CDCE72010RGCTG4 [TI]

Ten Output High Performance Clock Synchronizer, Jitter Cleaner, and Clock Distributor; 十大输出高性能时钟同步器,抖动消除器和时钟经销商
CDCE72010RGCTG4
型号: CDCE72010RGCTG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Ten Output High Performance Clock Synchronizer, Jitter Cleaner, and Clock Distributor
十大输出高性能时钟同步器,抖动消除器和时钟经销商

时钟驱动器 逻辑集成电路
文件: 总73页 (文件大小:1782K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
Ten Output High Performance Clock Synchronizer, Jitter Cleaner, and Clock Distributor  
1
FEATURES  
Wide Charge-Pump Current Range From  
200µA to 3mA  
High Performance LVPECL, LVDS, LVCMOS  
PLL Clock Synchronizer  
Dedicated Charge-Pump Supply for Wide  
Tuning Voltage Range VCOs  
Two Reference Clock Inputs (Primary and  
Secondary Clock) for Redundancy Support  
with Manual or Automatic Selection  
Presets Charge-Pump to VCC_CP/2 for Fast  
Center-Frequency Setting of VC(X)O,  
Controlled Via the SPI Bus  
Accepts Two Differential Input (LVPECL or  
LVDS) References up to 500MHz (or Two  
LVCMOS Inputs up to 250MHz) as PLL  
Reference  
SERDES Startup Mode (Depending on VCXO  
Range)  
Auxiliary Input: Output 9 can Serve as 2nd  
VCXO Input to Drive All Outputs or to Serve as  
PLL Feedback Signal  
VCXO_IN Clock is Synchronized to One of Two  
Reference Clocks  
VCXO_IN Frequencies up to 1.5GHz (LVPECL)  
800Mhz for LVDS and 250MHz for LVCMOS  
Level Signaling  
RESET or HOLD Input Pin to Serve as Reset or  
Hold Functions  
REFERENCE SELECT for Manual Select  
Between Primary and Secondary Reference  
Clocks  
Outputs Can be a Combination of LVPECL,  
LVDS, and LVCMOS (Up to 10 Differential  
LVPECL or LVDS Outputs or up to 20 LVCMOS  
Outputs), Output 9 can be Converted to an  
Auxiliary Input as a 2nd VC(X)O.  
POWER DOWN (PD) to Put Device in Standby  
Mode  
Analog and Digital PLL Lock Indicator  
Output Divider is Selectable to Divide by 1, 2,  
3, 4, 5, 6, 8, 10, 12, 16, 18, 20, 24, 28, 30, 32, 36,  
40, 42, 48, 50, 56, 60, 64, 70, or 80 On Each  
Output Individually up to Eight Dividers.  
(Except for Output 0 and 9, Output 0 Follows  
Output 1 Divider and Output 9 Follows Output  
8 Divider)  
Internally Generated VBB Bias Voltages for  
Single-Ended Input Signals  
Frequency Hold-Over Mode Activated by  
HOLD Pin or SPI Bus to Improve Fail-Safe  
Operation  
Input to All Outputs Skew Control  
Individual Skew Control for Each Output with  
Each Output Divider  
SPI Controllable Device Setting  
Individual Output Enable Control via SPI  
Interface  
Packaged in a QFN-64 Package  
ESD Protection Exceeds 2kV HBM  
Industrial Temperature Range of –40°C to 85°  
Integrated On-Chip Non-Volatile Memory  
(EEPROM) to Store Settings without the Need  
to Apply High Voltage to the Device  
APPLICATIONS  
Optional Configuration Pins to Select Between  
Two Default Settings Stored in EEPROM  
Low Jitter Clock Driver for High-End Telecom  
and Wireless Applications  
Efficient Jitter Cleaning from Low PLL Loop  
Bandwidth  
High Precision Test Equipment  
Very Low Phase Noise PLL Core  
Programmable Phase Offset (Input Reference  
to Outputs)  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2008–2009, Texas Instruments Incorporated  
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
DESCRIPTION  
The CDCE72010 is a high-performance, low phase noise, and low skew clock synchronizer that synchronizes a  
VCXO (Voltage Controlled Crystal Oscillator) or VCO (Voltage Controlled Oscillator) frequency to one of two  
reference clocks. The clock path is fully programmable providing the user with a high degree of flexibility. The  
following relationship applies to the dividers:  
Frequency (VCXO_IN or AUX_IN) / Frequency (PRI_REF or SEC_REF) = (P*N)/(R*M)  
The VC(X)O_IN clock operates up to 1.5GHz through the selection of external VC(X)O and loop filter  
components. The PLL loop bandwidth and damping factor can be adjusted to meet different system  
requirements.  
The CDCE72010 can lock to one of two reference clock inputs (PRI_REF and SEC_REF) and supports  
frequency hold-over mode for fail-safe and system redundancy. The outputs of the CDCE72010 are user  
definable and can be any combination of up to 10 LVPECL/LVDS outputs or up to 20 LVCMOS outputs. The  
built-in synchronization latches ensure that all outputs are synchronized for very low output skew.  
All device settings, including output signaling, divider value selection, input selection, and many more, are  
programmable with the SPI (4-wire Serial Peripheral Interface). The SPI allows individual control of the device  
settings.  
The device operates in a 3.3V environment and is characterized for operation from –40°C to +85°C.  
U0P  
U0N  
U1P  
Output Divider 1  
U1N  
PRI_IN  
Feedback  
Divider  
U2P  
U2N  
PFD  
Output Divider 2  
Output Divider 3  
Output Divider 4  
SEC_IN  
U3P  
U3N  
Charge  
Pump  
U4P  
U4N  
VCXO/ VCO IN  
U5P  
U5N  
Output Divider 5  
Output Divider 6  
Output Divider 7  
Output Divider 8  
PLL_LOCK  
REF_SEL  
POWER DOWN  
RESET or HOLD  
U6P  
U6N  
Interface  
& Control  
MODE_SEL  
AUX_SEL  
U7P  
U7N  
EEPROM  
SPI_MISO  
SPI_LE (CD1)  
SPI_CLK (CD2)  
U8P  
U8N  
SPI_MOSI (CD3)  
U9P or AUX IN+  
Auxiliary Input  
U9N or AUX IN  
Figure 1. High Level Block Diagram of the CDCE72010  
2
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
 
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
PACKAGE  
The CDCE72010 is available in a 64-pin lead-free “green” plastic quad flatpack package with enhanced bottom  
thermal pad for heat dissipation. The Texas Instruments package designator is RGC (S-PQFP-N64).  
48  
33  
32  
49  
Bottom View  
Top View  
64  
17  
1
16  
TERMINAL FUNCTIONS  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
5,8,11,14,19  
22,25,28,31  
34,37,40, and  
43  
3.3V supply for the output buffers. There is no internal connection between VCC and AVCC  
It is recommended that each VCC uses its own supply filter.  
.
VCC  
Power  
VCC_PLL  
VCC_IN  
4, 63  
57, 60  
51, 54  
32  
A. Power 3.3V PLL supply voltage for the PLL circuitry.  
A. Power 3.3V reference input buffers and circuitry supply voltage.  
A. Power 3.3V VCXO input buffer and circuitry supply voltage.  
Ground Ground connected to thermal pad internally.  
VCC_VCXO  
GND  
GND  
PAD  
Ground Ground on thermal pad. See layout recommendations.  
A. Power 3.3V for internal analog circuitry power supply  
VCCA  
48, 49  
A.  
GND_CP  
VCC_CP  
SPI_MISO  
2
Analog ground for charge pump  
Ground  
Charge pump power supply pin used to have the same supply as the external VCO/VCXO.  
It can be set from 2.3V to 3.6V.  
64  
15  
A. Power  
DO  
In SPI mode it is an open drain output and it functions as a master and in slave out as a  
serial control data output from the CDCE72010.  
LVCMOS input, control latch enable for the Serial Programmable Interface (SPI), with  
hysteresis in SPI mode.  
In configuration default mode this pin becomes CD1.  
SPI_LE  
or CD1  
45  
46  
44  
I
I
I
SPI_CLK  
or CD2  
LVCMOS input, serial control clock input for the SPI bus interface, with hysteresis. In  
configuration default mode this pin becomes CD2.  
LVCMOS input, master out slave in as a serial control data input to CDCE72010 for the SPI  
bus interface. In configuration default mode this pin becomes CD3 and it should be tied to  
GND.  
SPI_MOSI  
or CD3  
SPI MODE = H; when driven high or left unconnected, it defaults to SPI bus interface mode.  
CD MODE = L; If tied low the device goes into configuration default mode which is  
configured by CD1, CD2, CD3, and AUX_SEL (CTRL_LE, CTRL_CLK, and CTRL_MOSI).  
In configuration default mode the device loads various configuration defaults from the  
EEPROM into memory at start-up.  
MODE_SEL  
16  
I
Copyright © 2008–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): CDCE72010  
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
TERMINAL FUNCTIONS (continued)  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
This pin is used in CD mode only. If set to “1” or left unconnected, it disables output 9 and  
enables the AUXILIARY input to drive all outputs from output0 to output8 depending on the  
EEPROM configuration. If driven low in CD mode, it enables output 9 and makes all outputs  
driven by the VCXO Input depending on the internal EEPROM configuration.  
AUX_SEL  
18  
I
If Auto Reference Select mode is OFF, this pin acts as an External Input Reference Select  
Pin;  
The REF_SEL signal selects one of two input clocks:  
REF_SEL [1]: PRI_REF is selected;  
REF_SEL [0]: SEC_REF is selected;  
The input has an internal 150-kΩ pull­up resistor and if left unconnected it will default to  
logic level “1”.  
If Auto Reference Select mode in ON, this pin not used.  
REF_SEL  
47  
17  
I
I
This pin is active low and can be activated externally or by the corresponding bit in the SPI  
register (in case of logic high, the SPI setting is valid).  
This pin switches the device into powerdown mode  
POWER_DOWN  
The input has an internal 150-kΩ pull­up resistor and if left unconnected it will default to  
logic level “1”.  
This LVCMOS input can be programmed (SPI) to act as HOLD or RESET. RESET is the  
default function. This pin is active low and can be activated external or via the  
corresponding bit in the SPI register.  
In the case of RESET, the CP (Charge Pump) is switched to 3-state and all counters are  
reset to zero. The LVPECL outputs are static low (N) and high (P) respectively, and the  
LVCMOS outputs are all low or high if inverted. In the case of HOLD, the CP (Charge  
Pump) is switched into 3-state mode only. After HOLD is released and with the next valid  
reference clock cycle, the charge pump is switched back into normal operation (CP stays in  
3-state as long as no reference clock is valid). During HOLD, all outputs are at normal  
operation. This mode allows external control of “frequency hold-over” mode. The input has  
an internal 150-kΩ pull­up resistor.  
RESET or HOLD  
33  
I
VCXO IN+  
VCXO IN–  
53  
52  
I
I
VCXO input (+) for LVPECL+, LVDS+, and LVCMOS level inputs.  
Complementary VCXO input for LVPECL-, LVDS- inputs. In the case of a LVCMOS level  
input on VCXO IN+, ground this pin.  
Universal input buffer (LVPECL, LVDS, LVCMOS) positive input for the Primary Reference  
Clock.  
PRI REF+  
PRI REF–  
SEC REF+  
SEC REF–  
TESTOUTA  
STATUS  
59  
58  
62  
61  
1
I
Universal input buffer (LVPECL, LVDS) negative input for the Primary Reference Clock. In  
the case of LVCMOS signaling, ground this pin.  
I
Universal input buffer (LVPECL, LVDS, LVCMOS) positive input for the Secondary  
Reference Clock.  
I
Universal input buffer (LVPECL, LVDS,) negative input for the Secondary Reference Clock.  
In the case of LVCMOS signaling, ground this pin.  
I
A
Analog Test Point for TI internal testing. Connect a 1kpull-down resistor or leave  
unconnected.  
LVCMOS output for TI internal testing. Leave unconnected unless it is configured as the  
IREF_CP pin. In this case it should be connected to a 12-kresistor to GND.  
55  
AO/O  
CP_OUT  
VBB  
3
AO  
AO  
Charge pump output  
56  
Internal voltage bias analog output  
LVCMOS output for PLL_LOCK information. This pin is set high if the PLL is in lock. This  
output can be programmed to be a digital lock detect or analog lock detect (see description  
of Analog Lock). The PLL is locked (set high), if the rising edge of either the PRI_REF or  
SEC_REF clock and the VCXO_IN clock at the PFD (Phase Frequency Detector) are inside  
the lock detect window for a predefined number of successive clock cycles.  
The PLL is out-of-lock (set low), if the rising edge of either the PRI_REF or SEC_REF clock  
and the VCXO_IN clock at the PFD are outside the lock detect window.  
PLL_LOCK  
50  
AI/O  
The lock detect window and the number of successive clock cycles are user definable (via  
the SPI interface).  
4
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
TERMINAL FUNCTIONS (continued)  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
U0P:U0N  
U1P:U1N  
U2P:U2N  
U3P:U3N  
U4P:U4N  
U5P:U5N  
U6P:U6N  
U7P:U7N  
U8P:U8N  
7,6  
10,9  
13,12  
21,20  
24,23  
27,26  
30,29  
36,35  
39,38  
The main outputs of the CDCE72010 are user definable and can be any combination of up  
to 9 LVPECL outputs, 9 LVDS outputs, or up to 18 LVCMOS outputs. The outputs are  
selectable via the SPI interface. The power-up setting is EEPROM configurable.  
O
Positive universal output buffer 9 can be 3-stated and used as a positive universal auxiliary  
input buffer (It requires external termination). The auxiliary input signal can be routed to  
drive the outputs or the feedback loop to the PLL.  
U9P or AUXINP  
U9N or AUXINN  
42  
41  
I/O  
I/O  
Negative universal output buffer 9 can be 3-stated and used as a negative universal  
auxiliary input buffer (It requires external termination). The auxiliary input signal can be  
routed to drive the outputs or the feedback loop to the PLL.  
PACKAGE THERMAL RESISTANCE FOR QFN (RGZ) PACKAGE(1)(2)  
AIRFLOW  
(LFM)  
θJP (°C/W)(3)  
θJA (°C/W)  
0
JEDEC compliant board (6×6 VIAs on PAD)  
JEDEC compliant board (6×6 VIAs on PAD)  
Recommended layout (10×10 VIAs on PAD)  
Recommended layout (10×10 VIAs on PAD)  
1.5  
1.5  
1.5  
1.5  
28  
100  
0
17.6  
22.8  
13.8  
100  
(1) The package thermal impedance is calculated in accordance with JESD 51 and JEDEC2S2P (high-k board).  
(2) Connected to GND with 9 thermal vias (0.3 mm diameter).  
(3) θJP (Junction – Pad) is used for the QFN package, because the main heat flow is from the junction to the GND-pad of the QFN.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.5  
MAX  
4.6  
UNIT  
VCC  
AVCC  
VCC_CP  
,
,
Supply voltage range(1)  
V
VI  
Input voltage range(2)  
Output voltage range(2)  
–0.5 VCC + 0.5  
V
V
VO  
–0.5 VCC + 0.5  
Input current  
VI < 0, VI > VCC  
0 < VO < VCC  
±20  
±50  
125  
mA  
mA  
°C  
°C  
Output current for LVPECL/LVCMOS Outputs  
Junction temperature  
TJ  
Tstg  
Storage temperature range  
–65  
150  
(1) All supply voltages have to be supplied simultaneously.  
(2) The input and output negative voltage ratings may be exceeded if the input and output clamp-current ratings are observed.  
Copyright © 2008–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): CDCE72010  
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
RECOMMENDED OPERATING CONDITIONS  
for the CDCE72010 device for under the specified industrial temperature range of –40°C to 85°C  
MIN  
NOM  
3.3  
MAX  
3.6  
UNIT  
Power Supply  
VCC  
Supply voltage  
3
V
VCC_PLL  
VCC_IN  
VCC_VCXO  
VCCA  
,
,
Analog supply voltage  
3
3.3  
3.6  
,
VCC_CP  
2.3  
VCC  
V
REF at 30.72MHz VCXO at  
491.52MHz Outputs are  
LVPECL-HS  
Divider 1 set to divide by 8 (DCR  
30%) Divider 2 set to divide by 4  
(DCR 30%) Divider 3 set to divide  
by 2 (DCR 30%) Divider 4 set to  
divide by 2 (DCR 30%) Divider 5  
set to divide by 1 (DCR 30%)  
Divider 6 set to divide by 1 (DCR  
0%) Divider 7 set to divide by 1  
(DCR 0%) Divider 8 set to divide by  
1 (DCR 0%) DCR: Divider Current  
Reduction Setting  
P LVPECL  
2.9  
2.0  
W
REF at 30.72MHz VCXO at  
491.52MHz Outputs are LVDS-HS  
P LVDS  
W
W
REF at 30.72MHz VCXO at  
122.88MHz Outputs are LVCMOS  
P LVCMOS  
2.2  
REF at 30.72MHz VCXO at  
491.52MHz  
Dividers are disabled. Outputs are  
disabled.  
P OFF  
P PD  
775  
30  
mW  
mW  
Device is powered down  
Typical Operating Conditions at VCC=3.3V and 25°C unless otherwise specified.  
Differential Input Mode (PRI_REF, SEC_REF, VCXO_IN and AUX_IN)  
VINPP  
VICM  
Input amplitude(1)  
(V_INP – VINN  
)
0.1  
1.0  
1.3  
V
V
Common-mode input voltage  
VCC– 0.3  
Differential input current high ( No  
internal termination)  
IIH  
IIL  
VI = VCC, VCC = 3.6 V  
VI = 0 V, VCC = 3.6 V  
20  
20  
µA  
µA  
Differential input current low( No  
internal termination)  
–20  
Input capacitance on PRI_REF, SEC_REF and VCXO_REF  
Input capacitance on AUX_IN  
3
7
pF  
pF  
LVCMOS Input Mode (SPI_CLK, SPI_MOSI, SPI_LE, PD, RESET, REF_SEL, MOD_SEL)  
VIL  
VIH  
VIK  
IIH  
Low-level input voltage LVCMOS(2)  
High-level input voltage LVCMOS(2)  
LVCMOS input clamp voltage  
LVCMOS input current  
0
0.3 VCC  
VCC  
V
V
0.7 VCC  
VCC = 3 V, II = –18 mA  
VI = VCC, VCC = 3.6 V  
VI = 0 V, VCC = 3.6 V  
–1.2  
20  
V
µA  
µA  
IIL  
LVCMOS input  
–10  
–40  
CI  
Input capacitance (LVCMOS  
signals)  
VI = 0 V or VCC  
3
pF  
(1) VINPP minimum and maximum is required to maintain ac specifications; the actual device function tolerates at a minimum VINPP of  
150mV.  
