC/DC is not used, this pin is supplied internally from the main LDO.  
(5) If internal DC/DC is not used, this pin must be connected to VDDR for supply from the main LDO.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: CC2640R2F  
English Data Sheet: SWRS204  
 
 
 
 
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
7.5 Pin Diagram YFV (Chip Scale, DSBGA) Package  
A1  
B1  
C1  
D1  
E1  
F1  
A2  
B2  
C2  
D2  
E2  
F2  
A3  
B3  
C3  
D3  
E3  
F3  
A4  
B4  
C4  
D4  
E4  
F4  
B5  
C5  
D5  
E5  
F5  
B6  
C6  
D6  
E6  
F6  
7-3. YFV (2.7-mm × 2.7-mm) Pinout, Top View  
7.6 Signal Descriptions YFV (Chip Scale, DSBGA) Package  
7-3. Signal Descriptions YFV Package  
NAME  
NO.  
D1  
F3  
C5  
F6  
D5  
E5  
F5  
E3  
F1  
D2  
D3  
A1  
C2  
B2  
D4  
B3  
E4  
F2  
E2  
TYPE  
DESCRIPTION  
DCDC_SW  
DCOUPL  
DIO_0  
Power  
Output from internal DC/DC(1)  
Power  
1.27-V regulated digital-supply decoupling(2)  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
GPIO, Sensor Controller  
DIO_1  
GPIO, Sensor Controller  
DIO_2  
GPIO, Sensor Controller, high-drive capability  
GPIO, Sensor Controller, high-drive capability  
GPIO, Sensor Controller, high-drive capability  
GPIO, High-drive capability, JTAG_TDO  
GPIO, High-drive capability, JTAG_TDI  
DIO_3  
DIO_4  
DIO_5  
DIO_6  
DIO_7  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
DIO_8  
DIO_9  
DIO_10  
DIO_11  
DIO_12  
DIO_13  
JTAG_TMSC  
JTAG_TCKC  
RESET_N  
Digital I/O  
Digital I/O  
Digital input  
JTAG TMSC, high-drive capability  
JTAG TCKC(3)  
Reset, active-low. No internal pullup.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS204  
12  
Submit Document Feedback  
Product Folder Links: CC2640R2F  
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
7-3. Signal Descriptions YFV Package (continued)  
NAME  
NO.  
TYPE  
DESCRIPTION  
Negative RF input signal to LNA during RX  
Negative RF output signal to PA during TX  
RF_N  
B6  
RF I/O  
Positive RF input signal to LNA during RX  
Positive RF output signal to PA during TX  
RF_P  
B5  
RF I/O  
VDDR  
A3  
B4  
A2  
F4  
C1  
D6  
E6  
C3  
C4  
Power  
Power  
1.7-V to 1.95-V supply, typically connect to output of internal DC/DC(4) (2)  
1.7-V to 1.95-V supply, typically connect to output of internal DC/DC(5) (2)  
1.8-V to 3.8-V main chip supply(1)  
VDDR_RF  
VDDS  
Power  
VDDS2  
Power  
1.8-V to 3.8-V GPIO supply(1)  
VDDS_DCDC  
X32K_Q1  
X32K_Q2  
X24M_N  
X24M_P  
Power  
1.8-V to 3.8-V DC/DC supply  
Analog I/O  
Analog I/O  
Analog I/O  
Analog I/O  
32-kHz crystal oscillator pin 1  
32-kHz crystal oscillator pin 2  
24-MHz crystal oscillator pin 1  
24-MHz crystal oscillator pin 2  
A4, B1, C6,  
E1  
GND  
Power  
Ground  
(1) For more details, see the technical reference manual (listed in 11.3).  
(2) Do not supply external circuitry from this pin.  
(3) For design consideration regarding noise immunity for this pin, see the JTAG Interface chapter in the CC13x0, CC26x0 SimpleLink™  
Wireless MCU Technical Reference Manual  
(4) If internal DC/DC is not used, this pin is supplied internally from the main LDO.  
(5) If internal DC/DC is not used, this pin must be connected to VDDR for supply from the main LDO.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: CC2640R2F  
English Data Sheet: SWRS204  
 
 
 
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
7.7 Pin Diagram RSM Package  
DIO_8 25  
DIO_9 26  
16 DIO_4  
15 DIO_3  
VDDS 27  
14 JTAG_TCKC  
13 JTAG_TMSC  
12 DCOUPL  
11 VDDS2  
VDDR 28  
VSS 29  
X24M_N 30  
X24M_P 31  
VDDR_RF 32  
10 DIO_2  
9
DIO_1  
7-4. RSM Package 32-Pin VQFN (4-mm × 4-mm) Pinout, 0.4-mm Pitch  
I/O pins marked in 7-4 in bold have high-drive capabilities; they are as follows:  
Pin 8, DIO_0  
Pin 9, DIO_1  
Pin 10, DIO_2  
Pin 13, JTAG_TMSC  
Pin 15, DIO_3  
Pin 16, DIO_4  
I/O pins marked in 7-4 in italics have analog capabilities; they are as follows:  
Pin 22, DIO_5  
Pin 23, DIO_6  
Pin 24, DIO_7  
Pin 25, DIO_8  
Pin 26, DIO_9  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS204  
14  
Submit Document Feedback  
Product Folder Links: CC2640R2F  
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
7.8 Signal Descriptions RSM Package  
7-4. Signal Descriptions RSM Package  
NAME  
NO.  
TYPE  
DESCRIPTION  
Output from internal DC/DC.(1). Tie to ground for external regulator mode  
(1.7-V to 1.95-V operation)  
DCDC_SW  
18  
Power  
DCOUPL  
DIO_0  
12  
8
Power  
1.27-V regulated digital-supply decoupling capacitor(2)  
GPIO, Sensor Controller, high-drive capability  
GPIO, Sensor Controller, high-drive capability  
GPIO, Sensor Controller, high-drive capability  
GPIO, High-drive capability, JTAG_TDO  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
DIO_1  
9
DIO_2  
10  
15  
16  
22  
23  
24  
25  
26  
13  
14  
21  
DIO_3  
DIO_4  
GPIO, High-drive capability, JTAG_TDI  
DIO_5  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
DIO_6  
DIO_7  
DIO_8  
DIO_9  
JTAG_TMSC  
JTAG_TCKC  
RESET_N  
Digital I/O  
Digital I/O  
JTAG TMSC  
JTAG TCKC(3)  
Digital Input  
Reset, active-low. No internal pullup.  
Negative RF input signal to LNA during RX  
Negative RF output signal to PA during TX  
RF_N  
RF_P  
2
1
RF I/O  
RF I/O  
Positive RF input signal to LNA during RX  
Positive RF output signal to PA during TX  
RX_TX  
VDDR  
4
RF I/O  
Power  
Power  
Power  
Power  
Optional bias pin for the RF LNA  
28  
32  
27  
11  
1.7-V to 1.95-V supply, typically connect to output of internal DC/DC.(2) (4)  
1.7-V to 1.95-V supply, typically connect to output of internal DC/DC(2) (5)  
1.8-V to 3.8-V main chip supply(1)  
VDDR_RF  
VDDS  
VDDS2  
1.8-V to 3.8-V GPIO supply(1)  
1.8-V to 3.8-V DC/DC supply. Tie to ground for external regulator mode  
(1.7-V to 1.95-V operation).  
VDDS_DCDC  
VSS  
19  
Power  
Power  
3, 7, 17, 20,  
29  
Ground  
X32K_Q1  
X32K_Q2  
X24M_N  
X24M_P  
EGP  
5
6
Analog I/O  
Analog I/O  
Analog I/O  
Analog I/O  
Power  
32-kHz crystal oscillator pin 1  
32-kHz crystal oscillator pin 2  
24-MHz crystal oscillator pin 1  
24-MHz crystal oscillator pin 2  
Ground Exposed Ground Pad  
30  
31  
(1) See technical reference manual (listed in 11.3) for more details.  
(2) Do not supply external circuitry from this pin.  
(3) For design consideration regarding noise immunity for this pin, see the JTAG Interface chapter in the CC13x0, CC26x0 SimpleLink™  
Wireless MCU Technical Reference Manual  
(4) If internal DC/DC is not used, this pin is supplied internally from the main LDO.  
(5) If internal DC/DC is not used, this pin must be connected to VDDR for supply from the main LDO.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: CC2640R2F  
English Data Sheet: SWRS204  
 
 
 
 
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
MAX UNIT  
VDDR supplied by internal DC/DC regulator or  
internal GLDO. VDDS_DCDC connected to VDDS  
on PCB  
Supply voltage (VDDS, VDDS2,  
and VDDS3)  
4.1  
V
V
0.3  
Supply voltage (VDDS(3) and  
VDDR)  
External regulator mode (VDDS and VDDR pins  
connected on PCB)  
2.25  
0.3  
Voltage on any digital pin(4) (5)  
VDDSx + 0.3, max 4.1  
V
V
0.3  
0.3  
0.3  
0.3  
0.3  
Voltage on crystal oscillator pins, X32K_Q1, X32K_Q2, X24M_N and X24M_P  
Voltage scaling enabled  
VDDR + 0.3, max 2.25  
VDDS  
1.49  
Voltage on ADC input (Vin)  
Voltage scaling disabled, internal reference  
Voltage scaling disabled, VDDS as reference  
V
VDDS / 2.9  
5
Input RF level  
Tstg  
dBm  
°C  
Storage temperature  
150  
40  
(1) All voltage values are with respect to ground, unless otherwise noted.  
(2) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(3) In external regulator mode, VDDS2 and VDDS3 must be at the same potential as VDDS.  
(4) Including analog-capable DIO.  
(5) Each pin is referenced to a specific VDDSx (VDDS, VDDS2 or VDDS3). For a pin-to-VDDS mapping table, see 9-3.  
8.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS001(1)  
All pins  
±2500  
Electrostatic discharge  
VESD  
...  
V
RF pins  
±500  
±500  
Charged device model (CDM), per JESD22-  
C101(2)  
RSM, RHB, and RGZ packages  
Non-RF pins  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS001(1)  
All pins  
±1500  
Electrostatic discharge  
VESD  
...  
V
RF pins  
±500  
±500  
Charged device model (CDM), per JESD22-  
C101(2)  
YFV package  
Non-RF pins  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS204  
16  
Submit Document Feedback  
Product Folder Links: CC2640R2F  
 
 
 
 
 
 
 
 
 
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
8.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX UNIT  
Ambient temperature  
Operating supply  
85  
°C  
40  
voltage (VDDS and  
VDDR), external  
regulator mode  
For operation in 1.8-V systems  
(VDDS and VDDR pins connected on PCB, internal DC/DC cannot be used)  
1.7  
1.95  
V
Operating supply  
voltage VDDS  
1.8  
1.8  
3.8  
3.8  
V
V
Operating supply  
voltages VDDS2 and  
VDDS3  
For operation in battery-powered and 3.3-V systems  
(internal DC/DC can be used to minimize power consumption)  
VDDS < 2.7 V  
Operating supply  
voltages VDDS2 and  
VDDS3  
1.9  
3.8  
V
VDDS 2.7 V  
8.4 Power Consumption Summary  
Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V with internal DC/DC converter, unless  
otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
100  
150  
1.1  
MAX  
UNIT  
Reset. RESET_N pin asserted or VDDS below  
Power-on-Reset threshold  
nA  
Shutdown. No clocks running, no retention  
Standby. With RTC, CPU, RAM and (partial)  
register retention. RCOSC_LF  
Standby. With RTC, CPU, RAM and (partial)  
register retention. XOSC_LF  
1.3  
2.8  
Standby. With Cache, RTC, CPU, RAM and  
(partial) register retention. RCOSC_LF  
µA  
Icore  
Core current consumption  
Standby. With Cache, RTC, CPU, RAM and  
(partial) register retention. XOSC_LF  
3.0  
Idle. Supply Systems and RAM powered.  
Active. Core running CoreMark  
650  
1.45 mA +  
31 µA/MHz  
Radio RX (1)  
5.9  
6.1  
6.1  
9.1  
Radio RX(2)  
mA  
Radio TX, 0-dBm output power(1)  
Radio TX, 5-dBm output power(2)  
Peripheral Current Consumption (Adds to core current Icore for each peripheral unit activated) (3)  
Peripheral power domain  
Serial power domain  
Delta current with domain enabled  
Delta current with domain enabled  
50  
13  
µA  
µA  
Delta current with power domain enabled, clock  
enabled, RF core idle  
RF Core  
237  
µA  
µDMA  
Timers  
I2C  
Delta current with clock enabled, module idle  
Delta current with clock enabled, module idle  
Delta current with clock enabled, module idle  
Delta current with clock enabled, module idle  
Delta current with clock enabled, module idle  
Delta current with clock enabled, module idle  
130  
113  
12  
µA  
µA  
µA  
µA  
µA  
µA  
Iperi  
I2S  
36  
SSI  
93  
UART  
164  
(1) Single-ended RF mode is optimized for size and power consumption. Measured on CC2650EM-4XS.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: CC2640R2F  
English Data Sheet: SWRS204  
 
