CC3130 [TI]

具有共存性、WPA3 和 16 个 TLS 插槽的 SimpleLink™ Arm Cortex-M3 Wi-Fi® 网络处理器;
CC3130
型号: CC3130
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有共存性、WPA3 和 16 个 TLS 插槽的 SimpleLink™ Arm Cortex-M3 Wi-Fi® 网络处理器

文件: 总69页 (文件大小:3009K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CC3130  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
适用MCU 应用的具有共存选项CC3130 SimpleLink™ Wi-Fi® 无线网络处理  
电源管理子系统  
1 特性  
– 集成式直流/直流转换器支持宽电源电压范围:  
• 集成Wi-Fi® 和互联网协议  
BLE 无线电共(CC13x2/CC26x2)  
VBAT 宽电压模式2.1 V 3.6 V  
VIO 始终VBAT 关联  
• 一组丰富IoT 安全特性可帮助开发人员保护数  
– 高级低功耗模式:  
• 关断1µA休眠4µA  
• 低功耗模式适用于电池供电应用  
• 低功耗深度睡(LPDS)120µA  
• 网络辅助漫游  
• 空闲连接MCU LPDS 状态):710µA  
• 工业温度40°C +85°C  
RX 流量MCU 处于活动模式):53 mA  
TX 流量MCU 处于活动模式):223 mA  
• 可转让Wi-Fi 联盟®认证  
Wi-Fi 网络处理器子系统:  
Wi-Fi 内核:  
Wi-Fi TX 功率:  
1 DSSS 18.0dBm  
54 OFDM 14.5dBm  
Wi-Fi RX 灵敏度:  
1 DSSS -96dBm  
54 OFDM -74.5dBm  
• 时钟源:  
– 具有内部振荡器40.0MHz 晶体  
32.768kHz 晶体或外RTC  
RGK 封装  
802.11b/g/n 2.4GHz  
• 模式:  
– 接入(AP)  
– 基(STA)  
Wi-Fi Direct®  
• 安全性:  
WEP  
WPA/ WPA2PSK  
WPA2 企业  
64 9mm × 9mm 极薄四方扁平无引线  
(VQFN) 封装0.5mm 间距  
• 器件支SimpleLink™ MCU 平台开发人员生态系  
WPA3个人版  
WPA3企业版  
– 互联网和应用协议:  
HTTP 服务器、mDNSDNS-SD DHCP  
IPv4 IPv6 TCP/IP 堆栈  
2 应用  
16 BSD 套接字完全安全TLS v1.2 和  
SSL 3.0)  
– 内置的电源管理子系统:  
• 对于物联网应用例如:  
楼宇和住宅自动化:  
HVAc 系统和恒温器  
视频监控、可视门铃和低功耗摄像头  
楼宇安防系统电子智能锁  
烟雾探测器  
• 可配置的低功耗配置文件始终、间歇性、  
标签)  
• 高级低功耗模式  
• 集成式直流/直流稳压器  
多层安全特性:  
– 独立执行环境  
漏水检测器  
电器  
智能家庭远程控制  
资产跟踪  
工厂自动化  
– 网络安全  
– 设备身份和密钥  
– 硬件加速器加密引擎AESDESSHA/MD5  
CRC)  
– 文件系统安全加密、身份验证、访问控制)  
– 初始安全编程  
– 软件篡改检测  
医疗和保健  
CPAP  
电网基础设施  
– 证书注册请(CSR)  
– 每个设备具有唯一密钥对  
• 应用吞吐量:  
UDP16MbpsTCP13Mbps  
– 峰值72Mbps  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SWRS227  
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
3 说明  
通过德州仪器 (TI) CC3130 器件将任何微控制器 (MCU) 连接到物联网 (IoT)SimpleLinkWi-Fi® CC3130  
Internet-on-a chip™ 器件包含一个专用于 Wi-Fi® 和互联网协议的 Arm® Cortex®-M3 MCU可减少主机 MCU 中  
的联网活动。该子系统包括 802.11b/g/n 无线电、基带以及具有强大加密引擎的 MAC采用 256 位加密以实现快  
速、安全的互联网连接并使用内置电源管理以实现出色的低功耗性能。  
Wi-Fi CERTIFIED® CC3130 器件通过集成Wi-Fi Alliance® IoT 低功耗特性极大地简化了低功耗功能的实施。  
这一代引进了可进一步简化物联网连接的新功能。主要新特性包括:  
• 低功Bluetooth® Wi-Fi 2.4-GHz 无线电共(CC13x2/CC26x2)  
• 天线选择  
• 可同时打开多16 个安全套接字  
• 证书注册请(CSR)  
• 在线证书状态协(OCSP)  
• 经Wi-Fi® Alliance® 认证IoT 省电特性BSS 空闲上限、DMS 和代ARP)  
• 降低模板包传输负载的无主机模式  
• 网络辅助漫游  
CC3130 器件随附一个占用空间小的用户友好型主机驱动程序可简化网络应用的集成和开发。主机驱动程序可  
轻松移植到大多数平台和操作系统 (OS)。此驱动程序占用的内存很小可在具有任何时钟速度的 8 位、16 位或  
32 位微控制器上运行无需使用高性能时钟或实时时钟。  
CC3130 器件SimpleLinkMCU 平台的一部分该平台是一个通用、简单易用的开发环境基于一个单核软件  
开发套件 (SDK)、丰富的工具集、参考设计和 E2E社区而构建支持 Wi-Fi®、低功耗 Bluetooth®Sub-1GHz  
器件和主MCU。有关更多信息请访www.ti.com/simplelink。  
器件信息(1)  
器件型号  
CC3130RNMRGKR  
封装  
封装尺寸  
VQFN (64)  
9.00mm x 9.00mm标称值)  
(1) 如需更多信息请参阅机械、封装和可订购信部分。  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: CC3130  
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
4 功能方框图  
4-1 显示CC3130 器件的功能方框图。  
SPI  
Flash  
40-MHz  
XTAL  
VCC  
(2.1 to 3.6V)  
32.768-kHz  
XTAL  
SSPI  
BLE / 2.4 Wi-FI  
Ant.  
32 kHz  
RF_BG  
MCU  
nHIB  
CC3130  
Wi-Fi /BLE  
RF Switch  
2.4-GHz  
BPF  
SPDT RF  
Switch  
BLE  
DEVICE  
HOST_INTR  
SPI/UART  
HM_IOs  
COEX_IO  
Output GPIOs  
BLE / 2.4 Wi-FI  
Ant.  
注意双信器用于信号天线解决方案。使用天线选择功能双天线需要在双信器后应1 SPDT 开关2 GPIO 线路。  
4-1. 功能方框图  
4-2 显示CC3130 硬件概览。  
External MCU  
SimpleLink Driver APIs  
SPI or UART Driver  
SPI /  
UART  
Wi-Fi Network Processor  
Host Interface  
1 x SPI  
1 x UART  
Network Processor  
POWER  
Management  
Wi-Fi Driver  
TCP/IP Stack  
Application  
Protocols  
Oscillators  
RAM  
ROM  
(ARM CortexTM  
)
DC2DC  
RTC  
Synthesizer  
4-2. CC3130 硬件概览  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: CC3130  
 
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
4-3 显示CC3130 嵌入式软件概览。  
Customer Application  
in external MCU  
BSD Socket  
SimpleLink Driver APIs  
NetApp  
Wi-Fi  
Host Interface  
Network  
Apps  
WLAN  
Security &  
Management  
TCP/IP Stack  
WLAN MAC & PHY  
4-3. CC3130 软件概览  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: CC3130  
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
Table of Contents  
8.14 Thermal Resistance Characteristics for RGK  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 2  
4 功能方框图.........................................................................3  
5 Revision History.............................................................. 5  
6 Device Comparison.........................................................6  
6.1 Related Products........................................................ 7  
7 Terminal Configuration and Functions..........................8  
7.1 Pin Diagram................................................................ 8  
7.2 Pin Attributes...............................................................9  
7.3 Signal Descriptions................................................... 12  
7.4 Connections for Unused Pins................................... 14  
8 Specifications................................................................ 15  
8.1 Absolute Maximum Ratings...................................... 15  
8.2 ESD Ratings............................................................. 15  
8.3 Power-On Hours (POH)............................................15  
8.4 Recommended Operating Conditions.......................15  
8.5 Current Consumption Summary............................... 16  
8.6 TX Power Control......................................................16  
8.7 Brownout and Blackout Conditions...........................19  
8.8 Electrical Characteristics for DIO Pins......................20  
8.9 Electrical Characteristics for Pin Internal Pullup  
Package...................................................................... 24  
8.15 Timing and Switching Characteristics..................... 24  
8.16 External Interfaces..................................................35  
9 Detailed Description......................................................38  
9.1 Overview...................................................................38  
9.2 Device Features........................................................38  
9.3 Power-Management Subsystem...............................41  
9.4 Low-Power Operating Modes................................... 42  
9.5 Memory.....................................................................42  
9.6 Restoring Factory Default Configuration...................43  
9.7 Hostless Mode.......................................................... 43  
10 Applications, Implementation, and Layout............... 45  
10.1 Application Information........................................... 45  
10.2 PCB Layout Guidelines...........................................52  
11 Device and Documentation Support..........................56  
11.1 Tools and Software..................................................56  
11.2 Firmware Updates...................................................57  
11.3 Device Nomenclature..............................................57  
11.4 Documentation Support.......................................... 59  
11.5 Trademarks............................................................. 60  
11.6 Electrostatic Discharge Caution..............................60  
11.7 术语表..................................................................... 60  
12 Mechanical, Packaging, and Orderable  
and Pulldown...............................................................22  
8.10 WLAN Receiver Characteristics..............................22  
8.11 WLAN Transmitter Characteristics..........................23  
8.12 WLAN Transmitter Out-of-Band Emissions.............23  
8.13 BLE/2.4 GHz Radio Coexistence and WLAN  
Information.................................................................... 61  
12.1 Package Option Addendum....................................62  
Coexistence Requirements......................................... 24  
5 Revision History  
Changes from September 28, 2020 to May 13, 2021 (from Revision A (September 2020) to  
Revision B (May 2021))  
Page  
• 向1 Wi-Fi 核心安全性添加了“WPA3企业版“...................................................................................1  
Added "WPA3 personal and enterprise" to "Wi-Fi level of security" in 6-1. ...................................................6  
Added 8.16.3, Host UART ...........................................................................................................................36  
Changed footnote in 9.1 ..............................................................................................................................38  
Added "WPA3personal and enterprise security" to 9.1. .......................................................................... 38  
Added "WPA3enterprise" to 9.2.1. ...........................................................................................................38  
Changed tablenote for 9-1 .......................................................................................................................... 39  
Added "WPA3enterprise" to "Wi-Fi security" in 9-1. ................................................................................ 39  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: CC3130  
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
6 Device Comparison  
6-1 lists the features supported across different CC3x3x devices.  
6-1. Comparison of Device Features  
DEVICE  
FEATURE  
CC3130  
CC3135  
CC3230S  
CC3230SF  
CC3235S  
Wireless  
microcontroller  
802.11a/b/g/n  
IPv4, IPv6  
16  
CC3235SF  
Wireless  
microcontroller  
Classification  
Network Processor  
Network Processor  
Wireless microcontroller  
Wireless microcontroller  
Standard  
802.11b/g/n  
IPv4, IPv6  
16  
802.11a/b/g/n  
IPv4, IPv6  
16  
802.11b/g/n  
IPv4, IPv6  
16  
802.11b/g/n  
IPv4, IPv6  
16  
802.11a/b/g/n  
IPv4, IPv6  
16  
TCP/IP stack  
Sockets  
9-mm × 9-mm  
VQFN  
9-mm × 9-mm  
VQFN  
Package  
9-mm × 9-mm VQFN 9-mm × 9-mm VQFN  
9-mm × 9-mm VQFN  
9-mm × 9-mm VQFN  
ON-CHIP APPLICATION MEMORY  
Flash  
RAM  
1MB  
1MB  
256KB  
256KB  
256KB  
256KB  
RF FEATURES  
2.4 GHz  
Frequency  
2.4 GHz  
Yes  
2.4 GHz, 5 GHz  
Yes  
2.4 GHz  
Yes  
2.4 GHz, 5 GHz 2.4 GHz, 5 GHz  
Coexistence with  
BLE Radio  
(CC13x2/  
Yes  
Yes  
Yes  
CC26x2)  
SECURITY FEATURES  
Secure boot  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
FIPS 140-2  
Level 1  
No  
Yes  
No  
Certification(1)  
File system  
security  
File system  
security  
File system security  
Secure key storage  
Software tamper  
File system security  
Secure key storage  
Software tamper  
detection  
File system security  
Secure key storage  
Software tamper  
detection  
File system security  
Secure key storage  
Software tamper  
detection  
Secure key  
storage  
Secure key  
storage  
Enhanced  
Software tamper Software tamper  
application level detection  
security  
detection  
detection  
Cloning protection  
Cloning protection  
Initial secure  
Cloning protection  
Initial secure  
Initial secure  
Cloning  
Cloning  
Initial secure  
programming  
programming  
protection  
Initial secure  
programming  
protection  
Initial secure  
programming  
programming  
programming  
Wi-Fi level of  
security  
WEP, WPS, WPA / WPA2 PSK, WPA2 (802.1x), WPA3 personal and enterprise  
Unique device identity  
Trusted root-certificate catalog  
TI Root-of-trust public key  
Additional  
networking  
security  
Online certificate status protocol (OCSP)  
Certificate signing request (CSR)  
Unique per-device key pair  
Hardware  
acceleration  
Hardware crypto engines  
(1) For exact status of FIPS certification for a specific part number, please refer to https://csrc.nist.gov/publications/fips.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: CC3130  
 
