CC3220SF [TI]

具有 1MB 闪存和 256kB RAM 的 SimpleLink™ 32 位 Arm Cortex-M4 Wi-Fi® 无线 MCU;
CC3220SF
型号: CC3220SF
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 1MB 闪存和 256kB RAM 的 SimpleLink™ 32 位 Arm Cortex-M4 Wi-Fi® 无线 MCU

无线 闪存
文件: 总92页 (文件大小:3445K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
CC3220RCC3220S CC3220SF SimpleLink™ Wi-Fi®  
芯片无线 MCU 解决方案  
– RESTful API 允许使用内部 HTTP 服务器  
广泛的安全功能:  
1 特性  
双核架构:  
硬件特性:  
用户专用的应用 MCU 子系统  
高度集成的 Wi-Fi 网络处理器  
丰富的物联网安全功能:  
增强的物联网网络安全性  
非对称密钥和唯一器件身份  
软件知识产权保护和安全存储 (CC3220S/  
CC3220SF)  
独立执行环境  
器件标识  
针对高级快速安全性的硬件加密引擎,  
其中包括 AESDES3DESSHA2、  
MD5CRC 和校验和  
初始安全编程  
调试安全性  
JTAG 和调试端口处于锁定状态  
高级低功耗模式,适用于电池供电应用  
内置电源管理子系统  
个人和企业 Wi-Fi 安全性  
安全套接字(SSLv3TLS1.0、  
TLS1.1TLS1.2)  
工业温度:–40°C 85°C  
芯片级 Wi-Fi Alliance® Wi-Fi CERTIFIED™  
网络安全性:  
扩展特性列表:  
个人和企业 Wi-Fi 安全性  
安全套接字(SSLv3TLS1.0、  
TLS1.1TLS1.2)  
应用微控制器子系统:  
运行频率为 80 MHz Arm® Cortex®-M4 内核  
嵌入式存储器:  
– HTTPS 服务器  
256KB RAM  
可选的 1MB 可执行文件闪存  
外部串行闪存  
受信任的根证书目录  
– TI 信任根公钥  
软件知识产权保护:  
安全密钥存储  
外设:  
McASP 支持两个 I2S 通道  
文件系统安全  
SDSPII2CUART  
8 位同步成像仪接口  
4 通道 12 ADC  
软件篡改检测  
克隆保护  
安全启动:启动期间验证运行时二进制的  
完整性和真实性  
4 个具有 16 PWM 模式的通用计时器  
(GPT)  
在专用网络处理器上运行的嵌入式网络应用:  
看门狗计时器  
多达 27 GPIO 引脚  
调试接口:JTAGcJTAGSWD  
具有动态用户回调的 HTTP/HTTPS Web 服  
务器  
mDNSDNS-SDDHCP 服务器  
Wi-Fi 网络处理器 (NWP) 子系统:  
– Wi-Fi 模式:  
Ping  
恢复机制 可恢复为出厂默认设置或恢复为完  
整出厂映像  
– Wi-Fi TX 功率:  
802.11b/g/n 基站  
802.11b/g 接入点 (AP) 支持多达 4 个基站  
Wi-Fi Direct® 客户端和组所有者  
1 DSSS 时为 18.0dBm  
– WPA2 个人版和企业版安全性:WEPWPA/  
54 OFDM 时为 14.5dBm  
WPA2PSKWPA2 企业版 (802.1x)WPA3  
– Wi-Fi RX 灵敏度:  
个人版、WPA3企业版  
1 DSSS 时为 -96dBm  
– IPv4 IPv6 TCP/IP 堆栈  
行业标准 BSD 套接字应用编程接口 (API):  
54 OFDM 时为 -74.5dBm  
应用吞吐量:  
16 个同步 TCP UDP 套接字  
6 个同步 TLS SSL 套接字  
UDP16Mbps  
TCP13Mbps  
峰值:72Mbps  
– IP 寻址:具有重复地址检测 (DAD) 的静态 IP、  
LLADHCPv4DHCPv6  
电源管理子系统:  
适用于自主和快速 Wi-Fi 连接的 SimpleLink 连  
接管理器  
集成式直流/直流转换器支持宽电源电压范围:  
VBAT 宽电压模式:2.1 V 3.6 V  
VIO 始终与 VBAT 关联  
可通过 SmartConfig技术、AP 模式和 WPS2  
选项灵活配置 Wi-Fi  
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问  
www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SWAS035  
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
预稳压 1.85V 模式  
RGK 封装  
高级低功耗模式:  
– 64 引脚 9mm × 9mm 极薄四方扁平无引线  
(VQFN) 封装,0.5mm 间距  
工作温度  
环境温度范围:–40°C +85°C  
器件支持 SimpleLink™ MCU 平台开发人员生态系  
关断:1µA  
休眠:4.5µA  
低功耗深度睡眠 (LPDS)135µA(测量对象  
为具有 256KB RAM 容量的 CC3220R、  
CC3220S CC3220SF)  
RX 流量(MCU 处于活动模式):54 OFDM  
时为 59mA (测量对象为 CC3220R 和  
CC3220SCC3220SF 会额外消耗 10mA)  
TX 流量(MCU 处于活动模式):54 OFDM  
时为 223mA(测量对象为 CC3220R  
CC3220SCC3220SF 会额外消耗  
15mA),最大功率  
空闲连接(MCU 处于 LPDS 状态):DTIM  
= 1 时为 710µA(测量对象为具有 256KB  
RAM 容量的 CC3220R CC3220S)  
2 应用  
对于物联网应用,例如:  
楼宇和住宅自动化:  
HVAC 系统和恒温器  
视频监控、可视门铃和低功耗摄像头  
楼宇安全系统和电子锁  
电器  
资产跟踪  
工厂自动化  
医疗和保健  
电网基础设施  
时钟源:  
具有内部振荡器的 40.0MHz 晶体  
– 32.768kHz 晶体或外部 RTC  
3 说明  
SoC 无线 MCU CC3220x 器件提供三种型号:CC3220RCC3220S C3220SF。  
CC3220R 具有 256KB RAM、物联网网络安全功能和器件身份/密钥。  
CC3220S 基于 CC3220R MCU 级安全性(例如文件系统加密、用户 IP [MCU 镜像] 加密、安全启动和调试  
安全性)构建。  
CC3220SF 基于 CC3220S 构建,除了 256KB RAM 以外,还集成了一个用户专用的 1MB 可执行闪存。  
使用 Wi-Fi CERTIFIED™ 无线微控制器开始您的物联网 (IoT) 设计。SimpleLinkWi-Fi® CC3220x 器件系列是一  
个片上系统 (SoC) 解决方案,将两个处理器集成在一个芯片上:  
应用处理器是一个 Arm® Cortex®-M4 MCU,具有用户专用的 256KB RAM 和可选的 1MB 串行闪存。  
网络处理器 MCU 可运行所有 Wi-Fi® 和互联网逻辑层。这个基于 ROM 的子系统包含 802.11b/g/n 无线电、基  
带和具有强大加密引擎的 MAC。  
这些器件引入了可进一步简化物联网连接的新特性和新功能。主要新特性包括:  
优化的低功耗管理  
增强的网络安全性  
器件身份和非对称密钥  
增强的文件系统安全性(只有 CC3220S CC3220SF 变体提供此支持)  
IPv6 TCP/IP 堆栈  
支持 4 个基站的接入点模式  
可同时打开多达 16 BSD 套接字,其中 6 个支持安全型  
HTTPS)  
支持 RESTful API  
CC3220x 器件系列是 SimpleLink™ MCU 平台的一部分,该平台是一个通用、简单易用的开发环境,基于一个  
单核软件开发套件 (SDK)、丰富的工具集、参考设计和 E2E™ 社区而构建,支持 Wi-Fi®、低功耗 Bluetooth®、  
Sub-1GHz 器件和主机 MCU。如需了解更多相关信息,请访问 SimpleLink™ MCU 平台。  
器件信息  
器件型号 (1)  
CC3220RM2ARGKR/T  
CC3220SM2ARGKR/T  
封装  
封装尺寸(标称值)  
9.00mm x 9.00mm  
9.00mm x 9.00mm  
VQFN (64)  
VQFN (64)  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
器件信息 (continued)  
器件型号 (1)  
CC3220SF12ARGKR/T  
封装  
封装尺寸(标称值)  
VQFN (64)  
9.00mm x 9.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: CC3220R CC3220S CC3220SF  
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
4 功能方框图  
4-1 显示了 CC3220x SimpleLink Wi-Fi 解决方案的功能方框图。  
4-1. 功能模块图  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
4-2 概要显示了 CC3220x 的硬件。  
CC32xx œ Single-Chip Wireless MCU  
1MB flash (optional)  
256KB RAM  
ROM  
Arm® Cortex®-M4  
Processor  
80 MHz  
1× SPI  
2× UART  
1× I2C  
1× I2S/PCM  
1× SD/MMC  
8-bit Camera  
4× ADC  
DMA  
Timers  
GPIOs  
Network Processor  
Power  
Management  
Application  
Protocols  
Wi-Fi® Driver  
TCP/IP Stack  
Oscillators  
DC/DC  
RTC  
(Arm® Cortex®  
Processor)  
RAM  
ROM  
Synthesizer  
4-2. CC3220x 硬件概述  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: CC3220R CC3220S CC3220SF  
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
4-3 概要显示了 CC3220x 的嵌入式软件。  
Customer Application  
NetApp  
BSD Socket  
Wi-Fi®  
SimpleLink™ Driver APIs  
Host Interface  
Network Apps  
WLAN Security  
and  
Management  
TCP/IP Stack  
WLAN MAC and PHY  
4-3. CC3220x 嵌入式软件概述  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
Table of Contents  
1 特性................................................................................... 1  
2 应用................................................................................... 2  
3 说明................................................................................... 2  
4 功能方框图.........................................................................4  
5 Revision History.............................................................. 7  
6 Device Comparison.........................................................8  
6.1 Related Products........................................................ 9  
7 Terminal Configuration and Functions........................10  
7.1 Pin Diagram.............................................................. 10  
7.2 Pin Attributes and Pin Multiplexing............................11  
7.3 Signal Descriptions................................................... 19  
7.4 Pin Multiplexing.........................................................24  
7.5 Drive Strength and Reset States for Analog and  
Digital Multiplexed Pins............................................... 26  
7.6 Pad State After Application of Power to Chip But  
Before Reset Release................................................. 26  
7.7 Connections for Unused Pins................................... 27  
8 Specifications................................................................ 28  
8.1 Absolute Maximum Ratings...................................... 28  
8.2 ESD Ratings............................................................. 28  
8.3 Power-On Hours (POH)............................................28  
8.4 Recommended Operating Conditions.......................29  
8.5 Current Consumption Summary (CC3220R,  
8.11 WLAN Transmitter Characteristics..........................37  
8.12 WLAN Filter Requirements..................................... 38  
8.13 Thermal Resistance Characteristics....................... 38  
8.14 Timing and Switching Characteristics..................... 38  
9 Detailed Description......................................................56  
9.1 Arm® Cortex®-M4 Processor Core Subsystem.........56  
9.2 Wi-Fi Network Processor Subsystem....................... 57  
9.3 Security.....................................................................59  
9.4 Power-Management Subsystem...............................61  
9.5 Low-Power Operating Mode..................................... 62  
9.6 Memory.....................................................................64  
9.7 Restoring Factory Default Configuration...................67  
9.8 Boot Modes...............................................................67  
10 Applications, Implementation, and Layout............... 68  
10.1 Application Information........................................... 68  
10.2 PCB Layout Guidelines...........................................73  
11 Device and Documentation Support..........................76  
11.1 Development Tools and Software........................... 76  
11.2 Firmware Updates...................................................77  
11.3 Device Nomenclature..............................................77  
11.4 Documentation Support.......................................... 78  
11.5 支持资源..................................................................80  
11.6 Trademarks............................................................. 80  
11.7 Electrostatic Discharge Caution..............................80  
11.8 Export Control Notice..............................................80  
11.9 术语表..................................................................... 81  
12 Mechanical, Packaging, and Orderable  
CC3220S) ...................................................................29  
8.6 Current Consumption Summary (CC3220SF).......... 31  
8.7 TX Power and IBAT versus TX Power Level  
Settings....................................................................... 32  
8.8 Brownout and Blackout Conditions...........................34  
8.9 Electrical Characteristics (3.3 V, 25°C)..................... 35  
8.10 WLAN Receiver Characteristics..............................37  
Information.................................................................... 82  
12.1 Packaging Information............................................ 82  
5 Revision History  
注:以前版本的页码可能与当前版本的页码不同  
Changes from November 29, 2018 to May 13, 2021 (from Revision B (November 2018) to  
Revision C (May 2021))  
Page  
更新和格式和组织,以反映最新 TI 标准.........................................................................................................0  
1 新增了 WPA3 个人版和 WPA3 企业版........................................................................................................ 1  
Added WPA3 personal and enterprise to 9.2 ..............................................................................................57  
Added WPA3 personal and enterprise to 9.2.1 ...........................................................................................57  
Added WPA3 personal and enterprise to 9-1 ..............................................................................................57  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: CC3220R CC3220S CC3220SF  
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
6 Device Comparison  
6-1 shows the features supported across different CC3220 devices.  
6-1. Device Features Comparison  
DEVICE  
FEATURE  
CC3220R  
CC3220S  
CC3220SF  
On-Chip Application Memory  
RAM  
256KB  
256KB  
256KB  
1MB  
Flash  
Security Features  
File system security  
File system security  
Secure key storage  
Software tamper detection  
Cloning protection  
Secure key storage  
Software tamper detection  
Cloning protection  
Enhanced Application Level  
Security  
Initial secure programming  
Initial secure programming  
Hardware Acceleration  
Additional Networking Security  
Secure Boot  
Hardware Crypto Engines  
Unique Device Identity  
Trusted Root-Certificate Catalog Trusted Root-Certificate Catalog Trusted Root-Certificate Catalog  
TI Root-of-Trust Public key  
Hardware Crypto Engines  
Hardware Crypto Engines  
Unique Device Identity  
Unique Device Identity  
TI Root-of-Trust Public key  
TI Root-of-Trust Public key  
No  
Yes  
Yes  
Additional Features  
802.11 b/g/n  
Standard  
TCP/IP Stack  
Package  
IPv4, IPv6  
9 mm × 9 mm VQFN  
16  
Sockets  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
6.1 Related Products  
For information about other devices in this family of products or related products, see the following links:  
SimpleLink™ MCU  
Portfolio  
This portfolio offers a single development environment that delivers flexible hardware,  
software and tool options for customers developing wired and wireless applications.  
With 100 percent code reuse across host MCUs, Wi-Fi™, Bluetooth® low energy,  
Sub-1 GHz devices and more, choose the MCU or connectivity standard that fits your  
design. A one-time investment with the SimpleLink software development kit (SDK)  
allows you to reuse often, opening the door to create unlimited applications.  
SimpleLink™ Wi-Fi®  
Family  
This device platform offers several Internet-on-a chip™ solutions, which address the  
need of battery operated, security enabled products. Texas instruments offers a single  
chip wireless microcontroller and a wireless network processor which can be paired  
with any MCU, to allow developers to design new wi-fi products, or upgrade existing  
products with wi-fi capabilities.  
BoosterPack™ Plug-In The BoosterPack Plug-in modules extend the functionality of TI LaunchPad  
Modules  
Development Kit. Application-specific BoosterPack Plug-in modules allow you to  
explore a broad range of applications, including capacitive touch, wireless sensing,  
LED Lighting control, and more. Stack multiple BoosterPack modules onto a single  
LaunchPad kit to further enhance the functionality of your design.  
Reference Designs for TI Designs Reference Design Library is a robust reference design library spanning  
CC3200 and CC3220  
Devices  
analog, embedded processor and connectivity. Created by TI experts to help you  
jump start your system design, all TI Designs include schematic or block diagrams,  
BOMs and design files to speed your time to market. Search and download designs at  
ti.com/tidesigns.  
SimpleLink™ Wi-Fi®  
CC3220 SDK  
This SDK contains drivers for the CC3220 programmable MCU, sample applications,  
and documentation required to start development with CC3220 solutions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: CC3220R CC3220S CC3220SF  
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
7 Terminal Configuration and Functions  
7.1 Pin Diagram  
7-1 shows pin assignments for the 64-pin VQFN package.  
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
nRESET  
RF_BG  
VDD_RAM  
GPIO0  
RTC_XTAL_P  
ANTSEL2  
RTC_XTAL_N  
GPIO30  
ANTSEL1  
NC  
VIN_IO2  
NC  
GPIO1  
NC  
VDD_DIG2  
LDO_IN2  
VDD_PLL  
WLAN_XTAL_P  
WLAN_XTAL_N  
SOP2  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
TMS  
TCK  
GPIO28  
TDO  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
16  
NC = No internal connection  
7-1. VQFN 64-Pin Assignments Top View  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
7.2 Pin Attributes and Pin Multiplexing  
The device makes extensive use of pin multiplexing to accommodate the large number of peripheral functions in  
the smallest possible package. To achieve this configuration, pin multiplexing is controlled using a combination of  
hardware configuration (at device reset) and register control.  
Note  
TI highly recommends using Pin Mux Tool to obtain the desired pinout.  
The board and software designers are responsible for the proper pin multiplexing configuration. Hardware does  
not ensure that the proper pin multiplexing options are selected for the peripherals or interface mode used.  
7.2.1 and 7-1 list the pin descriptions and attributes. 7.3.1 lists the signal descriptions. 7-2 presents  
an overall view of pin multiplexing. All pin multiplexing options are configurable using the pin mux registers.  
The following special considerations apply:  
All I/Os support drive strengths of 2, 4, and 6 mA. The drive strength is individually configurable for each pin.  
All I/Os support 10-µA pullup and pulldown resistors.  
The VIO and VBAT supply must be tied together at all times.  
By default, all I/Os float in the Hibernate state. However, the default state can be changed by SW.  
All digital I/Os are nonfail-safe.  
Note  
If an external device drives a positive voltage to the signal pads and the CC3220x device is not  
powered, DC is drawn from the other device. If the drive strength of the external device is adequate,  
an unintentional wakeup and boot of the CC3220x device can occur. To prevent current draw, TI  
recommends any one of the following conditions:  
All devices interfaced to the CC3220x device must be powered from the same power rail as the  
chip.  
Use level shifters between the device and any external devices fed from other independent rails.  
The nRESET pin of the CC3220x device must be held low until the VBAT supply to the device is  
driven and stable.  
All GPIO pins default to high impedance unless programmed by the MCU. The bootloader sets the  
TDI, TDO, TCK, TMS, and Flash_SPI pins to mode 1. All the other pins are left in the Hi-Z state.  
7.2.1 Pin Descriptions  
PINS  
SELECT AS  
WAKEUP  
SOURCE  
CONFIGURE  
ADDITIONAL  
ANALOG MUX  
MUXED  
WITH JTAG  
TYPE  
DESCRIPTION  
NO.  
NAME  
1
2
3
4
5
6
7
8
9
GPIO10  
GPIO11  
GPIO12  
GPIO13  
GPIO14  
GPIO15  
GPIO16  
GPIO17  
I/O  
I/O  
General-purpose input or output  
General-purpose input or output  
General-purpose input or output  
General-purpose input or output  
General-purpose input or output  
General-purpose input or output  
General-purpose input or output  
General-purpose input or output  
Internal digital core voltage  
No  
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
No  
N/A  
No  
No  
No  
No  
No  
No  
No  
No  
N/A  
I/O  
I/O  
Yes  
No  
I/O  
I/O  
No  
I/O  
No  
I/O  
Yes  
N/A  
VDD_DIG1  
Power  
I/O power supply (same as  
battery voltage)  
10  
11  
VIN_IO1  
Power  
O
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
FLASH_SPI_CLK  
Serial flash interface: SPI clock  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
PINS  
SELECT AS  
WAKEUP  
SOURCE  
CONFIGURE  
ADDITIONAL  
ANALOG MUX  
MUXED  
WITH JTAG  
TYPE  
DESCRIPTION  
NO.  
12  
NAME  
Serial flash interface: SPI data  
out  
FLASH_SPI_DOUT  
FLASH_SPI_DIN  
FLASH_SPI_CS  
GPIO22  
O
I
N/A  
N/A  
N/A  
No  
N/A  
N/A  
N/A  
No  
N/A  
N/A  
N/A  
No  
13  
14  
15  
16  
Serial flash interface: SPI data in  
Serial flash interface: SPI chip  
select  
O
I/O  
I/O  
General-purpose input or output  
JTAG interface: data input  
Muxed with  
JTAG TDI  
TDI  
No  
No  
Muxed with  
JTAG TDO  
17  
18  
TDO  
I/O  
I/O  
JTAG interface: data output  
Yes  
No  
No  
No  
GPIO28  
General-purpose input or output  
No  
Muxed with  
JTAG/  
SWD-TCK  
19  
TCK  
TMS  
I/O  
I/O  
JTAG/SWD interface: clock  
No  
No  
No  
No  
Muxed with  
JTAG/  
SWD-TMSC  
JTAG/SWD interface: mode  
select or SWDIO  
20  
21(2)  
22  
SOP2  
I
Configuration sense-on-power 2  
No  
No  
No  
40-MHz crystal. Pulldown if  
external TCXO is used.  
WLAN_XTAL_N  
Analog  
N/A  
N/A  
N/A  
40-MHz crystal or TCXO clock  
input  
23  
24  
25  
WLAN_XTAL_P  
VDD_PLL  
Analog  
Power  
Power  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Internal analog voltage  
Internal analog RF supply from  
analog DC/DC output  
LDO_IN2  
26  
27  
28  
NC  
NC  
NC  
No connect  
Reserved  
Reserved  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
User configuration  
not required (3)  
29(1)  
ANTSEL1  
O
Antenna selection control  
No  
No  
User configuration  
not required (3)  
30(1)  
31  
ANTSEL2  
RF_BG  
O
RF  
I
Antenna selection control  
No  
N/A  
N/A  
No  
N/A  
N/A  
RF BG band: 2.4-GHz TX, RX  
N/A  
N/A  
Master chip reset input. Active  
low input.  
32  
nRESET  
Internal RF power amplifier (PA)  
input from PA DC/DC output  
33  
VDD_PA_IN  
Power  
N/A  
N/A  
N/A  
34  
35  
SOP1  
SOP0  
I
I
Configuration sense-on-power 1  
Configuration sense-on-power 0  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Internal Analog RF supply from  
analog DC/DC output  
36  
37  
38  
LDO_IN1  
Power  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Analog DC/DC supply input  
(same as battery voltage [VBAT])  
VIN_DCDC_ANA  
DCDC_ANA_SW  
Internal Analog DC/DC converter  
switching node  
Power  
Power  
PA DC/DC converter input  
supply (same as battery voltage  
[VBAT])  
39  
VIN_DCDC_PA  
N/A  
N/A  
N/A  
Internal PA DC/DC converter  
+ve switching node  
40  
41  
DCDC_PA_SW_P  
DCDC_PA_SW_N  
Power  
Power  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Internal PA DC/DC converter  
–ve switching node  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
CC3220R, CC3220S, CC3220SF  
www.ti.com.cn  
NO.  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
PINS  
NAME  
SELECT AS  
WAKEUP  
SOURCE  
CONFIGURE  
ADDITIONAL  
ANALOG MUX  
MUXED  
WITH JTAG  
TYPE  
DESCRIPTION  
Internal PA buck DC/DC  
converter output  
42  
43  
DCDC_PA_OUT  
DCDC_DIG_SW  
Power  
Power  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Internal Digital DC/DC converter  
switching node  
Digital DC/DC converter supply  
input (same as battery voltage  
[VBAT])  
44  
VIN_DCDC_DIG  
Power  
I/O  
N/A  
No  
N/A  
N/A  
No  
Analog2 DC/DC converter  
+ve switching node  
User configuration  
not required (3)  
45(4)  
DCDC_ANA2_SW_P  
Internal Analog2 DC/DC  
converter –ve switching node  
46  
47  
DCDC_ANA2_SW_N  
VDD_ANA2  
Power  
Power  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Internal Analog2 DC/DC output  
Internal Analog1 power supply  
fed by analog2 DC/DC converter  
output  
48  
VDD_ANA1  
Power  
N/A  
N/A  
N/A  
49  
50  
VDD_RAM  
GPIO0  
Power  
I/O  
Internal SRAM LDO output  
N/A  
No  
N/A  
N/A  
No  
User configuration  
not required (3)  
General-purpose input or output  
32.768-kHz XTAL_P or external  
CMOS level clock input  
51  
RTC_XTAL_P  
RTC_XTAL_N  
GPIO30  
Analog  
Analog  
I/O  
N/A  
N/A  
No  
N/A  
N/A  
No  
User configuration  
not required (3) (7)  
52(5)  
53  
32.768-kHz XTAL_N  
User configuration  
not required (3)  
General-purpose input or output  
No  
54  
55  
56  
VIN_IO2  
GPIO1  
Power  
I/O  
device supply voltage (VBAT  
)
N/A  
No  
N/A  
No  
N/A  
No  
General-purpose input or output  
internal digital core voltage  
VDD_DIG2  
Power  
N/A  
N/A  
N/A  
Analog input (up to 1.5-V ) or  
general-purpose input or output  
57(6)  
58(6)  
59(6)  
60(6)  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
I/O  
I/O  
I/O  
I/O  
Yes  
No  
See (8)  
See (8)  
See (8)  
See (8)  
No  
No  
No  
No  
Analog input (up to 1.5-V ) or  
general-purpose input or output  
Analog input (up to 1.5-V ) or  
general-purpose input or output  
Yes  
No  
Analog input (up to 1.5 V) or  
general-purpose input or output  
61  
62  
63  
64  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
I/O  
I/O  
I/O  
I/O  
General-purpose input or output  
General-purpose input or output  
General-purpose input or output  
General-purpose input or output  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
Thermal pad and electrical  
ground  
GND_TAB  
N/A  
N/A  
N/A  
(1) This pin is reserved for WLAN antenna selection, controlling an external RF switch that multiplexes the RF pin of the CC3220x device  
between two antennas. These pins must not be used for other functionalities.  
(2) This pin has dual functions: as a SOP[2] (device operation mode), and as an external TCXO enable. As a TXCO enable, the pin is an  
output on power up and driven logic high. During hibernate low-power mode, the pin is in a Hi-Z state but is pulled down for SOP mode  
to disable TCXO. Because of the SOP functionality, the pin must be used as an output only.  
(3) Device firmware automatically enables the digital path during ROM boot.  
(4) Pin 45 is used by an internal DC/DC converter (ANA2_DCDC). This pin will be available automatically if the serial flash is forced in the  
CC3220SF device. For the CC3220R and CC3220S devices, pin 45 can be used as GPIO_31 if a supply is provided on pin 47.  
(5) Pin 52 is used by the RTC crystal oscillator. These devices use automatic configuration sensing. Therefore, some board-level  
configuration is required to use pin 52 as a digital pad. Pin 52 is used for the RTC crystal in most applications. However, in some  
applications a 32.768-kHz square-wave clock might always be available onboard. When a 32.768-kHz square-wave clock is available,  
the crystal can be removed to free pin 52 for digital functions. The external clock must then be applied at pin 51. For the device to  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
 
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
automatically detect this configuration, a 100-kΩ pullup resistor must be connected between pin 52 and the supply line. To prevent  
false detection, TI recommends using pin 52 for output-only functions.  
(6) This pin is shared by the ADC inputs and digital I/O pad cells.  
(7) To use the digital functions, RTC_XTAL_N must be pulled high to the supply voltage using a 100-kΩ resistor.  
(8) Requires user configuration to enable the analog switch of the ADC channel (the switch is off by default.) The digital I/O is always  
connected and must be made Hi-Z before enabling the ADC switch.  
7-1. Pin Attributes  
PAD STATES  
Hib(4)  
PIN  
NO.  
SIGNAL  
TYPE(2)  
PIN MUX  
SIGNAL  
SIGNAL NAME(1)  
LPDS(3)  
Hi-Z, Pull, Drive  
Hi-Z, Pull, Drive  
Hi-Z, Pull, Drive  
1
nRESET = 0  
ENCODING  
DIRECTION  
GPIO10 (PN)  
I2C_SCL  
0
1
I/O  
I/O (open drain)  
GT_PWM06  
UART1_TX  
SDCARD_CLK  
GT_CCP01  
GPIO11 (PN)  
I2C_SDA  
3
O
Hi-Z, Pull,  
Drive  
1
2
3
I/O  
I/O  
I/O  
Hi-Z  
7
O
6
O
0
12  
0
I
Hi-Z, Pull, Drive  
Hi-Z, Pull, Drive  
Hi-Z, Pull, Drive  
Hi-Z, Pull, Drive  
0
I/O  
1
I/O (open drain)  
GT_PWM07  
pXCLK (XVCLK)  
SDCARD_CMD  
UART1_RX  
GT_CCP02  
McAFSX  
3
O
4
O
Hi-Z, Pull,  
Drive  
Hi-Z  
6
I/O (open drain)  
Hi-Z, Pull, Drive  
Hi-Z, Pull, Drive  
Hi-Z, Pull, Drive  
Hi-Z, Pull, Drive  
Hi-Z, Pull, Drive  
Hi-Z, Pull, Drive  
Hi-Z, Pull, Drive  
Hi-Z, Pull, Drive  
1
7
I
12  
13  
0
I
O
GPIO12 (PN)  
McACLK  
I/O  
3
O
pVS (VSYNC)  
I2C_SCL  
4
I
Hi-Z, Pull,  
Drive  
Hi-Z  
5
I/O (open drain)  
UART0_TX  
GT_CCP03  
GPIO13 (PN)  
I2C_SDA  
7
O
12  
0
I
Hi-Z, Pull, Drive  
I/O  
5
I/O (open drain)  
Hi-Z, Pull,  
Drive  
4
5
pHS (HSYNC)  
UART0_RX  
GT_CCP04  
GPIO14 (PN)  
I2C_SCL  
I/O  
I/O  
4
I
Hi-Z, Pull, Drive  
Hi-Z, Pull, Drive  
Hi-Z  
Hi-Z  
7
I
12  
0
I
I/O  
5
I/O (open drain)  
Hi-Z, Pull,  
Drive  
GSPI_CLK  
7
I/O  
pDATA8 (CAM_D4)  
GT_CCP05  
GPIO15 (PN)  
I2C_SDA  
4
I
12  
0
I
I/O  
5
I/O (open drain)  
GSPI_MISO  
pDATA9 (CAM_D5)  
GT_CCP06  
SDCARD_DATA0  
7
I/O  
Hi-Z, Pull,  
Drive  
6
I/O  
Hi-Z, Pull, Drive  
Hi-Z  
4
I
I
13  
8
I/O  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
 
 
CC3220R, CC3220S, CC3220SF  
www.ti.com.cn  
PIN  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
7-1. Pin Attributes (continued)  
PAD STATES  
SIGNAL  
TYPE(2)  
PIN MUX  
ENCODING  
SIGNAL  
DIRECTION  
SIGNAL NAME(1)  
LPDS(3)  
Hi-Z, Pull, Drive  
Hi-Z, Pull, Drive  
Hi-Z, Pull, Drive  
1
Hib(4)  
nRESET = 0  
NO.  
GPIO16 (PN)  
GSPI_MOSI  
0
7
I/O  
I/O  
I
pDATA10 (CAM_D6)  
UART1_TX  
4
Hi-Z, Pull,  
Drive  
7
I/O  
I/O  
Hi-Z  
5
O
GT_CCP07  
13  
8
I
Hi-Z, Pull, Drive  
0
SDCARD_CLK  
GPIO17 (PN)  
UART1_RX  
O
0
I/O  
I
5
Hi-Z, Pull,  
Drive  
8
GSPI_CS  
7
I/O  
I
Hi-Z, Pull, Drive  
Hi-Z  
pDATA11 (CAM_D7)  
SDCARD_CMD  
VDD_DIG1 (PN)  
VIN_IO1  
4
8
I/O  
N/A  
N/A  
9
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
10  
Hi-Z, Pull,  
Drive(5)  
Hi-Z, Pull,  
Drive  
11  
12  
13  
14  
FLASH_SPI_CLK  
FLASH_SPI_DOUT  
FLASH_SPI_DIN  
FLASH_SPI_CS  
O
O
I
N/A  
N/A  
N/A  
N/A  
O
O
I
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z, Pull,  
Drive(5)  
Hi-Z, Pull,  
Drive  
Hi-Z, Pull,  
Drive(5)  
Hi-Z  
Hi-Z, Pull,  
Drive  
O
O
1
GPIO22 (PN)  
McAFSX  
I/O  
O
I
0
7
5
1
0
2
9
1
0
5
2
9
4
6
I/O  
Hi-Z, Pull,  
Drive  
15  
16  
O
Hi-Z, Pull, Drive  
Hi-Z  
Hi-Z  
GT_CCP04  
TDI (PN)  
I
I
Hi-Z, Pull, Drive  
GPIO23  
I/O  
Hi-Z, Pull,  
Drive  
I/O  
UART1_TX  
I2C_SCL  
TDO (PN)  
GPIO24  
O
1
I/O (open drain)  
Hi-Z, Pull, Drive  
O
I/O  
Driven high  
in SWD;  
driven low in  
4-wire JTAG  
PWM0  
O
17  
UART1_RX  
I2C_SDA  
GT_CCP06  
McAFSX  
I/O  
I
Hi-Z, Pull, Drive  
Hi-Z  
I/O (open drain)  
I
O
Hi-Z, Pull,  
Drive  
18  
19  
GPIO28  
I/O  
I/O  
0
I/O  
Hi-Z, Pull, Drive  
Hi-Z, Pull, Drive  
Hi-Z  
Hi-Z  
TCK (PN)  
GT_PWM03  
TMS (PN)  
GPIO29  
1
8
1
0
I
Hi-Z, Pull,  
Drive  
O
Hi-Z, Pull,  
Drive  
20  
I/O  
I/O  
Hi-Z, Pull, Drive  
Hi-Z  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: CC3220R CC3220S CC3220SF  
CC3220R, CC3220S, CC3220SF  
www.ti.com.cn  
nRESET = 0  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
7-1. Pin Attributes (continued)  
PAD STATES  
Hib(4)  
PIN  
NO.  
SIGNAL  
TYPE(2)  
PIN MUX  
ENCODING  
SIGNAL  
DIRECTION  
SIGNAL NAME(1)  
LPDS(3)  
GPIO25  
0
9
O
O
O
Hi-Z, Pull, Drive  
Hi-Z, Pull, Drive  
Hi-Z, Pull, Drive  
GT_PWM02  
McAFSX  
2
21(6)  
O
Driven low  
Hi-Z  
N/A  
TCXO_EN  
O
I
0
Hi-Z, Pull, Drive  
N/A  
(see (8)  
)
)
)
N/A  
SOP2 (PN)  
(see (9)  
N/A  
22  
WLAN_XTAL_N  
N/A  
N/A  
N/A  
(see (8)  
23  
24  
25  
26  
27  
28  
WLAN_XTAL_P  
VDD_PLL  
LDO_IN2  
NC  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
NC  
NC  
Hi-Z, Pull,  
Drive  
29(10) ANTSEL1  
30(10) ANTSEL2  
O
O
0
0
O
O
Hi-Z, Pull, Drive  
Hi-Z, Pull, Drive  
Hi-Z  
Hi-Z  
Hi-Z, Pull,  
Drive  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
RF_BG  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
I/O  
I
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
nRESET  
VDD_PA_IN  
SOP1  
SOP0  
LDO_IN1  
VIN_DCDC_ANA  
DCDC_ANA_SW  
VIN_DCDC_PA  
DCDC_PA_SW_P  
DCDC_PA_SW_N  
DCDC_PA_OUT  
DCDC_DIG_SW  
VIN_DCDC_DIG  
GPIO31  
UART0_RX  
McAFSX  
9
12  
O
I/O  
Hi-Z  
Hi-Z  
Hi-Z  
UART1_RX  
McAXR0  
2
I
45(7)  
6
I/O  
I/O  
GSPI_CLK  
7
DCDC_ANA2_SW_P  
(PN)  
N/A  
N/A  
N/A  
N/A  
N/A  
(see (8)  
)
46  
47  
48  
49  
DCDC_ANA2_SW_N  
VDD_ANA2  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
VDD_ANA1  
VDD_RAM  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
CC3220R, CC3220S, CC3220SF  
www.ti.com.cn  
PIN  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
7-1. Pin Attributes (continued)  
PAD STATES  
SIGNAL  
TYPE(2)  
PIN MUX  
ENCODING  
SIGNAL  
DIRECTION  
SIGNAL NAME(1)  
LPDS(3)  
Hi-Z, Pull, Drive  
Hi-Z, Pull, Drive  
Hi-Z, Pull, Drive  
Hi-Z, Pull, Drive  
Hi-Z, Pull, Drive  
1
Hib(4)  
nRESET = 0  
NO.  
GPIO0 (PN)  
UART0_CTS  
McAXR1  
0
12  
6
I/O  
I
I/O  
I
GT_CCP00  
GSPI_CS  
7
Hi-Z, Pull,  
Drive  
50  
I/O  
Hi-Z  
9
I/O  
O
UART1_RTS  
UART0_RTS  
McAXR0  
10  
3
O
1
4
I/O  
N/A  
N/A  
O
Hi-Z, Pull, Drive  
N/A  
51  
RTC_XTAL_P  
RTC_XTAL_N (PN)  
GPIO32  
O
N/A  
N/A  
0
N/A  
N/A  
N/A  
McACLK  
2
O
Hi-Z, Pull, Drive  
Hi-Z, Pull,  
Drive  
52(11)  
Hi-Z  
McAXR0  
4
O
UART0_RTS  
GSPI_MOSI  
GPIO30 (PN)  
UART0_TX  
McACLK  
6
O
1
8
O
Hi-Z, Pull, Drive  
Hi-Z, Pull, Drive  
1
0
I/O  
O
9
2
O
Hi-Z, Pull,  
Drive  
53  
I/O  
Hi-Z  
McAFSX  
3
O
Hi-Z, Pull, Drive  
GT_CCP05  
GSPI_MISO  
VIN_IO2  
4
I
7
I/O  
N/A  
I/O  
O
54  
55  
56  
I/O  
N/A  
0
N/A  
N/A  
N/A  
Hi-Z  
N/A  
GPIO1 (PN)  
UART0_TX  
pCLK (PIXCLK)  
UART1_TX  
GT_CCP01  
VDD_DIG2  
Hi-Z, Pull, Drive  
3
1
Hi-Z, Pull,  
Drive  
4
I
Hi-Z, Pull, Drive  
6
O
1
Hi-Z, Pull, Drive  
N/A  
7
I
N/A  
N/A  
N/A  
N/A  
ADC_CH0  
I
(see (8)  
)
Analog input  
(up to 1.5 V)  
or digital I/O  
GPIO2 (PN)  
UART0_RX  
UART1_RX  
GT_CCP02  
0
3
6
7
I/O  
Hi-Z, Pull,  
Drive  
57(12)  
Hi-Z, Pull, Drive  
Hi-Z  
I
I
I
N/A  
ADC_CH1  
I
(see (8)  
)
Hi-Z, Pull, Drive  
Analog input  
(up to 1.5 V)  
or digital I/O  
Hi-Z, Pull,  
Drive  
58(12)  
Hi-Z  
Hi-Z  
GPIO3 (PN)  
0
6
4
I/O  
O
I
UART1_TX  
1
pDATA7 (CAM_D3)  
Hi-Z, Pull, Drive  
N/A  
ADC_CH2  
I
(see (8)  
)
Analog input  
(up to 1.5 V)  
or digital I/O  
Hi-Z, Pull,  
Drive  
59(12)  
Hi-Z, Pull, Drive  
GPIO4 (PN)  
0
6
4
I/O  
UART1_RX  
I
I
pDATA6 (CAM_D2)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: CC3220R CC3220S CC3220SF  
CC3220R, CC3220S, CC3220SF  
www.ti.com.cn  
nRESET = 0  
Hi-Z  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
7-1. Pin Attributes (continued)  
PAD STATES  
Hib(4)  
PIN  
NO.  
SIGNAL  
TYPE(2)  
PIN MUX  
ENCODING  
SIGNAL  
DIRECTION  
SIGNAL NAME(1)  
LPDS(3)  
N/A  
ADC_CH3  
I
(see (8)  
)
Analog input  
(up to 1.5 V)  
or digital I/O  
GPIO5 (PN)  
pDATA5 (CAM_D1)  
McAXR1  
0
4
I/O  
I
Hi-Z, Pull,  
Drive  
60(12)  
Hi-Z, Pull, Drive  
6
I/O  
I
GT_CCP05  
GPIO6 (PN)  
UART0_RTS  
pDATA4 (CAM_D0)  
UART1_CTS  
UART0_CTS  
GT_CCP06  
GPIO7 (PN)  
McACLKX  
7
0
I/O  
O
I
Hi-Z, Pull, Drive  
1
5
4
Hi-Z, Pull,  
Drive  
61  
I/O  
Hi-Z  
3
I
Hi-Z, Pull, Drive  
6
I
7
I
0
I/O  
O
O
O
O
I/O  
I
Hi-Z, Pull, Drive  
1
13  
3
Hi-Z, Pull,  
Drive  
62  
63  
64  
UART1_RTS  
UART0_RTS  
UART0_TX  
I/O  
I/O  
Hi-Z  
Hi-Z  
10  
11  
0
GPIO8 (PN)  
SDCARD_IRQ  
McAFSX  
6
Hi-Z, Pull,  
Drive  
Hi-Z, Pull, Drive  
7
O
I
GT_CCP06  
GPIO9 (PN)  
GT_PWM05  
SDCARD_DATA0  
McAXR0  
12  
0
I/O  
O
I/O  
I/O  
I
3
Hi-Z, Pull,  
Drive  
I/O  
6
Hi-Z, Pull, Drive  
N/A  
Hi-Z  
N/A  
7
GT_CCP00  
12  
N/A  
GND_TAB  
N/A  
N/A  
(1) Signals names with (PN) denote the default pin name.  
(2) Signal Types: I = Input, O = Output, I/O = Input or Output.  
(3) LPDS state: Unused I/Os are in a Hi-Z state. Software may program the I/Os to be input with pull or drive (regardless of active pin  
configuration), according to the need.  
(4) Hibernate mode: The I/Os are in a Hi-Z state. Software may program the I/Os to be input with pull or drive (regardless of active pin  
configuration), according to the need.  
(5) To minimize leakage in some serial flash vendors during LPDS, TI recommends that the user application always enables internal weak  
pulldown resistors on the FLASH_SPI_DIN, FLASH_SPI_DOUT, and FLASH_SPI_CLK pins.  
(6) This pin has dual functions: as a SOP[2] (device operation mode), and as an external TCXO enable. As a TXCO enable, the pin is an  
output on power up and driven logic high. During hibernate low-power mode, the pin is in a Hi-Z state but is pulled down for SOP mode  
to disable TCXO. Because of the SOP functionality, the pin must be used as an output only.  
(7) Pin 45 is used by an internal DC/DC (ANA2_DCDC). This pin will be available automatically if serial flash is forced in the CC3220SF  
device. For the CC3220R and CC3220S devices, pin 45 can be used as GPIO_31 if a supply is provided on pin 47.  
(8) For details on proper use, see 7.5.  
(9) This pin is one of three that must have a passive pullup or pulldown resistor onboard to configure the device hardware power-up mode.  
For this reason, the pin must be output only when used for digital functions.  
(10) This pin is reserved for WLAN antenna selection, controlling an external RF switch that multiplexes the RF pin of the CC3220x device  
between two antennas. These pins must not be used for other functionalities.  
(11) Pin 52 is used by the RTC crystal oscillator. These devices use automatic configuration sensing. Therefore, some board-level  
configuration is required to use pin 52 as a digital pad. Pin 52 is used for RTC crystal in most applications. However, in some  
applications a 32.768-kHz square-wave clock might always be available onboard. When a 32.768-kHz square-wave clock is available,  
the crystal can be removed to free pin 52 for digital functions. The external clock must then be applied at pin 51. For the chip to  
automatically detect this configuration, a 100-kΩ pullup resistor must be connected between pin 52 and the supply line. To prevent  
false detection, TI recommends using pin 52 for output-only functions.  
(12) This pin is shared by the ADC inputs and digital I/O pad cells.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
 
 
 
 
 
 
 
 
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
Note  
The ADC inputs are tolerant up to 1.8 V (see 8.14.6.6.1 for more details about the usable range of  
the ADC). On the other hand, the digital pads can tolerate up to 3.6 V. Hence, take care to prevent  
accidental damage to the ADC inputs. TI recommends first disabling the output buffers of the digital  
I/Os corresponding to the desired ADC channel (that is, converted to Hi-Z state), and thereafter  
disabling the respective pass switches (S7 [Pin 57], S8 [Pin 58], S9 [Pin 59], and S10 [Pin 60]). For  
more information about drive strength and reset states for analog-digital multiplexed pins, see 7.5.  
7.3 Signal Descriptions  
7.3.1 Signal Descriptions  
PIN  
NO.  
PIN  
TYPE  
SIGNAL  
DIRECTION  
FUNCTION  
SIGNAL NAME  
ADC_CH0  
DESCRIPTION  
57  
58  
59  
60  
29  
30  
21  
22  
23  
I/O  
I/O  
I/O  
I/O  
O
I
I
ADC channel 0 input (maximum of 1.5 V)  
ADC channel 1 input (maximum of 1.5 V)  
ADC channel 2 input (maximum of 1.5 V)  
ADC channel 3 input (maximum of 1.5 V)  
Antenna selection control 1  
ADC_CH1  
ADC  
ADC_CH2  
I
ADC_CH3  
I
ANTSEL1  
O
O
O
Antenna  
selection  
ANTSEL2  
O
Antenna selection control 2  
TCX0_EN  
O
Enable to optional external 40-MHz TCXO  
40-MHz crystal; pull down if external TCXO is used  
40-MHz crystal or TCXO clock input  
WLAN_XTAL_N  
WLAN_XTAL_P  
Clock  
Connect 32.768-kHz crystal or force external CMOS  
level clock  
RTC_XTAL_P  
RTC_XTAL_N  
51  
52  
Connect 32.768-kHz crystal or connect 100-kΩ resistor  
to supply voltage  
TDI  
16  
17  
19  
20  
1
I/O  
I/O  
I/O  
I/O  
I
O
I
JTAG TDI. Reset default pinout.  
TDO  
TCK  
TMS  
JTAG TDO. Reset default pinout.  
JTAG/SWD TCK. Reset default pinout.  
JTAG/SWD TMS. Reset default pinout.  
JTAG / SWD  
I/O  
3
I2C_SCL  
I2C_SDA  
I/O  
I/O  
I/O (open drain) I2C clock data  
5
16  
2
I2C  
4
I/O (open drain) I2C data  
6
17  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
PIN  
NO.  
PIN  
TYPE  
SIGNAL  
DIRECTION  
FUNCTION  
SIGNAL NAME  
GT_PWM06  
DESCRIPTION  
Pulse-width modulated O/P  
1
1
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
O
I
GT_CCP01  
GT_PWM07  
GT_CCP02  
GT_CCP03  
Timer capture port  
2
O
I
Pulse-width modulated O/P  
2
3
I
4
I
GT_CCP04  
GT_CCP05  
15  
5
I
I
Timer capture port  
6
I
17  
61  
63  
7
I
GT_CCP06  
I
Timers  
I
GT_CCP07  
PWM0  
I
17  
19  
21  
50  
64  
53  
55  
57  
60  
64  
O
O
O
I
GT_PWM03  
GT_PWM02  
Pulse-width modulated output  
I/O  
I/O  
I/O  
I/O  
I/O  
I
GT_CCP00  
I
GT_CCP05  
GT_CCP01  
GT_CCP02  
GT_CCP05  
GT_PWM05  
I
Timer capture port  
I
I
I
I/O  
O
Pulse-width modulated output  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
CC3220R, CC3220S, CC3220SF  
www.ti.com.cn  
FUNCTION  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
PIN  
NO.  
PIN  
TYPE  
SIGNAL  
DIRECTION  
SIGNAL NAME  
GPIO10  
DESCRIPTION  
1
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
GPIO11  
GPIO12  
GPIO13  
GPIO14  
GPIO15  
GPIO16  
GPIO17  
GPIO22  
GPIO23  
GPIO24  
GPIO28  
GPIO29  
GPIO25  
GPIO31  
GPIO0  
2
3
4
5
6
7
General-purpose input or output  
8
15  
16  
17  
18  
20  
21  
45  
50  
52  
53  
55  
57  
58  
59  
60  
61  
62  
63  
64  
2
GPIO  
General-purpose output only  
General-purpose input or output  
General-purpose output only  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
GPIO32  
GPIO30  
GPIO1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO2  
GPIO3  
GPIO4  
General-purpose input or output  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
15  
17  
21  
45  
53  
63  
3
McAFSX  
I/O  
O
I2S audio port frame sync  
I/O  
O
O
O
McASP  
McACLK  
McAXR1  
52  
53  
50  
60  
45  
50  
I2S audio port clock output  
I2S or PCM  
I/O  
I/O  
I
O
I/O  
I/O  
I/O  
I/O  
I2S audio port data 1 (RX and TX)  
I2S audio port data 0 (RX and TX)  
I/O  
I/O  
I2S audio port data (only output mode is supported on  
pin 52)  
McAXR0  
52  
O
O
64  
62  
I/O  
I/O  
I/O  
O
I2S audio port data (RX and TX)  
I2S audio port clock  
McACLKX  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: CC3220R CC3220S CC3220SF  
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
PIN  
NO.  
PIN  
TYPE  
SIGNAL  
DIRECTION  
FUNCTION  
SIGNAL NAME  
DESCRIPTION  
1
7
SDCARD_CLK  
I/O  
O
SD card clock data  
2
I/O  
I/O  
I/O (open drain)  
I/O  
SDCARD_CMD  
SD card command line  
SD card data  
Multimedia card  
(MMC or SD)  
8
6
SDCARD_DATA0  
I/O  
I/O  
64  
63  
2
SDCARD_IRQ  
pXCLK (XVCLK)  
pVS (VSYNC)  
pHS (HSYNC)  
pDATA8 (CAM_D4)  
pDATA9 (CAM_D5)  
pDATA10 (CAM_D6)  
pDATA11 (CAM_D7)  
pCLK (PIXCLK)  
pDATA7 (CAM_D3)  
pDATA6 (CAM_D2)  
pDATA5 (CAM_D1)  
pDATA4 (CAM_D0)  
VDD_DIG1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
I
O
I
Interrupt from SD card (future support)  
Free clock to parallel camera  
Parallel camera vertical sync  
Parallel camera horizontal sync  
Parallel camera data bit 4  
3
4
I
5
I
6
I
Parallel camera data bit 5  
7
I
Parallel camera data bit 6  
Parallel interface  
(8-bit π)  
8
I
Parallel camera data bit 7  
55  
58  
59  
60  
61  
9
I
Pixel clock from parallel camera sensor  
Parallel camera data bit 3  
I
I
Parallel camera data bit 2  
I
Parallel camera data bit 1  
I/O  
I
Parallel camera data bit 0  
Internal digital core voltage  
VIN_IO1  
10  
24  
25  
33  
36  
Device supply voltage (VBAT  
Internal analog voltage  
)
VDD_PLL  
LDO_IN2  
Internal analog RF supply from analog DC/DC output  
Internal PA supply voltage from PA DC/DC output  
Internal analog RF supply from analog DC/DC output  
VDD_PA_IN  
LDO_IN1  
Analog DC/DC input (connected to device input supply  
[VBAT])  
VIN_DCDC_ANA  
DCDC_ANA_SW  
VIN_DCDC_PA  
37  
38  
39  
Internal analog DC/DC switching node  
PA DC/DC input (connected to device input supply  
[VBAT])  
DCDC_PA_SW_P  
DCDC_PA_SW_N  
DCDC_PA_OUT  
DCDC_DIG_SW  
40  
41  
42  
43  
Internal PA DC/DC switching node  
Power  
Internal PA buck converter output  
Internal digital DC/DC switching node  
Digital DC/DC input (connected to device input supply  
[VBAT])  
VIN_DCDC_DIG  
44  
DCDC_ANA2_SW_P  
DCDC_ANA2_SW_N  
VDD_ANA2  
45  
46  
47  
48  
49  
54  
56  
Analog to DC/DC converter +ve switching node  
Internal analog to DC/DC converter –ve switching node  
Internal analog to DC/DC output  
VDD_ANA1  
Internal analog supply fed by ANA2 DC/DC output  
Internal SRAM LDO output  
VDD_RAM  
VIN_IO2  
Device supply voltage (VBAT  
Internal digital core voltage  
)
VDD_DIG2  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
CC3220R, CC3220S, CC3220SF  
www.ti.com.cn  
FUNCTION  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
PIN  
NO.  
PIN  
TYPE  
SIGNAL  
DIRECTION  
SIGNAL NAME  
DESCRIPTION  
5
45  
6
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
O
O
I
GSPI_CLK  
General SPI clock  
GSPI_MISO  
GSPI_CS  
General SPI MISO  
General SPI chip select  
General SPI MOSI  
53  
8
SPI  
50  
7
GSPI_MOSI  
52  
11  
12  
13  
14  
1
FLASH_SPI_CLK  
FLASH_SPI_DOUT  
FLASH_SPI_DIN  
FLASH_SPI_CS  
O
Clock to SPI serial flash (fixed default)  
Data to SPI serial flash (fixed default)  
Data from SPI serial flash (fixed default)  
Device select to SPI serial flash (fixed default)  
O
FLASH SPI  
I
O
O
O
O
O
O
O
I
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
7
UART1_TX  
16  
55  
58  
2
UART1 TX data  
8
I
17  
45  
57  
59  
50  
62  
61  
3
I
UART1_RX  
UART1 RX data  
I
I
I
O
O
I
UART1_RTS  
UART1_CTS  
UART1 request-to-send (active low)  
UART1 clear-to-send (active low)  
UART  
O
O
O
O
I
53  
55  
62  
4
UART0_TX  
UART0 TX data  
UART0_RX  
45  
57  
50  
61  
50  
52  
61  
62  
21(1)  
34  
35  
32  
I
UART0 RX data  
I
I
UART0_CTS  
UART0 clear-to-send input (active low)  
I
O
O
O
O
I
UART0_RTS  
SOP2  
UART0 request-to-send (active low)  
I/O  
I/O  
O
Sense-on-power 2  
Sense-on-Power SOP1  
SOP0  
Configuration sense-on-power 1  
Configuration sense-on-power 0  
Global master device reset (active low)  
Reset  
nRESET  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: CC3220R CC3220S CC3220SF  
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
PIN  
NO.  
PIN  
TYPE  
SIGNAL  
DIRECTION  
FUNCTION  
RF  
SIGNAL NAME  
RF_BG  
DESCRIPTION  
31  
WLAN analog RF 802.11 b/g bands  
(1) This pin has dual functions: as a SOP[2] (device operation mode), and as an external TCXO enable. As a TXCO enable, the pin is an  
output on power up and driven logic high. During hibernate low-power mode, the pin is in a Hi-Z state but is pulled down for SOP mode  
to disable TCXO. Because of the SOP functionality, the pin must be used as an output only.  
7.4 Pin Multiplexing  
7-2. Pin Multiplexing  
ANALO  
G OR  
REGIST  
ER  
ADDRE  
SS  
SPECIA  
L
FUNCTI  
ON  
DIGITAL FUNCTION (XXX FIELD ENCODING)(1)  
REGISTER NAME  
PIN  
JTAG  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
SDCA  
RD_C  
LK  
0x4402 GPIO_PAD_CONFI  
E0C8 G_10  
I2C_S  
CL  
GT_PW  
M06  
UART1_  
TX  
GT_CC  
P01  
1
2
GPIO10  
pXCL  
K
(XVCL  
K)  
SDCA  
RD_C  
MD  
0x4402 GPIO_PAD_CONFI  
E0CC G_11  
I2C_S  
DA  
GT_PW  
M07  
UART1_  
RX  
GT_CC MCAFS  
P02  
GPIO11  
X
pVS  
0x4402 GPIO_PAD_CONFI  
E0D0 G_12  
I2C_SC  
L
UART0_  
TX  
GT_CC  
P03  
3
4
GPIO12  
GPIO13  
McACLK (VSYN  
C)  
pHS  
(HSYN  
C)  
0x4402 GPIO_PAD_CONFI  
E0D4 G_13  
I2C_SD  
A
UART0_  
RX  
GT_CC  
P04  
pDATA  
8
(CAM_  
D4)  
0x4402 GPIO_PAD_CONFI  
E0D8 G_14  
I2C_SC  
L
GSPI_C  
LK  
GT_CC  
P05  
5
6
7
8
GPIO14  
GPIO15  
GPIO16  
GPIO17  
pDATA  
9
(CAM_  
D5)  
SDCA  
RD_D  
ATA0  
0x4402 GPIO_PAD_CONFI  
E0DC G_15  
I2C_SD  
A
GSPI_  
MISO  
GT_CC  
P06  
pDATA  
10  
(CAM_  
D6)  
SDCA  
RD_C  
LK  
0x4402 GPIO_PAD_CONFI  
E0E0 G_16  
UART1  
_TX  
GSPI_  
MOSI  
GT_CC  
P07  
pDATA  
11  
(CAM_  
D7)  
SDCA  
RD_C  
MD  
0x4402 GPIO_PAD_CONFI  
E0E4 G_17  
UART1  
_RX  
GSPI_C  
S
0x4402 GPIO_PAD_CONFI  
E0F8 G_22  
GT_CC  
P04  
McAFS  
X
15  
16  
GPIO22  
GPIO23  
Muxed  
with  
JTAG  
0x4402 GPIO_PAD_CONFI  
E0FC G_23  
UART1  
_TX  
I2C_S  
CL  
TDI  
Muxed  
with  
JTAG  
TDO  
0x4402 GPIO_PAD_CONFI  
E100 G_24  
UART1  
_RX  
GT_C  
CP06  
McAF  
SX  
I2C_S  
DA  
17  
18  
GPIO24  
GPIO28  
TDO  
PWM0  
0x4402 GPIO_PAD_CONFI  
E140 G_40  
Muxed  
with  
JTAG or  
SWD  
GT_  
PWM0  
3
0x4402 GPIO_PAD_CONFI  
E110 G_28  
19  
TCK  
and TCK  
Muxed  
with  
0x4402 GPIO_PAD_CONFI  
E114 G_29  
JTAG or  
SWD  
and  
20  
GPIO29  
GPIO25  
TMS  
TMSC  
GT_  
PWM0  
2
0x4402 GPIO_PAD_CONFI  
E104 G_25  
McAFS  
X
21(2)  
0x4402 GPIO_PAD_CONFI  
E108 G_26  
ANTSEL1  
29  
30  
(3)  
0x4402 GPIO_PAD_CONFI  
E10C G_27  
ANTSEL2  
(3)  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
7-2. Pin Multiplexing (continued)  
ANALO  
G OR  
SPECIA  
L
REGIST  
ER  
ADDRE  
SS  
DIGITAL FUNCTION (XXX FIELD ENCODING)(1)  
REGISTER NAME  
PIN  
FUNCTI  
ON  
JTAG  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
0x4402 GPIO_PAD_CONFI  
UART1  
_RX  
McAX GSPI_C  
R0 LK  
UART0  
_RX  
McAFS  
X
45  
50  
GPIO31  
E11C  
G_31  
UART1  
_
RTS  
UART0  
_
CTS  
0x4402 GPIO_PAD_CONFI  
E0A0 G_0  
UART0_ McAX  
RTS  
McAX GT_CC  
GSPI_  
CS  
GPIO0  
R0  
R1  
P00  
UART  
0 _  
RTS  
0x4402 GPIO_PAD_CONFI  
E120 G_32  
McACL  
K
McAX  
R0  
GSPI_  
MOSI  
52  
53  
55  
57  
-—  
GPIO32  
GPIO30  
GPIO1  
GPIO2  
0x4402 GPIO_PAD_CONFI  
E118 G_30  
McACL  
K
GT_C  
CP05  
GSPI_  
MISO  
UART0  
_TX  
McAFSX  
pCLK  
(PIXC  
LK)  
0x4402 GPIO_PAD_CONFI  
E0A4 G_1  
UART0_  
TX  
UART GT_CC  
1_TX P01  
0x4402 GPIO_PAD_CONFI  
E0A8 G_2  
UART0_  
RX  
UART GT_CC  
1_RX  
P02  
pDATA  
7
(CAM_  
D3)  
0x4402 GPIO_PAD_CONFI  
E0AC G_3  
UART  
1_TX  
58  
59  
60  
61  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
pDATA  
6
(CAM_  
D2)  
0x4402 GPIO_PAD_CONFI  
E0B0 G_4  
UART  
1_RX  
pDATA  
5
(CAM_  
D1)  
0x4402 GPIO_PAD_CONFI  
E0B4 G_5  
McAX GT_CC  
R1  
P05  
pDATA  
4
(CAM_  
D0)  
UART0 UART  
0x4402 GPIO_PAD_CONFI  
E0B8 G_6  
UART1_  
CTS  
GT_CC  
P06  
_
RTS  
0_  
CTS  
UART0  
_
RTS  
0x4402 GPIO_PAD_CONFI  
E0BC G_7  
UART1_  
RTS  
UART  
0_TX  
McACL  
KX  
62  
63  
64  
GPIO7  
GPIO8  
GPIO9  
SDCA  
RD_  
IRQ  
0x4402 GPIO_PAD_CONFI  
E0C0 G_8  
McAFS  
X
GT_CC  
P06  
SDCA  
RD_  
DATA0  
0x4402 GPIO_PAD_CONFI  
E0C4 G_9  
GT_PW  
M05  
McAXR  
0
GT_CC  
P00  
-—  
(1) Pin mux encodings with (RD) denote the default encoding after reset release.  
(2) This pin has dual functions: as a SOP[2] (device operation mode), and as an external TCXO enable. As a TXCO enable, the pin is an  
output on power up and driven logic high. During hibernate low-power mode, the pin is in a Hi-Z state but is pulled down for SOP mode  
to disable TCXO. Because of the SOP functionality, the pin must be used as an output only.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
7.5 Drive Strength and Reset States for Analog and Digital Multiplexed Pins  
7-3 describes the use, drive strength, and default state of analog and digital multiplexed pins at first-time  
power up and reset (nRESET pulled low).  
7-3. Drive Strength and Reset States for Analog and Digital Multiplexed Pins  
STATE AFTER  
CONFIGURATION OF  
ANALOG SWITCHES  
(ACTIVE, LPDS, AND HIB  
POWER MODES)  
MAXIMUM  
EFFECTIVE  
DRIVE  
STRENGTH  
(mA)  
DEFAULT STATE AT FIRST  
POWER UP OR FORCED  
RESET  
BOARD-LEVEL CONFIGURATION AND  
USE  
Pin  
Connected to the enable pin of the  
RF switch (ANTSEL1). Other use is not  
recommended.  
Analog is isolated. The digital I/O Determined by the I/O state, as  
cell is also isolated. are other digital I/Os.  
29  
30  
4
4
Connected to the enable pin of the  
RF switch (ANTSEL2). Other use is not  
recommended.  
Analog is isolated. The digital I/O Determined by the I/O state, as  
cell is also isolated. are other digital I/Os.  
VDD_ANA2 (pin 47) must be shorted to the  
input supply rail. Otherwise, the pin is driven  
by the ANA2 DC/DC.  
Analog is isolated. The digital I/O Determined by the I/O state, as  
cell is also isolated. are other digital I/Os.  
45  
50  
52  
4
4
4
Analog is isolated. The digital I/O Determined by the I/O state, as  
cell is also isolated. are other digital I/Os.  
Generic I/O  
The pin must have an external pullup of 100  
kΩ to the supply rail and must be used in  
output signals only.  
Analog is isolated. The digital I/O Determined by the I/O state, as  
cell is also isolated. are other digital I/Os.  
Analog is isolated. The digital I/O Determined by the I/O state, as  
53  
57  
58  
59  
60  
Generic I/O  
4
4
4
4
4
cell is also isolated.  
are other digital I/Os.  
Analog signal (1.8-V absolute, 1.46-V full  
scale)  
ADC is isolated. The digital I/O  
cell is also isolated.  
Determined by the I/O state, as  
are other digital I/Os.  
Analog signal (1.8-V absolute, 1.46-V full  
scale)  
ADC is isolated. The digital I/O  
cell is also isolated.  
Determined by the I/O state, as  
are other digital I/Os.  
Analog signal (1.8-V absolute, 1.46-V full  
scale)  
ADC is isolated. The digital I/O  
cell is also isolated.  
Determined by the I/O state, as  
are other digital I/Os.  
Analog signal (1.8-V absolute, 1.46-V full  
scale)  
ADC is isolated. The digital I/O  
cell is also isolated.  
Determined by the I/O state, as  
are other digital I/Os.  
7.6 Pad State After Application of Power to Chip But Before Reset Release  
When a stable power is applied to the CC3220x chip for the first time or when supply voltage is restored to the  
proper value following a period with supply voltage less than 1.5 V, the level of each digital pad is undefined  
in the period starting from the release of nRESET and until DIG_DCDC powers up. This period is less than  
approximately 10 ms. During this period, pads can be internally pulled weakly in either direction. If a certain set  
of pins is required to have a definite value during this prereset period, an appropriate pullup or pulldown resistor  
must be used at the board level. The recommended value of this external pull is 2.7 kΩ.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
7.7 Connections for Unused Pins  
All unused pins must be left as no connect (NC) pins. 7-4 provides a list of NC pins.  
7-4. Connections for Unused Pins  
STATE AT RESET  
PIN  
DEFAULT FUNCTION  
I/O TYPE  
DESCRIPTION  
AND HIBERNATE  
WLAN analog  
WLAN analog  
WLAN analog  
26  
27  
28  
NC  
NC  
NC  
Unused; leave unconnected.  
Unused; leave unconnected.  
Unused; leave unconnected.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
8 Specifications  
All measurements are referenced at the device pins, unless otherwise indicated. All specifications are over  
process and voltage, unless otherwise indicated.  
8.1 Absolute Maximum Ratings  
All measurements are referenced at the device pins unless otherwise indicated. All specifications are over process, voltage,  
and operating free-air temperature range (unless otherwise noted) (1) (2)  
MIN  
MAX  
UNIT  
VBAT and VIO  
Pins: 37, 39, 44  
Pins: 10, 54  
–0.5  
3.8  
V
VBAT and VIO should be  
tied together  
VIO – VBAT (differential)  
V
Digital inputs  
–0.5  
–0.5  
–0.5  
–40  
–55  
VIO + 0.5  
2.1  
V
V
RF pins  
Analog pins, crystal  
Operating temperature, TA  
Storage temperature, Tstg  
Pins: 22, 23, 51, 52  
2.1  
V
85  
°C  
°C  
125  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
8.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
VESD  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8.3 Power-On Hours (POH)  
This information is provided solely for your convenience and does not extend or modify the warranty provided under TI's  
standard terms and conditions for TI semiconductor products.  
POWER-ON HOURS [POH]  
OPERATING CONDITION  
(hours)  
TA up to 85°C(1)  
87,600  
(1) The TX duty cycle (power amplifier ON time) is assumed to be 10% of the device POH. Of the remaining 90% of the time, the device  
can be in any other state.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
 
 
 
 
 
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
8.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
TYP  
MAX  
UNIT  
Direct battery connection(3)  
2.1(6)  
3.3  
3.6  
VBAT, VIO  
(shorted to VBAT  
Pins: 10, 37, 39,  
44, 54  
V
Preregulated 1.85 V(4) (5)  
)
Ambient thermal slew  
–20  
20 °C/minute  
(1) Operating temperature is limited by crystal frequency variation.  
(2) When operating at an ambient temperature of over 75°C, the transmit duty cycle must remain below 50% to avoid the auto-protect  
feature of the power amplifier. If the auto-protect feature triggers, the device takes a maximum of 60 seconds to restart the  
transmission.  
(3) To ensure WLAN performance, ripple on the supply must be less than ±300 mV.  
(4) To ensure WLAN performance, ripple on the 1.85-V supply must be less than 2% (±40 mV).  
(5) TI recommends keeping VBAT above 1.85 V. For lower voltages, use a boost converter.  
(6) The minimum voltage specified includes the ripple on the supply voltage and all other transient dips. The brownout condition is also 2.1  
V, and care must be taken when operating at the minimum specified voltage.  
8.5 Current Consumption Summary (CC3220R, CC3220S)  
TA = 25°C, VBAT = 3.6 V  
PARAMETER  
TEST CONDITIONS(1) (5)  
TX power level = 0  
MIN  
TYP  
272  
190  
248  
182  
223  
160  
59  
MAX UNIT  
1 DSSS  
6 OFDM  
54 OFDM  
TX power level = 4  
TX power level = 0  
TX power level = 4  
TX power level = 0  
TX power level = 4  
TX  
RX  
NWP ACTIVE  
MCU ACTIVE  
mA  
1 DSSS  
54 OFDM  
59  
NWP idle connected(3)  
15.3  
269  
187  
245  
179  
220  
157  
56  
TX power level = 0  
TX power level = 4  
TX power level = 0  
TX power level = 4  
TX power level = 0  
TX power level = 4  
1 DSSS  
6 OFDM  
54 OFDM  
TX  
NWP ACTIVE  
MCU SLEEP  
mA  
1 DSSS  
RX  
NWP idle connected(3)  
54 OFDM  
56  
12.2  
266  
184  
242  
176  
217  
154  
53  
TX power level = 0  
TX power level = 4  
TX power level = 0  
TX power level = 4  
TX power level = 0  
TX power level = 4  
1 DSSS  
6 OFDM  
54 OFDM  
TX  
NWP ACTIVE  
mA  
MCU LPDS  
1 DSSS  
RX  
54 OFDM  
53  
120 µA at 64KB  
135 µA at 256KB  
NWP LPDS(2)  
135  
710  
µA  
µA  
NWP idle connected(3)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
 
 
 
 
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
TA = 25°C, VBAT = 3.6 V  
PARAMETER  
TEST CONDITIONS(1) (5)  
MIN  
TYP  
1
MAX UNIT  
MCU SHUTDOWN MCU shutdown  
µA  
µA  
MCU HIBERNATE  
MCU hibernate  
4.5  
420  
450  
670  
700  
VBAT = 3.6 V  
VBAT = 3.3 V  
VBAT = 2.1 V  
VBAT = 1.85 V  
Peak calibration current(4)  
mA  
(1) TX power level = 0 implies maximum power (see 8-1, 8-2, and 8-3). TX power level = 4 implies output power backed off  
approximately 4 dB.  
(2) LPDS current does not include the external serial Flash. The LPDS number of reported is with retention of 256KB of MCU SRAM.  
The CC3220x device can be configured to retain 0KB, 64KB, 128KB, 192KB, or 256KB of SRAM in LPDS. Each 64-KB block of MCU  
retained SRAM increases LPDS current by 4 µA.  
(3) DTIM = 1  
(4) The complete calibration can take up to 17 mJ of energy from the battery over a time of 24 ms. In default mode, calibration is  
performed sparingly, and typically occurs when re-enabling the NWP and when the temperature has changed by more than 20°C.  
There are two additional calibration modes that may be used to reduced or completely eliminate the calibration event. For further  
details, see CC3120, CC3220 SimpleLink™ Wi-Fi® and IoT Network Processor Programmer's Guide.  
(5) The CC3220x system is a constant power-source system. The active current numbers scale based on the VBAT voltage supplied.  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
 
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
8.6 Current Consumption Summary (CC3220SF)  
TA = 25°C, VBAT = 3.6 V  
PARAMETER  
TEST CONDITIONS(1) (5)  
MIN  
TYP MAX UNIT  
TX power level = maximum  
TX power level = maximum – 4  
TX power level = maximum  
TX power level = maximum – 4  
TX power level = maximum  
TX power level = maximum – 4  
286  
202  
255  
192  
1 DSSS  
6 OFDM  
54 OFDM  
TX  
RX  
NWP ACTIVE  
MCU ACTIVE  
232  
174  
74  
mA  
1 DSSS  
54 OFDM  
74  
NWP idle connected(3)  
25.2  
282  
198  
251  
188  
228  
170  
70  
TX power level = maximum  
TX power level = maximum – 4  
TX power level = maximum  
TX power level = maximum – 4  
TX power level = maximum  
TX power level = maximum – 4  
1 DSSS  
6 OFDM  
54 OFDM  
TX  
NWP ACTIVE  
MCU SLEEP  
mA  
1 DSSS  
RX  
NWP idle connected(3)  
54 OFDM  
70  
21.2  
266  
184  
242  
176  
217  
154  
53  
TX power level = 0  
TX power level = 4  
TX power level = 0  
TX power level = 4  
TX power level = 0  
TX power level = 4  
1 DSSS  
6 OFDM  
54 OFDM  
TX  
NWP active  
mA  
MCU LPDS  
1 DSSS  
RX  
54 OFDM  
53  
120 µA at 64KB  
135 µA at 256KB  
NWP LPDS(2)  
135  
710  
1
NWP idle connected(3)  
MCU shutdown  
µA  
MCU  
SHUTDOWN  
MCU  
HIBERNATE  
MCU hibernate  
4.5  
VBAT = 3.6 V  
420  
450  
670  
700  
VBAT = 3.3 V  
VBAT = 2.1 V  
VBAT = 1.85 V  
Peak calibration current(4)  
mA  
(1) TX power level = 0 implies maximum power (see 8-1, 8-2, and 8-3). TX power level = 4 implies output power backed off  
approximately 4 dB.  
(2) LPDS current does not include the external serial flash. The LPDS number of reported is with retention of 256KB of MCU SRAM. The  
CC3220x device can be configured to retain 0KB, 64KB, 128KB, 192KB, or 256KB of SRAM in LPDS. Each 64-KB block of MCU  
retained SRAM increases LPDS current by 4 µA.  
(3) DTIM = 1  
(4) The complete calibration can take up to 17 mJ of energy from the battery over a period of 24 ms. Calibration is performed sparingly,  
typically when coming out of HIBERNATE and only if temperature has changed by more than 20°C. The calibration event can be  
controlled by a configuration file in the serial Flash..  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
 
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
8.7 TX Power and IBAT versus TX Power Level Settings  
8-1, 8-2, and 8-3 show TX Power and IBAT versus TX power level settings for the CC3220R and  
CC3220S devices at modulations of 1 DSSS, 6 OFDM, and 54 OFDM, respectively. For the CC3220SF device,  
the IBAT current has an increase of approximately 10 mA to 15 mA depending on the transmitted rate. The TX  
power level will remain the same.  
In 8-1, the area enclosed in the circle represents a significant reduction in current during transition from TX  
power level 3 to level 4. In the case of lower range requirements (14-dBm output power), TI recommends using  
TX power level 4 to reduce the current.  
1 DSSS  
19.00  
17.00  
280.00  
264.40  
249.00  
233.30  
218.00  
202.00  
186.70  
171.00  
Color by  
TX Power (dBm)  
15.00  
13.00  
IBAT (VBAT @ 3.6 V)  
11.00  
9.00  
7.00  
5.00  
3.00  
1.00  
155.60  
140.00  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
TX power level setting  
8-1. TX Power and IBAT vs TX Power Level Settings (1 DSSS)  
6 OFDM  
19.00  
17.00  
280.00  
264.40  
249.00  
233.30  
218.00  
202.00  
186.70  
171.00  
Color by  
TX Power (dBm)  
15.00  
13.00  
IBAT (VBAT @ 3.6 V)  
11.00  
9.00  
7.00  
5.00  
3.00  
1.00  
155.60  
140.00  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
TX power level setting  
8-2. TX Power and IBAT vs TX Power Level Settings (6 OFDM)  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
54 OFDM  
19.00  
17.00  
280.00  
Color by  
264.40  
249.00  
233.30  
218.00  
202.00  
186.70  
171.00  
TX Power (dBm)  
15.00  
13.00  
IBAT (VBAT @ 3.6 V)  
11.00  
9.00  
7.00  
5.00  
3.00  
1.00  
155.60  
140.00  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
TX power level setting  
8-3. TX Power and IBAT vs TX Power Level Settings (54 OFDM)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
8.8 Brownout and Blackout Conditions  
The device enters a brownout condition when the input voltage drops below Vbrownout (see 8-4 and 8-5).  
This condition must be considered during design of the power supply routing, especially when operating from a  
battery. High-current operations, such as a TX packet or any external activity (not necessarily related directly to  
networking) can cause a drop in the supply voltage, potentially triggering a brownout condition. The resistance  
includes the internal resistance of the battery, the contact resistance of the battery holder (four contacts for 2×  
AA batteries), and the wiring and PCB routing resistance.  
Note  
When the device is in HIBERNATE state, brownout is not detected. Only blackout is in effect during  
HIBERNATE state.  
8-4. Brownout and Blackout Levels (1 of 2)  
8-5. Brownout and Blackout Levels (2 of 2)  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
In the brownout condition, all sections of the device (including the 32-kHz RTC) shut down except for the  
Hibernate module, which remains on. The current in this state can reach approximately 400 µA. The blackout  
condition is equivalent to a hardware reset event in which all states within the device are lost.  
8-1 lists the brownout and blackout voltage levels.  
8-1. Brownout and Blackout Voltage Levels  
CONDITION  
VOLTAGE LEVEL  
UNIT  
V
Vbrownout  
Vblackout  
2.1  
1.67  
V
8.9 Electrical Characteristics (3.3 V, 25°C)  
GPIO Pins Except 29, 30, 50, 52, and 53 (25°C)(1)  
PARAMETER  
Pin capacitance  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
pF  
V
CIN  
VIH  
VIL  
IIH  
4
High-level input voltage  
Low-level input voltage  
High-level input current  
Low-level input current  
0.65 × VDD  
–0.5  
VDD + 0.5 V  
0.35 × VDD  
V
5
5
nA  
nA  
IIL  
IL = 2 mA; configured I/O drive  
strength = 2 mA;  
2.4 V ≤ VDD < 3.6 V  
VDD × 0.8  
VDD × 0.7  
VDD × 0.7  
VDD × 0.75  
VDD × 0.7  
IL = 4 mA; configured I/O drive  
strength = 4 mA;  
2.4 V ≤ VDD < 3.6 V  
IL = 6 mA; configured I/O drive  
strength = 6 mA;  
2.4 V ≤ VDD < 3.6 V  
VOH  
High-level output voltage  
V
IL = 2 mA; configured I/O drive  
strength = 2 mA;  
2.1 V ≤ VDD < 2.4 V  
IL = 2 mA; configured I/O drive  
strength = 2 mA;  
VDD = 1.85 V  
IL = 2 mA; configured I/O drive  
strength = 2 mA;  
2.4 V ≤ VDD < 3.6 V  
VDD × 0.2  
VDD × 0.2  
VDD × 0.2  
VDD × 0.25  
VDD × 0.35  
IL = 4 mA; configured I/O drive  
strength = 4 mA;  
2.4 V ≤ VDD < 3.6 V  
IL = 6 mA; configured I/O drive  
strength = 6 mA;  
2.4 V ≤ VDD < 3.6 V  
VOL  
Low-level output voltage  
V
IL = 2 mA; configured I/O drive  
strength = 2 mA;  
2.1 V ≤ VDD < 2.4 V  
IL = 2 mA; configured I/O drive  
strength = 2 mA;  
VDD = 1.85 V  
2-mA drive  
2
4
6
2
4
6
High-level  
source current  
IOH  
4-mA drive  
6-mA drive  
2-mA drive  
4-mA drive  
6-mA drive  
mA  
mA  
Low-level  
sink current  
IOL  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
CC3220R, CC3220S, CC3220SF  
www.ti.com.cn  
UNIT  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
GPIO Pins Except 29, 30, 50, 52, and 53 (25°C)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
GPIO Pins 29, 30, 50, 52, and 53 (25°C)(1)  
CIN  
VIH  
VIL  
IIH  
Pin capacitance  
7
pF  
V
High-level input voltage  
Low-level input voltage  
High-level input current  
Low-level input current  
0.65 × VDD  
–0.5  
VDD + 0.5 V  
0.35 × VDD  
V
50  
50  
nA  
nA  
IIL  
IL = 2 mA; configured I/O drive  
strength = 2 mA;  
VDD × 0.8  
VDD × 0.7  
VDD × 0.7  
VDD × 0.75  
VDD × 0.7  
2.4 V ≤ VDD < 3.6 V  
IL = 4 mA; configured I/O drive  
strength = 4 mA;  
2.4 V ≤ VDD < 3.6 V  
IL = 6 mA; configured I/O drive  
strength = 6 mA;  
VOH  
High-level output voltage  
V
2.4 V ≤ VDD < 3.6 V  
IL = 2 mA; configured I/O drive  
strength = 2 mA;  
2.1 V ≤ VDD < 2.4 V  
IL = 2 mA; configured I/O drive  
strength = 2 mA;  
VDD = 1.85 V  
IL = 2 mA; configured I/O drive  
strength = 2 mA;  
VDD × 0.2  
VDD × 0.2  
VDD × 0.2  
VDD × 0.25  
VDD × 0.35  
2.4 V ≤ VDD < 3.6 V  
IL = 4 mA; configured I/O drive  
strength = 4 mA;  
2.4 V ≤ VDD < 3.6 V  
IL = 6 mA; configured I/O drive  
strength = 6 mA;  
VOL  
Low-level output voltage  
V
2.4 V ≤ VDD < 3.6 V  
IL = 2 mA; configured I/O drive  
strength = 2 mA;  
2.1 V ≤ VDD < 2.4 V  
IL = 2 mA; configured I/O drive  
strength = 2 mA;  
VDD = 1.85 V  
2-mA drive  
1.5  
2.5  
3.5  
1.5  
2.5  
3.5  
High-level  
IOH  
source current, 4-mA drive  
mA  
VOH = 2.4  
6-mA drive  
2-mA drive  
Low-level  
sink current  
IOL  
4-mA drive  
mA  
V
6-mA drive  
nRESET(2)  
VIL  
0.6  
Pin Internal Pullup and Pulldown (25°C)(1)  
Pullup current, VOH = 2.4  
(VDD = 3.0 V)  
IOH  
5
5
10  
µA  
µA  
Pulldown current, VOL = 0.4  
(VDD = 3.0 V)  
IOL  
(1) TI recommends using the lowest possible drive strength that is adequate for the applications. This recommendation minimizes the risk  
of interference to the WLAN radio and reduces any potential degradation of RF sensitivity and performance. The default drive strength  
setting is 6 mA.  
(2) The nRESET pin must be held below 0.6 V for the device to register a reset.  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
8.10 WLAN Receiver Characteristics  
TA = 25°C, VBAT = 2.1 V to 3.6 V. Parameters are measured at the SoC pin on channel 6 (2437 MHz).  
PARAMETER  
TEST CONDITIONS (Mbps)  
MIN  
TYP(1)  
–96.0  
–94.0  
–88.0  
–90.5  
–90.0  
–86.5  
–80.5  
–74.5  
–71.5  
–70.5  
–4.0  
MAX  
UNIT  
1 DSSS  
2 DSSS  
11 CCK  
6 OFDM  
Sensitivity  
9 OFDM  
(8% PER for 11b rates, 10% PER for 11g/11n  
dBm  
rates) (10% PER)(3)  
18 OFDM  
36 OFDM  
54 OFDM  
MCS7 (GF)(2)  
MCS7 (MM)(2)  
802.11b  
Maximum input level  
(10% PER)  
dBm  
802.11g  
–10.0  
(1) In preregulated 1.85-V mode, RX sensitivity is 0.25- to 1-dB lower.  
(2) Sensitivity for mixed mode is 1-dB worse.  
(3) Sensitivity is 1-dB worse on channel 13 (2472 MHz).  
8.11 WLAN Transmitter Characteristics  
TA = 25°C, VBAT = 2.1 V to 3.6 V. Parameters measured at SoC pin on channel 6 (2437 MHz).(1) (2) (3)  
PARAMETER  
TEST CONDITIONS(3)  
MIN  
TYP  
18.0  
18.0  
18.3  
17.3  
17.3  
17.0  
16.0  
14.5  
13.0  
MAX  
UNIT  
dBm  
ppm  
1 DSSS  
2 DSSS  
11 CCK  
6 OFDM  
Maximum RMS output power measured at 1  
dB from IEEE spectral mask or EVM  
9 OFDM  
18 OFDM  
36 OFDM  
54 OFDM  
MCS7 (MM)  
Transmit center frequency accuracy  
–25  
25  
(1) The edge channels (2412 and 2472 MHz) have reduced TX power to meet FCC emission limits.  
(2) Power of 802.11b rates are reduced to meet ETSI requirements.  
(3) In preregulated 1.85-V mode, maximum TX power is 0.25- to 0.75-dB lower for modulations higher than 18 OFDM.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
 
 
 
 
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
8.12 WLAN Filter Requirements  
The device requires an external band-pass filter to meet the various emission standards, including FCC. 节  
8.12.1 presents the attenuation requirements for the band-pass filter. TI recommends using the same filter used  
in the reference design to ease the process of certification.  
8.12.1 WLAN Filter Requirements  
PARAMETER  
FREQUENCY (MHz)  
2412 to 2484  
2412 to 2484  
800 to 830  
MIN  
TYP  
MAX  
UNIT  
dB  
Return loss  
Insertion loss(1)  
10  
1
45  
25  
48  
50  
25  
25  
35  
45  
25  
50  
1.5  
dB  
30  
20  
30  
45  
20  
20  
20  
35  
20  
1600 to 1670  
3200 to 3300  
4000 to 4150  
4800 to 5000  
5600 to 5800  
6400 to 6600  
7200 to 7500  
7500 to 10000  
2412 to 2484  
Bandpass  
Attenuation  
dB  
Reference impendence  
Filter type  
Ω
(1) Insertion loss directly impacts output power and sensitivity. At customer discretion, insertion loss can be relaxed to meet attenuation  
requirements.  
8.13 Thermal Resistance Characteristics  
8.13.1 Thermal Resistance Characteristics for RGK Package  
AIR FLOW  
PARAMETER  
0 lfm (C/W)  
150 lfm (C/W)  
250 lfm (C/W)  
500 lfm (C/W)  
θja  
Ψjt  
Ψjb  
θjc  
23  
0.2  
2.3  
6.3  
2.4  
14.6  
0.2  
12.4  
0.3  
10.8  
0.1  
2.3  
2.2  
2.4  
θjb  
8.14 Timing and Switching Characteristics  
8.14.1 Power Supply Sequencing  
For proper operation of the CC3220x device, perform the recommended power-up sequencing as follows:  
1. Tie VBAT (pins 37, 39, 44) and VIO (pins 54 and 10) together on the board.  
2. Hold the RESET pin low while the supplies are ramping up. TI recommends using a simple RC circuit (100 K  
||, 1 µF, RC = 100 ms).  
3. For an external RTC, ensure that the clock is stable before RESET is deasserted (high).  
For timing diagrams, see 8.14.3.  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
 
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
8.14.2 Device Reset  
When a device restart is required, the user may issue a negative pulse to the nRESET pin. The user must follow  
one of the two alternatives to ensure the reset is properly applied:  
A negative reset pulse (on pin 32) of at least 200-ms duration  
If the above cannot be guaranteed, a pull-down resistor of 2 MΩ should be connected to pin 52  
(RTC_XTAL_N). If implemented, a shorter pulse of at least 100 µs can be used.  
To ensure a proper reset sequence, the user has to call the sl_stop function prior to toggling the reset. It is  
preferable to use software reset instead of an external trigger when a reset is required.  
8.14.3 Reset Timing  
8.14.3.1 nRESET (32-kHz Crystal)  
8-6 shows the reset timing diagram for the 32-kHz crystal first-time power-up and reset removal.  
T1  
T2  
T3  
T4  
VBAT  
VIO  
nRESET  
APP CODE  
LOAD  
APP CODE  
EXECUTION  
POWER  
OFF  
RESET  
HW INIT  
FW INIT  
STATE  
32-kHz  
RTC CLK  
T1 should be ≥200 ms without a pulldown resistor on the XTAL_N pin or T1 should be ≥100 µs if there is 2-MΩ pulldown resistor on the  
XTAL_N pin.  
8-6. First-Time Power-Up and Reset Removal Timing Diagram (32-kHz Crystal)  
8.14.3.2 describes the timing requirements for the 32-kHz clock crystal first-time power-up and reset removal.  
8.14.3.2 First-Time Power-Up and Reset Removal Timing Requirements (32-kHz Crystal)  
ITEM  
NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
ms  
ms  
s
Depends on application board  
power supply, decoupling capacitor,  
and so on  
T1  
T2  
T3  
Supply settling time  
3
Hardware wake-up time  
25  
Time taken by ROM  
firmware to initialize  
hardware  
Includes 32.768-kHz XOSC settling  
time  
1.1  
CC3220R  
CC3220S  
Image size (KB) × 0.75 ms  
Image size (KB) × 1.7 ms  
App code load time for  
CC3220R and CC3220S  
T4  
App code integrity check  
time for CC3220SF  
CC3220SF  
Image size (KB) × 0.06 ms  
8.14.3.3 nRESET (External 32-kHz)  
8-7 shows the reset timing diagram for the external 32-kHz first-time power-up and reset removal.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
T1  
T2  
T3  
T4  
VBAT  
VIO  
nRESET  
APP CODE  
EXECUTION  
POWER  
STATE  
OFF  
APP CODE  
LOAD  
RESET  
HW INIT  
FW INIT  
32-kHz  
RTC CLK  
8-7. First-Time Power-Up and Reset Removal Timing Diagram (External 32-kHz)  
8.14.3.3.1 describes the timing requirements for the external 32-kHz clock first-time power-up and reset  
removal.  
8.14.3.3.1 First-Time Power-Up and Reset Removal Timing Requirements (External 32-kHz)  
ITEM  
NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
ms  
Depends on application board power  
supply, decoupling capacitor, and so  
on  
T1  
T2  
Supply settling time  
Hardware wake-up time  
3
25  
5
ms  
CC3220R  
CC3220S  
CC3220SF  
CC3220R  
CC3220S  
Time taken by ROM  
firmware to initialize  
hardware  
T3  
T4  
10.3  
17.3  
ms  
Image size (KB) × 0.75 ms  
Image size (KB) × 1.7 ms  
App code load time for  
CC3220R and CC3220S  
App code integrity check  
time for CC3220SF  
CC3220SF  
Image size (KB) × 0.06 ms  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
8.14.4 Wakeup From HIBERNATE Mode  
8-8 shows the timing diagram for wakeup from HIBERNATE mode.  
Application software requests  
entry to HIBERNATE mode  
THIB_MIN  
T2  
T3  
T4  
VBAT  
VIO  
nRESET  
STATE  
APP CODE  
EXECUTION  
LOAD  
ACTIVE  
HIBERNATE  
HW WAKEUP  
FW INIT  
32-kHz  
RTC CLK  
8-8. Wakeup From HIBERNATE Timing Diagram  
Note  
The 32.768-kHz crystal is kept enabled by default when the chip goes into HIBERNATE mode .  
8.14.5 Clock Specifications  
The CC3220x device requires two separate clocks for its operation:  
A slow clock running at 32.768 kHz is used for the RTC.  
A fast clock running at 40 MHz is used by the device for the internal processor and the WLAN subsystem.  
The device features internal oscillators that enable the use of less-expensive crystals rather than dedicated  
TCXOs for these clocks. The RTC can also be fed externally to provide reuse of an existing clock on the system  
and to reduce overall cost.  
8.14.5.1 Slow Clock Using Internal Oscillator  
The RTC crystal connected on the device supplies the free-running slow clock. The accuracy of the slow clock  
frequency must be 32.768 kHz ±150 ppm. In this mode of operation, the crystal is tied between RTC_XTAL_P  
(pin 51) and RTC_XTAL_N (pin 52) with a suitable load capacitance to meet the ppm requirement.  
8-9 shows the crystal connections for the slow clock.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
51  
RTC_XTAL_P  
10 pF  
GND  
32.768 kHz  
52  
RTC_XTAL_N  
10 pF  
GND  
Copyright © 2017, Texas Instruments Incorporated  
8-9. RTC Crystal Connections  
8.14.5.1.1 lists the RTC crystal requirements.  
8.14.5.1.1 RTC Crystal Requirements  
CHARACTERISTICS  
Frequency  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
kHz  
ppm  
kΩ  
32.768  
Frequency accuracy  
Crystal ESR  
Initial plus temperature plus aging  
32.768 kHz  
±150  
70  
8.14.5.2 Slow Clock Using an External Clock  
When an RTC oscillator is present in the system, the CC3220x device can accept this clock directly as an  
input. The clock is fed on the RTC_XTAL_P line, and the RTC_XTAL_N line is held to VIO. The clock must be a  
CMOS-level clock compatible with VIO fed to the device.  
8-10 shows the external RTC input connection.  
32.768 kHz  
RTC_XTAL_P  
Host system  
VIO  
100 KΩ  
RTC_XTAL_N  
Copyright © 2017, Texas Instruments Incorporated  
8-10. External RTC Input  
8.14.5.2.1 lists the external RTC digital clock requirements.  
8.14.5.2.1 External RTC Digital Clock Requirements  
CHARACTERISTICS  
Frequency  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
32768  
Hz  
Frequency accuracy  
(Initial plus temperature plus aging)  
±150  
ppm  
ns  
tr, tf  
Input transition time tr, tf (10% to 90%)  
100  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
 
 
CC3220R, CC3220S, CC3220SF  
www.ti.com.cn  
CHARACTERISTICS  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
TEST CONDITIONS  
MIN  
TYP  
MAX  
80%  
UNIT  
Frequency input duty cycle  
20%  
50%  
Vih  
Vil  
0.65 × VIO  
VIO  
V
Slow clock input voltage limits  
Square wave, DC coupled  
0
1
0.35 × VIO  
Vpeak  
MΩ  
pF  
Input impedance  
5
8.14.5.3 Fast Clock (Fref) Using an External Crystal  
The CC3220x device also incorporates an internal crystal oscillator to support a crystal-based fast clock. The  
crystal is fed directly between WLAN_XTAL_P (pin 23) and WLAN_XTAL_N (pin 22) with suitable loading  
capacitors.  
8-11 shows the crystal connections for the fast clock.  
23  
WLAN_XTAL_P  
6.2 pF  
GND  
40 MHz  
22  
WLAN_XTAL_N  
6.2 pF  
GND  
SWAS031-030  
A. The crystal capacitance must be tuned to ensure that the PPM requirement is met. See CC31xx & CC32xx Frequency Tuning for  
information on frequency tuning.  
8-11. Fast Clock Crystal Connections  
8.14.5.3.1 lists the WLAN fast-clock crystal requirements.  
8.14.5.3.1 WLAN Fast-Clock Crystal Requirements  
CHARACTERISTICS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
ppm  
Ω
Frequency  
40  
Frequency accuracy  
Crystal ESR  
Initial plus temperature plus aging  
40 MHz  
±25  
60  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
8.14.5.4 Fast Clock (Fref) Using an External Oscillator  
The CC3220x device can accept an external TCXO/XO for the 40-MHz clock. In this mode of operation, the  
clock is connected to WLAN_XTAL_P (pin 23). WLAN_XTAL_N (pin 22) is connected to GND. The external  
TCXO/XO can be enabled by TCXO_EN (pin 21) from the device to optimize the power consumption of the  
system.  
If the TCXO does not have an enable input, an external LDO with an enable function can be used. Using the  
LDO improves noise on the TCXO power supply.  
8-12 shows the connection.  
Vcc  
XO (40 MHz)  
EN  
CC3220x  
TCXO_EN  
82 pF  
WLAN_XTAL_P  
WLAN_XTAL_N  
OUT  
Copyright © 2017, Texas Instruments Incorporated  
8-12. External TCXO Input  
8.14.5.4.1 lists the external Fref clock requirements.  
8.14.5.4.1 External Fref Clock Requirements (–40°C to +85°C)  
CHARACTERISTICS  
Frequency  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
40.00  
MHz  
Frequency accuracy (Initial plus temperature plus  
aging)  
±25 ppm  
55%  
Frequency input duty cycle  
Clock voltage limits  
45%  
0.7  
50%  
Sine or clipped sine wave, AC  
coupled  
Vpp  
1.2  
Vpp  
at 1 kHz  
–125  
Phase noise at 40 MHz  
at 10 kHz  
at 100 kHz  
–138.5 dBc/Hz  
–143  
kΩ  
Resistance  
Input impedance  
12  
Capacitance  
7
pF  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
8.14.6 Peripherals Timing  
This section describes the peripherals that are supported by the CC3220x device:  
SPI  
I2S  
GPIOs  
I2C  
IEEE 1149.1 JTAG  
ADC  
Camera parallel port  
UART  
SD Host  
Timers  
8.14.6.1 SPI  
8.14.6.1.1 SPI Master  
The CC3220x microcontroller includes one SPI module, which can be configured as a master or slave device.  
The SPI includes a serial clock with programmable frequency, polarity, and phase; a programmable timing  
control between chip select and external clock generation; and a programmable delay before the first SPI word is  
transmitted. Slave mode does not include a dead cycle between two successive words.  
8-13 shows the timing diagram for the SPI master.  
T2  
CLK  
T6  
T7  
MISO  
MOSI  
T9  
T8  
8-13. SPI Master Timing Diagram  
8.14.6.1.1.1 lists the timing parameters for the SPI master.  
8.14.6.1.1.1 SPI Master Timing Parameters  
PARAMETER  
NUMBER  
MIN  
MAX  
UNIT  
F(1)  
Tclk  
D(1)  
Clock frequency  
Clock period  
20  
MHz  
ns  
(1)  
T2  
50  
45%  
1
Duty cycle  
55%  
(1)  
T6  
T7  
T8  
T9  
tIS  
RX data setup time  
RX data hold time  
TX data output delay  
TX data hold time  
ns  
ns  
ns  
ns  
(1)  
tIH  
2
(1)  
(1)  
tOD  
tOH  
8.5  
8
(1) Timing parameter assumes a maximum load of 20 pF.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
8.14.6.1.2 SPI Slave  
8-14 shows the timing diagram for the SPI slave.  
T2  
CLK  
T6  
T7  
MISO  
MOSI  
T9  
T8  
8-14. SPI Slave Timing Diagram  
8.14.6.1.2.1 lists the timing parameters for the SPI slave.  
8.14.6.1.2.1 SPI Slave Timing Parameters  
PARAMETER  
NUMBER  
MIN  
MAX  
UNIT  
Clock frequency at VBAT = 3.3 V  
20  
12  
F(1)  
MHz  
ns  
Clock frequency at VBAT ≤ 2.1 V  
Clock period  
(1)  
T2  
Tclk  
D(1)  
50  
45%  
4
Duty cycle  
55%  
(1)  
T6  
T7  
T8  
T9  
tIS  
RX data setup time  
RX data hold time  
TX data output delay  
TX data hold time  
ns  
ns  
ns  
ns  
(1)  
tIH  
4
(1)  
(1)  
tOD  
tOH  
20  
24  
(1) Timing parameter assumes a maximum load of 20 pF at 3.3 V.  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
8.14.6.2 I2S  
The McASP interface functions as a general-purpose audio serial port optimized for multichannel audio  
applications and supports transfer of two stereo channels over two data pins. The McASP consists of transmit  
and receive sections that operate synchronously and have programmable clock and frame-sync polarity. A  
fractional divider is available for bit-clock generation.  
8.14.6.2.1 I2S Transmit Mode  
8-15 shows the timing diagram for the I2S transmit mode.  
T2  
T1  
T3  
McACLKX  
T4  
T4  
McAFSX  
McAXR0/1  
8-15. I2S Transmit Mode Timing Diagram  
8.14.6.2.1.1 lists the timing parameters for the I2S transmit mode.  
8.14.6.2.1.1 I2S Transmit Mode Timing Parameters  
PARAMETER  
NUMBER  
MIN  
MAX  
UNIT  
(1)  
T1  
T2  
T3  
T4  
fclk  
Clock frequency  
Clock low period  
Clock high period  
TX data hold time  
9.216  
1/2 fclk  
1/2 fclk  
22  
MHz  
ns  
tLP (1)  
(1)  
tHT  
ns  
(1)  
tOH  
ns  
(1) Timing parameter assumes a maximum load of 20 pF.  
8.14.6.2.2 I2S Receive Mode  
8-16 shows the timing diagram for the I2S receive mode.  
T2  
T1  
T3  
McACLKX  
T5  
T4  
McAFSX  
McAXR0/1  
8-16. I2S Receive Mode Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
8.14.6.2.2.1 lists the timing parameters for the I2S receive mode.  
8.14.6.2.2.1 I2S Receive Mode Timing Parameters  
PARAMETER  
NUMBER  
MIN  
MAX  
UNIT  
(1)  
T1  
T2  
T3  
T4  
T5  
fclk  
Clock frequency  
Clock low period  
Clock high period  
RX data hold time  
RX data setup time  
9.216  
1/2 fclk  
1/2 fclk  
0
MHz  
ns  
tLP (1)  
(1)  
tHT  
ns  
(1)  
tOH  
ns  
(1)  
tOS  
15  
ns  
(1) Timing parameter assumes a maximum load of 20 pF.  
8.14.6.3 GPIOs  
All digital pins of the device can be used as general-purpose input/output (GPIO) pins. The GPIO module  
consists of four GPIO blocks, each of which provides eight GPIOs. The GPIO module supports 24  
programmable GPIO pins, depending on the peripheral used. Each GPIO has configurable pullup and pulldown  
strength (weak 10 µA), configurable drive strength (2, 4, and 6 mA), and open-drain enable.  
8-17 shows the GPIO timing diagram.  
VDD  
80%  
20%  
tGPIOF  
tGPIOR  
SWAS031-067  
8-17. GPIO Timing Diagram  
8.14.6.3.1 GPIO Output Transition Time Parameters (Vsupply = 3.3 V)  
8.14.6.3.1.1 lists the GPIO output transition times for Vsupply = 3.3 V.  
8.14.6.3.1.1 GPIO Output Transition Times (Vsupply = 3.3 V)(1) (2)  
tr  
tf  
DRIVE  
STRENGTH (mA)  
DRIVE STRENGTH  
CONTROL BITS  
UNIT  
ns  
MIN  
NOM  
MAX  
MIN  
NOM  
MAX  
2MA_EN=1  
4MA_EN=0  
2MA_EN=0  
4MA_EN=1  
2MA_EN=1  
4MA_EN=1  
2
4
6
8.0  
9.3  
10.7  
8.2  
9.5  
5.2  
2.6  
11.0  
6.6  
3.2  
7.1  
3.5  
7.6  
3.7  
4.7  
2.3  
5.8  
2.9  
ns  
ns  
(1) Vsupply = 3.3 V, T = 25°C, total pin load = 30 pF  
(2) The transition data applies to the pins except the multiplexed analog-digital pins 29, 30, 45, 50, 52, and 53.  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
 
 
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
8.14.6.3.2 GPIO Output Transition Time Parameters (Vsupply = 1.85 V)  
8.14.6.3.2.1 lists the GPIO output transition times for Vsupply = 1.8 V.  
8.14.6.3.2.1 GPIO Output Transition Times (Vsupply = 1.85 V)(1) (2)  
tr  
tf  
DRIVE  
STRENGTH (mA)  
DRIVE STRENGTH  
CONTROL BITS  
UNIT  
MIN  
NOM  
MAX  
MIN  
NOM  
MAX  
2MA_EN=1  
4MA_EN=0  
2MA_EN=0  
4MA_EN=1  
2MA_EN=1  
4MA_EN=1  
2
4
6
11.7  
13.9  
16.3  
11.5  
13.9  
16.7  
ns  
ns  
ns  
13.7  
5.5  
15.6  
6.4  
18.0  
7.4  
9.9  
3.8  
11.6  
4.7  
13.6  
5.8  
(1) Vsupply = 1.8 V, T = 25°C, total pin load = 30 pF  
(2) The transition data applies to the pins other than the multiplexed analog-digital pins 29, 30, 45, 50, 52, and 53.  
8.14.6.3.3 GPIO Input Transition Time Parameters  
8.14.6.3.3.1 lists the input transition time parameters.  
8.14.6.3.3.1 GPIO Input Transition Time Parameters'  
MIN  
MAX  
UNIT  
tr  
tf  
1
1
3
3
ns  
ns  
Input transition time (tr, tf), 10% to 90%  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
8.14.6.4 I2C  
The CC3220x microcontroller includes one I2C module operating with standard (100 kbps) or fast  
(400 kbps) transmission speeds.  
8-18 shows the I2C timing diagram.  
T2  
T6  
T5  
I2CSCL  
I2CSDA  
T1  
T7  
T4  
T8  
T3  
T9  
8-18. I2C Timing Diagram  
8.14.6.4.1 lists the I2C timing parameters.  
8.14.6.4.1 I2C Timing Parameters(3)  
PARAMETER  
NUMBER  
MIN  
MAX  
UNIT  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
tLP  
Clock low period  
See (1)  
System clock  
ns  
tSRT  
tDH  
tSFT  
tHT  
SCL/SDA rise time  
Data hold time  
See (2)  
NA  
3
SCL/SDA fall time  
Clock high time  
ns  
See (1)  
tLP/2  
36  
System clock  
System clock  
System clock  
System clock  
tDS  
Data setup time  
tSCSR  
tSCS  
Start condition setup time  
Stop condition setup time  
24  
(1) This value depends on the value programmed in the clock period register of I2C. Maximum output frequency is the result of the minimal  
value programmed in this register.  
(2) Because I2C is an open-drain interface, the controller can drive logic 0 only. Logic is the result of external pullup. Rise time depends on  
the value of the external signal capacitance and external pullup register.  
(3) All timing is with 6-mA drive and 20-pF load.  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
 
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
8.14.6.5 IEEE 1149.1 JTAG  
The Joint Test Action Group (JTAG) port is an IEEE standard that defines a test access port (TAP) and  
boundary scan architecture for digital integrated circuits and provides a standardized serial interface to control  
the associated test logic. For detailed information on the operation of the JTAG port and TAP controller, see the  
IEEE Standard 1149.1,Test Access Port and Boundary-Scan Architecture.  
8-19 shows the JTAG timing diagram.  
T2  
T3  
T4  
TCK  
TMS  
TDI  
T7  
TMS Input Valid  
T9 T10  
TDI Input Valid  
T8  
T8  
TMS Input Valid  
T7  
T9  
T10  
TDI Input Valid  
T1  
T11  
TDO Output Valid  
TDO  
TDO Output Valid  
8-19. JTAG Timing Diagram  
8.14.6.5.1 lists the JTAG timing parameters.  
8.14.6.5.1 JTAG Timing Parameters  
PARAMETER  
NUMBER  
MIN  
MAX  
UNIT  
T1  
T2  
fTCK  
Clock frequency  
Clock period  
15  
1 / fTCK  
tTCK / 2  
tTCK / 2  
MHz  
ns  
tTCK  
T3  
tCL  
Clock low period  
Clock high period  
TMS setup time  
TMS hold time  
TDI setup time  
TDI hold time  
ns  
T4  
tCH  
ns  
T7  
tTMS_SU  
tTMS_HO  
tTDI_SU  
tTDI_HO  
tTDO_HO  
1
16  
1
ns  
T8  
ns  
T9  
ns  
T10  
T11  
16  
ns  
TDO hold time  
15  
ns  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
8.14.6.6 ADC  
8-20 shows the ADC clock timing diagram.  
Repeats Every 16 µs  
Internal Ch  
2 µs  
2 µs  
2 µs  
2 µs  
2 µs  
2 µs  
2 µs  
2 µs  
2 µs  
2 µs  
ADC CLOCK  
= 10 MHz  
Sampling  
4 cycles  
SAR Conversion  
16 cycles  
Sampling  
4 cycles  
SAR Conversion  
16 cycles  
Sampling  
4 cycles  
SAR Conversion  
16 cycles  
Sampling  
4 cycles  
SAR Conversion  
16 cycles  
EXT CHANNEL 0  
EXT CHANNEL 1  
INTERNAL CHANNEL  
INTERNAL CHANNEL  
8-20. ADC Clock Timing Diagram  
8.14.6.6.1 lists the ADC electrical specifications. See CC32xx ADC Appnote for further information on using  
the ADC and for application-specific examples.  
8.14.6.6.1 ADC Electrical Specifications  
TEST CONDITIONS AND  
PARAMETER  
Nbits  
DESCRIPTION  
Number of bits  
MIN  
TYP  
MAX  
UNIT  
ASSUMPTIONS  
12  
Bits  
Worst-case deviation from  
histogram method over full scale  
(not including first and last three  
LSB levels)  
INL  
Integral nonlinearity  
–2.5  
2.5  
LSB  
Worst-case deviation of any step  
from ideal  
DNL  
Differential nonlinearity  
–1  
0
4
1.4  
LSB  
V
Input range  
Driving source  
impedance  
100  
Ω
Successive approximation input  
clock rate  
FCLK  
Clock rate  
10  
MHz  
pF  
Input capacitance  
12  
2.15  
0.7  
ADC Pin 57  
ADC Pin 58  
ADC Pin 59  
ADC Pin 60  
Input impedance  
kΩ  
2.12  
1.17  
4
Number of channels  
Fsample  
Sampling rate of each pin  
62.5  
KSPS  
kHz  
F_input_max  
Maximum input signal frequency  
31  
Input frequency DC to 300 Hz  
and 1.4 Vpp sine wave input  
SINAD  
Signal-to-noise and distortion  
Active supply current  
55  
60  
dB  
Average for analog-to-digital  
during conversion without  
reference current  
I_active  
1.5  
mA  
Total for analog-to-digital when  
not active (this must be the SoC  
level test)  
Power-down supply current for  
core supply  
I_PD  
1
µA  
Absolute offset error  
Gain error  
FCLK = 10 MHz  
±2  
mV  
±2%  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
CC3220R, CC3220S, CC3220SF  
www.ti.com.cn  
PARAMETER  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
TEST CONDITIONS AND  
ASSUMPTIONS  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
Vref  
ADC reference voltage  
1.467  
V
8.14.6.7 Camera Parallel Port  
The fast camera parallel port interfaces with a variety of external image sensors, stores the image data in a  
FIFO, and generates DMA requests. The camera parallel port supports 8 bits.  
8-21 shows the timing diagram for the camera parallel port.  
T3  
T2  
T4  
pCLK  
T6  
T7  
pVS, pHS  
pDATA  
8-21. Camera Parallel Port Timing Diagram  
8.14.6.7.1 lists the timing parameters for the camera parallel port.  
8.14.6.7.1 Camera Parallel Port Timing Parameters  
PARAMETER NUMBER  
MIN  
MAX  
2
UNIT  
MHz  
ns  
pCLK  
Tclk  
tLP  
Clock frequency  
Clock period  
T2  
T3  
T4  
T6  
T7  
1/pCLK  
Tclk/2  
Tclk/2  
2
Clock low period  
Clock high period  
RX data setup time  
RX data hold time  
Duty cycle  
ns  
tHT  
tIS  
ns  
ns  
tIH  
2
ns  
D
45%  
55%  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
8.14.6.8 UART  
The CC3220x device includes two UARTs with the following features:  
Programmable baud-rate generator allowing speeds up to 3 Mbps  
Separate 16-bit × 8-bit TX and RX FIFOs to reduce CPU interrupt service loading  
Programmable FIFO length, including a 1-byte-deep operation providing conventional double-buffered  
interface  
FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8  
Standard asynchronous communication bits for start, stop, and parity  
Generation and detection of line-breaks  
Fully programmable serial interface characteristics:  
– 5, 6, 7, or 8 data bits  
– Generation and detection of even, odd, stick, or no-parity bits  
– Generation of 1 or 2 stop-bits  
RTS and CTS hardware flow support  
Standard FIFO-level and end-of-transmission interrupts  
Efficient transfers using µDMA:  
– Separate channels for transmit and receive  
– Receive single request asserted when data is in the FIFO; burst request asserted at programmed FIFO  
level  
– Transmit single request asserted when there is space in the FIFO; burst request asserted at programmed  
FIFO level  
System clock is used to generate the baud clock.  
8.14.6.9 SD Host  
CC3220x provides an interface between a local host (LH), such as an MCU and an SD memory card, and  
handles SD transactions with minimal LH intervention.  
The SD host does the following:  
Provides SD card access in 1-bit mode  
Deals with SD protocol at the transmission level  
Handles data packing  
Adds cyclic redundancy checks (CRC)  
Start and end bit  
Checks for syntactical correctness  
The application interface sends every SD command and either polls for the status of the adapter or waits for  
an interrupt request. The result is then sent back to the application interface in case of exceptions or to warn  
of end-of-operation. The controller can be configured to generate DMA requests and work with minimum CPU  
intervention. Given the nature of integration of this peripheral on the CC3220x platform, TI recommends that  
developers use peripheral library APIs to control and operate the block. This section emphasizes understanding  
the SD host APIs provided in the peripheral library of the CC3220x Software Development Kit (SDK).  
The SD Host features are as follows:  
Full compliance with SD command and response sets, as defined in the SD memory card  
– Specifications, v2.0  
– Includes high-capacity (size >2 GB) cards HC SD  
Flexible architecture, allowing support for new command structure.  
1-bit transfer mode specifications for SD cards  
Built-in 1024-byte buffer for read or write  
– 512-byte buffer for both transmit and receive  
– Each buffer is 32-bits wide by 128-words deep  
32-bit-wide access bus to maximize bus throughput  
Single interrupt line for multiple interrupt source events  
Two slave DMA channels (1 for TX, 1 for RX)  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
Programmable clock generation  
Integrates an internal transceiver that allows a direct connection to the SD card without external transceiver  
Supports configurable busy and response timeout  
Support for a wide range of card clock frequency with odd and even clock ratio  
Maximum frequency supported is 24 MHz  
8.14.6.10 Timers  
Programmable timers can be used to count or time external events that drive the timer input pins. The CC3220x  
general-purpose timer module (GPTM) contains 16- or 32-bit GPTM blocks. Each 16- or 32-bit GPTM block  
provides two 16-bit timers or counters (referred to as Timer A and Timer B) that can be configured to operate  
independently as timers or event counters, or they can be concatenated to operate as one 32-bit timer. Timers  
can also be used to trigger µDMA transfers.  
The GPTM contains four 16- or 32-bit GPTM blocks with the following functional options:  
Operating modes:  
– 16- or 32-bit programmable one-shot timer  
– 16- or 32-bit programmable periodic timer  
– 16-bit general-purpose timer with an 8-bit prescaler  
– 16-bit input-edge count- or time-capture modes with an 8-bit prescaler  
– 16-bit PWM mode with an 8-bit prescaler and software-programmable output inversion of the PWM signal  
Counts up or counts down  
Sixteen 16- or 32-bit capture compare pins (CCP)  
User-enabled stalling when the microcontroller asserts CPU Halt flag during debug  
Ability to determine the elapsed time between the assertion of the timer interrupt and entry into the interrupt  
service routine  
Efficient transfers using micro direct memory access controller (µDMA):  
– Dedicated channel for each timer  
– Burst request generated on timer interrupt  
Runs from system clock (80 MHz)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: CC3220R CC3220S CC3220SF  
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
9 Detailed Description  
The CC3220x wireless MCU family has a rich set of peripherals for diverse application requirements. This  
section briefly highlights the internal details of the CC3220x devices and offers suggestions for application  
configurations.  
9.1 Arm® Cortex®-M4 Processor Core Subsystem  
The high-performance Cortex-M4 processor provides a low-cost platform that meets the needs of minimal  
memory implementation, reduced pin count, and low power consumption, while delivering outstanding  
computational performance and exceptional system response to interrupts.  
The Cortex-M4 core has low-latency interrupt processing with the following features:  
– A 32-bit Arm® Thumb® instruction set optimized for embedded applications  
– Handler and thread modes  
– Low-latency interrupt handling by automatic processor state saving and restoration during entry and exit  
– Support for ARMv6 unaligned accesses  
Nested vectored interrupt controller (NVIC) closely integrated with the processor core to achieve low-latency  
interrupt processing. The NVIC includes the following features:  
– Bits of priority configurable from 3 to 8  
– Dynamic reprioritization of interrupts  
– Priority grouping that enables selection of preempting interrupt levels and nonpreempting interrupt levels  
– Support for tail-chaining and late arrival of interrupts, which enables back-to-back interrupt processing  
without the overhead of state saving and restoration between interrupts  
– Processor state automatically saved on interrupt entry and restored on interrupt exit with no instruction  
overhead  
– Wake-up interrupt controller (WIC) providing ultra-low-power sleep mode support  
Bus interfaces:  
– Advanced high-performance bus (AHB-Lite) interfaces: system bus interfaces  
– Bit-band support for memory and select peripheral that includes atomic bit-band write and read operations  
Low-cost debug solution featuring:  
– Debug access to all memory and registers in the system, including access to memory-mapped devices,  
access to internal core registers when the core is halted, and access to debug control registers even while  
SYSRESETn is asserted  
– Serial wire debug port (SW-DP) or serial wire JTAG debug port (SWJ-DP) debug access  
– Flash patch and breakpoint (FPB) unit to implement breakpoints and code patches  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
9.2 Wi-Fi Network Processor Subsystem  
The Wi-Fi network processor subsystem includes a dedicated Arm MCU to completely offload the host MCU  
along with an 802.11 b/g/n radio, baseband, and MAC with a powerful crypto engine for a fast, secure WLAN  
and Internet connections with 256-bit encryption. The CC3220x devices support station, AP, and Wi-Fi Direct  
modes. The device also supports WPA2 personal and enterprise security, WPS 2.0, WPA3 personal and  
enterprise. The Wi-Fi network processor includes an embedded IPv6, IPv4 TCP/IP stack.  
9.2.1 WLAN  
The WLAN features are as follows:  
802.11b/g/n integrated radio, modem, and MAC supporting WLAN communication as a BSS station, AP,  
Wi-Fi Direct client and group owner with CCK and OFDM rates in the 2.4-GHz ISM band, channels 1 to 13.  
Note  
802.11n is supported only in Wi-Fi station, Wi-Fi direct, and P2P client modes.  
Autocalibrated radio with a single-ended 50-Ω interface enables easy connection to the antenna without  
requiring expertise in radio circuit design.  
Advanced connection manager with multiple user-configurable profiles stored in serial Flash allows automatic  
fast connection to an access point without user or host intervention.  
Supports all common Wi-Fi security modes for personal and enterprise networks with on-chip security  
accelerators, including: WEP, WPA/WPA2 PSK, WPA2 Enterprise (802.1x), WPA3 Personal, and WPA3  
Enterprise.  
Smart provisioning options deeply integrated within the device providing a comprehensive end-to-end  
solution. With elaborate events notification to the host, enabling the application to control the provisioning  
decision flow. The wide variety of Wi-Fi provisioning methods include:  
– Access Point using HTTPS  
– SmartConfig Technology: a 1-step, 1-time process to connect a CC3220-enabled device to the home  
wireless network, removing dependency on the I/O capabilities of the host MCU; thus, it is usable by  
deeply embedded applications  
802.11 transceiver mode allows transmitting and receiving of proprietary data through a socket without  
adding MAC or PHY headers. The 802.11 transceiver mode provides the option to select the working  
channel, rate, and transmitted power. The receiver mode works with the filtering options.  
9.2.2 Network Stack  
The Network Stack features are as follows:  
Integrated IPv4, IPv6 TCP/IP stack with BSD (BSD adjacent) socket APIs for simple Internet connectivity with  
any MCU, microprocessor, or ASIC  
Note  
Not all APIs are 100% BSD compliant. Not all BSD APIs are supported.  
Support of 16 simultaneous TCP, UDP, or RAW sockets  
Support of 6 simultaneous SSL\TLS sockets  
Built-in network protocols:  
– Static IP, LLA, DHCPv4, DHCPv6 with DAD and stateless autoconfiguration  
– ARP, ICMPv4, IGMP, ICMPv6, MLD, ND  
– DNS client for easy connection to the local network and the Internet  
Built-in network application and utilities:  
– HTTP/HTTPS  
Web page content stored on serial Flash  
RESTful APIs for setting and configuring application content  
Dynamic user callbacks  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
– Service discovery: Multicast DNS service discovery lets a client advertise its service without a centralized  
server. After connecting to the access point, the CC3220x device provides critical information, such as  
device name, IP, vendor, and port number.  
– DHCP server  
– Ping  
9-1 describes the NWP features.  
9-1. NWP Features  
Feature  
Description  
802.11b/g/n station  
Wi-Fi standards  
802.11b/g AP supporting up to four stations  
Wi-Fi Direct client and group owner  
1 to 13  
Wi-Fi channels  
Wi-Fi security  
Wi-Fi provisioning  
IP protocols  
WEP, WPA/WPA2 PSK, WPA2 enterprise (802.1x), WPA3 personal and enterprise  
SmartConfig technology, Wi-Fi protected setup (WPS2), AP mode with internal HTTP web server  
IPv4/IPv6  
IP addressing  
Cross layer  
Static IP, LLA, DHCPv4, DHCPv6 with DAD  
ARP, ICMPv4, IGMP, ICMPv6, MLD, NDP  
UDP, TCP  
Transport  
SSLv3.0/TLSv1.0/TLSv1.1/TLSv1.2  
RAW  
Ping  
HTTP/HTTPS web server  
Network applications and  
utilities  
mDNS  
DNS-SD  
DHCP server  
Host interface  
UART/SPI  
Device identity  
Trusted root-certificate catalog  
TI root-of-trust public key  
The CC3220S and CC3220SF variants also support:  
Secure key storage  
File system security  
Security  
Software tamper detection  
Cloning protection  
Secure boot  
Validate the integrity and authenticity of the run-time binary during boot  
Initial secure programming  
Debug security  
JTAG and debug  
Power management  
Other  
Enhanced power policy management uses 802.11 power save and deep-sleep power modes  
Transceiver  
Programmable RX filters with event-trigger mechanism  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
9.3 Security  
The SimpleLink™ Wi-Fi® CC3220x Internet-on-a-Chip device enhances the security capabilities available for  
development of IoT devices, while completely offloading these activities from the MCU to the networking  
subsystem. The security capabilities include the following key features:  
Wi-Fi and Internet Security:  
Personal and enterprise Wi-Fi security  
– Personal standards  
AES (WPA2-PSK)  
TKIP (WPA-PSK)  
WEP  
– Enterprise standards  
EAP Fast  
EAP PEAPv0/1  
EAP PEAPv0 TLS  
EAP PEAPv1 TLS EAP LS  
EAP TLS  
EAP TTLS TLS  
EAP TTLS MSCHAPv2  
Secure sockets  
– Protocol versions: SSL v3, TLS 1.0, TLS 1.1, TLS 1.2  
– Powerful crypto engine for fast, secure Wi-Fi and internet connections with 256-bit AES encryption for TLS  
and SSL connections  
– Ciphers suites  
SL_SEC_MASK_SSL_RSA_WITH_RC4_128_SHA  
SL_SEC_MASK_SSL_RSA_WITH_RC4_128_MD5  
SL_SEC_MASK_TLS_RSA_WITH_AES_256_CBC_SHA  
SL_SEC_MASK_TLS_DHE_RSA_WITH_AES_256_CBC_SHA  
SL_SEC_MASK_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA  
SL_SEC_MASK_TLS_ECDHE_RSA_WITH_RC4_128_SHA  
SL_SEC_MASK_TLS_RSA_WITH_AES_128_CBC_SHA256  
SL_SEC_MASK_TLS_RSA_WITH_AES_256_CBC_SHA256  
SL_SEC_MASK_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256  
SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256  
SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA  
SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA  
SL_SEC_MASK_TLS_RSA_WITH_AES_128_GCM_SHA256  
SL_SEC_MASK_TLS_RSA_WITH_AES_256_GCM_SHA384  
SL_SEC_MASK_TLS_DHE_RSA_WITH_AES_128_GCM_SHA256  
SL_SEC_MASK_TLS_DHE_RSA_WITH_AES_256_GCM_SHA384  
SL_SEC_MASK_TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256  
SL_SEC_MASK_TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384  
SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256  
SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384  
SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256  
SL_SEC_MASK_TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256  
SL_SEC_MASK_TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256  
– Server authentication  
– Client authentication  
– Domain name verification  
– Runtime socket upgrade to secure socket – STARTTLS  
Secure HTTP server (HTTPS)  
Trusted root-certificate catalog—Verifies that the CA used by the application is trusted and known secure  
content delivery  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
TI root-of-trust public key—Hardware-based mechanism that allows authenticating TI as the genuine origin of  
a given content using asymmetric keys  
Secure content delivery—Allows encrypted file transfer to the system using asymmetric keys created by the  
device  
Code and Data Security:  
Network passwords and certificates are encrypted and signed.  
Cloning protection—Application and data files are encrypted by a unique key per device.  
Access control—Access to application and data files only by using a token provided in file creation time. If an  
unauthorized access is detected, a tamper protection lockdown mechanism takes effect.  
Encrypted and Authenticated file system (not supported in CC3220R)  
Secured boot—Authentication of the application image on every boot  
Code and data encryption (not supported in CC3220R)—User application and data files are encrypted in  
serial flash.  
Code and data authentication (not supported in CC3220R)—User Application and data files are authenticated  
with a public key certificate.  
Offloaded crypto library for asymmetric keys, including the ability to create key-pair, sign and verify data  
buffer.  
Recovery mechanism  
Device Security:  
Separate execution environments—Application processor and network processor run on separate Arm cores  
Initial secure programming (not supported in CC3220R)—Allows for keeping the content confidential on the  
production line  
Debug security (not supported in CC3220R)  
– JTAG lock  
– Debug ports lock  
True random number generator  
9-1 shows the high-level structure of the CC3220R device. The network information files (passwords and  
certificates) are encrypted using a device-specific key.  
CC3220R  
Network Processor + MCU  
MCU  
Arm® Cortex®-M4  
Processor  
Network Processor  
Peripherals  
SPI and I2C  
GPIO  
Wi-Fi®  
Internet  
256KB RAM  
Internet  
UART  
HTTPS  
TLS/SSL  
TCP/IP  
MAC  
Baseband  
Radio  
PWM  
ADC  
OEM  
Application  
Serial Flash  
OEM  
Application  
Data Files  
Network Information  
9-1. CC3220R High-Level Structure  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
9-2 shows the high-level structure of the CC3220S and CC3220SF devices. The application image, user data,  
and network information files (passwords, certificates) are encrypted using a device-specific key.  
CC3220S and CC3220SF  
Network Processor + MCU  
MCU  
Network Processor  
Peripherals  
SPI and I2C  
GPIO  
Arm® Cortex®-M4  
Processor  
Wi-Fi®  
Internet  
HTTPS  
Internet  
256KB RAM /  
1MB Flash (CC3220SF)  
UART  
MAC  
Baseband  
Radio  
PWM  
ADC  
TLS/SSL  
TCP/IP  
OEM  
Application  
Serial Flash  
OEM  
Application  
Data Files  
Network Information  
9-2. CC3220S and CC3220SF High-Level Structure  
9.4 Power-Management Subsystem  
The CC3220x power-management subsystem contains DC/DC converters to accommodate the different voltage  
or current requirements of the system.  
Digital DC/DC (Pin 44)  
– Input: VBAT wide voltage (2.1 to 3.6 V) or preregulated 1.85 V  
ANA1 DC/DC (Pin 37)  
– Input: VBAT wide voltage (2.1 to 3.6 V)  
– In preregulated 1.85-V mode, the ANA1 DC/DC converter is bypassed.  
PA DC/DC (Pin 39)  
– Input: VBAT wide voltage (2.1 to 3.6 V)  
– In preregulated 1.85-V mode, the PA DC/DC converter is bypassed.  
ANA2 DC/DC (Pin 47)  
– Input: VBAT wide voltage (2.1 to 3.6 V) or preregulated 1.85 V  
The CC3220x device is a single-chip WLAN radio solution used on an embedded system with a wide-voltage  
supply range. The internal power management, including DC/DC converters and LDOs, generates all of the  
voltages required for the device to operate from a wide variety of input sources. For maximum flexibility, the  
device can operate in the modes described in 9.4.1 and 9.4.2.  
9.4.1 VBAT Wide-Voltage Connection  
In the wide-voltage battery connection, the device is powered directly by the battery or preregulated 3.3-V  
supply. All other voltages required to operate the device are generated internally by the DC/DC converters. This  
scheme supports wide-voltage operation from 2.1 to 3.6 V and is thus the most common mode for the device.  
9.4.2 Preregulated 1.85-V Connection  
The preregulated 1.85-V mode of operation applies an external regulated 1.85 V directly at pins 10, 25, 33, 36,  
37, 39, 44, 48, and 54 of the device. The VBAT and the VIO are also connected to the 1.85-V supply. This mode  
provides the lowest BOM count version in which inductors used for PA DC/DC and ANA1 DC/DC (2.2 and 1 µH)  
and a capacitor (22 µF) can be avoided.  
In the preregulated 1.85-V mode, the regulator providing the 1.85 V must have the following characteristics:  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
Load current capacity ≥900 mA  
Line and load regulation with <2% ripple with 500-mA step current and settling time of < 4 µs with the load  
step  
Note  
The regulator must be placed as close as possible to the device so that the IR drop to the device is  
very low.  
9.5 Low-Power Operating Mode  
From a power-management perspective, the CC3220x device comprises the following two independent  
subsystems:  
Arm Cortex-M4 application processor subsystem  
Networking subsystem  
Each subsystem operates in one of several power states.  
The Cortex-M4 application processor runs the user application loaded from an external serial Flash, or internal  
Flash (in CC3220SF). The networking subsystem runs preprogrammed TCP/IP and Wi-Fi data link layer  
functions.  
The user program controls the power state of the application processor subsystem and can be in one of the five  
modes described in 9-2.  
9-2. User Program Modes  
APPLICATION PROCESSOR  
DESCRIPTION  
(MCU) MODE(1)  
MCU active mode  
MCU executing code at 80-MHz state rate  
The MCU clocks are gated off in sleep mode and the entire state of the device is retained. Sleep mode  
offers instant wakeup. The MCU can be configured to wake up by an internal fast timer or by activity  
from any GPIO line or peripheral.  
MCU sleep mode  
State information is lost and only certain MCU-specific register configurations are retained. The MCU  
can wake up from external events or by using an internal timer. (The wake-up time is less than 3 ms.)  
Certain parts of memory can be retained while the MCU is in LPDS mode. The amount of memory  
retained is configurable. Users can choose to preserve code and the MCU-specific setting. The MCU  
can be configured to wake up using the RTC timer or by an external event on specific GPIOs as the  
wake-up source.  
MCU LPDS mode  
The lowest power mode in which all digital logic is power-gated. Only a small section of the logic directly  
powered by the input supply is retained. The RTC keeps running and the MCU supports wakeup from  
an external event or from an RTC timer expiry. Wake-up time is longer than LPDS mode at about 15 ms  
plus the time to load the application from serial Flash, which varies according to code size. In this mode,  
the MCU can be configured to wake up using the RTC timer or external event on a GPIO.  
MCU hibernate mode  
MCU shutdown mode  
The lowest power mode system-wise. All device logics are off, including the RTC. The wake-up time in  
this mode is longer than hibernate at about 1.1 s. To enter or exit the shutdown mode, the state of the  
nRESET line is changed (low to shut down, high to turn on).  
(1) Modes are listed in order of power consumption, with highest power modes listed first.  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
The NWP can be active or in LPDS mode and takes care of its own mode transitions. When there is no network  
activity, the NWP sleeps most of the time and wakes up only for beacon reception (see  
9-3).  
9-3. Networking Subsystem Modes  
NETWORK PROCESSOR MODE  
DESCRIPTION  
Network active mode  
(processing layer 3, 2, and 1)  
Transmitting or receiving IP protocol packets  
Network active mode  
(processing layer 2 and 1)  
Transmitting or receiving MAC management frames; IP processing not required.  
Network active listen mode  
Network connected Idle  
Special power optimized active mode for receiving beacon frames (no other frames supported)  
A composite mode that implements 802.11 infrastructure power save operation. The CC3220x NWP  
automatically goes into LPDS mode between beacons and then wakes to active listen mode to  
receive a beacon and determine if there is pending traffic at the AP. If not, the NWP returns to LPDS  
mode and the cycle repeats.  
Low-power state between beacons in which the state is retained by the NWP, allowing for a rapid  
wake up.  
Network LPDS mode  
Network disabled  
The network is disabled  
The operation of the application and network processor ensures that the device remains in the lowest power  
mode most of the time to preserve battery life.  
The following examples show the use of the power modes in applications:  
A product that is continuously connected to the network in the 802.11 infrastructure power-save mode but  
sends and receives little data spends most of the time in connected idle, which is a composite of receiving a  
beacon frame and waiting for the next beacon.  
A product that is not continuously connected to the network but instead wakes up periodically (for example,  
every 10 minutes) to send data, spends most of the time in hibernate mode, jumping briefly to active mode to  
transmit data.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
9.6 Memory  
9.6.1 External Memory Requirements  
The CC3220x device maintains a proprietary file system on the serial flash. The CC3220x file system stores  
the MCU binary, service pack file, system files, configuration files, certificate files, web page files, and user files.  
By using a format command through the API, users can provide the total size allocated for the file system.  
The starting address of the file system cannot be set and is always at the beginning of the serial flash. The  
applications microcontroller must access the serial flash memory area allocated to the file system directly  
through the CC3220x file system. The applications microcontroller must not access the serial flash memory area  
directly.  
The file system manages the allocation of serial flash blocks for stored files according to download order,  
which means that the location of a specific file is not fixed in all systems. Files are stored on serial flash using  
human-readable filenames rather than file IDs. The file system API works using plain text, and file encryption  
and decryption is invisible to the user. Encrypted files can be accessed only through the file system.  
All file types can have a maximum of 100 supported files in the file system. All files are stored in 4-KB blocks and  
thus use a minimum of 4KB of Flash space. Fail-safe files require twice the original size and use a minimum of  
8KB. Encrypted files are counted as fail-safe in terms of space. The maximum file size is 1MB.  
9-4 lists the minimum required memory consumption under the following assumptions:  
System files in use consume 64 blocks (256KB).  
Vendor files are not taken into account.  
MCU code is taken as the maximal possible size for the CC3220 with fail-safe enabled to account for future  
updates, such as through OTA.  
Gang image:  
– Storage for the gang image is rounded up to 32 blocks (meaning 128KB resolution).  
– Gang image size depends on the actual content size of all components. Additionally, the image should  
be 128KB aligned so unaligned memory is considered lost. Service pack, system files, and the 128KB  
aligned memory are assumed to occupy 256KB.  
All calculations consider that the restore-to-default is enabled.  
9-4. Recommended Flash Size  
ITEM  
CC3220R and CC3220S [KB]  
CC3220SF [KB]  
20  
File system allocation table  
System and configuration files(1)  
Service Pack(1)  
20  
256  
256  
264  
264  
MCU Code(1)  
512  
2048  
Gang image size  
256 + MCU  
1308 + MCU  
16MBit  
16MBit  
256 + MCU  
2844 + MCU  
32MBit  
Total  
Minimal Flash size(2)  
Recommended Flash size(2)  
32MBit  
(1) Including fail-safe.  
(2) For maximum MCU size.  
Note  
The maximum supported serial flash size is 32MB (256Mb). See the Using Serial Flash on CC3120/  
CC3220 SimpleLink™ Wi-Fi® and Internet-of-Things Devices application report.  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
9.6.2 Internal Memory  
The CC3220x device includes on-chip SRAM to which application programs are downloaded and executed.  
The application developer must share the SRAM for code and data. The micro direct memory access (μDMA)  
controller can transfer data to and from SRAM and various peripherals. The CC3220x ROM holds the rich set of  
peripheral drivers, which saves SRAM space. For more information on drivers, see the CC3220x API list.  
9.6.2.1 SRAM  
The CC3220x family provides 256KB of on-chip SRAM. Internal RAM is capable of selective retention during  
LPDS mode. This internal SRAM is at offset 0x2000 0000 of the device memory map.  
Use the µDMA controller to transfer data to and from the SRAM.  
When the device enters low-power mode, the application developer can choose to retain a section of memory  
based on need. Retaining the memory during low-power mode provides a faster wakeup. The application  
developer can choose the amount of memory to retain in multiples of 64KB. For more information, see the API  
guide.  
9.6.2.2 ROM  
The internal zero-wait-state ROM of the CC3220x device is at address 0x0000 0000 of the device memory and  
is programmed with the following components:  
Bootloader  
Peripheral driver library (DriverLib) release for product-specific peripherals and interfaces  
The bootloader is used as an initial program loader (when the serial Flash memory is empty). The CC3220x  
DriverLib software library controls on-chip peripherals with a bootloader capability. The library performs  
peripheral initialization and control functions, with a choice of polled or interrupt-driven peripheral support. The  
DriverLib APIs in ROM can be called by applications to reduce Flash memory requirements and free the Flash  
memory for other purposes.  
9.6.2.3 Flash Memory  
The CC3220SF device comes with an on-chip Flash memory of 1MB that allows application code to execute in  
place while freeing SRAM exclusively for read-write data. The Flash memory is used for code and constant data  
sections and is directly attached to the ICODE/DCODE bus of the Cortex-M4 core. A 128-bit-wide instruction  
prefetch buffer allows maintenance of maximum performance for linear code or loops that fit inside the buffer.  
The Flash memory is organized as 2-KB sectors that can be independently erased. Reads and writes can be  
performed at word (32-bit) level.  
9.6.2.4 Memory Map  
9-5 describes the various MCU peripherals and how they are mapped to the processor memory. For more  
information on peripherals, see the API document.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: CC3220R CC3220S CC3220SF  
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
9-5. Memory Map  
START ADDRESS  
0x0000 0000  
0x0100 0000  
0x2000 0000  
0x2200 0000  
0x4000 0000  
0x4000 4000  
0x4000 5000  
0x4000 6000  
0x4000 7000  
0x4000 C000  
0x4000 D000  
0x4002 0000  
0x4002 4000  
0x4002 0800  
0x4003 0000  
0x4003 1000  
0x4003 2000  
0x4003 3000  
0x400F7000  
0x400F E000  
0x400F F000  
0x4200 0000  
0x4401 0000  
0x4401 8000  
0x4401 C000  
0x4402 0000  
0x4402 1000  
0x4402 5000  
0x4402 6000  
0x4402 D000  
0x4402 E000  
0x4402 F000  
END ADDRESS  
0x0007 FFFF  
0x010F FFFF  
0x2003 FFFF  
0x23FF FFFF  
0x4000 0FFF  
0x4000 4FFF  
0x4000 5FFF  
0x4000 6FFF  
0x4000 7FFF  
0x4000 CFFF  
0x4000 DFFF  
0x4000 07FF  
0x4002 4FFF  
0x4002 0FFF  
0x4003 0FFF  
0x4003 1FFF  
0x4003 2FFF  
0x4003 3FFF  
0x400F 7FFF  
0x400F EFFF  
0x400F FFFF  
0x43FF FFFF  
0x4401 0FFF  
0x4401 8FFF  
0x4401 DFFF  
0x4402 1FFF  
0x4402 2FFF  
0x4402 5FFF  
0x4402 6FFF  
0x4402 DFFF  
0x4402 EFFF  
0x4402 FFFF  
DESCRIPTION  
COMMENT  
On-chip ROM (bootloader + DriverLib)  
On-chip Flash (for user application code)  
Bit-banded on-chip SRAM  
Bit-band alias of 0x2000 0000 to 0x200F FFFF  
Watchdog timer A0  
CC3220SF device only  
GPIO port A0  
GPIO port A1  
GPIO port A2  
GPIO port A3  
UART A0  
UART A1  
I2C A0 (master)  
GPIO group 4  
I2C A0 (slave)  
General-purpose timer A0  
General-purpose timer A1  
General-purpose timer A2  
General-purpose timer A3  
Configuration registers  
System control  
µDMA  
Bit band alias of 0x4000 0000 to 0x400F FFFF  
SDIO master  
Camera Interface  
McASP  
SSPI  
Used for external serial Flash  
Used by application processor  
GSPI  
MCU reset clock manager  
MCU configuration space  
Global power, reset, and clock manager (GPRCM)  
MCU shared configuration  
Hibernate configuration  
Crypto range (includes apertures for all crypto-related  
blocks as follows)  
0x4403 0000  
0x4403 FFFF  
0x4403 0000  
0x4403 5000  
0x4403 7000  
0x4403 9000  
0xE000 0000  
0xE000 1000  
0xE000 2000  
0xE000 E000  
0xE004 0000  
0xE004 1000  
0xE004 2000  
0x4403 0FFF  
0x4403 5FFF  
0x4403 7FFF  
0x4403 9FFF  
0xE000 0FFF  
0xE000 1FFF  
0xE000 2FFF  
0xE000 EFFF  
0xE004 0FFF  
0xE004 1FFF  
0xE00F FFFF  
DTHE registers and TCP checksum  
MD5/SHA  
AES  
DES  
Instrumentation trace Macrocell™  
Data watchpoint and trace (DWT)  
Flash patch and breakpoint (FPB)  
NVIC  
Trace port interface unit (TPIU)  
Reserved for embedded trace macrocell (ETM)  
Reserved  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
9.7 Restoring Factory Default Configuration  
The device has an internal recovery mechanism that allows rolling back the file system to its predefined factory  
image or restoring the factory default parameters of the device. The factory image is kept in a separate sector  
on the serial flash in a secure manner and cannot be accessed from the host processor. The following restore  
modes are supported:  
None—no factory restore settings  
Enable restore of factory default parameters  
Enable restore of factory image and factory default parameters  
The restore process is performed by calling SW APIs, or by pulling or forcing SOP[2:0] = 110 pins and toggling  
the nRESET pin from low to high.  
The process is fail-safe and resumes operation if a power failure occurs before the restore is finished. The  
restore process typically takes about 8 seconds, depending on the attributes of the serial Flash vendor.  
9.8 Boot Modes  
9.8.1 Boot Mode List  
The CC3220x device implements a sense-on-power (SoP) scheme to determine the device operation mode.  
SoP values are sensed from the device pin during power up. This encoding determines the boot flow. Before the  
device is taken out of reset, the SoP values are copied to a register and used to determine the device operation  
mode while powering up. These values determine the boot flow as well as the default mapping for some of the  
pins (JTAG, SWD, UART0). 9-6 lists the pull configurations.  
9-6. CC3220x Functional Configurations  
NAME  
SOP[2]  
SOP[1]  
SOP[0]  
SoP MODE  
COMMENT  
Factory, lab Flash, and SRAM loads  
through the UART. The device waits  
indefinitely for the UART to load code.  
The SOP bits then must be toggled to  
configure the device in functional mode.  
Also puts JTAG in 4-wire mode.  
UARTLOAD  
Pullup  
Pulldown  
Pulldown LDfrUART  
Functional development mode. In this  
mode, 2-pin SWD is available to the  
developer. TMS and TCK are available  
for debugger connection.  
FUNCTIONAL_2WJ  
FUNCTIONAL_4WJ  
Pulldown Pulldown  
Pulldown Pulldown  
Pullup  
Fn2WJ  
Functional development mode. In this  
mode, 4-pin JTAG is available to the  
developer. TDI, TMS, TCK, and TDO are  
available for debugger connection.  
Pulldown Fn4WJ  
Supports Flash and SRAM load through  
UART and functional mode. The MCU  
bootloader tries to detect a UART break  
on UART receive line. If the break  
UARTLOAD_FUNCTIONAL_4WJ  
RET_FACTORY_IMAGE  
Pulldown Pullup  
Pulldown Pullup  
Pulldown LDfrUART_Fn4WJ signal is present, the device enters the  
UARTLOAD mode, otherwise, the device  
enters the functional mode. TDI, TMS,  
TCK, and TDO are available for debugger  
connection.  
When device reset is toggled, the MCU  
Pullup  
RetFactDef  
bootloader kickstarts the procedure to  
restore factory default images.  
The recommended values of pull resistors are 100 kΩ for SOP0 and SOP1 and 2.7 kΩ for SOP2. The  
application can use SOP2 for other functions after chip has powered up. However, to avoid spurious SOP  
values from being sensed at power up, TI strongly recommends using the SOP2 pin only for output signals. The  
SOP0 and SOP1 pins are multiplexed with the WLAN analog test pins and are not available for other functions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
10 Applications, Implementation, and Layout  
Note  
以下应用部分中的信息不属于 TI 器件规格的范围,TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。  
10.1 Application Information  
10.1.1 Typical Application —CC3220x Wide-Voltage Mode  
10-1 shows the schematic for an application using the CC3220x device in the wide-voltage mode of  
operation. For a full operation reference design, refer to CC3220 SimpleLink™ and Internet of Things Hardware  
Design Files.  
Note  
For complete reference schematics and BOM, see the CC3220x product page.  
10-1 lists the bill of materials for an application using the CC3220x device in wide-voltage mode.  
Copyright © 2021 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
VBAT_CC  
VBAT_CC  
VBAT_CC  
R1  
10k  
Optional:  
Consider adding extra decoupling  
capacitors if the battery cannot source  
the peak currents.  
VBAT_CC  
Antenna match. Pi  
C2  
1µF  
network might be  
required depending on  
type of antenna.  
E1  
C3  
C4  
C5  
C6  
C7  
0.1µF  
4.7µF  
4.7µF  
C2  
100µF  
C3  
100µF  
4.7µF  
0.1µF  
L1  
GND  
FL1  
IN  
1
3
OUT  
GND  
GND  
GND  
GND  
GND  
3.3nH  
2
4
GND  
GND  
GND  
GND  
C9  
0.5pF GND GND  
GND  
VBAT_CC  
GND  
U2  
VCC  
U1  
VIN_IO1  
8
L2  
10  
54  
44  
39  
37  
38  
48  
32  
31  
1
6
5
2
3
7
RESET  
RF_BG  
CS  
SCLK  
SI/SIO0  
R2  
100k  
C8  
0.1µF  
2.2uH  
VIN_IO2  
C10  
SO/SIO1  
WP/SIO2  
RESET/SIO3  
C11  
0.1µF  
VIN_DCDC_DIG  
VIN_DCDC_PA  
VIN_DCDC_ANA  
DCDC_ANA_SW  
VDD_ANA1  
10µF  
GND  
4
GND  
14  
13  
12  
11  
FLASH_SPI_CS  
FLASH_SPI_DIN  
L3  
GND  
GND  
1uH  
FLASH_SPI_DOUT  
FLASH_SPI_CLK  
GND  
C12  
0.1µF  
C13  
0.1µF  
50  
55  
57  
58  
59  
60  
61  
62  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
CC_GPIO_00  
CC_GPIO_01  
CC_GPIO_02  
CC_GPIO_03  
CC_GPIO_04  
CC_GPIO_05  
CC_GPIO_06  
CC_GPIO_07  
36  
25  
LDO_IN1  
LDO_IN2  
GND  
GND  
40  
41  
42  
33  
43  
TP1  
TP1  
TP1  
TP1  
TP1  
C16  
DCDC_PA_SW_P  
DCDC_PA_SW_N  
DCDC_PA_OUT  
VDD_PA_IN  
CC_nReset  
C14  
22µF  
C15  
22µF  
FLASH PROGRAMMING  
INTERFACE  
1µF  
CC_GPIO_01  
CC_GPIO_02  
SOP0  
63  
64  
1
L4  
GPIO8  
GPIO9  
CC_GPIO_08  
CC_GPIO_09  
CC_GPIO_10  
CC_GPIO_11  
CC_GPIO_12  
CC_GPIO_13  
CC_GPIO_14  
CC_GPIO_15  
Add provision on the board to isolate  
GPIO_01 and GPIO_02 while programming  
GND  
GND  
GND  
GPIO10  
GPIO11  
GPIO12  
GPIO13  
GPIO14  
GPIO15  
2.2uH  
C19  
2
3
DCDC_DIG_SW  
SOP2  
C17  
4
VBAT_CC  
9
56  
5
VDD_DIG1  
VDD_DIG2  
10µF  
C18  
0.1µF  
6
0.1µF  
PIN 45, 46, and 47:  
Refer to the BOM in the following table for  
notes on device-dependent configurations.  
45  
46  
47  
49  
24  
7
DCDC_ANA2_SW_P  
DCDC_ANA2_SW_N  
VDD_ANA2  
GPIO16  
GPIO17  
GPIO22  
GPIO28  
GPIO30  
CC_GPIO_16  
CC_GPIO_17  
CC_GPIO_22  
CC_GPIO_28  
CC_GPIO_30  
8
R8  
0
15  
18  
53  
L5  
GND  
GND  
10uH  
VDD_RAM  
51  
52  
RTC_XTAL_P  
RTC_XTAL_N  
VDD_PLL  
C20  
10µF  
27  
28  
26  
Y1  
32.768kHz  
NC  
NC  
NC  
C21  
0.1µF  
23  
22  
WLAN_XTAL_P  
WLAN_XTAL_N  
C22  
0.1µF  
2
1
35  
34  
21  
SOP0  
SOP1  
SOP2  
GND  
C23  
10pF  
C24  
10pF  
30  
29  
65  
ANTSEL2  
ANTSEL1  
GND_TAB  
GND  
GND  
19  
20  
16  
17  
TCK  
TMS  
TDI  
C25  
6.2pF  
TDO  
C26  
6.2pF  
GND  
GND  
Y2  
40 MHz  
CC3220SF12RGK  
GND  
VBAT_CC  
GND  
GND  
CC_JTAG_TDO  
CC_JTAG_TDI  
CC_JTAG_TMS  
CC_JTAG_TCK  
R7  
270  
JTAG  
GND  
J1  
2
1
3
5
4
6
R4  
100k  
R5  
100k  
R6  
2.7k  
R3  
100k  
GND  
GND  
10-1. CC3220x Wide-Voltage Mode Application Circuit  
10-1. Bill of Materials for CC3220x in Wide-Voltage Mode  
QUANTI  
TY  
MANUFACTUR  
DESIGNATOR  
C1  
VALUE  
PART NUMBER  
DESCRIPTION  
ER  
1
1 µF  
MuRata  
GRM155R61A105KE15 Capacitor, Ceramic, 1 µF, 10 V, ±10%, X5R, 0402  
D
10  
C2, C6, C10, C12, 0.1 µF  
C13, C14, C19,  
TDK  
C1005X5R1A104K050B Capacitor, Ceramic, 0.1 µF, 10 V, ±10%, X5R, 0402  
A
C20, C22, C23  
3
2
1
3
C3, C4, C5  
C7, C8  
4.7 µF  
100 µF  
0.5 pF  
10 µF  
TDK  
C1005X5R0J475M050B Capacitor, Ceramic, 4.7 µF, 6.3 V, ±20%, X5R,  
C
0402  
Taiyo Yuden  
MuRata  
MuRata  
LMK325ABJ107MMHT  
Capacitor, Ceramic, 100 µF, 10 V, ±20%, X5R,  
AEC-Q200 Grade 3, 1210  
C9  
GRM1555C1HR50BA01 Capacitor, Ceramic, 0.5 pF, 50 V, ±20%, C0G/NP0,  
0402  
D
C11, C18, C21  
GRM188R60J106ME47 Capacitor, Ceramic, 10 µF, 6.3 V, ±20%, X5R, 0603  
D
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
10-1. Bill of Materials for CC3220x in Wide-Voltage Mode (continued)  
QUANTI  
TY  
MANUFACTUR  
ER  
DESIGNATOR  
VALUE  
PART NUMBER  
DESCRIPTION  
1
C15  
1 µF  
TDK  
C1005X5R1A105K050B Capacitor, Ceramic, 1 µF, 10 V, ±10%, X5R, 0402  
B
2
2
2
1
C16, C17  
C24, C25  
C26, C27  
E1  
22 µF  
10 pF  
6.2 pF  
TDK  
C1608X5R0G226M080A Capacitor, Ceramic, 22 µF, 4 V, ±20%, X5R, 0603  
A
MuRata  
MuRata  
Taiyo Yuden  
GRM1555C1H100JA01 Capacitor, Ceramic, 10 pF, 50 V, ±5%, C0G/NP0,  
D
0402  
GRM1555C1H6R2CA01 Capacitor, Ceramic, 6.2 pF, 50 V, ±5%, C0G/NP0,  
D
0402  
2.45-  
AH316M245001-T  
ANT Bluetooth W-LAN Zigbee® WiMAX, SMD  
GHz  
Antenna  
1
1
2
1
1
FL1  
L1  
1.02 dB TDK  
DEA202450BT-1294C1- Multilayer Chip Band Pass Filter For 2.4 GHz W-  
H
LAN/Bluetooth, SMD  
3.3 nH  
2.2 µH  
1 µH  
MuRata  
LQG15HS3N3S02D  
Inductor, Multilayer, Air Core, 3.3 nH, 0.3 A, 0.17  
ohm, SMD  
L2, L4  
L3  
MuRata  
LQM2HPN2R2MG0L  
LQM2HPN1R0MG0L  
CBC2518T100M  
Inductor, Multilayer, Ferrite, 2.2 µH, 1.3 A, 0.08  
ohm, SMD  
MuRata  
Inductor, Multilayer, Ferrite, 1 µH, 1.6 A, 0.055 ohm,  
SMD  
L5(1)  
10 µH  
Taiyo Yuden  
Inductor, Wirewound, Ceramic, 10 µH, 0.48 A, 0.36  
ohm, SMD  
1
4
1
1
1
1
R1  
10 k  
100 k  
2.7 k  
270  
0
Vishay-Dale  
Vishay-Dale  
Vishay-Dale  
Vishay-Dale  
Panasonic  
CRCW040210K0JNED Resistor, 10 k, 5%, 0.063 W, 0402  
CRCW0402100KJNED Resistor, 100 k, 5%, 0.063 W, 0402  
CRCW04022K70JNED Resistor, 2.7 k, 5%, 0.063 W, 0402  
CRCW0402270RJNED Resistor, 270, 5%, 0.063 W, 0402  
R2, R3, R4, R5  
R6  
R7  
R8(2)  
ERJ-2GE0R00X  
Resistor, 0, 5% 0.063W, 0402  
U1  
MX25R Macronix  
International Co.,  
MX25R3235FM1IL0  
Ultra-Low Power, 32-Mbit [x 1/x 2/x 4] CMOS  
MXSMIO  
LTD  
(Serial Multi I/O) Flash Memory, SOP-8  
1
1
1
U2  
Y1  
Y2  
CC3220 Texas  
CC3220SF12RGK  
SimpleLink™ Wi-Fi® and internet-of-things Solution,  
a Single-Chip Wireless MCU, RGK0064B  
Instruments  
Crystal  
Crystal  
Abracon  
Corportation  
ABS07-32.768KHZ-9-T Crystal, 32.768 KHz, 9PF, SMD  
Epson  
Q24FA20H0039600 Crystal, 40 MHz, 8pF, SMD  
(1) For CC3220SF device, L5 is populated. For CC3220R and CC3220S devices, L5 is not populated.  
(2) For CC3220SF device, R8 is not populated. For CC3220R and CC3220S devices if R8 is populated, Pin 47 can be used as GPIO_31.  
Copyright © 2021 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
10.1.2 Typical Application Schematic—CC3220x Preregulated, 1.85-V Mode  
10-2 shows the typical application schematic using the CC3220x in preregulated, 1.85-V mode of operation.  
For addition information on this mode of operation please contact your TI representative.  
1.85V  
1.85V  
1.85V  
Optional:  
R1  
10k  
Consider adding extra decoupling  
capacitors if the battery cannot source  
the peak currents.  
1.85V  
Antenna match. Pi  
network might be  
required depending on  
type of antenna.  
C1  
1µF  
E1  
C2  
C3  
4.7µF  
C4  
C5  
C6  
0.1µF  
4.7µF  
C7  
100µF  
C8  
100µF  
4.7µF  
0.1µF  
L1  
GND  
FL1  
IN  
1
3
OUT  
GND  
GND  
GND  
GND  
GND  
3.3nH  
2
4
GND  
GND  
GND  
GND  
C9  
0.5pF GND GND  
GND  
1.85V  
GND  
U1  
VCC  
1.85V  
8
U2  
VIN_IO1  
10  
54  
44  
39  
37  
38  
48  
32  
31  
1
6
5
2
3
7
RESET  
RF_BG  
CS  
SCLK  
SI/SIO0  
R2  
100k  
C10  
0.1µF  
VIN_IO2  
SO/SIO1  
WP/SIO2  
RESET/SIO3  
C11  
0.1µF  
VIN_DCDC_DIG  
VIN_DCDC_PA  
VIN_DCDC_ANA  
DCDC_ANA_SW  
VDD_ANA1  
GND  
4
GND  
14  
13  
12  
11  
FLASH_SPI_CS  
FLASH_SPI_DIN  
GND  
FLASH_SPI_DOUT  
FLASH_SPI_CLK  
GND  
C12  
0.1µF  
C13  
0.1µF  
50  
55  
57  
58  
59  
60  
61  
62  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
CC_GPIO_00  
CC_GPIO_01  
CC_GPIO_02  
CC_GPIO_03  
CC_GPIO_04  
CC_GPIO_05  
CC_GPIO_06  
CC_GPIO_07  
36  
25  
LDO_IN1  
LDO_IN2  
GND  
GND  
C14  
1µF  
C15  
22µF  
40  
41  
42  
33  
43  
TP1  
TP2  
TP3  
TP4  
TP5  
DCDC_PA_SW_P  
DCDC_PA_SW_N  
DCDC_PA_OUT  
VDD_PA_IN  
CC_nReset  
CC_GPIO_01  
CC_GPIO_02  
SOP0  
FLASH PROGRAMMING  
INTERFACE  
GND  
GND  
63  
64  
1
L2  
GPIO8  
GPIO9  
CC_GPIO_08  
CC_GPIO_09  
CC_GPIO_10  
CC_GPIO_11  
CC_GPIO_12  
CC_GPIO_13  
CC_GPIO_14  
CC_GPIO_15  
Add provision on the board to isolate  
GPIO_01 and GPIO_02 while programming  
GPIO10  
GPIO11  
GPIO12  
GPIO13  
GPIO14  
GPIO15  
2.2uH  
2
3
DCDC_DIG_SW  
SOP2  
C16  
10µF  
4
1.85V  
9
56  
5
VDD_DIG1  
VDD_DIG2  
C17  
0.1µF  
6
C18  
0.1µF  
PIN 45, 46, and 47:  
Refer to the BOM in the following table for  
notes on device-dependent configurations.  
45  
46  
47  
49  
24  
7
DCDC_ANA2_SW_P  
DCDC_ANA2_SW_N  
VDD_ANA2  
GPIO16  
GPIO17  
GPIO22  
GPIO28  
GPIO30  
CC_GPIO_16  
CC_GPIO_17  
CC_GPIO_22  
CC_GPIO_28  
CC_GPIO_30  
8
15  
18  
53  
GND  
GND  
L3  
10uH  
VDD_RAM  
51  
52  
RTC_XTAL_P  
RTC_XTAL_N  
VDD_PLL  
27  
28  
26  
Y1  
32.768kHz  
NC  
NC  
NC  
C19  
10µF  
C20  
0.1µF  
C21  
0.1µF  
23  
22  
WLAN_XTAL_P  
WLAN_XTAL_N  
2
1
35  
34  
21  
SOP0  
SOP1  
SOP2  
C22  
10pF  
C23  
10pF  
30  
29  
65  
ANTSEL2  
ANTSEL1  
GND_TAB  
GND  
GND  
GND  
19  
20  
16  
17  
TCK  
TMS  
TDI  
C24  
6.2pF  
TDO  
C25  
6.2pF  
GND  
GND  
Y2  
40 MHz  
1.85V  
CC3220SF12RGK  
GND  
GND  
R7  
270  
GND  
J1  
2
4
6
1
3
5
CC_JTAG_TDO  
CC_JTAG_TDI  
CC_JTAG_TMS  
CC_JTAG_TCK  
GND  
JTAG  
R3  
100k  
R4  
100k  
R5  
2.7k  
R6  
100k  
GND  
GND  
10-2. CC3220x Preregulated 1.85-V Mode Application Circuit  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
10-2 lists the bill of materials for an application using the CC3120R device in preregulated 1.85-V mode.  
10-2. Bill of Materials for CC3220x Preregulated, 1.85-V Mode  
QUANTI  
TY  
MANUFACTURE  
R
DESIGNATOR  
VALUE  
PART NUMBER  
DESCRIPTION  
GRM155R61A105KE1 Capacitor, Ceramic, 1 µF, 10 V, ±10%, X5R, 0402  
5D  
1
C1  
1 µF  
MuRata  
TDK  
C2, C6, C10, C11,  
C12, C13, C17,  
C18, C20, C21  
Capacitor, Ceramic, 0.1 µF, 10 V, ±10%, X5R, 0402  
C1005X5R1A104K050  
BA  
10  
0.1 µF  
C1005X5R0J475M050 Capacitor, Ceramic, 4.7 µF, 6.3 V, ±20%, X5R, 0402  
BC  
3
2
1
1
1
2
2
2
C3, C4, C5  
C7, C8  
C9  
4.7 µF  
100 µF  
0.5 pF  
1 µF  
TDK  
Capacitor, Ceramic, 100 µF, 10 V, ± 20%, X5R,  
LMK325ABJ107MMHT  
Taiyo Yuden  
MuRata  
TDK  
AEC-Q200 Grade 3, 1210  
GRM1555C1HR50BA Capacitor, Ceramic, 0.5 pF, 50 V, ±20%, C0G/NP0,  
01D  
0402  
C1005X5R1A105K050 Capacitor, Ceramic, 1 µF, 10 V, ±10%, X5R, 0402  
BB  
C14  
C1608X5R0G226M08 Capacitor, Ceramic, 22 µF, 4 V, ±20%, X5R, 0603  
0AA  
C15  
22 µF  
10 µF  
10 pF  
6.2 pF  
TDK  
GRM188R60J106ME4 Capacitor, Ceramic, 10 µF, 6.3 V, ±20%, X5R, 0603  
7D  
C16, C19  
C22, C23  
C24, C25  
MuRata  
MuRata  
GRM1555C1H100JA0 Capacitor, Ceramic, 10 pF, 50 V, ±5%, C0G/NP0,  
1D  
0402  
GRM1555C1H6R2CA Capacitor, Ceramic, 6.2 pF, 50 V, ±5%, C0G/NP0,  
MuRata  
01D  
0402  
Macronix  
Ultra-low power, 32-Mbit [x 1/x 2/x 4] CMOS  
MXSMIO  
(Serial Multi I/O) Flash Memory, SOP-8  
1
1
U1  
E1  
MX25R International Co. MX25R3235FM1IL0  
LTD  
2.45-  
GHz  
ANT Bluetooth W-LAN Zigbee® WiMAX, SMD  
Taiyo Yuden  
AH316M245001-T  
Antenna  
DEA202450BT-1294C Multilayer Chip Band Pass Filter For 2.4GHz W-  
1
1
1
1
1
4
1
1
1
FL1  
1.02 dB TDK  
1-H  
LAN/Bluetooth, SMD  
Inductor, Multilayer, Air Core, 3.3 nH, 0.3 A, 0.17  
ohm, SMD  
L1  
3.3 nH  
2.2 µH  
10 µH  
10 k  
MuRata  
LQG15HS3N3S02D  
Inductor, Multilayer, Ferrite, 2.2 µH, 1.3 A, 0.08 ohm,  
SMD  
L2  
MuRata  
LQM2HPN2R2MG0L  
CBC2518T100M  
Inductor, Wirewound, Ceramic, 10 µH, 0.48 A, 0.36  
ohm, SMD  
L3(1)  
Taiyo Yuden  
Vishay-Dale  
Vishay-Dale  
Vishay-Dale  
Vishay-Dale  
CRCW040210K0JNE Resistor, 10 k, 5%, 0.063 W, 0402  
D
R1  
CRCW0402100KJNE Resistor, 100 k, 5%, 0.063 W, 0402  
D
R2, R3, R4, R6  
100 k  
2.7 k  
CRCW04022K70JNE Resistor, 2.7 k, 5%, 0.063 W, 0402  
D
R5  
R7  
U2  
CRCW0402270RJNE Resistor, 270, 5%, 0.063 W, 0402  
D
270  
Texas  
Instruments  
SimpleLink™ Wi-Fi® and internet-of-things solution,  
a Single-Chip Wireless MCU, RGK0064B  
CC3220  
CC3220SF12RGK  
Abracon  
Corporation  
ABS07-32.768KHZ-9- Crystal, 32.768 kHZ, 9PF, SMD  
T
1
1
Y1  
Y2  
Crystal  
Crystal  
Epson  
Q24FA20H0039600  
Crystal, 40 MHz, 8pF, SMD  
(1) For CC3220SF device, L3 is populated. For CC3220R and CC3220S devices, L3 is not populated and Pin 47 can be used as  
GPIO_31.  
Copyright © 2021 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
10.2 PCB Layout Guidelines  
This section details the PCB guidelines to speed up the PCB design using the CC3220x VQFN device. Follow  
these guidelines ensures that the design will minimize the risk with regulatory certifications including FCC,  
ETSI, and CE. For more information, see CC3120 and CC3220 SimpleLink™ Wi-Fi® and IoT Solution Layout  
Guidelines.  
10.2.1 General PCB Guidelines  
Use the following PCB guidelines:  
Verify the recommended PCB stackup in the PCB design guidelines, as well as the recommended layers for  
signals and ground.  
Ensure that the PCB footprint of the VQFN follows the information in .  
Ensure that the GND and solder paste of the VQFN PCB follow the recommendations provided in CC3120  
and CC3220 SimpleLink™ Wi-Fi® and IoT Solution Layout Guidelines.  
Decoupling capacitors must be as close as possible to the VQFN device.  
10.2.2 Power Layout and Routing  
Three critical DC/DC converters must be considered for the CC3220x device.  
Analog DC/DC converter  
PA DC/DC converter  
Digital DC/DC converter  
Each converter requires an external inductor and capacitor that must be laid out with care. DC current loops are  
formed when laying out the power components.  
10.2.2.1 Design Considerations  
The following design guidelines must be followed when laying out the CC3220x device:  
Route all of the input decoupling capacitors (C11, C13, and C18) on L2 using thick traces, to isolate  
the RF ground from the noisy supply ground. This step is also required to meet the IEEE spectral mask  
specifications.  
Maintain the thickness of power traces to be greater than 12 mils. Take special consideration for power  
amplifier supply lines (pins 33, 40, 41, and 42), and all input supply pins (pins 37, 39, and 44).  
Ensure the shortest grounding loop for the PLL supply decoupling capacitor (pin 24).  
Place all decoupling capacitors as close to the respective pins as possible.  
Power budget: The CC3220x device can consume up to 450 mA for 3.3 V, 670 mA for 2.1 V, and 700 mA for  
1.85 V, for 24 ms during the calibration cycle.  
Ensure the power supply is designed to source this current without any issues. The complete calibration (TX  
and RX) can take up to 17 mJ of energy from the battery over a time of 24 ms.  
The CC3220x device contains many high-current input pins. Ensure the trace feeding these pins is capable of  
handling the following currents:  
– VIN_DCDC_PA input (pin 39) maximum is 1 A  
– VIN_DCDC_ANA input (pin 37) maximum is 600 mA  
– VIN_DCDC_DIG input (pin 44) maximum is 500 mA  
– DCDC_PA_SW_P (pin 40) and DCDC_PA_SW_N (pin 41) switching nodes maximum is 1 A  
– DCDC_PA_OUT output node (pin 42) maximum 1 A  
– DCDC_ANA_SW switching node (pin 38) maximum is 600 mA  
– DCDC_DIG_SW switching node (pin 43) maximum is 500 mA  
– VDD_PA_IN supply (pin 33) maximum is 500 mA  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
10-3 shows the ground routing for the input decoupling capacitors.  
10-3. Ground Routing for the Input Decoupling Capacitors  
The ground return for the input capacitors are routed on L2 to reduce the EMI and improve the spectral mask.  
This routing must be strictly followed because it is critical for the overall performance of the device.  
10.2.3 Clock Interfaces  
The following guidelines are for the slow clock.  
The 32.768-kHz crystal must be placed close to the VQFN package.  
Ensure that the load capacitance is tuned according to the board parasitics to the frequency tolerance is  
within ±150 ppm.  
The ground plane on layer two is solid below the trace lanes and there is ground around these traces on the  
top layer.  
The following guidelines are for the fast clock.  
The 40-MHz crystal must be placed close to the VQFN package.  
Ensure that he load capacitance is tuned according to the board parasitics to the frequency tolerance is  
within ±100 ppm at room temperature. The total frequency across parts, temperature, and with aging, must  
be ±25 ppm to meet the WLAN specification.  
Ensure that no high-frequency lines are routed close to the crystal routing to avoid noise degradation.  
Ensure that crystal tuning capacitors are close to the crystal pads.  
Make both traces (XTAL_N and XTAL_P) as close to parallel as possible and approximately the same length.  
The ground plane on layer two is solid below the trace lines and that there is ground around these traces on  
the top layer.  
See CC31xx & CC32xx Frequency Tuning for frequency tuning.  
Copyright © 2021 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
10.2.4 Digital Input and Output  
The following guidelines are for the digital I/O.  
Route SPI and UART lines away from any RF traces.  
Keep the length of the high-speed lines as short as possible to avoid transmission line effects.  
Keep the line lower than 1/10 of the rise time of the signal to ignore transmission line effects. This is required  
if the traces cannot be kept short. Place the resistor at the source end, closer to the device that is driving the  
signal.  
Add a series-terminating resistor for each high-speed line (such as SPI_CLK or SPI_DATA) to match the  
driver impedance to the line. Typical terminating-resistor values range from 27 to 36 Ω for a 50-Ω line  
impedance.  
Route high-speed lines with a ground reference plane continuously below it to offer good impedance  
throughout. This routing also helps shield the trace against EMI.  
Avoid stubs on high-speed lines to minimize the reflections. If the line must be routed to multiple locations,  
use a separate line driver for each line.  
If the lines are longer compared to the rise time, add series-terminating resistors near the driver for each  
high-speed line to match the driver impedance to the line. Typical terminating-resistor values range from 27 to  
36 Ω for a 50-Ω line impedance.  
10.2.5 RF Interface  
The following guidelines are for the RF interface. Follow guidelines specified in the vendor-specific antenna  
design guides (including placement of the antenna). Also see CC3120 and CC3220 SimpleLink™ Wi-Fi® and IoT  
Solution Layout Guidelines for general antenna guidelines.  
Ensure that the antenna is matched for 50-Ω. TI recommends using a Pi-matching network.  
Ensure that the area underneath the BPF pads is grounded on layer one and layer two, and ensure that the  
minimum filter requirements are met.  
Verify that the Wi-Fi RF trace is a 50-Ω, impedance-controlled trace with a reference to solid ground.  
The RF trace bends must be made with gradual curves. Avoid using 90-degree bends.  
The RF traces must not have sharp corners.  
Do not place traces or ground under the antenna section.  
The RF traces must have via stitching on the ground plane beside the RF trace on both sides.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: CC3220R CC3220S CC3220SF  
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
11 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions are listed in this section.  
11.1 Development Tools and Software  
For the most up-to-date list of development tools and software, see the CC3220 Tools & Software product page.  
Users can also click the "Alert Me" button on the top right corner of the CC3220 Tools & Software page to stay  
informed about updates related to the CC3220MOD device.  
Development Tools  
Pin Mux Tool  
The supported devices are: CC3200 and CC3220x.  
The Pin Mux Tool is a software tool that provides a graphical user interface (GUI)  
for configuring pin multiplexing settings, resolving conflicts and specifying I/O cell  
characteristics for MPUs from TI. Results are output as C header/code files that can be  
imported into software development kits (SDKs) or used to configure customers' custom  
software. Version 3 of the Pin Mux Tool adds the capability of automatically selecting a  
mux configuration that satisfies the entered requirements.  
SimpleLinkWi-Fi®  
Starter Pro  
The supported devices are: CC3100, CC3200, CC3120R, and CC3220x.  
The SimpleLink™ Wi-Fi® Starter Pro mobile App is a new mobile application for  
SimpleLink provisioning. The app goes along with the embedded provisioning library  
and example that runs on the device side (see SimpleLink™ Wi-Fi® CC3120  
SDK plugin and TI SimpleLink™ Wi-Fi® CC3220 Software Development Kit (SDK)).  
The new provisioning release is a TI recommendation for Wi-Fi provisioning using  
SimpleLink Wi-Fi products. The provisioning release implements advanced AP mode  
and SmartConfigtechnology provisioning with feedback and fallback options to ensure  
successful process has been accomplished. Customers can use both embedded library  
and the mobile library for integration to their end products.  
SimpleLinkWi-Fi®  
Radio Testing Tool  
The supported devices are: CC3100, CC3200, and CC3220x.  
The SimpleLink™ Wi-Fi® Radio Testing Tool is a Windows-based software tool for  
RF evaluation and testing of SimpleLink Wi-Fi CC3120 and CC3220 designs during  
development and certification. The tool enables low-level radio testing capabilities by  
manually setting the radio into transmit or receive modes. Using the tool requires  
familiarity and knowledge of radio circuit theory and radio test methods.  
Created for the Internet of Things (IoT), the SimpleLink Wi-Fi CC31xx and CC32xx  
family of devices include on-chip Wi-Fi, Internet, and robust security protocols with no  
prior Wi-Fi experience needed for faster development. For more information on these  
devices, visit SimpleLinkWi-Fi® family, Internet-on-a chip™ solutions.  
Copyright © 2021 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
CC3220 Software  
Development Kit  
(SDK)  
The CC3220x device is supported.  
The CC3220 SDK contains drivers, many sample applications for Wi-Fi features and  
Internet, as well as documentation needed to use the CC3220 Internet-on-a-chip  
solution. This SDK can be used with TI’s MSP432P401R LaunchPaddevelopment  
kit, or with the SimpleLink Studio, a PC tool that allows MCU development with CC3220.  
You can also use the SDK as example code for any platform. All sample applications  
in the SDK are supported on TI’s MSP432P401R ultra-low-power MCUs with Code  
Composer StudioIDE and TI-RTOS. In addition, many of the applications support IAR.  
Uniflash Standalone  
Flash Tool for  
TI Microcontrollers  
(MCU), Sitara  
CCS Uniflash is a standalone tool used to program on-chip flash memory on TI MCUs  
and on-board flash memory for Sitara processors. Uniflash has a GUI, command line,  
and scripting interface. CCS Uniflash is available free of charge.  
Processors &  
SimpleLink Devices  
TI Designs and Reference Designs  
The TI Designs Reference Design Library is a robust reference design library spanning analog, embedded  
processor, and connectivity. Created by TI experts to help you jumpstart your system design, all TI Designs  
include schematic or block diagrams, BOMs, and design files to speed your time to market.  
11.2 Firmware Updates  
TI updates features in the service pack for this module with no published schedule. Due to the ongoing changes,  
TI recommends that the user has the latest service pack in their module for production.  
To stay informed, click the SDK “Alert me” button the top right corner of the product page, or visit SimpleLink™  
Wi-Fi® CC3120 SDK plugin.  
11.3 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of the  
CC3220x device and support tools (see 11-1).  
CC  
3220  
x
xx  
x
xxx  
x
PREFIX  
X = preproduction device  
no prefix = production device  
PACKAGING  
R = tape/reel  
T = small reel  
DEVICE FAMILY  
PACKAGE  
RGK = 9-mm × 9-mm VQFN  
CC = wireless connectivity  
SERIES NUMBER  
3 = Wi-Fi Centric  
REVISION  
A = Revision A  
MEMORY  
R = ROM  
S = Secured  
SF = Secured flash  
MEMORY SIZE  
M2 = 256KB RAM  
12 = 1MB flash and 256KB RAM  
11-1. CC3220x Device Nomenclature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
11.4 Documentation Support  
To receive notification of documentation updates—including silicon errata—go to the product folder for your  
device on ti.com (CC3220). In the upper right corner, click the "Alert me" button. This registers you to receive a  
weekly digest of product information that has changed (if any). For change details, check the revision history of  
any revised document. The current documentation that describes the processor, related peripherals, and other  
technical collateral follows.  
The following documents provide support for the CC3220 device.  
Errata  
CC3220R, CC3220S This document describes the known exceptions to the functional specifications for  
Silicon Errata  
the CC3220R and the CC3220S SimpleLink™ Wi-Fi® Wireless and Internet-of-Things  
Solution, a Single-Chip Wireless MCU.  
CC3220SF  
Errata  
Silicon This document describes the known exception to the functional specifications for the  
CC3220SF SimpleLink™ Wi-Fi® Wireless and Internet-of-Things Solution, a Single-  
Chip Wireless MCU.  
Application Reports  
CC3120 and CC3220 SimpleLink™ CC3120 and CC3220 SimpleLink™ Wi-Fi® Embedded Programming  
Wi-Fi® Embedded Programming  
SimpleLink™ CC3120, CC3220 Wi- This application report describes the best practices for power  
Fi® Internet-on-a chip™ Networking management and extended battery life for embedded low-power Wi-Fi  
Sub-System Power Management  
devices such as the SimpleLink™ Wi-Fi® Internet-on-a chip™ solution  
from Texas Instruments™.  
SimpleLink™ CC3120, CC3220 Wi- The SimpleLink™ Wi-Fi® CC3120 and CC3220 Internet-on-a chip™ family  
Fi® Internet-on-a chip™ Solution of devices from Texas Instruments™ offer a wide range of built-in security  
Built-In Security Features  
features to help developers address a variety of security needs, which  
is achieved without any processing burden on the main microcontroller  
(MCU). This document describes these security-related features and  
provides recommendations for leveraging each in the context of practical  
system implementation.  
SimpleLink™ CC3120, CC3220 Wi- This document describes the OTA library for the SimpleLink™ Wi-Fi®  
Fi® and Internet of Things Over-the- CC3x20 family of devices from Texas Instruments™ and explains how to  
Air Update  
prepare a new cloud-ready update to be downloaded by the OTA library.  
SimpleLink™ CC3120, CC3220 Wi- This guide describes the provisioning process, which provides the  
Fi® Internet-on-a chip™ Solution SimpleLink™ Wi-Fi® device with the information (network name,  
Device Provisioning  
password, and so forth) needed to connect to a wireless network.  
Transfer of TI's Wi-Fi® Alliance This document explains how to employ the Wi-Fi® Alliance (WFA)  
Certifications to Products Based on derivative certification transfer policy to transfer a WFA certification,  
SimpleLink™  
already obtained by Texas Instruments, to a system you have developed.  
Using Serial Flash on SimpleLink™ This application note is divided into two parts. The first part provides  
CC3120 and CC3220 Wi-Fi® and important guidelines and best- practice design techniques to consider  
Internet-of-Things Devices  
when choosing and embedding a serial Flash paired with the CC3120 and  
CC3220 (CC3x20) devices. The second part describes the file system,  
along with guidelines and considerations for system designers working  
with the CC3x20 devices.  
Copyright © 2021 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
CC3220R, CC3220S, CC3220SF  
www.ti.com.cn  
User's Guides  
SimpleLink™  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
Wi-Fi®  
and This document provides software (SW) programmers with all of the required  
Internet of Things CC3120 and knowledge for working with the networking subsystem of the SimpleLink™ Wi-  
CC3220 Network Processor  
Fi® devices. This guide provides basic guidelines for writing robust, optimized  
networking host applications, and describes the capabilities of the networking  
subsystem. The guide contains some example code snapshots, to give users  
an idea of how to work with the host driver. More comprehensive code  
examples can be found in the formal software development kit (SDK). This  
guide does not provide a detailed description of the host driver APIs.  
SimpleLink™ Wi-Fi® CC3120 This document provides the design guidelines of the 4-layer PCB used for  
and CC3220 and IoT Solution the CC3120 and CC3220 SimpleLink™ Wi-Fi® family of devices from Texas  
Layout Guidelines  
Instruments™. The CC3120 and CC3220 devices are easy to lay out and are  
available in quad flat no-leads (QFNS) packages. When designing the board,  
follow the suggestions in this document to optimize performance of the board.  
SimpleLink™  
Wi-Fi®  
and This guide is intended to assist users in the initial setup and demonstration  
Internet of Things Solution of running their first sample application for the CC3220, CC3220S, CC3220SF  
CC3220,  
Wireless MCU  
a
Single-Chip SimpleLink™ Wi-Fi® and Internet of Things Solution, a Single-Chip Wireless  
MCU from Texas Instruments™. The guide explains how to install the software  
development kit (SDK) and various other tools required to get started with the  
first application.  
SimpleLink™ CC3220 Wi-Fi® The CC3220 SimpleLink LaunchPad™ Development Kit (CC3220-LAUNCHXL)  
LaunchPad™ Development Kit is a low-cost evaluation platform for Arm® Cortex®-M4-based MCUs. The  
Hardware  
LaunchPad design highlights the CC3220 Internet-on-a chip™ solution and  
Wi-Fi capabilities. The CC3220 LaunchPad also features temperature and  
accelerometer sensors, programmable user buttons, three LEDs for custom  
applications, and onboard emulation for debugging. The stackable headers of  
the CC3220 LaunchPad XL interface demonstrate how easy it is to expand  
the functionality of the LaunchPad when interfacing with other peripherals on  
many existing BoosterPack™ Plug-in Module add-on boards, such as graphical  
displays, audio codecs, antenna selection, environmental sensing, and more.  
SimpleLink™  
Internet of Things CC3220  
Wi-Fi®  
and This document introduces the user to the environment setup for the CC3220x  
device, along with some reference examples from the software development kit  
(SDK). This document explains both the platform and the framework available  
to enable further application development.  
SimpleLink™ Wi-Fi® CC3220 This guide demonstrates the out-of-box experience for the CC3220  
Out-of-Box Application  
LaunchPad™ Development Kit, highlighting the easy connection to the CC3220  
LaunchPad using the SimpleLink™ Wi-Fi® Starter Pro application, and the over-  
the-air update.  
SimpleLink™  
Wi-Fi®  
and The Radio Tool serves as a control panel for direct access to the radio, and  
Internet-on-a-chip™ CC3120 can be used for both the radio frequency (RF) evaluation and for certification  
and CC3220 Solution Radio purposes. This guide describes how to have the tool work seamlessly on  
Tool  
Texas Instruments™ evaluation platforms such as the BoosterPack™ plus  
FTDI emulation board for CC3120 devices, and the LaunchPad™ for CC3220  
devices.  
SimpleLink™ Wi-Fi® CC3120 This guide describes TI’s SimpleLink™ Wi-Fi® provisioning solution for mobile  
and CC3220 Provisioning for applications, specifically on the usage of the Android™ and iOS® building  
Mobile Applications  
blocks for UI requirements, networking, and provisioning APIs required for  
building the mobile application.  
SimpleLink™ Wi-Fi® CC3220 This guide details the out-of-box (OOB) experience with the CC3220  
Out-of-Box Application LaunchPad™ Development Kit from Texas Instruments™.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: CC3220R CC3220S CC3220SF  
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
UniFlash  
CC3220 SimpleLink™ Wi-Fi® SimpleLink ImageCreator tool as part of the UniFlash.  
and Internet-on-a chip™  
CC3120  
and This document describes the installation, operation, and usage of the  
Solution ImageCreator and  
Programming Tool  
More Literature  
CC3220,  
CC3220S,  
CC3220SF This technical reference manual details the modules and  
SimpleLink™ Wi-Fi® and Internet of Things peripherals of the SimpleLink™ CC32xx wireless MCU. Each  
description presents the module or peripheral in a general sense.  
Not all features and functions of all modules or peripherals may be  
present on all devices. Pin functions, internal signal connections,  
and operational parameters differ from device to device. The user  
should consult the device-specific data sheet for these details.  
RemoTI Manifest  
CC3120, CC3220 SimpleLink™ Wi-Fi® and  
Internet of Things Design Checklist  
CC3220 SimpleLink™ Wi-Fi® and Internet CC3220 hardware design files.  
of Things  
11.5 支持资源  
TI E2E支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者按原样提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI  
《使用条款》。  
11.6 Trademarks  
Wi-Fi CERTIFIED, WPA, WPA2, WPA3, and are trademarks of Wi-Fi Alliance.  
SmartConfigis a trademark of TI.  
SimpleLink, LaunchPad, Code Composer Studio, and TI E2Eare trademarks of Texas Instruments.  
Macrocellis a trademark of Kappa Global Inc.  
WiMAXare trademarks of WiMAX Forum.  
Wi-Fi Alliance® and Wi-Fi Direct® are registered trademarks of Wi-Fi Alliance.  
Arm®, Cortex®, and Thumb® are registered trademarks of Arm Limited.  
Zigbee® are registered trademarks of Zigbee Alliance.  
所有商标均为其各自所有者的财产。  
11.7 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.8 Export Control Notice  
Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as  
defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled  
product restricted by other applicable national regulations, received from disclosing party under nondisclosure  
obligations (if any), or any direct product of such technology, to any destination to which such export or re-export  
is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S.  
Department of Commerce and other competent Government authorities to the extent required by those laws.  
Copyright © 2021 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
 
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
11.9 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
CC3220R, CC3220S, CC3220SF  
ZHCSJ35C – SEPTEMBER 2016 – REVISED MAY 2021  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
12.1 Packaging Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: CC3220R CC3220S CC3220SF  
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021,德州仪器 (TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CC3220RM2ARGKR  
CC3220RM2ARGKT  
CC3220SF12ARGKR  
CC3220SF12ARGKT  
CC3220SM2ARGKR  
CC3220SM2ARGKT  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGK  
64  
64  
64  
64  
64  
64  
2500 RoHS & Green NIPDAU | NIPDAUAG Level-3-260C-168 HR  
250 RoHS & Green NIPDAU | NIPDAUAG Level-3-260C-168 HR  
2500 RoHS & Green NIPDAU | NIPDAUAG Level-3-260C-168 HR  
250 RoHS & Green NIPDAU | NIPDAUAG Level-3-260C-168 HR  
2500 RoHS & Green NIPDAU | NIPDAUAG Level-3-260C-168 HR  
250 RoHS & Green NIPDAU | NIPDAUAG Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
CC3220R  
M2A  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
RGK  
CC3220R  
M2A  
RGK  
CC3220SF  
12A  
RGK  
CC3220SF  
12A  
RGK  
CC3220S  
M2A  
RGK  
CC3220S  
M2A  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Jan-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
CC3220RM2ARGKR  
CC3220RM2ARGKT  
CC3220SF12ARGKR  
CC3220SM2ARGKR  
CC3220SM2ARGKT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGK  
RGK  
RGK  
RGK  
RGK  
64  
64  
64  
64  
64  
2500  
250  
330.0  
180.0  
330.0  
330.0  
180.0  
16.4  
16.4  
16.4  
16.4  
16.4  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
1.1  
1.1  
1.1  
1.1  
1.1  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q2  
Q2  
Q2  
Q2  
Q2  
2500  
2500  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Jan-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
CC3220RM2ARGKR  
CC3220RM2ARGKT  
CC3220SF12ARGKR  
CC3220SM2ARGKR  
CC3220SM2ARGKT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGK  
RGK  
RGK  
RGK  
RGK  
64  
64  
64  
64  
64  
2500  
250  
367.0  
210.0  
367.0  
367.0  
210.0  
367.0  
185.0  
367.0  
367.0  
185.0  
38.0  
35.0  
38.0  
38.0  
35.0  
2500  
2500  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RGK0064B  
VQFN - 1 mm max height  
S
C
A
L
E
1
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
9.1  
8.9  
A
B
PIN 1 INDEX AREA  
9.1  
8.9  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 7.5  
6.3 0.1  
SYMM  
(0.2) TYP  
17  
32  
16  
33  
EXPOSED  
THERMAL PAD  
SYMM  
65  
2X 7.5  
0.30  
64X  
1
48  
60X 0.5  
PIN 1 ID  
0.18  
64  
49  
0.1  
C A B  
0.5  
0.3  
0.05  
64X  
4222201/B 03/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGK0064B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
6.3)  
SEE SOLDER MASK  
DETAIL  
SYMM  
64X (0.6)  
64  
49  
64X (0.24)  
1
48  
60X (0.5)  
8X (1.1)  
(R0.05) TYP  
18X (1.2)  
(0.6) TYP  
SYMM  
65  
(8.8)  
(
0.2) TYP  
VIA  
16  
33  
17  
32  
(0.6) TYP  
18X (1.2)  
8X  
(1.1)  
(8.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222201/B 03/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGK0064B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
25X ( 1)  
64  
(1.2) TYP  
49  
64X (0.6)  
64X (0.24)  
1
48  
60X (0.5)  
(R0.05) TYP  
(1.2) TYP  
65  
SYMM  
(8.8)  
16  
33  
METAL  
TYP  
17  
32  
SYMM  
(8.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 MM THICK STENCIL  
SCALE: 10X  
EXPOSED PAD 65  
63% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4222201/B 03/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY