CDCDB400RHBR [TI]

适用于 PCIe® 第 1 代到第 5 代的 4 路输出时钟缓冲器 | RHB | 32 | -40 to 105;
CDCDB400RHBR
型号: CDCDB400RHBR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于 PCIe® 第 1 代到第 5 代的 4 路输出时钟缓冲器 | RHB | 32 | -40 to 105

时钟 PC
文件: 总33页 (文件大小:2272K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CDCDB400  
ZHCSOD8A – NOVEMBER 2021 – REVISED MAY 2022  
CDCDB400 适用于第 1 代到第 6 PCIe、符合 DB800ZL 准的 4 时钟缓冲  
1 特性  
2 应用  
微服务器和塔式服务器  
具有可编程集成 85Ω(默认值)或 100Ω 差分输出  
存储区域网络和主机总线适配器卡  
网络连接存储  
终端的 4 LP-HCSL 输出  
4 硬件输出使能端 (OE#) 控制装置  
使用第 6 PCIE 滤波器之后的附加相位抖动:  
20fs RMS(最大值)  
硬件加速器  
机架式服务器  
通信交换机  
使用第 5 PCIE 滤波器之后的附加相位抖动:  
25fs RMS(最大值)  
模块化计算机  
CT PET 扫描仪  
加固型 PC 和笔记本电脑  
使用 DB2000Q 滤波器之后的附加相位抖动:38fs  
RMS(最大值)  
支持公共时钟 (CC) 和单独基准 (IR) 架构  
与扩频兼容  
3 说明  
CDCDB400 一款符合 DB800ZL 准的 4 出  
LP-HCSL 时钟缓冲器,能够为采用 CCSRNS 或  
SRIS 构的第 1 到第 6 PCIeQuickPath  
Interconnect (QPI)UPISAS SATA 口分配  
基准时钟。使用 SMBus 接口和四输出使能引脚,可  
以单独配置和控制所有四个输出。CDCDB400 是一款  
DB800ZL 衍生缓冲器,符合或超过 DB800ZL 中的系  
统参数规格。该器件还符合或超过了 DB2000Q 规格  
中的参数。CDCDB400 采用 5mm × 5mm 32 引脚  
VQFN 封装。  
输出到输出偏斜:< 50ps  
输入到输出延迟:< 3ns  
失效防护输入  
可编程输出转换率控制  
3 个可选 SMBus 地址  
3.3V 内核和 IO 电源电压  
硬件控制的低功耗模式 (PD#)  
电流消耗:46mA(最大值)  
5mm × 5mm 32 引脚 VQFN 封装  
器件信息  
器件型号  
CDCDB400  
封装 (1)  
封装尺寸(标称值)  
VQFN (32)  
5.00mm × 5.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
PCIe Device  
PCIe Gen 4-5  
Clock  
Generator  
4
LP-HCSL  
CDCDB400  
4x LP-HSCL Output Buffer  
LP-HCSL  
OE#  
Control  
SMBus  
Control  
Control Interface  
CDCDB400 系统图  
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问  
www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNAS833  
 
 
 
 
CDCDB400  
ZHCSOD8A – NOVEMBER 2021 – REVISED MAY 2022  
www.ti.com.cn  
Table of Contents  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 Timing Requirements..................................................8  
6.7 Typical Characteristics................................................9  
7 Parameter Measurement Information..........................10  
8 Detailed Description......................................................11  
8.1 Overview................................................................... 11  
8.2 Functional Block Diagram......................................... 11  
8.3 Feature Description...................................................11  
8.4 Device Functional Modes..........................................12  
8.5 Programming............................................................ 13  
8.6 Register Maps...........................................................15  
9 Application and Implementation..................................19  
9.1 Application Information............................................. 19  
9.2 Typical Application.................................................... 19  
10 Power Supply Recommendations..............................21  
11 Layout...........................................................................22  
11.1 Layout Guidelines................................................... 22  
11.2 Layout Examples.....................................................22  
12 Device and Documentation Support..........................24  
12.1 Device Support....................................................... 24  
12.2 接收文档更新通知................................................... 24  
12.3 支持资源..................................................................24  
12.4 Trademarks.............................................................24  
12.5 Electrostatic Discharge Caution..............................24  
12.6 术语表..................................................................... 24  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 24  
4 Revision History  
注:以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (November 2021) to Revision A (May 2022)  
Page  
更改了数据表标题...............................................................................................................................................1  
在数据表中添加了 PCIe 6 ..........................................................................................................................1  
Changed the pin description for pin 5.................................................................................................................3  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: CDCDB400  
 
CDCDB400  
ZHCSOD8A – NOVEMBER 2021 – REVISED MAY 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
CKPWRGD_PD#  
VDDR  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
OE2#  
CK2_N  
CK2_P  
VDD  
CLKIN_P  
CLKIN_N  
SADR0  
GND  
CK1_N  
CK1_P  
OE1#  
NC  
SMBDAT  
SMBCLK  
NC  
Not to scale  
5-1. CDCDB400 RHB Package 32-Pin VQFN Top View  
5-1. Pin Functions  
PIN  
TYPE(2)  
DESCRIPTION  
NAME  
INPUT CLOCK  
CLKIN_P  
NO.  
3
4
I
I
LP-HCSL differential clock input. Typically connected directly to the differential  
output of clock source.  
CLKIN_N  
OUTPUT CLOCKS  
CK0_P  
13  
14  
19  
20  
22  
O
O
O
O
O
O
LP-HCSL differential clock output of channel 0. Typically connected directly to PCIe  
differential clock input. If unused, the pins can be left no connect.  
CK0_N  
CK1_P  
LP-HCSL differential clock output of channel 1. Typically connected directly to PCIe  
differential clock input. If unused, the pins can be left no connect.  
CK1_N  
CK2_P  
LP-HCSL differential clock output of channel 2. Typically connected directly to PCIe  
differential clock input. If unused, the pins can be left no connect.  
CK2_N  
23  
CK3_P  
CK3_N  
27  
28  
O
O
LP-HCSL differential clock output of channel 3. Typically connected directly to PCIe  
differential clock input. If unused, the pins can be left no connect.  
MANAGEMENT AND CONTROL (1)  
Clock Power Good and Power Down multi-function input pin with internal 180-kΩ  
pulldown. Typically connected to GPIO of microcontroller. If unused, the pin can  
be left no connect. After PWRGD has been asserted high for the first time, the pin  
becomes a PD# pin and it controls power-down mode:  
CKPWRGD_PD#  
1
I, S, PD  
LOW: Power-down mode, all output channels tri-stated.  
HIGH: Normal operation mode.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: CDCDB400  
 
 
 
CDCDB400  
ZHCSOD8A – NOVEMBER 2021 – REVISED MAY 2022  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
TYPE(2)  
DESCRIPTION  
NAME  
NO.  
Output Enable for channel 0 with internal 180-kΩ pulldown, active low. Typically  
connected to GPIO of microcontroller. If unused, the pin can be left no connect.  
LOW: enable output channel 0.  
OE0#  
OE1#  
OE2#  
OE3#  
15  
I, S, PD  
I, S, PD  
I, S, PD  
I, S, PD  
HIGH: disable output channel 0.  
Output Enable for channel 1 with internal 180-kΩ pulldown, active low. Typically  
connected to GPIO of microcontroller. If unused, the pin can be left no connect.  
LOW: enable output channel 1.  
18  
24  
26  
HIGH: disable output channel 1.  
Output Enable for channel 2 with internal 180-kΩ pulldown, active low. Typically  
connected to GPIO of microcontroller. If unused, the pin can be left no connect.  
LOW: enable output channel 2.  
HIGH: disable output channel 2.  
Output Enable for channel 3, with internal 180-kΩ pulldown, active low. Typically  
connected to GPIO of microcontroller. If unused, the pin can be left no connect.  
LOW: enable output channel 3.  
HIGH: disable output channel 3.  
SMBUS AND SMBUS ADDRESS  
SMBus address strap bit. This is a 3-level input that is decoded in conjunction with  
pin B8 to set SMBus address. It has internal 180-kΩ pullup / pulldown network  
biasing to GND when no connect.  
For a high-level input configuration, the pin should be pulled up to 3.3-V VDD  
SADR0  
5
I, S, PU / PD through an external pullup resistor from 1k to 5k with 5% tolerance.  
For a low-level input configuration input, the pin should be pulled down to ground  
through an external pulldown resistor from 1k to 5k with 5% tolerance.  
For a mid-level input configuration, the pin should be left floating and not  
connected to VDD or ground.  
Data pin of SMBus interface. Typically pulled up to 3.3-V VDD using external pullup  
resistor. The recommended pullup resistor value is > 8.5k.  
SMBDAT  
SMBCLK  
6
7
I / O  
Clock pin of SMBus interface. Typically pulled up to 3.3-V VDD using external  
pullup resistor. The recommended pullup resistor value is > 8.5k.  
I
SUPPLY VOLTAGE AND GROUND  
Power supply input for input clock receiver. Connect to 3.3-V power supply rail with  
VDDR  
VDD  
2
P
decoupling capacitor to GND. Place a 0.1-µF capacitor close to each supply pin  
between power supply and ground.  
12, 16, 21, 25, 29,  
31  
P
3.3-V power supply for output channels and core voltage.  
Ground. Connect ground pad to system ground.  
GND  
DAP  
G
NO CONNECT  
NC  
8, 9, 10, 11, 17, 30  
32  
Do not connect pins to GND or VDD. Leave floating.  
Pin may be connected to GND, VDD, or otherwise tied to any potential within the  
Supply Voltage range stated in the Absolute Maximum Ratings.  
NC  
(1) The “#” symbol at the end of a pin name indicates that the active state occurs when the signal is at a low voltage level. When “#” is not  
present, the signal is active high.  
(2) The definitions below define the I/O type for each pin.  
I = Input  
O = Output  
I / O = Input / Output  
PU / PD = Internal 180-kΩ Pullup / Pulldown network biasing to VDD/2  
PD = Internal 180-kΩ Pulldown  
S = Hardware Configuration Pin  
P = Power Supply  
G = Ground  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: CDCDB400  
 
 
CDCDB400  
ZHCSOD8A – NOVEMBER 2021 – REVISED MAY 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
−0.3  
−0.3  
MAX  
3.6  
UNIT  
V
VDD, VDD_R  
Power supply voltage  
IO input voltage  
VIN  
TJ  
3.6  
V
Junction temperature  
Storage temperature  
125  
150  
°C  
°C  
Tstg  
−65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions.  
If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC  
JS-001, all pins(1)  
±3500  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ANSI/ESDA/  
JEDEC JS-002, all pins(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3
NOM  
3.3  
MAX  
3.6  
UNIT  
V
VDD  
VDD_R  
TA  
IO, Core supply voltage  
Input supply voltage  
Ambient temperature  
3
3.3  
3.6  
V
−40  
105  
°C  
6.4 Thermal Information  
CDCDB400  
THERMAL METRIC(1)  
RHB (QFN)  
32 PINS  
35.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
27.3  
16.2  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.6  
ΨJB  
16.2  
RθJC(bot)  
6.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: CDCDB400  
 
 
 
 
 
 
 
 
 
CDCDB400  
ZHCSOD8A – NOVEMBER 2021 – REVISED MAY 2022  
www.ti.com.cn  
6.5 Electrical Characteristics  
VDD, VDD_R = 3.3 V ± 5 %, −40°C ≤ TA ≤ 85°C. Typical values are at VDD = VDD_R = 3.3 V, 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CURRENT CONSUMPTION  
Active mode. CKPWRGD_PD# = 1  
Power-down mode. CKPWRGD_PD# = 0  
All outputs disabled  
8.5  
2
IDD_R  
Core supply current  
IO supply current  
mA  
18  
8.5  
1.5  
IDD  
All outputs active, 100 MHz (per output)  
Power-down mode. CKPWRGD_PD# = 0  
mA  
CLOCK INPUT  
fIN  
Input frequency  
50  
200  
0.7  
100  
250  
MHz  
Differential voltage between CLKIN_P and  
CLKIN_N(1)  
mVDiff-  
VIN  
Input voltage swing  
2300  
peak  
dV/dt  
Input voltage edge rate  
Total variation of VCROSS  
Input duty cycle  
20% - 80% of input swing  
V/ns  
mV  
%
DVCROSS  
DCIN  
Total variation across VCROSS  
140  
2.2  
40  
60  
Differential capacitance between CLKIN_P  
and CLKIN_N pins  
CIN  
Input capacitance(2)  
pF  
CLOCK OUTPUT  
fOUT  
Output frequency  
50  
100  
4
250  
MHz  
pF  
Differential capacitance between CKx_P  
and CKx_N pins  
COUT  
Output capacitance(1)  
VOH  
VOL  
Output high voltage  
Output low voltage  
225  
10  
270  
150  
Single-ended(2) (3)  
Measured into an AC load as defined in  
DB800ZL  
VHIGH  
VLOW  
Output high voltage  
Output low voltage  
660  
850  
150  
Measured into an AC load as defined in  
DB800ZL  
–150  
Measured into an AC load as defined in  
DB800ZL  
VMAX  
Output Max voltage  
1150  
200  
550  
mV  
VCROSS  
Crossing point voltage  
See (3) (4)  
130  
250  
Measured into an AC load as defined in  
DB800ZL  
VCROSSAC Crossing point voltage (AC load)  
(3) (4)  
DVCROSS  
Vovs  
Total variation of VCROSS  
Overshoot voltage  
Variation of VCROSS  
35  
140  
See (3)  
VOH+75  
Measured into an AC load as defined in  
DB800ZL  
VHIGH+30  
0
Vovs(AC)  
Vuds  
Overshoot voltage (AC load)  
Undershoot voltage  
See (3)  
VOL–75  
Measured into an AC load as defined in  
DB800ZL  
VLOW–  
Vuds(AC)  
Undershoot voltage  
mV  
300  
Measured  
into an AC  
load as  
defined in  
Measured into an AC load as  
DB800ZL  
Vrb  
Ringback Voltage  
defined in DB800ZL and taken  
and taken  
-0.2  
0.2  
V
from single-ended waveform.  
from  
single-  
ended  
waveform.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: CDCDB400  
 
CDCDB400  
ZHCSOD8A – NOVEMBER 2021 – REVISED MAY 2022  
www.ti.com.cn  
VDD, VDD_R = 3.3 V ± 5 %, −40°C ≤ TA ≤ 85°C. Typical values are at VDD = VDD_R = 3.3 V, 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Differential impedance (Default  
setting, 85 Ω)  
Measured at VOL/VOH  
81  
85  
89  
ZDIFF  
Differential impedance (Output  
impedance selection bit =1, 100 Ω)  
Measured at VOL/VOH  
Measured at VCROSS  
95  
68  
100  
85  
105  
102  
120  
Ω
Differential impedance (Default  
setting, 85 Ω)  
ZDIFF_CROS  
S
Differential impedance (Output  
impedance selection bit = 1, 100 Ω)  
Measured at VCROSS  
80  
2
100  
(7)  
tEDGE  
Differential edge rate  
Edge rate matching  
Measured (±150 mV) around VCROSS  
4
V/ns  
%
(7)  
DtEDGE  
Measured (±150 mV) VCROSS  
20  
Measured  
when  
positive  
output  
reaches  
0.2 V  
CKPWRGD_PD# pin  
transitions from 0 to 1, fIN  
100 MHz  
Power good assertion to stable clock  
output  
tSTABLE  
=
=
1.8  
ms  
µs  
Measured  
when  
positive  
output  
reaches  
0.2 V  
CKPWRGD_PD# pin  
transitions from 0 to 1, fIN  
100 MHz  
Power good assertion to outputs  
driven high  
tDRIVE_PD#  
300  
Output enable assertion to stable  
clock output  
tOE  
tOD  
tPD  
OEx# pin transitions from 1 to 0  
OEx# pin transitions from 0 to 1  
10  
10  
3
Output enable de-assertion to no  
clock output  
CLKIN  
Periods  
Power-down assertion to no clock  
output  
CKPWRGD_PD# pin transitions from 1 to 0  
tDCD  
tDLY  
Duty cycle distortion  
Propagation delay  
Differential; fIN = 100 MHz, fIN_DC = 50%  
–1  
1
3
%
ns  
ps  
See (5)  
See (6)  
0.5  
tSKEW  
Skew between outputs  
50  
tDELAY(IN-  
Input-to-output delay variation at 100 MHz  
across voltage and temperature  
Input to output delay variation  
Additive jitter for DB2000QL  
–250  
250  
ps  
OUT)  
DB2000QL filter, for input of 200-mV  
differential swing at 1.5 V/ns  
0.038  
Input clock  
slew rate =  
PLL BW: 0.5 - 1 MHz; CDR =  
Additive jitter for PCIe6.0  
Additive jitter for PCIe5.0  
Additive jitter for PCIe4.0  
0.02  
0.025  
0.06  
10 MHz  
2 V/ns  
JCKx_PCIE  
PCIe5.0 filter  
ps, RMS  
(7)  
Input clock  
slew rate ≥  
1.8 V/ns  
PLL BW = 2 - 5 MHz; CDR =  
10 MHz  
Input clock  
slew rate ≥  
0.6 V/ns  
Additive jitter for PCIe3.0  
Additive jitter  
0.1  
fIN = 100 MHz; slew rate ≥ 3 V/ns; 12 kHz to  
20 MHz integration bandwidth.  
JCKx  
NF  
100  
160 fs, RMS  
-155 dBc/Hz  
Input clock  
fIN = 100 MHz; fOffset ≥ 10 MHz slew rate ≥  
3 V/ns  
Noise floor  
–160  
SMBUS INTERFACE, OEx#, CKPWRGD_PD#  
VIH  
VIL  
High level input voltage  
Low level input voltage  
2.0  
V
0.8  
GND ≤ VIN  
With internal pullup/pulldown  
≤ VDD  
IIH  
Input leakage current  
–30  
30  
µA  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: CDCDB400  
CDCDB400  
ZHCSOD8A – NOVEMBER 2021 – REVISED MAY 2022  
www.ti.com.cn  
VDD, VDD_R = 3.3 V ± 5 %, −40°C ≤ TA ≤ 85°C. Typical values are at VDD = VDD_R = 3.3 V, 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
GND ≤ VIN  
≤ VDD  
IIL  
IIH  
IIL  
Input leakage current  
With internal pullup/pulldown  
–30  
30  
µA  
Without internal pullup/  
pulldown  
GND ≤ VIN  
≤ VDD  
Input leakage current  
Input leakage current  
−5  
−5  
5
5
µA  
µA  
Without internal pullup/  
pulldown  
GND ≤ VIN  
≤ VDD  
CIN  
Input capacitance  
Output capacitance  
4.5  
4.5  
pF  
pF  
COUT  
3-LEVEL DIGITAL INTERFACE (SADR0)  
VIH  
VIM  
VIL  
IIH  
High level input voltage  
Mid level input voltage  
Low level input voltage  
Input leakage current  
Input leakage current  
Input capacitance(1)  
2.3  
1.25  
VDD/2  
1.725  
0.85  
30  
V
With internal pullup/pulldown  
With internal pullup/pulldown  
VIN = VDD  
–30  
–30  
µA  
µA  
pF  
IIL  
VIN = GND  
30  
CIN  
4.5  
(1) Voltage swing includes overshoot.  
(2) Not tested in production. Ensured by design and characterization.  
(3) Measured into DC test load.  
(4) VCROSS is single-ended voltage when CKx_P = CKx_N with respect to system ground. Only valid on rising edge of CKx, when CKx_P  
is rising.  
(5) Measured from rising edge of CLK_IN to any CKx output.  
(6) Measured from rising edge of any CKx output to any other CKx output.  
(7) Measured into AC test load.  
6.6 Timing Requirements  
VDD, VDD_R = 3.3 V ± 5 %, −40°C ≤ TA ≤ 85°C. Typical values are at VDD = VDD_R = 3.3 V, 25°C (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
SMBUS COMPATIBLE INTERFACE TIMING  
fSMB  
SMBus operating frequency  
Bus free time between STOP and START  
START condition hold time  
START condition setup time  
STOP condition setup time  
SMBDAT hold time  
10  
4.7  
4
400  
kHz  
tBUF  
tHD_STA  
tSU_STA  
tSU_STO  
tHD_DAT  
tSU_DAT  
SMBCLK low after SMBDAT low  
SMBCLK high before SMBDAT low  
µs  
4.7  
4
300  
250  
1e6  
4.7  
4
ns  
cycles  
µs  
SMBDAT setup time  
tTIMEOUT Detect SMBCLK low timeout  
In terms of device input clock frequency  
tLOW  
tHIGH  
tF  
SMBCLK low period  
SMBCLK high period  
50  
300  
SMBCLK/SMBDAT fall time(1)  
SMBCLK/SMBDAT rise time(2)  
ns  
tR  
1000  
(1) TF = (VIHMIN + 0.15) to (VILMAX - 0.15)  
(2) TR = (VILMAX - 0.15) to (VIHMIN + 0.15)  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: CDCDB400  
 
 
 
 
 
 
 
 
 
 
CDCDB400  
ZHCSOD8A – NOVEMBER 2021 – REVISED MAY 2022  
www.ti.com.cn  
6.7 Typical Characteristics  
6-1 shows both the phase noise of the source as well as the output of the DUT (CDCDB400). It can be seen from the  
phase noise plot that the DUT has a very low phase noise profile with total jitter of 81.5 fs, rms. If we rms subtract the clock  
reference noise, the additive jitter of CDCDB400 under typical conditions would be lower than 81.5 fs, rms.  
6-1. CDCDB400 Clock Out (CK0:4) Phase Noise  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: CDCDB400  
 
 
CDCDB400  
ZHCSOD8A – NOVEMBER 2021 – REVISED MAY 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
10 inches/ 25.4 cm  
< 1 pF  
>100 k  
GND  
CK+  
CK-  
DUT  
Differential impedance 85  
High  
Impedance  
Probe  
< 1 pF  
GND  
2 pF  
2 pF  
7-1. AC Test Load (Referencing Intel DB2000QL Document)  
0.75 V  
SMA  
SMA  
R1  
R1  
CK+  
CK-  
0.75 V  
DUT  
GND  
GND  
50  
42.5  
85  
R1 = 47 Ω and R2 = 147 Ω.  
7-2. DC Simulation Load (Referencing Intel DB2000QL Document)  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: CDCDB400  
 
CDCDB400  
ZHCSOD8A – NOVEMBER 2021 – REVISED MAY 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The CDCDB400 is a low additive-jitter, low propagation delay clock buffer designed to meet the strict  
performance requirements for PCIe Gen 1-6, QPI, UPI, SAS, and SATA reference clocks in CC, SRNS, or SRIS  
architectures. The CDCDB400 allows buffering and replication of a single clock source to up to four individual  
outputs in the LP-HCSL format. The CDCDB400 also includes status and control registers accessible by an  
SMBus version 2.0 compliant interface. The device integrates a large amount of external passive components to  
reduce overall system cost.  
8.2 Functional Block Diagram  
CK0_P  
CK0_N  
CLKIN_P  
CLKIN_N  
CK1_P  
CK1_N  
CK2_P  
CK2_N  
Glitch  
Free  
Output  
Control  
Logic  
OE[3:0]#  
CK3_P  
CK3_N  
SMBDAT  
SMBCLK  
SADR0  
Control  
Logic  
CKPWRGD_PD#  
8.3 Feature Description  
8.3.1 Fail-Safe Input  
The CDCDB400 is designed to support fail-safe input operation feature. This feature allows the user to drive the  
device inputs before VDD is applied without damaging the device. Refer to the Absolute Maximum Ratings table  
for more information on the maximum input supported by the device.  
8.3.2 Output Enable Control  
The CDCDB400 uses SMBus and OE# to control the state of the output channels. The OE# pins control the  
state of the output with the same number. For example, the OE3# pin controls the state of the CK3 output driver.  
The SMBus registers may enable or disable the output when the corresponding OE# pin is held low.  
8.3.3 SMBus  
The CDCDB400 has an SMBus interface that is active only when CKPWRGD_PD# = 1. The SMBus allows  
individual enable/disable of each output.  
When CKPWRGD_PD# = 0, the SMBus pins are placed in a Hi-Z state, but all register settings are retained. The  
SMBus register values are only retained while VDD remains inside of the recommended operating voltage.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: CDCDB400  
 
 
 
 
 
CDCDB400  
ZHCSOD8A – NOVEMBER 2021 – REVISED MAY 2022  
www.ti.com.cn  
8.3.3.1 SMBus Address Assignment  
The SMBus address is assigned by configuring the SADR0 pin which is capable of supporting three levels. This  
configuration allows the CDCDB400 to assume three different SMBus addresses.  
The SMBus address pin is sampled when PWRGD is set to 1. See 8-1 for address pin configuration. The  
address can only be changed by power cycling the device.  
8-1. SMBus Address Assignment  
SMBus ADDRESS : WRITE OPERATION  
(READ/WRITE=0)  
SMBus ADDRESS : READ OPERATION  
(READ/WRITE=1)  
SADR0  
L
0xD8  
0xD9  
M
H
0xDA  
0xDE  
0xDB  
0xDF  
8.4 Device Functional Modes  
8.4.1 CKPWRGD_PD# Function  
The CKPWRGD_PD# pin is used to set two state variables inside of the device: PWRGD and PD#. The PWRGD  
and PD# variables control which functions of the device are active at any time, as well as the state of the input  
and output pins.  
The PWRGD and PD# states are multiplexed on the CKPWRGD_PD# pin. CKPWRGD_PD# must remain below  
VOL and not exceed VDDR + 0.3 V until VDD and VDDR are present and within the recommended operating  
conditions. After CKPWRGD_PD# is set high, a valid CLKIN must be present to use PD#.  
The first rising edge of the CKPWRGD_PD# pin sets PWRGD = 1. After PWRGD is set to 1, the  
CKPWRGD_PD# pin is used to assert PD# mode only. PWRGD variable will only be cleared to 0 with the  
removal of VDD and VDDR  
.
VDD/VDDR  
CKPWRGD_PD#  
PWRGD  
PD#  
8-1. PWRGD and PD# State Changes  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: CDCDB400  
 
 
CDCDB400  
ZHCSOD8A – NOVEMBER 2021 – REVISED MAY 2022  
www.ti.com.cn  
8.4.2 OE[3:0]# and SMBus Output Enables  
Each output channel, 0 to 3, can be individually enabled or disabled by a SMBus control register bit, called  
SMB enable bits. Additionally, each output channel has a dedicated, corresponding, OE[3:0]# hardware pin. The  
OE[3:0]# pins are asynchronously asserted-low signals that may enable or disable the output.  
Refer to 8-2 for enabling and disabling outputs through the hardware and software. Note that both the SMB  
enable bit must be a 1 and the OEx# pin must be an input low voltage 0 for the output channel to be active.  
8-2. OE[3:0]# Functionality  
Power State Variables  
(Internal)  
OE[3:0]# HARDWARE PINS AND SMBus  
CONTROL REGISTER BITS  
Control Inputs  
CK[3:0]_P/  
CK[3:0]_N  
CLKIN  
CKPWRGD_P  
D#  
OUT_EN_CLK[ DRIVE_OP_ST  
OE[3:0]#  
PWRGD  
PD#  
3:0]  
ATE_CTRL  
0
1
0
0
X
X
X
X
X
LOW/LOW  
LOW/LOW  
0
0
1
0
1
X
0
1
TRI-STATE  
LOW/LOW  
TRI-STATE  
Running  
X(1)  
1
1
0
X
X
1
1
Running(1)  
X(2)  
LOW/LOW  
TRI-STATE  
0
0
X
(1) To enter the power-down state, CLKIN must remain active for at least 3 clock cycles after CKPWRGD_PD# transitions from 1 to 0.  
(2) To enter the powered-up state with active clock outputs, CLKIN must be active before CKPWRGD_PD# transitions from 0 to 1.  
8.4.3 Output Slew Rate Control  
The CDCDB400 provides output slew rate control feature which customer can use to compensate for increased  
output trace length based on their board design. The slew rate of the 4 outputs, CK0 to CK3, can be changed  
within a given range by a SMBus control register called CAPTRIM. Refer to 8-16 for more information.  
8.4.4 Output Impedance Control  
The integrated termination on the CDCDB400 can be programmed either for 85 Ω or 100 Ω. This flexibility  
ensures that the customer can use the same device across various applications irrespective of the characteristic  
board impedance which is typically either 85 Ω or 100 Ω. This termination resistor can be changed for all the  
outputs as whole using bit 5 of a register called OUTSET. Refer to 8-14 for more information.  
8.5 Programming  
The CDCDB400 uses SMBus to program the states of its four output drivers. See SMBus for more information  
on the SMBus programming, and Register Maps for information on the registers.  
8-3. Command Code Definition  
BIT  
7
DESCRIPTION  
0 = Block Read or Block Write operation  
1 = Byte Read or Byte Write operation  
(6:0)  
Register address for Byte operations, or starting register address for Block, operations  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: CDCDB400  
 
 
 
 
CDCDB400  
ZHCSOD8A – NOVEMBER 2021 – REVISED MAY 2022  
www.ti.com.cn  
1
7
1
1
8
1
1
S
Peripheral Address  
A
Data Byte  
A
P
R/W  
MSB  
LSB  
MSB  
LSB  
S
Start Condition  
Sr Repeated Start Condition  
1 = Read (Rd); 0 = Write (Wr)  
R/W  
A
Acknowledge (ACK = 0 and NACK =1)  
Stop Condition  
P
Controller-to-Peripheral Transmission  
Peripheral-to-Controller Transmission  
8-2. Generic Programming Sequence  
1
7
1
1
8
1
8
1
1
S
Peripheral Address  
Wr  
A
CommandCode  
A
Data Byte  
A
P
8-3. Byte Write Protocol  
1
1
1
7
1
1
8
7
1
1
A
S
S
Peripheral Address  
Wr  
A
CommandCode  
Peripheral Address  
Rd  
A
1
1
8
Data Byte  
A
P
1
8-4. Byte Read Protocol  
1
7
1
1
8
1
8
1
S
Peripheral Address  
Wr  
A
CommandCode  
A
Byte Count = N  
A
8
1
8
1
8
1
1
Data Byte 0  
A
Data Byte 1  
A
Data Byte N-1  
A
P
8-5. Block Write Protocol  
1
1
1
7
1
1
8
7
1
1
A
S
S
Peripheral Address  
Wr  
A
CommandCode  
Peripheral Address  
Rd  
A
1
1
8
1
1
8
8
Data Byte N-1  
A
P
Data Byte N  
A
A
Data Byte 0  
1
1
1
8-6. Block Read Protocol  
tLOW  
tR  
tF  
VIH  
VIL  
SMBCLK  
SMBDAT  
tSU_STO  
tHD_STA  
tHIGH  
tSU_STA  
ttBUFt  
tHD_DAT  
tSU_DAT  
VIH  
VIL  
P
S
P
8-7. SMBus Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: CDCDB400  
CDCDB400  
ZHCSOD8A – NOVEMBER 2021 – REVISED MAY 2022  
www.ti.com.cn  
8.6 Register Maps  
8.6.1 CDCDB400 Registers  
8-4 lists the CDCDB400 registers. All register locations not listed in 8-4 should be considered as reserved  
locations and the register contents should not be modified.  
8-4. CDCDB400 Registers  
Address  
0h  
Acronym  
RCR1  
Register Name  
Section  
Go  
Reserved Control Register 1  
Output Enable Control 1  
Output Enable Control 2  
Output Enable# Pin Read Back  
Reserved Control Register 2  
Vendor/Revision Identification  
Device Identification  
1h  
OECR1  
Go  
2h  
OECR2  
Go  
3h  
OERDBK  
RCR2  
Go  
4h  
Go  
5h  
VDRREVID  
DEVID  
Go  
6h  
Go  
7h  
BTRDCNT  
OUTSET  
CAPTRIM  
Byte Read Count Control  
Output Setting Control  
Go  
8h  
Go  
4Ch  
Slew Rate Capacitor Cluster 1 & 2  
Go  
Complex bit access types are encoded to fit into small table cells. 8-5 shows the codes that are used for  
access types in this section.  
8-5. CDCDB400 Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
8.6.1.1 RCR1 Register (Address = 0h) [reset = 47h]  
RCR1 is shown in 8-6.  
Return to the Summary Table.  
The RCR1 register contains reserved bits.  
8-6. RCR1 Register Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
Reset  
Description  
Reserved  
Reserved  
R
4h  
Reserved.  
R/W  
7h  
Writing to these bits will not affect the functionality of the device.  
8.6.1.2 OECR1 Register (Address = 1h) [reset = FFh]  
OECR1 is shown in 8-7.  
Return to the Summary Table.  
The OECR1 register contains bits that enable or disable individual output clock channels [1:0].  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: CDCDB400  
 
 
 
 
 
 
 
CDCDB400  
ZHCSOD8A – NOVEMBER 2021 – REVISED MAY 2022  
www.ti.com.cn  
8-7. OECR1 Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
Reserved  
Reserved  
OUT_EN_CLK1  
1h  
Writing to this bit will not affect the functionality of the device.  
Writing to this bit will not affect the functionality of the device.  
6
1h  
5
1h  
This bit controls the output enable signal for output channel CK1_P/  
CK1_N.  
0h = Output Disabled  
1h = Output Enabled  
4
3
2
Reserved  
R/W  
R/W  
R/W  
1h  
1h  
1h  
Writing to this bit will not affect the functionality of the device.  
Writing to this bit will not affect the functionality of the device.  
Reserved  
OUT_EN_CLK0  
This bit controls the output enable signal for output channel CK0_P/  
CK0_N.  
0h = Output Disabled  
1h = Output Enabled  
1
0
Reserved  
Reserved  
R/W  
R/W  
1h  
1h  
Writing to this bit will not affect the functionality of the device.  
Writing to this bit will not affect the functionality of the device.  
8.6.1.3 OECR2 Register (Address = 2h) [reset = 0Fh]  
OECR2 is shown in 8-8.  
Return to the Summary Table.  
The OECR2 register contains bits that enable or disable individual output clock channels [3:2].  
8-8. OECR2 Register Field Descriptions  
Bit  
7-4  
3
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
Reserved  
Reserved  
OUT_EN_CLK3  
0h  
Writing to these bits will not affect the functionality of the device.  
Writing to this bit will not affect the functionality of the device.  
1h  
2
1h  
This bit controls the output enable signal for output channel CK3_P/  
CK3_N.  
0h = Output Disabled  
1h = Output Enabled  
1
0
Reserved  
R/W  
R/W  
1h  
1h  
Writing to this bit will not affect the functionality of the device.  
OUT_EN_CLK2  
This bit controls the output enable signal for output channel CK2_P/  
CK2_N.  
0h = Output Disabled  
1h = Output Enabled  
8.6.1.4 OERDBK Register (Address = 3h) [reset = 0h]  
OERDBK is shown in 8-9 .  
Return to the Summary Table.  
The OERDBK register contains bits that report the current state of the OE[3:0]# input pins.  
8-9. OERDBK Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RB_OEZ3  
RB_OEZ2  
Reserved  
RB_OEZ1  
Reserved  
R
0h  
This bit reports the logic level present on the OE3# pin.  
This bit reports the logic level present on the OE2# pin.  
Reserved.  
6
R
0h  
5-4  
3
R
0h  
R
0h  
This bit reports the logic level present on the OE1# pin.  
Reserved.  
2
R
0h  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: CDCDB400  
 
 
 
 
 
CDCDB400  
ZHCSOD8A – NOVEMBER 2021 – REVISED MAY 2022  
www.ti.com.cn  
8-9. OERDBK Register Field Descriptions (continued)  
Bit  
1
Field  
Type  
Reset  
Description  
RB_OEZ0  
Reserved  
R
0h  
This bit reports the logic level present on the OE0# pin.  
Reserved.  
0
R
0h  
8.6.1.5 RCR2 Register (Address = 4h) [reset = 0h]  
RCR2 is shown in 8-10.  
Return to the Summary Table.  
The RCR2 register contains reserved bits.  
8-10. RCR2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Reserved  
R
0h  
Reserved.  
8.6.1.6 VDRREVID Register (Address = 5h) [reset = 0Ah]  
VDRREVID is shown in 8-11.  
Return to the Summary Table.  
The VDRREVID register contains a vendor identification code and silicon revision code.  
8-11. VDRREVID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
REV_ID  
R
0h  
Silicon revision code.  
Silicon revision code bits  
[3:0] map to register bits  
[7:4] directly.  
3-0  
VENDOR_ID  
R
Ah  
Vendor identification code.  
Vendor ID bits  
[3:0] map to register bits  
[3:0] directly.  
8.6.1.7 DEVID Register (Address = 6h) [reset = E7h]  
DEVID is shown in 8-12.  
Return to the Summary Table.  
The DEVID register contains a device identification code.  
8-12. DEVID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DEV_ID  
R
E7h  
Device ID code.  
Device ID bits[7:0] map to register bits[7:0] directly.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: CDCDB400  
 
 
 
 
 
 
CDCDB400  
ZHCSOD8A – NOVEMBER 2021 – REVISED MAY 2022  
www.ti.com.cn  
8.6.1.8 BTRDCNT Register (Address = 7h) [reset = 8h]  
BTRDCNT is shown in 8-13.  
Return to the Summary Table.  
The BTRDCNT register contains bits [4:0] which configure the number of bytes which will be read back.  
8-13. BTRDCNT Register Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
Reserved  
0h  
Writing to these bits will not affect the functionality of the device.  
BYTE_COUNTER  
BYTE_COUNTER  
0h  
Writing to this register configures how many bytes will be read back.  
3-0  
8h  
8.6.1.9 OUTSET Register (Address = 8h) [reset = 0h]  
OUTSET is shown in 8-14.  
Return to the Summary Table.  
Bit5 of the OUTSET register sets the termination for all the outputs while bit4 can be used to set the power-down  
state for all outputs. The remaining bits for this register are reserved.  
8-14. OUTSET Register Field Descriptions  
Bit  
7-6  
5
Field  
Type  
Reset  
Description  
Reserved  
R
0h  
Reserved.  
CH_ZOUT_SEL  
d_DRIVE_OP_STATE_CTRL  
R/W  
R/W  
0h  
Select between 85 Ω (0) and 100 Ω (1) Output impedance  
4
0h  
Power-down state of all output clocks.  
0: LOW/LOW  
1: TRI_STATE  
3-0  
Reserved  
R/W  
0h  
Register bits can be written to 0. Writing a different value than 0  
will affect device functionality.  
8.6.1.10 CAPTRIM Register (Address = 4Ch) [reset = 66h]  
CAPTRIM is shown in 8-16.  
Return to the Summary Table.  
Bits [7:4] of the CAPTRIM register is used to control the slew rate for output channel cluster 2. Bits [3:0] control  
the slew rate for output channel cluster 1. Refer below for cluster identification.  
8-15. Cluster Identification  
Cluster  
Outputs  
1
2
CK1, CK0  
CK3, CK2  
8-16. CAPTRIM Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
CLUSTER2_CAP_TRIM  
R/W  
6h  
Slew Rate Reduction Cap Trim for Cluster 2 Default value of 6h.  
0: minimum  
F: maximum  
3-0  
CLUSTER1_CAP_TRIM  
R/W  
6h  
Slew Rate Reduction Cap Trim for Cluster 1. Default value of 6h.  
0: minimum  
F: maximum  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: CDCDB400  
 
 
 
 
 
 
CDCDB400  
ZHCSOD8A – NOVEMBER 2021 – REVISED MAY 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属于 TI 器件规格的范围,TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。  
9.1 Application Information  
The CDCDB400 is a fanout buffer that supports PCIe generation 4 and PCIe generation 5 REFCLK distribution.  
The device is used to distribute up to four copies of a typically 100-MHz clock.  
9.2 Typical Application  
9-1 shows a CDCDB400 typical application. In this application, a clock generator provides a 100-MHz  
reference to the CDCDB400 which then distributes that clock to PCIe endpoints. The clock generator may be  
a discrete clock generator like the CDCI6214 or it may be integrated in a larger component such as a Platform  
Controller Hub (PCH) or application processor.  
PCIe Device  
PCIe Gen 4-5  
Clock  
Generator  
4
LP-HCSL  
CDCDB400  
4x LP-HSCL Output Buffer  
LP-HCSL  
OE#  
Control  
SMBus  
Control  
Control Interface  
9-1. Typical Application  
9.2.1 Design Requirements  
Consider a typical server motherboard application which must distribute a 100-MHz PCIe reference clock from  
the PCH of a processor chipset to multiple endpoints. An example of clock input and output requirements is:  
Clock Input:  
– 100-MHz LP-HCSL  
Clock Output:  
– 2x 100-MHz to processors, LP-HCSL  
– 1x 100-MHz to riser/retimer, LP-HCSL  
– 1x 100-MHz to DDR memory controller, LP-HCSL  
9.2.2 Detailed Design Procedure  
The following items must be determined before starting design of a CDCDB400 socket:  
Output Enable Control Method  
SMBus address  
9.2.2.1 Output Enable Control Method  
The device provides an option to either use SMBus programmed registers (software) to control the outputs or  
by using the hardware OE# pins. When using software to control the outputs, the hardware OE# pins can be  
left floating as each of these pins have a pulldown to ground. Refer to 8-2 and Register Maps for more  
information on programming the register.  
When the user wants to control the outputs with the hardware OE# pins, they can connect these pins to a GPIO  
controller and set the outputs to HIGH/LOW (see 5-1). Registers OECR1 (8-7) and OECR2 (8-8) show  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: CDCDB400  
 
 
 
 
CDCDB400  
ZHCSOD8A – NOVEMBER 2021 – REVISED MAY 2022  
www.ti.com.cn  
the OUT_EN_CLK3 to OUT_EN_CLK0 bits used to control the outputs. These register bits are set to 1 by default  
to ensure that the outputs are "software enabled" and their state is therefore set by hardware OE# pins.  
9.2.2.2 SMBus Address  
Select a SMBus address from the list of potential addresses in 8-1. Place the appropriate pullup or pulldown  
resistor on the SADR0 pin as indicated in the table. Ensure the SMBus address is not already in use to avoid  
conflict.  
9.2.3 Application Curves  
6-1 in the Typical Characteristics section can be used as both an application curve and a typical  
characteristics plot in this example.  
The 9-2 and 9-3 show characterization data for the Output slew rate for various CAPTRIM codes and  
across temperature. Customers can use these plots as reference for choosing the appropriate output slew rate  
based on their system requirement.  
7
6
5
4
3
2
0 - 3.3 V  
1 - 3.3 V  
2 - 3.3 V  
3 - 3.3 V  
4 - 3.3 V  
5 - 3.3 V  
6 - 3.3 V  
7 - 3.3 V  
8 - 3.3 V  
9 - 3.3 V  
10 - 3.3 V  
11 - 3.3 V  
12 - 3.3 V  
13 - 3.3 V  
1
0
120 100  
80  
60  
40  
20  
0
-20  
-40  
-60  
Temperature (èC)  
D002  
.
.
9-3. Slew Rate Variation Across Temperature for  
9-2. Output Slew Rate vs. CAPTRIM Code  
Different CAPTRIM Code  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: CDCDB400  
 
CDCDB400  
ZHCSOD8A – NOVEMBER 2021 – REVISED MAY 2022  
www.ti.com.cn  
10 Power Supply Recommendations  
High-performance clock buffers are sensitive to noise on the power supply, which can dramatically increase the  
additive jitter of the buffer. Thus, it is essential to reduce noise from the system power supply, especially when  
the jitter and phase noise is critical to applications.  
Filter capacitors are used to eliminate the low-frequency noise from the power supply, where the bypass  
capacitors provide the very low impedance path for high-frequency noise and guards the power-supply system  
against induced fluctuations. These bypass capacitors also provide instantaneous current surges as required by  
the device and should have low equivalent series resistance (ESR). To properly use the bypass capacitors, place  
the capacitors very close to the power-supply terminals and lay out with short loops to minimize inductance. TI  
recommends to insert a ferrite bead between the board power supply and the chip power supply that isolates the  
high-frequency switching noises generated by the clock buffer. These beads prevent the switching noise from  
leaking into the board supply. It is imperative to choose an appropriate ferrite bead with very low DC resistance  
to provide adequate isolation between the board supply and the chip supply, as well as to maintain a voltage at  
the supply terminals that is greater than the minimum voltage required for proper operation.  
10-1 shows the recommended power supply filtering and decoupling method.  
3.3 V  
VDD  
10 F  
0.1 F 0.1 F 0.1 F 0.1 F 0.1 F  
3.3 V  
VDDR  
2.2 ꢁ  
10 F  
0.1 F  
10-1. Power Supply Decoupling  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: CDCDB400  
 
 
CDCDB400  
ZHCSOD8A – NOVEMBER 2021 – REVISED MAY 2022  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
The following section provides the layout guidelines to ensure good thermal performance and power supply  
connections for the CDCDB400.  
In Layout Examples, the CDCDB400 has 85-Ω differential output impedance LP-HCSL format drivers as per  
register default settings. All transmission lines connected to CKx pins should be 85-Ω differential impedance,  
42.5-Ω single-ended impedance to avoid reflections and increased radiated emissions. If 100-Ω output  
impedance is enabled, the transmission lines connected to CKx pins should be 100-Ω differential impedance,  
50-Ω single-ended impedance. Take care to eliminate or reduce stubs on the transmission lines.  
11.2 Layout Examples  
11-1 through 11-3 are printed circuit board (PCB) layout examples that show the application of thermal  
design practices and a low-inductance ground connection between the device DAP and the PCB.  
11-1. PCB Layout Example for CDCDB400, Top layer  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: CDCDB400  
 
 
 
 
CDCDB400  
ZHCSOD8A – NOVEMBER 2021 – REVISED MAY 2022  
www.ti.com.cn  
11-2. PCB Layout Example for CDCDB400, GND Layer  
11-3. PCB Layout Example for CDCDB400, Bottom Layer  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: CDCDB400  
 
CDCDB400  
ZHCSOD8A – NOVEMBER 2021 – REVISED MAY 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 TICS Pro  
TICS Pro is an offline software tool for EVM programming and also for register map generation to program a  
device configuration for a specific application. For TICS Pro, go to https://www.ti.com/tool/TICSPRO-SW.  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册,即可每周接收产品信息更  
改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者按原样提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI  
《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: CDCDB400  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CDCDB400RHBR  
CDCDB400RHBT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RHB  
RHB  
32  
32  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 105  
-40 to 105  
CDCB400  
CDCB400  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Apr-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
CDCDB400RHBR  
CDCDB400RHBT  
VQFN  
VQFN  
RHB  
RHB  
32  
32  
3000  
250  
330.0  
180.0  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
CDCDB400RHBR  
CDCDB400RHBT  
VQFN  
VQFN  
RHB  
RHB  
32  
32  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RHB 32  
5 x 5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224745/A  
www.ti.com  
PACKAGE OUTLINE  
RHB0032T  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.15  
4.85  
B
A
PIN 1 INDEX AREA  
5.15  
4.85  
0.13 MIN  
(0.15)  
SECTION A-A  
A
TYPICAL  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
3.45 0.1  
9
EXPOSED  
THERMAL PAD  
16  
28X 0.5  
8
(0.16) TYP  
17  
A
A
2X  
SYMM  
33  
3.5  
0.3  
0.2  
32X  
24  
0.1  
C A B  
C
1
0.05  
32  
25  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.52  
0.32  
(0.355)  
TYP  
32X  
4224744/A 01/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHB0032T  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.45)  
SYMM  
32  
25  
32X (0.62)  
1
24  
32X (0.25)  
(1.475)  
28X (0.5)  
33  
SYMM  
(4.78)  
(
0.2) TYP  
VIA  
8
17  
(R0.05)  
TYP  
9
16  
(1.475)  
(4.78)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL EDGE  
EXPOSED METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224744/A 01/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHB0032T  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.49)  
(0.845)  
(R0.05) TYP  
32  
25  
32X (0.62)  
1
24  
32X (0.25)  
28X (0.5)  
(0.845)  
SYMM  
33  
(4.78)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(4.78)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33:  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4224744/A 01/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

CDCDB400RHBT

适用于 PCIe® 第 1 代到第 5 代的 4 路输出时钟缓冲器 | RHB | 32 | -40 to 105
TI

CDCDB800

适用于 PCIe® 第 1 代到第 5 代 8 路输出时钟缓冲器
TI

CDCDB800RSLR

适用于 PCIe® 第 1 代到第 5 代 8 路输出时钟缓冲器 | RSL | 48 | -40 to 105
TI

CDCDB800RSLT

适用于 PCIe® 第 1 代到第 5 代 8 路输出时钟缓冲器 | RSL | 48 | -40 to 105
TI

CDCDB803

用于 PCIe® 第 1 代至第 5 代的 8 输出时钟缓冲器,具有可选的 SMBus 地址
TI

CDCDB803RSLR

用于 PCIe® 第 1 代至第 5 代的 8 输出时钟缓冲器,具有可选的 SMBus 地址 | RSL | 48 | -40 to 105
TI

CDCDB803RSLT

用于 PCIe® 第 1 代至第 5 代的 8 输出时钟缓冲器,具有可选的 SMBus 地址 | RSL | 48 | -40 to 105
TI

CDCDLP223

3.3 V Clock Synthesizer for DLP TM Systems
TI

CDCDLP223PW

用于 DLP 系统的 3.3V 时钟合成器 | PW | 20 | -40 to 85
TI

CDCDLP223PWR

3.3 V Clock Synthesizer for DLP Systems
TI

CDCDLP223_07

3.3 V Clock Synthesizer for DLP Systems
TI

CDCE18005

Five/Ten Output Clock Generator/Buffer
TI