CC2642R-Q1 [TI]

符合汽车标准的 SimpleLink™ 低功耗 Bluetooth® 无线 MCU;
CC2642R-Q1
型号: CC2642R-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

符合汽车标准的 SimpleLink™ 低功耗 Bluetooth® 无线 MCU

无线
文件: 总62页 (文件大小:4213K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
CC2642R-Q1 SimpleLink™ 低功Bluetooth® 5.2 线MCU  
法规遵从性  
1 特性  
• 适用于符合以下标准的系统  
ETSI EN 300 328EN 300 440 2 3  
FCC CFR47 15 部分  
无线微控制器  
• 功能强大48MHz Arm® Cortex®-M4F 处理器  
EEMBC CoreMark® 评分148  
352KB 闪存程序存储器  
256KB ROM用于协议和库函数  
8KB 高速缓SRAM  
• 具有奇偶校验功能80KB 超低泄SRAM可实  
现高度可靠运行  
2 cJTAG JTAG 调试  
• 支持无线升(OTA)  
ARIB STD-T66  
MCU 外设  
• 数字外设可连接31 GPIO 中的任何一个  
• 四32 位或八16 位通用计时器  
12 ADC200ksps8 通道  
8 DAC  
• 两个比较器  
• 两UART、两SSII2CI2S  
• 实时时(RTC)  
• 集成温度和电池监控器  
• 可编程无线电支持低功Bluetooth® 5.2  
超低功耗传感器控制器  
• 具4KB SRAM 的自MCU  
• 采样、存储和处理传感器数据  
• 快速唤醒进入低功耗运行  
安全驱动工具  
AES 128 256 位加密加速计  
ECC RSA 公钥硬件加速器  
SHA2 加速器最高SHA-512 的全套装)  
• 真随机数发生(TRNG)  
• 软件定义外设电容式触控、流量计、LCD  
符合汽车应用要求  
• 具有符AEC-Q100 标准的下列特性:  
开发工具和软件  
– 器件温度等2-40°C +105°C 环境工作温  
度范围  
– 器件人体模(HBM) 静电放(ESD) 分类等级  
SimpleLink™ CC13xx CC26xx 软件开发套件  
• 用于简单无线电配置SmartRF™ Studio  
• 用于构建低功耗检测应用Sensor Controller  
Studio  
2
– 器CDM ESD 分类等C3  
SysConfig 系统配置工具  
低功耗  
工作温度范围  
MCU 功耗:  
3.4 mA 有源模式CoreMark®  
71μA/MHzCoreMark® )  
0.94μA 待机模式RTC80KB RAM  
0.15 μA 关断模式引脚唤醒  
• 片上降压直流/直流转换器  
1.8V 3.63V 单电源电压  
-40°C +105°C  
封装  
• 超低功耗传感器控制器功耗:  
• 具有可湿性侧面7mm × 7mm RTC VQFN4831  
GPIO)  
• 具有可湿性侧面7mm × 7mm RGZ VQFN4831  
GPIO)  
2 MHz 模式下31.9μA  
24MHz 模式下808.5μA  
• 无线电功耗  
RX6.9 mA  
TX7.0 mA0dBm 条件下)  
TX9.2 mA+5dBm 条件下)  
• 符RoHS 标准的封装  
无线协议支持  
• 低功Bluetooth® 5.2  
高性能无线电  
• –105dBm用于蓝125kbpsLE PHY)  
• –97dBm1Mbps PHY  
• 高+5dBm 的输出功率具有温度补偿  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SWRS229  
 
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
高级驾驶辅助系(ADAS)  
远程信息处理控制单(TCU)  
2 应用  
汽车  
音响主机  
工业  
工业运- 资产跟踪  
工厂自动化和控制  
汽车门禁和安全系统  
无钥匙进入及启(PEPS) 系统  
手机即钥(PaaK)  
遥控免钥匙进(RKE)  
3 说明  
SimpleLink™ CC2642R-Q1 器件是一款符合 AEC-Q100 标准的无线微控制器 (MCU)面向低功耗蓝牙 5 汽车应  
用。该器件针对汽车门禁等应用中的低功耗无线通信进行了优化包括无钥匙进入及启动 (PEPS) 遥控无钥匙  
(RKE)、汽车共享、引导停车、电缆更换和智能手机连接。该器件的突出特性包括:  
• 支Bluetooth ® 5.2 特性LE PHY远距离LE 2Mb PHY高速、广播扩展、多个广播集、  
CSA#2 以及Bluetooth ® 5 和早期低功耗规范的向后兼容性和支持。  
• 完全合格Bluetooth ® 5.2 软件协议栈包含SimpleLink™ CC13xx CC26xx 软件开发套(SDK) 可  
启用到达(AoA)。  
• 具0.94µA 低待机电流和完RAM 保持的更长电池寿命无线应用。  
• 符AEC-Q100 标准2 级温度范围40°C +105°C),并采用具有可湿性侧面7mm x 7mm  
VQFN 封装。  
• 软件控制的专用无线电控制(Arm® Cortex®-M0) 提供灵活的低功耗射频收发器功能支持多个物理层和射频  
标准如实时定(RTLS) 技术。  
• 出色的无线电敏感度和稳健性选择性与阻断性能适用于低功Bluetooth ®125kbps LE PHY 时  
-105dBm。  
CC2642R-Q1 器件是 SimpleLink™ MCU 平台的一部分该平台包括 Wi-Fi®、低功耗蓝牙ThreadZigbee®、  
Sub-1GHz MCU 和主机 MCU它们共用一个通用的易用型开发环境其中包含单核软件开发套件 (SDK) 和丰富  
的工具集。借助一次性集成的 SimpleLink™ 平台可以将产品组合中的任何器件组合添加至您的设计中从而在  
设计要求变更时实100% 的代码重用。如需更多信息请访SimpleLink™ MCU 平台。  
器件信息(1)  
封装尺寸标称值)  
器件型号  
封装  
CC2642R1TWFRTCRQ1  
CC2642R1FTWRGZRQ1  
VQFN (48)  
VQFN (48)  
7.00mm × 7.00mm  
7.00mm × 7.00mm  
(1) 有关最新器件、封装和所有可用器件的订购信息请参阅封装选项附或浏TI 网站。  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS229  
2
Submit Document Feedback  
Product Folder Links: CC2642R-Q1  
 
 
 
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
4 Functional Block Diagram  
2.4 GHz  
RF Core  
cJTAG  
Main CPU  
256KB  
ROM  
ADC  
ADC  
Arm®  
Cortex®-M4F  
Processor  
Up to  
352KB  
Flash  
Digital PLL  
with 8KB  
Cache  
DSP Modem  
48 MHz  
71 µA/MHz (3.0 V)  
16KB  
SRAM  
Arm®  
Cortex®-M0  
Processor  
Up to  
80KB  
SRAM  
ROM  
with Parity  
General Hardware Peripherals and Modules  
Sensor Interface  
I2C and I2S  
4× 32-bit Timers  
2× SSI (SPI)  
Watchdog Timer  
TRNG  
Sensor Controller  
8-bit DAC  
2× UART  
12-bit ADC, 200 ks/s  
2x Low-Power Comparator  
SPI-I2C Digital Sensor IF  
Capacitive Touch IF  
Time-to-Digital Converter  
4KB SRAM  
32 ch. µDMA  
31 GPIOs  
Temperature and  
Battery Monitor  
AES-256, SHA2-512  
ECC, RSA  
RTC  
LDO, Clocks, and References  
Optional DC/DC Converter  
4-1. CC2642R-Q1 Block Diagram  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: CC2642R-Q1  
English Data Sheet: SWRS229  
 
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
Table of Contents  
9.2 System CPU............................................................. 33  
9.3 Radio (RF Core)........................................................34  
9.4 Memory.....................................................................35  
9.5 Sensor Controller......................................................36  
9.6 Cryptography............................................................ 37  
9.7 Timers....................................................................... 38  
9.8 Serial Peripherals and I/O.........................................39  
9.9 Battery and Temperature Monitor............................. 39  
9.10 µDMA......................................................................39  
9.11 Debug......................................................................39  
9.12 Power Management................................................40  
9.13 Clock Systems........................................................ 41  
9.14 Network Processor..................................................41  
10 Application, Implementation, and Layout................. 42  
10.1 Reference Designs................................................. 42  
10.2 Junction Temperature Calculation...........................43  
11 Device and Documentation Support..........................44  
11.1 Device Nomenclature..............................................44  
11.2 Tools and Software..................................................44  
11.3 Documentation Support.......................................... 47  
11.4 支持资源..................................................................48  
11.5 Trademarks............................................................. 48  
11.6 静电放电警告...........................................................48  
11.7 术语表..................................................................... 48  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 2  
3 说明................................................................................... 2  
4 Functional Block Diagram.............................................. 3  
5 Revision History.............................................................. 4  
6 Device Comparison.........................................................5  
7 Terminal Configuration and Functions..........................6  
7.1 Pin Diagram RTC and RGZ Package (Top  
View)............................................................................. 6  
7.2 Signal Descriptions..................................................... 7  
7.3 Connections for Unused Pins and Modules................8  
8 Specifications.................................................................. 9  
8.1 Absolute Maximum Ratings........................................ 9  
8.2 ESD Ratings............................................................... 9  
8.3 Recommended Operating Conditions.........................9  
8.4 Power Supply and Modules........................................ 9  
8.5 Power Consumption - Power Modes........................ 10  
8.6 Power Consumption - Radio Modes......................... 11  
8.7 Nonvolatile (Flash) Memory Characteristics............. 11  
8.8 Thermal Resistance Characteristics......................... 11  
8.9 Bluetooth Low Energy Receive (RX)........................ 12  
8.10 Bluetooth Low Energy - Transmit (TX)....................15  
8.11 Timing and Switching Characteristics..................... 15  
8.12 Peripheral Characteristics.......................................20  
8.13 Typical Characteristics............................................27  
9 Detailed Description......................................................33  
9.1 Overview...................................................................33  
Information.................................................................... 49  
5 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from June 29, 2022 to May 19, 2023 (from Revision B (June 2022) to Revision C (May  
2023))  
Page  
• 更改了1 特性 中的“无线电功耗”TX 电流............................................................................................ 1  
Changed package options for CC2340R2..........................................................................................................5  
Changed the TYP values of the "Radio transmit current" parameter in 8.6 Power Consumption - Radio  
Modes .............................................................................................................................................................. 11  
Updated 8-1 Typical TX Current and Output Power ....................................................................................29  
Changes from May 19, 2023 to July 11, 2023 (from Revision C (May 2023) to Revision D (July  
2023))  
Page  
• 将“48MHz Arm Cortex-M4”更新为“Arm Cortex-M4F............................................................................... 1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS229  
4
Submit Document Feedback  
Product Folder Links: CC2642R-Q1  
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
6 Device Comparison  
RADIO SUPPORT  
PACKAGE SIZE  
FLASH  
(KB)  
RAM +  
GPIO  
Device  
Cache (KB)  
CC1310  
CC1311R3  
CC1311P3  
CC1312R  
CC1312R7  
CC1352R  
CC1352P  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
32-128  
352  
352  
352  
704  
352  
352  
704  
512  
16-20 + 8 10-30  
X
X
X
X
X
X
X
X
X
X
32 + 8  
32 + 8  
80 + 8  
144 + 8  
80 + 8  
80 + 8  
144 + 8  
36  
22-30  
26  
X
X
X
30  
X
X
X
X
X
X
X
X
X
X
30  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
28  
X
X
26  
CC1352P7  
CC2340R5(1)  
26  
X
X
12-26  
X
CC2640R2F  
CC2642R  
X
X
X
X
X
X
X
X
X
X
128  
352  
352  
352  
352  
352  
352  
704  
352  
704  
352  
20 + 8  
80 + 8  
80 + 8  
32 + 8  
32 + 8  
80 + 8  
80 + 8  
144 + 8  
80 + 8  
144 + 8  
80 + 8  
10-31  
31  
X
X
X
X
X
X
X
X
X
X
X
X
X
CC2642R-Q1  
CC2651R3  
CC2651P3  
CC2652R  
31  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
23-31  
22-26  
31  
X
X
X
X
X
X
X
X
X
X
X
X
X
CC2652RB  
CC2652R7  
CC2652P  
31  
31  
X
X
26  
CC2652P7  
CC2662R-Q1  
26  
31  
(1) ZigBee and Thread support enabled by future software update  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: CC2642R-Q1  
English Data Sheet: SWRS229  
 
 
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
7 Terminal Configuration and Functions  
7.1 Pin Diagram RTC and RGZ Package (Top View)  
RF_P  
RF_N  
1
2
3
4
5
6
7
8
9
36 DIO_23  
35 RESET_N  
34 VDDS_DCDC  
33 DCDC_SW  
32 DIO_22  
X32K_Q1  
X32K_Q2  
DIO_0  
DIO_1  
31 DIO_21  
DIO_2  
30 DIO_20  
DIO_3  
29 DIO_19  
DIO_4  
28 DIO_18  
DIO_5 10  
DIO_6 11  
DIO_7 12  
27 DIO_17  
26 DIO_16  
25 JTAG_TCKC  
7-1. RTC (7-mm × 7-mm) and RGZ (7-mm × 7-mm) Pinout, 0.5-mm Pitch (Top View)  
The following I/O pins marked in 7-1 in bold have high-drive capabilities:  
Pin 10, DIO_5  
Pin 11, DIO_6  
Pin 12, DIO_7  
Pin 24, JTAG_TMSC  
Pin 26, DIO_16  
Pin 27, DIO_17  
The following I/O pins marked in 7-1 in italics have analog capabilities:  
Pin 36, DIO_23  
Pin 37, DIO_24  
Pin 38, DIO_25  
Pin 39, DIO_26  
Pin 40, DIO_27  
Pin 41, DIO_28  
Pin 42, DIO_29  
Pin 43, DIO_30  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: CC2642R-Q1  
English Data Sheet: SWRS229  
 
 
 
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
7.2 Signal Descriptions  
7-1. Signal Descriptions RTC and RGZ Package  
PIN  
I/O  
TYPE  
DESCRIPTION  
NAME  
NO.  
33  
23  
5
DCDC_SW  
DCOUPL  
DIO_0  
Power  
Power  
Output from internal DC/DC converter(1)  
1.27-V regulated digital-supply (decoupling capacitor)(2)  
GPIO, Sensor Controller  
GPIO, Sensor Controller  
GPIO, Sensor Controller  
GPIO, Sensor Controller  
GPIO, Sensor Controller  
GPIO, Sensor Controller, high-drive capability  
GPIO, Sensor Controller, high-drive capability  
GPIO, Sensor Controller, high-drive capability  
GPIO  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Digital  
DIO_1  
6
Digital  
DIO_2  
7
Digital  
DIO_3  
8
Digital  
DIO_4  
9
Digital  
DIO_5  
10  
11  
12  
14  
15  
16  
17  
18  
19  
20  
21  
26  
27  
28  
29  
30  
31  
32  
36  
37  
38  
39  
40  
41  
42  
43  
Digital  
DIO_6  
Digital  
DIO_7  
Digital  
DIO_8  
Digital  
DIO_9  
Digital  
GPIO  
DIO_10  
DIO_11  
DIO_12  
DIO_13  
DIO_14  
DIO_15  
DIO_16  
DIO_17  
DIO_18  
DIO_19  
DIO_20  
DIO_21  
DIO_22  
DIO_23  
DIO_24  
DIO_25  
DIO_26  
DIO_27  
DIO_28  
DIO_29  
DIO_30  
EGP  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO, JTAG_TDO, high-drive capability  
GPIO, JTAG_TDI, high-drive capability  
GPIO  
Digital  
Digital  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital or Analog  
Digital or Analog  
Digital or Analog  
Digital or Analog  
Digital or Analog  
Digital or Analog  
Digital or Analog  
Digital or Analog  
GND  
GPIO, Sensor Controller, analog  
GPIO, Sensor Controller, analog  
GPIO, Sensor Controller, analog  
GPIO, Sensor Controller, analog  
GPIO, Sensor Controller, analog  
GPIO, Sensor Controller, analog  
GPIO, Sensor Controller, analog  
GPIO, Sensor Controller, analog  
Ground exposed ground pad  
JTAG TMSC, high-drive capability  
JTAG TCKC  
24  
25  
35  
I/O  
I
JTAG_TMSC  
JTAG_TCKC  
RESET_N  
Digital  
Digital  
I
Digital  
Reset, active low. No internal pullup resistor  
Positive RF input signal to LNA during RX  
Positive RF output signal from PA during TX  
RF_P  
RF_N  
VDDR  
1
2
RF  
RF  
Negative RF input signal to LNA during RX  
Negative RF output signal from PA during TX  
1.7-V to 1.95-V supply, must be powered from the internal DC/DC  
converter or the internal Global LDO(3) (2)  
45  
Power  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: CC2642R-Q1  
English Data Sheet: SWRS229  
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
7-1. Signal Descriptions RTC and RGZ Package (continued)  
PIN  
I/O  
TYPE  
DESCRIPTION  
NAME  
NO.  
1.7-V to 1.95-V supply, must be powered from the internal DC/DC  
converter or the internal Global LDO(4) (2)  
VDDR_RF  
48  
Power  
VDDS  
44  
13  
22  
34  
46  
47  
3
Power  
Power  
Power  
Power  
Analog  
Analog  
Analog  
Analog  
1.8-V to 3.63-V main chip supply(1)  
1.8-V to 3.63-V DIO supply(1)  
1.8-V to 3.63-V DIO supply(1)  
1.8-V to 3.63-V DC/DC converter supply  
48-MHz crystal oscillator pin 1  
48-MHz crystal oscillator pin 2  
32-kHz crystal oscillator pin 1  
32-kHz crystal oscillator pin 2  
VDDS2  
VDDS3  
VDDS_DCDC  
X48M_N  
X48M_P  
X32K_Q1  
X32K_Q2  
4
(1) For more details, see the technical reference manual listed in 11.3.  
(2) Do not supply external circuitry from this pin.  
(3) If internal DC/DC converter is not used, this pin is supplied internally from the Global LDO.  
(4) If internal DC/DC converter is not used, this pin must be connected to VDDR for supply from the Global LDO.  
7.3 Connections for Unused Pins and Modules  
7-2. Connections for Unused Pins  
PREFERRED  
PRACTICE(1)  
FUNCTION  
SIGNAL NAME  
PIN NUMBER  
ACCEPTABLE PRACTICE(1)  
512  
1421  
2632  
3643  
GPIO  
DIO_n  
NC or GND  
NC  
NC  
X32K_Q1  
3
4
32.768-kHz crystal  
NC  
X32K_Q2  
DCDC_SW  
VDDS_DCDC  
33  
34  
NC  
NC  
DC/DC converter(2)  
VDDS  
VDDS  
(1) NC = No connect  
(2) When the DC/DC converter is not used, the inductor between DCDC_SW and VDDR can be removed. VDDR and VDDR_RF must still  
be connected and the VDDR decoupling capacitor must be connected and moved close to VDDR.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS229  
8
Submit Document Feedback  
Product Folder Links: CC2642R-Q1  
 
 
 
 
 
 
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
8 Specifications  
All  
measurements  
are  
applicable  
to  
both  
CC2642R1TWFRTCRQ1  
(RTC  
package)  
and  
CC2642R1FTWRGZRQ1 (RGZ package), unless otherwise noted.  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
MAX UNIT  
4.1  
VDDS(3)  
Supply voltage  
V
Voltage on any digital pin (4) (5)  
VDDS + 0.3, max 4.1  
V
V
Voltage on crystal oscillator pins, X32K_Q1, X32K_Q2, X48M_N and X48M_P  
Voltage scaling enabled  
VDDR + 0.3, max 2.25  
VDDS  
1.49  
Vin  
Voltage on ADC input  
Voltage scaling disabled, internal reference  
Voltage scaling disabled, VDDS as reference  
V
VDDS / 2.9  
5
Input level, RF pins  
Storage temperature  
dBm  
°C  
Tstg  
150  
40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to ground, unless otherwise noted.  
(3) VDDS2 and VDDS3 must be at the same potential as VDDS.  
(4) Including analog capable DIO.  
(5) Injection current is not supported on any GPIO pin  
8.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
V
Human body model (HBM), per AEC Q100-002(1) (2)  
Charged device model (CDM), per AEC Q100-011(3)  
All pins  
All pins  
VESD  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(2) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process  
(3) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process  
8.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
105  
3.63  
100  
20  
UNIT  
°C  
Operating ambient temperature range  
Operating supply voltage (VDDS)  
Rising supply voltage slew rate  
Falling supply voltage slew rate(1)  
40  
1.8  
0
V
mV/µs  
mV/µs  
0
(1) For small coin-cell batteries, with high worst-case end-of-life equivalent source resistance, a 22-µF VDDS input capacitor must be used  
to ensure compliance with this slew rate.  
8.4 Power Supply and Modules  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TYP  
1.1 - 1.55  
1.77  
UNIT  
VDDS Power-on-Reset (POR) threshold  
V
V
V
V
VDDS Brown-out Detector (BOD)  
Rising threshold  
Rising threshold  
Falling threshold  
VDDS Brown-out Detector (BOD), before initial boot (1)  
VDDS Brown-out Detector (BOD)  
1.70  
1.75  
(1) Brown-out Detector is trimmed at initial boot, value is kept until device is reset by a POR reset or the RESET_N pin  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: CC2642R-Q1  
English Data Sheet: SWRS229  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
8.5 Power Consumption - Power Modes  
When measured on the CC26x2REM-7ID-Q1 reference design with Tc = 25 °C, VDDS = 3.0 V with DC/DC enabled unless  
otherwise noted.  
PARAMETER  
TEST CONDITIONS  
TYP  
UNIT  
Core Current Consumption  
Reset. RESET_N pin asserted or VDDS below power-on-reset threshold  
Shutdown. No clocks running, no retention  
150  
150  
Reset and Shutdown  
nA  
RTC running, CPU, 80KB RAM and (partial) register retention.  
RCOSC_LF  
0.94  
1.09  
3.2  
µA  
µA  
µA  
µA  
µA  
mA  
Standby  
without cache retention  
RTC running, CPU, 80KB RAM and (partial) register retention  
XOSC_LF  
RTC running, CPU, 80KB RAM and (partial) register retention.  
RCOSC_LF  
Icore  
Standby  
with cache retention  
RTC running, CPU, 80KB RAM and (partial) register retention.  
XOSC_LF  
3.3  
Supply Systems and RAM powered  
RCOSC_HF  
Idle  
675  
3.39  
MCU running CoreMark at 48 MHz  
RCOSC_HF  
Active  
Peripheral Current Consumption  
Peripheral power  
domain  
Delta current with domain enabled  
Delta current with domain enabled  
97.7  
7.2  
Serial power domain  
RF Core  
Delta current with power domain enabled,  
clock enabled, RF Core idle  
210.9  
µDMA  
Timers  
Delta current with clock enabled, module is idle  
Delta current with clock enabled, module is idle(3)  
Delta current with clock enabled, module is idle  
Delta current with clock enabled, module is idle  
Delta current with clock enabled, module is idle  
Delta current with clock enabled, module is idle(1)  
Delta current with clock enabled, module is idle(2)  
Delta current with clock enabled, module is idle  
Delta current with clock enabled, module is idle  
63.9  
81.0  
10.8  
27.6  
82.9  
167.5  
25.6  
84.7  
35.6  
Iperi  
µA  
I2C  
I2S  
SSI  
UART  
CRYPTO (AES)  
PKA  
TRNG  
Sensor Controller Engine Consumption  
Active mode  
ISCE  
24 MHz, infinite loop  
2 MHz, infinite loop  
808.5  
31.9  
µA  
Low-power mode  
(1) Only one UART running  
(2) Only one SSI running  
(3) Only one GPTimer running  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS229  
10  
Submit Document Feedback  
Product Folder Links: CC2642R-Q1  
 
 
 
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
8.6 Power Consumption - Radio Modes  
When measured on the CC26x2REM-7ID-Q1 reference design with Tc = 25 °C, VDDS = 3.0 V with DC/DC enabled unless  
otherwise noted.  
PARAMETER  
TEST CONDITIONS  
TYP UNIT  
Radio receive current  
2440 MHz  
6.9  
7.0  
mA  
mA  
0 dBm output power setting  
2440 MHz  
Radio transmit current  
+5 dBm output power setting  
2440 MHz  
9.2  
mA  
8.7 Nonvolatile (Flash) Memory Characteristics  
Over operating free-air temperature range and VDDS = 3.0 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Flash sector size  
8
KB  
Supported flash erase cycles before failure, full bank(1)  
Supported flash erase cycles before failure, single sector(2)  
30  
60  
k Cycles  
k Cycles  
Write  
Maximum number of write operations per row before sector  
erase(3)  
83  
Operations  
Years at 105  
°C  
Flash retention  
105 °C  
11.4  
Flash sector erase current  
Flash sector erase time(4)  
Flash sector erase time(4)  
Flash write current  
Average delta current  
Zero cycles  
10.7  
10  
mA  
ms  
ms  
mA  
µs  
30k cycles  
4000  
Average delta current, 4 bytes at a time  
4 bytes at a time  
6.2  
Flash write time  
21.6  
(1) A full bank erase is counted as a single erase cycle on each sector  
(2) Up to 4 customer-designated sectors can be individually erased an additional 30k times beyond the baseline bank limitation of 30k  
cycles  
(3) Each wordline is 2048 bits (or 256 bytes) wide. This limitation corresponds to sequential memory writes of 4 (3.1) bytes minimum per  
write over a whole wordline. If additional writes to the same wordline are required, a sector erase is required once the maximum  
number of write operations per row is reached.  
(4) This number is dependent on Flash aging and increases over time and erase cycles  
8.8 Thermal Resistance Characteristics  
PACKAGE  
RTC  
(VQFN)  
RGZ  
(VQFN)  
THERMAL METRIC(1)  
UNIT  
48 PINS  
23.0  
13.2  
7.5  
48 PINS  
24.2  
13.6  
7.8  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W(2)  
°C/W(2)  
°C/W(2)  
°C/W(2)  
°C/W(2)  
°C/W(2)  
RθJC(top)  
RθJB  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
0.1  
ψJT  
7.4  
7.7  
ψJB  
RθJC(bot)  
1.3  
1.7  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) °C/W = degrees Celsius per watt.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: CC2642R-Q1  
English Data Sheet: SWRS229  
 
 
 
 
 
 
 
 
 
 
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
8.9 Bluetooth Low Energy Receive (RX)  
When measured on the CC26x2REM-7ID-Q1 reference design with Tc = 25 °C, VDDS = 3.0 V, fRF = 2440 MHz with DC/DC  
enabled unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX path.  
All measurements are performed conducted. All measurements are applicable to both RTC and RGZ packages, unless  
otherwise noted.  
PARAMETER  
125 kbps (LE Coded)  
Receiver sensitivity  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Differential mode. BER = 103  
dBm  
dBm  
105  
Receiver saturation  
Differential mode. BER = 103  
>5  
Difference between the incoming carrier frequency and  
the internally generated carrier frequency  
Frequency error tolerance  
Data rate error tolerance  
Data rate error tolerance  
Co-channel rejection(1)  
Selectivity, ±1 MHz(1)  
kHz  
ppm  
ppm  
dB  
> (300 / 300)  
> (320 / 240)  
> (100 / 125)  
1.5  
Difference between incoming data rate and the internally  
generated data rate (37-byte packets)  
Difference between incoming data rate and the internally  
generated data rate (255-byte packets)  
Wanted signal at 79 dBm, modulated interferer in  
channel, BER = 103  
Wanted signal at 79 dBm, modulated interferer at ±1  
8 / 4.5(2)  
dB  
MHz, BER = 103  
Wanted signal at 79 dBm, modulated interferer at ±2  
Selectivity, ±2 MHz(1)  
44 / 39(2)  
43 / 39(2)  
46 / 44(2)  
42 / 42(2)  
44 / 46(2)  
42 / 42(2)  
48 / 44(2)  
48 / 41(2)  
51 / 45(2)  
51 / 43(2)  
39  
dB  
MHz, BER = 103 . Applicable to RTC package  
Wanted signal at 79 dBm, modulated interferer at ±2  
Selectivity, ±2 MHz(1)  
dB  
MHz, BER = 103 . Applicable to RGZ package  
Wanted signal at 79 dBm, modulated interferer at ±3  
Selectivity, ±3 MHz(1)  
dB  
MHz, BER = 103 . Applicable to RTC package  
Wanted signal at 79 dBm, modulated interferer at ±3  
Selectivity, ±3 MHz(1)  
dB  
MHz, BER = 103. Applicable to RGZ package  
Wanted signal at 79 dBm, modulated interferer at ±4  
Selectivity, ±4 MHz(1)  
dB  
MHz, BER = 103 . Applicable to RTC package  
Wanted signal at 79 dBm, modulated interferer at ±4  
Selectivity, ±4 MHz(1)  
dB  
MHz, BER = 103 . Applicable to RGZ package  
Wanted signal at 79 dBm, modulated interferer at ±6  
Selectivity, ±6 MHz(1)  
dB  
MHz, BER = 103 . Applicable to RTC package  
Wanted signal at 79 dBm, modulated interferer at ±6  
Selectivity, ±6 MHz(1)  
dB  
MHz, BER = 103 . Applicable to RGZ package  
Wanted signal at 79 dBm, modulated interferer at ±7  
Selectivity, ±7 MHz or more(1)  
Selectivity, ±7 MHz or more(1)  
Selectivity, Image frequency(1)  
dB  
MHz or more, BER = 103 . Applicable to RTC package  
Wanted signal at 79 dBm, modulated interferer at ±7  
dB  
MHz or more, BER = 103 . Applicable to RGZ package  
Wanted signal at 79 dBm, modulated interferer at  
dB  
image frequency, BER = 103  
Note that Image frequency + 1 MHz is the Co- channel –  
1 MHz. Wanted signal at 79 dBm, modulated interferer  
at ±1 MHz from image frequency, BER = 103  
Selectivity, Image frequency ±1  
MHz(1)  
4.5 / 44 (2)  
dB  
500 kbps (LE Coded)  
Receiver sensitivity  
Receiver saturation  
Differential mode. BER = 103  
Differential mode. BER = 103  
dBm  
dBm  
100  
> 5  
Difference between the incoming carrier frequency and  
the internally generated carrier frequency  
Frequency error tolerance  
Data rate error tolerance  
Data rate error tolerance  
Co-channel rejection(1)  
Selectivity, ±1 MHz(1)  
kHz  
ppm  
ppm  
dB  
> (300 / 300)  
> (350 / 450)  
> (175 / 175)  
4  
Difference between incoming data rate and the internally  
generated data rate (37-byte packets)  
Difference between incoming data rate and the internally  
generated data rate (255-byte packets)  
Wanted signal at 72 dBm, modulated interferer in  
channel, BER = 103  
Wanted signal at 72 dBm, modulated interferer at ±1  
8 / 4(2)  
dB  
MHz, BER = 103  
Wanted signal at 72 dBm, modulated interferer at ±2  
Selectivity, ±2 MHz(1)  
44 / 36(2)  
dB  
MHz, BER = 103 . Applicable to RTC package  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS229  
12  
Submit Document Feedback  
Product Folder Links: CC2642R-Q1  
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
When measured on the CC26x2REM-7ID-Q1 reference design with Tc = 25 °C, VDDS = 3.0 V, fRF = 2440 MHz with DC/DC  
enabled unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX path.  
All measurements are performed conducted. All measurements are applicable to both RTC and RGZ packages, unless  
otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Wanted signal at 72 dBm, modulated interferer at ±2  
Selectivity, ±2 MHz(1)  
42 / 36(2)  
dB  
MHz, BER = 103 . Applicable to RGZ package  
Wanted signal at 72 dBm, modulated interferer at ±3  
Selectivity, ±3 MHz(1)  
46 / 46(2)  
42 / 41(2)  
45 / 47(2)  
42 / 42(2)  
46 / 45(2)  
44 / 42(2)  
49 / 45(2)  
47 / 43(2)  
36  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
MHz, BER = 103. Applicable to RTC package  
Wanted signal at 72 dBm, modulated interferer at ±3  
Selectivity, ±3 MHz(1)  
MHz, BER = 103. Applicable to RGZ package  
Wanted signal at 72 dBm, modulated interferer at ±4  
Selectivity, ±4 MHz(1)  
MHz, BER = 103. Applicable to RTC package  
Wanted signal at 72 dBm, modulated interferer at ±4  
Selectivity, ±4 MHz(1)  
MHz, BER = 103. Applicable to RGZ package  
Wanted signal at 72 dBm, modulated interferer at ±6  
Selectivity, ±6 MHz(1)  
MHz, BER = 103 . Applicable to RTC package  
Wanted signal at 72 dBm, modulated interferer at ±6  
Selectivity, ±6 MHz(1)  
MHz, BER = 103 . Applicable to RGZ package  
Wanted signal at 72 dBm, modulated interferer at ±7  
Selectivity, ±7 MHz or more(1)  
Selectivity, ±7 MHz or more(1)  
Selectivity, Image frequency(1)  
MHz or more, BER = 103. Applicable to RTC package  
Wanted signal at 72 dBm, modulated interferer at ±7  
MHz or more, BER = 103. Applicable to RGZ package  
Wanted signal at 72 dBm, modulated interferer at  
image frequency, BER = 103  
Note that Image frequency + 1 MHz is the Co- channel –  
1 MHz. Wanted signal at 72 dBm, modulated interferer  
at ±1 MHz from image frequency, BER = 103  
Selectivity, Image frequency ±1  
MHz(1)  
4 / 46(2)  
dB  
1 Mbps (LE 1M)  
Receiver sensitivity  
Receiver saturation  
Differential mode. BER = 103  
Differential mode. BER = 103  
dBm  
dBm  
97  
> 5  
Difference between the incoming carrier frequency and  
the internally generated carrier frequency  
Frequency error tolerance  
Data rate error tolerance  
Co-channel rejection(1)  
Selectivity, ±1 MHz(1)  
kHz  
ppm  
dB  
> (350 / 340)  
> (750 / 750)  
6  
Difference between incoming data rate and the internally  
generated data rate (37-byte packets)  
Wanted signal at 67 dBm, modulated interferer in  
channel, BER = 103  
Wanted signal at 67 dBm, modulated interferer at ±1  
7 / 4(2)  
dB  
MHz, BER = 103  
Wanted signal at 67 dBm, modulated interferer at ±2  
Selectivity, ±2 MHz(1)  
40 / 33(2)  
36 / 41(2)  
31 / 41(2)  
36 / 45(2)  
40  
dB  
MHz, BER = 103  
Wanted signal at 67 dBm, modulated interferer at ±3  
Selectivity, ±3 MHz(1)  
dB  
MHz, BER = 103 . Applicable to RTC package  
Wanted signal at 67 dBm, modulated interferer at ±3  
Selectivity, ±3 MHz(1)  
dB  
MHz, BER = 103 . Applicable to RGZ package  
Wanted signal at 67 dBm, modulated interferer at ±4  
Selectivity, ±4 MHz(1)  
dB  
MHz, BER = 103  
Wanted signal at 67 dBm, modulated interferer at ±5  
Selectivity, ±5 MHz or more(1)  
Selectivity, image frequency(1)  
dB  
MHz or more, BER = 103  
Wanted signal at 67 dBm, modulated interferer at  
33  
dB  
image frequency, BER = 103  
Note that Image frequency + 1 MHz is the Co- channel –  
1 MHz. Wanted signal at 67 dBm, modulated interferer  
at ±1 MHz from image frequency, BER = 103  
Selectivity, image frequency  
±1 MHz(1)  
4 / 41(2)  
dB  
Out-of-band blocking(3)  
Out-of-band blocking  
Out-of-band blocking  
Out-of-band blocking  
30 MHz to 2000 MHz  
2003 MHz to 2399 MHz  
2484 MHz to 2997 MHz  
3000 MHz to 12.75 GHz  
dBm  
dBm  
dBm  
dBm  
10  
18  
12  
2  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: CC2642R-Q1  
English Data Sheet: SWRS229  
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
When measured on the CC26x2REM-7ID-Q1 reference design with Tc = 25 °C, VDDS = 3.0 V, fRF = 2440 MHz with DC/DC  
enabled unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX path.  
All measurements are performed conducted. All measurements are applicable to both RTC and RGZ packages, unless  
otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Wanted signal at 2402 MHz, 64 dBm. Two interferers  
at 2405 and 2408 MHz respectively, at the given power  
level  
Intermodulation  
dBm  
42  
Spurious emissions,  
30 to 1000 MHz(4)  
dBm  
dBm  
Measurement in a 50-Ωsingle-ended load.  
Measurement in a 50 Ωsingle-ended load.  
< 57  
< 47  
Spurious emissions,  
1 to 12.75 GHz(4)  
RSSI dynamic range  
RSSI accuracy  
70  
±4  
dB  
dB  
2 Mbps (LE 2M)  
Differential mode. Measured at SMA connector, BER =  
103  
Receiver sensitivity  
dBm  
dBm  
kHz  
ppm  
dB  
92  
> 5  
Differential mode. Measured at SMA connector, BER =  
103  
Receiver saturation  
Difference between the incoming carrier frequency and  
the internally generated carrier frequency  
Frequency error tolerance  
Data rate error tolerance  
Co-channel rejection(1)  
> (440 / 500)  
> (700 / 750)  
7  
Difference between incoming data rate and the internally  
generated data rate (37-byte packets)  
Wanted signal at 67 dBm, modulated interferer in  
channel, BER = 103  
Wanted signal at 67 dBm, modulated interferer at ±2  
MHz, Image frequency is at 2 MHz, BER = 103  
Selectivity, ±2 MHz(1)  
8 / 4(2)  
36 / 34(2)  
33 / 31(2)  
37 / 36(2)  
37 / 32(2)  
4
dB  
dB  
dB  
dB  
dB  
dB  
Wanted signal at 67 dBm, modulated interferer at ±4  
Selectivity, ±4 MHz(1)  
MHz, BER = 103. Applicable to RTC package  
Wanted signal at 67 dBm, modulated interferer at ±4  
Selectivity, ±4 MHz(1)  
MHz, BER = 103 , Applicable to RGZ package  
Wanted signal at 67 dBm, modulated interferer at ±6  
Selectivity, ±6 MHz or more(1)  
Selectivity, ±6 MHz or more(1)  
Selectivity, image frequency(1)  
MHz or more, BER = 103 Applicable to RTC package  
Wanted signal at 67 dBm, modulated interferer at ±6  
MHz or more, BER = 103 . Applicable to RGZ package  
Wanted signal at 67 dBm, modulated interferer at  
image frequency, BER = 103  
Note that Image frequency + 2 MHz is the Co-channel.  
Wanted signal at 67 dBm, modulated interferer at ±2  
MHz from image frequency, BER = 103  
Selectivity, image frequency  
±2 MHz(1)  
7 / 36(2)  
dB  
Out-of-band blocking(3)  
Out-of-band blocking  
Out-of-band blocking  
Out-of-band blocking  
30 MHz to 2000 MHz  
2003 MHz to 2399 MHz  
2484 MHz to 2997 MHz  
3000 MHz to 12.75 GHz  
dBm  
dBm  
dBm  
dBm  
16  
21  
15  
12  
Wanted signal at 2402 MHz, 64 dBm. Two interferers  
at 2405 and 2408 MHz respectively, at the given power  
level  
Intermodulation  
dBm  
38  
RSSI dynamic range  
RSSI Accuracy (+/-)  
63  
±4  
dB  
dB  
(1) Numbers given as I/C dB  
(2) X / Y, where X is +N MHz and Y is N MHz  
(3) Excluding one exception at Fwanted / 2, per Bluetooth Specification  
(4) Suitable for systems targeting compliance with worldwide radio-frequency regulations ETSI EN 300 328 and EN 300 440 Category 2  
(Europe), FCC CFR47 Part 15 (US), and ARIB STD-T66 (Japan)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS229  
14  
Submit Document Feedback  
Product Folder Links: CC2642R-Q1  
 
 
 
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
8.10 Bluetooth Low Energy - Transmit (TX)  
When measured on the CC26x2REM-7ID-Q1 reference design with Tc = 25 °C, VDDS = 3.0 V, fRF = 2440 MHz with DC/DC  
enabled unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX path.  
All measurements are performed conducted.  
PARAMETER  
General Parameters  
5dBm output power  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
5
dBm  
dB  
Differential mode, delivered to a single-ended 50 Ωload through a balun  
Differential mode, delivered to a single-ended 50 Ωload through a balun  
Output power  
programmable range  
26  
Spurious emissions and harmonics  
f < 1 GHz, outside restricted bands +5 dBm setting  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
< 36  
< 54  
< 55  
< 42  
< 42  
< 42  
f < 1 GHz, restricted bands ETSI  
+5 dBm setting  
+5 dBm setting  
+5 dBm setting  
+5 dBm setting  
+5 dBm setting  
Spurious emissions (1)  
f < 1 GHz, restricted bands FCC  
f > 1 GHz, including harmonics  
Second harmonic  
Harmonics (1)  
Third harmonic  
(1) Suitable for systems targeting compliance with worldwide radio-frequency regulations ETSI EN 300 328 and EN 300 440 Category 2  
(Europe), FCC CFR47 Part 15 (US), and ARIB STD-T66 (Japan).  
8.11 Timing and Switching Characteristics  
8.11.1 Reset Timing  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
RESET_N low duration  
1
µs  
8.11.2 Wakeup Timing  
Measured over operating free-air temperature with VDDS = 3.0 V (unless otherwise noted). The times listed here do not  
include software overhead.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
850 - 3000  
850 - 3000  
160  
MAX  
UNIT  
MCU, Reset to Active(1)  
µs  
µs  
µs  
µs  
µs  
MCU, Shutdown to Active(1)  
MCU, Standby to Active  
MCU, Active to Standby  
MCU, Idle to Active  
36  
14  
(1) The wakeup time is dependent on remaining charge on the VDDR capacitor when starting the device, and thus how long the device  
has been in Reset or Shutdown before starting up again.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: CC2642R-Q1  
English Data Sheet: SWRS229  
 
 
 
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
8.11.3 Clock Specifications  
8.11.3.1 48 MHz Crystal Oscillator (XOSC_HF)  
Measured on the CC26x2REM-7ID-Q1 reference design with Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.(1)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Crystal frequency  
48  
MHz  
Equivalent series resistance  
6 pF < CL 9 pF  
ESR  
ESR  
20  
60  
80  
Ω
Equivalent series resistance  
5 pF < CL 6 pF  
Ω
Motional inductance, relates to the load capacitance that is used for the crystal (CL  
in Farads)(5)  
2
LM  
CL  
< 0.3 × 1024 / CL  
H
Crystal load capacitance(4)  
Start-up time(2)  
5
7(3)  
9
pF  
µs  
200  
(1) Probing or otherwise stopping the crystal while the DC/DC converter is enabled may cause permanent damage to the device.  
(2) Start-up time using the TI-provided power driver. Start-up time may increase if driver is not used.  
(3) On-chip default connected capacitance including reference design parasitic capacitance. Connected internal capacitance is changed  
through software in the Customer Configuration section (CCFG).  
(4) Adjustable load capacitance is integrated within the device.  
(5) The crystal manufacturer's specification must satisfy this requirement for proper operation.  
8.11.3.2 48 MHz RC Oscillator (RCOSC_HF)  
Measured on the CC26x2REM-7ID-Q1 reference design with Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.  
MIN  
TYP  
MAX  
UNIT  
MHz  
%
Frequency  
48  
Uncalibrated frequency accuracy  
Calibrated frequency accuracy(1)  
Start-up time  
±1  
±0.25  
5
%
µs  
(1) Accuracy relative to the calibration source (XOSC_HF)  
8.11.3.3 2 MHz RC Oscillator (RCOSC_MF)  
Measured on the CC26x2REM-7ID-Q1 reference design with Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.  
MIN  
TYP  
MAX  
UNIT  
MHz  
µs  
Calibrated frequency  
Start-up time  
2
5
8.11.3.4 32.768 kHz Crystal Oscillator (XOSC_LF)  
Measured on the CC26x2REM-7ID-Q1 reference design with Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.  
MIN  
TYP  
32.768  
30  
MAX  
UNIT  
kHz  
k  
Crystal frequency  
ESR  
CL  
Equivalent series resistance  
Crystal load capacitance  
100  
12  
6
7(1)  
pF  
(1) Default load capacitance using TI reference designs including parasitic capacitance. Crystals with different load capacitance may be  
used.  
8.11.3.5 32 kHz RC Oscillator (RCOSC_LF)  
Measured on the CC26x2REM-7ID-Q1 reference design with Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.  
MIN  
TYP  
MAX  
UNIT  
Calibrated frequency  
32.8 (1)  
kHz  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS229  
16  
Submit Document Feedback  
Product Folder Links: CC2642R-Q1  
 
 
 
 
 
 
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
Measured on the CC26x2REM-7ID-Q1 reference design with Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.  
MIN  
TYP  
MAX  
UNIT  
Temperature coefficient  
±50  
ppm/C  
(1) When using RCOSC_LF as source for the low frequency system clock (SCLK_LF), the accuracy of the SCLK_LF-derived Real Time  
Clock (RTC) can be improved by measuring RCOSC_LF relative to XOSC_HF and compensating for the RTC tick speed. This  
functionality is available through the TI-provided Power driver.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: CC2642R-Q1  
English Data Sheet: SWRS229  
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
8.11.4 Synchronous Serial Interface (SSI) Characteristics  
8.11.4.1 Synchronous Serial Interface (SSI) Characteristics  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
PARAMETER  
NO.  
MIN  
TYP  
MAX  
UNIT  
S1  
tclk_per  
tclk_high  
tclk_low  
SSIClk cycle time  
SSIClk high time  
SSIClk low time  
12  
65024  
System Clocks (2)  
tclk_per  
S2(1)  
S3(1)  
0.5  
0.5  
tclk_per  
(1) Refer to SSI timing diagrams Figure 8-1, Figure 8-2, and Figure 8-3.  
(2) When using the TI-provided Power driver, the SSI system clock is always 48 MHz.  
S1  
S2  
SSIClk  
S3  
SSIFss  
SSITx  
MSB  
LSB  
SSIRx  
4 to 16 bits  
8-1. SSI Timing for TI Frame Format (FRF = 01), Single Transfer Timing Measurement  
S2  
S1  
SSIClk  
SSIFss  
SSITx  
SSIRx  
S3  
MSB  
LSB  
8-bit control  
0
MSB  
LSB  
4 to 16 bits output data  
8-2. SSI Timing for MICROWIRE Frame Format (FRF = 10), Single Transfer  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS229  
18  
Submit Document Feedback  
Product Folder Links: CC2642R-Q1  
 
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
8-3. SSI Timing for SPI Frame Format (FRF = 00), With SPH = 1  
8.11.5 UART  
8.11.5.1 UART Characteristics  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
UART rate  
3
MBaud  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: CC2642R-Q1  
English Data Sheet: SWRS229  
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
8.12 Peripheral Characteristics  
8.12.1 ADC  
Analog-to-Digital Converter (ADC) Characteristics  
Tc = 25 °C, VDDS = 3.0 V and voltage scaling enabled, unless otherwise noted.(1)  
Performance numbers require use of offset and gain adjustements in software by TI-provided ADC drivers.  
PARAMETER  
Input voltage range  
Resolution  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
0
VDDS  
12  
Bits  
Sample rate  
200  
kSamples/s  
LSB  
Offset  
Internal 4.3 V equivalent reference(2)  
0.24  
7.14  
>1  
±4  
Gain error  
Internal 4.3 V equivalent reference(2)  
LSB  
DNL(4)  
INL  
Differential nonlinearity  
Integral nonlinearity  
LSB  
LSB  
Internal 4.3 V equivalent reference(2), 200 kSamples/s,  
9.6 kHz input tone  
9.8  
Internal 4.3 V equivalent reference(2), 200 kSamples/s,  
9.6 kHz input tone, DC/DC enabled  
9.8  
10.1  
11.1  
VDDS as reference, 200 kSamples/s, 9.6 kHz input tone  
ENOB  
Effective number of bits  
Bits  
Internal reference, voltage scaling disabled,  
32 samples average, 200 kSamples/s, 300 Hz input tone  
Internal reference, voltage scaling disabled,  
11.3  
11.6  
14-bit mode, 200 kSamples/s, 600 Hz input tone (5)  
Internal reference, voltage scaling disabled,  
15-bit mode, 200 kSamples/s, 150 Hz input tone (5)  
Internal 4.3 V equivalent reference(2), 200 kSamples/s,  
9.6 kHz input tone  
65  
70  
72  
THD  
Total harmonic distortion  
VDDS as reference, 200 kSamples/s, 9.6 kHz input tone  
dB  
dB  
dB  
Internal reference, voltage scaling disabled,  
32 samples average, 200 kSamples/s, 300 Hz input tone  
Internal 4.3 V equivalent reference(2), 200 kSamples/s,  
9.6 kHz input tone  
60  
63  
68  
Signal-to-noise  
and  
distortion ratio  
SINAD,  
SNDR  
VDDS as reference, 200 kSamples/s, 9.6 kHz input tone  
Internal reference, voltage scaling disabled,  
32 samples average, 200 kSamples/s, 300 Hz input tone  
Internal 4.3 V equivalent reference(2), 200 kSamples/s,  
9.6 kHz input tone  
70  
73  
75  
SFDR  
Spurious-free dynamic range VDDS as reference, 200 kSamples/s, 9.6 kHz input tone  
Internal reference, voltage scaling disabled,  
32 samples average, 200 kSamples/s, 300 Hz input tone  
Conversion time  
Serial conversion, time-to-output, 24 MHz clock  
Internal 4.3 V equivalent reference(2)  
VDDS as reference  
50  
0.42  
0.6  
clock-cycles  
Current consumption  
Current consumption  
mA  
mA  
Equivalent fixed internal reference (input voltage scaling  
enabled). For best accuracy, the ADC conversion should be  
initiated through the TI-RTOS API in order to include the gain/  
offset compensation factors stored in FCFG1  
Reference voltage  
4.3(2) (3)  
V
Fixed internal reference (input voltage scaling disabled). For  
best accuracy, the ADC conversion should be initiated through  
the TI-RTOS API in order to include the gain/offset  
compensation factors stored in FCFG1. This value is derived  
from the scaled value (4.3 V) as follows:  
Reference voltage  
1.48  
V
Vref = 4.3 V × 1408 / 4095  
Reference voltage  
Reference voltage  
VDDS as reference, input voltage scaling enabled  
VDDS as reference, input voltage scaling disabled  
VDDS  
V
V
VDDS /  
2.82(3)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS229  
20  
Submit Document Feedback  
Product Folder Links: CC2642R-Q1  
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
Tc = 25 °C, VDDS = 3.0 V and voltage scaling enabled, unless otherwise noted.(1)  
Performance numbers require use of offset and gain adjustements in software by TI-provided ADC drivers.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
200 kSamples/s, voltage scaling enabled. Capacitive input,  
Input impedance depends on sampling frequency and sampling  
time  
Input impedance  
>1  
MΩ  
(1) Using IEEE Std 1241-2010 for terminology and test methods  
(2) Input signal scaled down internally before conversion, as if voltage range was 0 to 4.3 V  
(3) Applied voltage must be within Absolute Maximum Ratings (see Section 8.1 ) at all times  
(4) No missing codes  
(5) ADC_output = (4n samples) >> n,n = desired extra bits  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: CC2642R-Q1  
English Data Sheet: SWRS229  
 
 
 
 
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
8.12.2 DAC  
8.12.2.1 Digital-to-Analog Converter (DAC) Characteristics  
Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
General Parameters  
Resolution  
8
Bits  
V
Any load, any VREF, pre-charge OFF, DAC charge-pump ON  
Any load, VREF = DCOUPL, pre-charge ON  
Buffer OFF (internal load)  
1.8  
2.6  
16  
3.63  
3.63  
1000  
VDDS  
FDAC  
Supply voltage  
Clock frequency  
kHz  
Voltage output settling time  
VREF = VDDS, buffer OFF, internal load  
13  
±1  
1 / FDAC  
Internal Load - Continuous Time Comparator / Low Power Clocked Comparator  
VREF = VDDS,  
load = Continuous Time Comparator or Low Power Clocked  
Comparator  
FDAC = 250 kHz  
Differential nonlinearity  
Differential nonlinearity  
DNL  
LSB(1)  
VREF = VDDS,  
load = Continuous Time Comparator or Low Power Clocked  
Comparator  
±1.2  
FDAC = 16 kHz  
VREF = VDDS= 3.63 V  
±0.67  
±0.81  
±1.27  
±3.43  
±2.88  
±0.77  
±0.77  
±3.46  
±3.44  
±4.70  
±1.61  
±1.71  
±2.10  
±6.00  
±3.85  
±2.92  
±3.06  
±3.91  
±7.84  
±4.06  
0.03  
VREF = VDDS= 3.0 V  
Offset error(2)  
Load = Continuous Time  
Comparator  
VREF = VDDS = 1.8 V  
LSB(1)  
LSB(1)  
LSB(1)  
LSB(1)  
VREF = DCOUPL, pre-charge ON  
VREF = DCOUPL, pre-charge OFF  
VREF = VDDS = 3.63 V  
VREF = VDDS = 3.0 V  
Offset error(2)  
Load = Low Power Clocked  
Comparator  
VREF = VDDS= 1.8 V  
VREF = DCOUPL, pre-charge ON  
VREF = DCOUPL, pre-charge OFF  
VREF = VDDS = 3.63 V  
Max code output voltage  
variation(2)  
Load = Continuous Time  
Comparator  
VREF = VDDS = 3.0 V  
VREF = VDDS= 1.8 V  
VREF = DCOUPL, pre-charge ON  
VREF = DCOUPL, pre-charge OFF  
VREF =VDDS= 3.63 V  
Max code output voltage  
variation(2)  
Load = Low Power Clocked  
Comparator  
VREF =VDDS= 3.0 V  
VREF = VDDS= 1.8 V  
VREF = DCOUPL, pre-charge ON  
VREF = DCOUPL, pre-charge OFF  
VREF = VDDS= 3.63 V, code 1  
VREF = VDDS= 3.63 V, code 255  
VREF = VDDS= 3.0 V, code 1  
VREF = VDDS= 3.0 V, code 255  
VREF = VDDS= 1.8 V, code 1  
VREF = VDDS = 1.8 V, code 255  
VREF = DCOUPL, pre-charge OFF, code 1  
VREF = DCOUPL, pre-charge OFF, code 255  
VREF = DCOUPL, pre-charge ON, code 1  
VREF = DCOUPL, pre-charge ON, code 255  
3.46  
0.02  
2.86  
Output voltage range(2)  
Load = Continuous Time  
Comparator  
0.01  
V
1.71  
0.01  
1.21  
1.27  
2.46  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS229  
22  
Submit Document Feedback  
Product Folder Links: CC2642R-Q1  
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.03  
3.46  
0.02  
2.85  
0.01  
1.71  
0.01  
1.21  
1.27  
2.46  
MAX  
UNIT  
VREF = VDDS= 3.63 V, code 1  
VREF = VDDS= 3.63 V, code 255  
VREF = VDDS= 3.0 V, code 1  
VREF = VDDS= 3.0 V, code 255  
Output voltage range(2)  
Load = Low Power Clocked  
Comparator  
VREF = VDDS = 1.8 V, code 1  
V
VREF = VDDS = 1.8 V, code 255  
VREF = DCOUPL, pre-charge OFF, code 1  
VREF = DCOUPL, pre-charge OFF, code 255  
VREF = DCOUPL, pre-charge ON, code 1  
VREF = DCOUPL, pre-charge ON, code 255  
(1) 1 LSB (VREF 3.63 V/3.0 V/1.8 V/DCOUPL/ADCREF) = 13.44 mV/11.13 mV/6.68 mV/4.67 mV/5.48 mV  
(2) Includes comparator offset  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: CC2642R-Q1  
English Data Sheet: SWRS229  
 
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
8.12.3 Temperature and Battery Monitor  
8.12.3.1 Temperature Sensor  
Measured on the CC26x2REM-7ID-Q1 reference design with Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted. All  
measurements are applicable to both RTC and RGZ packages, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
2
MAX  
UNIT  
°C  
Resolution  
Accuracy  
Accuracy  
-40 °C to 0 °C  
0 °C to 105 °C  
±4.0  
±2.5  
3.6  
4.1  
°C  
°C  
Supply voltage coefficient(1)  
Supply voltage coefficient(1)  
Applicable to RTC package  
Applicable to RGZ package  
°C/V  
°C/V  
(1) The temperature sensor is automatically compensated for VDDS variation when using the TI-provided driver.  
8.12.3.2 Battery Monitor  
Measured on the CC26x2REM-7ID-Q1 reference design with Tc = 25 °C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
mV  
V
Resolution  
Range  
25  
1.8  
3.63  
72  
Integral nonlinearity (max)  
Accuracy  
28  
22.5  
-32  
mV  
mV  
mV  
%
VDDS = 3.0 V  
Offset error  
Gain error  
-1.3  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS229  
24  
Submit Document Feedback  
Product Folder Links: CC2642R-Q1  
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
8.12.4 Comparators  
8.12.4.1 Continuous Time Comparator  
Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
Input voltage range(1)  
0
VDDS  
Offset  
Measured at VDDS / 2  
Step from 10 mV to 10 mV  
Internal reference  
±5  
0.78  
8.6  
mV  
µs  
Decision time  
Current consumption  
µA  
(1) The input voltages can be generated externally and connected throughout I/Os or an internal reference voltage can be generated using  
the DAC  
8.12.4.2 Low-Power Clocked Comparator  
Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Input voltage range  
Clock frequency  
0
VDDS  
V
SCLK_LF  
Using internal DAC with VDDS as reference voltage,  
DAC code = 0 - 255  
Internal reference voltage(1)  
Offset  
0.024 - 2.865  
V
Measured at VDDS / 2, includes error from internal DAC  
±5  
1
mV  
Clock  
Cycle  
Decision time  
Step from 50 mV to 50 mV  
(1) The comparator can use an internal 8 bits DAC as its reference. The DAC output voltage range depends on the reference voltage  
selected. See DAC Characteristics  
8.12.5 Current Source  
8.12.5.1 Programmable Current Source  
Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.25 - 20  
0.25  
MAX UNIT  
Current source programmable output range (logarithmic  
range)  
µA  
µA  
Resolution  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: CC2642R-Q1  
English Data Sheet: SWRS229  
 
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
8.12.6 GPIO  
8.12.6.1 GPIO DC Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
1.44  
1.44  
TYP  
MAX UNIT  
TA = 25 °C, VDDS = 1.8 V  
GPIO VOH at 8 mA load  
GPIO VOL at 8 mA load  
GPIO VOH at 4 mA load  
GPIO VOL at 4 mA load  
GPIO pullup current  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 1  
V
0.36  
V
V
IOCURR = 1  
0.36  
110  
39  
V
Input mode, pullup enabled, Vpad = 0 V  
Input mode, pulldown enabled, Vpad = VDDS  
IH = 1, transition voltage for input read as 0 1  
IH = 1, transition voltage for input read as 1 0  
32  
11  
68  
18.5  
1.08  
0.72  
µA  
µA  
V
GPIO pulldown current  
GPIO low-to-high input transition, with hysteresis  
GPIO high-to-low input transition, with hysteresis  
0.72  
0.54  
1.17  
0.87  
V
IH = 1, difference between 0 1  
and 1 0 points  
GPIO input hysteresis  
GPIO minimum VIH  
GPIO maximum VIL  
0.18  
1.17  
0.36  
0.51  
V
V
V
Lowest GPIO input voltage reliably interpreted as  
High  
Highest GPIO Input voltage reliably interpreted as  
Low  
0.63  
TA = 25 °C, VDDS = 3.0 V  
GPIO VOH at 8 mA load  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 1  
2.4  
2.4  
V
V
V
V
GPIO VOL at 8 mA load  
0.6  
0.6  
GPIO VOH at 4 mA load  
GPIO VOL at 4 mA load  
IOCURR = 1  
TA = 25 °C, VDDS = 3.63 V  
GPIO VOH at 8 mA load  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 1  
2.9  
2.9  
V
V
GPIO VOL at 8 mA load  
0.6  
GPIO VOH at 4 mA load  
V
GPIO VOL at 4 mA load  
IOCURR = 1  
0.6  
380  
178  
2.21  
1.83  
V
GPIO pullup current  
Input mode, pullup enabled, Vpad = 0 V  
Input mode, pulldown enabled, Vpad = VDDS  
IH = 1, transition voltage for input read as 0 1  
IH = 1, transition voltage for input read as 1 0  
135  
64  
264  
102  
µA  
µA  
V
GPIO pulldown current  
GPIO low-to-high input transition, with hysteresis  
GPIO high-to-low input transition, with hysteresis  
1.52  
1.14  
1.90  
1.48  
V
IH = 1, difference between 0 1  
and 1 0 points  
GPIO input hysteresis  
GPIO minimum VIH  
GPIO maximum VIL  
0.38  
2.47  
0.42  
1.07  
V
V
V
Lowest GPIO input voltage reliably interpreted as a  
High  
Highest GPIO input voltage reliably interpreted as a  
Low  
1.33  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS229  
26  
Submit Document Feedback  
Product Folder Links: CC2642R-Q1  
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
8.13 Typical Characteristics  
All measurements in this section are done with Tc = 25 °C and VDDS = 3.0 V, unless otherwise noted. See 8.3  
for device limits. Values exceeding these limits are for reference only.  
8.13.1 MCU Current  
Running CoreMark, SCLK_HF = 48 MHz RCOSC  
80 kB RAM retention, no Cache Retention, RTC On  
SCLK_LF = 32 kHz XOSC VDDS = 3.0 V  
6
5.5  
5
12  
10  
8
4.5  
4
6
4
3.5  
3
2
2.5  
0
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
3.8  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95 105  
Temperature [oC]  
Voltage [V]  
8-4. Active Mode (MCU) Current vs. Supply  
8-5. Standby Mode (MCU) Current vs.  
Voltage (VDDS)  
Temperature  
80 kbps RAM Retention, no Cache Retention, RTC On  
SCLK_LF = 32 kHz RCOSC VDDS = 3.6 V  
12  
10  
8
6
4
2
0
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95 105  
Temperature [oC]  
8-6. Standby Mode (MCU) Current vs. Temperature (VDDS = 3.6 V)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: CC2642R-Q1  
English Data Sheet: SWRS229  
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
8.13.2 RX Current  
11.5  
11  
10.5  
10  
9.5  
9
8
7.9  
7.8  
7.7  
7.6  
7.5  
7.4  
7.3  
7.2  
7.1  
7
6.9  
6.8  
6.7  
6.6  
6.5  
6.4  
6.3  
6.2  
6.1  
6
8.5  
8
7.5  
7
6.5  
6
5.5  
5
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
3.8  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95 105  
Temperature [oC]  
Voltage [V]  
8-8. RX Current versus Supply Voltage (VDDS)  
8-7. RX Current versus Temperature (BLE 1  
(BLE 1 Mbps, 2.44 GHz)  
Mbps, 2.44 GHz)  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: CC2642R-Q1  
English Data Sheet: SWRS229  
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
8.13.3 TX Current  
12  
11.5  
11  
9
8.8  
8.6  
8.4  
8.2  
8
10.5  
10  
9.5  
9
7.8  
7.6  
7.4  
7.2  
7
8.5  
8
7.5  
7
6.8  
6.6  
6.4  
6.2  
6
6.5  
6
5.5  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
3.8  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95 105  
Temperature [oC]  
Voltage [V]  
8-10. TX Current vs. Supply Voltage (VDDS)  
8-9. TX Current vs. Temperature (BLE 1 Mbps,  
(BLE 1 Mbps, 2.44 GHz, 0 dBm)  
2.44 GHz, 0 dBm)  
8-1 shows typical TX current and output power for different output power settings.  
8-1. Typical TX Current and Output Power  
CC2642R-Q1 at 2.4 GHz, VDDS = 3.0 V (Measured on CC2652REM-7ID-Q1)  
txPower  
TX Power Setting (SmartRF Studio)  
Typical Output Power [dBm]  
Typical Current Consumption [mA]  
0x8623  
5
5.0  
9.2  
0x5E1A  
4
4.1  
8.6  
0x7217  
0x4867  
0x3860  
0x2E5C  
0x2E59  
3.5  
3
3.6  
3.2  
2.0  
1.2  
0.3  
8.8  
8.2  
7.6  
7.3  
7.0  
2
1
0
0x2853  
-2  
-2.2  
6.8  
0x10D9  
0x0AD1  
0x0ACC  
0x0AC8  
-5  
-5.0  
-9.5  
5.9  
5.3  
4.9  
4.6  
-10  
-15  
-20  
-13.7  
-18.6  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: CC2642R-Q1  
English Data Sheet: SWRS229  
 
 
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
8.13.4 RX Performance  
-92  
-93  
-92  
-93  
-94  
-94  
-95  
-95  
-96  
-96  
-97  
-97  
-98  
-98  
-99  
-99  
-100  
-101  
-102  
-100  
-101  
-102  
2.4  
2.408 2.416 2.424 2.432 2.44 2.448 2.456 2.464 2.472 2.48  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95 105  
Temperature [oC]  
Frequency [GHz]  
8-11. Sensitivity versus Frequency (BLE 1 Mpbs,  
8-12. Sensitivity vs. Temperature (BLE 1 Mbps,  
2.44 GHz)  
2.44 GHz)  
-92  
-93  
-92  
-93  
-94  
-94  
-95  
-95  
-96  
-96  
-97  
-97  
-98  
-98  
-99  
-99  
-100  
-101  
-102  
-100  
-101  
-102  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
3.8  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
3.8  
Voltage [V]  
Voltage [V]  
8-13. Sensitivity vs. Supply Voltage (VDDS) (BLE 8-14. Sensitivity vs. Supply Voltage (VDDS) (BLE  
1 Mbps, 2.44 GHz)  
1 Mbps, 2.44 GHz, DCDC Off)  
Input level sweep, BLE 1 Mbps  
16  
14  
12  
10  
8
RSSI error definition:  
RSSI in received packet - expected RSSI  
6
4
2
0
-2  
-4  
-6  
-8  
-10  
-12  
-14  
-16  
-100  
-90  
-80  
-70  
-60  
-50  
-40  
-30  
-20  
Input level (dBm)  
8-15. RSSI Error vs. Input Level (dBm)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS229  
30  
Submit Document Feedback  
Product Folder Links: CC2642R-Q1  
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
8.13.5 TX Performance  
2
1.8  
1.6  
1.4  
1.2  
1
7
6.8  
6.6  
6.4  
6.2  
6
0.8  
0.6  
0.4  
0.2  
0
5.8  
5.6  
5.4  
5.2  
5
-0.2  
-0.4  
-0.6  
-0.8  
-1  
4.8  
4.6  
4.4  
4.2  
4
-1.2  
-1.4  
-1.6  
-1.8  
-2  
3.8  
3.6  
3.4  
3.2  
3
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95 105  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95 105  
Temperature [oC]  
Temperature [oC]  
8-16. Output Power vs. Temperature(BLE 1  
8-17. Output Power vs. Temperature (BLE 1  
Mbps, 2.44 GHz, 0dBm)  
Mbps, 2.44 GHz, +5dBm)  
2
1.8  
1.6  
1.4  
1.2  
1
7
6.8  
6.6  
6.4  
6.2  
6
0.8  
0.6  
0.4  
0.2  
0
5.8  
5.6  
5.4  
5.2  
5
-0.2  
-0.4  
-0.6  
-0.8  
-1  
4.8  
4.6  
4.4  
4.2  
4
-1.2  
-1.4  
-1.6  
-1.8  
-2  
3.8  
3.6  
3.4  
3.2  
3
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
3.8  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
3.8  
Voltage [V]  
Voltage [V]  
8-18. Output Power vs. Supply Voltage (VDDS) 8-19. Output Power vs. Supply Voltage (VDDS)  
(BLE 1 Mbps, 2.44 GHz, 0dBm)  
(BLE 1 Mbps, 2.44 GHz, +5dBm)  
2
1.8  
1.6  
1.4  
1.2  
1
7
6.8  
6.6  
6.4  
6.2  
6
0.8  
0.6  
0.4  
0.2  
0
5.8  
5.6  
5.4  
5.2  
5
-0.2  
-0.4  
-0.6  
-0.8  
-1  
4.8  
4.6  
4.4  
4.2  
4
-1.2  
-1.4  
-1.6  
-1.8  
-2  
3.8  
3.6  
3.4  
3.2  
3
2.4  
2.408 2.416 2.424 2.432 2.44 2.448 2.456 2.464 2.472 2.48  
2.4  
2.408 2.416 2.424 2.432 2.44 2.448 2.456 2.464 2.472 2.48  
Frequency [GHz]  
Frequency [GHz]  
8-20. Output Power vs. Frequency (BLE 1 Mbps, 8-21. Output Power vs. Frequency (BLE 1 Mbps,  
0dBm)  
+5dBm)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: CC2642R-Q1  
English Data Sheet: SWRS229  
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
8.13.6 ADC Performance  
11.4  
Vin = 3.0 V Sine wave, Internal reference, Fin = Fs / 10  
Internal Reference, No Averaging  
Internal Unscaled Reference, 14-bit Mode  
10.2  
10.15  
10.1  
10.05  
10  
11.1  
10.8  
10.5  
10.2  
9.9  
9.95  
9.9  
9.85  
9.8  
9.6  
0.2 0.3  
0.5 0.7  
1
2
3
4
5
6 7 8 10  
20 30 40 50 70 100  
1
2
3
4
5
6
7 8 10  
Frequency [kHz]  
20  
30 40 50 70 100  
200  
Frequency [kHz]  
8-22. ENOB versus Input Frequency  
8-23. ENOB versus Sampling Frequency  
Vin = 3.0 V Sine wave, Internal reference, 200 kSamples/s  
Vin = 3.0 V Sine wave, Internal reference, 200 kSamples/s  
1.5  
1
2.5  
2
1.5  
1
0.5  
0
-0.5  
-1  
0.5  
0
-1.5  
-0.5  
0
400  
800  
1200 1600 2000 2400 2800 3200 3600 4000  
0
400  
800  
1200 1600 2000 2400 2800 3200 3600 4000  
ADC Code  
ADC Code  
8-24. INL versus ADC Code  
8-25. DNL versus ADC Code  
Vin = 1 V, Internal reference, 200 kSamples/s  
Vin = 1 V, Internal reference, 200 kSamples/s  
1.01  
1.009  
1.008  
1.007  
1.006  
1.005  
1.004  
1.003  
1.002  
1.001  
1
1.01  
1.009  
1.008  
1.007  
1.006  
1.005  
1.004  
1.003  
1.002  
1.001  
1
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100  
Temperature [°C]  
Voltage [V]  
8-27. ADC Accuracy versus VDDS  
8-26. ADC Accuracy versus Temperature  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS229  
32  
Submit Document Feedback  
Product Folder Links: CC2642R-Q1  
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
4-1 shows the core modules of the CC2642R-Q1 device.  
9.2 System CPU  
The CC2642R-Q1 SimpleLinkWireless MCU contains an Arm® Cortex®-M4F system CPU, which runs the  
application and the higher layers of the Bluetooth 5 low energy radio protocol stack.  
The system CPU is the foundation of a high-performance, low-cost platform that meets the system requirements  
of minimal memory implementation, and low-power consumption, while delivering outstanding computational  
performance and exceptional system response to interrupts.  
Its features include the following:  
ARMv7-M architecture optimized for small-footprint embedded applications  
Arm Thumb®-2 mixed 16- and 32-bit instruction set delivers the high performance expected of a 32-bit Arm  
core in a compact memory size  
Fast code execution permits increased sleep mode time  
Deterministic, high-performance interrupt handling for time-critical applications  
Single-cycle multiply instruction and hardware divide  
Hardware division and fast digital-signal-processing oriented multiply accumulate  
Saturating arithmetic for signal processing  
IEEE 754-compliant single-precision Floating Point Unit (FPU)  
Memory Protection Unit (MPU) for safety-critical applications  
Full debug with data matching for watchpoint generation  
Data Watchpoint and Trace Unit (DWT)  
JTAG Debug Access Port (DAP)  
Flash Patch and Breakpoint Unit (FPB)  
Trace support reduces the number of pins required for debugging and tracing  
Instrumentation Trace Macrocell Unit (ITM)  
Trace Port Interface Unit (TPIU) with asynchronous serial wire output (SWO)  
Optimized for single-cycle flash memory access  
Tightly connected to 8-KB 4-way random replacement cache for minimal active power consumption and wait  
states  
Ultra-low-power consumption with integrated sleep modes  
48 MHz operation  
1.25 DMIPS per MHz  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: CC2642R-Q1  
English Data Sheet: SWRS229  
 
 
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
9.3 Radio (RF Core)  
The RF Core is a highly flexible and future proof radio module which contains an Arm Cortex-M0 processor that  
interfaces the analog RF and base-band circuitry, handles data to and from the system CPU side, and  
assembles the information bits in a given packet structure. The RF Core offers a high level, command-based API  
to the main CPU that configurations and data are passed through. The Arm Cortex-M0 processor is not  
programmable by customers and is interfaced through the TI-provided RF driver that is included with the  
SimpleLink Software Development Kit (SDK).  
The RF Core can autonomously handle the time-critical aspects of the radio protocols, thus offloading the main  
CPU, which reduces power consumption and leaves more resources for the user application. Several signals are  
also available to control external circuitry such as RF switches or range extenders autonomously.  
The various physical layer radio formats are partly built as a software defined radio where the radio behavior is  
either defined by radio ROM contents or by non-ROM radio formats delivered in form of firmware patches with  
the SimpleLink SDKs. This allows the radio platform to be updated for support of future versions of standards  
even with over-the-air (OTA) upgrades while still using the same silicon.  
9.3.1 Bluetooth 5 low energy  
The RF Core offers full support for Bluetooth 5 low energy, including the high-speed 2-Mbps physical layer and  
the 500-kbps and 125-kbps long range PHYs (Coded PHY) through the TI provided Bluetooth 5 stack or through  
a high-level Bluetooth API. The Bluetooth 5 PHY and part of the controller are in radio and system ROM,  
providing significant savings in memory usage and more space available for applications.  
The new high-speed mode allows data transfers up to 2 Mbps, twice the speed of Bluetooth 4.2 and five times  
the speed of Bluetooth 4.0, without increasing power consumption. In addition to faster speeds, this mode offers  
significant improvements for energy efficiency and wireless coexistence with reduced radio communication time.  
Bluetooth 5 also enables unparalleled flexibility for adjustment of speed and range based on application needs,  
which capitalizes on the high-speed or long-range modes respectively. Data transfers are now possible at 2  
Mbps, enabling development of applications using voice, audio, imaging, and data logging that were not  
previously an option using Bluetooth low energy. With high-speed mode, existing applications deliver faster  
responses, richer engagement, and longer battery life. Bluetooth 5 enables fast, reliable firmware updates.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS229  
34  
Submit Document Feedback  
Product Folder Links: CC2642R-Q1  
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
9.4 Memory  
The up to 352-KB nonvolatile (Flash) memory provides storage for code and data. The flash memory is in-  
system programmable and erasable. The last flash memory sector must contain a Customer Configuration  
section (CCFG) that is used by boot ROM and TI provided drivers to configure the device. This configuration is  
done through the ccfg.c source file that is included in all TI provided examples.  
The ultra-low leakage system static RAM (SRAM) is split into up to five 16-KB blocks and can be used for both  
storage of data and execution of code. Retention of SRAM contents in Standby power mode is enabled by  
default and included in Standby mode power consumption numbers. Parity checking for detection of bit errors in  
memory is built-in, which reduces chip-level soft errors and thereby increases reliability. System SRAM is always  
initialized to zeroes upon code execution from boot.  
To improve code execution speed and lower power when executing code from nonvolatile memory, a 4-way  
nonassociative 8-KB cache is enabled by default to cache and prefetch instructions read by the system CPU.  
The cache can be used as a general-purpose RAM by enabling this feature in the Customer Configuration Area  
(CCFG).  
There is a 4-KB ultra-low leakage SRAM available for use with the Sensor Controller Engine which is typically  
used for storing Sensor Controller programs, data and configuration parameters. This RAM is also accessible by  
the system CPU. The Sensor Controller RAM is not cleared to zeroes between system resets.  
The ROM includes a TI-RTOS kernel and low-level drivers, as well as significant parts of selected radio stacks,  
which frees up flash memory for the application. The ROM also contains a serial (SPI and UART) bootloader that  
can be used for initial programming of the device.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: CC2642R-Q1  
English Data Sheet: SWRS229  
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
9.5 Sensor Controller  
The Sensor Controller contains circuitry that can be selectively enabled in both Standby and Active power  
modes. The peripherals in this domain can be controlled by the Sensor Controller Engine, which is a proprietary  
power-optimized CPU. This CPU can read and monitor sensors or perform other tasks autonomously; thereby  
significantly reducing power consumption and offloading the system CPU.  
The Sensor Controller Engine is user programmable with a simple programming language that has a syntax  
similar to C. This programmability allows for sensor polling and other tasks to be specified as sequential  
algorithms rather than static configuration of complex peripheral modules, timers, DMA, register programmable  
state machines, or event routing.  
The main advantages are:  
Flexibility - data can be read and processed in unlimited manners while still ensuring ultra-low power  
2 MHz low-power mode enables lowest possible handling of digital sensors  
Dynamic reuse of hardware resources  
40-bit accumulator supporting multiplication, addition and shift  
Observability and debugging options  
Sensor Controller Studio is used to write, test, and debug code for the Sensor Controller. The tool produces C  
driver source code, which the System CPU application uses to control and exchange data with the Sensor  
Controller. Typical use cases may be (but are not limited to) the following:  
Read analog sensors using integrated ADC or comparators  
Interface digital sensors using GPIOs, SPI, UART, or I2C (UART and I2C are bit-banged)  
Capacitive sensing  
Waveform generation  
Very low-power pulse counting (flow metering)  
Key scan  
The Sensor Controller peripherals include the following:  
The low-power clocked comparator can be used to wake the system CPU from any state in which the  
comparator is active. A configurable internal reference DAC can be used in conjunction with the comparator.  
The output of the comparator can also be used to trigger an interrupt or the ADC.  
Capacitive sensing functionality is implemented through the use of a constant current source, a time-to-digital  
converter, and a comparator. The continuous time comparator in this block can also be used as a higher-  
accuracy alternative to the low-power clocked comparator. The Sensor Controller takes care of baseline  
tracking, hysteresis, filtering, and other related functions when these modules are used for capacitive  
sensing.  
The ADC is a 12-bit, 200-ksamples/s ADC with eight inputs and a built-in voltage reference. The ADC can be  
triggered by many different sources including timers, I/O pins, software, and comparators.  
The analog modules can connect to up to eight different GPIOs  
Dedicated SPI Controller with up to 6 MHz clock speed  
The Sensor Controller peripherals can also be controlled from the main application processor.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS229  
36  
Submit Document Feedback  
Product Folder Links: CC2642R-Q1  
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
9.6 Cryptography  
The CC2642R-Q1 device comes with a wide set of modern cryptography-related hardware accelerators,  
drastically reducing code footprint and execution time for cryptographic operations. It also has the benefit of  
being lower power and improves availability and responsiveness of the system because the cryptography  
operations runs in a background hardware thread.  
Together with a large selection of open-source cryptography libraries provided with the Software Development  
Kit (SDK), this allows for secure and future proof IoT applications to be easily built on top of the platform. The  
hardware accelerator modules are:  
True Random Number Generator (TRNG) module provides a true, nondeterministic noise source for the  
purpose of generating keys, initialization vectors (IVs), and other random number requirements. The TRNG is  
built on 24 ring oscillators that create unpredictable output to feed a complex nonlinear-combinatorial circuit.  
Secure Hash Algorithm 2 (SHA-2) with support for SHA224, SHA256, SHA384, and SHA512  
Advanced Encryption Standard (AES) with 128 and 256 bit key lengths  
Public Key Accelerator - Hardware accelerator supporting mathematical operations needed for elliptic  
curves up to 512 bits and RSA key pair generation up to 1024 bits.  
Through use of these modules and the TI provided cryptography drivers, the following capabilities are available  
for an application or stack:  
Key Agreement Schemes  
Elliptic curve DiffieHellman with static or ephemeral keys (ECDH and ECDHE)  
Elliptic curve Password Authenticated Key Exchange by Juggling (ECJ-PAKE)  
Signature Generation  
Elliptic curve Diffie-Hellman Digital Signature Algorithm (ECDSA)  
Curve Support  
Short Weierstrass form (full hardware support), such as:  
NIST-P224, NIST-P256, NIST-P384, NIST-P521  
Brainpool-256R1, Brainpool-384R1, Brainpool-512R1  
secp256r1  
Montgomery form (hardware support for multiplication), such as:  
Curve25519  
SHA2 based MACs  
HMAC with SHA224, SHA256, SHA384, or SHA512  
Block cipher mode of operation  
AESCCM  
AESGCM  
AESECB  
AESCBC  
AESCBC-MAC  
True random number generation  
Other capabilities, such as RSA encryption and signatures as well as Edwards type of elliptic curves such as  
Curve1174 or Ed25519, can also be implemented using the provided hardware accelerators but are not part of  
the TI SimpleLink SDK for the CC2642R-Q1 device.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: CC2642R-Q1  
English Data Sheet: SWRS229  
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
9.7 Timers  
A large selection of timers are available as part of the CC2642R-Q1 device. These timers are:  
Real-Time Clock (RTC)  
A 70-bit 3-channel timer running on the 32 kHz low frequency system clock (SCLK_LF)  
This timer is available in all power modes except Shutdown. The timer can be calibrated to compensate for  
frequency drift when using the RCOSC_LF as the low frequency system clock. If an external LF clock with  
frequency different from 32.768 kHz is used, the RTC tick speed can be adjusted to compensate for this.  
When using TI-RTOS, the RTC is used as the base timer in the operating system and should thus only be  
accessed through the kernel APIs such as the Clock module. The real time clock can also be read by the  
Sensor Controller Engine to timestamp sensor data and also has dedicated capture channels. By default, the  
RTC halts when a debugger halts the device.  
General-Purpose Timers (GPTIMER)  
The four flexible GPTIMERs can be used as either 4× 32 bit timers or 8× 16 bit timers, all running on up to 48  
MHz. Each of the 16- or 32-bit timers support a wide range of features such as one-shot or periodic counting,  
pulse width modulation (PWM), time counting between edges and edge counting. The inputs and outputs of  
the timer are connected to the device event fabric, which allows the timers to interact with signals such as  
GPIO inputs, other timers, DMA and ADC. The GPTIMERs are available in Active and Idle power modes.  
Sensor Controller Timers  
The Sensor Controller contains 3 timers:  
AUX Timer 0 and 1 are 16-bit timers with a 2N prescaler. Timers can either increment on a clock or on each  
edge of a selected tick source. Both one-shot and periodical timer modes are available.  
AUX Timer 2 is a 16-bit timer that can operate at 24 MHz, 2 MHz or 32 kHz independent of the Sensor  
Controller functionality. There are 4 capture or compare channels, which can be operated in one-shot or  
periodical modes. The timer can be used to generate events for the Sensor Controller Engine or the ADC, as  
well as for PWM output or waveform generation.  
Radio Timer  
A multichannel 32-bit timer running at 4 MHz is available as part of the device radio. The radio timer is  
typically used as the timing base in wireless network communication using the 32-bit timing word as the  
network time. The radio timer is synchronized with the RTC by using a dedicated radio API when the device  
radio is turned on or off. This ensures that for a network stack, the radio timer seems to always be running  
when the radio is enabled. The radio timer is in most cases used indirectly through the trigger time fields in  
the radio APIs and should only be used when running the accurate 48 MHz high frequency crystal as the  
source of SCLK_HF.  
Watchdog timer  
The watchdog timer is used to regain control if the system operates incorrectly due to software errors. It is  
typically used to generate an interrupt to and reset of the device for the case where periodic monitoring of the  
system components and tasks fails to verify proper functionality. The watchdog timer runs on a 1.5 MHz clock  
rate and cannot be stopped once enabled. The watchdog timer pauses to run in Standby power mode and  
when a debugger halts the device.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS229  
38  
Submit Document Feedback  
Product Folder Links: CC2642R-Q1  
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
9.8 Serial Peripherals and I/O  
The SSIs are synchronous serial interfaces that are compatible with SPI, MICROWIRE, and TI's synchronous  
serial interfaces. The SSIs support both SPI Controller and Peripheral up to 4 MHz. The SSI modules support  
configurable phase and polarity.  
The UARTs implement universal asynchronous receiver and transmitter functions. They support flexible baud-  
rate generation up to a maximum of 3 Mbps.  
The I2S interface is used to handle digital audio and can also be used to interface pulse-density modulation  
microphones (PDM).  
The I2C interface is also used to communicate with devices compatible with the I2C standard. The I2C interface  
can handle 100 kHz and 400 kHz operation, and can serve as both Controller and Target.  
The I/O controller (IOC) controls the digital I/O pins and contains multiplexer circuitry to allow a set of peripherals  
to be assigned to I/O pins in a flexible manner. All digital I/Os are interrupt and wake-up capable, have a  
programmable pullup and pulldown function, and can generate an interrupt on a negative or positive edge  
(configurable). When configured as an output, pins can function as either push-pull or open-drain. Five GPIOs  
have high-drive capabilities, which are marked in bold in 7. All digital peripherals can be connected to any  
digital pin on the device.  
For more information, see the CC13x2, CC26x2 SimpleLink™ Wireless MCU Technical Reference Manual.  
9.9 Battery and Temperature Monitor  
A combined temperature and battery voltage monitor is available in the CC2642R-Q1 device. The battery and  
temperature monitor allows an application to continuously monitor on-chip temperature and supply voltage and  
respond to changes in environmental conditions as needed. The module contains window comparators to  
interrupt the system CPU when temperature or supply voltage go outside defined windows. These events can  
also be used to wake up the device from Standby mode through the Always-On (AON) event fabric.  
9.10 µDMA  
The device includes a direct memory access (µDMA) controller. The µDMA controller provides a way to offload  
data-transfer tasks from the system CPU, thus allowing for more efficient use of the processor and the available  
bus bandwidth. The µDMA controller can perform a transfer between memory and peripherals. The µDMA  
controller has dedicated channels for each supported on-chip module and can be programmed to automatically  
perform transfers between peripherals and memory when the peripheral is ready to transfer more data.  
Some features of the µDMA controller include the following (this is not an exhaustive list):  
Highly flexible and configurable channel operation of up to 32 channels  
Transfer modes: memory-to-memory, memory-to-peripheral, peripheral-to-memory, and  
peripheral-to-peripheral  
Data sizes of 8, 16, and 32 bits  
Ping-pong mode for continuous streaming of data  
9.11 Debug  
The on-chip debug support is done through a dedicated cJTAG (IEEE 1149.7) or JTAG (IEEE 1149.1) interface.  
The device boots by default into cJTAG mode and must be reconfigured to use 4-pin JTAG.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: CC2642R-Q1  
English Data Sheet: SWRS229  
 
 
 
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
9.12 Power Management  
To minimize power consumption, the CC2642R-Q1 supports a number of power modes and power management  
features (see 9-1).  
9-1. Power Modes  
SOFTWARE CONFIGURABLE POWER MODES  
RESET PIN  
HELD  
MODE  
ACTIVE  
Active  
On  
IDLE  
Off  
STANDBY  
Off  
SHUTDOWN  
CPU  
Off  
Off  
Off  
Off  
Off  
No  
No  
Off  
Off  
Off  
Off  
Off  
No  
No  
Flash  
Available  
On  
Off  
SRAM  
On  
Retention  
Off  
Radio  
Available  
On  
Available  
On  
Supply System  
Register and CPU retention  
SRAM retention  
Duty Cycled  
Partial  
Full  
Full  
Full  
Full  
Full  
48 MHz high-speed clock  
(SCLK_HF)  
XOSC_HF or  
RCOSC_HF  
XOSC_HF or  
RCOSC_HF  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
2 MHz medium-speed clock  
(SCLK_MF)  
RCOSC_MF  
RCOSC_MF  
Available  
32 kHz low-speed clock  
(SCLK_LF)  
XOSC_LF or  
RCOSC_LF  
XOSC_LF or  
RCOSC_LF  
XOSC_LF or  
RCOSC_LF  
Peripherals  
Available  
Available  
Available  
Available  
On  
Available  
Available  
Available  
Available  
On  
Off  
Available  
Available  
Available  
On  
Off  
Off  
Off  
Off  
Off  
Off  
On  
Off  
Off  
Off  
Sensor Controller  
Wake-up on RTC  
Off  
Wake-up on pin edge  
Wake-up on reset pin  
Brownout detector (BOD)  
Power-on reset (POR)  
Watchdog timer (WDT)  
Available  
On  
On  
On  
Duty Cycled  
On  
Off  
On  
On  
Off  
Available  
Available  
Paused  
Off  
In Active mode, the application system CPU is actively executing code. Active mode provides normal operation  
of the CPU and all of the peripherals that are currently enabled. The system clock can be any available clock  
source (see 9-1).  
In Idle mode, all active peripherals can be clocked, but the Application CPU core and memory are not clocked  
and no code is executed. Any interrupt event brings the processor back into active mode.  
In Standby mode, only the always-on (AON) domain is active. An external wake-up event, RTC event, or Sensor  
Controller event is required to bring the device back to active mode. MCU peripherals with retention do not need  
to be reconfigured when waking up again, and the CPU continues execution from where it went into standby  
mode. All GPIOs are latched in standby mode.  
In Shutdown mode, the device is entirely turned off (including the AON domain and Sensor Controller), and the  
I/Os are latched with the value they had before entering shutdown mode. A change of state on any I/O pin  
defined as a wake from shutdown pin wakes up the device and functions as a reset trigger. The CPU can  
differentiate between reset in this way and reset-by-reset pin or power-on reset by reading the reset status  
register. The only state retained in this mode is the latched I/O state and the flash memory contents.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS229  
40  
Submit Document Feedback  
Product Folder Links: CC2642R-Q1  
 
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
The Sensor Controller is an autonomous processor that can control the peripherals in the Sensor Interface  
independently of the system CPU. This means that the system CPU does not have to wake up, for example to  
perform an ADC sampling or poll a digital sensor over SPI, thus saving both current and wake-up time that would  
otherwise be wasted. The Sensor Controller Studio tool enables the user to program the Sensor Controller,  
control its peripherals, and wake up the system CPU as needed. All Sensor Controller peripherals can also be  
controlled by the system CPU.  
备注  
The power, RF and clock management for the CC2642R-Q1 device require specific configuration and  
handling by software for optimized performance. This configuration and handling is implemented in the  
TI-provided drivers that are part of the CC2642R-Q1 software development kit (SDK). Therefore, TI  
highly recommends using this software framework for all application development on the device. The  
complete SDK with TI-RTOS, device drivers, and examples are offered free of charge in source code.  
9.13 Clock Systems  
The CC2642R-Q1 device has several internal system clocks.  
The 48 MHz SCLK_HF is used as the main system (MCU and peripherals) clock. This can be driven by the  
internal 48 MHz RC Oscillator (RCOSC_HF) or an external 48 MHz crystal (XOSC_HF). Radio operation  
requires an external 48 MHz crystal.  
SCLK_MF is an internal 2 MHz clock that is used by the Sensor Controller in low-power mode and also for  
internal power management circuitry. The SCLK_MF clock is always driven by the internal 2 MHz RC Oscillator  
(RCOSC_MF).  
SCLK_LF is the 32.768 kHz internal low-frequency system clock. It can be used by the Sensor Controller for  
ultra-low-power operation and is also used for the RTC and to synchronize the radio timer before or after  
Standby power mode. SCLK_LF can be driven by the internal 32.8 kHz RC Oscillator (RCOSC_LF), a 32.768  
kHz watch-type crystal, or a clock input on any digital IO.  
When using a crystal or the internal RC oscillator, the device can output the 32 kHz SCLK_LF signal to other  
devices, thereby reducing the overall system cost.  
9.14 Network Processor  
Depending on the product configuration, the CC2642R-Q1 device can function as a wireless network processor  
(WNP - a device running the wireless protocol stack with the application running on a separate host MCU), or as  
a system-on-chip (SoC) with the application and protocol stack running on the system CPU inside the device.  
In the first case, the external host MCU communicates with the device using SPI or UART. In the second case,  
the application must be written according to the application framework supplied with the wireless protocol stack.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: CC2642R-Q1  
English Data Sheet: SWRS229  
 
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
10 Application, Implementation, and Layout  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
For general design guidelines and hardware configuration guidelines, refer to CC13xx/CC26xx Hardware  
Configuration and PCB Design Considerations Application Report.  
10.1 Reference Designs  
The following reference designs should be followed closely when implementing designs using the CC2642R-Q1  
device.  
Special attention must be paid to RF component placement, decoupling capacitors and DC/DC regulator  
components, as well as ground connections for all of these.  
CC26x2REM-7ID-Q1 Design  
Files  
The CC26x2REM-7ID-Q1 reference design provides schematic, layout and  
production files for the characterization board used for deriving the  
performance number found in this document.  
LAUNCHXL-CC26X2R1  
Design Files  
The CC26X2R LaunchPad Design Files contain detailed schematics and  
layouts to build application specific boards using the CC2642R-Q1 device.  
Sub-1 GHz and 2.4 GHz  
Antenna Kit for LaunchPad™  
Development Kit and  
SensorTag  
The antenna kit allows real-life testing to identify the optimal antenna for your  
application. The antenna kit includes 16 antennas covering frequencies from  
169 MHz to 2.4 GHz, including:  
PCB antennas  
Helical antennas  
Chip antennas  
Dual-band antennas for 868 MHz and 915 MHz combined with 2.4 GHz  
The antenna kit includes a JSC cable to connect to the Wireless MCU  
LaunchPad Development Kits and SensorTags.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS229  
42  
Submit Document Feedback  
Product Folder Links: CC2642R-Q1  
 
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
10.2 Junction Temperature Calculation  
This section shows the different techniques for calculating the junction temperature under various operating  
conditions. For more details, see Semiconductor and IC Package Thermal Metrics.  
There are three recommended ways to derive the junction temperature from other measured temperatures:  
1. From package temperature:  
T = ψ × P + T  
case  
(1)  
(2)  
(3)  
J
JT  
2. From board temperature:  
T = ψ × P + T  
board  
J
JB  
3. From ambient temperature:  
T = R  
× P + T  
A
J
θJA  
P is the power dissipated from the device and can be calculated by multiplying current consumption with supply  
voltage. Thermal resistance coefficients are found in 8.8.  
Example:  
Using 程式 3, the temperature difference between ambient temperature and junction temperature is  
calculated. In this example, we assume a simple use case where the radio is transmitting continuously at 0 dBm  
output power. Let us assume the ambient temperature is 105 °C and the supply voltage is 3 V. To calculate P, we  
need to look up the current consumption for Tx at 105 °C in 8-9. From the plot, we see that the current  
consumption is 7.9 mA. This means that P is 7.9 mA × 3 V = 23.7 mW.  
The junction temperature is then calculated as:  
°C  
T = 23.0  
× 23.7mW + T = 0.5°C + T  
A
(4)  
W
J
A
As can be seen from the example, the junction temperature will be 0.5 °C higher than the ambient temperature  
when running continuous Tx at 105 °C.  
For various application use cases current consumption for other modules may have to be added to calculate the  
appropriate power dissipation. For example, the MCU may be running simultaneously as the radio, peripheral  
modules may be enabled, etc. Typically, the easiest way to find the peak current consumption, and thus the peak  
power dissipation in the device, is to measure as described in Measuring CC13xx and CC26xx current  
consumption.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: CC2642R-Q1  
English Data Sheet: SWRS229  
 
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
11 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions are listed as follows.  
11.1 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to all part numbers and/or date-  
code. Each device has one of three prefixes/identifications: X, P, or null (no prefix) (for example, XCC2642R-Q1  
is in preview; therefore, an X prefix/identification is assigned).  
Device development evolutionary flow:  
X
P
Experimental device that is not necessarily representative of the final device's electrical specifications and  
may not use production assembly flow.  
Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical  
specifications.  
null Production version of the silicon die that is fully qualified.  
Production devices have been characterized fully, and the quality and reliability of the device have been  
demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type  
(for example, RGZ).  
For orderable part numbers of CC2642R-Q1 devices in the RGZ (7-mm x 7-mm) package type, see the Package  
Option Addendum of this document, the Device Information in 3, the TI website (www.ti.com), or contact your  
TI sales representative.  
CC2642  
R
1
TWF RTC  
R
Q1  
PREFIX  
X = Experimental device  
Blank = Qualified devie  
AUTOMOTIVE Q1  
Q1 = Q100  
DEVICE  
SimpleLink™ Ultra-Low-Power  
Wireless MCU  
R = Large Reel  
T = Reel Small  
CONFIGURATION  
R = Regular  
P = +20 dBm PA included  
PACKAGE  
RGZ = 48-pin VQFN (Very Thin Quad Flatpack No-Lead)  
RTC = 48-pin VQFN (Very Thin Quad Flatpack)  
ROM Revision  
T = -40 C to 105 C  
W = Wettable flanks  
F = Flash  
11-1. Device Nomenclature  
11.2 Tools and Software  
The CC2642R-Q1 device is supported by a variety of software and hardware development tools.  
Development Kit  
CC26x2 LaunchPad™ Development Kit  
The CC26x2R LaunchPadDevelopment Kit enables development of high-performance wireless applications  
that benefit from low-power operation. The kit features the CC2652R SimpleLink Wireless MCU, which allows  
quick evaluation and prototyping of 2.4-GHz wireless applications such as Bluetooth 5.1 Low Energy, Zigbee and  
Copyright © 2023 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: CC2642R-Q1  
English Data Sheet: SWRS229  
 
 
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
Thread, plus combinations of these. The kit works with the LaunchPad ecosystem, easily enabling additional  
functionality like sensors, display and more. The built-in EnergyTracesoftware is an energy-based code  
analysis tool that measures and displays the applications energy profile and helps to optimize it for ultra-low-  
power consumption. See 6 for guidance in selecting the correct device for single-protocol products.  
Software  
SimpleLink™ CC13XX-CC26XX SDK  
The SimpleLink CC13X2-CC26X2 Software Development Kit (SDK) provides a complete package for the  
development of wireless applications on the CC13X2 / CC26X2 family of devices. The SDK includes a  
comprehensive software package for the CC2642R-Q1 device, including the following protocol stacks:  
Bluetooth Low Energy 4 and 5  
Thread (based on OpenThread)  
Zigbee 3.0  
TI 15.4-Stack - an IEEE 802.15.4-based star networking solution for Sub-1 GHz and 2.4 GHz  
EasyLink - a large set of building blocks for building proprietary RF software stacks  
Multiprotocol support - concurrent operation between stacks using the Dynamic Multiprotocol Manager  
(DMM)  
The SimpleLink CC13X2-CC26X2 SDK is part of TIs SimpleLink MCU platform, offering a single development  
environment that delivers flexible hardware, software and tool options for customers developing wired and  
wireless applications. For more information about the SimpleLink MCU Platform, visit http://www.ti.com/  
simplelink.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: CC2642R-Q1  
English Data Sheet: SWRS229  
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
Code Composer StudioIntegrated Development Environment (IDE)  
Code Composer Studio is an integrated development environment (IDE) that supports TI's Microcontroller and  
Embedded Processors portfolio. Code Composer Studio comprises a suite of tools used to develop and debug  
embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment,  
debugger, profiler, and many other features. The intuitive IDE provides a single user interface taking you through  
each step of the application development flow. Familiar tools and interfaces allow users to get started faster than  
ever before. Code Composer Studio combines the advantages of the Eclipse® software framework with  
advanced embedded debug capabilities from TI resulting in a compelling feature-rich development environment  
for embedded developers.  
CCS has support for all SimpleLink Wireless MCUs and includes support for EnergyTracesoftware (application  
energy usage profiling). A real-time object viewer plugin is available for TI-RTOS, part of the SimpleLink SDK.  
Code Composer Studio is provided free of charge when used in conjunction with the XDS debuggers included  
on a LaunchPad Development Kit.  
IAR Embedded Workbench® for Arm®  
IAR Embedded Workbench® is a set of development tools for building and debugging embedded system  
applications using assembler, C and C++. It provides a completely integrated development environment that  
includes a project manager, editor, and build tools. IAR has support for all SimpleLink Wireless MCUs. It offers  
broad debugger support, including XDS110, IAR I-jetand Segger J-Link. A real-time object viewer plugin is  
available for TI-RTOS, part of the SimpleLink SDK. IAR is also supported out-of-the-box on most software  
examples provided as part of the SimpleLink SDK.  
A 30-day evaluation or a 32 KB size-limited version is available through iar.com.  
SmartRF™ Studio  
SmartRF™ Studio is a Windows® application that can be used to evaluate and configure SimpleLink Wireless  
MCUs from Texas Instruments. The application will help designers of RF systems to easily evaluate the radio at  
an early stage in the design process. It is especially useful for generation of configuration register values and for  
practical testing and debugging of the RF system. SmartRF Studio can be used either as a standalone  
application or together with applicable evaluation boards or debug probes for the RF device. Features of the  
SmartRF Studio include:  
Link tests - send and receive packets between nodes  
Antenna and radiation tests - set the radio in continuous wave TX and RX states  
Export radio configuration code for use with the TI SimpleLink SDK RF driver  
Custom GPIO configuration for signaling and control of external switches  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS229  
46  
Submit Document Feedback  
Product Folder Links: CC2642R-Q1  
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
Sensor Controller Studio  
Sensor Controller Studio is used to write, test and debug code for the Sensor Controller peripheral. The tool  
generates a Sensor Controller Interface driver, which is a set of C source files that are compiled into the System  
CPU application. These source files also contain the Sensor Controller binary image and allow the System CPU  
application to control and exchange data with the Sensor Controller. Features of the Sensor Controller Studio  
include:  
Ready-to-use examples for several common use cases  
Full toolchain with built-in compiler and assembler for programming in a C-like programming language  
Provides rapid development by using the integrated sensor controller task testing and debugging  
functionality, including visualization of sensor data and verification of algorithms  
CCS UniFlash  
CCS UniFlash is a standalone tool used to program on-chip flash memory on TI MCUs. UniFlash has a GUI,  
command line, and scripting interface. CCS UniFlash is available free of charge.  
11.2.1 SimpleLink™ Microcontroller Platform  
The SimpleLink microcontroller platform sets a new standard for developers with the broadest portfolio of wired  
and wireless Arm® MCUs (System-on-Chip) in a single software development environment. Delivering flexible  
hardware, software and tool options for your IoT applications. Invest once in the SimpleLink software  
development kit and use it throughout your entire portfolio. Learn more on ti.com/simplelink.  
11.3 Documentation Support  
To receive notification of documentation updates on data sheets, errata, application notes and similar, navigate  
to the device product folder on ti.com/product/CC2642R-Q1. In the upper right corner, click on Alert me to  
register and receive a weekly digest of any product information that has changed. For change details, review the  
revision history included in any revised document.  
The current documentation that describes the MCU, related peripherals, and other technical collateral is listed as  
follows.  
TI Resource Explorer  
TI Resource Explorer SPACER  
Software examples, libraries, executables, and documentation are available for your  
device and development board.  
Errata  
CC2642R-Q1 Silicon  
Errata  
SPACER  
The silicon errata describes the known exceptions to the functional specifications for  
each silicon revision of the device and description on how to recognize a device  
revision.  
Application Reports  
All application reports for the CC2642R-Q1 device are found on the device product folder at: ti.com/product/  
CC2642R-Q1.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: CC2642R-Q1  
English Data Sheet: SWRS229  
 
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
CC13x2, CC26x2 SimpleLink™ Wireless SPACER  
MCU TRM  
The TRM provides a detailed description of all modules and  
peripherals available in the device family.  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
LaunchPad, EnergyTrace, Code Composer Studio, and TI E2Eare trademarks of Texas Instruments.  
I-jetis a trademark of IAR Systems AB.  
J-Linkis a trademark of SEGGER Microcontroller Systeme GmbH.  
Arm® and Cortex® are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.  
CoreMark® is a registered trademark of Embedded Microprocessor Benchmark Consortium Corporation.  
Wi-Fi® is a registered trademark of Wi-Fi Alliance.  
Arm Thumb® is a registered trademark of Arm Limited (or its subsidiaries).  
Eclipse® is a registered trademark of Eclipse Foundation.  
IAR Embedded Workbench® is a registered trademark of IAR Systems AB.  
Windows® is a registered trademark of Microsoft Corporation.  
所有商标均为其各自所有者的财产。  
11.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS229  
48  
Submit Document Feedback  
Product Folder Links: CC2642R-Q1  
 
 
 
 
CC2642R-Q1  
ZHCSKQ3D JANUARY 2020 REVISED JULY 2023  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: CC2642R-Q1  
English Data Sheet: SWRS229  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CC2642R1FTWRGZRQ1  
CC2642R1TWFRTCRQ1  
ACTIVE  
VQFN  
VQFN  
RGZ  
48  
48  
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
CC2642 Q1  
R1F  
Samples  
Samples  
ACTIVE  
RTC  
NIPDAUAG  
CC2642 Q1  
R1F  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Jul-2023  
OTHER QUALIFIED VERSIONS OF CC2642R-Q1 :  
Catalog : CC2642R  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
CC2642R1FTWRGZRQ1 VQFN  
CC2642R1TWFRTCRQ1 VQFN  
RGZ  
RTC  
48  
48  
2500  
2500  
330.0  
330.0  
16.4  
16.4  
7.3  
7.3  
7.3  
7.3  
1.1  
1.1  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
CC2642R1FTWRGZRQ1  
CC2642R1TWFRTCRQ1  
VQFN  
VQFN  
RGZ  
RTC  
48  
48  
2500  
2500  
367.0  
336.6  
367.0  
336.6  
35.0  
31.8  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGZ 48  
7 x 7, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUADFLAT PACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224671/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGZ0048R  
PLASTIC QUAD FLATPACK-NO LEAD  
A
7.1  
6.9  
B
PIN 1 INDEX AREA  
7.1  
6.9  
0.1 MIN  
(0.13)  
SECTION A-A  
TYPICAL  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
5.25  
5.05  
5.5  
(0.2) TYP  
24  
13  
12  
25  
(0.16)  
A
A
SYMM  
49  
5.25  
5.05  
5.5  
1
36  
0.3  
44X 0.5  
48X  
0.2  
37  
48  
PIN 1 IDENTIFICATION  
(OPTIONAL)  
0.1  
C A B  
C
0.5  
0.3  
SYMM  
48X  
0.05  
4226144/A 08/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGZ0048R  
PLASTIC QUAD FLATPACK-NO LEAD  
(6.8)  
(5.15)  
SYMM  
48X (0.6)  
48X (0.25)  
48  
37  
1
36  
44X (0.5)  
(6.8)  
(Ø 0.2) VIA  
TYP  
49  
SYMM  
(5.15)  
8X  
(1.26)  
6X  
(1.065)  
25  
12  
(R0.05) TYP  
24  
13  
6X (1.065)  
8X (1.26)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 12X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
EXPOSED METAL  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4226144/A 08/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271)  
.
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGZ0048R  
PLASTIC QUAD FLATPACK-NO LEAD  
(6.8)  
16X  
(1.06)  
SYMM  
48X (0.6)  
48X (0.25)  
48  
37  
1
49  
36  
16X  
(1.06)  
44X (0.5)  
(0.63)  
SYMM  
(6.8)  
(1.26)  
(R0.05) TYP  
25  
12  
24  
13  
METAL TYP  
(1.26)  
(0.63)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
67% PRINTED COVERAGE BY AREA  
SCALE: 12X  
4226144/A 08/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
GENERIC PACKAGE VIEW  
RTC 48  
7 x 7, 0.5 mm pitch  
VQFNP - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224601/A  
www.ti.com  
PACKAGE OUTLINE  
RTC0048F  
VQFNP - 0.9 mm max height  
SCALE 2.100  
PLASTIC QUAD FLATPACK - NO LEAD  
7.1  
6.9  
B
A
0.15  
0.05  
0.05  
0.00  
PIN 1 ID  
DETAIL A  
7.1  
6.9  
DETAIL  
SCALE 20.000  
A
TYPICAL  
(
6.75)  
(0.15)  
(0.15)  
DETAIL  
B
S
C
A
L
E
2
0
.
0
0
0
DETAIL B  
TYPICAL  
0.9  
0.8  
C
SEATING PLANE  
0.08 C  
(0.2)  
0.60  
SEE DETAIL A  
SEE DETAIL B  
4X 45 X  
0.24  
EXPOSED  
THERMAL PAD  
13  
24  
12  
25  
SYMM  
49  
5.15 0.1  
4X  
5.5  
1
36  
0.30  
0.18  
44X 0.5  
48X  
48  
37  
SYMM  
0.1  
C B A  
C
PIN 1 ID  
(R0.2)  
0.5  
0.3  
48X  
0.05  
4224627/A 10/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTC0048F  
VQFNP - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
5.15)  
(1.26) TYP  
(1.065)  
TYP  
48  
37  
48X (0.6)  
48X (0.24)  
1
36  
(1.065)  
TYP  
44X (0.5)  
SYMM  
(1.26)  
TYP  
49  
(6.8)  
(
0.2) VIA  
TYP  
25  
12  
(R0.05) TYP  
13  
24  
SYMM  
(6.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224627/A 10/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTC0048F  
VQFNP - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
49  
48  
(0.63) TYP  
(1.26)  
TYP  
37  
48X (0.6)  
48X (0.24)  
1
36  
44X (0.5)  
SYMM  
(1.26) TYP  
(0.63) TYP  
(6.8)  
METAL  
TYP  
16X ( 1.06)  
25  
12  
(R0.05) TYP  
13  
24  
SYMM  
(6.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 49:  
67% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:12X  
4224627/A 10/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

CC2642R1FRGZR

具有 352kB 闪存的 SimpleLink™ 32 位 Arm Cortex-M4F 低功耗 Bluetooth® 无线 MCU | RGZ | 48 | -40 to 105
TI

CC2642R1FRGZT

具有 352kB 闪存的 SimpleLink™ 32 位 Arm Cortex-M4F 低功耗 Bluetooth® 无线 MCU | RGZ | 48 | -40 to 105
TI

CC2642R1FTWRGZRQ1

符合汽车标准的 SimpleLink™ 低功耗 Bluetooth® 无线 MCU | RGZ | 48 | -40 to 105
TI

CC2642R1TWFRTCRQ1

符合汽车标准的 SimpleLink™ 低功耗 Bluetooth® 无线 MCU | RTC | 48 | -40 to 105
TI

CC2650

具有 128kB 闪存的 SimpleLink™ 32 位 Arm Cortex-M3 多协议 2.4GHz 无线 MCU
TI

CC2650DK

KIT DEV FOR SMART/ZIGBEE/6LOWPAN
ETC

CC2650EMK-4XS

KIT DEV FOR SMART/ZIGBEE/6LOWPAN
ETC

CC2650EMK-5XD

KIT DEV FOR SMART/ZIGBEE/6LOWPAN
ETC

CC2650EMK-7ID

KIT DEV FOR SMART/ZIGBEE/6LOWPAN
ETC

CC2650F128RGZR

具有 128kB 闪存的 SimpleLink™ 32 位 Arm Cortex-M3 多协议 2.4GHz 无线 MCU | RGZ | 48 | -40 to 85
TI

CC2650F128RGZT

具有 128kB 闪存的 SimpleLink™ 32 位 Arm Cortex-M3 多协议 2.4GHz 无线 MCU | RGZ | 48 | -40 to 85
TI

CC2650F128RHBR

具有 128kB 闪存的 SimpleLink™ 32 位 Arm Cortex-M3 多协议 2.4GHz 无线 MCU | RHB | 32 | -40 to 85
TI