CD74HC7046AM [TI]

Phase-Locked Loop with VCO and Lock Detector; 带有VCO及锁定检测锁相环
CD74HC7046AM
型号: CD74HC7046AM
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Phase-Locked Loop with VCO and Lock Detector
带有VCO及锁定检测锁相环

信号电路 锁相环或频率合成电路 光电二极管
文件: 总26页 (文件大小:301K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CD74HC7046A,  
CD74HCT7046A  
Data sheet acquired from Harris Semiconductor  
SCHS218C  
Phase-Locked Loop  
with VCO and Lock Detector  
February 1998 - Revised October 2003  
Features  
Description  
• Center Frequency of 18MHz (Typ) at V  
Minimum Center Frequency of 12MHz at V  
= 5V,  
The CD74HC7046A and CD74HCT7046A high-speed  
silicon-gate CMOS devices, specified in compliance with  
JEDEC Standard No. 7A, are phase-locked-loop (PLL)  
circuits that contain a linear voltage-controlled oscillator  
(VCO), two-phase comparators (PC1, PC2), and a lock  
detector. A signal input and a comparator input are common  
to each comparator. The lock detector gives a HIGH level at  
pin 1 (LD) when the PLL is locked. The lock detector  
CC  
CC = 4.5V  
[ /Title  
(CD74  
HC704  
6A,  
CD74  
HCT70  
46A)  
• Choice of Two Phase Comparators  
- Exclusive-OR  
- Edge-Triggered JK Flip-Flop  
• Excellent VCO Frequency Linearity  
• VCO-Inhibit Control for ON/OFF Keying and for Low  
Standby Power Consumption  
capacitor must be connected between pin 15 (C ) and pin  
LD  
8 (Gnd). For a frequency range of 100kHz to 10MHz, the  
lock detector capacitor should be 1000pF to 10pF,  
respectively.  
• Minimal Frequency Drift  
/Sub-  
• Zero Voltage Offset Due to Op-Amp Buffer  
ject  
The signal input can be directly coupled to large voltage  
signals, or indirectly coupled (with a series capacitor) to  
small voltage signals. A self-bias input circuit keeps small  
voltage signals within the linear region of the input amplifiers.  
With a passive low-pass filter, the 7046A forms a second-  
order loop PLL. The excellent VCO linearity is achieved by  
the use of linear op-amp techniques.  
• Operating Power-Supply Voltage Range  
(Phase-  
Locked  
Loop  
- VCO Section . . . . . . . . . . . . . . . . . . . . . . . . . . 3V to 6V  
- Digital Section . . . . . . . . . . . . . . . . . . . . . . . . 2V to 6V  
• Fanout (Over Temperature Range)  
- Standard Outputs. . . . . . . . . . . . . . . 10 LSTTL Loads  
- Bus Driver Outputs . . . . . . . . . . . . . 15 LSTTL Loads  
o
o
• Wide Operating Temperature Range . . . -55 C to 125 C  
• Balanced Propagation Delay and Transition Times  
Ordering Information  
TEMP. RANGE  
o
• Significant Power Reduction Compared to LSTTL  
Logic ICs  
PART NUMBER  
CD74HC7046AE  
( C)  
PACKAGE  
16 Ld PDIP  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
• HC Types  
CD74HC7046AM  
CD74HC7046AMT  
CD74HC7046AM96  
CD74HCT7046AE  
CD74HCT7046AM  
CD74HCT7046AMT  
CD74HCT7046AM96  
16 Ld SOIC  
16 Ld SOIC  
16 Ld SOIC  
16 Ld PDIP  
16 Ld SOIC  
16 Ld SOIC  
16 Ld SOIC  
- 2V to 6V Operation  
- High Noise Immunity: N = 30%, N = 30% of V  
IL IH CC  
at V  
= 5V  
CC  
• HCT Types  
- 4.5V to 5.5V Operation  
- Direct LSTTL Input Logic Compatibility,  
V = 0.8V (Max), V = 2V (Min)  
IL IH  
- CMOS Input Compatibility, I 1µA at V , V  
OL OH  
l
NOTE: When ordering, use the entire part number. The suffix 96  
denotes tape and reel. The suffix T denotes a small-quantity reel  
of 250.  
Applications  
• FM Modulation and Demodulation  
• Frequency Synthesis and Multiplication  
• Frequency Discrimination  
• Tone Decoding  
• Data Synchronization and Conditioning  
• Voltage-to-Frequency Conversion  
• Motor-Speed Control  
• Related Literature  
- AN8823, CMOS Phase-Locked-Loop Application  
Using the CD74HC/HCT7046A and  
CD74HC/HCT7046A  
0.1  
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.  
Copyright © 2003, Texas Instruments Incorporated  
1
CD74HC7046A, CD74HCT7046A  
Functional Diagram  
Pinout  
CD74HC7046A, CD74HCT7046A  
(PDIP, SOIC)  
TOP VIEW  
2
PC1  
3
OUT  
OUT  
COMP  
SIG  
15  
13  
1
IN  
IN  
C
LD  
LD  
1
2
3
4
5
6
7
8
16 V  
15 C  
φ
CC  
14  
PC2  
LD  
PC1  
OUT  
LD  
COMP  
VCO  
14 SIG  
IN  
IN  
13 PC2  
OUT  
INH  
OUT  
6
7
C1  
C1  
A
B
12 R  
2
1
4
C1  
A
11  
R
11  
12  
9
VCO  
DEM  
OUT  
R
1
2
C1  
B
10 DEM  
OUT  
VCO  
10  
R
9
VCO  
GND  
IN  
OUT  
VCO  
IN  
5
INH  
C1  
6
7
4
3
14  
SIG  
COMP  
C1  
C1  
B
IN  
IN  
A
PC1  
OUT  
2
V
REF  
150Ω  
R2  
R1  
12  
-
1.5K  
LOCK DETECTOR  
VCO  
R2  
LOCK  
DETECTOR  
OUTPUT  
1
11  
15  
C
R1  
LD  
LOCK  
DETECTOR  
CAPACITOR  
V
-
+
CC  
UP  
Q
Q
D
p
10  
CP  
R
R3  
C2  
13  
PC2  
OUT  
D
-
R5  
+
n
Q
Q
V
CC  
D
GND  
DOWN  
CP  
R
D
INH  
5
VCO  
9
IN  
FIGURE 1. LOGIC DIAGRAM  
2
CD74HC7046A, CD74HCT7046A  
Phase Comparator 1 (PC1)  
This is an Exclusive-OR network. The signal and comparator  
Pin Descriptions  
PIN NO.  
SYMBOL  
NAME AND FUNCTION  
Lock Detector Output (Active High)  
Phase Comparator 1 Output  
Comparator Input  
input frequencies (f ) must have a 50% duty factor to obtain  
i
1
2
LD  
the maximum locking range. The transfer characteristic of  
PC1, assuming ripple (f = 2f ) is suppressed, is:  
r
i
PC1  
OUT  
V
= (V /π) (φ  
CC  
- φ ) where V  
COMPIN  
3
COMP  
DEMOUT  
SIGIN  
DEMOUT  
= V  
IN  
is the demodulator output at pin 10; V  
DEMOUT  
PC1OUT  
4
VCO  
VCO Output  
OUT  
(via low-pass filter).  
5
INH  
Inhibit Input  
The average output voltage from PC1, fed to the VCO input  
via the low-pass filter and seen at the demodulator output at  
6
C1  
C1  
Capacitor C1 Connection A  
Capacitor C1 Connection B  
Ground (0V)  
A
pin 10 (V  
), is the resultant of the phase differences  
DEMOUT  
7
B
of signals (SIG ) and the comparator input (COMP ) as  
IN  
IN  
8
Gnd  
shown in Figure 2. The average of V  
is equal to 1/2 V  
DEM  
CC  
when there is no signal or noise at SIG , and with this input  
the VCO oscillates at the center frequency (f ). Typical wave-  
o
IN  
9
VCO  
DEM  
VCO Input  
IN  
10  
11  
12  
13  
14  
15  
16  
Demodulator Output  
Resistor R1 Connection  
Resistor R2 Connection  
Phase Comparator 2 Output  
Signal Input  
forms for the PC1 loop locked at f shown in Figure 3.  
OUT  
1
o
R
R
The frequency capture range (2f ) is defined as the fre-  
c
quency range of input signals on which the PLL will lock if it  
2
was initially out-of-lock. The frequency lock range (2f ) is  
L
PC2  
OUT  
defined as the frequency range of input signals on which the  
loop will stay locked if it was initially in lock. The capture  
range is smaller or equal to the lock range.  
SIG  
IN  
C
Lock Detector Capacitor Input  
Positive Supply Voltage  
LD  
With PC1, the capture range depends on the low-pass filter  
characteristics and can be made as large as the lock range.  
This configuration retains lock behavior even with very noisy  
input signals. Typical of this type of phase comparator is that  
it can lock to input frequencies close to the harmonics of the  
VCO center frequency.  
V
CC  
General Description  
VCO  
The VCO requires one external capacitor C1 (between C1  
A
Phase Comparator 2 (PC2)  
and C1 ) and one external resistor R1 (between R1 and  
B
Gnd) or two external resistors R1 and R2 (between R1 and  
Gnd, and R2 and Gnd). Resistor R1 and capacitor C1 deter-  
mine the frequency range of the VCO. Resistor R2 enables  
the VCO to have a frequency offset if required. See logic dia-  
gram, Figure 1.  
This is a positive edge-triggered phase and frequency detec-  
tor. When the PLL is using this comparator, the loop is con-  
trolled by positive signal transitions and the duty factors of  
SIGIN and COMP are not important. PC2 comprises two  
IN  
D-type flip-flops, control-gating and a three-state output  
stage. The circuit functions as an up-down counter (Figure  
The high input impedance of the VCO simplifies the design  
of low-pass filters by giving the designer a wide choice of  
resistor/capacitor ranges. In order not to load the low-pass  
filter, a demodulator output of the VCO input voltage is pro-  
1) where SIG causes an up-count and COMP a down-  
IN IN  
count. The transfer function of PC2, assuming ripple (f = f )  
r
i
is suppressed, is:  
vided at pin 10 (DEM  
niques where the DEM  
lower than the VCO input voltage, here the DEM  
). In contrast to conventional tech-  
voltage is one threshold voltage  
V
= (V /4π) (φ  
- φ ) where V  
COMPIN  
OUT  
OUT  
DEMOUT  
CC SIGN  
DEMOUT  
= V  
is the demodulator output at pin 10; V  
(via low-pass filter).  
DEMOUT  
PC2OUT  
voltage  
OUT  
equals that of the VCO input. If DEM  
is used, a load  
OUT  
resistor (R ) should be connected from DEM  
The average output voltage from PC2, fed to the VCO via the  
low-pass filter and seen at the demodulator output at pin 10  
(V  
SIG and COMP as shown in Figure 4. Typical waveforms  
for the PC2 loop locked at f are shown in Figure 5.  
to Gnd; if  
S
OUT  
should be left open. The VCO output  
unused, DEM  
OUT  
), is the resultant of the phase differences of  
DEMOUT  
(VCO  
) can be connected directly to the comparator  
OUT  
IN IN  
input (COMP ), or connected via a frequency-divider. The  
IN  
o
VCO output signal has a specified duty factor of 50%. A  
LOW level at the inhibit input (INH) enables the VCO, while a  
HIGH level disables the VCO to minimize standby power  
consumption.  
When the frequencies of SIG and COMP are equal but  
IN IN  
the phase of SIG leads that of COMP , the p-type output  
IN IN  
is held “ON” for a time corresponding to  
driver at PC2  
OUT  
the phase differences (φ  
). When the phase of SIG  
DEMOUT  
lags that of COMP , the n-type driver is held “ON”.  
IN  
Phase Comparators  
IN  
The signal input (SIG ) can be directly coupled to the self-  
IN  
When the frequency of SIG is higher than that of COMP ,  
the p-type output driver is held “ON” for most of the input sig-  
nal cycle time, and for the remainder of the cycle both n-type  
IN IN  
biasing amplifier at pin 14, provided that the signal swing is  
between the standard HC family input logic levels, Capaci-  
tive coupling is required for signals with smaller swings.  
and p-type drivers are “OFF” (three-state). If the SIG fre-  
IN  
3
CD74HC7046A, CD74HCT7046A  
quency is lower than the COMP frequency, then it is the n- biased and the time constant in the path that charges the  
IN  
type driver that is held “ON” for most of the cycle. Subse- lock detector capacitor is T = (150x C ).  
LD  
quently, the voltage at the capacitor (C2) of the low-pass filter  
During the fall time of the pulse the capacitor discharges  
through the 1.5kand the 150resistors and the channel  
resistance of the n-device of the NOR gate to ground  
connected to PC2  
varies until the signal and comparator  
OUT  
inputs are equal in both phase and frequency. At this stable  
point the voltage on C2 remains constant as the PC2 output is  
in three-state and the VCO input at pin 9 is a high impedance.  
(T = (1.5k+ 150+ Rn-channel) x C ).  
LD  
The waveform preset at the capacitor resembles a sawtooth  
as shown in Figure 7. The lock detector capacitor value is  
determined by the VCO center frequency. The typical range  
of capacitor for a frequency of 10MHz is about 10pF and for  
a frequency of 100kHz is about 1000pF. The chart in Figure  
8 can be used to select the proper lock detector capacitor  
value. As long as the loop remains locked and tracking, the  
level of the sawtooth will not go below the switching thresh-  
old of the Schmitt-trigger inverter. If the loop breaks lock, the  
width of the error pulse will be wide enough to allow the saw-  
tooth waveform to go below threshold and a level change at  
the output of the Schmitt trigger will indicate a loss of lock,  
as shown in Figure 9. The lock detector capacitor also acts  
to filter out small glitches that can occur when the loop is  
either seeking or losing lock.  
Thus, for PC2, no phase difference exists between SIG  
IN  
and COMP over the full frequency range of the VCO.  
IN  
Moreover, the power dissipation due to the low-pass filter is  
reduced because both p-type and n-type drivers are “OFF”  
for most of the signal input cycle. It should be noted that the  
PLL lock range for this type of phase comparator is equal to  
the capture range and is independent of the low-pass filter.  
With no signal present at SIG , the VCO adjusts, via PC2,  
IN  
to its lowest frequency.  
Lock Detector Theory of Operation  
Detection of a locked condition is accomplished by a NOR  
gate and an envelope detector as shown in Figure 6. When  
the PLL is in Lock, the output of the NOR gate is High and  
the lock detector output (Pin 1) is at a constant high level. As  
the loop tracks the signal on Pin 14 (signal in), the NOR gate  
outputs pulses whose widths represent the phase differ-  
ences between the VCO and the input signal. The time  
between pulses will be approximately equal to the time con-  
stant of the VCO center frequency. During the rise time of  
the pulse, the diode across the 1.5kresistor is forward  
Note: When using phase comparator 1, the detector will only  
indicate a lock condition on the fundamental frequency and  
not on the harmonics, which PC1 will also lock on. If a detec-  
tion of lock is needed over the harmonic locking range of  
PC1, then the lock detector output must be OR-ed with the  
output of PC1.  
V
CC  
SIG  
IN  
V
DEMOUT (AV)  
COMP  
IN  
VCO  
OUT  
1/2 V  
CC  
PC1  
OUT  
V
CC  
VCO  
IN  
0
GND  
o
o
o
φDEMOUT  
0
90  
180  
FIGURE 2. PHASE COMPARATOR 1: AVERAGE OUTPUT  
VOLTAGE vs INPUT PHASE DIFFERENCE:  
FIGURE 3. TYPICAL WAVEFORMS FOR PLL USING PHASE  
COMPARATOR 1, LOOP LOCKED AT f  
o
V
= V  
= (V /π) (φSIGIN - φCOM-  
DEMOUT  
PC1OUT CC  
); φDEMOUT = (φSIGIN - φCOMPIN  
)
PIN  
4
CD74HC7046A, CD74HCT7046A  
V
CC  
SIG  
IN  
V
COMP  
DEMOUT (AV)  
IN  
VCO  
OUT  
V
CC  
1/2 V  
CC  
PC2  
OUT  
GND  
HIGH IMPEDANCE OFF - STATE  
VCO  
IN  
0
PCP  
OUT  
o
o
o
φDEMOUT  
-360  
0
360  
FIGURE 4. PHASE COMPARATOR 2: AVERAGE OUTPUT  
VOLTAGE vs INPUT PHASE DIFFERENCE:  
FIGURE 5. TYPICAL WAVEFORMS FOR PLL USING PHASE  
COMPARATOR 2, LOOP LOCKED AT f  
o
V
= V  
= (V /π) (φSIGIN - φCOM-  
DEMOUT  
PC2OUT CC  
); φDEMOUT = (φSIGIN - φCOMPIN  
)
PIN  
7046 LOCK DETECTOR CIRCUITRY  
PHASE DIFFERENCE  
SIG  
IN  
UP  
FF  
PIN 1  
1.5kΩ  
150Ω  
LOCK DETECTOR  
OUTPUT  
DN  
FF  
COMP  
IN  
C
LD  
PIN 15  
LOCK DETECTOR  
CAPACITOR  
FIGURE 6. CD74HC/HCT7046A LOCK DETECTOR CIRCUIT  
LOCK  
PIN 1  
DETECTOR  
1.5kΩ  
150Ω  
OUTPUT  
PIN 15  
LOCK  
C
LD  
DETECTOR  
CAPACITOR  
V
V
CAP  
TH  
FIGURE 7. WAVEFORM PRESENT AT LOCK DETECTOR CAPACITOR WHEN IN LOCK  
5
CD74HC7046A, CD74HCT7046A  
10M  
1M  
100K  
10K  
1K  
100  
10  
10  
100  
1K  
10K  
100K  
1M  
10M  
100M  
f, VCO CENTER FREQUENCY (HZ)  
FIGURE 8. LOCK DETECTOR CAPACITOR SELECTION CHART  
LOSS OF LOCK  
PIN 1  
LOCK  
DETECTOR  
OUTPUT  
1.5kΩ  
150Ω  
PIN 15  
LOCK  
C
LD  
DETECTOR  
CAPACITOR  
V
V
CAP  
TH  
FIGURE 9. WAVEFORM PRESENT AT LOCK DETECTOR CAPACITOR WHEN UNLOCKED  
6
CD74HC7046A, CD74HCT7046A  
Absolute Maximum Ratings  
Thermal Information  
o
DC Supply Voltage, V  
. . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 7V  
Thermal Resistance (Typical, Note 1)  
θ
( C/W)  
CC  
DC Input Diode Current, I  
JA  
IK  
E (PDIP) Package . . . . . . . . . . . . . . . . . . . . . . . . . .  
M (SOIC) Package. . . . . . . . . . . . . . . . . . . . . . . . . .  
67  
73  
For V < -0.5V or V > V  
+ 0.5V. . . . . . . . . . . . . . . . . . . . . .±20mA  
OK  
For V < -0.5V or V > V  
I
I
CC  
o
DC Output Diode Current, I  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . 150 C  
Maximum Storage Temperature Range . . . . . . . . . .-65 C to 150 C  
Maximum Lead Temperature (Soldering 10s). . . . . . . . . . . . . 300 C  
o
o
+ 0.5V . . . . . . . . . . . . . . . . . . . .±20mA  
O
O
CC  
o
DC Output Source or Sink Current per Output Pin, I  
O
For V > -0.5V or V < V  
+ 0.5V . . . . . . . . . . . . . . . . . . . .±25mA  
O
O
CC  
(SOIC - Lead Tips Only)  
DC V  
or Ground Current, I  
. . . . . . . . . . . . . . . . . . . . . . . . .±50mA  
CC  
CC  
Operating Conditions  
o
o
Temperature Range, T . . . . . . . . . . . . . . . . . . . . . . -55 C to 125 C  
A
Supply Voltage Range, V  
CC  
HC Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2V to 6V  
HCT Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.5V to 5.5V  
DC Input or Output Voltage, V , V . . . . . . . . . . . . . . . . . 0V to V  
I
O
CC  
Input Rise and Fall Time  
2V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000ns (Max)  
4.5V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500ns (Max)  
6V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400ns (Max)  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation  
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. The package thermal impedance is calculated in accordance with JESD 51-7.  
DC Electrical Specifications  
TEST  
CONDITIONS  
o
o
o
o
o
25 C  
-40 C TO 85 C -55 C TO 125 C  
V
CC  
PARAMETER  
HC TYPES  
SYMBOL  
V (V)  
I
I
(mA)  
(V)  
MIN  
TYP  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS  
O
VCO SECTION  
INH High Level Input  
Voltage  
V
-
-
-
-
3
4.5  
6
2.1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2.1  
-
2.1  
-
-
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
IH  
3.15  
-
-
3.15  
-
-
3.15  
4.2  
4.2  
4.2  
-
INH Low Level Input  
Voltage  
V
3
-
0.9  
1.35  
1.8  
-
-
0.9  
1.35  
1.8  
-
-
0.9  
1.35  
1.8  
-
IL  
4.5  
6
-
-
-
-
-
-
VCO  
High Level  
V
V
or V  
IL  
-0.02  
3
2.9  
2.9  
2.9  
OUT  
OH  
IH  
Output Voltage  
CMOS Loads  
-0.02  
-0.02  
-
4.5  
6
4.4  
-
4.4  
-
4.4  
-
5.9  
-
5.9  
-
5.9  
-
VCO  
High Level  
-
-
-
-
-
-
-
OUT  
Output Voltage  
TTL Loads  
-4  
4.5  
6
3.98  
-
3.84  
-
3.7  
-
-5.2  
0.02  
0.02  
0.02  
-
5.48  
-
5.34  
-
5.2  
-
VCO  
Low Level  
V
V or V  
IH IL  
2
-
-
-
-
-
-
-
-
0.1  
0.1  
0.1  
-
-
-
-
-
-
-
-
-
0.1  
0.1  
0.1  
-
-
-
-
-
-
-
-
-
0.1  
0.1  
0.1  
-
OUT  
OL  
Output Voltage  
CMOS Loads  
4.5  
6
VCO  
Low Level  
-
OUT  
Output Voltage  
TTL Loads  
4
4.5  
6
0.26  
0.26  
0.40  
0.40  
0.33  
0.33  
0.47  
0.47  
0.4  
0.4  
0.54  
0.54  
5.2  
4
C1A, C1B Low Level  
Output Voltage  
(Test Purposes Only)  
V
V
V
or  
IL  
4.5  
6
OL  
OL  
5.2  
7
CD74HC7046A, CD74HCT7046A  
DC Electrical Specifications (Continued)  
TEST  
CONDITIONS  
o
o
o
o
o
25 C  
-40 C TO 85 C -55 C TO 125 C  
V
CC  
PARAMETER  
SYMBOL  
V (V)  
I
(mA)  
O
(V)  
MIN  
TYP  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS  
I
INH VCO Input  
IN  
I
V
GND  
or  
-
6
-
-
±0.1  
-
±1  
-
±1  
µA  
I
CC  
Leakage Current  
R1 Range (Note 2)  
R2 Range (Note 2)  
-
-
-
-
-
-
-
4.5  
4.5  
3
3
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
kΩ  
kΩ  
pF  
pF  
pF  
V
-
-
C1 Capacitance  
Range  
-
No  
Limit  
4.5  
6
40  
-
VCO Operating  
IN  
Voltage Range  
-
Over the range  
specified for R1 for  
LinearitySeeFigure  
8, and 35 - 38  
3
1.1  
1.1  
1.1  
1.9  
3.2  
4.6  
4.5  
6
V
V
(Note 3)  
PHASE COMPARATOR SECTION  
SIG , COMP  
IN  
DC Coupled  
High-Level Input  
Voltage  
V
-
-
-
2
4.5  
6
1.5  
3.15  
4.2  
-
-
-
-
-
-
1.5  
3.15  
4.2  
-
-
-
1.5  
3.15  
4.2  
-
-
-
V
V
V
IN  
IH  
SIG , COMP  
IN  
DC Coupled  
Low-Level Input  
Voltage  
V
-
2
4.5  
6
-
-
-
-
-
-
0.5  
1.35  
1.8  
-
-
-
0.5  
1.35  
1.8  
-
-
-
0.5  
1.35  
1.8  
V
V
V
IN  
IL  
LD, PCn  
OUT  
Level Output Voltage  
CMOS Loads  
High-  
V
V
or V  
-0.02  
2
4.5  
6
1.9  
4.4  
-
-
-
-
-
-
-
-
-
-
1.9  
4.4  
-
-
-
-
-
1.9  
4.4  
5.9  
3.7  
5.2  
-
-
-
-
-
V
V
V
V
V
OH  
IL  
IH  
5.9  
5.9  
LD, PCn  
OUT  
Level Output Voltage  
TTL Loads  
High-  
V
V
V
or V  
or V  
-4  
4.5  
6
3.98  
5.48  
3.84  
5.34  
OH  
IL  
IL  
IH  
IH  
-5.2  
LD, PCn  
OUT  
Level Output Voltage  
CMOS Loads  
Low-  
V
0.02  
2
4.5  
6
-
-
-
-
-
-
-
-
-
-
0.1  
0.1  
-
-
-
-
-
0.1  
0.1  
-
-
-
-
-
0.1  
0.1  
0.1  
0.4  
0.4  
V
V
V
V
V
OL  
0.1  
0.1  
LD, PCn  
OUT  
Level Output Voltage  
TTL Loads  
Low-  
V
V
or V  
IH  
4
4.5  
6
0.26  
0.26  
0.33  
0.33  
OL  
IL  
5.2  
SIG , COMP Input  
IN IN  
Leakage Current  
I
V
or  
-
2
3
-
-
-
-
-
-
-
-
-
-
±3  
±7  
-
-
-
-
-
±4  
±9  
-
-
-
-
-
±5  
µA  
µA  
µA  
µA  
µA  
I
CC  
GND  
±11  
±29  
±45  
±10  
4.5  
6
±18  
±30  
±0.5  
±23  
±38  
±5  
PC2  
Three-State  
Off-State Current  
I
V
or V  
IH  
-
6
OUT  
OZ  
IL  
SIG , COMP Input  
Resistance  
R
V at Self-Bias  
I
Operation Point:  
3
4.5  
6
-
-
-
800  
250  
150  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
kΩ  
kΩ  
kΩ  
IN  
IN  
I
V = 0.5V,  
I
See Figure 8  
DEMODULATOR SECTION  
Resistor Range  
R
at R > 300kΩ  
Leakage Current  
Can Influence  
3
4.5  
6
10  
10  
10  
-
-
-
300  
300  
300  
-
-
-
-
-
-
-
-
-
-
-
-
kΩ  
kΩ  
kΩ  
S
S
V
DEMOUT  
8
CD74HC7046A, CD74HCT7046A  
DC Electrical Specifications (Continued)  
TEST  
CONDITIONS  
o
o
o
o
o
25 C  
-40 C TO 85 C -55 C TO 125 C  
V
CC  
PARAMETER  
SYMBOL  
V (V)  
I
(mA)  
O
(V)  
MIN  
TYP  
±30  
±20  
±10  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS  
mV  
I
Offset Voltage VCO  
V
V = V  
VCOIN  
=
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IN  
OFF  
I
V
to V  
CC  
2
DEM  
4.5  
6
mV  
mV  
Values taken over  
Range  
R
S
See Figure 15  
Dynamic Output  
Resistance at  
R
V
=
3
4.5  
6
-
-
-
-
25  
25  
25  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
O
DEMOUT  
V
CC  
-
-
2
DEM  
OUT  
-
-
Quiescent Device  
Current  
I
Pins 3, 5 and 14  
at V Pin 9 at  
6
8
80  
160  
µA  
CC  
CC  
GND, I at Pins 3  
I
and 14 to be  
excluded  
HCT TYPES  
VCO SECTION  
INH High Level Input  
Voltage  
V
-
-
-
4.5 to  
5.5  
2
-
-
-
-
-
0.8  
-
2
-
-
0.8  
-
2
-
-
0.8  
-
V
V
V
IH  
INH Low Level Input  
Voltage  
V
-
4.5 to  
5.5  
IL  
VCO  
High Level  
V
V
V
V
or V  
-0.02  
4.5  
4.5  
4.5  
4.5  
4.5  
5.5  
4.4  
4.4  
4.4  
OUT  
OH  
IH  
IH  
IH  
IL  
IL  
IL  
Output Voltage  
CMOS Loads  
VCO  
High Level  
-4  
0.02  
4
3.98  
-
-
-
-
-
3.84  
-
3.7  
-
V
V
OUT  
Output Voltage  
TTL Loads  
VCO  
Low Level  
V
or V  
-
-
-
-
0.1  
-
-
-
-
0.1  
0.33  
0.47  
±1  
-
-
-
-
0.1  
0.4  
0.54  
±1  
OUT  
OL  
Output Voltage  
CMOS Loads  
VCO  
Low Level  
0.26  
0.40  
±0.1  
V
OUT  
Output Voltage  
TTL Loads  
C1A, C1B Low Level  
Output Voltage  
(Test Purposes Only)  
V
or V  
4
V
OL  
INH VCO Input  
IN  
I
Any Voltage  
µA  
I
Leakage Current  
Between V  
and  
CC  
GND  
R1 Range (Note 2)  
R2 Range (Note 2)  
-
-
-
-
-
-
-
4.5  
4.5  
4.5  
3
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
kΩ  
kΩ  
pF  
-
-
C1 Capacitance  
Range  
40  
No  
Limit  
VCO Operating  
IN  
Voltage Range  
-
Over the range  
specified for R1 for  
LinearitySeeFigure  
8, and 35 - 38  
4.5  
1.1  
-
3.2  
-
-
-
-
V
(Note 3)  
PHASE COMPARATOR SECTION  
SIG , COMP  
IN  
DC Coupled  
V
-
-
4.5 to  
5.5  
3.15  
-
-
3.15  
-
3.15  
-
V
IN  
IH  
High-Level Input  
Voltage  
9
CD74HC7046A, CD74HCT7046A  
DC Electrical Specifications (Continued)  
TEST  
CONDITIONS  
o
o
o
o
o
25 C  
-40 C TO 85 C -55 C TO 125 C  
V
CC  
PARAMETER  
SYMBOL  
V (V)  
I
I
(mA)  
(V)  
MIN  
TYP  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS  
O
SIG , COMP  
V
IL  
-
-
4.5 to  
5.5  
-
-
1.35  
-
1.35  
-
1.35  
V
IN  
DC Coupled  
IN  
Low-Level Input  
Voltage  
LD, PCn  
OUT  
Level Output Voltage  
CMOS Loads  
High-  
V
V
V
V
V
or V  
or V  
or V  
or V  
-
-
-
-
-
4.5  
4.5  
4.5  
4.5  
5.5  
4.4  
-
-
-
-
-
-
4.4  
-
4.4  
3.7  
-
-
V
V
OH  
IL  
IL  
IL  
IL  
IH  
IH  
IH  
IH  
LD, PCn  
OUT  
Level Output Voltage  
TTL Loads  
High-  
V
3.98  
-
3.84  
-
-
OH  
LD, PCn  
OUT  
Level Output Voltage  
CMOS Loads  
Low-  
V
-
-
-
0.1  
0.26  
±30  
-
-
0.1  
0.33  
±38  
0.1  
0.4  
±45  
V
OL  
LD, PCn  
OUT  
Level Output Voltage  
TTL Loads  
Low-  
V
-
V
OL  
SIG , COMP Input  
IN IN  
I
Any  
µA  
I
Leakage Current  
Voltage  
Between  
V
and  
CC  
GND  
PC2  
Three-State  
Off-State Current  
I
V
or V  
IH  
-
5.5  
4.5  
-
-
-
±0.5  
±5  
-
-
-
-
±10  
µA  
kΩ  
OUT  
OZ  
IL  
SIG , COMP Input  
R
V at Self-Bias  
250  
-
-
-
IN  
IN  
I
I
Resistance  
Operation Point:  
V, 0.5V,  
See Figure 8  
DEMODULATOR SECTION  
Resistor Range  
R
at R > 300kΩ  
Leakage Current  
Can Influence  
4.5  
4.5  
10  
-
-
300  
-
-
-
-
-
-
-
-
-
kΩ  
S
S
V
DEMOUT  
V = V =  
VCOIN  
Offset Voltage VCO  
V
±20  
mV  
IN  
OFF  
I
V
to V  
CC  
2
DEM  
Values taken over  
Range  
R
S
See Figure 15  
Dynamic Output  
Resistance at  
R
V
=
4.5  
5.5  
-
25  
-
-
-
-
-
O
DEMOUT  
V
CC  
2
DEM  
OUT  
Quiescent Device  
Current  
I
V
or  
-
-
-
-
-
8
-
-
80  
-
-
160  
490  
µA  
µA  
CC  
CC  
GND  
Additional Quiescent  
Device Current Per  
Input Pin: 1 Unit Load  
I  
CC  
(Note 4)  
V
4.5 to  
5.5  
100  
360  
450  
CC  
-2.1  
(Exclud-  
ing Pin 5)  
NOTES:  
2. The value for R1 and R2 in parallel should exceed 2.7k; R1 and R2 values above 300kmay contribute to frequency shift due to leakage  
currents.  
3. The maximum operating voltage can be as high as V  
-0.9V, however, this may result in an increased offset voltage.  
CC  
4. For dual-supply systems theoretical worst case (V = 2.4V, V  
= 5.5V) specification is 1.8mA.  
CC  
I
10  
CD74HC7046A, CD74HCT7046A  
HCT Input Loading Table  
INPUT  
UNIT LOADS  
INH  
1
NOTE: Unit Load is I  
360µA max at 25 C.  
limit specified in DC Electrical Table, e.g.,  
CC  
o
Switching Specifications C = 50pF, Input t , t = 6ns  
L
r f  
o
o
-40 C TO  
-55 C TO  
o
o
o
25 C  
85 C  
125 C  
TEST  
SYMBOL CONDITIONS  
PARAMETER  
HC TYPES  
PHASE COMPARATOR SECTION  
Propagation Delay  
SIG , COMP to PC  
V
(V) MIN  
TYP MAX MIN MAX  
MIN  
MAX  
UNITS  
CC  
t
, t  
PLH PHL  
2
-
-
-
200  
40  
34  
75  
15  
13  
280  
56  
48  
325  
65  
55  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
250  
50  
43  
95  
19  
16  
350  
70  
60  
405  
81  
69  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
300  
60  
51  
110  
22  
19  
420  
84  
71  
490  
98  
83  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
mV  
mV  
mV  
IN IN 1OUT  
4.5  
6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Output Transition Time  
Output Enable Time, SIG  
t
, t  
THL TLH  
2
-
4.5  
6
-
-
,
t
t
, t  
PZH PZL  
2
-
IN  
COMP to PC2  
IN OUT  
4.5  
6
-
-
Output Disable Time, SIG  
,
, t  
2
-
IN  
PHZ PLZ  
COMP to PC2  
IN OUT  
4.5  
6
-
-
AC Coupled Input Sensitivity (  
V
3
11  
15  
33  
P-  
I(P-P)  
) at SIG or COMP  
IN  
P
IN  
4.5  
6
-
-
-
-
-
-
VCO SECTION  
o
Frequency Stability with  
Temperature Change  
f  
T  
R
= 100k,  
3
4.5  
6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Typ 0.11  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
%/ C  
1
R = ∞  
2
o
%/ C  
o
-
-
%/ C  
Maximum Frequency  
f
C
R
= 50pF  
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
%
MAX  
1
= 3.5kΩ  
1
4.5  
6
-
24  
-
R = ∞  
2
-
C
= 0pF  
3
-
-
1
R
= 9.1kΩ  
1
4.5  
6
-
38  
-
R = ∞  
2
-
Center Frequency  
Frequency Linearity  
f
C = 40pF  
3
7
12  
14  
-
10  
17  
21  
-
o
1
R = 3kΩ  
1
4.5  
6
R = ∞  
2
VCO = V /2  
IN  
CC  
f  
R
= 100kΩ  
1
3
VCO  
R = ∞  
2
4.5  
6
-
0.4  
-
%
C
= 100pF  
1
-
%
11  
CD74HC7046A, CD74HCT7046A  
Switching Specifications C = 50pF, Input t , t = 6ns (Continued)  
L
r f  
o
o
-40 C TO  
-55 C TO  
o
o
o
25 C  
85 C  
125 C  
TEST  
SYMBOL CONDITIONS  
PARAMETER  
Offset Frequency  
V
(V) MIN  
TYP MAX MIN MAX  
MIN  
MAX  
UNITS  
kHz  
CC  
R
C
= 220kΩ  
3
-
-
400  
-
-
-
-
-
-
-
-
-
-
-
-
2
= 1nF  
1
4.5  
6
-
-
-
-
-
-
kHz  
kHz  
DEMODULATOR SECTION  
vs f  
V
R = 100kΩ  
1
3
4.5  
6
-
-
-
-
330  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
mV/kHz  
mV/kHz  
mV/kHz  
OUT  
IN  
R = ∞  
2
C
= 100pF  
1
R
= 10kΩ  
5
R
= 100kΩ  
3
C
= 100pF  
2
HCT TYPES  
PHASE COMPARATOR SECTION  
Propagation Delay  
t
, t  
PLH PHL  
SIG , COMP to PC  
4.5  
4.5  
4.5  
-
-
-
-
-
-
45  
15  
60  
-
-
-
56  
19  
75  
-
-
-
68  
22  
90  
ns  
ns  
ns  
IN IN 1OUT  
Output Transition Time  
t
, t  
THL TLH  
Output Enable Time, SIG  
,
t
, t  
PZH PZL  
IN  
COMP to PC2  
IN OUT  
Output Disable Time, SIG  
,
t
, t  
4.5  
-
-
70  
-
86  
-
105  
ns  
IN  
PHZ PLZ  
COMP to PCZ  
IN  
OUT  
AC Coupled Input Sensitivity  
) at SIG or COMP  
V
3
4.5  
6
-
-
-
11  
15  
33  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
mV  
mV  
mV  
I(P-P)  
(
P-P  
IN  
IN  
VCO SECTION  
o
Frequency Stability with  
Temperature Change  
f  
T  
R
= 100k,  
4.5  
4.5  
-
-
-
-
-
Typ 0.11  
-
-
-
-
%/ C  
1
R = ∞  
2
Maximum Frequency  
f
C
R
= 50pF  
24  
-
-
-
-
-
-
MHz  
MHz  
MHz  
MAX  
1
= 3.5kΩ  
1
R = ∞  
2
C
= 0pF  
4.5  
4.5  
-
38  
17  
-
-
-
-
-
-
1
R
= 9.1kΩ  
1
R = ∞  
2
Center Frequency  
f
C = 40pF  
12  
o
1
R = 3kΩ  
1
R = ∞  
2
VCO = V /2  
IN CC  
Frequency Linearity  
Offset Frequency  
f  
R
= 100kΩ  
1
4.5  
4.5  
-
-
0.4  
-
-
-
-
-
-
-
-
-
-
%
VCO  
R = ∞  
2
C
= 100pF  
1
R
= 220kΩ  
400  
kHz  
2
C
= 1nF  
1
DEMODULATOR SECTION  
vs f  
V
R = 100kΩ  
1
4.5  
-
330  
-
-
-
-
-
mV/kHz  
OUT  
IN  
R = ∞  
2
C
= 100pF  
1
R
= 10kΩ  
5
R
= 100kΩ  
3
C
= 100pF  
2
12  
CD74HC7046A, CD74HCT7046A  
Test Circuits and Waveforms  
t = 6ns  
t = 6ns  
t = 6ns  
t = 6ns  
r
f
r
f
V
3V  
CC  
90%  
50%  
10%  
2.7V  
1.3V  
0.3V  
INPUT  
INPUT  
GND  
GND  
t
t
t
t
THL  
TLH  
THL  
TLH  
90%  
1.3V  
90%  
50%  
10%  
INVERTING  
OUTPUT  
INVERTING  
OUTPUT  
10%  
t
t
PLH  
PHL  
t
t
PLH  
PHL  
FIGURE 10. HC TRANSITION TIMES AND PROPAGATION  
DELAY TIMES, COMBINATION LOGIC  
FIGURE 11. HCT TRANSITION TIMES AND PROPAGATION  
DELAY TIMES, COMBINATION LOGIC  
Typical Performance Curves  
8
10  
R1 = 2.2K  
I
I
7
6
5
R1 = 22K  
R1 = 220K  
R1 = 2.2M  
R1 = 11M  
10  
10  
10  
V  
I
4
3
2
10  
10  
10  
VCO = 0.5 V  
IN CC  
V
= 4.5V  
10  
1
CC  
R2 = ∞  
SELF-BIAS OPERATING POINT  
2
3
4
5
6
1
10  
10  
10  
10  
10  
10  
CAPACITANCE, C1 (pF)  
V
I
FIGURE 12. TYPICAL INPUT RESISTANCE CURVE AT  
FIGURE 13. HC7046A TYPICAL CENTER FREQUENCY vs R1, C1  
SIG , COMP  
IN  
IN  
8
7
8
10  
10  
R1 = 3K  
R1 = 1.5K  
R1 = 15K  
R1 = 150K  
R1 = 1.5M  
R1 = 30K  
R1 = 330K  
R1 = 3M  
R1 = 15M  
10  
7
10  
6
5
6
10  
10  
R1 = 7.5M  
5
10  
10  
4
3
2
4
10  
10  
10  
10  
3
10  
2
10  
VCO = 0.5 V  
IN CC  
VCO = 0.5 V  
IN  
CC  
V
= 6.0V  
V
= 3.0V  
CC  
10  
1
CC  
10  
R2 = ∞  
R2 = ∞  
10  
1
2
3
4
5
6
2
10  
3
4
5
6
1
1
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
CAPACITANCE, C1 (pF)  
CAPACITANCE, C1 (pF)  
FIGURE 14. HC7046A TYPICAL CENTER FREQUENCY vs R1, C1  
FIGURE 15. HC7046A TYPICAL CENTER FREQUENCY vs R1, C1  
13  
CD74HC7046A, CD74HCT7046A  
Typical Performance Curves (Continued)  
8
7
8
10  
10  
R1 = 2.2K  
R1 = 22K  
R1 = 220K  
R1 = 2.2M  
R1 = 11M  
R1 = 3K  
R1 = 30K  
R1 = 300K  
R1 = 3M  
R1 = 15M  
10  
7
6
5
4
3
2
10  
10  
10  
10  
10  
10  
6
5
10  
10  
4
3
2
10  
10  
10  
VCO = 0.5 V  
IN  
CC  
VCO = 0.5 V  
IN  
CC  
V
= 4.5V  
10  
1
CC  
V
= 5.5V  
CC  
10  
1
R2 = ∞  
R2 = ∞  
2
3
4
5
6
1
10  
2
3
4
5
6
10  
10  
10  
10  
10  
1
10  
10  
10  
10  
10  
10  
CAPACITANCE, C1 (pF)  
CAPACITANCE, C1 (pF)  
FIGURE 16. HCT7046A TYPICAL CENTER FREQUENCY vs R1, C1  
FIGURE 17. HCT7046A TYPICAL CENTER FREQUENCY vs R1, C1  
90  
140  
C1 = 50pF  
C1 = 0.1µF  
R1 = 1.5M  
R2 = ∞  
V
= 6V  
CC  
V
= 6V  
CC  
80  
R1 = 1.5M  
R2 = ∞  
120  
100  
70  
60  
V
= 4.5V  
CC  
V
= 4.5V  
CC  
80  
60  
40  
50  
40  
V
= 3V  
CC  
V
= 3V  
CC  
30  
20  
10  
20  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
VCO (V)  
IN  
VCO (V)  
IN  
FIGURE 18. HC7046A TYPICAL VCO FREQUENCY vs VCO  
FIGURE 19. HC7046A TYPICAL VCO FREQUENCY vs VCO  
IN  
IN  
(R1 = 1.5M, C1 = 0.1µF)  
800  
18  
C1 = 0.1µF  
R1 = 150K  
R2 = ∞  
V = 6V  
CC  
C1 = 0.1µF  
R1 = 5.6k  
R2 = ∞  
V
= 6V  
CC  
16  
700  
600  
500  
V
= 4.5V  
CC  
14  
12  
V
= 3V  
CC  
V
= 4.5V  
CC  
10  
8
400  
300  
200  
100  
V
= 3V  
CC  
6
4
2
0
1
2
3
4
5
6
0
1
2
3
4
5
6
VCO (V)  
IN  
VCO (V)  
IN  
FIGURE 20. HC7046A TYPICAL VCO FREQUENCY vs VCO  
FIGURE 21. HC7046A TYPICAL VCO FREQUENCY vs VCO  
IN  
IN  
(R1 = 150k, C1 = 0.1µF)  
(R1 = 5.6k, C1 = 0.1µF)  
14  
CD74HC7046A, CD74HCT7046A  
Typical Performance Curves (Continued)  
24  
20  
1400  
1200  
V
= 6V  
CC  
V
= 6V  
C1 = 50pF  
R1 = 5.6K  
R2 = ∞  
CC  
C1 = 50pF  
R1 = 150K  
R2 = ∞  
1000  
V
= 4.5V  
V
= 4.5V  
CC  
CC  
16  
12  
800  
600  
V
= 3V  
V
= 3V  
CC  
CC  
8
4
400  
200  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
VCO (V)  
IN  
VCO (V)  
IN  
FIGURE 23. HC7046A TYPICAL VCO FREQUENCY vs VCO  
FIGURE 22. HC7046A TYPICAL VCO FREQUENCY vs VCO  
IN  
IN  
(R1 = 5.6k, C1 = 50pF)  
(R1 = 150k, C1 = 0.1µF)  
24  
VCO = 0.5 V  
IN CC  
20  
16  
12  
8
VCO = 0.5 V  
R1 = 2.2M  
IN  
CC  
= 3V  
R1 = 1.5M  
20  
16  
12  
8
C1 = 50pF, V  
= 4.5V  
CC  
C1 = 50pF, V  
CC  
R2 = ∞  
R2 = ∞  
R1 = 150K  
R1 = 220K  
4
4
0
R1 = 3K  
0
-4  
R1 = 2.2K  
-4  
-8  
-8  
-12  
-12  
-16  
-75 -50  
-25  
0
25  
50  
75  
100 125 150  
-75 -50  
-25  
0
25  
50  
75  
100 125 150  
o
o
AMBIENT TEMPERATURE, T ( C)  
AMBIENT TEMPERATURE, T ( C)  
A
A
FIGURE 24. HC7046A TYPICAL CHANGE IN VCO FREQUENCY  
vs AMBIENT TEMPERATURE AS A FUNCTION OF  
FIGURE 25. HC7046A TYPICAL CHANGE IN VCO FREQUENCY vs  
AMBIENT TEMPERATURE AS A FUNCTION OF R1  
R1 (V  
= 3V)  
CC  
15  
CD74HC7046A, CD74HCT7046A  
Typical Performance Curves (Continued)  
20  
VCO = 0.5 V  
IN CC  
16  
12  
8
VCO = 0.5 V  
IN  
CC  
= 5.5V  
R1 = 3M  
C1 = 50pF, V  
= 6.0V  
CC  
C1 = 50pF, V  
CC  
16  
12  
8
R1 = 3M  
R2 = ∞  
R2 = ∞  
R1 = 300K  
R1 = 300K  
4
4
0
0
-4  
-8  
-12  
R1 = 3K  
R1 = 3K  
-4  
-8  
-12  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
o
o
AMBIENT TEMPERATURE, T ( C)  
AMBIENT TEMPERATURE, T ( C)  
A
A
FIGURE 26. HC7046A TYPICAL CHANGE IN VCO FREQUENCY vs  
AMBIENT TEMPERATURE AS A FUNCTION OF R1  
FIGURE 27. HCT7046A TYPICAL CHANGE IN VCO  
FREQUENCY vs AMBIENT TEMPERATURE AS A  
FUNCTION OF R1  
8
10  
VCO = 0.5 V  
IN CC  
20  
16  
12  
8
R1 = 2.2M  
C1 = 50pF, V  
= 4.5V  
CC  
7
10  
R2 = ∞  
6
10  
R2 = 2.2K  
R1 = 220K  
5
10  
R2 = 22K  
4
4
10  
R2 = 220K  
R2 = 2.2M  
3
2
0
10  
10  
-4  
R1 = 2.2K  
-8  
VCO = 0.5 V  
IN CC  
CC  
10  
1
R2 = 11M  
5 6  
V
= 4.5V  
-12  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
2
3
4
1
10  
10  
10  
10  
10  
10  
o
AMBIENT TEMPERATURE, T ( C)  
CAPACITANCE, C1 (pF)  
A
FIGURE 28. HC7046A TYPICAL CHANGE IN VCO FREQUENCY vs  
AMBIENT TEMPERATURE AS A FUNCTION OF R1  
FIGURE 29. HC7046A OFFSET FREQUENCY vs R2, C1  
8
8
10  
10  
7
7
10  
10  
6
6
R2 = 1.5K  
10  
10  
10  
10  
10  
10  
R2 = 2.2K  
5
4
3
2
5
10  
R2 = 22K  
R2 = 220K  
R2 = 2.2M  
4
3
2
R2 = 15K  
10  
10  
10  
R2 = 150K  
R2 = 1.5M  
VCO = GND  
IN  
CC  
VCO = GND  
IN  
CC  
10  
1
10  
1
R2 = 7.5M  
5
R2 = 11M  
5
V
= 3V  
V
= 4.5V  
2
3
4
6
2
3
4
6
10  
1
10  
1
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
CAPACITANCE, C1 (pF)  
CAPACITANCE, C1 (pF)  
FIGURE 30. HC7046A OFFSET FREQUENCY vs R2, C1  
FIGURE 31. HCT7046A OFFSET FREQUENCY vs R2, C1  
16  
CD74HC7046A, CD74HCT7046A  
Typical Performance Curves (Continued)  
8
7
6
5
4
3
2
10  
10  
10  
10  
10  
10  
10  
VCO = V  
IN  
- 0.9V FOR f  
MAX  
CC  
VCO = 0V FOR f  
2
IN  
MIN  
10  
V
= 3V, 4.5V, 6V  
CC  
R2 = 3K  
R2 = 30K  
10  
R2 = 300K  
R2 = 3M  
VCO = GND  
IN  
HC - V  
HCT - V  
= 6V  
CC  
10  
1
R2 = 15M  
5 6  
= 5.5V  
CC  
1
10  
2
3
4
1
10  
10  
10  
10  
10  
10  
-2  
-1  
2
1
10  
10  
10  
CAPACITANCE, C1 (pF)  
R2/R1  
FIGURE 32. HC7046A AND HCT7046A OFFSET FREQUENCY  
vs R2, C1  
FIGURE 33. HC7046A f  
/f  
MIN MAX  
vs R2/R1  
VCO = V  
IN  
- 0.9V FOR f  
MAX  
CC  
2
VCO = 0V FOR f  
IN MIN  
10  
V
= 4.5V TO 5.5V  
CC  
f
f
f
2
0
V = 0.5V OVER THE V  
RANGE:  
CC  
10  
f
0’  
FOR VCO LINEARITY  
f’ = f + f  
2
o
1
f
2
1
f’ - f  
o
o
LINEARITY =  
x 100%  
f’  
o
V  
V  
1
10  
MIN  
MAX  
1/2V  
CC  
-2  
-1  
2
1
10  
10  
10  
V
VCOIN  
R2/R1  
FIGURE 34. HCT7046A f  
/f  
vs R2/R1  
FIGURE 35. DEFINITION OF VCO FREQUENCY LINEARITY  
MAX MIN  
8
8
C1 = 50pF  
C1 = 50pF  
= 4.5V  
R2 = ∞  
6
4
V
= 3V  
V
6
CC  
CC  
R2 = ∞  
4
2
VCO = 2.25V ± 1V  
IN  
2
VCO = 1.50V ± 0.4V  
IN  
0
0
VCO = 2.25V ± 0.45V  
IN  
VCO = 1.50V ± 0.3V  
IN  
-2  
-2  
-4  
-6  
-4  
-6  
-8  
-8  
1K  
10K  
1K  
10K  
100K  
R1 (OHMS)  
1M  
10M  
100K  
1M  
10M  
R1 (OHMS)  
FIGURE 36. HC7046A VCO LINEARITY vs R1  
FIGURE 37. HC7046A VCO LINEARITY vs R1  
17  
CD74HC7046A, CD74HCT7046A  
Typical Performance Curves (Continued)  
8
6
4
8
6
V
= 5.5V,  
CC  
VCO = 2.75V ±1.3V  
C1 = 50pF  
= 6V  
R2 = ∞  
IN  
= 4.5V,  
V
CC  
V
CC  
VCO = 2.25V ±1.0V  
IN  
4
2
VCO = 3V ± 1.5V  
IN  
2
0
0
-2  
-4  
-2  
V
= 5.5V,  
CC  
VCO = 2.75V ±0.55V  
IN  
= 4.5V,  
-4  
-6  
V
CC  
VCO = 3V ± 0.6V  
IN  
VCO = 2.25V ±0.45V  
IN  
C1 = 50pF  
R2 = OPEN  
-6  
-8  
-8  
1K  
10K  
1K  
10K  
100K  
1M  
10M  
100K  
1M  
10M  
R1 (OHMS)  
R1 (OHMS)  
FIGURE 38. HC7046A VCO LINEARITY vs R1  
VCO = 0.5 V  
FIGURE 39. HCT7046A VCO LINEARITY vs R1  
VCO = 0.5 V  
4
3
2
4
3
2
10  
10  
10  
10  
10  
10  
IN  
CC  
IN  
CC  
R1 = R2 = OPEN  
V
= 6V  
V
= 6V  
CC  
CC  
V
= 3V  
V
= 3V  
CC  
CC  
V
= 4.5V  
V
= 4.5V  
CC  
CC  
10  
1
10  
1
1K  
10K  
100K  
1M  
1K  
10K  
100K  
1M  
RS (OHMS)  
RS (OHMS)  
FIGURE 40. HC7046A DEMODULATOR POWER DISSIPATION  
vs RS (TYP)  
FIGURE 41. HCT7046A DEMODULATOR POWER DISSIPATION  
vs RS (TYP) (V = 3V, 4.5V, 6V)  
CC  
6
5
4
3
2
10  
10  
10  
10  
10  
6
VCO = 0V (AT f  
)
10  
IN  
MIN  
VCO = 0.5V  
V
= 6V  
IN  
CC  
CC  
C1 = 50pF  
R1 = RS = ∞  
R2 = RS = OPEN  
= 50pF  
C
= 50pF  
L
C
L
V
= 6V  
CC  
C1 = 50pF  
5
4
3
2
10  
10  
10  
10  
V
= 4.5V  
CC  
C1 = 50pF  
V
= 6V  
V
= 4.5V  
CC  
C1 = 1µF  
CC  
C1 = 50pF  
V
= 4.5V  
CC  
C1 = 1µF  
V
= 6V  
CC  
C1 = 1µF  
V
= 3V  
CC  
C1 = 1µF  
V
= 3V  
CC  
C1 = 50pF  
V
= 4.5V  
CC  
C1 = 1µF  
1K  
10K  
100K  
1M  
1K  
10K  
100K  
1M  
R2 (OHMS)  
R1 (OHMS)  
FIGURE 42. HC7046A VCO POWER DISSIPATION vs R1  
FIGURE 43. HCT7046A VCO POWER DISSIPATION vs R2  
(C1 = 50pF, 1µF)  
(C1 = 50pF, 1µF)  
18  
CD74HC7046A, CD74HCT7046A  
Typical Performance Curves (Continued)  
6
5
4
3
2
10  
10  
10  
10  
10  
6
5
4
3
2
VCO = 0.5V  
IN  
R2 = RS = ∞  
10  
10  
10  
10  
10  
VCO = 0V (AT f  
IN  
)
MIN  
V
= 6V  
CC  
C1 = 50pF  
R1 = RS = ∞  
V
= 5.5V  
CC  
C1 = 50pF  
C
= 50pF  
L
V
= 4.5V  
CC  
V
= 4.5V  
C1 = 50pF  
CC  
C1 = 50pF  
V
= 6V  
CC  
C1 = 1µF  
V
= 5.5V  
CC  
C1 = 1µF  
V
= 3V  
CC  
C1 = 1µF  
V
= 3V  
C1 = 50pF  
V
= 4.5V  
CC  
CC  
C1 = 1µF  
V
= 4.5V  
CC  
C1 = 1µF  
1K  
10K  
100K  
1M  
1K  
10K  
100K  
1M  
R1 (OHMS)  
R2 (OHMS)  
FIGURE 44. HCT7046A VCO POWER DISSIPATION vs R1  
FIGURE 45. HC7046A VCO POWER DISSIPATION vs R2 (C1 =  
(C1 = 50pF, 1µF)  
50pF, 1µF)  
19  
CD74HC7046A, CD74HCT7046A  
References should be made to Figures 13 through 23 and  
HC/HCT7046A C  
PD  
Figures 36 through 41 as indicated in the table.  
CHIP SECTION  
HC  
48  
39  
61  
HCT  
50  
UNIT  
pF  
Values of the selected components should be within the fol-  
lowing ranges:  
Comparator 1  
Comparator 2  
VCO  
48  
pF  
R1  
> 3k;  
53  
pF  
R2  
> 3k;  
R1 || R2  
C1  
parallel value > 2.7kΩ;  
greater than 40pF  
Application Information  
This information is a guide for the approximation of values of  
external components to be used with the CD74HC7046A  
and CD74HCT7046A in a phase-lock-loop system.  
PHASE  
SUBJECT  
COMPARATOR  
DESIGN CONSIDERATIONS  
VCO Frequency  
Without Extra Offset  
(R2 = )  
PC1 or PC2  
VCO Frequency Characteristic  
The characteristics of the VCO operation are shown in Figures 13 - 23.  
f
MAX  
f
VCO  
f
2f  
o
L
f
MIN  
V
MIN  
1/2 V  
MAX  
VCOIN  
CC  
FIGURE 46. FREQUENCY CHARACTERISTIC OF VCO OPERATING WITHOUT  
OFFSET: f = CENTER FREQUENCY: 2f = FREQUENCY LOCK RANGE  
o
L
PC1  
PC2  
Selection of R1 and C1  
Given f , determine the values of R1 and C1 using Figures 13 - 17.  
o
Given f  
MAX  
calculate f as f /2 and determine the values of R1 and C1 using Figures 13 - 17.  
MAX  
o
2(VCO  
)
IN  
To obtain 2f : 2f ≈  
where 0.9V < VCO < V  
IN CC  
- 0.9V is the range of VCO  
IN  
L
L
R1C1  
VCO Frequency Characteristic  
The characteristics of the VCO operation are shown in Figures 29 - 32.  
VCO Frequency with PC1 or PC2  
Extra Offset  
(R2 > 3k)  
f
MAX  
f
VCO  
2f  
f
L
o
f
MIN  
V
MIN  
1/2 V  
MAX  
VCOIN  
CC  
FIGURE 47. FREQUENCY CHARACTERISTIC OF VCO OPERATING WITH OFFSET:  
= CENTER FREQUENCY: 2f = FREQUENCY LOCK RANGE  
f
o
L
PC1 or PC2  
Selection of R1, R2 and C1  
Given f and f , offset frequency, f  
Obtain the values of C1 and R2 by using Figures 29 - 32.  
, may be calculated from fMIN f - 1.6 f .  
o
L
MIN  
o
L
Calculate the values of R1 from Figures 33 - 34.  
20  
PHASE  
SUBJECT  
COMPARATOR  
DESIGN CONSIDERATIONS  
o
PLL Conditions with  
No Signal at the  
SIG Input  
IN  
PC1  
PC2  
VCO adjusts to f with φDEMOUT = 90 and V  
= 1/2 V  
(see Figure 2)  
CC  
o
VCOIN  
o
VCO adjusts to f  
with φDEMOUT = -360 and V  
= 0V (see Figure 4)  
MIN  
VCOIN  
PLL Frequency  
Capture Range  
PC1 or PC2  
Loop Filter Component Selection  
|F  
|
)
(j  
ω
R3  
-1/  
τ
C2  
INPUT  
OUTPUT  
ω
(B) AMPLITUDE CHARACTERISTIC  
(C) POLE-ZERO DIAGRAM  
1/2  
(A) τ1 = R3 x C2  
A small capture range (2f ) is obtained if τ > 2f (1/π) (2πf /τ1.)  
c
c
L
FIGURE 48. SIMPLE LOOP FILTER FOR PLL WITHOUT OFFSET  
R3  
|F  
|
)
(j  
ω
R4  
m =  
R4  
C2  
R3 + R4  
INPUT  
OUTPUT  
-1/  
-1/  
3
2
τ
τ
m
1/  
1/  
2
ω
3
τ
τ
(B) AMPLITUDE CHARACTERISTIC  
(C) POLE-ZERO DIAGRAM  
(A) τ2 = R4 x C2;  
τ3 = (R3 + R4) x C2  
FIGURE 49. SIMPLE LOOP FILTER FOR PLL WITH OFFSET  
PLL Locks on  
Harmonics at Center  
Frequency  
PC1  
PC2  
Yes  
No  
Noise Rejection at  
Signal Input  
PC1  
PC2  
PC1  
PC2  
High  
Low  
o
AC Ripple Content  
when PLL is Locked  
f = 2f , large ripple content at φDEMOUT = 90  
r i  
o
f = f , small ripple content at φDEMOUT = 0  
r
i
Lock Detector Circuit  
The lock detector feature is very useful in data synchroniza-  
tion, motor speed control, and demodulation. By adjusting  
the value of the lock detector capacitor so that the lock out-  
put will change slightly before actually losing lock, the  
designer can create an “early warning” indication allowing  
corrective measures to be implemented. The reverse is also  
true, especially with motor speed controls, generators, and  
clutches that must be set up before actual lock occurs or dis-  
connected during loss of lock.  
When using phase comparator 1, the detector will only indi-  
cate a lock condition on the fundamental frequency and not  
on the harmonics, which PC1 will lock on.  
21  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Oct-2005  
PACKAGING INFORMATION  
Orderable Device  
CD74HC7046AE  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
PDIP  
N
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
25  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
CD74HC7046AEE4  
CD74HC7046AM  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
N
D
D
D
D
D
D
N
N
D
D
D
D
D
D
25  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
CD74HC7046AM96  
CD74HC7046AM96E4  
CD74HC7046AME4  
CD74HC7046AMT  
CD74HC7046AMTE4  
CD74HCT7046AE  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
25  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
CD74HCT7046AEE4  
CD74HCT7046AM  
CD74HCT7046AM96  
CD74HCT7046AM96E4  
CD74HCT7046AME4  
CD74HCT7046AMT  
CD74HCT7046AMTE4  
25  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Oct-2005  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

CD74HC7046AM96

Phase-Locked Loop with VCO and Lock Detector
TI

CD74HC7046AM96E4

Phase-Locked Loop with VCO and Lock Detector
TI

CD74HC7046AM96G4

Phase-Locked Loop with VCO and Lock Detector
TI

CD74HC7046AME4

Phase-Locked Loop with VCO and Lock Detector
TI

CD74HC7046AMG4

Phase-Locked Loop with VCO and Lock Detector
TI

CD74HC7046AMM

Phase-Locked Loop with VCO and Lock Detector
TI

CD74HC7046AMT

Phase-Locked Loop with VCO and Lock Detector
TI

CD74HC7046AMTE4

Phase-Locked Loop with VCO and Lock Detector
TI

CD74HC7046AMTG4

Phase-Locked Loop with VCO and Lock Detector
TI

CD74HC7046A_07

Phase-Locked Loop with VCO and Lock Detector
TI

CD74HC7046A_08

Phase-Locked Loop with VCO and Lock Detector
TI

CD74HC7266

High Speed CMOS Logic Quad 2-Input EXCLUSIVE NOR Gate
TI