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
(2) Differential RF mode is optimized for RF performance. Measured on CC2650EM-5XD.  
(3) Iperi is not supported in Standby or Shutdown.  
8.5 General Characteristics  
Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FLASH MEMORY  
Supported flash erase cycles before  
failure(1)  
100  
k Cycles  
Maximum number of write operations  
per row before erase(2)  
write  
operations  
83  
Years at  
105°C  
Flash retention  
105°C  
11.4  
Flash page/sector erase current  
Flash page/sector size  
Flash write current  
Average delta current  
12.6  
4
mA  
KB  
mA  
ms  
µs  
Average delta current, 4 bytes at a time  
4 bytes at a time  
8.15  
8
Flash page/sector erase time(3)  
Flash write time(3)  
8
(1) Aborting flash during erase or program modes is not a safe operation.  
(2) Each row is 2048 bits (or 256 Bytes) wide.  
(3) This number is dependent on Flash aging and will increase over time and erase cycles.  
8.6 125-kbps Coded (Bluetooth 5) RX  
Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, fRF = 2440 MHz, unless otherwise  
noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Differential mode. Measured at the CC2650EM-5XD  
SMA connector, BER = 103  
Receiver sensitivity  
dBm  
103  
Differential mode. Measured at the CC2650EM-5XD  
SMA connector, BER = 103  
Receiver saturation  
>5  
dBm  
310 kHz  
260 ppm  
140 ppm  
dB  
Difference between the incoming carrier frequency  
and the internally generated carrier frequency  
Frequency error tolerance  
Data rate error tolerance  
Data rate error tolerance  
Co-channel rejection (1)  
Selectivity, ±1 MHz (1)  
260  
260  
140  
Difference between incoming data rate and the  
internally generated data rate (37-byte packets)  
Difference between incoming data rate and the  
internally generated data rate (255-byte packets)  
Wanted signal at 79 dBm, modulated interferer in  
3  
9 / 5(2)  
channel, BER = 103  
Wanted signal at 79 dBm, modulated interferer at  
dB  
±1 MHz, BER = 103  
Wanted signal at 79 dBm, modulated interferer at  
±2 MHz, Image frequency is at 2 MHz, BER = 103  
Selectivity, ±2 MHz (1)  
Selectivity, ±3 MHz (1)  
Selectivity, ±4 MHz (1)  
Selectivity, ±6 MHz (1)  
43 / 32(2)  
47 / 42(2)  
46 / 47(2)  
49 / 46(2)  
50 / 47(2)  
32  
dB  
dB  
dB  
dB  
dB  
dB  
Wanted signal at 79 dBm, modulated interferer at  
±3 MHz, BER = 103  
Wanted signal at 79 dBm, modulated interferer at  
±4 MHz, BER = 103  
Wanted signal at 79 dBm, modulated interferer at  
±6 MHz, BER = 103  
Alternate channel rejection, ±7 Wanted signal at 79 dBm, modulated interferer at  
MHz(1)  
±7 MHz, BER = 103  
Wanted signal at 79 dBm, modulated interferer at  
Selectivity, image frequency(1)  
image frequency, BER = 103  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS204  
18  
Submit Document Feedback  
Product Folder Links: CC2640R2F  
 
 
 
 
 
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, fRF = 2440 MHz, unless otherwise  
noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Note that Image frequency + 1 MHz is the Co-channel  
1 MHz. Wanted signal at 79 dBm, modulated  
interferer at ±1 MHz from image frequency, BER =  
103  
Selectivity, image frequency  
±1 MHz(1)  
5 / 32(2)  
dB  
Blocker rejection, ±8 MHz and  
above(1)  
Wanted signal at 79 dBm, modulated interferer at  
>46  
dB  
±8 MHz and above, BER = 103  
Out-of-band blocking (3)  
Out-of-band blocking  
Out-of-band blocking  
30 MHz to 2000 MHz  
2003 MHz to 2399 MHz  
2484 MHz to 2997 MHz  
dBm  
dBm  
dBm  
40  
19  
22  
Wanted signal at 2402 MHz, 76 dBm. Two  
interferers at 2405 and 2408 MHz respectively, at the  
given power level  
Intermodulation  
dBm  
42  
(1) Numbers given as I/C dB.  
(2) X / Y, where X is +N MHz and Y is N MHz.  
(3) Excluding one exception at Fwanted / 2, per Bluetooth Specification.  
8.7 125-kbps Coded (Bluetooth 5) TX  
Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, fRF = 2440 MHz, unless otherwise  
noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Differential mode, delivered to a single-ended 50-Ωload  
through a balun  
Output power, highest setting  
5
dBm  
Measured on CC2650EM-4XS, delivered to a single-ended  
50-Ωload  
Output power, highest setting  
Output power, lowest setting  
2
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
Delivered to a single-ended 50-Ωload through a balun  
f < 1 GHz, outside restricted bands  
f < 1 GHz, restricted bands ETSI  
21  
43  
65  
71  
46  
Spurious emission conducted  
measurement(1)  
f < 1 GHz, restricted bands FCC  
f > 1 GHz, including harmonics  
(1) Suitable for systems targeting compliance with worldwide radio-frequency regulations ETSI EN 300 328 and EN 300 440 Class 2  
(Europe), FCC CFR47 Part 15 (US), and ARIB STD-T66 (Japan).  
8.8 500-kbps Coded (Bluetooth 5) RX  
Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, fRF = 2440 MHz, unless otherwise  
noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Differential mode. Measured at the CC2650EM-5XD  
SMA connector, BER = 103  
Receiver sensitivity  
dBm  
101  
Differential mode. Measured at the CC2650EM-5XD  
SMA connector, BER = 103  
Receiver saturation  
>5  
dBm  
240 kHz  
500 ppm  
330 ppm  
dB  
Difference between the incoming carrier frequency  
and the internally generated carrier frequency  
Frequency error tolerance  
Data rate error tolerance  
Data rate error tolerance  
Co-channel rejection (1)  
240  
500  
310  
Difference between incoming data rate and the  
internally generated data rate (37-byte packets)  
Difference between incoming data rate and the  
internally generated data rate (255-byte packets)  
Wanted signal at 72 dBm, modulated interferer in  
5  
channel, BER = 103  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: CC2640R2F  
English Data Sheet: SWRS204  
 
 
 
 
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, fRF = 2440 MHz, unless otherwise  
noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Wanted signal at 72 dBm, modulated interferer at  
Selectivity, ±1 MHz (1)  
9 / 5(2)  
dB  
±1 MHz, BER = 103  
Wanted signal at 72 dBm, modulated interferer at  
±2 MHz, Image frequency is at 2 MHz, BER = 103  
Selectivity, ±2 MHz (1)  
Selectivity, ±3 MHz (1)  
Selectivity, ±4 MHz (1)  
Selectivity, ±6 MHz (1)  
41 / 31(2)  
44 / 41(2)  
44 / 44(2)  
44 / 44(2)  
44 / 44(2)  
31  
dB  
dB  
dB  
dB  
dB  
dB  
Wanted signal at 72 dBm, modulated interferer at  
±3 MHz, BER = 103  
Wanted signal at 72 dBm, modulated interferer at  
±4 MHz, BER = 103  
Wanted signal at 72 dBm, modulated interferer at  
±6 MHz, BER = 103  
Alternate channel rejection,  
±7 MHz(1)  
Wanted signal at 72 dBm, modulated interferer at  
±7 MHz, BER = 103  
Wanted signal at 72 dBm, modulated interferer at  
Selectivity, image frequency(1)  
image frequency, BER = 103  
Note that Image frequency + 1 MHz is the Co-channel  
1 MHz. Wanted signal at 72 dBm, modulated  
interferer at ±1 MHz from image frequency, BER =  
103  
Selectivity, image frequency  
±1 MHz(1)  
5 / 41(2)  
dB  
dB  
Blocker rejection, ±8 MHz and  
above(1)  
Wanted signal at 72 dBm, modulated interferer at  
44  
±8 MHz and above, BER = 103  
Out-of-band blocking (3)  
Out-of-band blocking  
Out-of-band blocking  
30 MHz to 2000 MHz  
2003 MHz to 2399 MHz  
2484 MHz to 2997 MHz  
dBm  
dBm  
dBm  
35  
19  
19  
Wanted signal at 2402 MHz, 69 dBm. Two  
interferers at 2405 and 2408 MHz respectively, at the  
given power level  
Intermodulation  
dBm  
37  
(1) Numbers given as I/C dB.  
(2) X / Y, where X is +N MHz and Y is N MHz.  
(3) Excluding one exception at Fwanted / 2, per Bluetooth Specification.  
8.9 500-kbps Coded (Bluetooth 5) TX  
Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, fRF = 2440 MHz, unless otherwise  
noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Differential mode, delivered to a single-ended 50-Ωload  
through a balun  
Output power, highest setting  
5
dBm  
Measured on CC2650EM-4XS, delivered to a single-ended  
50-Ωload  
Output power, highest setting  
Output power, lowest setting  
2
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
Delivered to a single-ended 50-Ωload through a balun  
f < 1 GHz, outside restricted bands  
f < 1 GHz, restricted bands ETSI  
21  
43  
65  
71  
46  
Spurious emission conducted  
measurement(1)  
f < 1 GHz, restricted bands FCC  
f > 1 GHz, including harmonics  
(1) Suitable for systems targeting compliance with worldwide radio-frequency regulations ETSI EN 300 328 and EN 300 440 Class 2  
(Europe), FCC CFR47 Part 15 (US), and ARIB STD-T66 (Japan).  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS204  
20  
Submit Document Feedback  
Product Folder Links: CC2640R2F  
 
 
 
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
8.10 1-Mbps GFSK (Bluetooth low energy) RX  
Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, fRF = 2440 MHz, unless otherwise  
noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Differential mode. Measured at the CC2650EM-5XD  
SMA connector, BER = 103  
Receiver sensitivity  
dBm  
97  
Single-ended mode. Measured on CC2650EM-4XS,  
at the SMA connector, BER = 103  
Receiver sensitivity  
dBm  
dBm  
96  
Differential mode. Measured at the CC2650EM-5XD  
SMA connector, BER = 103  
Receiver saturation  
4
0
Single-ended mode. Measured on CC2650EM-4XS,  
at the SMA connector, BER = 103  
Receiver saturation  
dBm  
Difference between the incoming carrier frequency  
and the internally generated carrier frequency  
Frequency error tolerance  
Data rate error tolerance  
Co-channel rejection(1)  
Selectivity, ±1 MHz(1)  
Selectivity, ±2 MHz(1)  
Selectivity, ±3 MHz(1)  
Selectivity, ±4 MHz(1)  
350 kHz  
750 ppm  
dB  
350  
750  
Difference between incoming data rate and the  
internally generated data rate  
Wanted signal at 67 dBm, modulated interferer in  
6  
7 / 3(2)  
34 / 25(2)  
38 / 26(2)  
42 / 29(2)  
32  
channel, BER = 103  
Wanted signal at 67 dBm, modulated interferer at  
dB  
±1 MHz, BER = 103  
Wanted signal at 67 dBm, modulated interferer at  
dB  
±2 MHz, BER = 103  
Wanted signal at 67 dBm, modulated interferer at  
dB  
±3 MHz, BER = 103  
Wanted signal at 67 dBm, modulated interferer at  
dB  
±4 MHz, BER = 103  
Wanted signal at 67 dBm, modulated interferer at  
±5 MHz, BER = 103  
Selectivity, ±5 MHz or more(1)  
Selectivity, image frequency(1)  
dB  
dB  
dB  
Wanted signal at 67 dBm, modulated interferer at  
25  
image frequency, BER = 103  
Selectivity, image frequency  
±1 MHz(1)  
Wanted signal at 67 dBm, modulated interferer at  
3 / 26(2)  
±1 MHz from image frequency, BER = 103  
Out-of-band blocking (3)  
Out-of-band blocking  
Out-of-band blocking  
Out-of-band blocking  
30 MHz to 2000 MHz  
2003 MHz to 2399 MHz  
2484 MHz to 2997 MHz  
3000 MHz to 12.75 GHz  
dBm  
dBm  
dBm  
dBm  
20  
5  
8  
10  
Wanted signal at 2402 MHz, 64 dBm. Two  
interferers at 2405 and 2408 MHz respectively, at the  
given power level  
Intermodulation  
dBm  
dBm  
34  
71  
Conducted measurement in a 50-Ωsingle-ended  
load. Suitable for systems targeting compliance with  
EN 300 328, EN 300 440 class 2, FCC CFR47, Part  
15 and ARIB STD-T-66  
Spurious emissions,  
30 to 1000 MHz  
Conducted measurement in a 50-Ωsingle-ended  
load. Suitable for systems targeting compliance with  
EN 300 328, EN 300 440 class 2, FCC CFR47, Part  
15 and ARIB STD-T-66  
Spurious emissions,  
1 to 12.75 GHz  
dBm  
62  
RSSI dynamic range  
RSSI accuracy  
70  
±4  
dB  
dB  
(1) Numbers given as I/C dB.  
(2) X / Y, where X is +N MHz and Y is N MHz.  
(3) Excluding one exception at Fwanted / 2, per Bluetooth Specification.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: CC2640R2F  
English Data Sheet: SWRS204  
 
 
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
8.11 1-Mbps GFSK (Bluetooth low energy) TX  
Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, fRF = 2440 MHz, unless otherwise  
noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Differential mode, delivered to a single-ended 50-Ωload  
through a balun  
Output power, highest setting  
5
dBm  
Measured on CC2650EM-4XS, delivered to a single-ended  
50-Ωload  
Output power, highest setting  
Output power, lowest setting  
2
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
Delivered to a single-ended 50-Ωload through a balun  
f < 1 GHz, outside restricted bands  
f < 1 GHz, restricted bands ETSI  
21  
43  
65  
71  
46  
Spurious emission conducted  
measurement(1)  
f < 1 GHz, restricted bands FCC  
f > 1 GHz, including harmonics  
(1) Suitable for systems targeting compliance with worldwide radio-frequency regulations ETSI EN 300 328 and EN 300 440 Class 2  
(Europe), FCC CFR47 Part 15 (US), and ARIB STD-T66 (Japan).  
8.12 2-Mbps GFSK (Bluetooth 5) RX  
Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, fRF = 2440 MHz, unless otherwise  
noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Differential mode. Measured at the CC2650EM-5XD  
SMA connector, BER = 103  
Receiver sensitivity  
dBm  
91  
Differential mode. Measured at the CC2650EM-5XD  
SMA connector, BER = 103  
Receiver saturation  
3
dBm  
500 kHz  
1000 ppm  
dB  
Difference between the incoming carrier frequency and  
the internally generated carrier frequency  
Frequency error tolerance  
Data rate error tolerance  
Co-channel rejection(1)  
300  
Difference between incoming data rate and the  
internally generated data rate  
1000  
Wanted signal at 67 dBm, modulated interferer in  
7  
8 / 4(2)  
channel, BER = 103  
Wanted signal at 67 dBm, modulated interferer at  
±2 MHz, Image frequency is at 2 MHz BER = 103  
Selectivity, ±2 MHz(1)  
Selectivity, ±4 MHz(1)  
Selectivity, ±6 MHz(1)  
dB  
dB  
dB  
dB  
dB  
Wanted signal at 67 dBm, modulated interferer at  
31 / 26(2)  
37 / 38(2)  
37 / 36(2)  
4
±4 MHz, BER = 103  
Wanted signal at 67 dBm, modulated interferer at  
±6 MHz, BER = 103  
Alternate channel rejection,  
±7 MHz(1)  
Wanted signal at 67 dBm, modulated interferer at  
±7 MHz, BER = 103  
Wanted signal at 67 dBm, modulated interferer at  
Selectivity, image frequency(1)  
image frequency, BER = 103  
Note that Image frequency + 2 MHz is the Co-channel.  
Wanted signal at 67 dBm, modulated interferer at  
±2 MHz from image frequency, BER = 103  
Selectivity, image frequency  
±2 MHz(1)  
7 / 26(2)  
dB  
Out-of-band blocking(3)  
Out-of-band blocking  
Out-of-band blocking  
Out-of-band blocking  
30 MHz to 2000 MHz  
2003 MHz to 2399 MHz  
2484 MHz to 2997 MHz  
3000 MHz to 12.75 GHz  
dBm  
dBm  
dBm  
dBm  
33  
15  
12  
10  
Wanted signal at 2402 MHz, 64 dBm. Two interferers  
at 2408 and 2414 MHz respectively, at the given power  
level  
Intermodulation  
dBm  
45  
(1) Numbers given as I/C dB.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS204  
22  
Submit Document Feedback  
Product Folder Links: CC2640R2F  
 
 
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
(2) X / Y, where X is +N MHz and Y is N MHz.  
(3) Excluding one exception at Fwanted / 2, per Bluetooth Specification.  
8.13 2-Mbps GFSK (Bluetooth 5) TX  
Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, fRF = 2440 MHz, unless otherwise  
noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Differential mode, delivered to a single-ended 50-Ωload  
through a balun  
Output power, highest setting  
5
dBm  
Measured on CC2650EM-4XS, delivered to a single-ended  
50-Ωload  
Output power, highest setting  
Output power, lowest setting  
2
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
Delivered to a single-ended 50-Ωload through a balun  
f < 1 GHz, outside restricted bands  
f < 1 GHz, restricted bands ETSI  
21  
43  
65  
71  
46  
Spurious emission conducted  
measurement(1)  
f < 1 GHz, restricted bands FCC  
f > 1 GHz, including harmonics  
(1) Suitable for systems targeting compliance with worldwide radio-frequency regulations ETSI EN 300 328 and EN 300 440 Class 2  
(Europe), FCC CFR47 Part 15 (US), and ARIB STD-T66 (Japan).  
8.14 24-MHz Crystal Oscillator (XOSC_HF)  
Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
60  
UNIT  
Ω
ESR Equivalent series resistance(2)  
ESR Equivalent series resistance(2)  
20  
6 pF < CL 9 pF  
80  
5 pF < CL 6 pF  
Ω
Relates to load capacitance  
(CL in Farads)  
LM Motional inductance(2)  
< 1.6 × 1024 / CL  
H
2
CL Crystal load capacitance(2) (3)  
Crystal frequency(2) (4)  
5
9
pF  
MHz  
ppm  
µs  
24  
Crystal frequency tolerance(2) (5)  
Start-up time(4) (6)  
40  
40  
150  
(1) Probing or otherwise stopping the crystal while the DC/DC converter is enabled may cause permanent damage to the device.  
(2) The crystal manufacturer's specification must satisfy this requirement  
(3) Adjustable load capacitance is integrated into the device. External load capacitors are not required  
(4) Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V  
(5) Includes initial tolerance of the crystal, drift over temperature, ageing and frequency pulling due to incorrect load capacitance. As per  
specification.  
(6) Kick-started based on a temperature and aging compensated RCOSC_HF using precharge injection.  
8.15 32.768-kHz Crystal Oscillator (XOSC_LF)  
Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
Crystal frequency(1)  
TEST CONDITIONS  
MIN  
500  
6
TYP  
MAX  
UNIT  
32.768  
kHz  
Crystal frequency tolerance, Bluetooth low-  
energy applications(1) (2)  
500  
ppm  
ESR Equivalent series resistance(1)  
CL Crystal load capacitance(1)  
30  
100  
12  
kΩ  
pF  
(1) The crystal manufacturer's specification must satisfy this requirement  
(2) Includes initial tolerance of the crystal, drift over temperature, ageing and frequency pulling due to incorrect load capacitance. As per  
Bluetooth specification.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: CC2640R2F  
English Data Sheet: SWRS204  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
8.16 48-MHz RC Oscillator (RCOSC_HF)  
Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Frequency  
48  
MHz  
Uncalibrated frequency accuracy  
Calibrated frequency accuracy(1)  
Start-up time  
±1%  
±0.25%  
5
µs  
(1) Accuracy relative to the calibration source (XOSC_HF).  
8.17 32-kHz RC Oscillator (RCOSC_LF)  
Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
Calibrated frequency(1)  
Temperature coefficient  
TEST CONDITIONS  
MIN  
TYP  
32.8  
80  
MAX  
UNIT  
kHz  
ppm/°C  
(1) The frequency accuracy of the Real Time Clock (RTC) is not directly dependent on the frequency accuracy of the 32-kHz RC  
Oscillator. The RTC can be calibrated to an accuracy within ±500 ppm of 32.768 kHz by measuring the frequency error of RCOSC_LF  
relative to XOSC_HF and compensating the RTC tick speed. The procedure is explained in Running Bluetooth® Low Energy on  
CC2640 Without 32 kHz Crystal.  
8.18 ADC Characteristics  
Tc = 25°C, VDDS = 3.0 V and voltage scaling enabled, unless otherwise noted.(1)  
PARAMETER  
Input voltage range  
Resolution  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
0
VDDS  
V
12  
Bits  
ksps  
LSB  
LSB  
LSB  
LSB  
Sample rate  
200  
Offset  
Internal 4.3-V equivalent reference(2)  
Internal 4.3-V equivalent reference(2)  
2
2.4  
Gain error  
DNL(3) Differential nonlinearity  
>1  
±3  
INL(4)  
Integral nonlinearity  
Internal 4.3-V equivalent reference(2), 200 ksps,  
9.6-kHz input tone  
9.8  
10  
ENOB Effective number of bits  
VDDS as reference, 200 ksps, 9.6-kHz input tone  
Bits  
dB  
dB  
dB  
Internal 1.44-V reference, voltage scaling disabled,  
32 samples average, 200 ksps, 300-Hz input tone  
11.1  
Internal 4.3-V equivalent reference(2), 200 ksps,  
9.6-kHz input tone  
65  
69  
71  
THD  
Total harmonic distortion VDDS as reference, 200 ksps, 9.6-kHz input tone  
Internal 1.44-V reference, voltage scaling disabled,  
32 samples average, 200 ksps, 300-Hz input tone  
Internal 4.3-V equivalent reference(2), 200 ksps,  
9.6-kHz input tone  
60  
63  
69  
Signal-to-noise  
and  
Distortion ratio  
SINAD,  
SNDR  
VDDS as reference, 200 ksps, 9.6-kHz input tone  
Internal 1.44-V reference, voltage scaling disabled,  
32 samples average, 200 ksps, 300-Hz input tone  
Internal 4.3-V equivalent reference(2), 200 ksps,  
9.6-kHz input tone  
67  
68  
73  
Spurious-free dynamic  
range  
SFDR  
VDDS as reference, 200 ksps, 9.6-kHz input tone  
Internal 1.44-V reference, voltage scaling disabled,  
32 samples average, 200 ksps, 300-Hz input tone  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS204  
24  
Submit Document Feedback  
Product Folder Links: CC2640R2F  
 
 
 
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
Tc = 25°C, VDDS = 3.0 V and voltage scaling enabled, unless otherwise noted.(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
clock-  
cycles  
Conversion time  
Serial conversion, time-to-output, 24-MHz clock  
50  
Current consumption  
Current consumption  
Internal 4.3-V equivalent reference(2)  
VDDS as reference  
0.66  
0.75  
mA  
mA  
Equivalent fixed internal reference (input voltage scaling  
enabled). For best accuracy, the ADC conversion should  
be initiated through the TIRTOS API in order to include the  
gain/offset compensation factors stored in FCFG1.  
Reference voltage  
4.3(2) (5)  
V
Fixed internal reference (input voltage scaling disabled).  
For best accuracy, the ADC conversion should be initiated  
through the TIRTOS API in order to include the gain/offset  
compensation factors stored in FCFG1. This value is  
derived from the scaled value (4.3 V) as follows:  
Vref = 4.3 V × 1408 / 4095  
Reference voltage  
1.48  
V
VDDS as reference (Also known as RELATIVE) (input  
voltage scaling enabled)  
Reference voltage  
Reference voltage  
VDDS  
V
V
VDDS as reference (Also known as RELATIVE) (input  
voltage scaling disabled)  
VDDS /  
2.82(5)  
200 ksps, voltage scaling enabled. Capacitive input, Input  
impedance depends on sampling frequency and sampling  
time  
Input impedance  
>1  
MΩ  
(1) Using IEEE Std 1241-2010 for terminology and test methods.  
(2) Input signal scaled down internally before conversion, as if voltage range was 0 to 4.3 V.  
(3) No missing codes. Positive DNL typically varies from +0.3 to +3.5, depending on device (see 8-21).  
(4) For a typical example, see 8-22.  
(5) Applied voltage must be within absolute maximum ratings (8.1) at all times.  
8.19 Temperature Sensor  
Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
°C  
Resolution  
Range  
4
85  
°C  
40  
Accuracy  
±5  
°C  
Supply voltage coefficient(1)  
3.2  
°C/V  
(1) Automatically compensated when using supplied driver libraries.  
8.20 Battery Monitor  
Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
mV  
V
Resolution  
Range  
50  
1.8  
3.8  
Accuracy  
13  
mV  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: CC2640R2F  
English Data Sheet: SWRS204  
 
 
 
 
 
 
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
8.21 Continuous Time Comparator  
Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
0
TYP  
MAX  
VDDS  
VDDS  
UNIT  
V
Input voltage range  
External reference voltage  
0
V
Internal reference voltage  
Offset  
DCOUPL as reference  
1.27  
3
V
mV  
mV  
µs  
Hysteresis  
<2  
Decision time  
0.72  
8.6  
Step from 10 mV to 10 mV  
Current consumption when enabled(1)  
µA  
(1) Additionally, the bias module must be enabled when running in standby mode.  
8.22 Low-Power Clocked Comparator  
Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Input voltage range  
0
VDDS  
V
Clock frequency  
32  
kHz  
Internal reference voltage, VDDS / 2  
Internal reference voltage, VDDS / 3  
Internal reference voltage, VDDS / 4  
Internal reference voltage, DCOUPL / 1  
Internal reference voltage, DCOUPL / 2  
Internal reference voltage, DCOUPL / 3  
Internal reference voltage, DCOUPL / 4  
Offset  
V
1.491.51  
1.011.03  
0.780.79  
1.251.28  
0.630.65  
0.420.44  
0.330.34  
<5  
V
V
V
V
V
V
mV  
Hysteresis  
<5  
mV  
Decision time  
<1  
clock-cycle  
nA  
Step from 50 mV to 50 mV  
Current consumption when enabled  
362  
8.23 Programmable Current Source  
Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
µA  
Current source programmable output range  
Resolution  
0.2520  
0.25  
µA  
Including current source at maximum  
programmable output  
Current consumption(1)  
23  
µA  
(1) Additionally, the bias module must be enabled when running in standby mode.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS204  
26  
Submit Document Feedback  
Product Folder Links: CC2640R2F  
 
 
 
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
8.24 Synchronous Serial Interface (SSI)  
Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
system  
clocks  
S1(1) tclk_per (SSIClk period)  
Device operating as SLAVE  
12  
65024  
S2(1) tclk_high (SSIClk high time)  
S3(1) tclk_low (SSIClk low time)  
Device operating as SLAVE  
Device operating as SLAVE  
0.5  
0.5  
tclk_per  
tclk_per  
One-way communication to SLAVE -  
Device operating as MASTER  
system  
clocks  
S1 (TX only)(1) tclk_per (SSIClk period)  
S1 (TX and RX)(1) tclk_per (SSIClk period)  
4
8
65024  
65024  
Normal duplex operation -  
Device operating as MASTER  
system  
clocks  
S2(1) tclk_high (SSIClk high time)  
S3(1) tclk_low (SSIClk low time)  
Device operating as MASTER  
Device operating as MASTER  
0.5  
0.5  
tclk_per  
tclk_per  
(1) Refer to SSI timing diagrams 8-1, 8-2, and 8-3.  
S1  
S2  
SSIClk  
S3  
SSIFss  
SSITx  
MSB  
LSB  
SSIRx  
4 to 16 bits  
8-1. SSI Timing for TI Frame Format (FRF = 01), Single Transfer Timing Measurement  
S2  
S1  
SSIClk  
SSIFss  
SSITx  
SSIRx  
S3  
MSB  
LSB  
8-bit control  
0
MSB  
LSB  
4 to 16 bits output data  
8-2. SSI Timing for MICROWIRE Frame Format (FRF = 10), Single Transfer  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: CC2640R2F  
English Data Sheet: SWRS204  
 
 
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
S1  
S2  
SSIClk  
(SPO = 0)  
S3  
SSIClk  
(SPO = 1)  
SSITx  
(Master)  
MSB  
LSB  
SSIRx  
(Slave)  
MSB  
LSB  
SSIFss  
8-3. SSI Timing for SPI Frame Format (FRF = 00), With SPH = 1  
8.25 DC Characteristics  
PARAMETER  
TEST CONDITIONS  
TA = 25°C, VDDS = 1.8 V  
MIN  
1.32  
1.32  
TYP  
MAX UNIT  
GPIO VOH at 8-mA load  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 1  
1.54  
0.26  
1.58  
0.21  
71.7  
21.1  
V
GPIO VOL at 8-mA load  
GPIO VOH at 4-mA load  
GPIO VOL at 4-mA load  
GPIO pullup current  
0.32  
0.32  
V
V
IOCURR = 1  
V
Input mode, pullup enabled, Vpad = 0 V  
Input mode, pulldown enabled, Vpad = VDDS  
µA  
µA  
GPIO pulldown current  
GPIO high/low input transition,  
no hysteresis  
IH = 0, transition between reading 0 and reading 1  
IH = 1, transition voltage for input read as 0 1  
IH = 1, transition voltage for input read as 1 0  
0.88  
1.07  
V
V
GPIO low-to-high input transition,  
with hysteresis  
GPIO high-to-low input transition,  
with hysteresis  
0.74  
0.33  
V
V
GPIO input hysteresis  
IH = 1, difference between 0 1 and 1 0 points  
TA = 25°C, VDDS = 3.0 V  
GPIO VOH at 8-mA load  
GPIO VOL at 8-mA load  
GPIO VOH at 4-mA load  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 1  
2.68  
0.33  
2.72  
V
V
V
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS204  
28  
Submit Document Feedback  
Product Folder Links: CC2640R2F  
 
 
CC2640R2F  
www.ti.com.cn  
PARAMETER  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
GPIO VOL at 4-mA load  
IOCURR = 1  
0.28  
V
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: CC2640R2F  
English Data Sheet: SWRS204  
CC2640R2F  
www.ti.com.cn  
MAX UNIT  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
TA = 25°C, VDDS = 3.8 V  
GPIO pullup current  
Input mode, pullup enabled, Vpad = 0 V  
277  
113  
µA  
µA  
GPIO pulldown current  
Input mode, pulldown enabled, Vpad = VDDS  
GPIO high/low input transition,  
no hysteresis  
IH = 0, transition between reading 0 and reading 1  
IH = 1, transition voltage for input read as 0 1  
IH = 1, transition voltage for input read as 1 0  
1.67  
1.94  
V
V
GPIO low-to-high input transition,  
with hysteresis  
GPIO high-to-low input transition,  
with hysteresis  
1.54  
0.4  
V
V
GPIO input hysteresis  
IH = 1, difference between 0 1 and 1 0 points  
TA = 25°C  
Lowest GPIO input voltage reliably interpreted as a  
«High»  
VIH  
VIL  
0.8 VDDS(1)  
VDDS(1)  
Highest GPIO input voltage reliably interpreted as a  
«Low»  
0.2  
(1) Each GPIO is referenced to a specific VDDS pin. See the technical reference manual listed in 11.3 for more details.  
8.26 Thermal Resistance Characteristics  
NAME  
RθJA  
DESCRIPTION  
RSM (°C/W)(1) (2) RHB (°C/W)(1) (2) RGZ (°C/W)(1) (2) YFV (°C/W)(1) (2)  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
36.9  
30.3  
7.6  
32.8  
24.0  
6.8  
29.6  
15.7  
6.2  
76.2  
0.3  
RθJC(top)  
RθJB  
16.3  
1.8  
PsiJT  
0.4  
0.3  
0.3  
PsiJB  
7.4  
6.8  
6.2  
16.3  
N/A  
2.1  
1.9  
1.9  
RθJC(bot)  
(1) °C/W = degrees Celsius per watt.  
(2) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RθJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air).  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages.  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages.  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements.  
For RSM, RHB, and RGZ, power dissipation of 2 W and an ambient temperature of 70°C is assumed. For YFV, power dissipation of  
1.3 W and ambient temperature of 25°C is assumed.  
8.27 Timing Requirements  
MIN  
0
NOM  
MAX UNIT  
100 mV/µs  
20 mV/µs  
Rising supply-voltage slew rate  
Falling supply-voltage slew rate  
0
Falling supply-voltage slew rate, with low-power flash settings(1)  
3
mV/µs  
No limitation for negative  
temperature gradient, or  
outside standby mode  
Positive temperature gradient in standby(2)  
5
°C/s  
CONTROL INPUT AC CHARACTERISTICS(3)  
RESET_N low duration  
1
µs  
(1) For smaller coin cell batteries, with high worst-case end-of-life equivalent source resistance, a 22-µF VDDS input capacitor (see 图  
10-1) must be used to ensure compliance with this slew rate.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS204  
30  
Submit Document Feedback  
Product Folder Links: CC2640R2F  
 
 
 
 
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
(2) Applications using RCOSC_LF as sleep timer must also consider the drift in frequency caused by a change in temperature (see 节  
8.17).  
(3) TA = 40°C to +85°C, VDDS = 1.7 V to 3.8 V, unless otherwise noted.  
8.28 Switching Characteristics  
Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
WAKEUP AND TIMING  
14  
151  
µs  
µs  
µs  
Idle Active  
Standby Active  
Shutdown Active  
1015  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: CC2640R2F  
English Data Sheet: SWRS204  
 
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
8.29 Typical Characteristics  
-94  
-95  
-96  
-95  
-96  
-97  
-98  
-97  
-98  
-99  
-100  
BLE 5XD Sensitivity  
BLE 4XS Sensitivity  
Sensitivity 4XS  
Sensitivity 5XD  
-101  
-99  
-40 -30 -20 -10  
1.8  
2.3  
2.8  
VDDS (V)  
3.3  
3.8  
0
10 20 30 40 50 60 70 80  
Temperature (èC)  
D004  
8-5. BLE Sensitivity vs Supply Voltage (VDDS)  
8-4. BLE Sensitivity vs Temperature  
6
-95  
Sensitivity 5XD  
Sensitivity 4XS  
-95.5  
-96  
5
4
-96.5  
-97  
4XS 2-dBm Setting  
5XD 5-dBm Setting  
3
-97.5  
-98  
2
1
0
-98.5  
-99  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
Temperature (èC)  
2400 2410 2420 2430 2440 2450 2460 2470 2480  
Frequency (MHz)  
D020  
8-7. TX Output Power vs Temperature  
8-6. BLE Sensitivity vs Channel Frequency  
6
8
5-dBm setting (5XD)  
0-dBm setting (4XS)  
7
6
5
4
3
2
5
4
3
2
1
1
5XD 5-dBm Setting  
4XS 2-dBm Setting  
0
-1  
0
2400 2410 2420 2430 2440 2450 2460 2470 2480  
Frequency (MHz)  
1.8  
2.3  
2.8  
VDDS (V)  
3.3  
3.8  
D021  
D003  
8-9. TX Output Power vs Channel Frequency  
8-8. TX Output Power vs Supply Voltage (VDDS)  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: CC2640R2F  
English Data Sheet: SWRS204  
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
16  
15  
14  
13  
12  
11  
10  
9
10.5  
10  
9.5  
9
4XS  
5XD  
4XS 0-dBm Setting  
4XS 2-dBm Setting  
5XD 5-dBm Setting  
8.5  
8
7.5  
7
6.5  
6
8
7
5.5  
5
6
4.5  
4
5
4
1.8  
1.8  
2.05  
2.3  
2.55 2.8 3.05  
Voltage (V)  
3.3  
3.55  
3.8  
2
2.2 2.4 2.6 2.8  
VDDS (V)  
3
3.2 3.4 3.6 3.8  
D016  
D015  
8-11. RX Mode Current vs Supply Voltage  
8-10. TX Current Consumption vs Supply  
(VDDS)  
Voltage (VDDS)  
7
12  
10  
8
5XD RX Current  
4XS RX Current  
6.8  
6.6  
6.4  
6.2  
6
6
4
2
5.8  
5.6  
5XD 5-dBm Setting  
4XS 2-dBm Setting  
0
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
Temperature (èC)  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
Temperature (èC)  
D001  
D002  
8-12. RX Mode Current Consumption vs  
8-13. TX Mode Current Consumption vs  
Temperature  
Temperature  
3.1  
5
Active Mode Current  
Active Mode Current  
4.5  
4
3.05  
3
3.5  
3
2.95  
2.9  
2.5  
2.85  
2
1.8  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
Temperature (èC)  
2.3  
2.8  
VDDS (V)  
3.3  
3.8  
D006  
D007  
8-14. Active Mode (MCU Running, No  
Peripherals) Current Consumption vs Temperature  
8-15. Active Mode (MCU Running, No  
Peripherals) Current Consumption vs Supply  
Voltage (VDDS)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: CC2640R2F  
English Data Sheet: SWRS204  
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
11.4  
1006.4  
1006.2  
1006  
Fs= 200 kHz, No Averaging  
Fs= 200 kHz, 32 samples averaging  
11.2  
11  
10.8  
10.6  
10.4  
10.2  
10  
1005.8  
1005.6  
1005.4  
1005.2  
1005  
9.8  
9.6  
1004.8  
9.4  
1.8  
2.3  
2.8  
VDDS (V)  
3.3  
3.8  
200300 500 1000 2000  
5000 10000 20000  
100000  
D012  
Input Frequency (Hz)  
D009  
8-17. SoC ADC Output vs Supply Voltage (Fixed  
8-16. SoC ADC Effective Number of Bits vs Input  
Frequency (Internal Reference, Scaling enabled)  
Input, Internal Reference)  
1007.5  
1007  
10.5  
ENOB Internal Reference (No Averaging)  
ENOB Internal Reference (32 Samples Averaging)  
10.4  
10.3  
10.2  
10.1  
10  
1006.5  
1006  
1005.5  
1005  
9.9  
9.8  
9.7  
1004.5  
9.6  
1k  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
Temperature (èC)  
10k  
Sampling Frequency (Hz)  
100k 200k  
D013  
D009A  
8-18. SoC ADC Output vs Temperature (Fixed  
8-19. SoC ADC ENOB vs Sampling Frequency  
Input, Internal Reference)  
(Scaling enabled, input frequency = FS / 10)  
8-20. Standby Mode Supply Current vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS204  
34  
Submit Document Feedback  
Product Folder Links: CC2640R2F  
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
D010  
ADC Code  
8-21. SoC ADC DNL vs ADC Code (Internal Reference)  
3
2
1
0
-1  
-2  
-3  
-4  
0
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200  
ADC Code  
D011  
8-22. SoC ADC INL vs ADC Code (Internal Reference)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: CC2640R2F  
English Data Sheet: SWRS204  
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
9 Detailed Description  
9.1 Overview  
The core modules of the CC26xx product family are shown in 9.2.  
9.2 Functional Block Diagram  
SimpleLink CC26xx Wireless MCU  
RF Core  
cJTAG  
Main CPU:  
ROM  
ADC  
ADC  
ARM  
Cortex-M3  
128-KB  
Flash  
Digital PLL  
DSP modem  
8-KB  
cache  
Up to 48 MHz  
61 µA/MHz  
4-KB  
SRAM  
ARM  
Cortex-M0  
20-KB  
SRAM  
ROM  
General Peripherals / Modules  
Sensor Controller  
2
I C  
4× 32-bit Timers  
Sensor Controller Engine  
UART  
I2S  
2× SSI (SPI, µW, TI)  
Watchdog Timer  
12-bit ADC, 200 ks/s  
2× Comparator  
10 / 14 / 15 / 31 GPIOs  
AES  
TRNG  
2
SPI-I C Digital Sensor IF  
Temp. / Batt. Monitor  
Constant Current Source  
32 ch. µDMA  
RTC  
Time-to-digital Converter  
2-KB SRAM  
DC-DC Converter  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS204  
36  
Submit Document Feedback  
Product Folder Links: CC2640R2F  
 
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
9.3 Main CPU  
The SimpleLink™ CC2640R2F Wireless MCU contains an Arm® Cortex®-M3 (CM3) 32-bit CPU, which runs the  
application and the higher layers of the protocol stack.  
The CM3 processor provides a high-performance, low-cost platform that meets the system requirements of  
minimal memory implementation, and low-power consumption, while delivering outstanding computational  
performance and exceptional system response to interrupts.  
Arm® Cortex®-M3 features include:  
32-bit Arm® Cortex®-M3 architecture optimized for small-footprint embedded applications  
Outstanding processing performance combined with fast interrupt handling  
Arm® Thumb®-2 mixed 16- and 32-bit instruction set delivers the high performance expected of a 32-bit Arm®  
core in a compact memory size usually associated with 8- and 16-bit devices, typically in the range of a few  
kilobytes of memory for microcontroller-class applications:  
Single-cycle multiply instruction and hardware divide  
Atomic bit manipulation (bit-banding), delivering maximum memory use and streamlined peripheral control  
Unaligned data access, enabling data to be efficiently packed into memory  
Fast code execution permits slower processor clock or increases sleep mode time  
Harvard architecture characterized by separate buses for instruction and data  
Efficient processor core, system, and memories  
Hardware division and fast digital-signal-processing oriented multiply accumulate  
Saturating arithmetic for signal processing  
Deterministic, high-performance interrupt handling for time-critical applications  
Enhanced system debug with extensive breakpoint and trace capabilities  
Serial wire trace reduces the number of pins required for debugging and tracing  
Migration from the ARM7processor family for better performance and power efficiency  
Optimized for single-cycle flash memory use  
Ultra-low-power consumption with integrated sleep modes  
1.25 DMIPS per MHz  
9.4 RF Core  
The RF Core contains an Arm® Cortex®-M0 processor that interfaces the analog RF and base-band circuits,  
handles data to and from the system side, and assembles the information bits in a given packet structure. The  
RF core offers a high level, command-based API to the main CPU.  
The RF core is capable of autonomously handling the time-critical aspects of the radio protocols (Bluetooth® low  
energy) thus offloading the main CPU and leaving more resources for the user application.  
The RF core has a dedicated 4-KB SRAM block and runs initially from separate ROM memory. The Arm®  
Cortex®-M0 processor is not programmable by customers.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: CC2640R2F  
English Data Sheet: SWRS204  
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
9.5 Sensor Controller  
The Sensor Controller contains circuitry that can be selectively enabled in standby mode. The peripherals in this  
domain may be controlled by the Sensor Controller Engine, which is a proprietary power-optimized CPU. This  
CPU can read and monitor sensors or perform other tasks autonomously, thereby significantly reducing power  
consumption and offloading the main CM3 CPU. The GPIOs that can be connected to the Sensor Controller are  
listed in 9-1.  
The Sensor Controller is set up using a PC-based configuration tool, called Sensor Controller Studio, and  
potential use cases may be (but are not limited to):  
Analog sensors using integrated ADC  
Digital sensors using GPIOs, bit-banged I2C, and SPI  
UART communication for sensor reading or debugging  
Capacitive sensing  
Waveform generation  
Pulse counting  
Keyboard scan  
Quadrature decoder for polling rotation sensors  
Oscillator calibration  
备注  
Texas Instruments provides application examples for some of these use cases, but not for all of them.  
The peripherals in the Sensor Controller include the following:  
The low-power clocked comparator can be used to wake the device from any state in which the comparator is  
active. A configurable internal reference can be used in conjunction with the comparator. The output of the  
comparator can also be used to trigger an interrupt or the ADC.  
Capacitive sensing functionality is implemented through the use of a constant current source, a time-to-digital  
converter, and a comparator. The continuous time comparator in this block can also be used as a higher-  
accuracy alternative to the low-power clocked comparator. The Sensor Controller will take care of baseline  
tracking, hysteresis, filtering and other related functions.  
The ADC is a 12-bit, 200-ksamples/s ADC with eight inputs and a built-in voltage reference. The ADC can be  
triggered by many different sources, including timers, I/O pins, software, the analog comparator, and the  
RTC.  
The Sensor Controller also includes a SPII2C digital interface.  
The analog modules can be connected to up to eight different GPIOs.  
The peripherals in the Sensor Controller can also be controlled from the main application processor.  
9-1. GPIOs Connected to the Sensor Controller(1)  
ANALOG  
CAPABLE  
7 × 7 RGZ  
DIO NUMBER  
5 × 5 RHB  
DIO NUMBER  
2.7 × 2.7 YFV  
DIO NUMBER  
4 × 4 RSM  
DIO NUMBER  
Y
Y
Y
Y
Y
Y
Y
Y
N
N
30  
29  
28  
27  
26  
25  
24  
23  
7
14  
13  
12  
11  
9
13  
12  
11  
9
9
8
7
6
5
2
1
10  
8
10  
8
7
7
4
4
6
3
3
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS204  
38  
Submit Document Feedback  
Product Folder Links: CC2640R2F  
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
9-1. GPIOs Connected to the Sensor Controller(1) (continued)  
ANALOG  
CAPABLE  
7 × 7 RGZ  
DIO NUMBER  
5 × 5 RHB  
DIO NUMBER  
2.7 × 2.7 YFV  
DIO NUMBER  
4 × 4 RSM  
DIO NUMBER  
N
N
N
N
N
N
5
4
3
2
1
0
2
1
0
2
1
0
0
(1) Depending on the package size, up to 16 pins can be connected to the Sensor Controller. Up to 8  
of these pins can be connected to analog modules.  
9.6 Memory  
The Flash memory provides nonvolatile storage for code and data. The Flash memory is in-system  
programmable.  
The SRAM (static RAM) can be used for both storage of data and execution of code and is split into two 4-KB  
blocks and two 6-KB blocks. Retention of the RAM contents in standby mode can be enabled or disabled  
individually for each block to minimize power consumption. In addition, if flash cache is disabled, the 8-KB cache  
can be used as a general-purpose RAM.  
The ROM provides preprogrammed embedded TI-RTOS kernel, Driverlib, and lower layer protocol stack  
software ( Bluetooth low energy Controller). It also contains a bootloader that can be used to reprogram the  
device using SPI or UART. For CC2640R2Fxxx devices, the ROM contains Bluetooth 4.2 low energy host- and  
controller software libraries, leaving more of the flash memory available for the customer application.  
9.7 Debug  
The on-chip debug support is done through a dedicated cJTAG (IEEE 1149.7) or JTAG (IEEE 1149.1) interface.  
9.8 Power Management  
To minimize power consumption, the CC2640R2F device supports a number of power modes and power  
management features (see 9-2).  
9-2. Power Modes  
SOFTWARE CONFIGURABLE POWER MODES  
RESET PIN  
HELD  
MODE  
ACTIVE  
IDLE  
Off  
STANDBY  
Off  
SHUTDOWN  
CPU  
Active  
Off  
Off  
Off  
Off  
Flash  
On  
Available  
On  
Off  
SRAM  
On  
Available  
On  
Off  
Off  
Radio  
Available  
On  
Off  
Off  
Off  
Supply System  
On  
Duty Cycled  
1 µA  
Off  
Off  
Current  
1.45 mA + 31 µA/MHz  
650 µA  
14 µs  
Full  
0.15 µA  
1015 µs  
No  
0.1 µA  
1015 µs  
No  
Wake-up Time to CPU Active(1)  
Register Retention  
SRAM Retention  
151 µs  
Partial  
Full  
Full  
Full  
Full  
No  
No  
XOSC_HF or  
RCOSC_HF  
XOSC_HF or  
RCOSC_HF  
High-Speed Clock  
Low-Speed Clock  
Off  
Off  
Off  
Off  
Off  
XOSC_LF or  
RCOSC_LF  
XOSC_LF or  
RCOSC_LF  
XOSC_LF or  
RCOSC_LF  
Peripherals  
Available  
Available  
Available  
Available  
Available  
Available  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Sensor Controller  
Wake up on RTC  
Available  
Available  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: CC2640R2F  
English Data Sheet: SWRS204  
 
 
 
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
9-2. Power Modes (continued)  
SOFTWARE CONFIGURABLE POWER MODES  
RESET PIN  
HELD  
MODE  
ACTIVE  
Available  
Available  
Active  
IDLE  
Available  
Available  
Active  
STANDBY  
Available  
Available  
Duty Cycled  
Active  
SHUTDOWN  
Available  
Available  
Off  
Wake up on Pin Edge  
Wake up on Reset Pin  
Brown Out Detector (BOD)  
Power On Reset (POR)  
Off  
Available  
N/A  
Active  
Active  
Active  
N/A  
(1) Not including RTOS overhead  
In active mode, the application CM3 CPU is actively executing code. Active mode provides normal operation of  
the processor and all of the peripherals that are currently enabled. The system clock can be any available clock  
source (see 9-2).  
In idle mode, all active peripherals can be clocked, but the Application CPU core and memory are not clocked  
and no code is executed. Any interrupt event will bring the processor back into active mode.  
In standby mode, only the always-on domain (AON) is active. An external wake-up event, RTC event, or sensor-  
controller event is required to bring the device back to active mode. MCU peripherals with retention do not need  
to be reconfigured when waking up again, and the CPU continues execution from where it went into standby  
mode. All GPIOs are latched in standby mode.  
In shutdown mode, the device is turned off entirely, including the AON domain and the Sensor Controller. The  
I/Os are latched with the value they had before entering shutdown mode. A change of state on any I/O pin  
defined as a wake-up from Shutdown pin wakes up the device and functions as a reset trigger. The CPU can  
differentiate between a reset in this way, a reset-by-reset pin, or a power-on-reset by reading the reset status  
register. The only state retained in this mode is the latched I/O state and the Flash memory contents.  
The Sensor Controller is an autonomous processor that can control the peripherals in the Sensor Controller  
independently of the main CPU, which means that the main CPU does not have to wake up, for example, to  
execute an ADC sample or poll a digital sensor over SPI. The main CPU saves both current and wake-up time  
that would otherwise be wasted. The Sensor Controller Studio enables the user to configure the sensor  
controller and choose which peripherals are controlled and which conditions wake up the main CPU.  
9.9 Clock Systems  
The CC2640R2F supports two external and two internal clock sources.  
A 24-MHz crystal is required as the frequency reference for the radio. This signal is doubled internally to create a  
48-MHz clock.  
The 32-kHz crystal is optional. Bluetooth low energy requires a slow-speed clock with better than  
±500 ppm accuracy if the device is to enter any sleep mode while maintaining a connection. The internal  
32-kHz RC oscillator can in some use cases be compensated to meet the requirements. The low-speed crystal  
oscillator is designed for use with a 32-kHz watch-type crystal.  
The internal high-speed oscillator (48-MHz) can be used as a clock source for the CPU subsystem.  
The internal low-speed oscillator (32.768-kHz) can be used as a reference if the low-power crystal oscillator is  
not used.  
The 32-kHz clock source can be used as external clocking reference through GPIO.  
9.10 General Peripherals and Modules  
The I/O controller controls the digital I/O pins and contains multiplexer circuitry to allow a set of peripherals to be  
assigned to I/O pins in a flexible manner. All digital I/Os are interrupt and wake-up capable, have a  
programmable pullup and pulldown function and can generate an interrupt on a negative or positive edge  
(configurable). When configured as an output, pins can function as either push-pull or open-drain. Five GPIOs  
have high drive capabilities (marked in bold in 7).  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS204  
40  
Submit Document Feedback  
Product Folder Links: CC2640R2F  
 
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
The SSIs are synchronous serial interfaces that are compatible with SPI, MICROWIRE, and Texas Instruments  
synchronous serial interfaces. The SSIs support both SPI master and slave up to 4 MHz.  
The UART implements a universal asynchronous receiver/transmitter function. It supports flexible baud-rate  
generation up to a maximum of 3 Mbps .  
Timer 0 is a general-purpose timer module (GPTM), which provides two 16-bit timers. The GPTM can be  
configured to operate as a single 32-bit timer, dual 16-bit timers or as a PWM module.  
Timer 1, Timer 2, and Timer 3 are also GPTMs. Each of these timers is functionally equivalent to Timer 0.  
In addition to these four timers, the RF core has its own timer to handle timing for RF protocols; the RF timer can  
be synchronized to the RTC.  
The I2C interface is used to communicate with devices compatible with the I2C standard. The I2C interface is  
capable of 100-kHz and 400-kHz operation, and can serve as both I2C master and I2C slave.  
The TRNG module provides a true, nondeterministic noise source for the purpose of generating keys,  
initialization vectors (IVs), and other random number requirements. The TRNG is built on 24 ring oscillators that  
create unpredictable output to feed a complex nonlinear combinatorial circuit.  
The watchdog timer is used to regain control if the system fails due to a software error after an external device  
fails to respond as expected. The watchdog timer can generate an interrupt or a reset when a predefined time-  
out value is reached.  
The device includes a direct memory access (µDMA) controller. The µDMA controller provides a way to offload  
data transfer tasks from the CM3 CPU, allowing for more efficient use of the processor and the available bus  
bandwidth. The µDMA controller can perform transfer between memory and peripherals. The µDMA controller  
has dedicated channels for each supported on-chip module and can be programmed to automatically perform  
transfers between peripherals and memory as the peripheral is ready to transfer more data. Some features of  
the µDMA controller include the following (this is not an exhaustive list):  
Highly flexible and configurable channel operation of up to 32 channels  
Transfer modes:  
Memory-to-memory  
Memory-to-peripheral  
Peripheral-to-memory  
Peripheral-to-peripheral  
Data sizes of 8, 16, and 32 bits  
The AON domain contains circuitry that is always enabled, except for in Shutdown (where the digital supply is  
off). This circuitry includes the following:  
The RTC can be used to wake the device from any state where it is active. The RTC contains three compare  
and one capture registers. With software support, the RTC can be used for clock and calendar operation. The  
RTC is clocked from the 32-kHz RC oscillator or crystal. The RTC can also be compensated to tick at the  
correct frequency even when the internal 32-kHz RC oscillator is used instead of a crystal.  
The battery monitor and temperature sensor are accessible by software and give a battery status indication  
as well as a coarse temperature measure.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: CC2640R2F  
English Data Sheet: SWRS204  
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
9.11 Voltage Supply Domains  
The CC2640R2F device can interface to two or three different voltage domains depending on the package type.  
On-chip level converters ensure correct operation as long as the signal voltage on each input/output pin is set  
with respect to the corresponding supply pin (VDDS, VDDS2 or VDDS3). 9-3 lists the pin-to-VDDS mapping.  
9-3. Pin Function to VDDS Mapping Table  
Package  
VQFN 4 × 4  
(RSM)  
VQFN 7 × 7 (RGZ)  
VQFN 5 × 5 (RHB)  
DSBGA (YFV)  
DIO 2330  
Reset_N  
DIO 714  
Reset_N  
DIO 59  
Reset_N  
DIO 713  
Reset_N  
VDDS(1)  
VDDS2  
VDDS3  
DIO 06  
JTAG  
DIO 04  
JTAG  
DIO 06  
JTAG  
DIO 011  
DIO 1222  
N/A  
N/A  
N/A  
JTAG  
(1) VDDS_DCDC must be connected to VDDS on the PCB.  
9.12 System Architecture  
Depending on the product configuration, CC26xx can function either as a Wireless Network Processor (WNP—  
an IC running the wireless protocol stack, with the application running on a separate MCU), or as a System-on-  
Chip (SoC), with the application and protocol stack running on the Arm® Cortex®-M3 core inside the device.  
In the first case, the external host MCU communicates with the device using SPI or UART. In the second case,  
the application must be written according to the application framework supplied with the wireless protocol stack.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS204  
42  
Submit Document Feedback  
Product Folder Links: CC2640R2F  
 
 
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
10 Application, Implementation, and Layout  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI's customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
10.1 Application Information  
Very few external components are required for the operation of the CC2640R2F device. This section provides  
some general information about the various configuration options when using the CC2640R2F in an application,  
and then shows two examples of application circuits with schematics and layout. This is only a small selection of  
the many application circuit examples available as complete reference designs from the product folder on  
www.ti.com.  
10-1 shows the various RF front-end configuration options. The RF front end can be used in differential- or  
single-ended configurations with the options of having internal or external biasing. These options allow for  
various trade-offs between cost, board space, and RF performance. Differential operation with external bias  
gives the best performance while single-ended operation with internal bias gives the least amount of external  
components and the lowest power consumption. Reference designs exist for each of these options.  
Red = Not necessary if internal bias is used  
6.8 pF  
Antenna  
(50 Ohm)  
Pin 3 (RXTX)  
2.4 nH  
1 pF  
To VDDR  
pins  
Pin 2 (RF N)  
Pin 1 (RF P)  
2 nH  
1 pF  
2 nH  
6.2œ6.8 nH  
2.4œ2.7 nH  
10µF  
12 pF  
Optional  
inductor.  
Only  
needed for  
DCDC  
operation  
Differential  
operation  
1 pF  
10µH  
Antenna  
(50 Ohm)  
Red = Not necessary if internal bias is used  
CC26xx  
Pin 2 (RF N)  
DCDC_SW  
Pin 3/4 (RXTX)  
Pin 2 (RF N)  
Pin 1 (RF P)  
15 nH  
(GND exposed die  
attached pad)  
Pin 1 (RF P)  
2 nH  
VDDS_DCDC  
input  
decoupling  
10µFœ22µF  
Single ended  
operation  
12 pF  
1.2 pF  
1.2 pF  
Antenna  
(50 Ohm)  
Red = Not necessary if internal bias is used  
Pin 3 (RXTX)  
15 nH  
24MHz  
XTAL  
2 nH  
Pin 2 (RF N)  
(Load caps  
on chip)  
12 pF  
1.2 pF  
1.2 pF  
Single ended  
operation with 2  
antennas  
Antenna  
(50 Ohm)  
15 nH  
2 nH  
Pin 1 (RF P)  
12 pF  
1.2 pF  
1.2 pF  
Copyright © 2016, Texas Instruments Incorporated  
10-1. CC2640R2F Application Circuit  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: CC2640R2F  
English Data Sheet: SWRS204  
 
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
10-2 shows the various supply voltage configuration options. Not all power supply decoupling capacitors or  
digital I/Os are shown. Exact pin positions will vary between the different package options. For a detailed  
overview of power supply decoupling and wiring, see the TI reference designs and the CC26xx technical  
reference manual (11.3).  
Internal DC-DC Regulator  
Internal LDO Regulator  
External Regulator  
To All VDDR Pins  
To All VDDR Pins  
1.7 Vœ1.95 V to All VDDR- and VDDS Pins Except VDDS_DCDC  
Ext.  
Regulator  
10 F  
10 F  
2.2 F  
VDDS  
VDDS  
VDDS  
VDDS  
10 H  
CC26xx  
CC26xx  
CC26xx  
DCDC_SW Pin  
Pin 3/4 (RXTX)  
Pin 2 (RF N)  
Pin 1 (RF P)  
NC  
Pin 3/4 (RXTX)  
Pin 2 (RF N)  
Pin 1 (RF P)  
DCDC_SW Pin  
Pin 3/4 (RXTX)  
Pin 2 (RF N)  
Pin 1 (RF P)  
(GND Exposed Die  
Attached Pad)  
(GND Exposed Die  
Attached Pad)  
(GND Exposed Die  
Attached Pad)  
VDDS_DCDC Pin  
VDDS_DCDC Pin  
VDDS_DCDC Pin  
VDDS_DCDC  
Input Decoupling  
10 Fœ22 F  
VDDS_DCDC  
Input Decoupling  
10 Fœ22 F  
24-MHz XTAL  
(Load Caps  
on Chip)  
24-MHz XTAL  
(Load Caps on Chip)  
24-MHz XTAL  
(Load Caps on Chip)  
1.8 Vœ3.8 V  
to All VDDS Pins  
1.8 Vœ3.8 V  
Supply Voltage  
To All VDDS Pins  
Copyright © 2016, Texas Instruments Incorporated  
10-2. Supply Voltage Configurations  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS204  
44  
Submit Document Feedback  
Product Folder Links: CC2640R2F  
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
10.2 5 × 5 External Differential (5XD) Application Circuit  
VDD_EB  
VDDS  
VDDS Decoupling Capacitors  
VDDR  
VDDR Decoupling Capacitors  
BLM18HE152SN1  
1
Pin 18  
C6  
10 µF  
Pin 28  
C4  
100 nF  
Pin 11  
C3  
100 nF  
2
L1  
Pin 32  
Pin 29  
C9  
100 nF  
DCDC_SW  
2
1
FL1  
C7  
C2  
DNM  
10 uH  
C8  
C10  
100 nF  
C16  
100 nF  
10 µF  
DNM  
Place L1 and  
C8 close to pin 17  
VDDS  
VDDR  
U1  
DIO_0  
DIO_1  
6
7
28  
11  
18  
29  
32  
DIO_0  
DIO_1  
DIO_2  
DIO_3  
DIO_4  
DIO_5  
DIO_6  
DIO_7  
DIO_8  
DIO_9  
DIO_10  
DIO_11  
DIO_12  
DIO_13  
DIO_14  
VDDS  
VDDS2  
DIO_2  
DIO_3  
DIO_4  
8
C31  
6.8 pF  
VDDS_DCDC  
VDDR  
VDDR  
9
RX_TX  
RFN  
10  
15  
16  
20  
21  
22  
23  
24  
25  
26  
27  
50-Ω  
DIO_5/JTAG_TDO  
DIO_6/JTAG_TDI  
DIO_7  
1
DCDC_SW  
17  
Antenna  
DCDC_SW  
L21  
2.4 nH  
DIO_8  
DIO_9  
VDDS  
C21  
3
2
1
RX_TX  
RF_N  
RF_P  
2
DIO_10  
DIO_11  
DIO_12  
DIO_13  
DIO_14  
1
2
R1  
1 pF  
L11  
L12  
L13  
1
2
1
2
L10  
6.2 nH  
100 k  
31  
30  
X24M_P  
X24M_N  
X24M_P  
X24M_N  
nRESET  
C122 nH  
DNM  
C13 2 nH  
1 pF  
RFP  
1
2
19  
14  
13  
RESET_N  
JTAG_TCKC  
JTAG_TMSC  
5
4
JTAG_TCK  
JTAG_TMS  
X32K_Q2  
X32K_Q1  
2.7 nH  
C11  
C20  
100 nF  
12  
33  
1 pF  
DCOUPL  
C19  
1 µF  
VSS  
CC2650F128RHB  
Y2  
24 MHz  
Y1  
32.768 kHz  
1
3
C17  
C18 C22  
12 pF DNM  
C23  
2
4
12 pF  
DNM  
Copyright © 2016, Texas Instruments Incorporated  
10-3. 5 × 5 External Differential (5XD) Application Circuit  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: CC2640R2F  
English Data Sheet: SWRS204  
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
10.2.1 Layout  
10-4. 5 × 5 External Differential (5XD) Layout  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS204  
46  
Submit Document Feedback  
Product Folder Links: CC2640R2F  
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
10.3 4 × 4 External Single-ended (4XS) Application Circuit  
VDD_EB  
VDDR  
VDDS  
VDDS Decoupling Capacitors  
VDDR Decoupling Capacitors  
FL1  
L1  
Pin 11  
Pin 27  
Pin 19  
Pin 28  
Pin 32  
DCDC_SW  
2
1
1
2
BLM18HE152SN1  
10 µH  
C2  
C5  
10 µF  
C8  
C10  
C16  
100 nF  
C6  
C3  
100 nF  
C4  
C9  
DNM  
100 nF  
10 µF  
DNM  
100 nF  
100 nF  
Place L1 and  
C8 close to pin 18  
VDDS  
VDDR  
U1  
DIO_0  
27  
8
9
DIO_0  
DIO_1  
DIO_2  
DIO_3  
DIO_4  
DIO_5  
DIO_6  
DIO_7  
DIO_8  
DIO_9  
VDDS  
RF_N used for RX biasing.  
L21 may be removed at the  
cost of 1 dB degraded  
sensitivity  
DIO_1  
DIO_2  
11  
19  
28  
32  
VDDS2  
VDDS_DCDC  
VDDR  
10  
15  
16  
22  
23  
24  
25  
26  
DIO_3/JTAG_TDO  
DIO_4/JTAG_TDI  
DIO_5  
50-Ω  
Antenna  
VDDS  
VDDR  
DCDC_SW  
DIO_6  
18  
DCDC_SW  
DIO_7  
R1  
100 k  
DIO_8  
L21  
1 2  
4
DIO_9  
RX/TX  
RF_N  
RF_P  
C14  
nRESET  
2
1
L12  
15 nH  
nRESET  
RF_P  
1
2
21  
14  
13  
RESET_N  
JTAG_TCK  
JTAG_TMS  
JTAG_TCKC  
JTAG_TMSC  
2 nH  
C12  
C13  
12 pF  
X24M_P  
X24M_N  
31  
30  
C20  
X24M_P  
X24M_N  
12  
1.2 pF  
1.2 pF  
100 nF  
DCOUPL  
6
5
3
7
X32K_Q2  
X32K_Q1  
VSS  
VSS  
VSS  
VSS  
VSS  
EGP  
C19  
1 µF  
17  
20  
29  
33  
CC26XX_4X4  
Y2  
24 MHz  
Y1  
32.768 kHz  
1
3
C22  
DNM  
C23  
DNM  
C17  
12 pF  
C18  
2
4
12 pF  
Copyright © 2016, Texas Instruments Incorporated  
10-5. 4 × 4 External Single-ended (4XS) Application Circuit  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: CC2640R2F  
English Data Sheet: SWRS204  
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
10.3.1 Layout  
10-6. 4 × 4 External Single-ended (4XS) Layout  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS204  
48  
Submit Document Feedback  
Product Folder Links: CC2640R2F  
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
11 Device and Documentation Support  
11.1 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to all pre-production part numbers  
or date-code markings. Each device has one of three prefixes/identifications: X, P, or null (no prefix) (for  
example, CC2640R2F is in production; therefore, no prefix/identification is assigned).  
Device development evolutionary flow:  
X
P
Experimental device that is not necessarily representative of the final device's electrical specifications and  
may not use production assembly flow.  
Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical  
specifications.  
null Production version of the silicon die that is fully qualified.  
Production devices have been characterized fully, and the quality and reliability of the device have been  
demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type  
(for example, ).  
For orderable part numbers of the CC2640R2F device RSM, RHB, RGZ, or YFV package types, see the  
Package Option Addendum of this document, the TI website (www.ti.com), or contact your TI sales  
representative.  
CC26 xx  
yyy  
zzz  
(R/T)  
PREFIX  
X = Experimental device  
Blank = Qualified device  
R = Large Reel  
T = Small Reel  
DEVICE FAMILY  
SimpleLink™ Multistandard  
Wireless MCU  
DEVICE  
PACKAGE DESIGNATOR  
RGZ = 48-pin VQFN (Very Thin Quad Flatpack No-Lead)  
RHB = 32-pin VQFN (Very Thin Quad Flatpack No-Lead)  
RSM = 32-pin VQFN (Very Thin Quad Flatpack No-Lead)  
YFV = 34-pin DSBGA (Die-Size Ball Grid Array)  
40 = Bluetooth  
ROM version  
F128 = ROM version 1  
R2F = ROM version 2  
11-1. Device Nomenclature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: CC2640R2F  
English Data Sheet: SWRS204  
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
11.2 Tools and Software  
TI offers an extensive line of development tools, including tools to evaluate the performance of the processors,  
generate code, develop algorithm implementations, and fully integrate and debug software and hardware  
modules.  
The following products support development of the CC2640R2F device applications:  
Software Tools:  
SmartRF Studio 7 is a PC application that helps designers of radio systems to easily evaluate the RF-IC at an  
early stage in the design process.  
Test functions for sending and receiving radio packets, continuous wave transmit and receive  
Evaluate RF performance on custom boards by wiring it to a supported evaluation board or debugger  
Can also be used without any hardware, but then only to generate, edit and export radio configuration  
settings  
Can be used in combination with several development kits for Texas InstrumentsCCxxxx RF-ICs  
Sensor Controller Studio provides a development environment for the CC26xx Sensor Controller. The Sensor  
Controller is a proprietary, power-optimized CPU in the CC26xx, which can perform simple background tasks  
autonomously and independent of the System CPU state.  
Allows for Sensor Controller task algorithms to be implemented using a C-like programming language  
Outputs a Sensor Controller Interface driver, which incorporates the generated Sensor Controller machine  
code and associated definitions  
Allows for rapid development by using the integrated Sensor Controller task testing and debugging  
functionality. This allows for live visualization of sensor data and algorithm verification.  
IDEs and Compilers:  
Code Composer StudioIntegrated Development Environment (IDE):  
Integrated development environment with project management tools and editor  
Code Composer Studio (CCS) 7.0 and later has built-in support for the CC26xx device family  
Best support for XDS debuggers; XDS100v3, XDS110 and XDS200  
High integration with TI-RTOS with support for TI-RTOS Object View  
IAR Embedded Workbench® for Arm®:  
Integrated development environment with project management tools and editor  
IAR EWARM 7.80.1 and later has built-in support for the CC26xx device family  
Broad debugger support, supporting XDS100v3, XDS200, IAR I-Jet and Segger J-Link  
Integrated development environment with project management tools and editor  
RTOS plugin available for TI-RTOS  
For a complete listing of development-support tools for the CC2640R2F platform, visit the Texas Instruments  
website at www.ti.com. For information on pricing and availability, contact the nearest TI field sales office or  
authorized distributor.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS204  
50  
Submit Document Feedback  
Product Folder Links: CC2640R2F  
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
11.3 Documentation Support  
To receive notification of documentation updates, navigate to the device product folder on ti.com (CC2640R2F).  
In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that  
has changed. For change details, review the revision history included in any revised document.  
The current documentation that describes the CC2640R2F devices, related peripherals, and other technical  
collateral is listed in the following.  
Technical Reference Manual  
CC13xx, CC26xx SimpleLink™ Wireless MCU Technical Reference Manual  
SPACER  
11.4 Texas Instruments Low-Power RF Website  
Texas Instruments' Low-Power RF website has all the latest products, application and design notes, FAQ  
section, news and events updates. Go to www.ti.com/lprf.  
11.5 Low-Power RF eNewsletter  
The Low-Power RF eNewsletter is up-to-date on new products, news releases, developersnews, and other  
news and events associated with low-power RF products from TI. The Low-Power RF eNewsletter articles  
include links to get more online information.  
Sign up at: www.ti.com/lprfnewsletter  
11.6 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.7 Trademarks  
SmartRF, Code Composer Studio, LaunchPad, and TI E2Eare trademarks of Texas Instruments.  
IEEE Std 1241is a trademark of Institute of Electrical and Electronics Engineers, Incorporated.  
ARM7is a trademark of Arm Limited (or its subsidiaries).  
Arm®, Cortex®, and Thumb® are registered trademarks of Arm Limited (or its subsidiaries).  
CoreMark® is a registered trademark of Embedded Microprocessor Benchmark Consortium.  
Bluetooth® is a registered trademark of Bluetooth SIG Inc.  
IAR Embedded Workbench® is a registered trademark of IAR Systems AB.  
Wi-Fi® is a registered trademark of Wi-Fi Alliance.  
ZigBee® is a registered trademark of ZigBee Alliance.  
所有商标均为其各自所有者的财产。  
11.8 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.9 Export Control Notice  
Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as  
defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled  
product restricted by other applicable national regulations, received from disclosing party under nondisclosure  
obligations (if any), or any direct product of such technology, to any destination to which such export or re-export  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: CC2640R2F  
English Data Sheet: SWRS204  
 
 
 
 
 
 
 
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S.  
Department of Commerce and other competent Government authorities to the extent required by those laws.  
11.10 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS204  
52  
Submit Document Feedback  
Product Folder Links: CC2640R2F  
 
CC2640R2F  
www.ti.com.cn  
ZHCSFW7C DECEMBER 2016 REVISED SEPTEMBER 2020  
12 Mechanical, Packaging, and Orderable Information  
12.1 Packaging Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: CC2640R2F  
English Data Sheet: SWRS204  
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Feb-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CC2640R2FRGZR  
CC2640R2FRGZT  
CC2640R2FRHBR  
CC2640R2FRHBT  
CC2640R2FRSMR  
CC2640R2FRSMT  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGZ  
48  
48  
32  
32  
32  
32  
2500 RoHS & Green NIPDAU | NIPDAUAG Level-3-260C-168 HR  
250 RoHS & Green NIPDAU | NIPDAUAG Level-3-260C-168 HR  
2500 RoHS & Green NIPDAU | NIPDAUAG Level-3-260C-168 HR  
250 RoHS & Green NIPDAU | NIPDAUAG Level-3-260C-168 HR  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-3-260C-168 HR  
250 RoHS & Green NIPDAU | NIPDAUAG Level-3-260C-168 HR  
2500 RoHS & Green  
250 RoHS & Green  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
CC2640  
R2F  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
RGZ  
CC2640  
R2F  
RHB  
CC2640  
R2F  
RHB  
CC2640  
R2F  
RSM  
RSM  
CC2640  
R2F  
CC2640  
R2F  
CC2640R2FYFVR  
CC2640R2FYFVT  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YFV  
YFV  
34  
34  
SNAGCU  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
CC2640  
Samples  
Samples  
CC2640  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Feb-2023  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF CC2640R2F :  
Automotive : CC2640R2F-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
CC2640R2FRGZR  
CC2640R2FRGZT  
CC2640R2FRHBR  
CC2640R2FRHBR  
CC2640R2FRHBT  
CC2640R2FRSMR  
CC2640R2FRSMT  
CC2640R2FYFVR  
CC2640R2FYFVT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
DSBGA  
DSBGA  
RGZ  
RGZ  
RHB  
RHB  
RHB  
RSM  
RSM  
YFV  
YFV  
48  
48  
32  
32  
32  
32  
32  
34  
34  
2500  
250  
330.0  
180.0  
330.0  
330.0  
180.0  
330.0  
180.0  
180.0  
180.0  
16.4  
16.4  
12.4  
12.4  
12.4  
12.4  
12.4  
8.4  
7.3  
7.3  
7.3  
7.3  
1.1  
1.1  
12.0  
12.0  
8.0  
8.0  
8.0  
8.0  
8.0  
4.0  
4.0  
16.0  
16.0  
12.0  
12.0  
12.0  
12.0  
12.0  
8.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q1  
Q1  
2500  
2500  
250  
5.3  
5.3  
1.1  
5.3  
5.3  
1.1  
5.3  
5.3  
1.1  
3000  
250  
4.25  
4.25  
2.75  
2.75  
4.25  
4.25  
2.75  
2.75  
1.15  
1.15  
0.81  
0.81  
2500  
250  
8.4  
8.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
CC2640R2FRGZR  
CC2640R2FRGZT  
CC2640R2FRHBR  
CC2640R2FRHBR  
CC2640R2FRHBT  
CC2640R2FRSMR  
CC2640R2FRSMT  
CC2640R2FYFVR  
CC2640R2FYFVT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
DSBGA  
DSBGA  
RGZ  
RGZ  
RHB  
RHB  
RHB  
RSM  
RSM  
YFV  
YFV  
48  
48  
32  
32  
32  
32  
32  
34  
34  
2500  
250  
367.0  
210.0  
367.0  
336.6  
210.0  
367.0  
210.0  
182.0  
182.0  
367.0  
185.0  
367.0  
336.6  
185.0  
367.0  
185.0  
182.0  
182.0  
35.0  
35.0  
35.0  
31.8  
35.0  
35.0  
35.0  
20.0  
20.0  
2500  
2500  
250  
3000  
250  
2500  
250  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Jul-2023  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
CC2640R2FRHBR  
CC2640R2FRHBR  
CC2640R2FRHBT  
CC2640R2FRHBT  
CC2640R2FRSMR  
CC2640R2FRSMR  
CC2640R2FRSMT  
CC2640R2FRSMT  
RHB  
RHB  
RHB  
RHB  
RSM  
RSM  
RSM  
RSM  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
32  
32  
32  
32  
32  
32  
32  
32  
2500  
2500  
250  
14 x 35  
14 x 35  
14 x 35  
14 x 35  
14 x 35  
14 x 35  
14 x 35  
14 x 35  
150  
150  
150  
150  
150  
150  
150  
150  
315 135.9 7620  
315 135.9 7620  
315 135.9 7620  
315 135.9 7620  
315 135.9 7620  
315 135.9 7620  
315 135.9 7620  
315 135.9 7620  
8.8  
8.8  
8.8  
8.8  
8.8  
8.8  
8.8  
8.8  
7.9  
7.9  
7.9  
7.9  
7.9  
7.9  
7.9  
7.9  
8.15  
8.15  
8.15  
8.15  
8.15  
8.15  
8.15  
8.15  
250  
3000  
3000  
250  
250  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
RGZ 48  
7 x 7, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUADFLAT PACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224671/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
A
7.1  
6.9  
B
(0.1) TYP  
7.1  
6.9  
SIDE WALL DETAIL  
OPTIONAL METAL THICKNESS  
PIN 1 INDEX AREA  
(0.45) TYP  
CHAMFERED LEAD  
CORNER LEAD OPTION  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 5.5  
5.15±0.1  
(0.2) TYP  
13  
24  
44X 0.5  
12  
25  
SEE SIDE WALL  
DETAIL  
SYMM  
2X  
5.5  
1
36  
0.30  
0.18  
PIN1 ID  
(OPTIONAL)  
48X  
48  
37  
SYMM  
0.1  
C A B  
C
0.5  
0.3  
48X  
0.05  
SEE LEAD OPTION  
4219044/D 02/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
2X (6.8)  
5.15)  
SYMM  
(
48X (0.6)  
37  
48  
48X (0.24)  
44X (0.5)  
1
36  
SYMM  
2X  
2X  
(5.5)  
(6.8)  
2X  
(1.26)  
2X  
(1.065)  
(R0.05)  
TYP  
25  
12  
21X (Ø0.2) VIA  
TYP  
24  
13  
2X (1.065)  
2X (1.26)  
2X (5.5)  
LAND PATTERN EXAMPLE  
SCALE: 15X  
SOLDER MASK  
OPENING  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4219044/D 02/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
2X (6.8)  
SYMM  
(
1.06)  
37  
48X (0.6)  
48  
48X (0.24)  
44X (0.5)  
1
36  
SYMM  
2X  
2X  
(5.5)  
(6.8)  
2X  
(0.63)  
2X  
(1.26)  
(R0.05)  
TYP  
25  
12  
24  
13  
2X  
(1.26)  
2X (0.63)  
2X (5.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
67% PRINTED COVERAGE BY AREA  
SCALE: 15X  
4219044/D 02/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
D: Max = 2.714 mm, Min =2.654 mm  
E: Max = 2.714 mm, Min =2.654 mm  
GENERIC PACKAGE VIEW  
RSM 32  
4 x 4, 0.4 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224982/A  
www.ti.com  
PACKAGE OUTLINE  
RSM0032B  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
B
4.1  
3.9  
A
0.45  
0.25  
0.25  
0.15  
PIN 1 INDEX AREA  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
4.1  
3.9  
(0.1)  
SIDE WALL DETAIL  
OPTIONAL METAL THICKNESS  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.8 0.05  
2X 2.8  
(0.2) TYP  
4X (0.45)  
28X 0.4  
9
16  
SEE SIDE WALL  
DETAIL  
8
17  
EXPOSED  
THERMAL PAD  
2X  
SYMM  
33  
2.8  
24  
0.25  
32X  
1
SEE TERMINAL  
DETAIL  
0.15  
0.1  
C A B  
25  
32  
PIN 1 ID  
(OPTIONAL)  
0.05  
SYMM  
0.45  
0.25  
32X  
4219108/B 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RSM0032B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.8)  
SYMM  
32  
25  
32X (0.55)  
1
32X (0.2)  
24  
(
0.2) TYP  
VIA  
(1.15)  
SYMM  
33  
(3.85)  
28X (0.4)  
17  
8
(R0.05)  
TYP  
9
16  
(1.15)  
(3.85)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219108/B 08/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RSM0032B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.715)  
4X ( 1.23)  
(R0.05) TYP  
25  
32  
32X (0.55)  
1
24  
32X (0.2)  
(0.715)  
(3.85)  
33  
SYMM  
28X (0.4)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(3.85)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 33:  
77% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219108/B 08/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
GENERIC PACKAGE VIEW  
RHB 32  
5 x 5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224745/A  
www.ti.com  
PACKAGE OUTLINE  
RHB0032E  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
(0.1)  
5.1  
4.9  
SIDE WALL DETAIL  
20.000  
OPTIONAL METAL THICKNESS  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
3.45 0.1  
9
EXPOSED  
THERMAL PAD  
16  
28X 0.5  
8
17  
SEE SIDE WALL  
DETAIL  
2X  
SYMM  
33  
3.5  
0.3  
0.2  
32X  
24  
0.1  
C A B  
C
1
0.05  
32  
25  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.5  
0.3  
32X  
4223442/B 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.45)  
SYMM  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
(1.475)  
28X (0.5)  
33  
SYMM  
(4.8)  
(
0.2) TYP  
VIA  
8
17  
(R0.05)  
TYP  
9
16  
(1.475)  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223442/B 08/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.49)  
(0.845)  
(R0.05) TYP  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
28X (0.5)  
(0.845)  
SYMM  
33  
(4.8)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33:  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4223442/B 08/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY