CDC857-3DGGG4 [TI]

PLL BASED CLOCK DRIVER, 10 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PDSO48, PLASTIC, TSSOP-48;
CDC857-3DGGG4
型号: CDC857-3DGGG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

PLL BASED CLOCK DRIVER, 10 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PDSO48, PLASTIC, TSSOP-48

驱动 光电二极管 输出元件 逻辑集成电路
文件: 总12页 (文件大小:159K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CDC857-2, CDC857-3  
2.5-/3.3-V PHASE-LOCK LOOP CLOCK DRIVERS  
SCAS627A – SEPTEMBER 1999 – DECEMBER 1999  
DGG PACKAGE  
(TOP VIEW)  
Phase-Lock Loop Clock Distribution for  
Double Data Rate Synchronous DRAM  
Applications  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
GND  
Y0  
GND  
Y5  
Distributes One Differential Clock Input to  
Ten Differential Outputs  
2
3
Y0  
Y5  
External Feedback Pins (FBIN, FBIN) Are  
Used to Synchronize the Outputs to the  
Clock Input  
4
V
V
CC  
Y1  
CC  
5
Y6  
6
Y1  
Y6  
Operates at V  
= 2.5 V and AV  
= 3.3 V  
CC  
CC  
7
GND  
GND  
Y2  
GND  
GND  
Y7  
Packaged in Plastic 48-Pin (DGG) Thin  
Shrink Small-Outline Package (TSSOP)  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Y2  
Y7  
Spread Spectrum Clocking Tracking  
Capability to Reduce EMI  
V
V
V
CC  
CC  
CLK  
CLK  
CC  
G
description  
FBIN  
FBIN  
The CDC857-2 and CDC857-3 are high-perfor-  
mance, low-skew, low-jitter, phase-lock loop  
(PLL) clock driver. They use a PLL to precisely  
align, in both frequency and phase, the feedback  
(FBOUT) output to the clock (CLK) input signal.  
The CDC857-3 operates at 3.3 V (PLL) and 2.5 V  
(output buffer). The CDC857-2 operates at  
2.5 V (PLL and output buffer).  
V
V
CC  
CC  
AGND  
GND  
Y3  
CC  
AV  
FBOUT  
FBOUT  
GND  
Y8  
Y3  
Y8  
V
V
CC  
Y4  
CC  
Y9  
One bank of ten inverting and noninverting  
outputs provide ten low-skew, low-jitter copies of  
CLK. Output signal duty cycles are adjusted to  
50%, independent of the duty cycle at CLK.  
Y4  
Y9  
GND  
GND  
All outputs can be enabled or disabled via a single output enable input. When the G input is high, the outputs  
switch in phase and frequency with CLK; when the G input is low, the outputs are disabled to high impedance  
state (3-state).  
Unlike many products containing PLLs, the CDC857 does not require external RC networks. The loop filter for  
the PLL is included on-chip, minimizing component count, board space, and cost.  
Because it is based on PLL circuity, the CDC857 requires a stabilization time to achieve phase lock of the  
feedback signal to the reference signal. This stabilization time is required following power up and application  
of a fixed-frequency, fixed-phase signal at CLK, as well as following any changes to the PLL reference or  
feedback signals. The PLL can be bypassed for test purposes by strapping AV  
to ground. If AV  
is at GND  
CC  
CC  
and V = ON, 2 falling edges on G cause the PLL to run with FBOUT being enabled and all other outputs being  
CC  
disabled, after AV  
ramps up to its specified V  
value, with G being kept low. The CDC857 is characterized  
CC  
CC  
for operation from 0°C to 85°C.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1999, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
CDC857-2, CDC857-3  
2.5-/3.3-V PHASE-LOCK LOOP CLOCK DRIVERS  
SCAS627A – SEPTEMBER 1999 – DECEMBER 1999  
FUNCTION TABLE  
INPUTS  
OUTPUTS  
PLL  
G
L
CLK  
CLK  
Y
Z
L
Y
Z
H
L
FBOUT  
FBOUT  
X
X
Z
L
Z
H
L
OFF  
RUN  
RUN  
OFF  
H
H
H
L
H
H
L
H
Z
H
Z
< 20 MHz  
< 20 MHz  
Z
Z
logic symbol  
Test  
G
Mode  
Logic  
Y0  
Y0  
Y1  
AV  
CC  
Y1  
Y2  
Y2  
Y3  
Y3  
Y4  
Y4  
Y5  
Y5  
Y6  
Y6  
Y7  
Clk  
Clk  
Y7  
Y8  
PLL  
Y8  
Y9  
FBIN  
FBIN  
Y9  
AV  
= 3.3 V  
CC  
FBOUT  
FBOUT  
NOTE A: All outputs are connected to V  
= 2.5 V.  
CC  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
CDC857-2, CDC857-3  
2.5-/3.3-V PHASE-LOCK LOOP CLOCK DRIVERS  
SCAS627A – SEPTEMBER 1999 – DECEMBER 1999  
SPECIAL TEST MODES  
INPUTS  
OUTPUTS  
COMMENTS  
V
CC  
AV  
CC  
G
L
CLK  
L
Y
Z
Z
L
Y
Z
Z
H
L
FBOUT  
FBOUT  
ON  
ON  
ON  
ON  
ON  
ON  
0 V  
Z
Z
L
Z
Z
H
L
Clock Mode  
Clock Mode  
Clock Mode  
Clock Mode  
PLL Mode  
0 V  
0 V  
0 V  
L
H
H
H
L
H
H
Z
Z
H
L
§
UP  
UP  
L
Z
Z
H
L
§
H
H
PLL Mode  
§
Only one signal shown for this differential input.  
AV ramped up after two (2) high-to-low transitions on G input & G being low.  
CC  
At least two (2) high-to-low transitions during AV  
= 0.  
CC  
Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
AGND  
AV  
NO.  
17  
16  
Ground  
Power  
Analog ground. AGND provides the ground reference for the analog circuitry.  
Analogpower supply. AV provides the power reference for the analog circuitry. Inaddition, AV  
CC  
CC CC  
canbeusedtobypassthePLLfortestpurposes.WhenAV isstrappedtoground,PLLisbypassed  
CC  
and CLK is buffered directly to the device outputs. During disable (G = 0), the PLL is powered down.  
CLK  
CLK  
13  
14  
I
I
Clock input, CLK provides the clock signal to be distributed by the CDC857 clock driver. CLK is used  
to provide the reference signal to the integrated PLL that generates the clock output signals. CLK  
must have a fixed frequency and fixed phase for the PLL to obtain phase lock. Once the circuit is  
powered up and a valid CLK signal is applied, a stabilization time is required for the PLL to phase  
lock the feedback signal to its reference signal.  
FBIN  
FBIN  
36  
35  
Feedback input. FBIN provides the feedback signal to the internal PLL. FBIN must be hard-wired  
to FBOUT to complete the PLL. The integrated PLL synchronizes CLK and FBIN so that there is  
nominally zero phase error between CLK and FBIN.  
FBOUT  
FBOUT  
32  
33  
O
I
Feedback output. FBOUT is dedicated for external feedback. It switches at the same frequency as  
CLK. When externally wired to FBIN, FBOUT completes the feedback loop of the PLL.  
G
37  
Outputbankenable. GistheoutputenableforoutputsYandY. WhenGislowoutputsYaredisabled  
to a high-impedance state. When G is high, all outputs Y are enabled and switch at the same  
frequency as CLK.  
GND  
1, 7, 8, 18,  
24, 25, 31,  
41, 42, 48  
Ground  
Power  
O
Ground  
V
CC  
4, 11, 12,  
15, 21, 28,  
34, 38, 45  
Power supply  
Y0, Y1, Y2,  
Y3, Y4, Y5,  
Y6, Y7, Y8,  
Y9  
3, 5, 10,  
20, 22, 46,  
44, 39, 29,  
27  
Clock outputs. These outputs provide low-skew copies of CLK.  
Y0, Y1, Y2,  
Y3, Y4, Y5,  
Y6, Y7, Y8,  
Y9  
2, 6, 9,  
19, 23, 47,  
43, 40, 30,  
26  
O
Clock outputs. These outputs provide low-skew copies of CLK.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
CDC857-2, CDC857-3  
2.5-/3.3-V PHASE-LOCK LOOP CLOCK DRIVERS  
SCAS627A – SEPTEMBER 1999 – DECEMBER 1999  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage range, V  
or AV  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 4.6 V  
CC  
CC  
Input voltage range V (see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to V  
+0.5 V  
+0.5 V  
I
CC  
CC  
Output voltage range, V , (see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to V  
O
Input clamp current, I (V < 0 or V > V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA  
IK  
I
I
CC  
Output clamp current, I  
Continuous total output current, I (V = 0 to V )  
(V < 0 or V > V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA  
Package thermal impedance, θ (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89°C/W  
OK  
O
O
CC  
O
O
CC  
JA  
stg  
Storage temperature range T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. The input and output negative voltage ratings may be exceeded if the input and output clamp-current ratings are observed.  
2. This value is limited to 4.6 V maximum.  
3. The package thermal impedance is calculated in accordance with JESD 51.  
recommended operating conditions (see Note 4)  
MIN  
2.3  
2.3  
3
NOM  
MAX  
2.7  
UNIT  
V
Supply voltage, V  
CC  
CDC857–2  
CDC857–3  
2.7  
V
Analog supply voltage, AV  
CC  
3.6  
V
V
G input  
0.3 × V  
V
Low–level input voltage, IL(G)  
CC  
V
G input  
0.7 × V  
V
High–level input voltage, IH(G)  
CC  
DC input signal voltage (see Note 5)  
CLK, FBIN  
CLK, FBIN  
CLK, FBIN  
–0.3  
V
CC  
V
CC  
V
CC  
+0.3  
+0.6  
+0.6  
V
dc  
ac  
0.35  
0.7  
V
Differential input signal voltage, V  
(see Note 6)  
ID  
V
Differential cross-point input voltage (see Note 7)  
V
CC  
/2–0.2  
V
CC  
/2  
V
CC  
/2+0.2  
–12  
V
High-level output current, I  
mA  
mA  
V/ns  
°C  
OH  
Low-level output current, I  
Input slew rate, SR  
12  
OL  
1
0
Operating free-air temperature, T  
85  
A
NOTES: 4. Unused inputs must be held high or low to prevent them from floating.  
5. DC input signal voltage specifies the allowable dc execution of differential input.  
6. Differentialinput signal voltage specifies the differential voltage |VTR – VCP| required for switching, where VTR is the true input level  
and VCP is the complementary input level (see figure 3).  
7. Differential cross-point voltage is expected to track variations of V  
crossing.  
and is the voltage at which the differential signals must be  
CC  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
CDC857-2, CDC857-3  
2.5-/3.3-V PHASE-LOCK LOOP CLOCK DRIVERS  
SCAS627A – SEPTEMBER 1999 – DECEMBER 1999  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted)  
PARAMETER  
Input voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
All input pins  
V
V
V
V
V
V
V
= 2.3 V,  
I
I
= –18 mA  
–1.2  
V
IK  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
= min to max, I  
–1 mA  
V
CC  
–0.1  
1.7  
OH=  
OH =  
High-level output voltage  
Low-level output voltage  
V
V
OH  
= 2.3 V,  
I
–12 mA  
= min to max, I  
= 1 mA  
= 12 mA  
= 1 V  
0.1  
0.6  
OL  
OL  
V
OL  
= 2.3 V,  
= 2.3 V,  
= 2.3 V,  
I
I
I
High-level output current  
Low-level output current  
Output voltage swing  
V
–18  
26  
–32  
35  
mA  
mA  
V
OH  
O
O
V
= 1.2 V  
OL  
V
O
For load condition see Figure 3  
1.1  
V
–0.4  
±10  
±10  
±10  
CC  
V
CC  
V
CC  
V
CC  
= 2.7 V,  
= 2.7 V,  
V = 0 V to 2.7 V  
I
G
I
I
Input current  
µA  
I
CLK, FBIN  
V = 0 V to 2.7 V  
I
High-impedance output current  
= 2.7 V  
V
O
= V or GND  
CC  
µA  
OZ  
,
(V /2)–  
CC  
(V /2)+  
CC  
V
OC  
V
CC  
/2  
V
Output crossing point voltage  
0.1  
0.1  
AV  
CC  
and V  
= max,  
CC  
I
Supply current, disabled  
500  
235  
800  
µA  
CCZ  
G = L or no input CLK signal  
V
= 2.7 V, = 167 MHz,  
f
O
CC  
All outputs switching 16 pF in 60 Ω  
environment, See Figure 3  
Supply current on V  
(see Figure 7)  
CC  
l
300  
mA  
CC  
CDC857–2  
CDC857–3  
AV  
AV  
= 2.7 V,  
= 3.6 V,  
f
f
= 167 MHz  
= 167 MHz  
9
15  
2
12  
19  
CC  
O
Supply current on  
AI  
CC  
mA  
AV  
CC  
CC  
O
C
C
Input capacitance  
Output capacitance  
V
= 2.5 V,  
V = V  
or GND  
pF  
pF  
I
CC  
CC  
I
CC  
= 2.5 V,V = V or GND  
CC  
V
3
O
O
All typical values are at respective nominal V  
.
CC  
is expected to be |VTR + VCP|/2. In case of each clock directly terminated by a 120-resistor, where VTR is the true input  
The value of V  
OC  
signal voltage and VCP is the complementary input signal voltage (see Figure 3).  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
CDC857-2, CDC857-3  
2.5-/3.3-V PHASE-LOCK LOOP CLOCK DRIVERS  
SCAS627A – SEPTEMBER 1999 – DECEMBER 1999  
timing requirements over recommended ranges or supply voltage and operating free–air  
temperature  
PARAMETER  
Clock frequency  
Input clock duty cycle  
TEST CONDITIONS  
MIN  
66  
MAX  
167  
60%  
0.1  
UNIT  
f
C
MHz  
40%  
Stabilization time  
ms  
Time required for the integrated PLL circuit to obtain phase lock of its feedback signal to its reference signal. For phase lock to be obtained, a  
fixed–frequency, fixed–phase reference signal must be present at CLK. Until phase lock is obtained, the specifications for propagation delay,  
skew, and jitter parameters given in the switching characteristics table are not applicable. This parameter does not apply for input modulation  
under SSC application.  
switching characteristics  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX  
UNIT  
Low–to high level propagation delay time  
t
t
CLK mode/CLK to any output  
1.5  
1.5  
3.5  
3.5  
6
ns  
PLH  
(see Figure 5)  
High–to low level propagation delay time  
(see Figure 5)  
CLK mode/CLK to any output  
6
ns  
PHL  
t
t
Output enable time  
Output disable time  
CLK mode/G to any Y output  
CLK mode/G to any Y output  
66 MHz  
3
3
ns  
ns  
en  
dis  
120  
75  
t
Jitter (peak-to–peak)  
Jitter (cycle-to-cycle)  
ps  
ps  
(jitter)  
(jitter)  
100/125/133/167 MHz  
66 MHz  
110  
t
100/125/133/167 MHz  
65  
t
t
t
Phase error (see Figure 4)  
Output skew (see Figure 4)  
Pulse skew  
–150  
150  
100  
100  
50.5%  
51%  
950  
ps  
ps  
ps  
(phase error)  
All differential input and output termi-  
nals are terminated with 120 /  
16 pF as shown in Figure 2  
skew(0)  
skew(p)  
66 MHz to 100 MHz  
101 MHz to 167 MHz  
Load = 120 /16 pF  
49.5%  
49%  
650  
§
Duty cycle (see Figure 6)  
t , t  
r f  
Output rise and fall times (20% – 80%)  
800  
ps  
§
Refers to transition of noninverting output.  
While the pulse skew is almost constant over frequency, the duty cycle error increases at higher frequencies. This is due to the formula: duty  
cycle = t /t , were the cycle time (t ) decreases as the frequency goes up.  
wH c  
c
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
CDC857-2, CDC857-3  
2.5-/3.3-V PHASE-LOCK LOOP CLOCK DRIVERS  
SCAS627A – SEPTEMBER 1999 – DECEMBER 1999  
APPLICATION EXAMPLE  
Table 1. Clock Structure and SDRAM Loads per Clock  
CAPACITIVE LOADING ON  
NUMBER of  
CLOCK  
STRUCTURE  
THE PLL OUTPUTS (pF)  
SDRAM LOADS  
PER CLOCK  
MIN  
5
MAX  
8
1
2
2
4
10  
16  
2.5”  
0.6” (Split to Terminator)  
SDRAM represents  
a capacitive load  
SDRAM  
SDRAM  
VTR  
VCP  
120 Ω  
CLK  
CLK  
PLL  
16 pF  
120 Ω  
0.3”  
FBIN  
FBIN  
16 pF  
120 Ω  
Figure 1. Clock Structure #1  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
CDC857-2, CDC857-3  
2.5-/3.3-V PHASE-LOCK LOOP CLOCK DRIVERS  
SCAS627A – SEPTEMBER 1999 – DECEMBER 1999  
APPLICATION EXAMPLE  
2.5”  
0.6” (Split to Terminator)  
SDRAM represents  
a capacitive load  
SDRAM  
Stack  
CLK  
CLK  
PLL  
VTR  
VCP  
16 pF  
120 Ω  
120 Ω  
FBIN  
SDRAM  
Stack  
16 pF  
120 Ω  
FBIN  
0.3”  
Figure 2. Clock Structure #2  
differential clock signals  
Figure 3 shows the differential clocks are directly terminated by a 120-resistor.  
V
CC  
V
CC  
VTR  
Device  
Under  
Test  
60 Ω  
60 Ω  
OUT  
OUT  
R
= 120 Ω  
T
VCP  
Receiver  
Figure 3. Differential Signal Using Direct Termination Resistor  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
CDC857-2, CDC857-3  
2.5-/3.3-V PHASE-LOCK LOOP CLOCK DRIVERS  
SCAS627A – SEPTEMBER 1999 – DECEMBER 1999  
PARAMETER MEASUREMENT INFORMATION  
CLKIN  
FBIN  
t
(phase error)  
FBOUT  
Yx  
t
sk(o)  
Yx  
Yx  
t
sk(o)  
Figure 4. Phase Error and Skew Waveforms  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
CDC857-2, CDC857-3  
2.5-/3.3-V PHASE-LOCK LOOP CLOCK DRIVERS  
SCAS627A – SEPTEMBER 1999 – DECEMBER 1999  
PARAMETER MEASUREMENT INFORMATION  
CLKIN  
Yx or FBIN  
t
pd  
Figure 5. Propagation Delay Time; t  
, t  
PLH PHL  
Yx  
Yx  
t
WH  
t
c
NOTE A: Duty cycle = t  
/t  
WH c  
Figure 6. Output Duty Cycle  
Yx  
t
c(n)  
t
c(n+1)  
NOTE A: Cycle-to-cycle jitter = |t | over 2000 consecutive cycles.  
– t  
c(n) c(n+1)  
Figure 7. Cycle-to-Cycle Jitter  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
CDC857-2, CDC857-3  
2.5-/3.3-V PHASE-LOCK LOOP CLOCK DRIVERS  
SCAS627A – SEPTEMBER 1999 – DECEMBER 1999  
MECHANICAL DATA  
DGG (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
48 PIN SHOWN  
0,27  
0,17  
M
0,08  
0,50  
48  
25  
6,20  
6,00  
8,30  
7,90  
0,15 NOM  
Gage Plane  
0,25  
1
24  
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
48  
56  
64  
DIM  
A MAX  
12,60  
12,40  
14,10  
13,90  
17,10  
16,90  
A MIN  
4040078/F 12/97  
NOTES: B. All linear dimensions are in millimeters.  
C. This drawing is subject to change without notice.  
D. Body dimensions do not include mold protrusion not to exceed 0,15.  
E. Falls within JEDEC MO-153  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1999, Texas Instruments Incorporated  

相关型号:

CDC857-3DGGR

PLL BASED CLOCK DRIVER, 10 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PDSO48, PLASTIC, TSSOP-48
ROCHESTER

CDC906

PROGRAMMABLE 3-PLL CLOCK SYNTHESIZER / MULTIPLIER / DIVIDER
TI

CDC906PW

PROGRAMMABLE 3-PLL CLOCK SYNTHESIZER / MULTIPLIER / DIVIDER
TI

CDC906PWG4

PROGRAMMABLE 3-PLL CLOCK SYNTHESIZER / MULTIPLIER / DIVIDER
TI

CDC906PWR

PROGRAMMABLE 3-PLL CLOCK SYNTHESIZER / MULTIPLIER / DIVIDER
TI

CDC906PWRG4

PROGRAMMABLE 3-PLL CLOCK SYNTHESIZER / MULTIPLIER / DIVIDER
TI

CDC90D48

Ferrite drum core construction
SUMIDA

CDC90D48NP-103MC

Ferrite drum core construction
SUMIDA

CDC90D48NP-123MC

Ferrite drum core construction
SUMIDA

CDC90D48NP-153MC

Ferrite drum core construction
SUMIDA

CDC90D48NP-183MC

Ferrite drum core construction
SUMIDA

CDC90D48NP-223MC

Ferrite drum core construction
SUMIDA