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
6.1 Related Products  
For information about other devices in this family of products or related products see the links below.  
The SimpleLink™  
MCU Portfolio  
This portfolio offers a single development environment that delivers flexible hardware,  
software, and tool options for customers developing wired and wireless applications. With  
100 percent code reuse across host MCUs, Wi-Fi®, Bluetooth® low energy, Sub-1 GHz  
devices and more, choose the MCU or connectivity standard that fits your design. A one-  
time investment with the SimpleLink™ software development kit (SDK) allows you to  
reuse often, opening the door to create unlimited applications.  
SimpleLink™ Wi-Fi® This device platform offers several Internet-on-a chipsolutions, which address the need  
Family  
of battery-operated, security-enabled products. Texas Instruments offers a single-chip  
wireless microcontroller and a wireless network processor that can be paired with any  
MCU, allowing developers to design new Wi-Fi® products or upgrade existing products  
with Wi-Fi® capabilities.  
MSP432™ Host  
MCU  
features the Arm® Cortex®-M4 processor offering ample processing capability with  
floating point unit and memory footprint for advanced processing algorithm,  
communication protocols as well as application needs, while incorporating a 14-bit 1-  
msps ADC14 that provides a flexible and low-power analog with best-in-class  
performance to enable developers to add differentiated sensing and measurement  
capabilities to their Wi-Fi applications. For more information, visit www.ti.com/product/  
MSP432P401R.  
Reference Designs  
The SimpleLink™  
Find reference designs leveraging the best in TI technology from analog and power  
management to embedded processors. All designs include a schematic, test data and  
design files.  
The SDK contains drivers, sample applications for Wi-Fi features and Internet, and  
Wi-Fi® SDK Plug-in documentation required to use the CC3130 solution.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: CC3130  
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
7 Terminal Configuration and Functions  
7.1 Pin Diagram  
7-1 shows pin assignments for the 64-pin VQFN package.  
48  
47  
46 45 44 43  
42  
41  
40  
39  
38  
37  
36  
35 34 33  
VDD_RAM  
UART1_nRTS  
RTC_XTAL_P  
RTC_XTAL_N  
DIO30  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
nRESET  
RF_BG  
ANTSEL1  
ANTSEL2  
NC  
VIN_IO2  
NC  
UART1_TX  
VDD_DIG2  
UART1_RX  
TEST_58  
NC  
LDO_IN2  
VDD_PLL  
WLAN_XTAL_P  
WLAN_XTAL_N  
SOP2/TCXO_EN  
DIO29  
TEST_59  
TEST_60  
UART1_nCTS  
TEST_62  
RESERVED  
DIO28  
DIO8  
DIO9  
DIO24  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14 15 16  
7-1. Top View Pin Assignment for 64-Pin VQFN  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: CC3130  
 
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
7.2 Pin Attributes  
7-1 describes the CC3130 pins.  
Note  
Digital IOs on the CC3130 device refer to hostless mode, BLE/2.4 GHz coexistence, and antenna  
select IOs, not general-purpose IOs.  
If an external device drives a positive voltage to signal pads when the CC3130 device is not powered,  
DC current is drawn from the other device. If the drive strength of the external device is adequate, an  
unintentional wakeup and boot of the CC3130 device can occur. To prevent current draw, TI  
recommends one of the following:  
All devices interfaced to the CC3130 device must be powered from the same power rail as the  
CC3130 device.  
Use level shifters between the CC3130 device and any external devices fed from other  
independent rails.  
The nRESET pin of the CC3130 device must be held low until the VBAT supply to the device is  
driven and stable.  
7-1. Pin Description and Attributes  
DIGITAL I/O  
STATE AT  
BLE COEX  
RESET  
AND  
HIBERNA  
TE  
DEFAULT  
FUNCTION  
I/O  
PAD_  
CONFI  
G
PIN  
DESCRIPTION  
TYPE(1)  
HOSTLES  
S MODE  
CC_COEX CC_COEX  
_
_
OUT  
IN  
1
DIO10  
nHIB  
10  
Y
Y
Y
I/O  
I
Digital input or output  
Hibernate signal input to the NWP  
subsystem (active low). This is  
connected to the MCU GPIO. If the  
GPIO from the MCU can float while  
the MCU enters low power, consider  
adding a pullup resistor on the board  
to avoid floating.  
2
11  
-
-
-
Hi-Z  
3
4
5
6
7
DIO12  
12  
13  
14  
15  
16  
Y
Y
-
Y
Y
-
Y
Y
-
O
Digital input or output  
DIO13  
Digital input or output  
I
HOST_SPI_CLK  
HOST_SPI_MOSI  
HOST_SPI_MISO  
Hi-Z  
Hi-Z  
Hi-Z  
Host interface SPI clock  
Host interface SPI data input  
Host interface SPI data output  
-
-
-
I
-
-
-
O
Host interface SPI chip select (active  
low)  
8
HOST_SPI_nCS  
17  
-
-
-
Hi-Z  
I
9
VDD_DIG1  
VIN_IO1  
-
-
-
-
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Power  
Power  
O
Digital core supply (1.2 V)  
I/O supply  
10  
11  
12  
FLASH_SPI_CLK  
FLASH_SPI_MOSI  
Serial Flash interface: SPI clock  
Serial Flash interface: SPI data out  
O
Serial Flash interface: SPI data in  
(active high)  
13  
14  
FLASH _SPI_MISO  
FLASH _SPI_CS  
-
-
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Hi-Z  
Hi-Z  
I
Serial Flash interface: SPI chip select  
(active low)  
O
O
15  
16  
17  
18  
HOST_INTR  
DIO23  
22  
23  
24  
40  
-
-
-
Hi-Z  
Hi-Z  
Hi-Z  
Interrupt output (active high)  
Digital input or output  
Digital input or output  
Digital input or output  
Y
Y
Y
Y
Y
Y
Y
Y
Y
DIO24  
DIO28  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: CC3130  
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
7-1. Pin Description and Attributes (continued)  
DIGITAL I/O  
BLE COEX  
CC_COEX CC_COEX  
STATE AT  
RESET  
AND  
HIBERNA  
TE  
DEFAULT  
FUNCTION  
I/O  
PAD_  
CONFI  
G
PIN  
DESCRIPTION  
TYPE(1)  
HOSTLES  
S MODE  
_
_
OUT  
IN  
Connect a 100-kΩpulldown resistor  
to ground.  
19  
20  
Reserved  
DIO29  
28  
29  
-
-
-
Hi-Z  
Hi-Z  
Y
Y
Y
Digital input or output  
Controls restore to default mode.  
Enable signal for external TCXO. Add  
a 10-kΩpulldown resistor to ground.  
21  
SOP2/TCXO_EN(2)  
25  
Y(3)  
Y
-
Hi-Z  
O
Connect the WLAN 40-MHz crystal  
here.  
22  
23  
24  
WLAN_XTAL_N  
WLAN_XTAL_P  
VDD_PLL  
-
-
-
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Hi-Z  
Hi-Z  
Hi-Z  
Analog  
Analog  
Power  
Connect the WLAN 40-MHz crystal  
here.  
Internal PLL power supply (1.4 V  
nominal)  
25  
26  
27  
28  
29  
LDO_IN2  
NC  
-
-
-
-
-
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Hi-Z  
Power  
Input to internal LDO  
No Connect  
NC  
No Connect  
NC  
No Connect  
ANTSEL1(4)  
Hi-Z  
O
Reserved for future use  
30  
31  
ANTSEL2(4)  
RF_BG  
-
-
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Hi-Z  
Hi-Z  
O
Reserved for future use  
2.4 GHz RF TX, RX  
RF  
RESET input for the device. Active low  
input. Use RC circuit (100 kΩ|| 0.01  
µF) for power on reset (POR).  
32  
33  
nRESET  
-
-
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Hi-Z  
Hi-Z  
I
Power supply for the RF power  
amplifier (PA)  
VDD_PA_IN  
Power  
SOP[2:0] used for factory restore. Add  
100-kΩpulldown to ground. See 节  
9.6. SOP1 used for 5 GHz switch  
control  
34  
35  
SOP1  
SOP0  
-
-
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Hi-Z  
Hi-Z  
SOP[2:0] used for factory restore. Add  
100-kΩpulldown to ground. See 节  
9.6. SOP0 used for 5GHz switch  
control  
36  
37  
LDO_IN1  
-
-
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Hi-Z  
Hi-Z  
Power  
Power  
Input to internal LDO  
Power supply for the DC/DC converter  
for analog section  
VIN_DCDC_ANA  
38  
39  
DCDC_ANA_SW  
VIN_DCDC_PA  
-
-
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Hi-Z  
Hi-Z  
Power  
Power  
Analog DC/DC converter switch output  
PA DC/DC converter input supply  
PA DC/DC converter switch output  
+ve  
40  
41  
DCDC_PA_SW_P  
DCDC_PA_SW_N  
-
-
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Hi-Z  
Hi-Z  
Power  
Power  
PA DC/DC converter switch output –  
ve  
PA DC/DC converter output. Connect  
the output capacitor for DC/DC here.  
42  
43  
44  
45  
DCDC_PA_OUT  
DCDC_DIG_SW  
VIN_DCDC_DIG  
DIO31  
-
-
N/A  
N/A  
N/A  
Y
N/A  
N/A  
N/A  
Y
N/A  
N/A  
N/A  
Y
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Power  
Power  
Power  
Digital DC/DC converter switch output  
Power supply input for the digital  
DC/DC converter  
-
31  
Network Scripter I/O  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: CC3130  
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
7-1. Pin Description and Attributes (continued)  
DIGITAL I/O  
BLE COEX  
CC_COEX CC_COEX  
STATE AT  
RESET  
AND  
HIBERNA  
TE  
DEFAULT  
FUNCTION  
I/O  
PAD_  
CONFI  
G
PIN  
DESCRIPTION  
TYPE(1)  
HOSTLES  
S MODE  
_
_
OUT  
IN  
Analog2 DC/DC converter switch  
output ve  
46 DCDC_ANA2_SW_N  
-
N/A  
N/A  
N/A  
Hi-Z  
Power  
47  
48  
49  
50  
VDD_ANA2  
VDD_ANA1  
VDD_RAM  
-
-
N/A  
N/A  
N/A  
-
N/A  
N/A  
N/A  
-
N/A  
N/A  
N/A  
-
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Power  
Power  
Power  
O
Analog2 power supply input  
Analog1 power supply input  
-
Power supply for the internal RAM  
UART host interface (active low)  
UART1_nRTS  
0
32.768-kHz XTAL_P or external  
CMOS level clock input  
51  
RTC_XTAL_P  
-
N/A  
N/A  
N/A  
Hi-Z  
Analog  
Analog  
32.768-kHz XTAL_N or 100-kΩ  
external pullup for external clock  
52  
53  
54  
RTC_XTAL_N  
DIO30  
32  
30  
Y
Y
Y
Y
Y
Y
Hi-Z  
Hi-Z  
Hi-Z  
Network Scripter I/O  
I/O power supply. Same as battery  
voltage.  
VIN_IO2  
N/A  
N/A  
N/A  
Power  
UART host interface. Connect to test  
point on prototype for Flash  
programming.  
55  
56  
57  
UART1_TX  
VDD_DIG2  
UART1_RX  
1
-
-
N/A  
-
-
-
-
-
Hi-Z  
Hi-Z  
Hi-Z  
O
Power  
I
Digital power supply (1.2 V)  
UART host interface; connect to test  
point on prototype for Flash  
programming.  
2
Test signal; connect to an external test  
point.  
58  
59  
TEST_58  
TEST_60  
3
4
Y
Y
Y
Y
Y
Y
Hi-Z  
Hi-Z  
O
O
Test signal; connect to an external test  
point.  
Test signal; connect to an external test  
point.  
60  
61  
62  
TEST_60  
UART1_nCTS  
TEST_62  
5
6
7
Y
-
Y
-
Y
-
Hi-Z  
Hi-Z  
Hi-Z  
O
I
UART host interface (active low)  
Test signal; connect to an external test  
point.  
-
-
-
O
63  
64  
DIO8  
DIO9  
8
9
Y
Y
Y
Y
Y
Y
Hi-Z  
Hi-Z  
Digital input or output  
Digital input or output  
Ground tab used as thermal and  
electrical ground  
65  
GND  
-
N/A  
N/A  
N/A  
Power  
(1) I = input  
O = output  
RF = radio frequency  
I/O = bidirectional  
(2) This pin has dual functions: as a SOP[2] (device operation mode), and as an external TCXO enable. As a TXCO enable, the pin is an  
output on power up and driven logic high. During hibernate low-power mode, the pin is in a Hi-Z state but is pulled down for SOP mode  
to disable TCXO. Because of the SOP functionality, the pin must be used as an output only.  
(3) Output Only  
(4) This pin is reserved for WLAN antenna selection, controlling an external RF switch that multiplexes the RF  
pin of the CC3130x device between two antennas. These pins must not be used for other functionalities.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: CC3130  
 
 
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
7.3 Signal Descriptions  
7-2. Signal Descriptions  
PIN  
NO.  
PIN  
TYPE  
SIGNAL  
DIRECTION  
FUNCTION  
SIGNAL NAME  
DIO10  
DESCRIPTION  
1
3
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
DIO12  
DIO13  
DIO23  
DIO24  
DIO28  
DIO29  
DIO25  
DIO31  
DIO32  
DIO30  
DIO3  
4
16  
17  
18(1)  
20  
21  
Antenna selection control  
45(1)  
52(1)  
53(1)  
58  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
Antenna  
selection  
DIO4  
59  
DIO5  
60  
DIO8  
63  
DIO9  
64  
ANTSEL1  
29  
Anatenna selection control 1  
Antenna selection control 2  
ANTSEL2  
30  
O
O
DIO10  
1
3
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
DIO12  
DIO13  
4
DIO23  
16  
DIO24  
17  
DIO28  
18(1)  
DIO29  
20  
BLE/2.4 GHz  
Radio  
coexistence  
DIO25  
21  
Coexistence inputs and outputs  
DIO31  
45(1)  
52(1)  
53(1)  
58  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DIO32  
DIO30  
DIO3  
DIO4  
59  
DIO5  
60  
DIO8  
63  
DIO9  
64  
WLAN_XTAL_N  
WLAN_XTAL_P  
22  
40-MHz crystal; pull down if external TCXO is used  
40-MHz crystal or TCXO clock input  
23  
Connect 32.768-kHz crystal or force external CMOS  
level clock  
Clock  
RTC_XTAL_P  
RTC_XTAL_N  
51  
52  
Connect 32.768-kHz crystal or connect 100-kΩresistor  
to supply voltage  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: CC3130  
 
CC3130  
www.ti.com.cn  
FUNCTION  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
7-2. Signal Descriptions (continued)  
PIN  
NO.  
PIN  
TYPE  
SIGNAL  
DIRECTION  
SIGNAL NAME  
DIO10  
DESCRIPTION  
1
3
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
DIO12  
DIO13  
4
DIO23  
16  
17  
18(1)  
20  
21  
45(1)  
52(1)  
53(1)  
58  
59  
60  
63  
64  
9
DIO24  
DIO28  
DIO29  
DIO25  
Hostless Mode  
Hostless mode inputs and outputs  
DIO31  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DIO32  
DIO30  
DIO3  
DIO4  
DIO5  
DIO8  
DIO9  
VDD_DIG1  
VIN_IO1  
VDD_PLL  
LDO_IN2  
VDD_PA_IN  
LDO_IN1  
Internal digital core voltage  
Device supply voltage (VBAT  
Internal analog voltage  
10  
24  
25  
33  
36  
)
Internal analog RF supply from analog DC/DC output  
Internal PA supply voltage from PA DC/DC output  
Internal analog RF supply from analog DC/DC output  
Analog DC/DC input (connected to device input supply  
[VBAT])  
VIN_DCDC_ANA  
DCDC_ANA_SW  
VIN_DCDC_PA  
37  
38  
39  
Internal analog DC/DC switching node  
PA DC/DC input (connected to device input supply  
[VBAT])  
DCDC_PA_SW_P  
DCDC_PA_SW_N  
DCDC_PA_OUT  
DCDC_DIG_SW  
40  
41  
42  
43  
Internal PA DC/DC switching node  
Internal PA DC/DC switching node  
Internal PA buck converter output  
Internal digital DC/DC switching node  
Power  
Digital DC/DC input (connected to device input supply  
[VBAT])  
VIN_DCDC_DIG  
44  
DCDC_ANA2_SW_P  
DCDC_ANA2_SW_N  
VDD_ANA2  
45  
46  
47  
48  
49  
54  
56  
5
Analog to DC/DC converter +ve switching node  
Internal analog to DC/DC converter ve switching node  
Internal analog to DC/DC output  
I
VDD_ANA1  
Internal analog supply fed by ANA2 DC/DC output  
Internal SRAM LDO output  
VDD_RAM  
VIN_IO2  
Device supply voltage (VBAT  
Internal digital core voltage  
Host SPI clock input  
Data from Host  
)
VDD_DIG2  
HOST_SPI_CLK  
HOST_SPI_MOSI  
HOST_SPI_MISO  
HOST_SPI_nCS  
I/O  
I/O  
I/O  
I/O  
6
I
HOST SPI  
8
O
I
Data to Host  
7
Device select (active low)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: CC3130  
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
7-2. Signal Descriptions (continued)  
PIN  
NO.  
PIN  
TYPE  
SIGNAL  
DIRECTION  
FUNCTION  
SIGNAL NAME  
DESCRIPTION  
FLASH_SPI_CLK  
FLASH_SPI_DOUT  
FLASH_SPI_DIN  
FLASH_SPI_CS  
UART1_nRTS  
UART1_TX  
11  
12  
O
O
I
O
O
I
Clock to SPI serial flash (fixed default)  
Data to SPI serial flash (fixed default)  
Data from SPI serial flash (fixed default)  
FLASH SPI  
13  
14  
O
I/O  
I/O  
I/O  
I/O  
O
I
O
O
I
Device select to SPI serial flash (fixed default)  
UART1 request-to-send (active low)  
UART TX data  
50  
55  
UART  
UART1_RX  
57  
O
I
UART RX data  
UART1_nCTS  
SOP2  
61  
UART1 clear-to-send (active low)  
Sense-on-power 2  
21(2)  
I
Sense-On-Power SOP1  
SOP0  
34  
I
Configuration sense-on-power 1  
Configuration sense-on-power 0  
Global master device reset (active low)  
35  
I
I
Reset  
nHIB  
RF  
nRESET  
32  
I
I
Hibernate signal input to the NWP subsystem (active  
low)  
nHIB  
2
I
I
RF_BG  
31  
58  
59  
60  
62  
I/O  
O
I
I/O  
O
I
WLAN analog RF 802.11b/g/n bands  
Test Signal  
TEST_58  
TEST_59  
TEST_60  
TEST_62  
Test Signal  
Test Port  
O
O
O
O
Test Signal  
Test Signal  
(1) LPDS retention unavailable.  
(2) This pin has dual functions: as a SOP[2] (device operation mode), and as an external TCXO enable. As a TXCO enable, the pin is an  
output on power up and driven logic high. During hibernate low-power mode, the pin is in a Hi-Z state but is pulled down for SOP mode  
to disable TCXO. Because of the SOP functionality, the pin must be used as an output only.  
7.4 Connections for Unused Pins  
All unused pin should be configured as stated in 7-3.  
7-3. Connections for Unused Pins  
PIN  
NUMBER  
FUNCTION  
SIGNAL DESCRIPTION  
ACCEPTABLE PRACTICE  
PREFERRED PRACTICE  
Wake up I/O source should not be  
floating during hibernate.  
All the I/O pins will float while in  
Hibernate and Reset states. Ensure  
pullup and pulldown resistors are  
available on board to maintain the  
state of the I/O.  
DIO  
Digital input or output  
Leave unused DIOs as NC  
No Connect  
SOP  
NC  
26, 29, 30 Unused pin, leave as NC.  
Unused pin, leave as NC  
100-kΩPull down resistor  
on SOP0 and SOP1. 2.7-  
kΩpull down on SOP2  
Configuration sense-on-  
power  
Ensure pulldown resistors are  
available on unused SOP pins  
Reset  
RESET input for the device  
RTC_XTAL_N  
Never leave the reset pin floating  
When using an external oscillator,  
add a 100-kΩpullup resistor to VIO  
Clock  
When using an external oscillator,  
connect to ground if unused  
WLAN_XTAL_N  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: CC3130  
 
 
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
8 Specifications  
All measurements are referenced at the device pins, unless otherwise indicated. All specifications are over  
process and voltage, unless otherwise indicated.  
8.1 Absolute Maximum Ratings  
All measurements are referenced at the device pins unless otherwise indicated. All specifications are over process and  
overvoltage unless otherwise indicated.  
Over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
MAX UNIT  
VBAT and VIO  
Pins: 37, 39, 44  
Pins: 10, 54  
3.8  
V
V
0.5  
Supply voltage  
VBAT and VIO should be tied  
together  
VIO VBAT (differential)  
Digital inputs  
RF pins  
VIO + 0.5  
V
V
0.5  
0.5  
0.5  
40  
55  
2.1  
2.1  
85  
Analog pins, Crystal  
Pins: 22, 23, 51, 52  
V
Operating temperature, TA  
Storage temperature, Tstg  
°C  
°C  
125  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
8.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
VESD  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8.3 Power-On Hours (POH)  
This information is provided solely for your convenience and does not extend or modify the warranty provided under TI's  
standard terms and conditions for TI semiconductor products.  
POWER-ON HOURS [POH]  
OPERATING CONDITION  
(hours)  
TA up to 85°C(1)  
87,600  
(1) The TX duty cycle (power amplifier ON time) is assumed to be 10% of the device POH. Of the remaining 90% of the time, the device  
can be in any other state.  
8.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
2.1(4)  
20  
TYP  
MAX  
UNIT  
VBAT, VIO  
(shorted to VBAT  
Direct battery  
connection(3)  
Supply voltage  
Pins: 10, 37, 39, 44, 54  
3.3  
3.6  
V
)
Ambient thermal slew  
20 °C/minute  
(1) Operating temperature is limited by crystal frequency variation.  
(2) When operating at an ambient temperature of over 75°C, the transmit duty cycle must remain below 50% to avoid the auto-protect  
feature of the power amplifier. If the auto-protect feature triggers, the device takes a maximum of 60 seconds to restart the  
transmission.  
(3) To ensure WLAN performance, ripple on the supply must be less than ±300 mV.  
(4) The minimum voltage specified includes the ripple on the supply voltage and all other transient dips. The brownout condition is also  
2.1 V, and care must be taken when operating at the minimum specified voltage.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: CC3130  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
8.5 Current Consumption Summary  
TA = 25°C, VBAT = 3.6 V  
PARAMETER  
TEST CONDITIONS(1) (2)  
TX power level = 0  
TX power level = 4  
TX power level = 0  
TX power level = 4  
TX power level = 0  
TX power level = 4  
MIN  
TYP  
272  
188  
248  
179  
223  
160  
53  
MAX UNIT  
1 DSSS  
TX  
6 OFDM  
mA  
54 OFDM  
1 DSSS  
RX(5)  
mA  
54 OFDM  
53  
Idle connected(3)  
LPDS  
690  
115  
4
µA  
µA  
µA  
µA  
Hibernate  
Shutdown  
1
VBAT = 3.6 V  
VBAT = 3.3 V  
VBAT = 2.1 V  
420  
450  
670  
Peak calibration current(4) (5)  
mA  
(1) TX power level = 0 implies maximum power (see 8-1, 8-2, and 8-3). TX power level = 4 implies output power backed off  
approximately 4 dB.  
(2) The CC3130 system is a constant power-source system. The active current numbers scale based on the VBAT voltage supplied.  
(3) DTIM = 1  
(4) The complete calibration can take up to 17 mJ of energy from the battery over a time of 24 ms. In default mode, calibration is  
performed sparingly, and typically occurs when re-enabling the NWP and when the temperature has changed by more than 20°C.  
There are two additional calibration modes that may be used to reduced or completely eliminate the calibration event. For further  
details, see CC3x20, CC3x35 SimpleLink™ Wi-Fi® and Internet of Things Network Processor Programmer's Guide.  
(5) The RX current is measured with a 1-Mbps throughput rate.  
8.6 TX Power Control  
The CC3130 has several options for modifying the output power of the device when required. It is possible to  
lower the overall output power at a global level using the global TX power level setting. In addition, the 2.4 GHz  
1
2
3
band allows the user to enter additional back-offs , per channel, region and modulation rates , via Image  
creator (see the UniFlash CC3x20, CC3x35 SimpleLink ™ Wi-Fi® and Internet-on-a chip ™ Solution  
ImageCreator and Programming Tool User's Guide for more details).  
8-1, 8-2, and 8-3 show TX power and IBAT versus TX power level settings for the CC3130 device at  
modulations of 1 DSSS, 6 OFDM, and 54 OFDM, respectively.  
In 8-1, the area enclosed in the circle represents a significant reduction in current during transition from TX  
power level 3 to level 4. In the case of lower range requirements (14-dBm output power), TI recommends using  
TX power level 4 to reduce the current.  
1
The back-off range is between -6 dB to +6 dB in 0.25dB increments.  
FCC/ISED, ETSI (Europe), and Japan are supported.  
Back-off rates are grouped into 11b rates, high modulation rates (MCS7, 54 OFDM and 48 OFDM), and lower modulation rates (all  
2
3
other rates).  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: CC3130  
 
 
 
 
 
 
 
 
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
1 DSSS  
19.00  
17.00  
280.00  
264.40  
Color by  
TX Power (dBm)  
249.00  
233.30  
218.00  
202.00  
186.70  
171.00  
15.00  
13.00  
IBAT (VBAT @ 3.6 V)  
11.00  
9.00  
7.00  
5.00  
3.00  
1.00  
155.60  
140.00  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
TX power level setting  
8-1. TX Power and IBAT vs TX Power Level Settings (1 DSSS)  
6 OFDM  
19.00  
17.00  
280.00  
264.40  
249.00  
233.30  
218.00  
202.00  
186.70  
171.00  
Color by  
TX Power (dBm)  
15.00  
13.00  
IBAT (VBAT @ 3.6 V)  
11.00  
9.00  
7.00  
5.00  
3.00  
1.00  
155.60  
140.00  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
TX power level setting  
8-2. TX Power and IBAT vs TX Power Level Settings (6 OFDM)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: CC3130  
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
54 OFDM  
19.00  
17.00  
280.00  
264.40  
249.00  
233.30  
218.00  
202.00  
186.70  
171.00  
Color by  
TX Power (dBm)  
15.00  
13.00  
IBAT (VBAT @ 3.6 V)  
11.00  
9.00  
7.00  
5.00  
3.00  
1.00  
155.60  
140.00  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
TX power level setting  
8-3. TX Power and IBAT vs TX Power Level Settings (54 OFDM)  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: CC3130  
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
8.7 Brownout and Blackout Conditions  
The device enters a brownout condition when the input voltage drops below Vbrownout (see 8-4 and 8-5).  
This condition must be considered during design of the power supply routing, especially when operating from a  
battery. High-current operations, such as a TX packet or any external activity (not necessarily related directly to  
networking) can cause a drop in the supply voltage, potentially triggering a brownout condition. The resistance  
includes the internal resistance of the battery, the contact resistance of the battery holder (four contacts for 2×  
AA batteries), and the wiring and PCB routing resistance.  
Note  
When the device is in HIBERNATE state, brownout is not detected. Only blackout is in effect during  
HIBERNATE state.  
Supply  
Voltage  
Vbrownout  
Vblackout  
Chip in  
Hibernate  
Chip in  
Hibernate  
Chip in  
Hibernate  
Brownout  
Brownout  
is disabled  
Brownout  
is disabled  
Brownout  
is disabled  
0 V  
Time  
1
2
3
4
5
6
7
8
9
Software  
Enters  
Hibernate  
Chip Software Chip  
Exits Enters Exits  
Hibernate Hibernate Hibernate  
Software  
Enters  
Hibernate  
Chip Gets Chip Exits  
Fully Reset Blackout Reset  
In Blakcout & Boots  
8-4. Brownout and Blackout Levels (1 of 2)  
Supply  
Voltage  
Vbrownout  
Vblackout  
SLEEP  
ACTIVE  
LPDS  
SLEEP  
ACTIVE  
LPDS  
SLEEP  
ACTIVE  
LPDS  
Brownout  
0 V  
Time  
1
2
3
4
5
6
7
8-5. Brownout and Blackout Levels (2 of 2)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: CC3130  
 
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
In the brownout condition, all sections of the device (including the 32-kHz RTC) shut down except for the  
Hibernate module, which remains on. The current in this state can reach approximately 400 µA. The blackout  
condition is equivalent to a hardware reset event in which all states within the device are lost.  
8.7.1 lists the brownout and blackout voltage levels.  
8.7.1 Brownout and Blackout Voltage Levels  
CONDITION  
VOLTAGE LEVEL  
UNIT  
V
Vbrownout  
Vblackout  
2.1  
1.67  
V
8.8 Electrical Characteristics for DIO Pins  
8.8.1 Electrical Characteristics: DIO Pins Except 52 and 53  
TA = 25°C, VBAT = 2.1 V to 3.3 V.(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CIN  
VIH  
VIL  
IIH  
Pin capacitance  
4
pF  
High-level input voltage  
Low-level input voltage  
High-level input current  
Low-level input current  
0.65 × VDD  
VDD + 0.5 V  
0.35 × VDD  
V
V
0.5  
5
5
nA  
nA  
IIL  
IL = 2 mA; configured I/O drive  
strength = 2 mA;  
2.4 V VDD < 3.6 V  
VDD × 0.8  
VDD × 0.7  
VDD × 0.7  
VDD × 0.75  
IL = 4 mA; configured I/O drive  
strength = 4 mA;  
2.4 V VDD < 3.6 V  
VOH  
High-level output voltage  
V
IL = 6 mA; configured I/O drive  
strength = 6 mA;  
2.4 V VDD < 3.6 V  
IL = 2 mA; configured I/O drive  
strength = 2 mA;  
2.1 V VDD < 2.4 V  
IL = 2 mA; configured I/O drive  
strength = 2 mA;  
2.4 V VDD < 3.6 V  
VDD × 0.2  
VDD × 0.2  
VDD × 0.2  
VDD × 0.25  
IL = 4 mA; configured I/O drive  
strength = 4 mA;  
2.4 V VDD < 3.6 V  
VOL  
Low-level output voltage  
V
IL = 6 mA; configured I/O drive  
strength = 6 mA;  
2.4 V VDD < 3.6 V  
IL = 2 mA; configured I/O drive  
strength = 2 mA;  
2.1 V VDD < 2.4 V  
2-mA drive  
High-level  
2
4
6
IOH  
source  
current  
4-mA drive  
mA  
6-mA drive  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: CC3130  
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
TA = 25°C, VBAT = 2.1 V to 3.3 V.(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
2
TYP  
MAX UNIT  
2-mA drive  
Low-level  
IOL  
4-mA drive  
6-mA drive  
4
mA  
sink current  
6
(1) TI recommends using the lowest possible drive strength that is adequate for the applications. This recommendation minimizes the risk  
of interference to the WLAN radio and reduces any potential degradation of RF sensitivity and performance. The default drive strength  
setting is 6 mA.  
8.8.2 Electrical Characteristics: DIO Pins 52 and 53  
TA = 25°C, VBAT = 2.1 V to 3.6 V.(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
pF  
V
CIN  
VIH  
VIL  
IIH  
Pin capacitance  
7
High-level input voltage  
Low-level input voltage  
High-level input current  
Low-level input current  
0.65 × VDD  
VDD + 0.5 V  
0.35 × VDD  
V
0.5  
50  
50  
nA  
nA  
IIL  
IL = 2 mA; configured I/O  
drive strength = 2 mA;  
2.4 V VDD < 3.6 V  
VDD × 0.8  
VDD × 0.7  
VDD × 0.7  
VDD × 0.75  
IL = 4 mA; configured I/O  
drive strength = 4 mA;  
2.4 V VDD < 3.6 V  
VOH  
High-level output voltage  
V
IL = 6 mA; configured I/O  
drive strength = 6 mA;  
2.4 V VDD < 3.6 V  
IL = 2 mA; configured I/O  
drive strength = 2 mA;  
2.1 V VDD < 2.4 V  
IL = 2 mA; configured I/O  
drive strength = 2 mA;  
2.4 V VDD < 3.6 V  
VDD × 0.2  
VDD × 0.2  
VDD × 0.2  
VDD × 0.25  
IL = 4 mA; configured I/O  
drive strength = 4 mA;  
2.4 V VDD < 3.6 V  
VOL  
Low-level output voltage  
V
IL = 6 mA; configured I/O  
drive strength = 6 mA;  
2.4 V VDD < 3.6 V  
IL = 2 mA; configured I/O  
drive strength = 2 mA;  
2.1 V VDD < 2.4 V  
2-mA  
drive  
1.5  
2.5  
3.5  
1.5  
2.5  
3.5  
High-level  
4-mA  
IOH  
source current,  
drive  
mA  
mA  
VOH = 2.4  
6-mA  
drive  
2-mA  
drive  
Low-level sink  
current  
4-mA  
drive  
IOL  
6-mA  
drive  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: CC3130  
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
TA = 25°C, VBAT = 2.1 V to 3.6 V.(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIL  
nRESET  
0.6  
V
(1) TI recommends using the lowest possible drive strength that is adequate for the applications. This recommendation minimizes the risk  
of interference to the WLAN radio and reduces any potential degradation of RF sensitivity and performance. The default drive strength  
setting is 6 mA.  
8.9 Electrical Characteristics for Pin Internal Pullup and Pulldown  
TA = 25°C, VBAT = 3.0 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IOH  
IOL  
Pullup current, VOH = 2.4 (VDD = 3.0 V)  
5
10  
µA  
Pulldown current, VOL = 0.4 (VDD = 3.0  
V)  
5
µA  
8.10 WLAN Receiver Characteristics  
8-1. WLAN Receiver Characteristics  
TA = 25°C, VBAT = 2.1 V to 3.6 V. Parameters are measured at the SoC pin on channel 6 (2437 MHz).  
PARAMETER  
TEST CONDITIONS (Mbps)  
MIN  
TYP  
96.0  
94.0  
88.0  
90.5  
90.0  
86.5  
80.5  
74.5  
71.5  
4.0  
MAX  
UNIT  
1 DSSS  
2 DSSS  
11 CCK  
6 OFDM  
Sensitivity  
(8% PER for 11b rates, 10% PER for 11g/11n  
9 OFDM  
dBm  
rates)(2)  
18 OFDM  
36 OFDM  
54 OFDM  
MCS7 (GF)(1)  
802.11b  
Maximum input level  
(10% PER)  
dBm  
802.11g  
10.0  
(1) Sensitivity for mixed mode is 1-dB worse.  
(2) Sensitivity is 1-dB worse on channel 13 (2472 MHz).  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: CC3130  
 
 
 
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
8.11 WLAN Transmitter Characteristics  
8-2. WLAN Transmitter Characteristics  
TA = 25°C, VBAT = 2.1 V to 3.6 V. Parameters measured at SoC pin on channel 6 (2437 MHz).(1) (2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Operating frequency range(3) (4)  
2412  
2472  
MHz  
1 DSSS  
2 DSSS  
11 CCK  
18.0  
18.0  
18.3  
17.3  
17.3  
17.0  
16.0  
14.5  
13.0  
6 OFDM  
9 OFDM  
18 OFDM  
36 OFDM  
54 OFDM  
MCS7  
Maximum RMS output power measured at 1  
dB from IEEE spectral mask or EVM  
dBm  
ppm  
Transmit center frequency accuracy  
25  
25  
(1) The OFDM and MCS7 edge channels (2412 and 2462 MHz) have reduced TX power to meet FCC emission limits.  
(2) Power of 802.11b rates are reduced to meet ETSI requirements in Europe.  
(3) Channels 1 (2142 MHz) through 11 (2462 MHz) are supported for FCC.  
(4) Channels 1 (2142 MHz) through 13 (2472MHz) are supported for Europe and Japan. Note that channel 14 is not supported for Japan.  
8.12 WLAN Transmitter Out-of-Band Emissions  
The device requires an external band-pass filter to meet the various emission standards, including FCC. 节  
8.12.1 presents the minimum attenuation requirements for the band-pass filter. TI recommends using the same  
filter used in the reference design to ease the process of certification.  
8.12.1 WLAN 2.4 GHz Filter Requirements  
PARAMETER  
FREQUENCY (MHz)  
2412 to 2484  
2412 to 2484  
804 to 828  
MIN  
TYP  
MAX  
UNIT  
dB  
Return loss  
Insertion loss(1)  
10  
1
42  
23  
49  
52  
30  
27  
42  
44  
30  
50  
1.5  
dB  
30  
20  
30  
40  
20  
20  
20  
35  
20  
1608 to 1656  
3216 to 3312  
4020 to 4140  
4824 to 4968  
5628 to 5796  
6432 to 6624  
7200 to 7500  
7500 to 10000  
2412 to 2484  
Bandpass  
Attenuation  
dB  
Reference impendence  
Filter type  
Ω
(1) Insertion loss directly impacts output power and sensitivity. At customer discretion, insertion loss can be relaxed to meet attenuation  
requirements.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: CC3130  
 
 
 
 
 
 
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
8.13 BLE/2.4 GHz Radio Coexistence and WLAN Coexistence Requirements  
For proper BLE/2.4 GHz radio coexistence, the following requirements needs to met:  
8-3. COEX Isolation Requirement  
PARAMETER  
Band  
MIN  
20(1)  
20(2)  
TYP  
MAX  
UNIT  
Single antenna  
Port-to-port isolation  
dB  
Dual antenna Configuration  
(1) WLAN/BLE switch used must provide a minimum of 20 dB isolation between ports.  
(2) For dual antenna configuration antenna placement must be such that isolation between the BLE and WLAN ports is at least 20 dB.  
8.14 Thermal Resistance Characteristics for RGK Package  
THERMAL METRICS(1)  
°C/W(2) (3)  
6.3  
AIR FLOW (m/s)(4)  
0.0051  
0.0051  
0.0051  
0.765  
Junction-to-case  
RΘJC  
RΘJB  
RΘJA  
Junction-to-board  
Junction-to-free air  
2.4  
23  
14.6  
12.4  
10.8  
0.2  
Junction-to-moving air  
1.275  
RΘJMA  
2.55  
0.0051  
0.765  
0.2  
PsiJT  
Junction-to-package top  
0.3  
1.275  
0.1  
2.55  
2.3  
0.0051  
0.765  
2.3  
PsiJB  
Junction-to-board  
2.2  
1.275  
2.4  
2.55  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) °C/W = degrees Celsius per watt.  
(3) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
Power dissipation of 2 W and an ambient temperature of 70°C is assumed.  
(4) m/s = meters per second.  
8.15 Timing and Switching Characteristics  
8.15.1 Power Supply Sequencing  
For proper operation of the CC3130 device, perform the recommended power-up sequencing as follows:  
1. Tie the following pins together on the board:  
VBAT (pins 37, 39, and 44)  
VIO (pins 54 and 10)  
2. Hold the RESET pin low while the supplies are ramping up. TI recommends using a simple RC circuit (100 K  
||, 0.01 µF, RC = 1 ms).  
3. For an external RTC, ensure that the clock is stable before RESET is deasserted (high).  
For timing diagrams, see 8.15.3.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: CC3130  
 
 
 
 
 
 
 
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
8.15.2 Device Reset  
When a device restart is required, the user may issue a negative pulse to the nRESET pin. The user must follow  
one of the following alternatives to ensure the reset is properly applied:  
A negative reset pulse (on pin 32) of at least 200-ms duration  
If the 200-ms pulse duration cannot be ensured, a pulldown resistor of 2 MΩmust be connected to pin 52  
(RTC_XTAL_N). If implemented, a shorter pulse of at least 100 µs can be used.  
To ensure a proper reset sequence, the user must call the sl_stop function prior to toggling the reset. When a  
reset is required, it is preferable to use the software reset instead of an external trigger.  
8.15.3 Reset Timing  
8.15.3.1 nRESET (32-kHz Crystal)  
8-6 shows the reset timing diagram for the 32-kHz crystal first-time power-up and reset removal.  
T2  
T1  
T3  
VBAT  
VIO  
nRESET  
nHIB  
Device Ready to  
serve API calls  
POWER  
OFF  
RESET  
HW INIT  
FW INIT  
STATE  
32-kHz  
XTAL  
8-6. First-Time Power-Up and Reset Removal Timing Diagram (32-kHz Crystal)  
8.15.3.2 describes the timing requirements for the 32-kHz crystal first-time power-up and reset removal.  
8.15.3.2 First-Time Power-Up and Reset Removal Timing Requirements (32-kHz Crystal)  
ITEM  
NAME  
nReset time  
DESCRIPTION  
MIN  
TYP  
1
MAX  
UNIT  
ms  
ms  
s
nReset timing after VBAT and VIO supply are  
stable  
T1  
T2  
T3  
Hardware wake-up time  
Initialization time  
25  
32-kHz crystal settling plus firmware  
initialization time plus radio calibration  
1.35  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: CC3130  
 
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
8.15.3.3 nRESET (External 32-kHz Crystal)  
8-7 shows the reset timing diagram for the external 32-kHz crystal first-time power-up and reset removal.  
T1  
T2  
T3  
VBAT  
VIO  
nRESET  
nHIB  
POWER  
OFF  
Device Ready to  
serve API calls  
STATE  
RESET  
HW INIT  
FW INIT  
32-kHz  
RTC CLK  
8-7. First-Time Power-Up and Reset Removal Timing Diagram (External 32-kHz Crystal)  
8.15.3.3.1 describes the timing requirements for the external first-time power-up and reset removal.  
8.15.3.3.1 First-Time Power-Up and Reset Removal Timing Requirements (External 32-kHz Crystal)  
ITEM  
NAME  
nReset time  
DESCRIPTION  
MIN  
TYP  
1
MAX  
UNIT  
ms  
nReset timing after VBAT and VIO supply are  
stable  
T1  
T2  
T3  
Hardware wake-up time  
Initialization time  
25  
ms  
Firmware initialization time plus radio  
calibration  
250  
ms  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: CC3130  
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
8.15.4 Wakeup From HIBERNATE Mode  
Note  
The 32.768-kHz crystal is kept enabled by default when the chip goes into HIBERNATE mode in  
response to nHIB being pulled low.  
8-8 shows the timing diagram for wakeup from HIBERNATE mode.  
T
T
wake_from_hib  
hib_min  
VBAT  
VIO  
nRESET  
nHIB  
ACTIVE  
HIBERNATE  
HW WAKEUP+FW INIT  
ACTIVE  
HIBERNATE  
32-kHz  
XTAL/CXO  
8-8. nHIB Timing Diagram  
8.15.4.1 describes the timing requirements for nHIB.  
8.15.4.1 nHIB Timing Requirements  
ITEM  
Thib_min  
NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
Minimum hibernate time  
Minimum pulse width of nHIB being low(2)  
10  
ms  
Hardware wakeup time plus  
firmware initialization time  
Twake_from_hib  
See(1)  
50  
ms  
(1) If temperature changes by more than 20°C, initialization time from HIB can increase by 200 ms due to radio calibration.  
(2) Ensure that the nHIB pulse width is kept above the minimum requirement under all conditions (such as power up, MCU reset, and so  
on).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: CC3130  
 
 
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
8.15.5 Clock Specifications  
The CC3130 device requires two separate clocks for its operation:  
A slow clock running at 32.768 kHz is used for the RTC.  
A fast clock running at 40 MHz is used by the device for the internal processor and the WLAN subsystem.  
The device features internal oscillators that enable the use of less-expensive crystals rather than dedicated  
TCXOs for these clocks. The RTC can also be fed externally to provide reuse of an existing clock on the system  
and to reduce overall cost.  
8.15.5.1 Slow Clock Using Internal Oscillator  
The RTC crystal connected on the device supplies the free-running slow clock. The accuracy of the slow clock  
frequency must be 32.768 kHz ±150 ppm. In this mode of operation, the crystal is tied between RTC_XTAL_P  
(pin 51) and RTC_XTAL_N (pin 52) with a suitable load capacitance to meet the ppm requirement.  
8-9 shows the crystal connections for the slow clock.  
51  
RTC_XTAL_P  
10 pF  
GND  
32.768 kHz  
52  
RTC_XTAL_N  
10 pF  
GND  
Copyright © 2017, Texas Instruments Incorporated  
8-9. RTC Crystal Connections  
8.15.5.1.1 lists the RTC crystal requirements.  
8.15.5.1.1 RTC Crystal Requirements  
CHARACTERISTICS  
Frequency  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
kHz  
ppm  
kΩ  
32.768  
Frequency accuracy  
Crystal ESR  
Initial plus temperature plus aging  
32.768 kHz  
±150  
70  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: CC3130  
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
8.15.5.2 Slow Clock Using an External Clock  
When an RTC oscillator is present in the system, the CC3130 device can accept this clock directly as an input.  
The clock is fed on the RTC_XTAL_P line, and the RTC_XTAL_N line is held to VIO. The clock must be a CMOS-  
level clock compatible with VIO fed to the device.  
8-10 shows the external RTC input connection.  
32.768 kHz  
RTC_XTAL_P  
Host system  
VIO  
100 KΩ  
RTC_XTAL_N  
Copyright © 2017, Texas Instruments Incorporated  
8-10. External RTC Input  
8.15.5.2.1 lists the external RTC digital clock requirements.  
8.15.5.2.1 External RTC Digital Clock Requirements  
CHARACTERISTICS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Frequency  
32768  
Hz  
Frequency accuracy  
(Initial plus temperature plus aging)  
±150  
50%  
ppm  
ns  
Input transition time tr, tf  
(10% to 90%)  
tr, tf  
100  
Frequency input duty cycle  
20%  
80%  
VIO  
Vih  
Vil  
0.65 × VIO  
V
Slow clock input voltage limits  
Square wave, DC coupled  
0
1
0.35 × VIO  
Vpeak  
MΩ  
pF  
Input impedance Resistance  
Capacitance  
5
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: CC3130  
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
8.15.5.3 Fast Clock (Fref) Using an External Crystal  
The CC3130 device also incorporates an internal crystal oscillator to support a crystal-based fast clock. The  
crystal is fed directly between WLAN_XTAL_P (pin 23) and WLAN_XTAL_N (pin 22) with suitable loading  
capacitors.  
8-11 shows the crystal connections for the fast clock.  
23  
WLAN_XTAL_P  
6.2 pF  
GND  
40 MHz  
22  
WLAN_XTAL_N  
6.2 pF  
GND  
SWAS031-030  
A. The crystal capacitance must be tuned to ensure that the PPM requirement is met. See CC31xx & CC32xx Frequency Tuning for  
information on frequency tuning.  
8-11. Fast Clock Crystal Connections  
8.15.5.3.1 lists the WLAN fast-clock crystal requirements.  
8.15.5.3.1 WLAN Fast-Clock Crystal Requirements  
CHARACTERISTICS  
Frequency  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
ppm  
Ω
40  
Frequency accuracy  
Crystal ESR  
Initial plus temperature plus aging  
40 MHz  
±20  
60  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: CC3130  
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
8.15.5.4 Fast Clock (Fref) Using an External Oscillator  
The CC3130 device can accept an external TCXO/XO for the 40-MHz clock. In this mode of operation, the clock  
is connected to WLAN_XTAL_P (pin 23). WLAN_XTAL_N (pin 22) is connected to GND. The external TCXO/XO  
can be enabled by TCXO_EN (pin 21) from the device to optimize the power consumption of the system.  
If the TCXO does not have an enable input, an external LDO with an enable function can be used. Using the  
LDO improves noise on the TCXO power supply.  
8-12 shows the connection.  
Vcc  
XO (40 MHz)  
EN  
CC3130  
TCXO_EN  
82 pF  
WLAN_XTAL_P  
OUT  
WLAN_XTAL_N  
8-12. External TCXO Input  
8.15.5.4.1 lists the external Fref clock requirements.  
8.15.5.4.1 External Fref Clock Requirements (40°C to +85°C)  
CHARACTERISTICS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Frequency  
40.00  
MHz  
Frequency accuracy  
(Initial plus temperature plus aging)  
±20  
55%  
1.2  
ppm  
Frequency input duty cycle  
Clock voltage limits  
45%  
0.7  
50%  
Sine or clipped sine wave,  
AC coupled  
Vpp  
Vpp  
at 1 kHz  
125  
138.5  
143  
Phase noise at 40 MHz  
at 10 kHz  
at 100 kHz  
dBc/Hz  
Resistance  
Input impedance  
12  
kΩ  
Capacitance  
7
pF  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: CC3130  
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
8.15.6 Interfaces  
This section describes the interfaces that are supported by the CC3130 device:  
Host SPI  
Flash SPI  
Digital IO  
8.15.6.1 Host SPI Interface Timing  
8-13 shows the Host SPI interface timing diagram.  
T2  
CLK  
T6  
T7  
MISO  
MOSI  
T9  
T8  
8-13. Host SPI Interface Timing  
8.15.6.1.1 lists the Host SPI interface timing parameters.  
8.15.6.1.1 Host SPI Interface Timing Parameters  
PARAMETER  
NUMBER  
DESCRIPTION  
MIN  
MAX  
UNIT  
Clock frequency at VBAT = 3.3 V  
Clock frequency at VBAT 2.1 V  
Clock period  
20  
12  
T1  
F(1)  
MHz  
(1) (2)  
(1)  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
tclk  
tLP  
tHT  
50  
ns  
ns  
ns  
Clock low period  
25  
25  
(1)  
Clock high period  
D(1)  
Duty cycle  
45%  
55%  
(1)  
tIS  
tIH  
RX data setup time  
RX data hold time  
TX data output delay  
TX data hold time  
4
4
ns  
ns  
ns  
ns  
(1)  
(1)  
(1)  
tOD  
tOH  
20  
24  
(1) The timing parameter has a maximum load of 20 pF at 3.3 V.  
(2) Ensure that nCS (active-low signal) is asserted 10 ns before the clock is toggled. nCS can be deasserted 10 ns after the clock edge.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: CC3130  
 
 
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
8.15.6.2 Flash SPI Interface Timing  
8-14 shows the Flash SPI interface timing diagram.  
T2  
CLK  
T6  
T7  
MISO  
MOSI  
T9  
T8  
8-14. Flash SPI Interface Timing  
8.15.6.2.1 lists the Flash SPI interface timing parameters.  
8.15.6.2.1 Flash SPI Interface Timing Parameters  
PARAMETER  
NUMBER  
DESCRIPTION  
MIN  
MAX  
UNIT  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
F
Clock frequency  
Clock period  
20  
MHz  
ns  
tclk  
tLP  
tHT  
D
50  
Clock low period  
Clock high period  
Duty cycle  
25  
25  
ns  
ns  
45%  
55%  
tIS  
RX data setup time  
RX data hold time  
TX data output delay  
TX data hold time  
1
2
ns  
ns  
ns  
ns  
tIH  
tOD  
tOH  
8.5  
8
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: CC3130  
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
8.15.6.3 DIO Interface Timing  
Note  
Digital IOs on CC3130 refers to antenna select, hostless mode, and BLE/2.4 GHz coexistence IOs not  
general purpose IOs  
8-15 shows the DIO timing diagram.  
VDD  
80%  
20%  
tDIOR  
tDIOF  
SWAS037  
8-15. DIO Timing Diagram  
8.15.6.3.1 DIO Output Transition Time Parameters (Vsupply = 3.3 V)  
8.15.6.3.1.1 lists the DIO output transition times for Vsupply = 3.3 V.  
8.15.6.3.1.1 DIO Output Transition Times (Vsupply = 3.3 V)(1)  
tr  
tf  
DRIVE  
STRENGTH (mA)  
DRIVE STRENGTH  
CONTROL BITS  
UNIT  
ns  
MIN  
NOM  
MAX  
MIN  
NOM  
MAX  
2MA_EN=1  
4MA_EN=0  
2MA_EN=0  
4MA_EN=1  
2MA_EN=1  
4MA_EN=1  
2(2)  
4(2)  
6
8.0  
9.3  
10.7  
8.2  
9.5  
5.2  
2.6  
11.0  
6.6  
3.2  
7.1  
3.5  
7.6  
3.7  
4.7  
2.3  
5.8  
2.9  
ns  
ns  
(1) Vsupply = 3.3 V, T = 25°C, total pin load = 30 pF  
(2) The 2-mA and 4-mA drive strength does not apply to the COEX I/O pins. Pins configured as COEX lines are invariably driven at 6 mA.  
8.15.6.3.2 DIO Input Transition Time Parameters  
8.15.6.3.2.1 lists the input transition time parameters.  
8.15.6.3.2.1 DIO Input Transition Time Parameters  
PARAMETERS  
MIN  
1
MAX  
UNIT  
ns  
tr  
tf  
3
3
Input transition time (tr, tf), 10% to 90%  
1
ns  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: CC3130  
 
 
 
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
8.16 External Interfaces  
8.16.1 SPI Flash Interface  
The external serial Flash stores the user profiles and firmware patch updates. The CC3130 device acts as a  
master in this case; the SPI serial Flash acts as the slave device. This interface can work up to a speed of 20  
MHz.  
8-16 shows the SPI Flash interface.  
CC3130 (master)  
Serial flash  
FLASH_SPI_CLK  
SPI_CLK  
SPI_CS  
FLASH_SPI_CS  
FLASH_SPI_MISO  
FLASH_SPI_MOSI  
SPI_MISO  
SPI_MOSI  
8-16. SPI Flash Interface  
8-4 lists the SPI Flash interface pins.  
8-4. SPI Flash Interface  
PIN NAME  
DESCRIPTION  
FLASH_SPI_CLK  
FLASH_SPI_CS  
FLASH_SPI_MISO  
FLASH_SPI_MOSI  
Clock (up to 20 MHz) CC3130 device to serial Flash  
CS signal from CC3130 device to serial Flash  
Data from serial Flash to CC3130 device  
Data from CC3130 device to serial Flash  
8.16.2 SPI Host Interface  
The device interfaces to an external host using the SPI interface. The CC3130 device can interrupt the host  
using the HOST_INTR line to initiate the data transfer over the interface. The SPI host interface can work up to a  
speed of 20 MHz.  
8-17 shows the SPI host interface.  
CC3130 (slave)  
MCU  
HOST_SPI_CLK  
SPI_CLK  
SPI_nCS  
SPI_MISO  
SPI_MOSI  
INTR  
HOST_SPI_nCS  
HOST_SPI_MISO  
HOST_SPI_MOSI  
HOST_INTR  
nHIB  
GPIO  
8-17. SPI Host Interface  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: CC3130  
 
 
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
8-5 lists the SPI host interface pins.  
8-5. SPI Host Interface  
PIN NAME  
DESCRIPTION  
HOST_SPI_CLK  
HOST_SPI_nCS  
HOST_SPI_MOSI  
HOST_INTR  
Clock (up to 20 MHz) from MCU host to CC3130 device  
CS (active low) signal from MCU host to CC3130 device  
Data from MCU host to CC3130 device  
Interrupt from CC3130 device to MCU host  
Data from CC3130 device to MCU host  
HOST_SPI_MISO  
nHIB  
Active-low signal that commands the CC3130 device to enter hibernate mode (lowest power state)  
8.16.3 Host UART Interface  
The SimpleLink device requires the UART configuration described in 8-6.  
8-6. SimpleLink™ UART Configuration  
PROPERTY  
SUPPORTED CC3130 CONFIGURATION  
Baud rate  
115200 bps, no auto-baud rate detection, can be changed by the host up to 3 Mbps using a special command  
Data bits  
8 bits  
Flow control  
Parity  
CTS/RTS  
None  
Stop bits  
1
Bit order  
LSBit first  
Active high  
Rising edge or level 1  
Little-endian only(1)  
Host interrupt polarity  
Host interrupt mode  
Endianness  
(1) The SimpleLink device does not support automatic detection of the host length while using the UART interface.  
8.16.3.1 5-Wire UART Topology  
8-18 shows the typical 5-wire UART topology comprised of four standard UART lines plus one IRQ line from  
the device to the host controller to allow efficient low-power mode.  
This topology is recommended because the configuration offers the maximum communication reliability and  
flexibility between the host and the SimpleLink device.  
nRTS  
nCTS  
TX  
nRTS  
nCTS  
TX  
HOST MCU  
UART  
CC3130 SL  
UART  
RX  
RX  
HOST_INTR(IRQ)  
HOST_INTR(IRQ)  
8-18. 5-Wire UART Topology  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: CC3130  
 
 
 
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
8.16.3.2 4-Wire UART Topology  
The 4-wire UART topology eliminates the host IRQ line (see 8-19). Using this topology requires meeting one  
of the following conditions:  
The host is always awake or active.  
The host goes to sleep, but the UART module has receiver start-edge detection for auto wakeup and does  
not lose data.  
nRTS  
nCTS  
TX  
nRTS  
nCTS  
TX  
HOST MCU  
UART  
CC3130 SL  
UART  
RX  
RX  
H_IRQ  
H_IRQ  
X
8-19. 4-Wire UART Configuration  
8.16.3.3 3-Wire UART Topology  
The 3-wire UART topology requires only the following lines (see 8-20):  
RX  
TX  
CTS  
nRTS  
nCTS  
TX  
nRTS  
X
nCTS  
TX  
HOST MCU  
UART  
CC3130 SL  
UART  
RX  
RX  
H_IRQ  
H_IRQ  
X
8-20. 3-Wire UART Topology  
Using this topology requires meeting one of the following conditions:  
The host always stays awake or active.  
The host goes to sleep but the UART module has receiver start-edge detection for auto-wake-up and does  
not lose data.  
The host can always receive any amount of data transmitted by the SimpleLink™ device because there is no  
flow control in this direction.  
Because there is no full flow control, the host cannot stop the SimpleLink™ device to send its data; thus, the  
following parameters must be carefully considered:  
Maximum baud rate  
RX character interrupt latency and low-level driver jitter buffer  
Time consumed by the user's application  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: CC3130  
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
9 Detailed Description  
9.1 Overview  
Connect any microcontroller (MCU) to the Internet of Things (IoT) with the CC3130 device from Texas  
Instruments. The CC3130 Wi-Fi® Internet-on-a chip™ device contains an Arm® Cortex®-M3 MCU dedicated to  
wi-fi and internet protocols, in order to offload networking activities from the host MCU. The subsystem includes  
an 802.11b/g/n radio, baseband, and MAC with a powerful crypto engine for fast, secure Internet connections  
with 256-bit encryption and a built in power management for best in class low power performance. The CC3130  
device supports station, AP, and WiFi Direct® modes. The device also supports WPA2personal and enterprise  
4
security, WPS 2.0, and WPA3personal and enterprise security . The Wi-Fi network processor includes an  
embedded IPv6 and IPv4 TCP/IP stack.  
9.2 Device Features  
9.2.1 WLAN  
The WLAN features are as follows:  
802.11b/g/n integrated radio, modem, and MAC supporting WLAN communication as a BSS station, AP, Wi-  
Fi Direct client, and group owner with CCK and OFDM rates in the 2.4 GHz band (channels 1 through 13).  
Note  
802.11n is supported only in Wi-Fi® station and Wi-Fi Direct®.  
The automatically calibrated radio with a single-ended 50-Ωinterface enables easy connection to the  
antenna without requiring expertise in radio circuit design.  
Advanced connection manager with multiple user-configurable profiles stored in serial flash allows automatic  
fast connection to an access point without user or host intervention.  
Supports all common Wi-Fi security modes for personal and enterprise networks with on-chip security  
accelerators, including: WEP, WPA/WPA2 PSK, WPA2 Enterprise (802.1x), WPA3 Personal and WPA3  
Enterprise.  
Smart provisioning options deeply integrated within the device providing a comprehensive end-to-end  
solution. With elaborate events notification to the host, enabling the application to control the provisioning  
decision flow. The wide variety of Wi-Fi provisioning methods include:  
Access Point with HTTP server  
WPS - Wi-Fi Protected Setup, supporting both push button and pin code options.  
SmartConfigTechnology: TI proprietary, easy to use, one-step, one-time process used to connect a  
CC3130-enabled device to the home wireless network.  
802.11 transceiver mode allows transmitting and receiving of proprietary data through a socket The 802.11  
transceiver mode provides the option to select the working channel, rate, and transmitted power. The receiver  
mode works with the filtering options.  
Antenna selection for best connection  
BLE/2.4 GHz radio coexistence mechanism to avoid interference  
4
Supported from Service Pack v4.5.0.11-3.1.0.5-3.1.0.25. Limited to STA mode only.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: CC3130  
 
 
 
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
9.2.2 Network Stack  
The Network Stack features are as follows:  
Integrated IPv4, IPv6 TCP/IP stack with BSD socket APIs for simple Internet connectivity with any MCU,  
microprocessor, or ASIC  
Note  
Not all APIs are 100% BSD compliant. Not all BSD APIs are supported.  
Support of 16 simultaneous TCP, UDP, RAW, SSL\TLS sockets  
Built-in network protocols:  
Static IP, LLA, DHCPv4, DHCPv6 with DAD and stateless autoconfiguration  
ARP, ICMPv4, IGMP, ICMPv6, MLD, ND  
DNS client for easy connection to the local network and the Internet  
Built-in network applications and utilities:  
HTTP/HTTPS  
Web page content stored on serial flash  
RESTful APIs for setting and configuring application content  
Dynamic user callbacks  
Service discovery: Multicast DNS service discovery lets a client advertise its service without a centralized  
server. After connecting to the access point, the CC3130 device provides critical information, such as  
device name, IP, vendor, and port number.  
DHCP server  
Ping  
9-1 describes the NWP features.  
9-1. NWP Features  
Feature  
Description  
802.11b/g/n station  
Wi-Fi standards  
802.11b/g AP supporting up to four stations  
Wi-Fi Direct client and group owner  
2.4 GHz ISM  
Wi-Fi channels  
Channel Bandwidth  
Wi-Fi security  
Wi-Fi provisioning  
IP protocols  
20 MHz  
WEP, WPA/WPA2 PSK, WPA2 enterprise (802.1x), WPA3 personal and enterprise (1)  
SmartConfig technology, Wi-Fi protected setup (WPS2), AP mode with internal HTTP web server  
IPv4/IPv6  
IP addressing  
Cross layer  
Static IP, LLA, DHCPv4, DHCPv6 with DAD  
ARP, ICMPv4, IGMP, ICMPv6, MLD, NDP  
UDP, TCP  
Transport  
SSLv3.0/TLSv1.0/TLSv1.1/TLSv1.2  
RAW  
Ping  
HTTP/HTTPS web server  
mDNS  
Network applications and  
utilities  
DNS-SD  
DHCP server  
UART/SPI  
Host interface  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: CC3130  
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
9-1. NWP Features (continued)  
Feature  
Description  
Device identity  
Security  
Trusted root-certificate catalog  
TI root-of-trust public key  
Power management  
Other  
Enhanced power policy management uses 802.11 power save and deep-sleep power modes  
Transceiver  
Programmable RX filters with event-trigger mechanism  
Rx Metrics for tracking the surrounding RF environment  
(1) Supported from Service Pack v4.5.0.11-3.1.0.5-3.1.0.25. Limited to STA mode only.  
9.2.3 Security  
The SimpleLink Wi-Fi CC3130 Internet-on-a chip device enhances the security capabilities available for  
development of IoT devices, while completely offloading these activities from the MCU to the networking  
subsystem. The security capabilities include the following key features:  
Code and Data Security:  
Secured network information: Network passwords and certificates are encrypted  
Secured and authenticated service pack: SP is signed based on TI certificate  
Wi-Fi and Internet Security:  
Personal and enterprise Wi-Fi security  
Personal standards  
AES (WPA2-PSK)  
TKIP (WPA-PSK)  
WEP  
Enterprise standards  
EAP Fast  
EAP PEAPv0 MSCHAPv2  
EAP PEAPv0 TLS  
EAP PEAPv1 TLS EAP LS  
EAP TTLS TLS  
EAP TTLS MSCHAPv2  
Secure HTTP server (HTTPS)  
The Trusted root-certificate catalog verifies that the CA used by the application is trusted and known secure  
content delivery  
The TI root-of-trust public key is a hardware-based mechanism that allows authenticating TI as the genuine  
origin of a given content using asymmetric keys  
Secure content delivery allows file transfer to the system in a secure way on any unsecured tunnel  
Secure sockets  
Protocol versions: SSL v3/TLS 1.0/TLS 1.1/TLS 1.2  
On-chip powerful crypto engine for fast, secure Wi-Fi and internet connections with 256-bit AES  
encryption for TLS and SSL connections  
Ciphers suites  
SL_SEC_MASK_SSL_RSA_WITH_RC4_128_SHA  
SL_SEC_MASK_SSL_RSA_WITH_RC4_128_MD5  
SL_SEC_MASK_TLS_RSA_WITH_AES_256_CBC_SHA  
SL_SEC_MASK_TLS_DHE_RSA_WITH_AES_256_CBC_SHA  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: CC3130  
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
SL_SEC_MASK_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA  
SL_SEC_MASK_TLS_ECDHE_RSA_WITH_RC4_128_SHA  
SL_SEC_MASK_TLS_RSA_WITH_AES_128_CBC_SHA256  
SL_SEC_MASK_TLS_RSA_WITH_AES_256_CBC_SHA256  
SL_SEC_MASK_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256  
SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256  
SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA  
SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA  
SL_SEC_MASK_TLS_RSA_WITH_AES_128_GCM_SHA256  
SL_SEC_MASK_TLS_RSA_WITH_AES_256_GCM_SHA384  
SL_SEC_MASK_TLS_DHE_RSA_WITH_AES_128_GCM_SHA256  
SL_SEC_MASK_TLS_DHE_RSA_WITH_AES_256_GCM_SHA384  
SL_SEC_MASK_TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256  
SL_SEC_MASK_TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384  
SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256  
SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384  
SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256  
SL_SEC_MASK_TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256  
SL_SEC_MASK_TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256  
Server authentication  
Client authentication  
Domain name verification  
Socket upgrade to secure socket STARTTLS  
9.2.4 Host Interface and Driver  
Interfaces over a 4-wire serial peripheral interface (SPI) with any MCU or a processor at a clock speed of 20  
MHz.  
Interfaces over UART with any MCU with a baud rate up to 3 Mbps. A low footprint driver is provided for TI  
MCUs and is easily ported to any processor or ASIC.  
Simple APIs enable easy integration with any single-threaded or multithreaded application.  
9.2.5 System  
Works from a single preregulated power supply or connects directly to a battery  
Ultra-low leakage when disabled (hibernate mode) with a current of less than 4 µA with the RTC running  
Integrated clock sources  
9.3 Power-Management Subsystem  
The CC3130 power-management subsystem contains DC/DC converters to accommodate the different voltage  
or current requirements of the system.  
Digital DC/DC (Pin 44): Input: VBAT wide voltage (2.1 to 3.6 V)  
ANA1 DC/DC (Pin 38): Input: VBAT wide voltage (2.1 to 3.6 V)  
PA DC/DC (Pin 39): Input: VBAT wide voltage (2.1 to 3.6 V)  
The CC3130 device is a single-chip WLAN radio solution used on an embedded system with a wide-voltage  
supply range. The internal power management, including DC/DC converters and LDOs, generates all of the  
voltages required for the device to operate from a wide variety of input sources. For maximum flexibility, the  
device can operate in the modes described in 9.3.1.  
9.3.1 VBAT Wide-Voltage Connection  
In the wide-voltage battery connection, the device is powered directly by the battery or preregulated 3.3-V  
supply. All other voltages required to operate the device are generated internally by the DC/DC converters. This  
scheme supports wide-voltage operation from 2.1 to 3.6 V and is thus the most common mode for the device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: CC3130  
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
9.4 Low-Power Operating Modes  
This section describes the low-power modes supported by the device to optimize battery life.  
9.4.1 Low-Power Deep Sleep  
The low-power deep-sleep (LPDS) mode is an energy-efficient and transparent sleep mode that is entered  
automatically during periods of inactivity based on internal power optimization algorithms. The device can wake  
up in less than 3 ms from the internal timer or from any incoming host command. Typical battery drain in this  
mode is 115 µA. During LPDS mode, the device retains the software state and certain configuration information.  
The operation is transparent to the external host; thus, no additional handshake is required to enter or exit LPDS  
mode. Advanced features of long sleep interval and IoT low power for extending LPDS time for up to 22 seconds  
while maintaining Wi-Fi connection is also supported  
9.4.2 Hibernate  
The hibernate mode is the lowest power mode in which all of the digital logic is power-gated. Only a small  
section of the logic powered directly by the main input supply is retained. The RTC is kept running and the  
device wakes up once the nHIB line is asserted by the host driver. The wake-up time is longer than LPDS mode  
at approximately 50 ms. The typical battery drain in this mode is 4.5 µA.  
Note  
Wake-up time can be extended depending on the service-pack size.  
9.4.3 Shutdown  
The shutdown mode is the lowest power-mode system-wise. All device logics are off, including the real-time  
clock (RTC). The wake-up time in this mode is longer than hibernate at approximately 1.1 s. The typical battery  
drain in this mode is 1 µA.  
9.5 Memory  
9.5.1 External Memory Requirements  
The CC3130 device maintains a proprietary file system on the sFLASH. The CC3130 file system stores the  
service pack file, system files, configuration files, certificate files, web page files, and user files. By using a  
format command through the API, users can provide the total size allocated for the file system. The starting  
address of the file system cannot be set and is always at the beginning of the sFLASH. The applications  
microcontroller must access the sFLASH memory area allocated to the file system directly through the CC3130  
file system. The applications microcontroller must not access the sFLASH memory area directly.  
The file system manages the allocation of sFLASH blocks for stored files according to download order, which  
means that the location of a specific file is not fixed in all systems. Files are stored on sFLASH using human-  
readable filenames rather than file IDs. The file system API works using plain text, and file encryption and  
decryption is invisible to the user. Encrypted files can be accessed only through the file system.  
All file types can have a maximum of 100 supported files in the file system. All files are stored in 4-KB blocks and  
thus use a minimum of 4KB of Flash space. Fail-safe files require twice the original size and use a minimum of  
8KB. Encrypted files are counted as fail-safe in terms of space. The maximum file size is 1MB.  
9-2 lists the minimum required memory consumption under the following assumptions:  
System files in use consume 64 blocks (256KB).  
Vendor files are not taken into account.  
Gang image:  
Storage for the gang image is rounded up to 32 blocks (meaning 128-KB resolution).  
Gang image size depends on the actual content size of all components. Additionally, the image should be  
128-KB aligned so unaligned memory is considered lost. Service pack, system files, and the 128-KB  
aligned memory are assumed to occupy 256KB.  
All calculations consider that the restore-to-default is enabled.  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: CC3130  
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
9-2. Recommended Flash Size  
ITEM  
File system allocation table  
System and configuration files  
Service Pack  
CC3130 [KB]  
20  
256  
264  
Gang image size  
256  
Total  
796  
Minimal Flash size  
Recommended Flash size  
8MBit  
16MBit  
Note  
The maximum supported serial flash size is 32MB (256Mb) (see the Using Serial Flash on CC3135  
and CC3235x SimpleLink™ Wi-Fi® and Internet-of-Things Devices application report).  
9.6 Restoring Factory Default Configuration  
The device has an internal recovery mechanism that allows rolling back the file system to its predefined factory  
image or restoring the factory default parameters of the device. The factory image is kept in a separate sector on  
the sFLASH in a secure manner and cannot be accessed from the host processor. The following restore modes  
are supported:  
None no factory restore settings  
Enable restore of factory default parameters  
Enable restore of factory image and factory default parameters  
The restore process is performed by pulling or forcing SOP[2:0] = 110 pins and toggling the nRESET pin from  
low to high.  
The process is fail-safe and resumes operation if a power failure occurs before the restore is finished. The  
restore process typically takes about 8 seconds, depending on the attributes of the serial Flash vendor.  
9.7 Hostless Mode  
The SimpleLink™ Wi-Fi® CC3130 device incorporates a scripting ability that enables offloading of simple tasks  
from the host processor. Using simple and conditional scripts, repetitive tasks can be handled internally, which  
allows the host processor to remain in a low-power state. In some cases where the scripter is being used to send  
packets, it reduces code footprint and memory consumption. The if-this-then-that style conditioning can include  
anything from GPIO toggling to transmitting packets.  
The conditional scripting abilities can be divided into conditions and actions. The conditions define when to  
trigger actions. Only one action can be defined per condition, but multiple instances of the same condition may  
be used, so in effect multiple actions can be defined for a single condition. In total, 16 condition and action pairs  
can be defined. The conditions can be simple, or complex using sub-conditions (using a combinatorial AND  
condition between them). The actions are divided into two types, those that can occur during runtime and those  
that can occur only during the initialization phase.  
The following actions can only be performed when triggered by the pre-initialization condition:  
Set roles AP, station, P2P, and Tag modes  
Delete all stored profiles  
Set connection policy  
Hardware GPIO indication allows an I/O to be driven directly from the WLAN core hardware to indicate  
internal signaling  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: CC3130  
 
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
The following actions may be activated during runtime:  
Send transceiver packet  
Send UDP packet  
Send TCP packet  
Increment counter increments one of the user counters by 1  
Set counter allows setting a specific value to a counter  
Timer control  
Set GPIO allows GPIO output from the device using the internal networking core  
Enter Hibernate state  
Note  
Consider the following limitations:  
Timing cannot be ensured when using the network scripter because some variable latency will  
apply depending on the utilization of the networking core.  
The scripter is limited to 16 pairs of conditions and reactions.  
Both timers and counters are limited to 8 instances each. Timers are limited to a resolution of 1  
second. Counters are 32 bits wide.  
Packet length is limited to the size of one packet and the number of possible packet tokens is  
limited to 8.  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: CC3130  
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
10 Applications, Implementation, and Layout  
Note  
Information in the following Applications section is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI's customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
10.1 Application Information  
10.1.1 BLE/2.4 GHz Radio Coexistence  
The CC3130 device is designed to support BLE/2.4 GHz radio coexistence. Because WLAN is inherently more  
tolerant to time-domain disturbances, the coexistence mechanism gives priority to the Bluetooth® low energy  
entity over the WLAN.  
The following coexistence modes can be configured by the user:  
Off mode or intrinsic mode  
No BLE/2.4 GHz radio coexistence, or no synchronization between WLAN and Bluetooth® low energyin  
case Bluetooth® low energy exists in this mode, collisions can randomly occur.  
Time division multiplexing (TDM, single antenna)  
In this mode, (see 10-1) the two entities share the antenna through an RF switch using two GPIOs (one  
input and one output from the WLAN perspective).  
Time division multiplexing (TDM, dual antenna)  
in this mode, (see 10-2) the two entities have separate antennas, No RF switch is required and only a  
single GPIO (on input from the WLAN persective).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: CC3130  
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
10-1 shows the single antenna implementation of a complete Bluetooth® low energy and WLAN coexistence  
network. The Coex switch is controlled by a GPIO signal from the BLE device and a GPIO signal from the  
CC3130 device.  
BLE / 2.4-GHz Wi-Fi  
Ant.  
SPDT RF SWITCH  
RF_BG  
+
BPF  
RF  
WLAN  
CC3130  
BLE  
CCxxxx  
CC_COEX_SW_OUT  
CC_COEX_BLE_IN  
Coex IO  
10-1. Single-Antenna Coexistence Mode Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: CC3130  
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
10-2 shows the dual antenna implementation of a complete Bluetooth low energy and WLAN coexistence  
network. Note in this implementation no Coex switch is required and only a single GPIO from the BLE device to  
the CC3130 device is required.  
2.4-GHz Wi-Fi  
Ant.  
BLE Ant.  
2.4-GHz  
BPF  
2.4-GHz  
BPF  
RF  
RF_BG  
WLAN  
CC3130  
BLE  
CCxxxx  
CC_COEX_BLE_IN  
Coex IO  
10-2. Dual-Antenna Coexistence Mode Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: CC3130  
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
10.1.2 Antenna Selection  
The CC3130 device is designed to also support antenna selection and is controlled from Image Creator. When  
enabled, there are 3 options possible options:  
ANT 1: When selected, the GPIOs that are defined for antenna selection with set the RF path for antenna 1.  
ANT 2: When selected, the GPIOs that are defined for antenna selection will set the RF path for antenna 2.  
Autoselect: When selected, during a scan and prior to connecting to an AP, CC3130 device will determine the  
best RF path and select the appropriate antenna 5 6. The result is the saved as port of the profile.  
10-3 shows the implementation of a complete Bluetooth® low energy and WLAN coexistence network with  
WLAN and antenna selection. The Coex switch is controlled by a GPIO signal from the BLE device and a GPIO  
signal from the CC3130 device. The antenna switch is controlled by 2 GPIO lines from the CC3130 device.  
BLE / 2.4-GHz Wi-Fi  
Ant.  
RF_BG  
CC_COEX_SW_OUT  
Antenna Selection  
SPDT RF Switch  
Coex SPDT RF  
SWITCH  
2.4-GHz BPF  
WLAN  
CC3130  
BLE  
CCxxxx  
CC_COEX_BLE_IN  
Output GPIOs  
Coex IO  
RF  
BLE / 2.4-GHz Wi-Fi  
Ant.  
10-3. Antenna Selection Solution With Coexistence  
5
6
When selecting Autoselect via the API, a reset is required in order for the CC3230x device to determine the best antenna for use.  
Refer to the UniFlash CC3x20, CC3x35 SimpleLink™ Wi-Fi® and Internet-on-a chip™ Solution ImageCreator and Programming Tool  
User's Guide for more information.  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: CC3130  
 
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
10-4 shows the antenna selection implementation for Wi-Fi, with BLE operating on it's own antenna. Note in  
this implementation no Coex switch is required and only a single GPIO from the BLE device to the CC3130  
device is required. The antenna switch is controlled by 2 GPIO lines from the CC3130 device.  
2.4-GHz Wi-Fi  
Ant.  
2.4-GHz  
BPF  
Antenna Selection  
SPDT RF Switch  
RF_BG  
CC_COEX_SW_OUT  
WLAN  
CC3130  
BLE  
CCxxxx  
CC_COEX_BLE_IN  
Output GPIOs  
Coex IO  
RF  
2.4-GHz Wi-Fi  
Ant.  
BLE Ant.  
10-4. Coexistence Solution With Wi-Fi Antenna Selection and Dedicated BLE Antenna  
10.1.3 Typical Application  
10-5 shows the schematic of the engine area for the CC3130 device in the wide-voltage mode of operation,  
and the optional RF implementations with BLE/2.4GHz coexistence. The corresponding Bill-of-Materials show in  
10-1. For a full operation reference design, see the CC3235x SimpleLink™ and Internet of Things Hardware  
Design Files.  
Note  
The Following guidelines are recommended for implementation of the RF design:  
Ensure an RF path is designed with an impedance of 50 Ω  
Tuning of the antenna impedance πmatching network is recommended after manufacturing of the  
PCB to account for PCB parasitics  
πor L matching and tuning may be required between cascaded passive components on the RF  
path  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: CC3130  
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
10-5. CC3130 Engine Area and Optional BLE Coexistence  
10-1. Bill-of-Materials for CC3130 Engine Area and Optional Coexistence  
QUANTI  
TY  
MANUFACTUR  
DESIGNATOR  
C1  
VALUE  
PART NUMBER  
DESCRIPTION  
ER  
1
1 µF  
MuRata  
GRM155R61A105KE15 Capacitor, Ceramic, 1 µF,  
D
10 V, ±10%, X5R, 0402  
2
C2, C3  
100 µF  
4.7 µF  
0.1 µF  
Taiyo Yuden  
TDK  
LMK325ABJ107MMHT  
Capacitor, Ceramic, 100 µF,  
10 V, ±20%, X5R, 1210  
3
C4, C5, C6  
C1005X5R0J475M050B Capacitor, Ceramic, 4.7 µF,  
6.3 V, ±20%, X5R, 0402  
C
10  
C7, C8, C9, C11,  
C12, C13, C18,  
C19, C21, C22  
TDK  
C1005X5R1A104K050B Capacitor, Ceramic, 0.1 µF,  
10 V, ±10%, X5R, 0402  
A
3
2
1
2
2
1
C10, C17, C20  
C14, C15  
C16  
10 µF  
22 µF  
1 µF  
MuRata  
TDK  
GRM188R60J106ME47 Capacitor, Ceramic, 10 µF,  
6.3 V, ±20%, X5R, 0603  
D
C1608X5R0G226M080A Capacitor, Ceramic, 22 µF,  
4 V, ±20%, X5R, 0603  
A
TDK  
C1005X5R1A105K050B Capacitor, Ceramic, 1 µF,  
10 V, ±10%, X5R, 0402  
B
C23, C24  
C25, C26  
C27  
10 pF  
6.2 pF  
0.5 pF  
MuRata  
MuRata  
MuRata  
GRM1555C1H100JA01 Capacitor, Ceramic, 10 pF,  
50 V, ±5%, C0G/NP0, 0402  
D
GRM1555C1H6R2CA01 Capacitor, Ceramic, 6.2 pF,  
50 V, ±5%, C0G/NP0, 0402  
D
GRM1555C1HR50BA01 Capacitor, Ceramic, 0.5 pF,  
D
50 V, ±20%, C0G/NP0, 0402  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: CC3130  
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
10-1. Bill-of-Materials for CC3130 Engine Area and Optional Coexistence (continued)  
QUANTI  
TY  
MANUFACTUR  
ER  
DESIGNATOR  
VALUE  
PART NUMBER  
DESCRIPTION  
3
C28(1), C29(1)  
C30(1)  
,
68 pF  
MuRata  
CAP, CERM, 68 pF, 50 V,  
+/- 5%, C0G/NP0, 0201  
GRM0335C1H680JA1D  
2
1
C31(1), C32(1)  
CAP, CERM, 100 pF, 25 V,  
+/- 5%, C0G/NP0, 0201  
100 pF  
Yageo  
CC0201JRNPO8BN101  
AH316M245001-T  
E1  
2.45-  
GHz  
Taiyo Yuden  
ANT Bluetooth W-LAN  
Zigbee®, SMD  
Antenna  
1
1
2
1
FL1  
1.02 dB TDK  
DEA202450BT-1294C1- Multilayer Chip Band Pass Filter  
H
For 2.4 GHz W-LAN/Bluetooth, SMD  
L1  
3.3 nH  
2.2 µH  
1 µH  
MuRata  
LQG15HS3N3S02D  
Inductor, Multilayer, Air Core,  
3.3 nH, 0.3 A, 0.17 ohm, SMD  
L2, L4  
L3  
MuRata  
MuRata  
LQM2HPN2R2MG0L  
LQM2HPN1R0MG0L  
Inductor, Multilayer, Ferrite,  
2.2 µH, 1.3 A, 0.08 ohm, SMD  
Inductor, Multilayer, Ferrite,  
1 µH, 1.6 A, 0.055 ohm, SMD  
1
R1, R8  
10 k  
Vishay-Dale  
Vishay-Dale  
CRCW040210K0JNED Resistor, 10 k, 5%, 0.063 W, 0402  
CRCW0402100KJNED Resistor, 100 k, 5%, 0.063 W, 0402  
13  
R2, R3, R4, R5,  
R9(1), R10(1), R11,  
R12, R13, R14,  
R15, R16, R17  
100 k  
1
1
1
R6  
R7  
U1  
2.7 k  
270  
Vishay-Dale  
Vishay-Dale  
CRCW04022K70JNED Resistor, 2.7 k, 5%, 0.063 W, 0402  
CRCW0402270RJNED Resistor, 270, 5%, 0.063 W, 0402  
MX25R Macronix  
International Co.,  
MX25R3235FM1IL0  
Ultra-Low Power, 32-Mbit [x 1/x 2/x 4]  
CMOS MXSMIO (Serial Multi I/O)  
Flash Memory, SOP-8  
LTD  
1
1
1
1
U2  
CC3130 Texas  
CC3130RNMRGKR  
RTC6608OSP  
SimpleLink™ Wi-Fi® Wireless  
Ntework Processor, RGK0064B  
Instruments  
U3(1)  
Y1  
SPDT  
Switch  
Richwave  
0.03 GHz-6 GHz SPDT Switch  
Crystal  
Abracon  
ABS07-32.768KHZ-9-T Crystal, 32.768 KHz, 9PF, SMD  
Q24FA20H0039600 Crystal, 40 MHz, 8pF, SMD  
Corportation  
Y2  
Crystal  
Epson  
(1) If the BLE/2.4 GHz Coexistence features is not used, these components are not required.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: CC3130  
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
10.2 PCB Layout Guidelines  
This section details the PCB guidelines to speed up the PCB design using the CC3130 VQFN device. Follow  
these guidelines ensures that the design will minimize the risk with regulatory certifications including FCC, ETSI,  
and CE. For more information, see CC3120 and CC3220 SimpleLinkWi-Fi® and IoT Solution Layout  
Guidelines.  
10.2.1 General PCB Guidelines  
Use the following PCB guidelines:  
Verify the recommended PCB stackup in the PCB design guidelines, as well as the recommended layers for  
signals and ground.  
Ensure that the VQFN PCB footprint follows the information in .  
Ensure that the VQFN PCB GND and solder paste follow the recommendations provided in CC3120 and  
CC3220 SimpleLink™ Wi-Fi® and IoT Solution Layout Guidelines.  
Decoupling capacitors must be as close as possible to the VQFN device.  
10.2.2 Power Layout and Routing  
Three critical DC/DC converters must be considered for the CC3130 device.  
Analog DC/DC converter  
PA DC/DC converter  
Digital DC/DC converter  
Each converter requires an external inductor and capacitor that must be laid out with care. DC current loops are  
formed when laying out the power components.  
10.2.2.1 Design Considerations  
The following design guidelines must be followed when laying out the CC3130 device:  
Ground returns of the input decoupling capacitors (C11, C13, and C19) should be routed on Layer 2 using  
thick traces to isolate the RF ground from the noisy supply ground. This step is also required to meet the  
IEEE spectral mask specifications.  
Maintain the thickness of power traces to be greater than 12 mils. Take special consideration for power  
amplifier supply lines (pin 33, 40, 41, and 42), and all input supply pins (pin 37, 39, and 44).  
Ensure the shortest grounding loop for the PLL supply decoupling capacitor (pin 24).  
Place all decoupling capacitors as close to the respective pins as possible.  
Power budgetthe CC3130 device can consume up to 450 mA for 3.3 V, 670 mA for 2.1 V, for  
24 ms during the calibration cycle.  
Ensure the power supply is designed to source this current without any issues. The complete calibration (TX  
and RX) can take up to 17 mJ of energy from the battery over a time of 24 ms.  
The CC3130 device contains many high-current input pins. Ensure the trace feeding these pins can handle  
the following currents:  
VIN_DCDC_PA input (pin 39) maximum 1 A  
VIN_DCDC_ANA input (pin 37) maximum 600 mA  
VIN_DCDC_DIG input (pin 44) maximum 500 mA  
DCDC_PA_SW_P (pin 40) and DCDC_PA_SW_N (pin 41) switching nodes maximum 1 A  
DCDC_PA_OUT output node (pin 42) maximum 1 A  
DCDC_ANA_SW switching node (pin 38) maximum 600 mA  
DCDC_DIG_SW switching node (pin 43) maximum 500 mA  
VDD_PA_IN supply (pin 33) maximum 500 mA  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: CC3130  
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
10-6. Ground Returns for Input Capacitors  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: CC3130  
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
10.2.3 Clock Interface Guidelines  
The following guidelines are for the slow clock:  
The 32.768-kHz crystal must be placed close to the VQFN package.  
Ensure that the load capacitance is tuned according to the board parasitics to the frequency tolerance within  
±150 ppm.  
The ground plane on layer two is solid below the trace lanes, and there is ground around these traces on the  
top layer.  
The following guidelines are for the fast clock:  
The 40-MHz crystal must be placed close to the VQFN package.  
Ensure that the load capacitance is tuned according to the board parasitics to the frequency tolerance within  
±10 ppm at room temperature. The total frequency across parts, temperature, and with aging must be ±25  
ppm to meet the WLAN specification.  
To avoid noise degradation, ensure that no high-frequency lines are routed close to the routing of the crystal  
pins.  
Ensure that crystal tuning capacitors are close to the crystal pads.  
Both traces (XTAL_N and XTAL_P) should be as close as possible to parallel and approximately the same  
length.  
The ground plane on layer two is solid below the trace lines, and there should be ground around these traces  
on the top layer.  
For frequency tuning, see CC31xx & CC32xx Frequency Tuning.  
10.2.4 Digital Input and Output Guidelines  
The following guidelines are for the digital I/Os:  
Route SPI and UART lines away from any RF traces.  
Keep the length of the high-speed lines as short as possible to avoid transmission line effects.  
Keep the line lower than 1/10 of the rise time of the signal to ignore transmission line effects (required if the  
traces cannot be kept short). Place the resistor at the source end closer to the device that is driving the  
signal.  
Add a series-terminating resistor for each high-speed line (for example, SPI_CLK or SPI_DATA) to match the  
driver impedance to the line. Typical terminating-resistor values range from 27 to 36 Ωfor a 50-Ωline  
impedance.  
Route high-speed lines with a continuous ground reference plane below it to offer good impedance  
throughout. This routing also helps shield the trace against EMI.  
Avoid stubs on high-speed lines to minimize the reflections. If the line must be routed to multiple locations,  
use a separate line driver for each line.  
If the lines are longer compared to the rise time, add series-terminating resistors near the driver for each  
high-speed line to match the driver impedance to the line. Typical terminating-resistor values range from 27 to  
36 Ωfor a 50-Ωline impedance.  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: CC3130  
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
10.2.5 RF Interface Guidelines  
The following guidelines are for the RF interface. Follow guidelines specified in the vendor-specific antenna  
design guides (including placement of the antenna). Also see CC3120 and CC3220 SimpleLink™ Wi-Fi® and IoT  
Solution Layout Guidelines for general antenna guidelines.  
Ensure that the antenna is matched for 50-Ω. A π-matching network is recommended. Ensure that the π  
pad is available for tuning the matching network after PCB manufacture.  
Ensure that the area underneath the BPFs pads have a solid plane on layer 2 and that the minimum filter  
requirements are met.  
Verify that the Wi-Fi RF trace is a 50-Ω, impedance-controlled trace with a reference to solid ground.  
The RF trace bends must be made with gradual curves. Avoid 90-degree bends.  
The RF traces must not have sharp corners.  
There must be no traces or ground under the antenna section.  
The RF traces must have via stitching on the ground plane beside the RF trace on both sides.  
For optimal antenna performance, ensure adequate ground plane around the antenna on all layers.  
Ensure RF connectors for conducted testing are isolated from the top layer ground using vias.  
Maintain a controlled pad to trace shapes using filleted edges if necessary to avoid mismatch.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: CC3130  
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
11 Device and Documentation Support  
11.1 Tools and Software  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions are listed in this section.  
For the most up-to-date list of development tools and software, see the CC3130 Design & development page.  
Users can also click the "Alert Me" button on the top right corner of the CC3130 Design & development page to  
stay informed about updates related to the CC3130 device.  
Development Tools  
SimpleLink™ Wi-Fi®  
Starter Pro  
The supported devices are: CC3100, CC3200, CC3120R, CC3220x, CC3130, and  
CC3235x.  
The SimpleLinkWi-Fi® Starter Pro mobile App is a new mobile application for  
SimpleLink™ provisioning. The app goes along with the embedded provisioning library  
and example that runs on the device side (see SimpleLink™ Wi-Fi® SDK plugin and TI  
SimpleLink™ CC32XX Software Development Kit (SDK)). The new provisioning release  
is a TI recommendation for Wi-Fi provisioning using SimpleLink™ Wi-Fi® products. The  
provisioning release implements advanced AP mode and SmartConfig™ technology  
provisioning with feedback and fallback options to ensure successful process has been  
accomplished. Customers can use both embedded library and the mobile library for  
integration to their end products.  
SimpleLink™ Wi-Fi®  
SDK plugin  
The CC3130 device is supported.  
The CC3130 SDK contains drivers, many sample applications for Wi-Fi® features and  
internet, and documentation needed to use the CC3130 Internet-on-a chip™ solution.  
This SDK can be used with TIs MSP432P401R LaunchPad, or SimpleLink™  
Studio, a PC tool that allows MCU development with the CC3130 device. You can also  
use the SDK as example code for any platform. All sample applications in the SDK are  
supported on TIs MSP432P401R ultra-low power MCUs with Code Composer Studio  
IDE and TI RTOS. In addition, many of the applications support IAR.  
SimpleLink™ Studio  
for CC31xx  
The CC31xx device is supported.  
SimpleLink™ Studio for CC31xx is a Windows®-based software tool used to aid in the  
development of embedded networking applications and software for microcontrollers.  
Using SimpleLink™ Studio for CC31xx, embedded software developers can develop  
and test applications using any desktop IDE, such as Visual Studio or Eclipse, and  
connect their applications to the cloud using the CC31xx BoosterPackPlug-in  
Module. The application can then be easily ported to any microcontroller. With the  
SimpleLink™ Wi-Fi® CC31xx solution, customers now have the flexibility to add Wi-Fi®  
to any microcontroller (MCU). This Internet-on-a-chip solution contains all you need to  
easily create IoT solutions: security, quick connection, cloud support, and more. For  
more information on CC31xx devices, visit SimpleLink™ Wi-Fi® solutions.  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: CC3130  
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
SimpleLink™ Wi-Fi®  
Radio Testing Tool  
The supported devices are: CC3100, CC3200, CC3120R, CC3220, CC3130, CC3135,  
CC3230x, and CC3235x.  
The SimpleLink™ Wi-Fi® Radio Testing Tool is a Windows-based software tool for RF  
evaluation and testing of SimpleLink™ Wi-Fi® CC3x20 and CC3x35 designs during  
development and certification. The tool enables low-level radio testing capabilities by  
manually setting the radio into transmit or receive modes. Using the tool requires  
familiarity and knowledge of radio circuit theory and radio test methods.  
Created for the internet-of-things (IoT), the SimpleLink™ Wi-Fi® CC31xx and CC32xx  
family of devices include on-chip Wi-Fi®, Internet, and robust security protocols with no  
prior Wi-Fi® experience needed for faster development. For more information on these  
devices, visit SimpleLink™ Wi-Fi® family, Internet-on-a chip™ solutions.  
UniFlash Standalone  
Flash Tool for TI  
Microcontrollers  
CCS UniFlash is a standalone tool used to program on-chip flash memory on TI MCUs  
and on-board flash memory for Sitaraprocessors. UniFlash has a GUI, command  
line, and scripting interface. CCS UniFlash is available free of charge.  
(MCU), Sitara™  
Processors and  
SimpleLink™ Devices  
TI Designs and Reference Designs  
The TI Designs Reference Design Library is a robust reference design library spanning analog, embedded  
processor, and connectivity. Created by TI experts to help you jumpstart your system design, all TI Designs  
include schematic or block diagrams, BOMs, and design files to speed your time to market.  
11.2 Firmware Updates  
TI updates features in the service pack for this module with no published schedule. Due to the ongoing changes,  
TI recommends that the user has the latest service pack in their module for production.  
To stay informed, click the SDK Alert mebutton the top right corner of the product page, or visit SimpleLink  
™ Wi-Fi® SDK plugin.  
11.3 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of the  
CC3130 device and support tools (see 11-1).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: CC3130  
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
X
CC  
3
1
3
0
R
xx  
xxx  
x
PREFIX  
X = Preproduction device  
Null = Production device  
PACKAGING  
R = Large Reel  
DEVICE FAMILY  
CC = Wireless Connectivity  
PACKAGE  
RGK = 9 mm × 9 mm VQFN  
SERIES NUMBER  
3 = Wi-Fi Centric  
MEMORY SIZE  
NM = No Memory  
MCU / HOST  
1 = No MCU  
2 = MCU  
DEVICE VARIANTS  
R = Default  
DEVICE GENERATION  
0 = Gen 1  
2 = Gen 2  
FREQUENCY BAND  
3 = Gen 3  
0 = 2.4 GHz only  
5 = 2.4 GHz and 5 GHz supported  
11-1. CC3130 Device Nomenclature  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: CC3130  
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
11.4 Documentation Support  
To receive notification of documentation updatesincluding silicon erratago to the product folder for your  
device on ti.com (CC3130). In the upper right corner, click the "Alert me" button. This registers you to receive a  
weekly digest of product information that has changed (if any). For change details, check the revision history of  
any revised document. The current documentation that describes the processor, related peripherals, and other  
technical collateral follows.  
The following documents provide support for the CC3130 device.  
Application Reports  
CC3135 and CC3235 SimpleLink CC3135 and CC3235 SimpleLink Wi-Fi Embedded Programming User  
Wi-Fi® Embedded Programming User Guide  
Guide  
SimpleLink™ CC3135, CC3235 Wi-Fi® This application report describes the best practices for power  
Internet-on-a chip™ Networking Sub- management and extended battery life for embedded low-power Wi-Fi  
System Power Management  
devices such as the SimpleLink Wi-Fi Internet-on-a chip solution from  
Texas Instruments.  
SimpleLink™ CC31xx, CC32xx Wi-Fi® The SimpleLink Wi-Fi CC31xx and CC32xx Internet-on-a chip family of  
Internet-on-a chipSolution Built-In devices from Texas Instruments offer a wide range of built-in security  
Security Features  
features to help developers address a variety of security needs, which  
is achieved without any processing burden on the main microcontroller  
(MCU). This document describes these security-related features and  
provides recommendations for leveraging each in the context of  
practical system implementation.  
SimpleLink™ CC3135, CC3235 Wi-Fi® This document describes the OTA library for the SimpleLink Wi-Fi  
and Internet-of-Things Over-the-Air CC3x35 family of devices from Texas Instruments and explains how to  
Update  
prepare a new cloud-ready update to be downloaded by the OTA  
library.  
SimpleLink™ CC3135, CC3235 Wi-Fi® This guide describes the provisioning process, which provides the  
Internet-on-a chipSolution Device SimpleLink Wi-Fi device with the information (network name, password,  
Provisioning  
and so forth) needed to connect to a wireless network.  
Transfer of TI's Wi-Fi® Alliance This document explains how to employ the Wi-Fi® Alliance (WFA)  
Certifications to Products Based on derivative certification transfer policy to transfer a WFA certification,  
SimpleLink™  
already obtained by Texas Instruments, to a system you have  
developed.  
Using Serial Flash on SimpleLink This application note is divided into two parts. The first part provides  
CC3135 and CC3235 Wi-Fi® and important guidelines and best- practice design techniques to consider  
Internet-of-Things Devices  
when choosing and embedding a serial Flash paired with the CC3135  
and CC3235 (CC3x35) devices. The second part describes the file  
system, along with guidelines and considerations for system designers  
working with the CC3x35 devices.  
User's Guides  
SimpleLink ™  
Internet-of-Things CC31xx and knowledge for working with the networking subsystem of the SimpleLink Wi-Fi  
Wi-Fi® and This document provides software (SW) programmers with all of the required  
CC32xx Network Processor  
devices. This guide provides basic guidelines for writing robust, optimized  
networking host applications, and describes the capabilities of the networking  
subsystem. The guide contains some example code snapshots, to give users  
an idea of how to work with the host driver. More comprehensive code  
examples can be found in the formal software development kit (SDK). This  
guide does not provide a detailed description of the host driver APIs.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: CC3130  
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
SimpleLinkWi-Fi® CC3135 This document provides the design guidelines of the 4-layer PCB used for the  
and CC3235 and IoT Solution CC3135 and CC3235 SimpleLink Wi-Fi family of devices from Texas  
Layout Guidelines  
Instruments. The CC3135 and CC3235 devices are easy to lay out and are  
available in quad flat no-leads (QFNS) packages. When designing the board,  
follow the suggestions in this document to optimize performance of the board.  
SimpleLinkWi-Fi® CC3130 The SimpleLink Wi-Fi CC3130 wireless network processor from Texas  
BoosterPack ™ Development Instrumentsprovides users the flexibility to add Wi-Fi to any MCU. This  
Kit (BOOSTXL-CC3130)  
user's guide explains the various configurations of the CC3130 BoosterPack™  
Plug-In Module.  
SimpleLink ™  
Wi-Fi® and The Radio Tool serves as a control panel for direct access to the radio, and can  
Internet-on-a chipCC3135 be used for both the radio frequency (RF) evaluation and for certification  
and CC3235 Solution Radio purposes. This guide describes how to have the tool work seamlessly on Texas  
Tool  
Instruments evaluation platforms such as the BoosterPack plus FTDI emulation  
board for CC3235 devices, and the LaunchPad for CC3235 devices.  
SimpleLinkWi-Fi® CC3135  
and CC3235 Provisioning for  
Mobile Applications  
This guide describes TIs SimpleLink Wi-Fi provisioning solution for mobile  
applications, specifically on the usage of the Androidand IOS® building  
blocks for UI requirements, networking, and provisioning APIs required for  
building the mobile application.  
More Literature  
CC3x35 SimpleLink™ Wi-Fi® Hardware Design Checklist  
CC3130 SimpleLink™ WI-Fi® BoosterPack™ Design Files  
11.5 Trademarks  
WPA3, WPA, WPA2, are trademarks of Wi-Fi Alliance.  
E2E, Internet-on-a chip, Texas Instruments, SmartConfig, LaunchPad, Code Composer Studio,  
BoosterPack, and Sitaraare trademarks of Texas Instruments.  
Androidis a trademark of Google LLC.  
Wi-Fi®, Wi-Fi 联盟®, and Wi-Fi Direct® are registered trademarks of Wi-Fi Alliance.  
Arm® and Cortex® are registered trademarks of Arm Limited.  
Zigbee® is a registered trademark of Zigbee Alliance.  
Windows® is a registered trademark of Microsoft Inc.  
IOS® is a registered trademark of Cisco.  
所有商标均为其各自所有者的财产。  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: CC3130  
 
 
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: CC3130  
 
CC3130  
www.ti.com.cn  
ZHCSOK7B MARCH 2020 REVISED MAY 2021  
12.1 Package Option Addendum  
12.1.1 Packaging Information  
Package  
Type  
Package  
Drawing  
Package  
Qty  
Orderable Device  
Status (1)  
Pins  
Eco Plan (2) Lead/Ball Finish(3)  
MSL Peak Temp (4)  
Op Temp (°C)  
Device Marking(5) (6)  
CC3130RNM  
Green (RoHS CU NIPDAU | CU  
CC3130RNMRGKR  
PREVIEW  
VQFN  
RGK  
64  
2500  
Level-3-260C-168 HR  
-40 to 85  
& no Sb/Br)  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
space  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest  
availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the  
requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified  
lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used  
between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1%  
by weight in homogeneous material)  
space  
(3) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the  
finish value exceeds the maximum column width.  
space  
(4) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
space  
(5) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device  
space  
(6) Multiple Device markings will be inside parentheses. Only on Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by  
third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable  
steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain  
information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: CC3130  
 
 
 
 
 
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Jul-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CC3130RNMRGKR  
ACTIVE  
VQFN  
RGK  
64  
2500 RoHS & Green NIPDAU | NIPDAUAG Level-3-260C-168 HR  
-40 to 85  
CC3130R  
NM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
RGK0064B  
VQFN - 1 mm max height  
S
C
A
L
E
1
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
9.1  
8.9  
A
B
PIN 1 INDEX AREA  
9.1  
8.9  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 7.5  
6.3 0.1  
SYMM  
(0.2) TYP  
17  
32  
16  
33  
EXPOSED  
THERMAL PAD  
SYMM  
65  
2X 7.5  
0.30  
64X  
1
48  
60X 0.5  
PIN 1 ID  
0.18  
64  
49  
0.1  
C A B  
0.5  
0.3  
0.05  
64X  
4222201/B 03/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGK0064B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
6.3)  
SEE SOLDER MASK  
DETAIL  
SYMM  
64X (0.6)  
64  
49  
64X (0.24)  
1
48  
60X (0.5)  
8X (1.1)  
(R0.05) TYP  
18X (1.2)  
(0.6) TYP  
SYMM  
65  
(8.8)  
(
0.2) TYP  
VIA  
16  
33  
17  
32  
(0.6) TYP  
18X (1.2)  
8X  
(1.1)  
(8.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222201/B 03/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGK0064B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
25X ( 1)  
64  
(1.2) TYP  
49  
64X (0.6)  
64X (0.24)  
1
48  
60X (0.5)  
(R0.05) TYP  
(1.2) TYP  
65  
SYMM  
(8.8)  
16  
33  
METAL  
TYP  
17  
32  
SYMM  
(8.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 MM THICK STENCIL  
SCALE: 10X  
EXPOSED PAD 65  
63% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4222201/B 03/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY