CDCDB2000 [TI]

符合 DB2000QL 标准、适用于第 1 代到第 5 代 PCIe® 的 20 路输出时钟缓冲器;
CDCDB2000
型号: CDCDB2000
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

符合 DB2000QL 标准、适用于第 1 代到第 5 代 PCIe® 的 20 路输出时钟缓冲器

时钟 PC
文件: 总39页 (文件大小:1504K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
CDCDB2000  
ZHCSKG8A NOVEMBER 2019REVISED FEBRUARY 2020  
符合 CDCDB2000 DB2000QL 标准的 20 输出时钟缓冲器,适用于 PCIe  
1 代到第 5 代  
1 特性  
2 应用  
1
具有集成 85Ω 输出终端的 20 LP-HCSL 输出  
微服务器和塔式服务器  
8 硬件输出使能端 (OE#) 控制装置  
使用 DB2000QL 滤波器之后的附加相位抖动:  
< 0.08ps rms  
存储区域网络和主机总线适配器卡  
网络附加存储  
硬件加速器  
支持 PCIe 4 代和第 5 代常见时钟 (CC) 频率和  
单独基准 (IR) 架构  
3 说明  
与扩频兼容  
CDCDB2000 是一款符合 DB2000QL 标准的 20 输出  
LP-HCSL 时钟缓冲器,能够为 PCIe 1 代到第 5  
代、QuickPath Interconnect (QPI)UPISAS 和  
SATA 接口分配参考时钟。使用 SMBusSBI 8 输  
出使能引脚,可以单独配置和控制所有 20 个输出。  
CDCDB2000 是一个 DB2000QL 衍生缓冲器,达到或  
超过 DB2000QL 规格中的系统参数。CDCDB2000 采  
用具有 80 个引线的 6mm × 6mm TLGA/GQFN 封  
装。  
周期到周期抖动:< 50ps  
输出到输出偏斜:< 50ps  
输入到输出延迟:< 3ns  
3.3V 内核和 IO 电源电压  
硬件控制的低功耗模式 (PD#)  
用于在 PD# 模式下进行输出控制的边带接口 (SBI)  
9 个可选 SMBus 地址  
功耗:< 600mW  
6mm × 6mm80 引脚 TLGA/GQFN 封装  
器件信息(1)  
器件型号  
封装  
TLGA (80)  
封装尺寸(标称值)  
CDCDB2000  
6.00mm × 6.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
CDCDB2000 系统图  
PCIe Device  
PCIe Gen 4-5  
Clock  
Generator  
20  
LP-HCSL  
CDCDB2000  
20x LP-HSCL Output Buffer  
LP-HCSL  
OE#  
Control  
SMBus  
Control  
Side-Band  
Interface  
Control Interface  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNAS787  
 
 
 
CDCDB2000  
ZHCSKG8A NOVEMBER 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
目录  
7.5 Programming .......................................................... 15  
7.6 Register Maps ........................................................ 18  
Application and Implementation ........................ 24  
8.1 Application Information............................................ 24  
8.2 Typical Application ................................................. 24  
Power Supply Recommendations...................... 26  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 7  
6.1 Absolute Maximum Ratings ...................................... 7  
6.2 ESD Ratings.............................................................. 7  
6.3 Recommended Operating Conditions....................... 7  
6.4 Thermal Information.................................................. 7  
6.5 Electrical Characteristics........................................... 7  
6.6 Timing Requirements................................................ 9  
6.7 Typical Characteristics............................................ 12  
Detailed Description ............................................ 13  
7.1 Overview ................................................................. 13  
7.2 Functional Block Diagram ....................................... 13  
7.3 Feature Description................................................. 13  
7.4 Device Functional Modes........................................ 14  
8
9
10 Layout................................................................... 27  
10.1 Layout Guidelines ................................................. 27  
10.2 Layout Examples................................................... 27  
11 器件和文档支持 ..................................................... 30  
11.1 器件支持 ............................................................... 30  
11.2 接收文档更新通知 ................................................. 30  
11.3 支持资源................................................................ 30  
11.4 ....................................................................... 30  
11.5 静电放电警告......................................................... 30  
11.6 Glossary................................................................ 30  
12 机械、封装和可订购信息....................................... 30  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (November 2019) to Revision A  
Page  
Changed maximum input voltage from:VDD+ 0.3 V to: VDD+ 0.5 V .................................................................................... 7  
2
Copyright © 2019–2020, Texas Instruments Incorporated  
 
CDCDB2000  
www.ti.com.cn  
ZHCSKG8A NOVEMBER 2019REVISED FEBRUARY 2020  
5 Pin Configuration and Functions  
CDCDB2000 NPP Package  
80-Pin TLGA  
Top View  
1
2
3
4
5
6
7
8
9
10  
11  
12  
CK17 CK16 CK16 CK15 CK15 CK14 CK14 CK13 CK13 CK12 CK12 CK11  
_P  
A
B
C
D
E
F
A
B
C
D
E
F
_P  
_N  
_P  
_N  
_P  
_N  
_P  
_N  
_N  
_P  
_N  
CK17  
_N  
SADR  
0
SADR  
1
CK11  
_P  
VDD  
NC  
NC  
VDD  
NC  
OE12# VDD  
OE11#  
NC  
CK18  
_P  
CK10  
_N  
NC  
NC  
CK10  
_P  
CK18  
_N  
NC  
OE10#  
SHFT OE9#  
_LD#  
CK19  
_P  
SBEN  
NC  
CK9  
CK19  
_N  
NC  
_N  
DAP = GND  
CLKIN  
_P  
CK9  
G
H
J
NC  
NC  
_P  
G
H
J
CLKIN VDD  
_A  
CK8  
OE8#  
_N  
_N  
CK0  
_P  
CK8  
NC  
NC  
_P  
CK0  
_N  
CK7  
OE7#  
K
L
NC  
K
L
_N  
CK1  
_P  
SMB  
DAT  
SMB  
CLK  
OE5#  
DATA  
OE6#  
CLK  
CK7  
VDD  
NC  
NC  
NC  
VDD  
_P  
NC  
CKPW  
RGD  
_PD#  
CK1  
_N  
CK2  
_P  
CK2  
_N  
CK3  
_P  
CK3  
_N  
CK4  
_P  
CK4  
_N  
CK5  
_P  
CK5  
_N  
CK6  
_P  
CK6  
_N  
M
M
1
2
3
4
5
6
7
8
9
10  
11  
12  
Pin Functions  
PIN  
I/O TYPE  
DESCRIPTION  
NAME  
INPUT CLOCK  
CLKIN_P  
NO.  
G1  
H1  
I
I
LP-HCSL differential clock input. Typically connected directly to the differential  
output of clock source.  
CLKIN_N  
OUTPUT CLOCKS  
CK0_P  
J1  
K1  
L1  
O
O
O
O
O
O
O
O
O
O
LP-HCSL differential clock output of channel 0. Typically connected directly to  
PCIe differential clock input. If unused, the pins can be left no connect.  
CK0_N  
CK1_P  
LP-HCSL differential clock output of channel 1. Typically connected directly to  
PCIe differential clock input. If unused, the pins can be left no connect.  
CK1_N  
M1  
M2  
M3  
M4  
M5  
M7  
M8  
CK2_P  
LP-HCSL differential clock output of channel 2. Typically connected directly to  
PCIe differential clock input. If unused, the pins can be left no connect.  
CK2_N  
CK3_P  
LP-HCSL differential clock output of channel 3. Typically connected directly to  
PCIe differential clock input. If unused, the pins can be left no connect.  
CK3_N  
CK4_P  
LP-HCSL differential clock output of channel 4. Typically connected directly to  
PCIe differential clock input. If unused, the pins can be left no connect.  
CK4_N  
Copyright © 2019–2020, Texas Instruments Incorporated  
3
CDCDB2000  
ZHCSKG8A NOVEMBER 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O TYPE  
DESCRIPTION  
NAME  
CK5_P  
NO.  
M9  
O
O
LP-HCSL differential clock output of channel 5. Typically connected directly to  
PCIe differential clock input. If unused, the pins can be left no connect, and pin L8  
(OE5# / DATA) is recommended to be either in DATA mode or pulled high.  
CK5_N  
M10  
CK6_P  
CK6_N  
M11  
M12  
O
O
LP-HCSL differential clock output of channel 6. Typically connected directly to  
PCIe differential clock input. If unused, the pins can be left no connect, and pin L10  
(OE6# / CLK) is recommended to be either in CLK mode or pulled high.  
CK7_P  
CK7_N  
L12  
K12  
O
O
LP-HCSL differential clock output of channel 7. Typically connected directly to  
PCIe differential clock input. If unused, the pins can be left no connect, and pin  
K11 (OE7#) is recommended to be pulled high to disable channel 7 output.  
CK8_P  
CK8_N  
J12  
O
O
LP-HCSL differential clock output of channel 8. Typically connected directly to  
PCIe differential clock input. If unused, the pins can be left no connect, and pin  
H11 (OE8#) is recommended to be pulled high to disable channel 8 output.  
H12  
CK9_P  
CK9_N  
G12  
F12  
O
O
LP-HCSL differential clock output of channel 9. Typically connected directly to  
PCIe differential clock input. If unused, the pins can be left no connect, and pin  
E12 (OE9#) is recommended to be pulled high to disable channel 9 output.  
CK10_P  
CK10_N  
D12  
C12  
O
O
LP-HCSL differential clock output of channel 10. Typically connected directly to  
PCIe differential clock input. If unused, the pins can be left no connect, and pin  
E11 (OE10# / SHFT_LD#) is recommended to be either in SHFT_LD# mode or  
pulled high.  
CK11_P  
CK11_N  
B12  
A12  
O
O
LP-HCSL differential clock output of channel 11. Typically connected directly to  
PCIe differential clock input. If unused, the pins can be left no connect, and pin  
C11 (OE11#) is recommended to be pulled high to disable channel 11 output.  
CK12_P  
CK12_N  
A11  
A10  
O
O
LP-HCSL differential clock output of channel 12. Typically connected directly to  
PCIe differential clock input. If unused, the pins can be left no connect, and pin  
B10 (OE12#) is recommended to be pulled high to disable channel 12 output.  
CK13_P  
CK13_N  
CK14_P  
CK14_N  
CK15_P  
CK15_N  
CK16_P  
CK16_N  
CK17_P  
CK17_N  
CK18_P  
CK18_N  
CK19_P  
CK19_N  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
B1  
C1  
D1  
E1  
F1  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
LP-HCSL differential clock output of channel 13. Typically connected directly to  
PCIe differential clock input. If unused, the pins can be left no connect.  
LP-HCSL differential clock output of channel 14. Typically connected directly to  
PCIe differential clock input. If unused, the pins can be left no connect.  
LP-HCSL differential clock output of channel 15. Typically connected directly to  
PCIe differential clock input. If unused, the pins can be left no connect.  
LP-HCSL differential clock output of channel 16. Typically connected directly to  
PCIe differential clock input. If unused, the pins can be left no connect.  
LP-HCSL differential clock output of channel 17. Typically connected directly to  
PCIe differential clock input. If unused, the pins can be left no connect.  
LP-HCSL differential clock output of channel 18. Typically connected directly to  
PCIe differential clock input. If unused, the pins can be left no connect.  
LP-HCSL differential clock output of channel 19. Typically connected directly to  
PCIe differential clock input. If unused, the pins can be left no connect.  
MANAGEMENT AND CONTROL  
Clock Power Good and Power Down multi-function input pin with internal 120-kΩ  
pulldown. Typically connected to GPIO of microcontroller. If unused, the pin can be  
left no connect.  
On first high transition, PWRGD samples the latched SADR[1:0] inputs and starts  
up device. After PWRGD has been asserted high for the first time, the pin  
becomes a PD# pin and it controls power-down mode:  
LOW: Power-down mode, all output channels tri-stated.  
HIGH: Normal operation mode.  
CKPWRGD_PD#  
M6  
I, PD  
Output enable for channel 5 and Side-Band Interface data multi-function pin with  
internal 120-kΩ pulldown. Typically connected to GPIO of microcontroller. If both  
modes are unused, the pin can be left no connect.  
OE5#  
DATA  
L8  
I, PD  
When pin E2 = LOW, OE5# mode. Output enable for channel 5, active low.  
LOW: enable output channel 5.  
HIGH: disable output channel 5.  
When pin E2 = HIGH, DATA mode. Side-Band Interface data pin.  
4
Copyright © 2019–2020, Texas Instruments Incorporated  
CDCDB2000  
www.ti.com.cn  
ZHCSKG8A NOVEMBER 2019REVISED FEBRUARY 2020  
Pin Functions (continued)  
PIN  
I/O TYPE  
DESCRIPTION  
NAME  
NO.  
Output enable for channel 6 and Side-Band Interface clock multi-function pin with  
internal 120-kΩ pulldown. Typically connected to GPIO of microcontroller. If both  
modes are unused, the pin can be left no connect.  
OE6#  
CLK  
L10  
I, PD  
When pin E2 = LOW, OE6# mode. Output Enable for channel 6, active low.  
LOW: enable output channel 6.  
HIGH: disable output channel 6.  
When pin E2 = HIGH, CLK mode. Side-Band interface clock pin.  
Output Enable for channel 7 with internal 120-kΩ pulldown, active low. Typically  
connected to GPIO of microcontroller. If unused, the pin can be left no connect.  
LOW: enable output channel 7.  
OE7#  
OE8#  
OE9#  
K11  
H11  
E12  
I, PD  
I, PD  
I, PD  
HIGH: disable output channel 7.  
Output Enable for channel 8, with internal 120-kΩ pulldown, active low. Typically  
connected to GPIO of microcontroller. If unused, the pin can be left no connect.  
LOW: enable output channel 8.  
HIGH: disable output channel 8.  
Output Enable for channel 9, with internal 120-kΩ pulldown, active low. Typically  
connected to GPIO of microcontroller. If unused, the pin can be left no connect.  
LOW: enable output channel 9.  
HIGH: disable output channel 9.  
Output enable for channel 10 and Side-Band Interface load shift registers multi-  
function pin with internal 120-kΩ pulldown. Typically connected to GPIO of  
microcontroller. If both modes are unused, the pin can be left no connect.  
When pin E2 = LOW, OE10# mode. Output Enable for channel 10, active low.  
LOW: enable output channel 10.  
HIGH: disable output channel 10.  
OE10#  
SHFT_LD#  
E11  
I, PD  
When pin E2 = HIGH, SHFT_LD# mode. Side-Band Interface load shift registers  
pin.  
LOW: disable Side-Band Interface shift register.  
HIGH: enable Side-Band Interface shift register.  
A falling edge transfers the Side-Band shift register contents to the output register.  
Output Enable for channel 11 with internal 120-kΩ pulldown, active low. Typically  
connected to GPIO of microcontroller. If unused, the pin can be left no connect.  
LOW: enable output channel 11.  
OE11#  
OE12#  
C11  
B10  
I, PD  
I, PD  
HIGH: disable output channel 11.  
Output Enable for channel 12 with internal 120-kΩ pulldown, active low. Typically  
connected to GPIO of microcontroller. If unused, the pin can be left no connect.  
LOW: enable output channel 12.  
HIGH: disable output channel 12.  
Side-Band Interface enable input with internal 120-kΩ pulldown. Typically  
connected to GPIO of microcontroller. If unused, the pin can be left no connect.  
This pin disables the Output Enable (OE#) pins when asserted.  
LOW: OE# pins and SMBus enable bits control outputs, Side-Band interface  
disabled.  
SBEN  
E2  
I, S, PD  
HIGH: Side-Band Interface controls outputs, OE# pins and SMBus enable bits are  
disabled.  
SMBUS AND SMBUS ADDRESS  
SMBus address strap bit[0]. This is a 3-level input that is decoded in conjunction  
with pin B8 to set SMBus address. It has internal 120-kΩ pullup / pulldown network  
biasing to VDD/2 when no connect.  
For a high-level input configuration, the pin should be pulled up to 3.3-V VDD  
through an external pullup resistor from 1k to 5k with 5% tolerance.  
For a low-level input configuration input, the pin should be pulled down to ground  
through an external pulldown resistor from 1k to 5k with 5% tolerance.  
For a mid-level input configuration, the pin should be left floating and not  
connected to VDD or ground.  
I, S, PU /  
PD  
SADR0  
B4  
Copyright © 2019–2020, Texas Instruments Incorporated  
5
CDCDB2000  
ZHCSKG8A NOVEMBER 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O TYPE  
DESCRIPTION  
NAME  
NO.  
SMBus address strap bit[1]. This is a 3-level input that is decoded in conjunction  
with pin B4 to set SMBus address. It has internal 120-kΩ pullup / pulldown network  
biasing to VDD/2 when no connect.  
For a high-level input configuration, the pin should be pulled up to 3.3-V VDD  
through an external pullup resistor from 1k to 5k with 5% tolerance.  
For a low-level input configuration, the pin should be pulled down to ground  
through an external pulldown resistor from 1k to 5k with 5% tolerance.  
For a mid-level input configuration, the pin should be left floating and not  
connected to VDD or ground.  
I, S, PU /  
PD  
SADR1  
B8  
Clock pin of SMBus interface. Typically pulled up to 3.3-V VDD using external  
pullup resistor. The recommended pullup resistor value is > 8.5k.  
SMBCLK  
SMBDAT  
L5  
L4  
I
Data pin of SMBus interface. Typically pulled up to 3.3-V VDD using external  
pullup resistor. The recommended pullup resistor value is > 8.5k.  
I / O  
SUPPLY VOLTAGE AND GROUND  
GND  
DAP  
G
P
Ground. Connect ground pad to system ground.  
Power supply input for LP-HCSL clock output channels. Connect to 3.3-V power  
supply rail with decoupling capacitor to GND. Place a 0.1-µF capacitor close to  
each supply pin between power supply and ground.  
B2, B6, B11, L2,  
L11  
VDD  
Power supply input for differential input clock. Connect to 3.3-V power supply rail  
with decoupling capacitor to GND. Place a 0.1-µF capacitor close to pin.  
VDD_A  
H2  
P
NO CONNECT  
B3, B5, B7, B9,  
C2, D2, D11, F2,  
F11, G2, G11, J2,  
J11, K2, L3, L6,  
L7, L9,  
NC  
Do not connect to GND or VDD.  
The “#” symbol at the end of a pin name indicates that the active state occurs when the signal is at a low voltage  
level. When “#” is not present, the signal is active high.  
The definitions below define the I/O type for each pin.  
I = Input  
O = Output  
I / O = Input / Output  
PU / PD = Internal 120-kΩ Pullup / Pulldown network biasing to VDD/2  
PD = Internal 120-kΩ Pulldown  
S = Hardware Configuration Pin  
P = Power Supply  
G = Ground  
6
版权 © 2019–2020, Texas Instruments Incorporated  
CDCDB2000  
www.ti.com.cn  
ZHCSKG8A NOVEMBER 2019REVISED FEBRUARY 2020  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
GND  
MAX  
3.6  
UNIT  
V
VDD, VDD_A  
Power supply voltage  
IO input voltage  
VIN  
TJ  
VDD + 0.5  
125  
V
Junction temperature  
Storage temperature  
°C  
°C  
Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC  
JS-001, all pins(1)  
±3000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
3.135  
3.135  
–40  
NOM  
3.3  
MAX  
3.465  
3.465  
85  
UNIT  
V
VDD  
VDD_A  
TA  
IO supply voltage  
Core supply voltage  
Ambient temperature  
Junction temperature  
3.3  
V
°C  
°C  
TJ  
125  
6.4 Thermal Information  
CDCDB2000  
THERMAL METRIC(1)  
NPP (GQFN)  
80 PINS  
32.7  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
31.2  
15.9  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
ΨJB  
15.8  
RθJC(bot)  
1.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
VDD, VDD_A = 3.3 V ± 5 %, -40 °C < TA < 85 °C. Typical values are at VDD = VDD_A = 3.3 V, 25 °C (unless otherwise  
noted)  
PARAMETER  
CURRENT CONSUMPTION  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Active mode. CKPWRGD_PD# = 1  
12  
8
IDD_A  
Core supply current  
mA  
Power down mode. CKPWRGD_PD# = 0  
Copyright © 2019–2020, Texas Instruments Incorporated  
7
CDCDB2000  
ZHCSKG8A NOVEMBER 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
Electrical Characteristics (continued)  
VDD, VDD_A = 3.3 V ± 5 %, -40 °C < TA < 85 °C. Typical values are at VDD = VDD_A = 3.3 V, 25 °C (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
All-outputs disabled  
MIN  
TYP  
20  
MAX  
UNIT  
IDD  
IO supply current per output  
All-outputs active, 100MHz  
200  
8
mA  
Power down mode. CKPWRGD_PD# = 0  
CLOCK INPUT  
fIN  
Input frequency  
50  
200  
0.7  
100  
250  
MHz  
Differential voltage between CLKIN_P and  
CLKIN_N(1)  
mVDiff-  
peak  
VIN  
Input voltage swing  
2300  
dV/dt  
Input voltage edge rate  
Total variation of VCROSS  
Input duty cycle  
20% - 80% of input swing  
V/ns  
DVCROSS  
DCIN  
Total variation across VCROSS  
140  
2.2  
mV  
%
40  
60  
Differential capacitance between CLKIN_P  
and CLKIN_N pins  
CIN  
Input capacitance(2)  
pF  
CLOCK OUTPUT  
fOUT  
Output frequency  
50  
100  
2.2  
250  
MHz  
pF  
Differential capacitance between CKx_P  
and CKx_N pins  
COUT  
Output capacitance(1)  
VOH  
Output high voltage  
Output low voltage  
Crossing point voltage  
225  
10  
270  
150  
200  
Single-ended(2)(3)  
VOL  
(3)(4)  
VCROSS  
Input VCROSS varied by 140 mV.  
130  
mV  
Input VCROSS varied by 140 mV. Variation  
of VCROSS  
DVCROSS  
Total variation of VCROSS  
35  
(3)(4)  
(3)  
Vovs  
Vuds  
ZDIFF  
Overshoot voltage  
Undershoot voltage  
Differential impedance  
VOH+75  
VOL–75  
89  
(3)  
Measured at VOL/VOH  
Measured at VCROSS  
81  
68  
2
85  
85  
ohm  
ZDIFF_CROS  
S
Differential impedance  
102  
tEDGE  
Edge rate  
Measured at VCROSS  
Measured at VCROSS  
Measured  
20  
20  
V/ns  
%
DtEDGE  
Edge rate matching  
CKPWRGD_PD# pin  
transistions from 0 to 1, fIN  
100 MHz  
when  
Power good assertion to stable clock  
output  
tSTABLE  
=
PWRGD  
reaches  
0.2V  
1.8  
ms  
µs  
Measured  
when  
PWRGD  
reaches  
0.2V  
CKPWRGD_PD# pin  
transistions from 0 to 1, fIN  
100 MHz  
Power good assertion to outputs  
driven high  
tDRIVE_PD#  
=
300  
Output enable assertion to stable  
clock output  
tOE  
tOD  
tPD  
OEx# pin transistions from 1 to 0  
OEx# pin transistions from 0 to 1  
10  
10  
3
Output enable de-assertion to no  
clock output  
CLKIN  
Periods  
Power down assertion to no clock  
output  
CKPWRGD_PD# pin transistions from 1 to  
0
tDCD  
tDLY  
Duty cycle distortion  
Propagation delay  
Differential; fIN = 100MHz, fin_DC = 50%  
–1.0  
(5)0.5  
1.0  
3
%
ns  
(1) Voltage swing includes overshoot.  
(2) Not tested in production. Ensured by design and characterization.  
(3) Measured into DC test load.  
(4) VCROSS is single-ended voltage when CKx_P = CKx_N with respect to system ground. Only valid on rising edge of CKx, when CKx_P is  
rising.  
(5) Measured from rising edge of CLK_IN to any CKx output.  
8
Copyright © 2019–2020, Texas Instruments Incorporated  
CDCDB2000  
www.ti.com.cn  
ZHCSKG8A NOVEMBER 2019REVISED FEBRUARY 2020  
Electrical Characteristics (continued)  
VDD, VDD_A = 3.3 V ± 5 %, -40 °C < TA < 85 °C. Typical values are at VDD = VDD_A = 3.3 V, 25 °C (unless otherwise  
noted)  
PARAMETER  
Skew between outputs  
Additive jitter  
TEST CONDITIONS  
MIN  
TYP  
MAX  
(6)50  
UNIT  
tSKEW  
ps  
DB2000QL filter  
0.08 ps, rms  
0.03 ps, rms  
Additive jitter for PCIe5  
PCIe5.0 filter  
Input clock  
slew rate  
1.8 V/ns  
Additive jitter for PCIe4  
Additive jitter for PCIe3  
0.08 ps, rms  
JCKx_PCIE  
PLL BW = 2 - 5 MHz; CDR =  
10 MHz  
Input clock  
slew rate  
0.6 V/ns  
0.15 ps, rms  
0.2 ps, rms  
JCKx_PCIE  
JCKx_PCIE  
Additive jitter for PCIe2  
Additive jitter for PCIe1  
PCIe2 filter  
PCIe1 filter  
5
ps, rms  
fIN = 100 MHz; slew rate 3 V/ns; 12 kHz  
to 20 MHz integration bandwidth.  
JCKx  
Additive jitter  
155  
fs, rms  
SMBUS INTERFACE, SIDE-BAND INTERFACE, OEx#, CKPWRGD_PD#, SBEN  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
2.0  
V
0.8  
30  
With internal pull up/pull-down  
–30  
–5  
GND < VIN  
< VDD  
IIL  
Input leakage current  
uA  
Without internal pull up/pull-  
down  
5
CIN  
Input capacitance  
Output capacitance  
4.5  
4.5  
pF  
pF  
COUT  
3-LEVEL DIGITAL INTERFACE (SA_0, SA_1)  
VIHT  
VIMT  
VILT  
IINT  
High-level input voltage  
Mid level input voltage  
Low-level input voltage  
Input high current  
2.4  
1.3  
VDD/2  
1.8  
0.9  
10  
V
VIN = VDD, VIN = GND  
-10  
uA  
GND < VIN  
< VDD  
ILeak  
Input leakage current  
With internal pull up/pull-down  
–30  
30  
(6) Measured from rising edge of any CKx output to any other CKx output.  
6.6 Timing Requirements  
VDD, VDD_A = 3.3 V ± 5 %, -40 °C < TA < 85 °C. Typical values are at VDD = VDD_A = 3.3 V, 25 °C (unless otherwise  
noted)  
MIN  
NOM  
MAX  
UNIT  
SMBUS-COMPATIBLE INTERFACE TIMING  
fSMB  
SMBus operating frequency  
10  
100  
kHz  
Bus free time between STOP and  
START  
tBUF  
4.7  
tHD_STA  
tSU_STA  
tSU_STO  
tHD_DAT  
tSU_DAT  
START condition hold time  
START condition setup time  
STOP condition setup time  
SMBDAT hold time  
4
4.7  
4
µs  
300  
250  
25  
ns  
ms  
µs  
SMBDAT setup time  
tTIMEOUT Detect SMBCLK low timeout  
35  
tLOW  
SMBCLK low period  
4.7  
4
tHIGH  
SMBCLK high period  
50  
25  
tLOW_SL  
Cumulative clock low extend time  
ms  
Copyright © 2019–2020, Texas Instruments Incorporated  
9
CDCDB2000  
ZHCSKG8A NOVEMBER 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
Timing Requirements (continued)  
VDD, VDD_A = 3.3 V ± 5 %, -40 °C < TA < 85 °C. Typical values are at VDD = VDD_A = 3.3 V, 25 °C (unless otherwise  
noted)  
MIN  
NOM  
MAX  
300  
UNIT  
tF  
SMBCLK/SMBDAT fall time(1)  
SMBCLK/SMBDAT rise time(2)  
ns  
tR  
1000  
SIDE-BAND INTERFACE TIMING  
tPERIOD  
tSETUP  
tDSU  
Clock period  
40  
25  
10  
5
Setup time to clock  
Data set up time  
Data hold time  
Delay time  
ns  
tDHOLD  
tDELAY  
25  
CLK  
periods  
tPDLY  
tSLEW  
Propagation delay  
Clock slew rate  
4
10  
3
20% - 80%  
0.2  
V/ns  
(1) TF = (VIHMIN + 0.15) to (VILMAX - 0.15)  
(2) TR = (VILMAX - 0.15) to (VIHMIN + 0.15)  
VDD/VDD_A  
CKPWRGD_PD#  
CLKIN  
ttSTABLE  
t
ttPD  
t
CKx_P  
tDRIVE_PD#  
CKx_N  
1. Start-Up With CLKIN Timing Diagram  
10  
版权 © 2019–2020, Texas Instruments Incorporated  
CDCDB2000  
www.ti.com.cn  
ZHCSKG8A NOVEMBER 2019REVISED FEBRUARY 2020  
VDD/VDD_A  
CKPWRGD_PD#  
CLKIN  
ttSTABLE  
t
CKx_P  
CKx_N  
tDRIVE_PD#  
2. Start-Up Without CLKIN Timing Diagram  
tLOW  
tR  
tF  
VIH  
SMBCLK  
VIL  
tHD_STA  
tHIGH  
tSU_STA  
tSU_STO  
ttBUFt  
tHD_DAT  
tSU_DAT  
VIH  
SMBDAT  
VIL  
P
S
S
P
3. SMBus Timing Diagram  
ttPERIOD  
t
CLK  
tDSU  
tDHOLD  
D1  
DATA  
D0  
D19  
tSETUP  
tDELAY  
SHIFT_LD#  
tPDLY  
SBI OUTPUT  
REGISTER  
4. Side-Band Interface Timing Diagram  
版权 © 2019–2020, Texas Instruments Incorporated  
11  
CDCDB2000  
ZHCSKG8A NOVEMBER 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
6.7 Typical Characteristics  
5. CDCDB2000 Clock Out (CK0:19) Phase Noise  
12  
版权 © 2019–2020, Texas Instruments Incorporated  
 
 
CDCDB2000  
www.ti.com.cn  
ZHCSKG8A NOVEMBER 2019REVISED FEBRUARY 2020  
7 Detailed Description  
7.1 Overview  
The CDCDB2000 is a low additive-jitter, low propagation delay clock buffer designed to meet the strict  
performance requirements for PCIe Gen 1-5, QPI and UPI reference clocks. The CDCDB2000 allows buffering  
and replication of a single clock source to up to 20 individual outputs in the LP-HCSL format. The outputs of the  
CDCDB2000 can be configured before they are enabled using the Side-Band control interface. The CDCDB2000  
also includes status and control registers accessible by an SMBus version 2.0 compliant interface. The device  
integrates a large amount of external passive components to reduce overall system cost.  
7.2 Functional Block Diagram  
CK0_P  
CK0_N  
CLKIN_P  
CLKIN_N  
CK1_P  
CK1_N  
CK2_P  
CK2_N  
SBEN  
CK3_P  
CK3_N  
CLK  
DATA  
S
B
I
Glitch  
Free  
Output  
Control  
Logic  
SHFT_LD#  
OE[12:5]#  
SMB  
/OE  
CK19_P  
CK19_N  
SMBDAT  
SMBCLK  
Control  
Logic  
SADR0  
SADR1  
CKPWRGD_PD#  
7.3 Feature Description  
7.3.1 Output Enable Control  
The CDCDB2000 allows two methods to control the state of the output channels: SMBus/OE#, and Side-Band  
Interface. Only one of the two methods can be active at any time, and the active interface is selected by the state  
of the SBEN pin. Both methods of output control can assign the state of each output individually.  
When in SMBus/OE# control is selected, the OE# pins become active. The OE# pins control the state of the  
output with the same number. For example, the OE5# pin controls the state of the CK5 output driver. The SMBus  
registers may enable/disable the output regardless of the OE# pin state if desired.  
7.3.2 SMBus  
The CDCDB2000 has an SMBus interface that is active only when CKPWRGD_PD# = 1.The SMBus allows  
individual enable/disable of each output when the SMBus mode is selected using the SBEN pin.  
When CKPWRGD_PD# = 0, the SMBus pins are placed in a Hi-Z state, but all register settings are retained. The  
SMBus register values are only retained while VDD_A remains inside of the recommended operating voltage.  
版权 © 2019–2020, Texas Instruments Incorporated  
13  
 
CDCDB2000  
ZHCSKG8A NOVEMBER 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
Feature Description (接下页)  
7.3.2.1 SMBus Address Assignment  
The SMBus address is assigned by configuration of two pins (SADR1 and SADR0) that each support three  
levels. This configuration allows the CDCDB2000 to assume 9 different SMBus addresses.  
The SMBus address pins are sampled PWRGD is set to 1. See 1 for address pin configuration. The address  
cannot be changed until the PWRGD state is cleared by powering down the device.  
1. SMBus Address Assignment  
SADR1  
SADR0  
SMBUS ADDRESS  
L
L
0xD8  
0xDA  
0xDE  
0xC2  
0xC4  
0xC6  
0xCA  
0xCC  
0xCE  
L
M
H
L
L
M
M
M
H
H
H
M
H
L
M
H
7.3.3 Side-Band Interface  
The Side-Band Interface(SBI) is a basic 3-wire interface that consists of the DATA, CLK and SHFT_LD# pins.  
The SBI is used to shift data into a 20-bit long shift register. When the SHFT_LD# pin is high, the rising edge of  
CLK can shift DATA into the shift register. After shifting data, the falling edge of SHFT_LD# clocks the shift  
register contents to the SBI output register.  
While SBI is enabled by the SBEN pin, OE[7:9, 11, 12]# pins are disabled and DATA, CLK and SHFT_LD# are  
enabled on the OE5#, OE6# and OE10# pins, respectively.  
When power has been applied, and SBEN = 1, the SBI is active regardless of the CKPWRGD_PD# pin state.  
This characteristic allows loading the shift register and transferring the contents to the SBI output register before  
the first assertion of the CKPWRGD_PD# pin.  
7.4 Device Functional Modes  
7.4.1 CKPWRGD_PD# Function  
The CKPWRGD_PD# pin is used to set 2 state variables inside of the device: PWRGD, and PD#. The PWRGD  
and PD# variables control which functions of the device are active at any time, as well as the state of the input  
and output pins.  
The PWRGD and PD# states are multiplexed on the CKPWRGD_PD# pin. CKPWRGD_PD# must remain below  
VOL and not exceed VDD_A + 0.3 V until VDD, VDD_A, and CLKIN are present and within the recommended  
operating conditions.  
The first rising edge of the CKPWRGD_PD# pin sets PWRGD = 1. After PWRGD is set to 1, the  
CKPWRGD_PD# pin is used to assert PD# mode only. PWRGD variable will only be cleared to 0 with the  
removal of VDD and VDD_A.  
14  
版权 © 2019–2020, Texas Instruments Incorporated  
 
CDCDB2000  
www.ti.com.cn  
ZHCSKG8A NOVEMBER 2019REVISED FEBRUARY 2020  
Device Functional Modes (接下页)  
VDD/VDD_A  
CKPWRGD_PD#  
PWRGD  
PD#  
6. PWRGD and PD# State Changes  
7.4.2 OE[12:5]# and SMBus Output Enables  
Each output channel, 0 to 19, can be individually enabled or disabled by SMBus control register bits, called SMB  
enable bits. Additionally, each output channel from 12 to 5 has a dedicated, corresponding, OE[12:5]# hardware  
pin. The OE[12:5]# pins are asynchronously asserted-low signals that may enable or disable the output.  
Refer to 2 for enabling and disabling outputs through the hardware and software. Note that both the SMB  
enable bit must be a ‘1’ and the OEx# pin must be an input low voltage ‘0’ for the output channel to be active.  
2 is only valid when the SBEN signal is low (SBEN = 0).  
2. OE[12:5]# Functionality When SBEN = 0  
INPUTS  
OE[12:5]# HARDWARE PINS AND SMBus CONTROL REGISTER BITS  
PWRGD  
PD#  
CLKIN  
SMBus ENABLE BIT OE[12:5]#  
(byte[2:0])  
CK[12:5]  
CK[19:13, 4:0]  
0
1
1
1
1
X
0
1
1
1
X
X
X
0
1
1
X
X
X
0
LOW  
LOW  
X
Tristate  
Tristate  
0
Running  
Running  
Running  
0
Running  
0
Running  
Running  
1
7.5 Programming  
The CDCDB2000 has two methods to program the states of its 20 output drivers: SMBus and SBI.  
To select between SMBus and SBI interfaces, the SBEN pin is used. Pulling the SBEN to a high level enables  
the SBI. Pulling the SBEN pin to ground enables the SMBus interface. When SBI is enabled, the SMBus Mask  
registers are active. The SMBus Mask registers allow the function of the SBI shift registers to be disabled and set  
the each individual channel as enabled. See 7 for a diagram of how the SMBus Mask registers and SBI shift  
register interact to enable or disable each output.  
版权 © 2019–2020, Texas Instruments Incorporated  
15  
 
CDCDB2000  
ZHCSKG8A NOVEMBER 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
Programming (接下页)  
To Output Logic  
From SMBus Mask  
Registers  
. . . . . .  
Mask0  
Mask1  
Mask19  
Output  
Register  
(Default is 1)  
. . . . . .  
OE19  
OE1  
OE0  
Q0  
Q1  
DATA  
From Q18  
Q
Q
D
D
Q
Q
D
Q
Q
Shift  
Register  
. . . . .  
>
>
>
To Q2  
CLK  
SHFT_LD#  
Side-Band Interface  
7. SMBus Mask Register and SBI Shift Register Logic  
7.5.1 SMBus  
SMBus programming is described in SMBus, and the registers are described in Register Maps .  
7.5.2 SBI  
Side-Band Interface (SBI) is a simple 3-wire serial interface. This interface consists of DATA, CLK and  
SHFT_LD# pins. When the SHFT_LD# pin is high, the rising edge of CLK clocks DATA into a shift register. After  
shifting data, the falling edge of SHFT_LD# loads the shift register contents into the Output Register. Both the  
SBI and the traditional SMBus interface feed common output enable/disable synchronization logic, which ensures  
glitch-free enable and disable outputs regardless of the method used.  
SBI can be configured at a system level in three ways: star topology, daisy chain topology, and directly. The star  
topology is shown in 8. The daisy chain topology is shown in 9.  
SHFT_LD# (1)  
DATA  
CLK  
CDCDB2000  
(1)  
SBI  
Controller  
CDCDB2000  
(2)  
SHFT_LD# (2)  
8. SBI Star Topology  
16  
版权 © 2019–2020, Texas Instruments Incorporated  
 
CDCDB2000  
www.ti.com.cn  
ZHCSKG8A NOVEMBER 2019REVISED FEBRUARY 2020  
Programming (接下页)  
SHFT_LD#  
SBI_IN  
CLK  
SBI_OUT  
DATA  
CK440Q  
CDCDB2000  
SBI  
Controller  
9. SBI Daisy Chain Topology  
版权 © 2019–2020, Texas Instruments Incorporated  
17  
CDCDB2000  
ZHCSKG8A NOVEMBER 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
7.6 Register Maps  
7.6.1 CDCDB2000 Registers  
Table 3 lists the CDCDB2000 registers. All register locations not listed in Table 3 should be considered as  
reserved locations and the register contents should not be modified.  
Table 3. CDCDB2000 Registers  
Address  
0h  
Acronym  
OECR1  
Register Name  
Section  
Go  
Output Enable Control 1  
1h  
OECR2  
Output Enable Control 2  
Go  
2h  
OECR3  
Output Enable Control 3  
Go  
3h  
OERDBK  
SBRDBK  
VDRREVID  
DEVID  
Output Enable Read Back  
SBEN Read Back  
Go  
4h  
Go  
5h  
Vendor/Revision Identification  
Device Identification  
Go  
6h  
Go  
7h  
BTRDCNT  
SBIMSK1  
SBIMSK2  
SBIMSK3  
Byte Read Count Control  
Side-Band Interface Override Control 1  
Side-Band Interface Override Control 2  
Side-Band Interface Override Control 3  
Go  
8h  
Go  
9h  
Go  
Ah  
Go  
Complex bit access types are encoded to fit into small table cells. Table 4 shows the codes that are used for  
access types in this section.  
Table 4. CDCDB2000 Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
7.6.1.1 OECR1 Register (Address = 0h) [reset = 78h]  
OECR1 is shown in Table 5.  
Return to the Summary Table.  
The OECR1 register contains bits that enable or disable individual output clock channels [19:16]  
Table 5. OECR1 Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
Output Enable, CK19  
Reserved  
6
R/W  
1h  
This bit controls the output enable signal for output channel  
CK19_P/CK19_N.  
0h = Output Disabled  
1h = Output Enabled  
5
Output Enable, CK18  
R/W  
1h  
This bit controls the output enable signal for output channel  
CK18_P/CK18_N.  
0h = Output Disabled  
1h = Output Enabled  
18  
Copyright © 2019–2020, Texas Instruments Incorporated  
 
 
 
 
CDCDB2000  
www.ti.com.cn  
ZHCSKG8A NOVEMBER 2019REVISED FEBRUARY 2020  
Table 5. OECR1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4
Output Enable, CK17  
R/W  
1h  
This bit controls the output enable signal for output channel  
CK17_P/CK17_N.  
0h = Output Disabled  
1h = Output Enabled  
3
Output Enable, CK16  
RESERVED  
R/W  
R
1h  
0h  
This bit controls the output enable signal for output channel  
CK16_P/CK16_N.  
0h = Output Disabled  
1h = Output Enabled  
Reserved  
2-0  
7.6.1.2 OECR2 Register (Address = 1h) [reset = FFh]  
OECR2 is shown in Table 6.  
Return to the Summary Table.  
The OECR2 register contains bits that enable or disable individual output clock channels [7:0]  
Table 6. OECR2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
Output Enable, CK7  
R/W  
1h  
This bit controls the output enable signal for output channel  
CK7_P/CK7_N.  
0h = Output Disabled  
1h = Output Enabled  
6
5
4
3
2
1
0
Output Enable, CK6  
Output Enable, CK5  
Output Enable, CK4  
Output Enable, CK3  
Output Enable, CK2  
Output Enable, CK1  
Output Enable, CK0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1h  
1h  
1h  
1h  
1h  
1h  
1h  
This bit controls the output enable signal for output channel  
CK6_P/CK6_N.  
0h = Output Disabled  
1h = Output Enabled  
This bit controls the output enable signal for output channel  
CK5_P/CK5_N.  
0h = Output Disabled  
1h = Output Enabled  
This bit controls the output enable signal for output channel  
CK4_P/CK4_N.  
0h = Output Disabled  
1h = Output Enabled  
This bit controls the output enable signal for output channel  
CK3_P/CK3_N.  
0h = Output Disabled  
1h = Output Enabled  
This bit controls the output enable signal for output channel  
CK2_P/CK2_N.  
0h = Output Disabled  
1h = Output Enabled  
This bit controls the output enable signal for output channel  
CK1_P/CK1_N.  
0h = Output Disabled  
1h = Output Enabled  
This bit controls the output enable signal for output channel  
CK0_P/CK0_N.  
0h = Output Disabled  
1h = Output Enabled  
Copyright © 2019–2020, Texas Instruments Incorporated  
19  
 
CDCDB2000  
ZHCSKG8A NOVEMBER 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
7.6.1.3 OECR3 Register (Address = 2h) [reset = FFh]  
OECR3 is shown in Table 7.  
Return to the Summary Table.  
The OECR3 register contains bits that enable or disable individual output clock channels [15:8]  
Table 7. OECR3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
Output Enable, CK15  
R/W  
1h  
This bit controls the output enable signal for output channel  
CK15_P/CK15_N.  
0h = Output Disabled  
1h = Output Enabled  
6
5
4
3
2
1
0
Output Enable, CK14  
Output Enable, CK13  
Output Enable, CK12  
Output Enable, CK11  
Output Enable, CK10  
Output Enable, CK9  
Output Enable, CK8  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1h  
1h  
1h  
1h  
1h  
1h  
1h  
This bit controls the output enable signal for output channel  
CK14_P/CK14_N.  
0h = Output Disabled  
1h = Output Enabled  
This bit controls the output enable signal for output channel  
CK13_P/CK13_N.  
0h = Output Disabled  
1h = Output Enabled  
This bit controls the output enable signal for output channel  
CK12_P/CK12_N.  
0h = Output Disabled  
1h = Output Enabled  
This bit controls the output enable signal for output channel  
CK11_P/CK11_N.  
0h = Output Disabled  
1h = Output Enabled  
This bit controls the output enable signal for output channel  
CK10_P/CK10_N.  
0h = Output Disabled  
1h = Output Enabled  
This bit controls the output enable signal for output channel  
CK9_P/CK9_N.  
0h = Output Disabled  
1h = Output Enabled  
This bit controls the output enable signal for output channel  
CK8_P/CK8_N.  
0h = Output Disabled  
1h = Output Enabled  
7.6.1.4 OERDBK Register (Address = 3h) [reset = 0h]  
OERDBK is shown in Table 8.  
Return to the Summary Table.  
The OERDBK register contains bits that report the current state of the OE[12:5]# input pins.  
Table 8. OERDBK Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
OE12# State  
OE11# State  
OE10# State  
OE9# State  
OE8# State  
This bit reports the logic level present on the OE12# pin.  
This bit reports the logic level present on the OE11# pin.  
This bit reports the logic level present on the OE10# pin.  
This bit reports the logic level present on the OE9# pin.  
This bit reports the logic level present on the OE8# pin.  
6
R
0h  
5
R
0h  
4
R
0h  
3
R
0h  
20  
Copyright © 2019–2020, Texas Instruments Incorporated  
 
 
CDCDB2000  
www.ti.com.cn  
ZHCSKG8A NOVEMBER 2019REVISED FEBRUARY 2020  
Table 8. OERDBK Register Field Descriptions (continued)  
Bit  
2
Field  
Type  
R
Reset  
0h  
Description  
OE7# State  
OE6# State  
OE5# State  
This bit reports the logic level present on the OE7# pin.  
This bit reports the logic level present on the OE6# pin.  
This bit reports the logic level present on the OE5# pin.  
1
R
0h  
0
R
0h  
7.6.1.5 SBRDBK Register (Address = 4h) [reset = 1h]  
SBRDBK is shown in Table 9.  
Return to the Summary Table.  
The SBRDBK register contains a bit that report the current state of the SBEN input pin.  
Table 9. SBRDBK Register Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
SBEN State  
Reserved  
R/W  
1h  
This bit reports the logic level present on the SBEN pin.  
7.6.1.6 VDRREVID Register (Address = 5h) [reset = X]  
VDRREVID is shown in Table 10.  
Return to the Summary Table.  
The VDRREVID register contains a vendor identification code and silicon revision code.  
Table 10. VDRREVID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
Revision Code[3:0]  
R
X
Silicon revision code.  
Silicon revision code bits  
[3:0] map to register bits  
[7:4] directly.  
3-0  
Vendor ID[3:0]  
R
X
Vendor identification code.  
Vendor ID bits  
[3:0] map to register bits  
[3:0] directly.  
7.6.1.7 DEVID Register (Address = 6h) [reset = X]  
DEVID is shown in Table 11.  
Return to the Summary Table.  
The DEVID register contains a device identification code.  
Table 11. DEVID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Device ID[7:0]  
R
X
Device ID code.  
Device ID bits[7:0] map to register bits[7:0] directly.  
7.6.1.8 BTRDCNT Register (Address = 7h) [reset = 8h]  
BTRDCNT is shown in Table 12.  
Return to the Summary Table.  
The BTRDCNT register allows configuration of the number of bytes that will be read back from the SMBus  
interface on an issued read command.  
Copyright © 2019–2020, Texas Instruments Incorporated  
21  
 
 
 
CDCDB2000  
ZHCSKG8A NOVEMBER 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
Table 12. BTRDCNT Register Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
Read Byte Count[5:0]  
Reserved  
R/W  
8h  
Writing to this register configures how many bytes will be read back.  
7.6.1.9 SBIMSK1 Register (Address = 8h) [reset = 0h]  
SBIMSK1 is shown in Table 13.  
Return to the Summary Table.  
The SBIMSK1 register allows the SMBus to force enable each output channel individually when the CDCDB2000  
is in Side-Band interface mode.  
Table 13. SBIMSK1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SBI Output Mask, CK7  
R/W  
0h  
This bit overrides the the SBI output disable when set.  
0h = SBI Controls Output  
1h = Output CK7 Enabled  
6
5
4
3
2
1
0
SBI Output Mask, CK6  
SBI Output Mask, CK5  
SBI Output Mask, CK4  
SBI Output Mask, CK3  
SBI Output Mask, CK2  
SBI Output Mask, CK1  
SBI Output Mask, CK0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
This bit overrides the the SBI output disable when set.  
0h = SBI Controls Output  
1h = Output CK6 Enabled  
This bit overrides the the SBI output disable when set.  
0h = SBI Controls Output  
1h = Output CK5 Enabled  
This bit overrides the the SBI output disable when set.  
0h = SBI Controls Output  
1h = Output CK4 Enabled  
This bit overrides the the SBI output disable when set.  
0h = SBI Controls Output  
1h = Output CK3 Enabled  
This bit overrides the the SBI output disable when set.  
0h = SBI Controls Output  
1h = Output CK2 Enabled  
This bit overrides the the SBI output disable when set.  
0h = SBI Controls Output  
1h = Output CK1 Enabled  
This bit overrides the the SBI output disable when set.  
0h = SBI Controls Output  
1h = Output CK0 Enabled  
7.6.1.10 SBIMSK2 Register (Address = 9h) [reset = 0h]  
SBIMSK2 is shown in Table 14.  
Return to the Summary Table.  
The SBIMSK2 register allows the SMBus to force enable each output channel individually when the CDCDB2000  
is in Side-Band interface mode.  
Table 14. SBIMSK2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SBI Output Mask, CK15  
R/W  
0h  
This bit overrides the the SBI output disable when set.  
0h = SBI Controls Output  
1h = Output CK15 Enabled  
22  
Copyright © 2019–2020, Texas Instruments Incorporated  
 
 
CDCDB2000  
www.ti.com.cn  
ZHCSKG8A NOVEMBER 2019REVISED FEBRUARY 2020  
Table 14. SBIMSK2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6
SBI Output Mask, CK14  
R/W  
0h  
This bit overrides the the SBI output disable when set.  
0h = SBI Controls Output  
1h = Output CK14 Enabled  
5
4
3
2
1
0
SBI Output Mask, CK13  
SBI Output Mask, CK12  
SBI Output Mask, CK11  
SBI Output Mask, CK10  
SBI Output Mask, CK9  
SBI Output Mask, CK8  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
This bit overrides the the SBI output disable when set.  
0h = SBI Controls Output  
1h = Output CK13 Enabled  
This bit overrides the the SBI output disable when set.  
0h = SBI Controls Output  
1h = Output CK12 Enabled  
This bit overrides the the SBI output disable when set.  
0h = SBI Controls Output  
1h = Output CK11 Enabled  
This bit overrides the the SBI output disable when set.  
0h = SBI Controls Output  
1h = Output CK10 Enabled  
This bit overrides the the SBI output disable when set.  
0h = SBI Controls Output  
1h = Output CK9 Enabled  
This bit overrides the the SBI output disable when set.  
0h = SBI Controls Output  
1h = Output CK8 Enabled  
7.6.1.11 SBIMSK3 Register (Address = Ah) [reset = 0h]  
SBIMSK3 is shown in Table 15.  
Return to the Summary Table.  
The SBIMSK3 register allows the SMBus to force enable each output channel individually when the CDCDB2000  
is in Side-Band interface mode.  
Table 15. SBIMSK3 Register Field Descriptions  
Bit  
7-4  
3
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
Reserved  
SBI Output Mask, CK19  
R/W  
0h  
This bit overrides the the SBI output disable when set.  
0h = SBI Controls Output  
1h = Output CK19 Enabled  
2
1
0
SBI Output Mask, CK18  
SBI Output Mask, CK17  
SBI Output Mask, CK16  
R/W  
R/W  
R/W  
0h  
0h  
0h  
This bit overrides the the SBI output disable when set.  
0h = SBI Controls Output  
1h = Output CK18 Enabled  
This bit overrides the the SBI output disable when set.  
0h = SBI Controls Output  
1h = Output CK17 Enabled  
This bit overrides the the SBI output disable when set.  
0h = SBI Controls Output  
1h = Output CK16 Enabled  
版权 © 2019–2020, Texas Instruments Incorporated  
23  
 
CDCDB2000  
ZHCSKG8A NOVEMBER 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The CDCDB2000 is a fanout buffer that supports PCIe generation 4 and PCIe generation 5 REFCLK distribution.  
It is used to create, and distribute, up to 20 copies of a typically 100-MHz clock.  
8.2 Typical Application  
10 shows a CDCDB2000 typical application. In this application, a clock generator provides a 100-MHz  
reference to the CDCDB2000 which then distributes that clock to PCIe endpoints. The clock generator may be a  
discrete clock generator like the LMK03328 or it may be integrated in a larger component such as a PCH or  
application processor.  
PCIe Gen 4-5  
Clock  
Generator  
20  
LP-HCSL  
PCIe Device  
CDCDB2000  
20x LP-HSCL Output Buffer  
LP-HCSL  
OE#  
Control  
SMBus  
Control  
Side-Band  
Interface  
Control Interface  
10. Typical Application  
8.2.1 Design Requirements  
Consider a typical server motherboard application which needs to distribute a 100-MHz PCIe reference clock  
from the PCH of a processor chipset to multiple endpoints. An example of clock input and output requirements is:  
Clock Input:  
100-MHz LP-HCSL  
Clock Output:  
2x 100-MHz to processors, LP-HCSL  
2x 100-MHz to riser/retimer, LP-HCSL  
2x 100-MHz to DDR memory controller, LP-HCSL  
The section below describes the design procedure to configure the CDCDB2000 to output the frequencies for the  
above scenario.  
8.2.2 Detailed Design Procedure  
The following items must be determined before starting design of a CDCDB2000 socket:  
Output Enable Control Method  
SMBus address  
24  
版权 © 2019–2020, Texas Instruments Incorporated  
 
CDCDB2000  
www.ti.com.cn  
ZHCSKG8A NOVEMBER 2019REVISED FEBRUARY 2020  
Typical Application (接下页)  
8.2.2.1 Output Enable Control Method  
If the SMBus and OE# pins should be used for controlling output states, the SBEN pin should be tied to a low  
potential. This could be selected for hot swapping where pin control by a CPLD or other hot swap controller is  
needed to enable/disable the reference clock to safeguard against backdriving a connected device.  
8.2.2.2 SMBus Address  
An SMBus address should be selected from the listed potential addresses in 1. The appropriate pullup or  
pulldown resistor should be placed on the SADRx pins as indicated in the table. Ensure the SMBus address is  
not already in use to avoid conflict.  
8.2.3 Application Curve  
The graph listed in 16 is used as both an application curve and a typical characteristics plot (see the Typical  
Characteristics section).  
16. Table of Graphs  
TITLE  
FIGURE  
CDCDB2000 Clock Out (CK0:19) Phase Noise  
5  
版权 © 2019–2020, Texas Instruments Incorporated  
25  
 
CDCDB2000  
ZHCSKG8A NOVEMBER 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
9 Power Supply Recommendations  
High-performance clock buffers are sensitive to noise on the power supply, which can dramatically increase the  
additive jitter of the buffer. Thus, it is essential to reduce noise from the system power supply, especially when  
the jitter and phase noise is critical to applications.  
Filter capacitors are used to eliminate the low-frequency noise from the power supply, where the bypass  
capacitors provide the very low impedance path for high-frequency noise and guards the power supply system  
against induced fluctuations. These bypass capacitors also provide instantaneous current surges as required by  
the device and should have low equivalent series resistance (ESR). To properly use the bypass capacitors, they  
must be placed very close to the power-supply terminals and laid out with short loops to minimize inductance. TI  
recommends to insert a ferrite bead between the board power supply and the chip power supply that isolates the  
high-frequency switching noises generated by the clock buffer. These beads prevent the switching noise from  
leaking into the board supply. It is imperative to choose an appropriate ferrite bead with very low DC resistance  
to provide adequate isolation between the board supply and the chip supply, as well as to maintain a voltage at  
the supply terminals that is greater than the minimum voltage required for proper operation.  
shows the recommended power supply filtering and decoupling method.  
3.3 V  
VDD  
10 F  
0.1 F 0.1 F 0.1 F 0.1 F 0.1 F  
3.3 V  
VDD_A  
2.2 ꢁ  
10 F  
0.1 F  
11. Power Supply Decoupling  
26  
版权 © 2019–2020, Texas Instruments Incorporated  
CDCDB2000  
www.ti.com.cn  
ZHCSKG8A NOVEMBER 2019REVISED FEBRUARY 2020  
10 Layout  
10.1 Layout Guidelines  
The following section provides the layout guidelines to ensure good thermal performance and power supply  
connections for the CDCDB2000.  
10.2 Layout Examples  
12 and 13 are PCB layout examples that show the application of thermal design practices and a low-  
inductance ground connection between the device DAP and the PCB.  
The CDCDB2000 has 85-Ω differential output impedance LP-HCSL format drivers. All transmission lines  
connected to CKx pins should be 85-Ω differential impedance, 42.5-Ω single-ended impedance to avoid  
reflections and increased radiated emissions. Take care to eliminate or reduce stubs on the transmission lines.  
All CKx pairs routed  
differentially  
Recommended ground vias  
Vias to escape  
inside pins  
12. PCB Layout Example for CDCDB2000, Top Layer  
版权 © 2019–2020, Texas Instruments Incorporated  
27  
 
CDCDB2000  
ZHCSKG8A NOVEMBER 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
Layout Examples (接下页)  
13. PCB Layout Example for CDCDB2000, GND Layer  
28  
版权 © 2019–2020, Texas Instruments Incorporated  
CDCDB2000  
www.ti.com.cn  
ZHCSKG8A NOVEMBER 2019REVISED FEBRUARY 2020  
Layout Examples (接下页)  
100nF decoupling capacitors  
must be within 25mm of pin  
100nF decoupling capacitors  
must be within 25mm of pin  
100nF decoupling capacitors  
must be within 25mm of pin  
14. PCB Layout Example for CDCDB2000, Bottom Layer  
版权 © 2019–2020, Texas Instruments Incorporated  
29  
CDCDB2000  
ZHCSKG8A NOVEMBER 2019REVISED FEBRUARY 2020  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 TICS Pro  
TICS Pro 是用于 EVM 编程的离线软件工具,也可以用生成寄存器映射,为特定应用的器件配置编程。如需 TICS  
Pro,请访问 http://www.ti.com.cn/tool/cn/TICSPRO-SW。  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
30  
版权 © 2019–2020, Texas Instruments Incorporated  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CDCDB2000NPPR  
CDCDB2000NPPT  
ACTIVE  
TLGA  
TLGA  
NPP  
80  
80  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
CDCDB  
2000  
ACTIVE  
NPP  
NIPDAU  
CDCDB  
2000  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Feb-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
CDCDB2000NPPR  
CDCDB2000NPPT  
TLGA  
TLGA  
NPP  
NPP  
80  
80  
3000  
250  
330.0  
180.0  
16.4  
16.4  
6.3  
6.3  
6.3  
6.3  
1.1  
1.1  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Feb-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
CDCDB2000NPPR  
CDCDB2000NPPT  
TLGA  
TLGA  
NPP  
NPP  
80  
80  
3000  
250  
367.0  
210.0  
367.0  
185.0  
38.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
NPP0080A  
TLGA - 0.9 mm max height  
SCALE 2.500  
THIN LAND GRID ARRAY  
6.1  
5.9  
B
A
PIN A1  
CORNER  
6.1  
5.9  
C
0.9  
0.8  
SEATING PLANE  
5.5 TYP  
SYMM  
0.08 C  
(0.125)  
0.05  
0.00  
M
(0.125)  
L
K
J
5.5  
TYP  
H
G
F
SYMM  
(0.725)  
2.8 0.1  
E
D
0.5  
TYP  
C
B
(0.725)  
0.3  
80X  
0.2  
A
0.1  
C A B  
C
7
8
9
3
4
5
6
10 11 12  
1
2
0.05  
PIN 1 ID  
(45 X 0.35)  
0.5 TYP  
4224877/A 03/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
NPP0080A  
TLGA - 0.9 mm max height  
THIN LAND GRID ARRAY  
(0.5) TYP  
(1.15)  
8
80X ( 0.25)  
12  
1
2
3
4
5
6
7
9
10  
11  
A
(0.5) TYP  
B
C
D
E
F
(1.15)  
SYMM  
(
2.8)  
G
H
(
0.2) VIA  
TYP  
J
K
L
M
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 15X  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
0.05 MAX  
(
0.25)  
METAL  
EXPOSED  
METAL  
(
0.25)  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4224877/A 03/2019  
NOTES: (continued)  
4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
NPP0080A  
TLGA - 0.9 mm max height  
THIN LAND GRID ARRAY  
(0.5) TYP  
(R0.05) TYP  
(0.715)  
80X ( 0.25)  
1
2
4
5
6
7
8
9
10  
3
11  
12  
A
B
(0.5) TYP  
C
D
E
F
METAL  
TYP  
(0.715)  
SYMM  
G
H
J
4X ( 1.23)  
EXPOSED METAL  
TYP  
K
L
M
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE: 15X  
4224877/A 03/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

CDCDB2000NPPR

符合 DB2000QL 标准、适用于第 1 代到第 5 代 PCIe® 的 20 路输出时钟缓冲器 | NPP | 80 | -40 to 85
TI

CDCDB2000NPPT

符合 DB2000QL 标准、适用于第 1 代到第 5 代 PCIe® 的 20 路输出时钟缓冲器 | NPP | 80 | -40 to 85
TI

CDCDB400

适用于 PCIe® 第 1 代到第 5 代的 4 路输出时钟缓冲器
TI

CDCDB400RHBR

适用于 PCIe® 第 1 代到第 5 代的 4 路输出时钟缓冲器 | RHB | 32 | -40 to 105
TI

CDCDB400RHBT

适用于 PCIe® 第 1 代到第 5 代的 4 路输出时钟缓冲器 | RHB | 32 | -40 to 105
TI

CDCDB800

适用于 PCIe® 第 1 代到第 5 代 8 路输出时钟缓冲器
TI

CDCDB800RSLR

适用于 PCIe® 第 1 代到第 5 代 8 路输出时钟缓冲器 | RSL | 48 | -40 to 105
TI

CDCDB800RSLT

适用于 PCIe® 第 1 代到第 5 代 8 路输出时钟缓冲器 | RSL | 48 | -40 to 105
TI

CDCDB803

用于 PCIe® 第 1 代至第 5 代的 8 输出时钟缓冲器,具有可选的 SMBus 地址
TI

CDCDB803RSLR

用于 PCIe® 第 1 代至第 5 代的 8 输出时钟缓冲器,具有可选的 SMBus 地址 | RSL | 48 | -40 to 105
TI

CDCDB803RSLT

用于 PCIe® 第 1 代至第 5 代的 8 输出时钟缓冲器,具有可选的 SMBus 地址 | RSL | 48 | -40 to 105
TI

CDCDLP223

3.3 V Clock Synthesizer for DLP TM Systems
TI