(2) VIL and VIH are required to maintain ac specifications; the actual device function tolerates a smaller input level of 1V, if an AC coupling  
to VCC/2 is provided.  
6
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
TIMING REQUIREMENTS  
over recommended ranges of supply voltage, load, and operating free-air temperature(1)(2)(3)(4)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
PRI_REF/SEC_REFIN  
fREF - Single  
For single-ended inputs ( LVCMOS) on PRI_REF and SEC_REF  
250  
500  
MHz  
MHz  
For differential inputs (LVDS and LVPECL) on PRI_REF and  
SEC_REF  
fREF - Diff  
(R divider set to DIV2)  
Duty Cycle  
Single  
60%  
Duty cycle of PRI_REF or SEC_REF at VCC/2  
Duty cycle of PRI_REF or SEC_REF at VCC/2  
40%  
40%  
Duty Cycle  
Diff  
60%  
VCXO_IN, AUX_IN  
fREF - Single For single-ended inputs ( LVCMOS)  
fREF - Diff  
250  
1500  
60%  
MHz  
MHz  
For differential inputs (LVDS and LVPECL)  
Duty cycle of PRI_REF or SEC_REF at VCC/2  
Duty Cycle  
Single  
40%  
40%  
Duty Cycle  
Diff  
Duty cycle of PRI_REF or SEC_REF at VCC/2  
60%  
20  
SPI/Control (SPI Bus Timing)  
fCTRL_CLK  
CTRL_CLK frequency  
MHz  
ns  
t2  
t3  
t4  
t5  
t1  
t6  
t7  
t8  
SPI_MOSI to SPI_CLK setup time  
SPI_MOSI to SPI_CLK hold time  
SPI_CLK high duration  
10  
10  
25  
25  
10  
10  
20  
10  
ns  
ns  
SPI_CLK low duration  
ns  
SPI_LE to SPI_CLK setup time  
SPI_CLK to SPI_LE setup time  
SPI_LE pulse width  
ns  
ns  
ns  
SPI_MISO to SPI_CLK data valid (first valid bit after LE)  
ns  
PD, RESET, Hold, REF_SEL  
Rise and fall time of the PD, RESET, Hold, REF_SEL signal from 20%  
to 80% of VCC  
(1) From 250MHz to 500MHz is achieved by setting the divide by 2 in P’  
tr/tf  
4
ns  
(2) If the feedback clock (derived from the VCXO input) is less than 2MHz, the device stays in normal operation mode but the frequency  
detection circuitry resets the STATUS_VCXO signal and PLL_LOCK signal to low. Both status signals are no longer relevant. This  
affects the HOLD-Over-Function as well as the PLL_LOCK signal is no longer valid.  
(3) Use a square wave for lower frequencies (< 80 MHz).  
(4) Slew rate requirement  
Copyright © 2008–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): CDCE72010  
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
AC/DC CHARACTERISTICS  
over the specified industrial temperature range of –40°C to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX UNIT  
SPI Output (MISO) / PLL Digital (Output Mode)  
IOH  
IOL  
High-level output current  
Low-level output current  
VCC = 3.3 V  
VCC = 3.3 V  
VO = 1.65 V  
VO = 1.65 V  
–30  
33  
mA  
mA  
High-level output voltage  
for LVCMOS outputs  
VOH  
VOL  
CO  
VCC = 3 V  
VCC = 3 V  
IOH = –100 µA  
IOL = 100 µA  
VCC–0.5  
V
Low-level output voltage  
for LVCMOS outputs  
0.3  
V
Output capacitance on  
MISO  
VCC = 3.3 V; VO = 0 V or VCC  
3
pF  
IOZH  
IOZL  
3-state output current  
3-state output current  
5
µA  
µA  
VO= VCC  
VO= 0V  
–5  
PLL Analog (Input Mode)  
High-impedance state  
IOZH LOCK output current for PLL  
VO = 3.3 V (PD is set low)  
VO = 0 V (PD is set low)  
22  
µA  
µA  
(2)  
LOCK output  
High-impedance state  
IOZL LOCK output current for PLL  
LOCK output  
–22  
Positive input threshold  
voltage  
VT+  
VCC = min to max  
VCC = min to max  
VCC × 0.55  
VCC × 0.35  
V
V
Negative input threshold  
voltage  
VT–  
VBB  
VCXO termination voltage  
depends on the settings  
of the VCXO/AUX_IN  
IBB = –0.2mA  
Depending on the setting  
VBB  
0.9  
1.9  
V
input buffers  
Input Buffers Internal Termination Resistors (VCXO_IN,PRI_REF and SEC_REF)  
Termination resistance(3) Single ended  
Phase Detector  
53  
Maximum charge pump  
frequency  
fCPmax  
Default PFD pulse width delay  
100  
MHz  
Charge Pump  
Charge pump 3-state  
current  
ICP3St  
0.5 V < VCP < VCC_CP – 0.5 V  
15  
20  
5
nA  
%
ICPA  
ICP absolute accuracy  
VCP = 0.5 VCC_CP; internal reference resistor  
VCP = 0.5 VCC_CP; external reference resistor  
12k(1%)  
ICPA  
ICP absolute accuracy  
%
Sink/source current  
matching  
0.5 V < VCP < VCC_CP – 0.5 V, SPI default  
settings  
ICPM  
4
6
%
%
IVCPM  
ICP vs VCP matching  
0.5 V < VCP < VCC_CP – 0.5 V  
Voltage on STATUS PIN 12-kresitor to GND  
VI_REF_CP  
when configured as  
I_REF_CP  
(External current path for accurate charge  
pump current)  
1.24  
V
(1) All typical values are at VCC = 3.3 V, TA = 25°C.  
(2) 160-kΩ pull-down resistor  
(3) Termination resistor can vary by 20%.  
8
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
AC/DC CHARACTERISTICS (CONTINUED)  
over the specified industrial temperature range of –40°C to 85°C  
PARAMETER  
LVCMOS Output  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX UNIT  
Output frequency (see  
Figure 2 )  
fclk  
Load = 5 pF to GND  
250  
0.3  
MHz  
V
High-level output voltage  
for LVCMOS outputs  
VOH  
VOL  
VCC = min to max  
VCC = min to max  
IOH = –100 µA  
IOL=100 µA  
VCC – 0.5  
Low-level output voltage  
for LVCMOS outputs  
V
IOH  
IOL  
High-level output current  
Low-level output current  
VCC = 3.3 V  
VCC = 3.3 V,  
VO = 1.65 V  
VO = 1.65 V  
–30  
33  
mA  
mA  
Phase offset without  
using available delay  
adjustment  
VCXO at 491.52MHz, Output 1 is divide by  
16 and reference at 30.72MHz, M and N  
delays are fixed to one value (set to 0).  
tpho  
13  
ns  
ns  
tpd(LH)  
tpd(HL)  
/
Propagation delay from  
VCXO_IN to Outputs  
Crosspoint to VCC/2, load = 5 pF, (PLL  
bypass mode)  
3.3  
Divide by 1 for all dividers  
Divide by 16 for all dividers  
75  
75  
Skew, output-to-output  
LVCMOS single-ended  
output  
tsk(o)  
ps  
Divide by 1 for divider 1 divide by 16 for all  
other dividers  
1400  
Output capacitance on Y0  
to Y8  
CO  
VCC = 3.3 V; VO = 0 V or VCC  
5
5
5
pF  
pF  
µA  
CO  
Output capacitance on Y9 VCC = 3.3 V; VO = 0 V or VCC  
3-state LVCMOS output  
VO = VCC  
IOZH  
current  
3-state LVCMOS output  
VO = 0V  
IOZL  
–5  
µA  
µA  
µA  
current  
Power-down output  
VO = VCC  
IOPDH  
IOPDL  
25  
5
current  
Power-down output  
VO = 0V  
current  
Duty cycle  
tslew-rate  
LVCMOS  
50% to 50%  
45  
55  
%
Output rise/fall slew rate  
3.6  
5.2  
V/ns  
(1) All typical values are at VCC = 3.3 V, TA = 25°C.  
Copyright © 2008–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): CDCE72010  
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
AC/DC CHARACTERISTICS (CONTINUED)  
over the specified industrial temperature range of –40°C to 85°C  
PARAMETER  
LVDS Output  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX UNIT  
fclk  
Output frequency  
Open loop config. load, See Figure 2  
0
800  
270  
MHz  
mV  
|VOD  
|
Differential output voltage RL = 100 Ω  
160  
LVDS VOD magnitude  
change  
ΔVOD  
50  
mV  
VOS  
Offset voltage  
–40°C to 85°C  
VOUT = 0  
1.24  
40  
V
ΔVOS  
VOS magnitude change  
mV  
Short circuit VOUT+ to  
ground  
27  
27  
mA  
mA  
Short circuit VOUT– to  
ground  
VOUT = 0  
Reference to output  
VCXO at 491.52MHz, Output 1 is divide by  
phase offset without using 16 and reference at 30.72MHz, M and N  
(2)  
tpho  
14  
ns  
ns  
available delay  
adjustment  
delays are fixed to one value (set to 0), PFD:  
240kHz, (M and N = 128)  
tpd(LH)  
/
Propagation delay time,  
VCXO_IN to output  
Crosspoint to crosspoint, load, see Figure 2  
3.0  
tpd(HL)  
Divide by 1 for all dividers  
Divide by 16 for all dividers  
45  
50  
Skew, output to output  
LVDS output  
tsk(o)(3)  
ps  
Divide by 1 for divider 1  
Divide by 16 for all other dividers  
2800  
Output capacitance on Y0  
to Y8  
CO  
VCC = 3.3 V; VO = 0 V or VCC  
5
7
pF  
pF  
µA  
CO  
Output capacitance on Y9 VCC = 3.3 V; VO = 0 V or VCC 5  
Power-down output  
VO = VCC  
IOPDH  
25  
5
current  
Power-down output  
VO = 0V  
IOPDL  
µA  
current  
Duty cycle  
45  
55  
%
tr/tf  
LVCMOS-TO-LVDS(4)  
Output skew between  
Rise and fall time  
20% to 80% of Voutpp  
Crosspoint to VCC/2  
110  
140  
1.4  
160  
ps  
tskP_C  
LVCMOS and LVDS  
outputs  
0.9  
1.9  
ns  
(1) All typical values are at VCC = 3.3 V, TA = 25°C.  
(2) This is valid only for same REF_IN clock and Y output clock frequency. It can be adjusted by the SPI controller (reference delay M and  
VCXO delay N).  
(3) The tsk(o) specification is only valid for equal loading of all outputs.  
(4) Operating the LVCMOS or LVDS outputs above the maximum frequency will not cause a malfunction to the device, but the output signal  
swing may no longer meet the output specification. The phase of LVCMOS is lagging in reference to the phase of LVDS.  
10  
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
AC/DC CHARACTERISTICS (CONTINUED)  
over the specified industrial temperature range of –40°C to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX UNIT  
LVDS Hi Swing Output  
fclk  
Output frequency  
Open loop config. load, seeFigure 3  
0
800  
550  
MHz  
mV  
|VOD  
|
Differential output voltage RL =100 Ω  
270  
LVDS VOD magnitude  
change  
ΔVOD  
50  
mV  
VOS  
Offset voltage  
–40°C to 85°C  
1.24  
40  
V
ΔVOS  
VOS magnitude change  
mV  
Short Circuit VOUT+ to  
ground  
VOUT = 0  
27  
27  
mA  
mA  
Short Circuit VOUT– to  
ground  
VOUT = 0  
Reference to output  
VCXO at 491.52MHz, Output 1 is divide by  
phase offset without using 16 and reference at 30.72MHz. M and N  
(2)  
tpho  
14  
ns  
ns  
available delay  
adjustment  
delays are fixed to one value. (Set to 0) PFD:  
240kHz, (M and N = 128)  
tpd(LH)  
tpd(HL)  
/
Propagation delay time,  
VCXO_IN to output  
Crosspoint to crosspoint, load Figure 3  
3.0  
Divide by 1 for all dividers  
Divide by 16 for all dividers  
45  
50  
(3)  
tsk(o)  
LVDS output skew  
ps  
Divide by 1 for divider 1  
Divide by 16 for all other dividers  
2800  
Output capacitance on Y0  
to Y8  
CO  
CO  
VCC = 3.3 V; VO = 0 V or VCC  
5
7
pF  
pF  
µA  
Output capacitance on Y9 VCC = 3.3 V; VO = 0 V or VCC  
Power-down output  
VO = VCC  
IOPDH  
IOPDL  
25  
5
current  
Power-down output  
VO = 0V  
µA  
current  
Duty cycle  
tr/tf  
LVCMOS-TO-LVDS(4)  
45  
55  
%
Rise and fall time  
20% to 80% of Voutpp  
Crosspoint to VCC/2  
110  
160  
1.4  
190  
ps  
Output skew between  
LVCMOS and LVDS  
outputs  
tskP_C  
0.9  
1.9  
ns  
(1) All typical values are at VCC = 3.3 V, TA = 25°C.  
(2) This is valid only for same REF_IN clock and Y output clock frequency. It can be adjusted by the SPI controller (reference delay M and  
VCXO delay N).  
(3) The tsk(o) specification is only valid for equal loading of all outputs.  
(4) Operating the LVCMOS or LVPECL outputs above the maximum frequency will not cause a malfunction to the device, but the output  
signal swing may no longer meet the output specification. The phase of LVCMOS is lagging in reference to the phase of LVDS.  
Copyright © 2008–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): CDCE72010  
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
AC/DC CHARACTERISTICS (CONTINUED)  
over the specified industrial temperature range of –40°C to 85°C  
PARAMETER  
LVPECL Output  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX UNIT  
fclk  
Output frequency  
Open loop config.  
0
1500  
MHz  
V
LVPECL high-level output  
voltage  
VOH  
Load, see Figure 5  
Load, see Figure 5  
VCC – 1.06  
VCC – 0.88  
LVPECL low-level output  
voltage  
VOL  
VCC – 2.02  
610  
VCC – 1.58  
970  
V
|VOD|  
Differential output voltage Load, see Figure 5  
mV  
Reference to output  
VCXO at 491.52MHz, Output 1 is divide by  
phase offset without using 16 and reference at 30.72MHz, M and N  
(2)  
tpho  
14  
ns  
ns  
available delay  
adjustment  
delays are fixed to one value (set to 0), PFD:  
240kHz, (M and N = 128)  
tpd(LH)  
tpd(HL)  
/
Propagation delay time,  
VCXO_IN to output  
Crosspoint to crosspoint, load, see Figure 5  
3.4  
Divide by 1 for all dividers  
Divide by 16 for all dividers  
45  
50  
(3)  
tsk(o)  
LVPECL output skew  
ps  
Divide by 1 for divider 1  
Divide by 16 for all other dividers  
2700  
Output capacitance on Y0  
to Y8  
CO  
VCC = 3.3 V; VO = 0 V or VCC  
5
7
pF  
pF  
µA  
CO  
Output capacitance on Y9 VCC = 3.3 V; VO = 0 V or VCC  
Power-down output  
VO = VCC  
IOPDH  
25  
5
current  
Power-down output  
VO = 0 V  
IOPDL  
µA  
current  
Duty cycle  
45  
55  
55  
%
tr/tf  
Rise and fall time  
20% to 80% of Voutpp  
Crosspoint to VCC/2;  
75  
135  
ps  
LVDS-TO-LVPECL  
Output skew between  
tskP_C  
LVDS and LVPECL  
outputs  
0.9  
1.1  
1.3  
ns  
ps  
LVCMOS-TO-LVPECL  
Output skew between  
tskP_C  
LVCMOS and LVPECL  
Crosspoint to VCC/2;  
–150  
260  
700  
outputs(4)  
(1) All typical values are at VCC = 3.3 V, TA = 25°C.  
(2) This is valid only for same REF_IN clock and Y output clock frequency. It can be adjusted by the SPI controller (reference delay M and  
VCXO delay N).  
(3) The tsk(o) specification is only valid for equal loading of all outputs. :  
(4) Operating the LVCMOS or LVPECL outputs above the maximum frequency will not cause a malfunction to the device, but the output  
signal swing might no longer meet the output specification. The phase of LVCMOS is lagging in reference to the phase of LVDS.  
12  
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
AC/DC CHARACTERISTICS (CONTINUED)  
over the specified industrial temperature range of –40°C to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
LVPECL Hi Swing Output  
fclk  
Output frequency  
Open loop config.  
0
1500  
MHz  
V
LVPECL high-level  
output voltage  
VOH  
Load, see Figure 5  
Load, see Figure 5  
Load, see Figure 5  
VCC – 1.11  
VCC – 0.87  
LVPECL low-level output  
voltage  
VOL  
VCC – 2.06  
760  
VCC – 1.73  
1160  
V
Differential output  
voltage  
|VOD|  
mV  
Reference to output  
phase offset without  
using available delay  
adjustment  
VCXO at 491.52MHz, Output 1 is divide by 16  
and reference at 30.72MHz, M and N delays  
are fixed to one value (set to 0), PFD:  
240kHz, (M and N = 128)  
(2)  
tpho  
14  
ns  
ns  
tpd(LH)  
/
Propagation delay time,  
VCXO_IN to output  
Crosspoint to crosspoint, load, see Figure 5  
3.4  
tpd(HL)  
Divide by 1 for all dividers  
Divide by 16 for all dividers  
45  
50  
(3)  
tsk(o)  
LVPECL output skew  
ps  
Divide by 1 for divider 1  
Divide by 16 for all other dividers  
2700  
Output capacitance on  
Y0 to Y8  
CO  
CO  
VCC = 3.3 V; VO = 0 V or VCC  
VCC = 3.3 V; VO = 0 V or VCC  
VO = VCC  
5
7
pF  
pF  
µA  
µA  
Output capacitance on  
Y9  
Power-down output  
current  
IOPDH  
IOPDL  
25  
5
Power-down output  
current  
VO = 0V  
Duty cycle  
45  
55  
55  
%
tr/tf  
Rise and fall time  
20% to 80% of Voutpp  
Crosspoint to VCC/2  
75  
135  
ps  
LVDS-TO-LVPECL  
Output skew between  
tskP_C  
LVDS and LVPECL  
outputs  
0.9  
1.1  
1.3  
ns  
ps  
LVCMOS-TO-LVPECL  
Output skew between  
tskP_C  
LVCMOS and LVPECL  
Crosspoint to VCC/2  
–150  
260  
700  
outputs(4)  
(1) All typical values are at VCC = 3.3 V, TA = 25°C.  
(2) This is valid only for same REF_IN clock and Y output clock frequency. It can be adjusted by the SPI controller (reference delay M and  
VCXO delay N).  
(3) The tsk(o) specification is only valid for equal loading of all outputs.  
(4) Operating the LVCMOS or LVPECL output above the maximum frequency will not cause a malfunction to the device, but the output  
signal swing might no longer meet the output specification. The phase of LVCMOS is lagging in reference to the phase of LVDS and  
LVPECL.  
Copyright © 2008–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): CDCE72010  
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
PARAMETER MEASUREMENT INFORMATION  
100 W  
Oscilloscope  
5 pf  
LVCMOS  
Figure 2. LVCMOS Output Termination Setup  
Figure 3. LVDS DC Termination Setup  
Oscilloscope  
50 W  
Oscilloscope  
50 W  
150 W  
150 W  
50 W  
50 W  
VCC-2  
Figure 4. LVPECL AC Termination Setup  
Figure 5. LVPECL DC Termination Setup  
14  
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
TYPICAL CHARACTERISTICS  
LVPECL OUTPUT SWING  
Hi Swing LVPECL OUTPUT SWING  
vs  
vs  
FREQUENCY  
FREQUENCY  
(mV)  
1100  
(mV)  
1250  
VCC = 3.6V  
TA = 25 ºC  
Load 50 W to  
CC-2C  
TA = 25 ºC  
Load 50 W to  
VCC– 2V  
1050  
1000  
950  
900  
850  
800  
750  
700  
650  
600  
550  
1200  
1150  
1100  
1050  
1000  
950  
VCC = 3.6V  
V
VCC = 3.3V  
VCC = 3.3V  
VCC = 3.0V  
900  
850  
VCC = 3.0V  
800  
750  
Frequency - MHz  
200 400 600 800  
Figure 6.  
Frequency - MHz  
700  
1000  
1200 1400 1600 1800  
200 400 600 800 1000  
1200 1400 1600 1800  
Figure 7.  
LVDS OUTPUT SWING  
Hi Swing LVDS OUTPUT SWING  
vs  
vs  
FREQUENCY  
FREQUENCY  
(mV)  
320  
(mV)  
500  
TA = 25 ºC  
Load 100 W  
460  
420  
380  
340  
300  
260  
220  
180  
140  
100  
60  
300  
280  
260  
240  
220  
VCC = 3.6V  
VCC = 3.3V  
VCC = 3.3V  
VCC = 3.6V  
200  
180  
160  
140  
120  
VCC = 3.0V  
VCC = 3.0V  
TA = 25 ºC  
Load 100 W  
Frequency - MHz  
Frequency - MHz  
100  
0
100 200 300 400 500 600 700 800 900  
100 200 300 400 500 600 700 800 900  
0
Figure 8.  
Figure 9.  
Copyright © 2008–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): CDCE72010  
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
LVCMOS OUTPUT WING  
vs  
FREQUENCY  
(V)  
4.0  
VC C = 3.6V  
TA = 25 ºC  
Load 5pF  
3.8  
3.6  
VCC = 3.3V  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
VCC = 3.0V  
2.0  
Frequency - MHz  
1.8  
100  
200  
300  
400  
500  
Figure 10.  
16  
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
APPLICATION INFORMATION  
PHASE NOISE ANALYSIS  
Phase noise is measured in a closed loop mode of 491.52MHz VCXO and 30.72MHz reference and a 100Hz  
loop. Output 1 is measured for divide by one, output 6 for divide by 4, and output 9 for divide by 16.  
Table 1. Phase Noise for LVPECL High Swing  
Phase Noise Specifications under following configuration: VCXO = 491.52MHz, REF = 30.72MHz, Divide by = 491.52MHz, Divide by  
4 = 122.88MHz, Divide by 16 = 30.72MHz, PFD Frequency = 240KHz, Charge Pump Current = 2mA, Loop BW = 100Hz, Output 1 =  
491.52 MHZ, Output Buffer: LVPECL-HS  
PHASE NOISE  
AT OFFSET  
VCXO OPEN  
LOOP  
REFERENCE  
30.72MHz  
LVPECL-HS  
DIVIDE BY 1  
LVPECL-HS  
DIVIDE BY 4  
LVPECL-HS  
DIVIDE BY 16  
UNIT  
10Hz  
–64  
–99  
–107  
–123  
–134  
–153  
–156  
–158  
–80  
–92  
–92  
–105  
–116  
–139  
–158  
–162  
–162  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
100Hz  
1kHz  
–104  
–127  
–145  
–155  
–155  
–156  
–113  
–135  
–148  
–148  
–149  
–115  
–135  
–146  
–146  
–147  
10kHz  
100kHz  
1MHz  
10MHz  
Table 2. Phase Noise for LVDS High Swing  
Phase Noise Specifications under following configuration: VCXO = 491.52MHz, REF = 30.72MHz, Divide by = 491.52MHz, Divide by  
4 = 122.88MHz, DIvide by 16 = 30.72MHz, PFD Frequency = 240KHz, Charge Pump Current = 2mA Loop BW = 100Hz, Output 1 =  
491.52 MHZ, Output Buffer: LVDS-HS  
VCXO OPEN  
LOOP  
LVDS–HS  
DIVIDE BY 1  
LVDS-HS  
DIVIDE BY 4  
LVDS-HS  
DIVIDE BY 16  
PARAMETER  
REFERENCE  
UNIT  
10Hz  
–64  
–99  
–107  
–123  
–134  
–153  
–156  
–158  
–82  
–92  
–94  
–104  
–117  
–139  
–151  
–153  
–153  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
100Hz  
1kHz  
–105  
–127  
–145  
–152  
–152  
–152  
–113  
–135  
–148  
–148  
–149  
–114  
–135  
–145  
–146  
–146  
10kHz  
100kHz  
1MHz  
10MHz  
Table 3. Phase Noise for LVCMOS  
Phase Noise Specifications under following configuration: VCXO = 491.52MHz, REF = 30.72MHz, Divide by = 491.52MHz, Divide by  
4 = 122.88MHz, DIvide by 16 = 30.72MHz, PFD Frequency = 240KHz, Charge Pump Current = 2mA, Loop BW = 100Hz, Output 1 =  
491.52 MHZ, Output Buffer: LVCMOS  
VCXO OPEN  
LOOP  
LVCMOS  
DIVIDE BY 4  
LVCMOS  
DIVIDE BY 16  
PARAMETER  
REFERENCE  
N/A  
UNIT  
10Hz  
–64  
–99  
–107  
–123  
–134  
–153  
–156  
–158  
–91  
–105  
–116  
–139  
–151  
–159  
–160  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
100Hz  
1kHz  
–104  
–127  
–140  
–151  
–153  
–154  
–113  
–135  
–148  
–148  
–149  
10kHz  
100kHz  
1MHz  
10MHz  
Copyright © 2008–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): CDCE72010  
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
SPI CONTROL INTERFACE  
The serial interface of the CDCE72010 is a simple bidirectional SPI interface for writing and reading to and from  
the registers of the device. It consists of four control lines: SPI_CLK, SPI_MOSI, SPI_MISO, and SPI_LE. There  
are twelve 28-bit wide registers that can be saved to the EEPROM on-chip, and one status register that is a read  
only register. Those registers can be addressed by the four LSBs of a transferred word (bit 0, 1, 2, and bit 3).  
Every transmitted word must have 32 bits, starting with LSB first. Each word can be written separately. The  
transfer is initiated with the falling edge of SPI_LE; as long as SPI_LE is high, no data can be transferred. During  
SPI_LE low, data can be written. The data has to be applied at SPI_MOSI and has to be stable before the rising  
edge of SPI_CLK. The transmission is finished by a rising edge of SPI_LE.  
t4  
t5  
SPI_CLK  
SPI_MOSI  
SPI_LE  
t2  
t3  
Bit0  
Bit1  
……  
Bit29  
Bit30  
Bit31  
t7  
t6  
t1  
Figure 11. Timing Diagram for SPI Write Command  
SPI_CLK  
t3  
t2  
Bit30  
Bit31  
SPI_MOSI  
SPI_MISO  
SPI_LE  
Bit0  
Bit1  
Bit2  
t7  
t6  
t8  
Figure 12. Timing Diagram for SPI Read Command  
18  
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
Table 4. Register Map  
REGISTER  
COMMENTS  
WRITE PAYLOAD ( DATA)  
ADDRESS  
WRITE COMMAND ON MOSI  
31,30,29,28….…………..…………………………………….………4,3,2,1,0  
Register0  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
Status/Control  
Reserved  
RAM/EEPROM  
XXXX XXXX XXXX XXXX XXXX XXXX XXXX  
XXXX XXXX XXXX XXXX XXXX XXXX XXXX  
XXXX XXXX XXXX XXXX XXXX XXXX XXXX  
XXXX XXXX XXXX XXXX XXXX XXXX XXXX  
XXXX XXXX XXXX XXXX XXXX XXXX XXXX  
XXXX XXXX XXXX XXXX XXXX XXXX XXXX  
XXXX XXXX XXXX XXXX XXXX XXXX XXXX  
XXXX XXXX XXXX XXXX XXXX XXXX XXXX  
XXXX XXXX XXXX XXXX XXXX XXXX XXXX  
XXXX XXXX XXXX XXXX XXXX XXXX XXXX  
XXXX XXXX XXXX XXXX XXXX XXXX XXXX  
XXXX XXXX XXXX XXXX XXXX XXXX XXXX  
XXXX XXXX XXXX XXXX XXXX XXXX XXXX  
XXXX XXXX XXXX XXXX XXXX XXXX XXXX  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
Register1  
Register2  
Register3  
Register4  
Register5  
Register6  
Register7  
Register8  
Register9  
Register10  
Register11  
Register12  
Register13  
RAM/EEPROM  
RAM/EEPROM  
RAM/EEPROM  
RAM/EEPROM  
RAM/EEPROM  
RAM/EEPROM  
RAM/EEPROM  
RAM/EEPROM  
RAM/EEPROM  
RAM/EEPROM  
RAM/EEPROM  
RAM Only  
Read command (address on 4 LSBs of  
payload)  
Instruction  
XXXX XXXX XXXX XXXX XXXX XXXX AAAA  
1110  
Instruction  
Instruction  
Write configuration to EEPROM - UNLOCKED XXXX XXXX XXXX XXXX XXXX XXXX 0001  
1111  
1111  
Write configuration to EEPROM – LOCKED  
XXXX XXXX XXXX XXXX 1010 XXXX 0011  
DATA PAYLOAD IN READ COMMAND  
READ COMMAND ON MISO  
Payload after issuing a read command on  
MOSI  
DDDD DDDD DDDD DDDD DDDD DDDD DDDD  
XXXX(1)  
(1) During a SPI READ instruction the address field of the payload should be ignored since it does not represent the address of the read  
register.  
The SPI serial protocol accepts Word Write operation only. The 12 words include the register settings of the  
programmable functions of the device that can be modified to the customer application by changing one or more  
bits.  
At powerup or if the Power Down (PD) control signal is applied, the EEPROM loads its content into the registers.  
When issuing an EEPROM programming (LOCKED or UNLOCKED) instruction, a wait period of 50ms has to be  
inserted before another instruction is written to the device or power is removed.  
Copyright © 2008–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): CDCE72010  
 
 
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
CDCE72010 Default Configuration  
The CDCE72010 on-board EEPROM has been factory preset to the default settings listed in Table 5  
Table 5. CDCE72010 Default Configuration Settings  
REGISTER  
REG0000  
REG0001  
REG0002  
REG0003  
REG0004  
REG0005  
REG0006  
DEFAULT SETTING  
002C0040  
REGISTER  
REG0007  
REG0008  
REG0009  
REG0010  
REG0011  
REG0012  
DEFAULT SETTING  
EB040717  
83840051  
010C0158  
83400002  
01000049  
83400003  
0BFC07CA  
C000058B  
81800004  
81800005  
61E09B0C  
EB040006  
The default configuration programmed in the EEPROM is: a 10MHz primary reference single-ended, a  
491.52MHz LVPECL VCXO running at 80kHz, and PFD with a 10Hz external loop filter. Reference Auto Select is  
off, M divider is set for 125, N divider is set to 768, charge pump current is set to 2.2mA, and feedback divider is  
set to divide by 8. Divider 1 is set to divide by 4, Dividers 2 and 3 are set to divide by 1, Dividers 4 and 5 are set  
to divide by 2, Dividers 6 and 7 are set to divide by 8, and Divider 8 is set to divide by 16.Output0:LVCMOS,  
Output1:Hi-LVPECL, Output2: Hi-LVPECL, Output3:Hi_LVPECL, Output4:LVPECL, Output5:LVPECL,  
Output6:Hi-LVDS, Output7:Hi-LVDS, Output8:LVCMOS and Output9:LVCMOS.  
20  
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
 
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
Register 0: SPI Mode  
SPI  
BIT  
RAM  
Bit  
POWER UP  
CONDITION  
BIT NAME  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
0
1
2
3
4
5
6
A0  
A1  
A2  
A3  
Address 0  
Address 1  
Address 2  
Address 3  
0
0
0
0
0
1
2
INBUFSELX  
INBUFSELY  
PRISEL  
Reference Input  
Buffers  
Primary and secondary Buffer Type Select (LVPECL,LVDS or LVCMOS)  
XY(10) LVPECL, (11) LVDS, (00) LVCMOS- Input is Positive pin  
EEPROM  
When REFSELCNTRL is set to 1, the following settings apply:  
If RAM Bits (2,3): 00 – No input buffer is selected/active  
If RAM Bits (2,3): 10 – PRI_BUF is selected, SEC_BUF is powered down  
If RAM Bits (2,3): 01 – SEC_BUF is selected, PRI_BUF is powered down(1)  
If RAM Bits (2,3): 11 – Auto Select (PRI then SEC).  
Reference Input  
Buffer  
EEPROM  
7
8
3
4
SECSEL  
When set to 0, PRI- or SEC-clock is selected, depending on bits 2 and 3  
(default)  
When set to 1, VCXO/AUX-clock is selected, overwrites bits 2 and 3  
Divider START  
DETERM-Block  
VCXOSEL  
EEPROM  
Reference Select Control to select if the control of the reference is from the  
internal bit in Register 0 RAM bits 2 and 3 or from the external select pin.  
- When set to 0: the external pin REF_SEL takes over the selection between  
PRI and SEC. Autoselect is not available.  
- When set to 1: The external pin REF_SEL is ignored. The table in (Register 0  
<2 and 3> ) describes which reference input clock is selected and available  
(none, PRI, SEC or Autoselect). In autoselect mode, refer to the timing  
diagram.  
Reference  
Selection  
Control  
9
5
REFSELCNTRL  
EEPROM  
EEPROM  
10  
11  
12  
6
7
8
DELAY_PFD0  
DELAY_PFD1  
CP_MODE  
PFD pulse width PFD bit 0  
PFD pulse width PFD bit 1  
PFD  
Selects 3V option [0] or 5V option [1]  
EEPROM  
EEPROM  
Charge Pump  
Determines which direction CP current will regulate (Reference Clock leads to  
Feedback Clock, Positive CP output current [0], Negative CP output current [1])  
13  
14  
9
CP_DIR  
Switches the current source in the charge pump on when set to 1 (TI  
Test-GTME)  
10  
CP_SRC  
EEPROM  
Charge Pump  
Diagnostics  
15  
16  
17  
18  
19  
20  
21  
22  
23  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CP_SNK  
CP_OPA  
CP_PRE  
ICP0  
Switches the current sink in the charge pump on when set to 1 (TI Test-GTME)  
Switches the charge pump op-amp off when set to 1 (TI Test-GTME)  
Preset charge pump output voltage to VCC_CP/2, on [1], off [0]  
CP current setting bit 0  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
ICP1  
Charge Pump  
CP current setting bit 1  
ICP2  
CP current setting bit 2  
ICP3  
CP current setting bit 3  
RESERVED  
RESERVED  
Charge Pump  
Diagnostics  
Enables the 12-kpull-down resistor at I_REF_CP pin when set to 1 (TI  
Test-GTME)  
24  
20  
IREFRES  
EEPROM  
EEPROM  
25  
26  
27  
28  
29  
21  
22  
23  
24  
25  
PECL0HISWING  
CMOSMODE0PX  
CMOSMODE0PY  
CMOSMODE0NX  
CMOSMODE0NY  
Output 0  
High output voltage swing in LVPECL mode if set to 1  
LVCMOS mode select for OUTPUT 0 positive pin.  
(X,Y) = 00: Active, 10: Inverting, 11: Low, 01: 3-State  
Output 0  
EEPROM  
EEPROM  
LVCMOS mode select for OUTPUT 0 negative pin.  
(X,Y) = 00: Active, 10: Inverting, 11: Low, 01: 3-State  
Output 0  
Output 0  
RAM BITS  
OUTPUT TYPE  
30  
31  
26  
27  
OUTBUFSEL0X  
OUTBUFSEL0Y  
22  
0
23  
0
24  
0
25  
0
26  
0
27  
1
EEPROM  
EEPROM  
LVPECL  
LVDS  
0
1
0
1
1
1
Output 0  
LVCMOS  
See Settings Above(2)  
0
0
All Outputs Disabled  
0
1
0
1
1
0
(1) This setting is only available if the Register 11 Bit 2 is set to 0 (Feedback Divider clock is set to CMOS type).  
(2) Use description for bits 22, 23, 24, and 25 for setting the LVCMOS outputs.  
Copyright © 2008–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): CDCE72010  
 
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
Register 1: SPI Mode  
SPI  
BIT  
RAM  
BIT  
POWER UP  
CONDITION  
BIT NAME  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
0
1
A0  
A1  
A2  
A3  
Address 0  
Address 1  
Address 2  
Address 3  
1
0
2
0
3
0
4
0
1
ACDCSEL  
Input Buffers  
Input Buffers  
Input Buffers  
Input Buffers  
Input Buffers  
Input Buffers  
If set to 0 AC Termination, If set to 1 DC termination  
If set to 1 Input Buffers Hysteresis enabled  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
5
HYSTEN  
6
2
TERMSEL  
If set to 0 Input Buffer Internal Termination enabled  
7
3
PRIINVBB  
If set to 1 Primary Input Negative pin biased with internal VBB voltage  
If set to 1 Secondary Input Negative pin biased with internal VBB voltage  
If set to 1 Fail Safe is enabled for all input buffers  
8
4
SECINVBB  
9
5
FAILSAFE  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
6
PH1ADJC0  
7
PH1ADJC1  
8
PH1ADJC2  
9
PH1ADJC3  
Output 0 and 1  
Coarse phase adjust select for Output Divider 1  
EEPROM  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
PH1ADJC4  
PH1ADJC5  
PH1ADJC6  
OUT1DIVRSEL0  
OUT1DIVRSEL1  
OUT1DIVRSEL2  
OUT1DIVRSEL3  
OUT1DIVRSEL4  
OUT1DIVRSEL5  
OUT1DIVRSEL6  
Output Divider 1 ratio select  
(seeTable 7)  
Output 0 and 1  
EEPROM  
When set to 0, the divider is disabled  
When set to 1, the divider is enabled  
24  
20  
EN01DIV  
Output 0 and 1  
Output 1  
EEPROM  
EEPROM  
25  
26  
27  
28  
29  
21  
22  
23  
24  
25  
PECL1HISWING  
CMOSMODE1PX  
CMOSMODE1PY  
CMOSMODE1NX  
CMOSMODE1NY  
High Output Voltage Swing in LVPECL Mode if set to 1  
LVCMOS mode select for OUTPUT 1 Positive Pin.  
(X,Y) = 00: Active, 10: Inverting, 11: Low, 01: 3-State  
Output 1  
Output 1  
EEPROM  
EEPROM  
LVCMOS mode select for OUTPUT 1 Negative Pin.  
(X,Y) = 00: Active, 10: Inverting, 11: Low, 01: 3-State  
RAM BITS  
OUTPUT TYPE  
30  
31  
26  
27  
OUTBUFSEL1X  
OUTBUFSEL1Y  
Output 1  
Output 1  
22  
0
23  
0
24  
0
25  
0
26  
0
27  
1
EEPROM  
EEPROM  
LVPECL  
LVDS  
0
1
0
1
1
1
LVCMOS  
See Settings Above(1)  
0
0
All Outputs Disabled  
0
1
0
1
1
0
(1) Use description for bits 22, 23, 24, and 25 for setting the LVCMOS outputs.  
22  
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
Register 2: SPI Mode  
SPI  
BIT  
RAM  
BIT  
POWER UP  
CONDITION  
BIT NAME  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
0
1
A0  
A1  
A2  
A3  
Address 0  
Address 1  
Address 2  
Address 3  
0
1
0
0
2
3
4
0
1
DLYM0  
Reference phase delay M bit0  
Reference phase delay M bit1  
Reference phase delay M bit2  
Feedback phase delay N bit0  
Feedback phase delay N bit1  
Feedback phase delay N bit2  
5
DLYM1  
DELAY M  
DELAY N  
EEPROM  
EEPROM  
6
2
DLYM2  
7
3
DLYN0  
8
4
DLYN1  
9
5
DLYN2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
6
PH2ADJC0  
PH2ADJC1  
PH2ADJC2  
PH2ADJC3  
PH2ADJC4  
PH2ADJC5  
PH2ADJC6  
OUT2DIVRSEL0  
OUT2DIVRSEL1  
OUT2DIVRSEL2  
OUT2DIVRSEL3  
OUT2DIVRSEL4  
OUT2DIVRSEL5  
OUT2DIVRSEL6  
7
8
9
Output 2  
Coarse phase adjust select for output divider 2  
EEPROM  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
Output Divider 2 ratio select  
(seeTable 7)  
Output 2  
EEPROM  
When set to 0, the divider is disabled  
When set to 1, the divider is enabled  
24  
20  
EN2DIV  
Output 2  
Output 2  
EEPROM  
EEPROM  
25  
26  
27  
28  
29  
21  
22  
23  
24  
25  
PECL2HISWING  
CMOSMODE2PX  
CMOSMODE2PY  
CMOSMODE2NX  
CMOSMODE2NY  
High Output Voltage Swing in LVPECL Mode if set to 1  
LVCMOS mode select for OUTPUT 2 Positive Pin.  
(X,Y) = 00: Active, 10: Inverting, 11: Low, 01: 3-State  
Output 2  
Output 2  
EEPROM  
EEPROM  
LVCMOS mode select for OUTPUT 2 Negative Pin.  
(X,Y) = 00: Active, 10: Inverting, 11: Low, 01: 3-State  
RAM BITS  
OUTPUT TYPE  
30  
31  
26  
27  
OUTBUFSEL2X  
OUTBUFSEL2Y  
Output 2  
Output 2  
22  
0
23  
0
24  
0
25  
0
26  
0
27  
1
EEPROM  
EEPROM  
LVPECL  
LVDS  
0
1
0
1
1
1
LVCMOS  
See Settings Above(1)  
0
0
All Outputs Disabled  
0
1
0
1
1
0
(1) Use description for bits 22, 23, 24, and 25 for setting the LVCMOS outputs.  
Copyright © 2008–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): CDCE72010  
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
Register 3: SPI Mode  
SPI  
BIT  
RAM  
BIT  
POWER UP  
CONDITION  
BIT NAME  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
0
1
2
3
A0  
A1  
A2  
A3  
Address 0  
Address 1  
Address 2  
Address 3  
1
1
0
0
When set to 0, the REF-clock frequency detector is ON  
When set to 1, it is switched OFF  
4
0
DIS_FDET_REF  
PLL Freq. Detect  
Diagnostics  
EEPROM  
EEPROM  
When set to 1, the feedback path frequency detector is switched OFF  
(TI Test-GTME)  
5
6
1
2
DIS_FDET_FB  
BIAS_DIV01<0>  
When BIAS_DIV01<1:0> =  
Output Divider  
0 and 1  
00, No current reduction for all output-divider  
01, Current reduction for all output-divider by about 20%  
10, Current reduction for all output-divider by about 30%  
EEPROM  
EEPROM  
7
8
9
3
4
5
BIAS_DIV01<1>  
BIAS_DIV23<0>  
BIAS_DIV23<1>  
When BIAS_DIV23<1:0> =  
Output Divider  
2 and 3  
00, No current reduction for all output-divider  
01, Current reduction for all output-divider by about 20%  
10, Current reduction for all output-divider by about 30%  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
6
PH3ADJC0  
7
PH3ADJC1  
8
PH3ADJC2  
9
PH3ADJC3  
Output 3  
Coarse phase adjust select for Output Divider 3  
EEPROM  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
PH3ADJC4  
PH3ADJC5  
PH3ADJC6  
OUT3DIVRSEL0  
OUT3DIVRSEL1  
OUT3DIVRSEL2  
OUT3DIVRSEL3  
OUT3DIVRSEL4  
OUT3DIVRSEL5  
OUT3DIVRSEL6  
Output Divider 3 ratio select  
(seeTable 7)  
Output 3  
EEPROM  
When set to 0, the divider is disabled  
When set to 1, the divider is enabled  
24  
20  
EN3DIV  
Output 3  
Output 3  
EEPROM  
EEPROM  
25  
26  
27  
28  
29  
21  
22  
23  
24  
25  
PECL3HISWING  
CMOSMODE3PX  
CMOSMODE3PY  
CMOSMODE3NX  
CMOSMODE3NY  
High Output Voltage Swing in LVPECL Mode if set to 1  
LVCMOS mode select for OUTPUT 3 Positive Pin.  
(X,Y) = 00: Active, 10: Inverting, 11: Low, 01: 3-State  
Output 3  
Output 3  
EEPROM  
EEPROM  
LVCMOS mode select for OUTPUT 3 Negative Pin.  
(X,Y) = 00: Active, 10: Inverting, 11: Low, 01: 3-State  
RAM BITS  
OUTPUT TYPE  
30  
31  
26  
27  
OUTBUFSEL3X  
OUTBUFSEL3Y  
Output 3  
Output 3  
22  
0
23  
0
24  
0
25  
0
26  
0
27  
1
EEPROM  
EEPROM  
LVPECL  
LVDS  
0
1
0
1
1
1
LVCMOS  
See Settings Above(1)  
0
0
All Outputs Disabled  
0
1
0
1
1
0
(1) Use description for bits 22, 23, 24, and 25 for setting the LVCMOS outputs  
24  
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
Register 4: SPI Mode  
SPI  
BIT  
RAM  
BIT  
POWER UP  
CONDITION  
BIT NAME  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
0
1
2
3
4
5
6
7
A0  
A1  
A2  
A3  
Address 0  
Address 1  
Address 2  
Address 3  
0
0
1
0
0
1
2
3
RESERVED  
RESERVED  
RESERVED  
RESERVED  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
If set to 1 it will 3-state the charge pump to act as a HOLD on Loss of  
Reference Clocks ( Primary and Secondary)  
8
4
HOLDONLOR  
HOLD-Over  
EEPROM  
EEPROM  
9
5
RESERVED  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
6
PH4ADJC0  
7
PH4ADJC1  
8
PH4ADJC2  
9
PH4ADJC3  
Output 4  
Coarse phase adjust select for Output Divider 4  
EEPROM  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
PH4ADJC4  
PH4ADJC5  
PH4ADJC6  
OUT4DIVRSEL0  
OUT4DIVRSEL1  
OUT4DIVRSEL2  
OUT4DIVRSEL3  
OUT4DIVRSEL4  
OUT4DIVRSEL5  
OUT4DIVRSEL6  
Output Divider 4 ratio select  
(seeTable 7)  
Output 4  
EEPROM  
When set to 0, the divider is disabled  
When set to 1, the divider is enabled  
24  
20  
EN4DIV  
Output 4  
Output 4  
EEPROM  
EEPROM  
25  
26  
27  
28  
29  
21  
22  
23  
24  
25  
PECL4HISWING  
CMOSMODE4PX  
CMOSMODE4PY  
CMOSMODE4NX  
CMOSMODE4NY  
High Output Voltage Swing in LVPECL Mode if set to 1  
LVCMOS mode select for OUTPUT 4 Positive Pin.  
(X,Y) = 00: Active, 10: Inverting, 11: Low, 01: 3-State  
Output 4  
Output 4  
EEPROM  
EEPROM  
LVCMOS mode select for OUTPUT 4 Negative Pin.  
(X,Y) = 00: Active, 10: Inverting, 11: Low, 01: 3-State  
RAM BITS  
OUTPUT TYPE  
30  
31  
26  
27  
OUTBUFSEL4X  
OUTBUFSEL4Y  
Output 4  
Output 4  
22  
0
23  
0
24  
0
25  
0
26  
0
27  
1
EEPROM  
EEPROM  
LVPECL  
LVDS  
0
1
0
1
1
1
LVCMOS  
See Settings Above(1)  
0
0
All Outputs Disabled  
0
1
0
1
1
0
(1) Use description for bits 22, 23, 24, and 25 for setting the LVCMOS outputs  
Copyright © 2008–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): CDCE72010  
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
Register 5: SPI Mode  
SPI  
BIT  
RAM  
BIT  
POWER UP  
CONDITION  
BIT NAME  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
0
1
2
3
4
A0  
A1  
A2  
A3  
Address 0  
1
0
1
0
Address 1  
Address 2  
Address 3  
0
1
2
3
BIAS_DIV45<0>  
BIAS_DIV45<1>  
BIAS_DIV67<0>  
BIAS_DIV67<1>  
When BIAS_DIV45<1:0> =  
00, No current reduction for all output-divider  
01, Current reduction for all output-divider by about 20%  
10, Current reduction for all output-divider by about 30%  
Output Divider  
4 and 5  
EEPROM  
EEPROM  
5
6
7
When BIAS_DIV67<1:0> =  
Output Divider  
6 and 7  
00, No current reduction for all output-divider  
01, Current reduction for all output-divider by about 20%  
10, Current reduction for all output-divider by about 30%  
8
4
5
RESERVED  
EEPROM  
EEPROM  
9
RESERVED  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
6
PH5ADJC0  
7
PH5ADJC1  
8
PH5ADJC2  
9
PH5ADJC3  
Output 5  
Coarse phase adjust select for Output Divider 5  
EEPROM  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
PH5ADJC4  
PH5ADJC5  
PH5ADJC6  
OUT5DIVRSEL0  
OUT5DIVRSEL1  
OUT5DIVRSEL2  
OUT5DIVRSEL3  
OUT5DIVRSEL4  
OUT5DIVRSEL5  
OUT5DIVRSEL6  
Output Divider 5 ratio select  
(seeTable 7)  
Output 5  
EEPROM  
When set to 0, the divider is disabled  
When set to 1, the divider is enabled  
24  
20  
EN5DIV  
Output 5  
Output 5  
EEPROM  
EEPROM  
25  
26  
27  
28  
29  
21  
22  
23  
24  
25  
PECL5HISWING  
CMOSMODE5PX  
CMOSMODE5PY  
CMOSMODE5NX  
CMOSMODE5NY  
High Output Voltage Swing in LVPECL Mode if set to 1  
LVCMOS mode select for OUTPUT 5 Positive Pin.  
(X,Y) = 00: Active, 10: Inverting, 11: Low, 01: 3-State  
Output 5  
Output 5  
EEPROM  
EEPROM  
LVCMOS mode select for OUTPUT 5 Negative Pin.  
(X,Y) = 00: Active, 10: Inverting, 11: Low, 01: 3-State  
RAM BITS  
OUTPUT TYPE  
30  
31  
26  
27  
OUTBUFSEL5X  
OUTBUFSEL5Y  
Output 5  
Output 5  
22 23  
24  
0
25  
26  
0
27  
1
EEPROM  
EEPROM  
LVPECL  
LVDS  
0
0
0
0
1
0
1
1
1
LVCMOS  
See Settings Above(1)  
0
0
All Outputs Disabled  
0
1
0
1
1
0
(1) Use description for bits 22, 23, 24, and 25 for setting the LVCMOS outputs  
26  
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
Register 6: SPI Mode  
SPI  
BIT  
RAM  
BIT  
POWER UP  
CONDITION  
BIT NAME  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
0
1
2
3
A0  
A1  
A2  
A3  
Address 0  
Address 1  
Address 2  
Address 3  
0
1
1
0
0 Feedback Frequency Detector is connected to the Lock Detector  
1 Feedback Frequency Detector is disconnected from the Lock Detector  
4
5
6
0
1
2
FB_FD_DESEL  
RESERVED  
LOCK-DET  
FB-  
EEPROM  
Set to 0  
0 FB-Deterministic Clock divided by 1  
1 FB- Deterministic Clock divided by 2  
FBDETERM_DIV_SEL  
0 FB-Deterministic-DIV2-Block in normal operation  
1 FB-Deterministic-DIV2 reset (here REG6_RB<2> == 0)  
7
8
9
3
4
5
FBDETERM_DIV2_DIS Divider/Deterministi  
c Blocks  
EEPROM  
EEPROM  
0 FB-Divider started with delay block (RC), normal operation  
1 FB-Divider can be started with external REF_SEL-signal (pin)  
FB_START_BYPASS  
All Output Dividers 0 Output-Dividers started with delay block (RC), normal operation  
1 Output-Dividers can be started with external NRESET-signal (pin)  
DET_START_BYPASS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
6
PH6ADJC0  
Output 6  
7
PH6ADJC1  
8
PH6ADJC2  
9
PH6ADJC3  
Coarse phase adjust select for Output Divider 6  
EEPROM  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
PH6ADJC4  
PH6ADJC5  
PH6ADJC6  
OUT6DIVRSEL0  
OUT6DIVRSEL1  
OUT6DIVRSEL2  
OUT6DIVRSEL3  
OUT6DIVRSEL4  
OUT6DIVRSEL5  
OUT6DIVRSEL6  
Output Divider 6 ratio select  
(seeTable 7)  
Output 6  
EEPROM  
When set to 0, the divider is disabled  
Output 6  
24  
20  
EN6DIV  
EEPROM  
EEPROM  
When set to 1, the divider is enabled  
25  
26  
27  
28  
29  
21  
22  
23  
24  
25  
PECL6HISWING  
CMOSMODE6PX  
CMOSMODE6PY  
CMOSMODE6NX  
CMOSMODE6NY  
Output 6  
Output 6  
High Output Voltage Swing in LVPECL Mode if set to 1  
LVCMOS mode select for OUTPUT 6 Positive Pin.  
(X,Y) = 00: Active, 10: Inverting, 11: Low, 01: 3-State  
EEPROM  
EEPROM  
LVCMOS mode select for OUTPUT 6 Negative Pin.  
(X,Y) = 00: Active, 10: Inverting, 11: Low, 01: 3-State  
Output 6  
Output 6  
RAM BITS  
OUTPUT TYPE  
30  
31  
26  
27  
OUTBUFSEL6X  
OUTBUFSEL6Y  
22  
0
23  
0
24  
0
25  
0
26  
0
27  
1
EEPROM  
EEPROM  
LVPECL  
LVDS  
0
1
0
1
1
1
Output 6  
LVCMOS  
See Settings Above(1)  
0
0
All Outputs Disabled  
0
1
0
1
1
0
(1) Use description for bits 22,23,24, and 25 for setting the LVCMOS outputs  
Copyright © 2008–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): CDCE72010  
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
Register 7: SPI Mode  
SPI  
BIT  
RAM  
BIT  
POWER UP  
CONDITION  
BIT NAME  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
0
1
A0  
A1  
A2  
A3  
Address 0  
Address 1  
Address 2  
Address 3  
1
1
2
1
0
3
4
0
1
LOCKW 0  
Lock-detect window Bit 0 (Refer to Reg 9 RAM Bits 6 and 7)  
Lock-detect window Bit 1 (Refer to Reg 9 RAM Bits 6 and 7)  
Set to 0  
EEPROM  
5
LOCKW 1  
6
2
RESERVED  
LOCKC0  
LOCK-DET  
7
3
Number of coherent lock events Bit 0  
EEPROM  
8
4
LOCKC1  
Number of coherent lock events Bit 1  
9
5
ADLOCK  
Selects Digital PLL_LOCK 0, Selects Analog PLL_LOCK 1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
6
PH7ADJC0  
7
PH7ADJC1  
8
PH7ADJC2  
9
PH7ADJC3  
Output 7  
Coarse phase adjust select for Output Divider 7  
EEPROM  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
PH7ADJC4  
PH7ADJC5  
PH7ADJC6  
OUT7DIVRSEL0  
OUT7DIVRSEL1  
OUT7DIVRSEL2  
OUT7DIVRSEL3  
OUT7DIVRSEL4  
OUT7DIVRSEL5  
OUT7DIVRSEL6  
Output Divider 7 ratio select  
(seeTable 7)  
Output 7  
EEPROM  
When set to 0, the divider is disabled  
When set to 1, the divider is enabled  
24  
20  
EN7DIV  
Output 7  
Output 7  
EEPROM  
EEPROM  
25  
26  
27  
28  
29  
21  
22  
23  
24  
25  
PECL7HISWING  
CMOSMODE7PX  
CMOSMODE7PY  
CMOSMODE7NX  
CMOSMODE7NY  
High Output Voltage Swing in LVPECL Mode if set to 1  
LVCMOS mode select for OUTPUT 7 Positive Pin  
(X,Y) = 00: Active, 10: Inverting, 11: Low, 01: 3-State  
Output 7  
Output 7  
EEPROM  
EEPROM  
LVCMOS mode select for OUTPUT 7 Negative Pin.  
(X,Y) = 00: Active, 10: Inverting, 11: Low, 01: 3-State  
RAM BITS  
OUTPUT TYPE  
30  
31  
26  
27  
OUTBUFSEL7X  
OUTBUFSEL7Y  
Output 7  
Output 7  
22  
0
23  
0
24  
0
25  
26  
0
27  
1
EEPROM  
EEPROM  
LVPECL  
LVDS  
0
0
1
0
1
1
1
LVCMOS  
See Settings Above(1)  
0
0
All Outputs Disabled  
0
1
0
1
1
0
(1) Use description for bits 22, 23, 24, and 25 for setting the LVCMOS outputs  
28  
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
Register 8: SPI Mode  
SPI  
BIT  
RAM  
BIT  
POWER UP  
CONDITION  
BIT NAME  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
0
1
A0  
A1  
A2  
A3  
Address 0  
Address 1  
Address 2  
Address 3  
0
0
0
1
2
3
4
0
1
VCXOBUFSELX  
VCXOBUFSELY  
VCXOACDCSEL  
VCXOHYSTEN  
VCXOTERMSEL  
VCXOINVBB  
VCXO and AUX Input Buffer Type Select (LVPECL,LVDS or LVCMOS)  
XY(10) LVPECL, (11) LVDS, (00) LVCMOS- Input is Positive Pin  
5
VCXO and AUX  
Input Buffers  
6
2
If Set to 0 AC Termination, If set to 1 DC Termination  
If Set to 1 Input Buffers Hysteresis enabled  
EEPROM  
EEPROM  
7
3
8
4
If Set to 0 Input Buffer Internal Termination enabled  
9
5
VCXO Input Buffer If Set to 1 It Biases VCXO Input negative pin with internal VCXOVBB Voltage  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
6
PH8ADJC0  
7
PH8ADJC1  
8
PH8ADJC2  
9
PH8ADJC3  
Output 8 and 9  
Coarse phase adjust select for Output Divider 8  
EEPROM  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
PH8ADJC4  
PH8ADJC5  
PH8ADJC6  
OUT8DIVRSEL0  
OUT8DIVRSEL1  
OUT8DIVRSEL2  
OUT8DIVRSEL3  
OUT8DIVRSEL4  
OUT8DIVRSEL5  
OUT8DIVRSEL6  
Output Divider 8 ratio select  
(seeTable 7)  
Output 8 and 9  
EEPROM  
When set to 0, the divider is disabled  
When set to 1, the divider is enabled  
24  
20  
EN89DIV  
Output 8 and 9  
Output 8  
EEPROM  
EEPROM  
25  
26  
27  
28  
29  
21  
22  
23  
24  
25  
PECL8HISWING  
CMOSMODE8PX  
CMOSMODE8PY  
CMOSMODE8NX  
CMOSMODE8NY  
High Output Voltage Swing in LVPECL Mode if set to 1  
LVCMOS mode select for OUTPUT 8 Positive Pin.  
(X,Y) = 00: Active, 10: Inverting, 11: Low, 01: 3-State  
Output 8  
Output 8  
EEPROM  
EEPROM  
LVCMOS mode select for OUTPUT 8 Negative Pin.  
(X,Y) = 00: Active, 10: Inverting, 11: Low, 01: 3-State  
RAM BITS  
OUTPUT TYPE  
30  
31  
26  
27  
OUTBUFSEL8X  
OUTBUFSEL8Y  
Output 8  
Output 8  
22  
0
23  
0
24  
0
25  
0
26  
0
27  
1
EEPROM  
EEPROM  
LVPECL  
LVDS  
0
1
0
1
1
1
LVCMOS  
See Settings Above(1)  
0
0
All Outputs Disabled  
0
1
0
1
1
0
(1) Use description for bits 22, 23, 24, and 25 for setting the LVCMOS outputs  
Copyright © 2008–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): CDCE72010  
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
Register 9: SPI Mode  
SPI  
BIT  
RAM  
BIT  
RELATED  
BLOCK  
POWER UP  
CONDITION  
BIT NAME  
DESCRIPTION/FUNCTION  
0
1
2
3
A0  
A1  
A2  
A3  
Address 0  
Address 1  
Address 2  
Address 3  
1
0
0
1
Enables the Frequency Hold-Over (External Hold Over Function based on the  
external circuitry) on 1, off 0  
4
0
HOLDF  
5
6
1
2
RESERVED  
HOLD  
3-State Charge Pump 0 - (equal to HOLD pin function)  
HOLD function always activated 1 (recommended for test purposes, only)  
Triggered by analog PLL Lock detect outputs  
If analog PLL Lock Signal is [1] (PLL locked), HOLD is activated  
If analog PLL Lock Signal is [0] (PLL not lock), HOLD is deactivated  
HOLD-Over  
EEPROM  
7
3
HOLDTR  
8
9
4
5
HOLD_CNT0  
HOLD_CNT1  
HOLD1 Function is reactivated after X Ref Clock Cycles. Defined by  
(HOLD_CNT0,HOLD_CNT1) : X = Number of Clock Cycles.  
For (00) : X = 64, (01) : X = 128, (10) : X = 256, (11) : X = 512 Clock Cycles  
10  
11  
6
7
LOCKW 2  
LOCKW 3  
Extended Lock-detect window Bit 2 (also refer to Reg 7 RAM Bits 0 and 1)  
Extended Lock-detect window Bit 3 (also refer to Reg 7 RAM Bits 0 and 1)  
LOCK-DET  
Chip CORE  
EEPROM  
EEPROM  
When set to 0, SPI/HOLD_INT and SPI/RESET_INT inverted (default)  
When set to 1, SPI/HOLD_INT and SPI/RESET_INT not inverted  
12  
13  
8
9
NOINV_RESHOL_INT  
DIVSYNC_DIS  
When GTME = 0, this Bit has no functionality, But when GTME = 1, then:  
When set to 0, START-Signal is synchronized to N/M Divider Input Clocks  
When set to 1, START-Sync N/M Divider in PLL are bypassed  
Diagnostic: PLL  
N/M Divider  
EEPROM  
Divider START When set to 0, START-Signal is synchronized to VCXO-Clock  
DETERM-Block When set to 1, START-Sync Block is bypassed  
14  
15  
16  
10  
11  
12  
START_BYPASS  
INDET_BP  
EEPROM  
EEPROM  
EEPROM  
Divider START When set to 0, Sync Logic active when VCXO/AUX-Clocks are available  
DETERM-Block When set to 1, Sync Logic is independent from VCXO- and/or AUX-Clocks  
Divider START When set to 0, Sync Logic waits for 1st PLL_LOCK state  
DETERM-Block When set to 1, Sync Logic independent from 1st PLL_LOCK  
PLL_LOCK_BP  
When set to 0, Sync Logic is independent from VCXO/DIV_FB freq. (PLL-FD)  
When set to 1, Sync Logic is started for VCXO/DIV_FB > ~600KHz, stopped for  
VCXO/DIV_FB < ~600KHz  
Divider START  
DETERM-Block  
17  
13  
LOW_FD_FB_EN  
EEPROM  
EEPROM  
PLL  
M/FB-Divider  
When set to 0, M-Divider uses NHOLD as NPRESET  
When set to 1, M-Divider NOT preseted by NHOLD  
18  
19  
14  
15  
NPRESET_MDIV  
BIAS_DIV_FB<0>  
When BIAS_DIV_FB<1:0> =  
Feedback  
Divider  
00, No current reduction for FB-Divider  
01, Current reduction for FB-Divider by about 20%  
10, Current reduction for FB-Divider by about 30%  
EEPROM  
20  
21  
22  
16  
17  
18  
BIAS_DIV_FB<1>  
BIAS_DIV89<0>  
BIAS_DIV89<1>  
When BIAS_DIV89<1:0> =  
Output Divider 00, No current reduction for all output-rivider  
EEPROM  
EEPROM  
8 and 9  
01, Current reduction for all output-divider by about 20%  
10, Current reduction for all output-divider by about 30%  
23  
24  
19  
20  
AUXINVBB  
If set to 1 it biases AUX Input Negative pin with internal VCXOVBB voltage.  
AUX Input  
Buffer  
If set to 1 AUX in Input Mode Buffer Is disabled. If set to 0 it follows the behavior of  
FB_MUX_SEL and OUT_MUX_SEL bits settings.  
DIS_AUX_Y9  
25  
26  
27  
28  
29  
21  
22  
23  
24  
25  
PECL9HISWING  
CMOSMODE9PX  
CMOSMODE9PY  
CMOSMODE9NX  
CMOSMODE9NY  
Output 9  
Output 9  
High output voltage swing in LVPECL Mode if set to 1  
EEPROM  
EEPROM  
LVCMOS mode select for OUTPUT 9 Positive pin.  
(X,Y) = 00: Active, 10: Inverting, 11: Low, 01: 3-State  
LVCMOS mode select for OUTPUT 9 Negative pin.  
(X,Y) = 00: Active, 10: Inverting, 11: Low, 01: 3-State  
Output 9  
Output 9  
EEPROM  
EEPROM  
RAM BITS  
OUTPUT TYPE  
30  
31  
26  
27  
OUTBUFSEL9X  
OUTBUFSEL9Y  
22  
0
23  
0
24  
0
25  
0
26  
0
27  
1
LVPECL  
LVDS  
0
1
0
1
1
1
Output 9  
LVCMOS  
See Settings Above(1)  
0
0
EEPROM  
All Outputs Disabled  
0
1
0
1
1
0
(1) Use description for bits 22, 23, 24, and 25 for setting the LVCMOS outputs  
30  
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
Register 10: SPI Mode  
SPI  
BIT  
RAM  
BIT  
RELATED  
BLOCK  
POWER UP  
CONDITION  
BIT NAME  
DESCRIPTION/FUNCTION  
0
A0  
Address 0  
0
1
0
1
1
A1  
Address 1  
2
A2  
Address 2  
3
A3  
Address 3  
4
0
1
M0  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
N0  
Reference Divider M Bit 0  
Reference Divider M Bit 1  
Reference Divider M Bit 2  
Reference Divider M Bit 3  
Reference Divider M Bit 4  
Reference Divider M Bit 5  
Reference Divider M Bit 6  
Reference Divider M Bit 7  
Reference Divider M Bit 8  
Reference Divider M Bit 9  
Reference Divider M Bit 10  
Reference Divider M Bit 11  
Reference Divider M Bit 12  
Reference Divider M Bit 13  
VCXO Divider N Bit 0  
VCXO Divider N Bit 1  
VCXO Divider N Bit 2  
VCXO Divider N Bit 3  
VCXO Divider N Bit 4  
VCXO Divider N Bit 5  
VCXO Divider N Bit 6  
VCXO Divider N Bit 7  
VCXO Divider N Bit 8  
VCXO Divider N Bit 9  
VCXO Divider N Bit 10  
VCXO Divider N Bit 11  
VCXO Divider N Bit 12  
VCXO Divider N Bit 13  
5
6
2
7
3
8
4
9
5
Reference  
(PRI/SEC) Divider  
M
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
6
EEPROM  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
N1  
N2  
N3  
N4  
N5  
N6  
VCXO/AUX/SEC  
Divider N  
EEPROM  
N7  
N8  
N9  
N10  
N11  
N12  
N13  
Copyright © 2008–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s): CDCE72010  
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
Register 11: SPI Mode  
SPI  
BIT  
RAM  
BIT  
RELATED  
BLOCK  
POWER UP  
CONDITION  
BIT NAME  
DESCRIPTION/FUNCTION  
0
1
2
3
4
5
A0  
A1  
A2  
A3  
Address 0  
Address 1  
Address 2  
Address 3  
1
1
0
1
0
1
PRI_DIV2  
SEC_DIV2  
Input Buffers  
Input Buffers  
If set to 1 enables Primary Reference Divide by 2  
If set to 1 enables Secondary Reference Divide by 2  
EEPROM  
EEPROM  
FB Path Integer  
Counter 32  
When set to 0, FB divider is active  
When set to 1, FB divider is disabled  
When set to 0, FB clock is CMOS type(1)  
6
7
2
3
FB_DIS  
EEPROM  
EEPROM  
FB Path Integer  
Counter 32  
FB_CML_SEL  
When set to 1, FB clock is CML type and uses CML2CMOS converter in PLL  
FB-Divider/  
Deterministic  
Blocks  
When set to 0, Input clock for FB not inverted (normal mode, low speed)  
When set to 1, Input clock for FB inverted (higher speed mode)  
8
4
FB_INCLK_INV  
EEPROM  
9
5
FB_COUNT32_0  
FB_COUNT32_1  
FB_COUNT32_2  
FB_COUNT32_3  
FB_COUNT32_4  
FB_COUNT32_5  
FB_COUNT32_6  
FB_PHASE0  
Feedback Counter Bit0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
6
Feedback Counter Bit1  
7
Feedback Counter Bit2  
FB Path Integer  
Counter 32  
8
Feedback Counter Bit3  
EEPROM  
9
Feedback Counter Bit4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
Feedback Counter Bit5  
Feedback Counter Bit6  
Feedback Phase Adjust Bit0  
Feedback Phase Adjust Bit1  
Feedback Phase Adjust Bit2  
Feedback Phase Adjust Bit3  
Feedback Phase Adjust Bit4  
Feedback Phase Adjust Bit5  
Feedback Phase Adjust Bit6  
FB_PHASE1  
FB_PHASE2  
FB Path Integer  
Counter 32  
FB_PHASE3  
EEPROM  
FB_PHASE4  
FB_PHASE5  
FB_PHASE6  
If set to 0, PLL is in normal mode  
If set to 1, PLL is powered down  
23  
24  
25  
19  
20  
21  
PD_PLL  
PLL  
EEPROM  
EEPROM  
EEPROM  
When set to 0, the VCXO Clock is selected for the Clock Tree and FB-Div and  
Det  
When set to 1, the AUX Clock is selected for the Clock Tree and FB-Div and  
Det  
Clock Tree and  
Deterministic  
Block  
FB_MUX_SEL  
See Table 6  
OUT_MUX_SEL  
See Table 6  
Clock Tree  
If Set to 0 it selects the VCXO Clock and if Set to 1 it selects the AUX Clock  
Feed Back Path Selects FB/VCXO-Path when set to 0 (TI Test-GTME)  
The Secondary Reference clock input is selected when set to 1 (TI Test-GTME)  
26  
27  
28  
29  
30  
31  
22  
23  
24  
25  
26  
27  
FB_SEL  
Diagnostics  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
NRESHAPE1  
SEL_DEL1  
RESET_HOLD  
EPLOCK  
Reshapes the Reference Clock Signal 0, Disable Reshape 1  
Reference  
Selection Control  
If set to 0 it enables short delay for fast operation  
If Set to 1 Long Delay recommended for Input References below 150Mhz  
Reset Circuitry  
Status  
If set to 1 the RESET or HOLD pin acts as HOLD, set to 0 it acts as RESET  
Read only. If EPLOCK reads a 0, the EEPROM is unlocked. If EPLOCK reads a  
1, then the EEPROM is locked.  
EPSTATUS  
Status  
EEPROM Status  
(1) When Feedback Divider clock is set to CMOS type, only feedback divider values greater than 5 are available.  
Table 6. Output Buffers Source Feed, PLL Source Feed, and AUX IN/OUTPUT 9 Selection  
FB_MUX_SEL  
OUT_MUX_SEL  
PLL FEED AND OUTPUTS FEED  
AUX INPUT OR OUTPUT 9  
0
1
0
1
0
0
1
1
VCXO::PLL, VCXO::Y0…Y9 and Deterministic Block  
AUXIN::PLL, VCXO::Y0…Y8 and Deterministic Block  
VCXO::PLL, AUXIN::Y0…Y8 and Deterministic Block  
AUXIN::PLL, AUXIN::Y0…Y8 and Deterministic Block  
OUTPUT 9 is enabled  
AUX IN is enabled  
AUX IN is enabled  
AUX IN is enabled  
32  
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
 
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
Register 12: SPI Mode (RAM only Register)  
SPI  
BIT  
RAM  
BIT  
RELATED  
BLOCK  
POR  
DEFAULT  
BIT NAME  
A0  
DESCRIPTION/FUNCTION  
0
1
2
3
4
5
6
7
Address 0  
Address 1  
Address 2  
Address 3  
0
0
A1  
A2  
1
A3  
1
0
1
2
3
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RAM  
RAM  
RAM  
RAM  
Status  
(Read Only)  
8
9
4
5
INDET_AUX  
It indicates that a clock is present at AUX-input (Y9) , when set to 1  
It indicates that a clock is present at VCXO-input , when set to 1  
RAM  
RAM  
Status  
(Read Only)  
INDET_VCXO  
Status  
(Read Only)  
10  
11  
6
7
PLL_LOCK  
PD  
It indicates that the PLL is locked when set to 1  
RAM  
RAM  
Power Down  
Power-down mode on when set to 0, Off when set to 1  
1
1
If set to 0 this bit forces “RESET or HOLD” depending on the setting of  
RESET_HOLD bit in Register 11. If set to 0 RESET or HOLD are asserted.  
Set for 1 for normal operation.  
RESET or  
HOLD  
12  
13  
8
9
Reset  
RAM  
RAM  
General Test Mode Enable, Test Mode is only enabled, if this bit is set to 1  
This bit controls many test modes on the device.  
GTME  
Diagnostics  
0
14  
15  
16  
10  
11  
12  
REVISION0  
REVISION1  
REVISION2  
Status  
Status  
Status  
Read only: Revision Control Bit 0  
Read only: Revision Control Bit 1  
Read only: Revision Control Bit 2  
RAM  
RAM  
RAM  
When set to 0, all blocks are on. (TI Test-GTME)  
When set to 1, the VCXO Input, AUX Input and all output buffers and divider  
blocks are disabled. This test is done to measure the effect of the I/O circuitry  
on the Charge Pump. (TI Test-GTME)  
17  
18  
13  
14  
PD_IO  
Diagnostics  
0
0
RAM  
RAM  
If set to 0 that Status pin is used as CMOS output to enable TI test modes.  
Set to 1 when IREFRES is set to 1 and 12-Kresistor is connected. (TI  
Test-GTME)  
SXOIREF  
Diagnostics  
Diagnostics  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
SHOLD  
Routes the HOLD signal to the PLL_LOCK pin when set to 1 (TI Test-GTME)  
0
0
RAM  
RAM  
RESERVED  
STATUS0  
TI test registers. For TI use only  
Route internal signals to external STATUS pin.  
STATUS3, STATUS2, STATUS1, STATUS0 (S3, S2, S1, S0) will select that  
internal status signal that will be routed to the external STATUS pin.  
STATUS1  
Diagnostics  
1
RAM  
STATUS2  
STATUS3  
TITSTCFG0  
TITSTCFG1  
TITSTCFG2  
TITSTCFG3  
PRIACTIVITY  
SECACTIVITY  
RESERVED  
Diagnostics  
Diagnostics  
Diagnostics  
Diagnostics  
Status  
TI test registers. For TI use only  
0
0
0
0
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
TI test registers. For TI use only  
TI test registers. For TI use only  
TI test registers. For TI use only  
It indicates activity on the Primary when set to - (read only bit)  
It indicates activity on the Secondary when set to - (read only bit)  
Status  
NOTE:  
If TI test bits (Register 12< RAM bits 17,18,19, 20> are set to 1000, Reference Select  
from the Smart Mux will show on the STATUS pin ( High = Primary REF is selected  
and Low = Secondary REF is selected).  
When TI test bits are set to 0000 the Reference Clock Frequency Detector shows up  
on the STATUS pin. In this mode the STATUS pin goes high if a clock is detected and  
low if a clock is not detected. In this configuration Register 3 Bit 0 should be set to 0.  
Copyright © 2008–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Link(s): CDCE72010  
 
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
OUTPUT DIVIDERS SETTINGS  
The CDCE72010 has a complex multi stage output divider. The table below describes the setting of Bits 13:19 of  
Register 1 to 8 and the setting for the feedback divider bits 5:11 of register 11. The table below describes divider  
settings and the phase relation of the outputs with respect to divide by one clock. To calculate the phase relation  
between 2 different dividers see Output Divider and Phase Adjust Section in this document.  
Table 7. Output Dividers and Feedback Divide Settings and Phase Output  
FOR REGISTER 1 TO 8 RAM BITS {19[BIT6] TO  
DIVIDE BY  
TOTAL  
13[BIT0]}  
PHASE LAG FROM DIVIDE BY 1  
FOR REGISTER 11 RAM BITS {11[BIT6] TO 5[BIT0]}  
[Bit 6] [Bit 5] [Bit 4] [Bit 3] [Bit 2] [Bit 1] [Bit 0]  
Cycle  
0
Degree  
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
2
0.5  
0
180  
3
0
4
0.5  
0
180  
5
0
4'  
14.5  
21  
5220  
7560  
10260  
12600  
5940  
8640  
11700  
14400  
6660  
9720  
13140  
16200  
7380  
10800  
14580  
18000  
8100  
11880  
16020  
19800  
8820  
12960  
17460  
21600  
9540  
14040  
18900  
23400  
10260  
15120  
20340  
25200  
6
8
28.5  
35  
10  
8'  
16.5  
24  
12  
16  
20  
12'  
18  
24  
30  
16'  
24'  
32  
40  
20'  
30'  
40'  
50  
24'  
36  
48  
60  
28  
42  
56  
70  
32'  
48'  
64  
80  
32.5  
40  
18.5  
27  
36.5  
45  
20.5  
30  
40.5  
50  
22.5  
33  
44.5  
55  
24.5  
36  
48.5  
60  
26.5  
39  
52.5  
65  
28.5  
42  
56.5  
70  
34  
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
 
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
CONFIGURATION DEFAULT MODE  
The CDCE72010 has two modes of operation, SPI Interface and Configuration Default Mode. The Configuration  
Default mode is selected when MODE_SELECT Pin is driven low and it is used where SPI interface is not  
available. In the CD Mode configuration, the SPI interface Pins become static control pins CD1, CD2, CD3 and  
AUX_SEL as shown in the Pin description. The CD Mode signals are sampled only at power up or after Power  
Down are asserted.  
In CD Mode BYPASS, CD1 and CD2 are used to switch between EEPROM saved configurations. -CD1 allows  
swapping Divider and Phase Adjust value between output couples.  
CD2 allows changing the output type for each output.  
AUX_SEL Controls the Output Mux between VCXO and AUX Input.  
CD3 must be grounded in CD Mode.  
Without any interface a single device with a single program can have multiple configurations that can be  
implemented on more than one socket.  
RAM Resistors  
RAM Resistors  
PLL_LOCK  
REF_SEL  
PLL_LOCK  
REF_SEL  
POWER DOWN  
RESET or HOLD  
MODE_SEL  
POWER DOWN  
RESET or HOLD  
MODE_SEL  
Interface  
& Control  
Interface  
& Control  
AUX_SEL  
AUX_SEL  
EEPROM  
EEPROM  
SPI_MISO  
SPI_LE (CD1)  
SPI_CLK (CD2)  
SPI_MOSI (CD3)  
CD1  
CD2  
CD3  
Figure 13. Writing to EEPROM via SPI Bus in  
Manufacutring,  
Figure 14. Using CD1, CD2 to Control What is Copied  
From EEPROM Into RAM Registers at Power Up  
3rd Party Vendor or at TI Test  
Copyright © 2008–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Link(s): CDCE72010  
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
Register 0: CD Mode  
SPI  
BIT  
RAM  
BIT  
RELATED  
BLOCK  
POWER UP  
CONDITION  
BIT NAME  
DESCRIPTION/FUNCTION  
0
1
2
3
4
5
6
A0  
A1  
A2  
A3  
Address 0  
Address 1  
Address 2  
Address 3  
0
0
0
0
0
1
2
INBUFSELX  
INBUFSELY  
PRISEL  
Reference Input  
Buffers  
Primary and Secondary Buffer Type Select (LVPECL,LVDS or LVCMOS)  
XY(10) LVPECL, (11) LVDS, (00) LVCMOS- Input is Positive Pin  
EEPROM  
When REFSELCNTRL is set to 1 the following settings apply:  
If RAM Bit (2,3): 00 – no Input Buffer is selected/active  
If RAM Bit (2,3): 10 – PRI_BUF is selected, SEC_BUF is powered down  
If RAM Bit (2,3): 01 – SEC_BUF is selected, PRI_BUF is powered down(1)  
If RAM Bit (2,3): 11 – Auto Select (PRI then SEC).  
Reference Input  
Buffer  
EEPROM  
7
8
3
4
SECSEL  
When set to 0, PRI- or SEC-Clocks are selected, depending on Bits 2 and 3  
(default)  
When set to 1, VCXO/AUX-clock selected, overwrites Bits 2 and 3  
Divider START  
DETERM-Block  
VCXOSEL  
EEPROM  
EEPROM  
Reference Select Control to select if the control of the reference is from the  
internal bit in Register 0 RAM bits 2 and 3 or from the external select pin.  
- When set to 0: The external pin REF_SEL takes over the selection between  
PRI and SEC. Autoselect is not available.  
- When set to 1: The external pin REF_SEL is ignored. The Table in (Register 0  
<2 and 3> ) describes, which reference input clock is selected and available at  
(none, PRI, SEC or Autoselect). In autoselect mode, refer to the timing diagram  
Reference  
Selection Control  
9
5
REFSELCNTRL  
10  
11  
12  
6
7
8
DELAY_PFD0  
DELAY_PFD1  
CP_MODE  
PFD  
PFD  
PFD Pulse Width PFD Bit 0  
EEPROM  
EEPROM  
EEPROM  
PFD Pulse Width PFD Bit 1  
Selects 3V option [0] or 5V option [1]  
Charge Pump  
Determines in which direction CP current will regulate (Reference Clock leads to  
Feedback Clock; Positive CP output current [0]; Negative CP output current [1]  
13  
14  
9
CP_DIR  
EEPROM  
EEPROM  
Switches the current source in the Charge Pump on when set to 1 (TI  
Test-GTME)  
10  
CP_SRC  
Diagnostics  
15  
16  
17  
18  
19  
20  
21  
22  
23  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CP_SNK  
CP_OPA  
CP_PRE  
ICP0  
Switches the current sink in the Charge Pump on when set to 1 (TI Test-GTME)  
Switches the Charge Pump op-amp off when set to 1 (TI Test-GTME)  
Preset Charge Pump output voltage to VCC_CP/2, on [1], off [0]  
CP Current Setting Bit 0  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
ICP1  
Charge Pump  
CP Current Setting Bit 1  
ICP2  
CP Current Setting Bit 2  
ICP3  
CP Current Setting Bit 3  
RESERVED  
RESERVED  
Enables the 12k pull-down resistor at I_REF_CP Pin when set to 1 (TI  
Test-GTME)  
24  
20  
IREFRES  
Diagnostics  
EEPROM  
25  
26  
27  
28  
29  
30  
31  
21  
22  
23  
24  
25  
26  
27  
PECL0HISWING  
RESERVED  
Output 0  
High output voltage swing in LVPECL Mode if set to 1  
EEPROM  
EEPROM  
EEPROM  
RESERVED  
OUTBUF0CD2LX  
OUTBUF0CD2LY  
OUTBUF0CD2HX  
OUTBUF0CD2HY  
Output Buffer 0 Signaling Selection when CD2 In low  
(X,Y) = 01: LVPECL, 11: LVDS, 00: LVCMOS, 10: Output Disable  
CD2 Low  
CD2 High  
EEPROM  
EEPROM  
Output Buffer 0 Signaling Selection when CD2 in high  
(X,Y) = 01: LVPECL, 11: LVDS, 00: LVCMOS, 10: output disable  
(1) This setting is only avaiable if the Register 11 Bit 2 is set to 0 (Feedback Divider clock is set to CMOS type).  
36  
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
 
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
Register 1: CD Mode  
SPI  
BIT  
RAM  
BIT  
RELATED  
BLOCK  
POWER UP  
CONDITION  
BIT NAME  
DESCRIPTION/FUNCTION  
0
1
A0  
A1  
A2  
A3  
Address 0  
Address 1  
Address 2  
Address 3  
1
0
2
0
3
0
4
0
1
ACDCSEL  
Input Buffers  
Input Buffers  
Input Buffers  
Input Buffers  
Input Buffers  
Input Buffers  
If Set to 0 AC Termination, If set to 1 DC termination  
If Set to 1 Input Buffers Hysteresis enabled  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
5
HYSTEN  
6
2
TERMSEL  
If Set to 0 Input Buffer Internal Termination enabled  
7
3
PRIINVBB  
If Set to 1 Primary Input Negative Pin biased with internal VBB voltage.  
If Set to 1 Secondary Input Negative Pin biased with internal VBB voltage  
If Set to 1 Fail Safe is enabled for all input buffers.  
8
4
SECINVBB  
9
5
FAILSAFE  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
6
PH1ADJC0  
7
PH1ADJC1  
8
PH1ADJC2  
9
PH1ADJC3  
Output 0 and 1  
Coarse phase adjust select for output divider 1  
EEPROM  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
PH1ADJC4  
PH1ADJC5  
PH1ADJC6  
OUT1DIVRSEL0  
OUT1DIVRSEL1  
OUT1DIVRSEL2  
OUT1DIVRSEL3  
OUT1DIVRSEL4  
OUT1DIVRSEL5  
OUT1DIVRSEL6  
OUTPUT DIVIDER 1 Ratio Select  
(See Table 7)  
Output 0 and 1  
EEPROM  
When set to 0, the divider is disabled  
When set to 1, the divider is enabled  
24  
25  
20  
21  
EN01DIV  
Output 0 and 1  
Output 1  
EEPROM  
EEPROM  
PECL1HISWING  
High output voltage swing in LVPECL Mode if set to 1  
CD1 PIN is high and DIVPHA1CD1H is set to low  
Loads Output Divider 1 and Phase Adjust 1 into OUTPUT 1  
CD1 PIN is high and DIVPHA1CD1H is set to high  
Loads Output Divider 2 and Phase Adjust 2 into OUTPUT 1  
26  
27  
22  
23  
DIVPHA1CD1H  
DIVPHA1CD1L  
CD1 High  
CD1 Low  
EEPROM  
CD1 PIN is low and DIVPHA1CD1L is set to low  
Loads Output Divider 1 and Phase Adjust 1 into OUTPUT 1  
CD1 PIN is low and DIVPHA1CD1L is set to high  
EEPROM  
EEPROM  
EEPROM  
Loads Output Divider 2 and Phase Adjust 2 into OUTPUT 1  
28  
29  
30  
31  
24  
25  
26  
27  
OUTBUF1CD2LX  
OUTBUF1CD2LY  
OUTBUF1CD2HX  
OUTBUF1CD2HY  
Output Buffer 1 Signaling Selection when CD2 in low  
(X,Y) = 01: LVPECL, 11: LVDS, 00: LVCMOS, 10: Output Disable  
CD2 Low  
CD2 High  
Output Buffer 1 Signaling Selection when CD2 in high  
(X,Y) = 01: LVPECL, 11: LVDS, 00: LVCMOS, 10: Output Disable  
Copyright © 2008–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Link(s): CDCE72010  
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
Register 2: CD Mode  
SPI  
BIT  
RAM  
BIT  
RELATED  
BLOCK  
POWER UP  
CONDITION  
BIT NAME  
DESCRIPTION/FUNCTION  
0
1
A0  
A1  
A2  
A3  
Address 0  
Address 1  
Address 2  
Address 3  
0
1
0
0
2
3
4
0
1
DLYM0  
Reference Phase Delay M Bit0  
Reference Phase Delay M Bit1  
Reference Phase Delay M Bit2  
Feedback Phase Delay N Bit0  
Feedback Phase Delay N Bit1  
Feedback Phase Delay N Bit2  
5
DLYM1  
DELAY M  
DELAY N  
EEPROM  
EEPROM  
6
2
DLYM2  
7
3
DLYN0  
8
4
DLYN1  
9
5
DLYN2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
6
PH2ADJC0  
PH2ADJC1  
PH2ADJC2  
PH2ADJC3  
PH2ADJC4  
PH2ADJC5  
PH2ADJC6  
OUT2DIVRSEL0  
OUT2DIVRSEL1  
OUT2DIVRSEL2  
OUT2DIVRSEL3  
OUT2DIVRSEL4  
OUT2DIVRSEL5  
OUT2DIVRSEL6  
7
8
9
Output 2  
Coarse phase adjust select for output divider 2  
EEPROM  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
OUTPUT DIVIDER 2 Ratio Select  
(See Table 7)  
Output 2  
EEPROM  
When set to 0, the divider is disabled  
When set to 1, the divider is enabled  
24  
25  
20  
21  
EN2DIV  
Output 2  
Output 2  
EEPROM  
EEPROM  
PECL2HISWING  
High output voltage swing in LVPECL Mode if set to 1  
CD1 PIN is high and DIVPHA2CD1H is set to low  
Loads Output Divider 2 and Phase Adjust 2 into OUTPUT 2  
CD1 PIN is high and DIVPHA2CD1H is set to high  
Loads Output Divider 1 and Phase Adjust 1 into OUTPUT 2  
26  
27  
22  
23  
DIVPHA2CD1H  
DIVPHA2CD1L  
CD1 High  
CD1 Low  
EEPROM  
EEPROM  
CD1 PIN is low and DIVPHA2CD1L is set to low  
Loads Output Divider 2 and Phase Adjust 2 into OUTPUT 2  
CD1 PIN is low and DIVPHA2CD1L is set to high  
Loads Output Divider 1 and Phase Adjust 1 into OUTPUT 2  
28  
29  
30  
31  
24  
25  
26  
27  
OUTBUF2CD2LX  
OUTBUF2CD2LY  
OUTBUF2CD2HX  
OUTBUF2CD2HY  
Output Buffer 2 Signaling Selection when CD2 in low  
(X,Y) = 01: LVPECL, 11: LVDS, 00: LVCMOS, 10: Output Disable  
CD2 Low  
CD2 High  
EEPROM  
EEPROM  
Output Buffer 2 Signaling Selection when CD2 in high  
(X,Y) = 01: LVPECL, 11: LVDS, 00: LVCMOS, 10: Output Disable  
38  
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
Register 3: CD Mode  
SPI  
BIT  
RAM  
BIT  
RELATED  
BLOCK  
POWER UP  
CONDITION  
BIT NAME  
DESCRIPTION/FUNCTION  
0
1
2
3
A0  
A1  
A2  
A3  
Address 0  
Address 1  
Address 2  
Address 3  
1
1
0
0
When set to 0, the REF-clock frequency detector is ON  
When set to 1, it is switched OFF  
4
0
DIS_FDET_REF  
PLL Freq. Detect  
EEPROM  
When set to 1, the feedback path frequency detector is switched OFF  
(TI Test-GTME)  
5
6
1
2
DIS_FDET_FB  
Diagnostics  
EEPROM  
EEPROM  
BIAS_DIV01<0>  
When BIAS_DIV01<1:0> =  
Output Divider  
0 and 1  
00, No current reduction for all output-divider  
01, Current reduction for all output-divider by about 20%  
10, Current reduction for all output-divider by about 30%  
7
8
9
3
4
5
BIAS_DIV01<1>  
BIAS_DIV23<0>  
BIAS_DIV23<1>  
EEPROM  
EEPROM  
EEPROM  
When BIAS_DIV23<1:0> =  
Output Divider  
2 and 3  
00, No current reduction for all output-divider  
01, Current reduction for all output-divider by about 20%  
10, Current reduction for all output-divider by about 30%  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
6
PH3ADJC0  
7
PH3ADJC1  
8
PH3ADJC2  
9
PH3ADJC3  
Output 3  
Coarse phase adjust select for output divider 3  
EEPROM  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
PH3ADJC4  
PH3ADJC5  
PH3ADJC6  
OUT3DIVRSEL0  
OUT3DIVRSEL1  
OUT3DIVRSEL2  
OUT3DIVRSEL3  
OUT3DIVRSEL4  
OUT3DIVRSEL5  
OUT3DIVRSEL6  
OUTPUT DIVIDER 3 Ratio Select  
(See Table 7)  
Output 3  
EEPROM  
When set to 0, the divider is disabled  
When set to 1, the divider is enabled  
24  
25  
20  
21  
EN3DIV  
Output 3  
Output 3  
EEPROM  
EEPROM  
PECL3HISWING  
High Output Voltage Swing in LVPECL Mode if set to 1  
CD1 PIN is high and DIVPHA3CD1H is set to low  
Loads Output Divider 3 and Phase Adjust 3 into OUTPUT 3  
CD1 PIN is high and DIVPHA3CD1H is set to high  
Loads Output Divider 4 and Phase Adjust 4 into OUTPUT 3  
26  
27  
22  
23  
DIVPHA3CD1H  
DIVPHA3CD1L  
CD1 High  
CD1 Low  
EEPROM  
EEPROM  
CD1 PIN is Low and DIVPHA3CD1L is set to low  
Loads Output Divider 3 and Phase Adjust 3 into OUTPUT 3  
CD1 PIN is Low and DIVPHA3CD1L is set to high  
Loads Output Divider 4 and Phase Adjust 4 into OUTPUT 3  
28  
29  
30  
31  
24  
25  
26  
27  
OUTBUF3CD2LX  
OUTBUF3CD2LY  
OUTBUF3CD2HX  
OUTBUF3CD2HY  
Output Buffer 3 Signaling Selection when CD2 in low  
(X,Y) = 01:LVPECL, 11: LVDS, 00: LVCMOS, 10: Output Disable  
CD2 Low  
CD2 High  
EEPROM  
EEPROM  
Output Buffer 3 Signaling Selection when CD2 in high  
(X,Y) = 01: LVPECL, 11: LVDS, 00: LVCMOS, 10: Output Disable  
Copyright © 2008–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Link(s): CDCE72010  
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
Register 4: CD Mode  
SPI  
BIT  
RAM  
BIT  
RELATED  
BLOCK  
POWER UP  
CONDITION  
BIT NAME  
DESCRIPTION/FUNCTION  
0
1
2
3
4
5
6
7
A0  
A1  
A2  
A3  
Address 0  
Address 1  
Address 2  
Address 3  
0
0
1
0
0
1
2
3
RESERVED  
RESERVED  
RESERVED  
RESERVED  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
If set to 1 it will 3-state the charge pump to act as a HOLD on Loss of Reference  
Clocks ( Primary and Secondary)  
8
4
HOLDONLOR  
HOLD- Over  
EEPROM  
EEPROM  
9
5
RESERVED  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
6
PH4ADJC0  
7
PH4ADJC1  
8
PH4ADJC2  
9
PH4ADJC3  
Output 4  
Coarse phase adjust select for output divider 4  
EEPROM  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
PH4ADJC4  
PH4ADJC5  
PH4ADJC6  
OUT4DIVRSEL0  
OUT4DIVRSEL1  
OUT4DIVRSEL2  
OUT4DIVRSEL3  
OUT4DIVRSEL4  
OUT4DIVRSEL5  
OUT4DIVRSEL6  
OUTPUT DIVIDER 4 Ratio Select  
(See Table 7)  
Output 4  
EEPROM  
When set to 0, the divider is disabled  
When set to 1, the divider is enabled  
24  
25  
20  
21  
EN4DIV  
Output 4  
Output 4  
EEPROM  
EEPROM  
PECL4HISWING  
High Output Voltage Swing in LVPECL Mode if set to 1  
CD1 PIN is high and DIVPHA4CD1H is set to low  
Loads Output Divider 4 and Phase Adjust 4 into OUTPUT 4  
CD1 PIN is high and DIVPHA4CD1H is set to high  
Loads Output Divider 3 and Phase Adjust 3 into OUTPUT 4  
26  
27  
22  
23  
DIVPHA4CD1H  
DIVPHA4CD1L  
CD1 High  
CD1 Low  
EEPROM  
EEPROM  
CD1 PIN is low and DIVPHA4CD1L is set to low  
Loads Output Divider 4 and Phase Adjust 4 into OUTPUT 4  
CD1 PIN is low and DIVPHA4CD1L is set to high  
Loads Output Divider 3 and Phase Adjust 3 into OUTPUT 4  
28  
29  
30  
31  
24  
25  
26  
27  
OUTBUF4CD2LX  
OUTBUF4CD2LY  
OUTBUF4CD2HX  
OUTBUF4CD2HY  
Output Buffer 4 Signaling Selection when CD2 in low  
(X,Y) = 01: LVPECL, 11: LVDS, 00: LVCMOS, 10: Output Disable  
CD2 Low  
CD2 High  
EEPROM  
EEPROM  
Output Buffer 4 Signaling Selection when CD2 in high  
(X,Y) = 01: LVPECL, 11: LVDS, 00: LVCMOS, 10: Output Disable  
40  
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
Register 5: CD Mode  
SPI  
BIT  
RAM  
BIT  
RELATED  
BLOCK  
POWER UP  
CONDITION  
BIT NAME  
DESCRIPTION/FUNCTION  
0
1
2
3
4
A0  
A1  
A2  
A3  
Address 0  
1
0
1
0
Address 1  
Address 2  
Address 3  
0
1
2
3
BIAS_DIV45<0>  
BIAS_DIV45<1>  
BIAS_DIV67<0>  
BIAS_DIV67<1>  
When BIAS_DIV45<1:0> =  
00, No current reduction for all output-divider  
01, Current reduction for all output-divider by about 20%  
10, Current reduction for all output-divider by about 30%  
Output Divider  
4 and 5  
EEPROM  
EEPROM  
5
6
7
When BIAS_DIV67<1:0> =  
Output Divider  
6 and 7  
00, No current reduction for all output-divider  
01, Current reduction for all output-divider by about 20%  
10, Current reduction for all output-divider by about 30%  
8
4
5
RESERVED  
EEPROM  
EEPROM  
9
RESERVED  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
6
PH5ADJC0  
7
PH5ADJC1  
8
PH5ADJC2  
9
PH5ADJC3  
Output 5  
Coarse phase adjust select for output divider 5  
EEPROM  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
PH5ADJC4  
PH5ADJC5  
PH5ADJC6  
OUT5DIVRSEL0  
OUT5DIVRSEL1  
OUT5DIVRSEL2  
OUT5DIVRSEL3  
OUT5DIVRSEL4  
OUT5DIVRSEL5  
OUT5DIVRSEL6  
OUTPUT DIVIDER 5 Ratio Select  
(See Table 7)  
Output 5  
EEPROM  
When set to 0, the divider is disabled  
When set to 1, the divider is enabled  
24  
25  
20  
21  
EN5DIV  
Output 5  
Output 5  
EEPROM  
EEPROM  
PECL5HISWING  
High Output Voltage Swing in LVPECL Mode if set to 1  
CD1 PIN is high and DIVPHA5CD1H is set to low  
Loads Output Divider 5 and Phase Adjust 5 into OUTPUT 5  
CD1 PIN is high and DIVPHA5CD1H is set to high  
Loads Output Divider 6 and Phase Adjust 6 into OUTPUT 5  
26  
27  
22  
23  
DIVPHA5CD1H  
DIVPHA5CD1L  
CD1 High  
CD1 Low  
EEPROM  
EEPROM  
CD1 PIN is low and DIVPHA5CD1L is set to low  
Loads Output Divider 5 and Phase Adjust 5 into OUTPUT 5  
CD1 PIN is low and DIVPHA5CD1L is set to high  
Loads Output Divider 6 and Phase Adjust 6 into OUTPUT 5  
28  
29  
30  
31  
24  
25  
26  
27  
OUTBUF5CD2LX  
OUTBUF5CD2LY  
OUTBUF5CD2HX  
OUTBUF5CD2HY  
Output Buffer 5 Signaling Selection when CD2 in low  
(X,Y) = 01: LVPECL, 11: LVDS, 00: LVCMOS, 10: Output Disable  
CD2 Low  
CD2 High  
EEPROM  
EEPROM  
Output Buffer 5 Signaling Selection when CD2 in high  
(X,Y) = 01: LVPECL, 11: LVDS, 00: LVCMOS, 10: Output Disable  
Copyright © 2008–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Link(s): CDCE72010  
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
Register 6: CD Mode  
SPI  
BIT  
RAM  
BIT  
RELATED  
BLOCK  
POWER UP  
CONDITION  
BIT NAME  
DESCRIPTION/FUNCTION  
0
1
2
3
A0  
A1  
A2  
A3  
Address 0  
Address 1  
Address 2  
Address 3  
0
1
1
0
0 Feedback Frequency Detector is connected to the Lock Detector  
1 Feedback Frequency Detector is disconnected from the Lock Detector  
4
5
6
0
1
2
FB_FD_DESEL  
RESERVED  
LOCK-DET  
EEPROM  
Set to “0”  
0 FB-Deterministic Clock divided by 1  
1 FB- Deterministic Clock divided by 2  
FBDETERM_DIV_SEL  
FB-Divider /  
Deterministic  
Blocks  
0 FB-Deterministic-DIV2-Block in normal operation  
1 FB-Deterministic-DIV2 reset (here REG6_RB<2> == “0”)  
7
8
9
3
4
5
FBDETERM_DIV2_DIS  
FB_START_BYPASS  
DET_START_BYPASS  
EEPROM  
EEPROM  
0 FB-Divider started with delay block (RC), normal operation  
1 FB-Divider can be started with external REF_SEL-signal (pin)  
All Output  
Dividers  
0 Output-Dividers started with delay block (RC), normal operation  
1 Output-Dividers can be started with external NRESET-signal (pin)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
6
PH6ADJC0  
7
PH6ADJC1  
8
PH6ADJC2  
9
PH6ADJC3  
Output 6  
Coarse phase adjust select for output divider 6  
EEPROM  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
PH6ADJC4  
PH6ADJC5  
PH6ADJC6  
OUT6DIVRSEL0  
OUT6DIVRSEL1  
OUT6DIVRSEL2  
OUT6DIVRSEL3  
OUT6DIVRSEL4  
OUT6DIVRSEL5  
OUT6DIVRSEL6  
OUTPUT DIVIDER 6 Ratio Select  
(See Table 7)  
Output 6  
EEPROM  
When set to 0, the divider is disabled  
When set to 1, the divider is enabled  
24  
25  
20  
21  
EN6DIV  
Output 6  
Output 6  
EEPROM  
EEPROM  
PECL6HISWING  
High Output Voltage Swing in LVPECL Mode if set to 1  
CD1 PIN is high and DIVPHA6CD1H is set to low  
Loads Output Divider 6 and Phase Adjust 6 into OUTPUT 6  
CD1 PIN is high and DIVPHA6CD1H is set to high  
Loads Output Divider 5 and Phase Adjust 5 into OUTPUT 6  
26  
27  
22  
23  
DIVPHA6CD1H  
DIVPHA6CD1L  
CD1 High  
CD1 Low  
EEPROM  
EEPROM  
CD1 PIN is low and DIVPHA6CD1L is set to low  
Loads Output Divider 6 and Phase Adjust 6 into OUTPUT 6  
CD1 PIN is low and DIVPHA6CD1L is set to high  
Loads Output Divider 5 and Phase Adjust 5 into OUTPUT 6  
28  
29  
30  
31  
24  
25  
26  
27  
OUTBUF6CD2LX  
OUTBUF6CD2LY  
OUTBUF6CD2HX  
OUTBUF6CD2HY  
Output Buffer 6 Signaling Selection when CD2 in low  
(X,Y) = 01: LVPECL, 11: LVDS, 00: LVCMOS, 10: Output Disable  
CD2 Low  
CD2 High  
EEPROM  
EEPROM  
Output Buffer 6 Signaling Selection when CD2 in high  
(X,Y) = 01: LVPECL, 11: LVDS, 00: LVCMOS, 10: Output Disable  
42  
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
Register 7: CD Mode  
SPI  
BIT  
RAM  
BIT  
RELATED  
BLOCK  
POWER UP  
CONDITION  
BIT NAME  
DESCRIPTION/FUNCTION  
0
1
A0  
A1  
A2  
A3  
Address 0  
Address 1  
Address 2  
Address 3  
1
1
1
0
2
3
4
0
1
LOCKW 0  
Lock-detect window bit 0 (Refer to Reg 9 RAM Bits 6 and 7)  
Lock-detect window bit 1 (Refer to Reg 9 RAM Bits 6 and 7)  
Set to 0  
5
LOCKW 1  
6
2
RESERVED  
LOCKC0  
LOCK-DET  
EEPROM  
7
3
Number of coherent lock events bit 0  
8
4
LOCKC1  
Number of coherent lock events bit 1  
9
5
ADLOCK  
Selects Digital PLL_LOCK 0 ,Selects Analog PLL_LOCK 1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
6
PH7ADJC0  
7
PH7ADJC1  
8
PH7ADJC2  
9
PH7ADJC3  
Output 7  
Coarse phase adjust select for output divider 7  
EEPROM  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
PH7ADJC4  
PH7ADJC5  
PH7ADJC6  
OUT7DIVRSEL0  
OUT7DIVRSEL1  
OUT7DIVRSEL2  
OUT7DIVRSEL3  
OUT7DIVRSEL4  
OUT7DIVRSEL5  
OUT7DIVRSEL6  
OUTPUT DIVIDER 7 Ratio Select  
(See Table 7)  
Output 7  
EEPROM  
When set to 0, the divider is disabled  
When set to 1, the divider is enabled  
24  
25  
20  
21  
EN7DIV  
Output 7  
Output 7  
EEPROM  
EEPROM  
PECL7HISWING  
High Output Voltage Swing in LVPECL Mode if set to 1  
CD1 PIN is high and DIVPHA7CD1H is set to low  
Loads Output Divider 7 and Phase Adjust 7 into OUTPUT 7  
CD1 PIN is high and DIVPHA7CD1H is set to high  
Loads Output Divider 8 and Phase Adjust 8 into OUTPUT 7  
26  
27  
22  
23  
DIVPHA7CD1H  
DIVPHA7CD1L  
CD1 High  
CD1 Low  
EEPROM  
EEPROM  
CD1 PIN is low and DIVPHA7CD1L is set to low  
Loads Output Divider 7 and Phase Adjust 7 into OUTPUT 7  
CD1 PIN is low and DIVPHA7CD1L is set to high  
Loads Output Divider 8 and Phase Adjust 8 into OUTPUT 7  
28  
29  
30  
31  
24  
25  
26  
27  
OUTBUF7CD2LX  
OUTBUF7CD2LY  
OUTBUF7CD2HX  
OUTBUF7CD2HY  
Output Buffer 7 Signaling Selection when CD2 in low  
(X,Y) = 01: LVPECL, 11: LVDS, 00: LVCMOS, 10: Output Disable  
CD2 Low  
CD2 High  
EEPROM  
EEPROM  
Output Buffer 7 Signaling Selection when CD2 in high  
(X,Y) = 01: LVPECL, 11: LVDS, 00: LVCMOS, 10: Output Disable  
Copyright © 2008–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Link(s): CDCE72010  
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
Register 8: CD Mode  
SPI  
BIT  
RAM  
BIT  
RELATED  
BLOCK  
POWER UP  
CONDITION  
BIT NAME  
DESCRIPTION/FUNCTION  
0
1
A0  
A1  
A2  
A3  
Address 0  
Address 1  
Address 2  
Address 3  
0
0
0
1
2
3
4
0
1
VCXOBUFSELX  
VCXOBUFSELY  
VCXOACDCSEL  
VCXOHYSTEN  
VCXOTERMSEL  
VCXOINVBB  
VCXO and AUX Input Buffer Type Select (LVPECL,LVDS or LVCMOS)  
XY(10) LVPECL, (11) LVDS, (00) LVCMOS- Input is Positive Pin  
If Set to 0 AC Termination, If set to 1 DC Termination  
If Set to 1 Input Buffers Hysteresis enabled  
5
VCXO and AUX  
Input Buffers  
VCXO Input Buffer  
6
2
EEPROM  
EEPROM  
7
3
8
4
If Set to 0 Input Buffer Internal Termination enabled  
9
5
VCXO Input Buffer If Set to 1 It biases VCXO Input negative pin with internal VCXOVBB voltage  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
6
PH8ADJC0  
7
PH8ADJC1  
8
PH8ADJC2  
9
PH8ADJC3  
Output 8 and 9  
Coarse phase adjust select for output divider 8 and 9  
EEPROM  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
PH8ADJC4  
PH8ADJC5  
PH8ADJC6  
OUT8DIVRSEL0  
OUT8DIVRSEL1  
OUT8DIVRSEL2  
OUT8DIVRSEL3  
OUT8DIVRSEL4  
OUT8DIVRSEL5  
OUT8DIVRSEL6  
OUTPUT DIVIDER 8 and 9 Ratio Select  
(See Table 7)  
Output 8 and 9  
EEPROM  
When set to 0, the divider is disabled  
When set to 1, the divider is enabled  
24  
25  
20  
21  
EN89DIV  
Output 8 and 9  
Output 8  
EEPROM  
EEPROM  
PECL8HISWING  
High Output Voltage Swing in LVPECL Mode if set to 1  
CD1 PIN is high and DIVPHA8CD1H is set to low  
Loads Output Divider 8 and Phase Adjust 8 into OUTPUT 8  
CD1 PIN is high and DIVPHA8CD1H is set to high  
Loads Output Divider 7 and Phase Adjust 7 into OUTPUT 8  
26  
27  
22  
23  
DIVPHA8CD1H  
DIVPHA8CD1L  
CD1 High  
CD1 Low  
EEPROM  
EEPROM  
CD1 PIN is low and DIVPHA8CD1L is set to low  
Loads Output Divider 8 and Phase Adjust 8 into OUTPUT 8  
CD1 PIN is low and DIVPHA8CD1L is set to high  
Loads Output Divider 7 and Phase Adjust 7 into OUTPUT 8  
28  
29  
30  
31  
24  
25  
26  
27  
OUTBUF8CD2LX  
OUTBUF8CD2LY  
OUTBUF8CD2HX  
OUTBUF8CD2HY  
Output Buffer 8 Signaling Selection when CD2 in low  
(X,Y) = 01: LVPECL, 11: LVDS, 00: LVCMOS, 10: Output Disable  
CD2 Low  
CD2 High  
EEPROM  
EEPROM  
Output Buffer 8 Signaling Selection when CD2 in high  
(X,Y) = 01: LVPECL, 11: LVDS, 00: LVCMOS, 10: Output Disable  
44  
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
Register 9: CD Mode  
SPI  
BIT  
RAM  
BIT  
RELATED  
BLOCK  
POWER UP  
CONDITION  
BIT NAME  
DESCRIPTION/FUNCTION  
0
1
2
3
4
5
6
A0  
A1  
A2  
A3  
Address 0  
Address 1  
Address 2  
Address 3  
1
0
0
1
0
1
2
HOLDF1  
HOLDF2  
HOLD  
Enables the Frequency Hold-Over Function 1 on 1, off 0  
Enables the Frequency Hold-Over Function 2 on 1, off 0  
3-State Charge Pump 0 - (equal to HOLD-Pin function)  
HOLD function always activated “1” (recommended for test purposes, only)  
Triggered by analog PLL Lock detect outputs  
If analog PLL Lock Signal is [1] (PLL locked), HOLD is activated  
If analog PLL Lock Signal is [0] (PLL not lock), HOLD is deactivated  
HOLD- Over  
EEPROM  
7
3
HOLDTR  
8
9
4
5
HOLD_CNT0  
HOLD_CNT1  
HOLD1 Function is reactivated after X Ref Clock Cycles. Defined by  
(HOLD_CNT0,HOLD_CNT1)::X= Number of Clock Cycles.  
For (00)::X=64, (01) ::X=128, (10)::X=256, (11)::X=512 Clock Cycles.  
10  
11  
6
7
LOCKW 2  
LOCKW 3  
Extended Lock-detect window Bit 2 (Also refer to Reg 7 RAM Bits 0 and 1)  
Extended Lock-detect window Bit 3 (Also refer to Reg 7 RAM Bits 0 and 1)  
LOCK-DET  
Chip CORE  
EEPROM  
EEPROM  
NOINV_RESHOL_IN  
T
When set to 0, SPI/HOLD_INT and SPI/RESET_INT inverted (default)  
When set to 1, SPI/HOLD_INT and SPI/RESET_INT not inverted  
12  
13  
8
9
When GTME = 0, this bit has no functionality, But when GTME = 1, then:  
When set to 0, START-Signal is synchronized to N/M Divider Input Clocks  
When set to 1, START-Sync N/M Divider in PLL are bypassed  
Diagnostic: PLL  
N/M Divider  
DIVSYNC_DIS  
EEPROM  
Divider START When set to 0, START-Signal is synchronized to VCXO-Clock  
DETERM-Block When set to 1, START-Sync Block is bypassed  
14  
15  
16  
10  
11  
12  
START_BYPASS  
INDET_BP  
EEPROM  
EEPROM  
EEPROM  
Divider START When set to 0, Sync Logic active when VCXO/AUX-Clocks are available  
DETERM-Block When set to 1, Sync Logic is independent from VCXO- and/or AUX-Clocks  
Divider START When set to 0, Sync Logic waits for 1st PLL_LOCK state  
DETERM-Block When set to 1, Sync Logic independent from 1st PLL_LOCK  
PLL_LOCK_BP  
When set to 0, Sync Logic is independent from VCXO/DIV_FB freq. (PLL-FD)  
When set to 1, Sync Logic is started for VCXO/DIV_FB > ~600KHz,  
stopped for VCXO/DIV_FB < ~600KHz  
Divider START  
DETERM-Block  
17  
13  
LOW_FD_FB_EN  
EEPROM  
EEPROM  
PLL  
M/FB-Divider  
When set to 0, M-Divider uses NHOLD1 as NPRESET  
When set to 1, M-Divider NOT preseted by NHOLD1  
18  
19  
14  
15  
NPRESET_MDIV  
BIAS_DIV_FB<0>  
When BIAS_DIV_FB<1:0> =  
Feedback  
Divider  
00, No current reduction for FB-Divider  
01, Current reduction for FB-Divider by about 20%  
10, Current reduction for FB-Divider by about 30%  
EEPROM  
20  
21  
22  
16  
17  
18  
BIAS_DIV_FB<1>  
BIAS_DIV89<0>  
BIAS_DIV89<1>  
When BIAS_DIV89<1:0> =  
Output Divider  
8 and 9  
00, No current reduction for all output-divider  
01, Current reduction for all output-divider by about 20%  
10, Current reduction for all output-divider by about 30%  
EEPROM  
EEPROM  
23  
24  
19  
20  
AUXINVBB  
If Set to 1 it Biases AUX Input Negative Pin with internal VCXOVBB voltage.  
AUX Buffer  
Output 9  
If Set to 1 AUX in input Mode Buffer is disabled. If Set to 0 it follows the  
behavior of FB_MUX_SEL and OUT_MUX_SEL bits settings.  
DIS_AUX_Y9  
25  
26  
27  
28  
29  
30  
31  
21  
22  
23  
24  
25  
26  
27  
PECL9HISWING  
RESERVED  
High Output Voltage Swing in LVPECL Mode if set to 1  
EEPROM  
EEPROM  
EEPROM  
RESERVED  
OUTBUF9CD2LX  
OUTBUF9CD2LY  
OUTBUF9CD2HX  
OUTBUF9CD2HY  
Output Buffer 9 Signaling Selection when CD2 in low  
(X,Y) = 01: LVPECL, 11: LVDS, 00: LVCMOS, 10: Output Disable  
CD2 Low  
CD2 High  
EEPROM  
EEPROM  
Output Buffer 9 Signaling Selection when CD2 in high  
(X,Y) = 01: LVPECL, 11: LVDS, 00: LVCMOS, 10: Output Disable  
Copyright © 2008–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Link(s): CDCE72010  
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
Register 10: CD Mode  
SPI  
BIT  
RAM  
BIT  
RELATED  
BLOCK  
POWER UP  
CONDITION  
BIT NAME  
DESCRIPTION/FUNCTION  
0
A0  
Address 0  
0
1
0
1
1
A1  
Address 1  
2
A2  
Address 2  
3
A3  
Address 3  
4
0
M0  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
N0  
Reference Divider M bit 0  
Reference Divider M bit 1  
Reference Divider M bit 2  
Reference Divider M bit 3  
Reference Divider M bit 4  
Reference Divider M bit 5  
Reference Divider M bit 6  
Reference Divider M bit 7  
Reference Divider M bit 8  
Reference Divider M bit 9  
Reference Divider M bit 10  
Reference Divider M bit 11  
Reference Divider M bit 12  
Reference Divider M bit 13  
VCXO Divider N bit 0  
VCXO Divider N bit 1  
VCXO Divider N bit 2  
VCXO Divider N bit 3  
VCXO Divider N bit 4  
VCXO Divider N Bit 5  
VCXO Divider N Bit 6  
VCXO Divider N Bit 7  
VCXO Divider N Bit 8  
VCXO Divider N Bit 9  
VCXO Divider N Bit 10  
VCXO Divider N Bit 11  
VCXO Divider N Bit 12  
VCXO Divider N Bit 13  
5
1
6
2
7
3
8
4
9
5
Reference  
(PRI/SEC)  
Divider M  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
6
EEPROM  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
N1  
N2  
N3  
N4  
N5  
N6  
VCXO/AUX/SEC  
Divider N  
EEPROM  
N7  
N8  
N9  
N10  
N11  
N12  
N13  
46  
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
Register11: CD Mode  
SPI  
BIT  
RAM  
BIT  
RELATED  
BLOCK  
POWER UP  
CONDITION  
BIT NAME  
DESCRIPTION/FUNCTION  
0
1
2
3
4
5
A0  
A1  
A2  
A3  
Address 0  
Address 1  
Address 2  
Address 3  
1
1
0
1
0
1
PRI_DIV2  
SEC_DIV2  
Input Buffers  
Input Buffers  
If set to 1 Enables Primary Reference Divide by 2  
If set to 1 Enables Secondary Reference Divide by 2  
EEPROM  
EEPROM  
FB Path Integer  
Counter 32  
When set to 0, FB divider is active  
When set to 1, FB divider is disabled  
6
7
2
3
FB_DIS  
EEPROM  
EEPROM  
FB Path Integer  
Counter 32  
When set to 0, FB clock is CMOS type  
When set to 1, FB clock is CML type and uses CML2CMOS converter in PLL  
FB_CML_SEL  
FB-Divider /  
Deterministic  
Blocks  
When set to 0, Input clock for FB not inverted (normal mode, low speed)  
When set to 1, Input clock for FB inverted (higher speed mode)  
8
4
FB_INCLK_INV  
EEPROM  
9
5
FB_COUNT32_0  
FB_COUNT32_1  
FB_COUNT32_2  
FB_COUNT32_3  
FB_COUNT32_4  
FB_COUNT32_5  
FB_COUNT32_6  
FB_PHASE0  
Feedback Counter Bit0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
6
Feedback Counter Bit1  
7
Feedback Counter Bit2  
FB Path Integer  
Counter 32  
(P divider)  
8
Feedback Counter Bit3  
EEPROM  
9
Feedback Counter Bit4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
Feedback Counter Bit5  
Feedback Counter Bit6  
Feedback Phase Adjust Bit0  
Feedback Phase Adjust Bit1  
Feedback Phase Adjust Bit2  
Feedback Phase Adjust Bit3  
Feedback Phase Adjust Bit4  
Feedback Phase Adjust Bit5  
Feedback Phase Adjust Bit6  
FB_PHASE1  
FB_PHASE2  
FB Path Integer  
Counter 32  
(P Divider)  
FB_PHASE3  
EEPROM  
FB_PHASE4  
FB_PHASE5  
FB_PHASE6  
If set to 0, PLL is in normal mode  
If set to 1, PLL is powered down  
23  
24  
25  
19  
20  
21  
PD_PLL  
PLL  
EEPROM  
EEPROM  
Clock Tree and  
Deterministic  
Block  
FB_MUX_SEL  
Table 8  
When set to 0, the VCXO Clock is selected for the Clock Tree and FB-Div/Det  
When set to 1, the AUX Clock is selected for the Clock Tree and FB-Div/Det.  
OUT_MUX_SEL  
Table 8  
If Set to 0 it selects the VCXO Clock and if Set to 1 it selects the AUX Clock  
EEPROM  
EEPROM  
Feed Back Path Selects FB/VCXO-Path when set to 0 (TI Test-GTME)  
The Secondary Reference clock input is selected when set to 1 (TI Test-GTME)  
26  
27  
28  
29  
30  
31  
22  
23  
24  
25  
26  
27  
FB_SEL  
Diagnostics  
NRESHAPE1  
SEL_DEL1  
RESET_HOLD  
EPLOCK  
Reshapes the Reference Clock Signal 0, Disable Reshape 1  
Reference  
Selection Control  
EEPROM  
If set to 0 it enables short delay for fast operation  
If Set to 1 Long Delay recommended for input references below 150Mhz.  
Reset Circuitry  
Status  
If set to 1 the RESET or HOLD pin acts as HOLD, set to 0 it acts as RESET.  
EEPROM  
EEPROM  
EEPROM  
Read only. If EPLOCK reads a 0, the EEPROM is unlocked. If EPLOCK reads a  
1, then the EEPROM is locked.  
EPSTATUS  
Status  
EEPROM Status  
Table 8. Output Buffers Source Feed, PLL Source Feed, and AUX IN/OUTPUT 9 Selection  
FB_MUX_SEL  
OUT_MUX_SEL  
PLL FEED AND OUTPUT FEED  
AUX INPUT OR OUTPUT 9  
0
1
0
1
0
0
1
1
VCXO::PLL, VCXO::Y0…Y9 and Deterministic Block  
AUXIN::PLL, VCXO::Y0…Y8 and Deterministic Block  
VCXO::PLL, AUXIN::Y0…Y8 and Deterministic Block  
AUXIN::PLL, AUXIN::Y0…Y8 and Deterministic Block  
OUTPUT 9 is Enabled(1)  
AUX IN is Enabled  
AUX IN is Enabled  
AUX IN is Enabled  
(1) Default  
Copyright © 2008–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Link(s): CDCE72010  
 
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
INTERFACE, CONFIGURATION, AND CONTROL  
The CDCE72010 is designed to support various applications with SPI bus interface and without. In the case  
where systems lack the SPI bus or a Boot up configuration is required at start up before the management layer is  
up the built in EEPROM is used to provide this function.  
The Interface bus takes the serialized address and data and writes to the specified RAM bits. The content of the  
RAM bits are connected to logical functions in the device. Changing the content of the RAM bits (high or low)  
instantly changes the logical functions inside the device.  
At power up or after power down is de-asserted the contents of the EEPROM bits are copied to their  
corresponding RAM bits. After that the content of RAM can be changed via the SPI bus. When writing to  
EEPROM commands are detected on the SPI bus the control logic begins writing the content of the RAM bits  
into the corresponding EEPROM bits. This process takes about 50ms. During this time the power supply should  
be above 3.2V.  
The on-chip EEPROM can be operated in its unlocked or locked mode. An unlocked EEPROM indicates that the  
stored bit values can be changed on another EEPROM write sequence (available for up to a 100 EEPROM write  
sequences). A locked EEPROM indicates that the stored bit values cannot be changed on another EEPROM  
write sequence.  
Control Signals  
RAM Registers  
Interface & Control  
SPI  
EEPROM Cells  
Figure 15. Interface Control  
UNIVERSAL INPUT AND REFERENCE CLOCK BUFFERS  
The CDCE72010 is designed to support what is referred to as a Universal Input Buffer structure. This type of  
buffer is designed to accept Differential or single ended inputs and it is sensitive enough to act as a LVPECL or  
LVDS in differential mode and LVCMOS in Single ended mode. With the proper external termination various  
types of inputs signals can be supported. Those inputs will be discussed in a separate document (application  
Notes).  
The CDCE72010 has two internal voltage biasing circuitries. One to set the termination voltage for references  
(PRI_REF and SEC_REF) and the second biasing circuitry is to set the termination voltage to the VCXO_IN and  
AUX_IN. This means that we can only have one type of differential signal on PRI_REF and SEC_REF and only  
one type of differential signal on VCXO_IN and AUX_IN.  
PRI_REF Buffer Settings  
PRI_REF & SEC_REF Input Buffer Settings  
Register / Bits  
PRI_REF  
Input  
Switch  
N
Configuration  
Settings  
0.0 0.1 1.2 1.3  
P
INV  
0.0 0.1 1.0  
1.2  
Hyst  
Mode  
Coup Term  
DC N/A  
Vbb  
1.1  
1.3/4  
0
X
X
X
0
X
O
O
O
X
1
0
0
50W 50W  
X
1
1
X
0
1
O
C
O
O
C
C
O
C
C
0
1
0
0
X
0
X
0
X
0
ON  
ON  
LVCMOS  
LVPECL  
--  
1
1
VBB  
P
N
AC Internal 1.9V  
DC Internal 1.2V  
INV  
1
1
1
1
1
0
0
1
1
1
1
X
0
0
1
0
0
1
0
X
0
ON  
ON  
ON  
ON  
ON  
LVPECL  
LVPECL  
LVDS  
1
1
1
1
1
-- External  
AC Internal 1.2V  
DC Internal 1.2V  
--  
INV  
SEC_REF Buffer Settings  
Register / Bits  
P
N
Switch  
1
0
LVDS  
0.0 0.1 1.2 1.4  
P
N
INV  
50W 50W  
X
X
LVDS  
-- External  
--  
0
X
X
X
0
X
O
O
O
X
1
0
0
X
X
X
X
X
X
X
X
X
X
OFF --  
ON --  
--  
--  
--  
--  
--  
--  
0
1
X
1
1
X
0
1
O
C
O
O
C
C
O
C
C
SEC_REF  
Input  
Figure 16. PRI_REF and SEC_REF Voltage Biasing Circuitry  
48  
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
 
 
 
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
VCXO Input Buffer Settings  
VCXO & AUX Input Buffer Settings  
Register / Bits  
Switch  
N
Configuration  
Settings  
8.0 8.1 8.4 8.5  
P
INV  
VCXO  
Input  
8.0 8.1 8.2  
8.4  
Hyst  
Mode  
Coup Term  
DC N/A  
Vbb  
8.3  
8.5  
0
X
X
X
0
X
O
O
O
X
1
0
0
X
1
1
X
0
1
O
C
O
O
C
C
O
C
C
0
1
0
0
X
0
X
0
X
0
ON  
ON  
LVCMOS  
LVPECL  
--  
1
1
50W 50W  
AC Internal 1.9V  
DC Internal 1.2V  
VBB  
P
N
1
1
1
1
1
0
0
1
1
1
1
X
0
0
1
0
0
1
0
X
0
ON  
ON  
ON  
ON  
ON  
LVPECL  
LVPECL  
LVDS  
1
1
1
1
1
-- External  
AC Internal 1.2V  
DC Internal 1.2V  
--  
INV  
1
0
LVDS  
X
X
LVDS  
-- External  
--  
AUX  
Input  
X
X
X
X
X
X
X
X
X
X
OFF --  
ON --  
--  
--  
--  
--  
--  
--  
0
1
Figure 17. VCXO_IN and AUX_IN Voltage Biasing Circuitry  
AUTOMATIC/MANUAL REFERENCE CLOCK SWITCHING (SMART MUX)  
The CDCE72010 supports two reference clock inputs, the primary clock input, PRI_REF, and the secondary  
clock input, SEC_REF. The clocks can be selected manually or automatically. The respective mode is selected  
by the dedicated SPI register. In the manual mode the external REF_SEL signal selects one of the two input  
clocks  
In the automatic mode the primary clock is selected by default even if both clocks are available. In case the  
primary clock is not available or fails, then the input switches to the secondary clock until the primary clock is  
back. The figure below shows the automatic clock selection.  
PRI_REF  
SEC_REF  
1
2
3
4
1
2
Internal  
Reference Clock  
Auto-Reference  
secondary  
primary  
primary  
VCXO With  
100Hz Loop  
Figure 18. Automatic Clock Select Timing  
In the automatic mode the frequencies of both clock signals has to be similar but may differ by up to 20%. There  
is no limitation placed on the phase relationship between the two inputs.  
The clock input circuitry is designed to suppress glitches during switching between the primary and secondary  
clock in the manual and automatic mode. This insures that the clock outputs continue to clock reliably when a  
transition from a clock input occurs.  
The phase of the output clock will slowly follow the new input phase. The speed of this transition is determined  
by the loop bandwidth. However, there is no phase build-out function supported (like in SONET/SDH  
applications).  
Copyright © 2008–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Link(s): CDCE72010  
 
 
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
PHASE FREQUENCY DETECTOR  
The main function of the CDCE72010 device is to synchronize a Voltage Control Oscillator (VCO) or a Voltage  
Control Crystal Oscillator (VCXO) output to a reference clock input. The phase detector compares 2 signals and  
outputs the difference between them. It is symbolized by an XOR. The compared signals are derived from the  
Reference clock and from the VCO/VCXO clocks. The Reference clock is divided by the “R” Divider (1 or 2) and  
“M” divider (14 Bits) and presented to the PFD. The VCO/VCXO clock is divided by the Feedback Divider “P” (1  
to 80) and the “N” Divider (14 Bits) and presented to the PFD.  
Frequency (VCXO_IN or AUX_IN) / Frequency (PRI_REF or SEC_REF) = (P*N)/(R*M)  
The PFD is a classical style with UP and DOWN signals generating flip-flops and a common reset path. Some  
special functions were implemented:  
Bit CP_DIR (register 0 RAM bit<9> can swap internally the REF- and FB-CLK inputs to the PFD flip-flops.  
The reset path can be typically delayed with the bits DELAY_PFD <1:0> (register 0 RAM bit<7:6>) from 1.5ns  
to 6.0ns.  
PFD Pulse Width Delay (Register 0 RAM Bits [7:6])  
The “PFD pulse width delay” gets around the dead zone of the PFD transfer function and reduces phase noise  
and reference spurs.  
Table 9. PFD Pulse Width Delay  
PFD1  
PFD0  
PFD PULSE WIDTH DELAY  
0
0
1
1
0
1
0
1
1.5ns(1)  
3.0ns  
4.5ns  
6.0ns  
(1) Default  
The PFD receives two clocks of the similar frequencies and decides if one is lagging or leading. This  
Lagging/Leading signals are feed to the Charge Pump. The Charge Pump in its turn takes the Lagging/Leading  
signals and translate them into current pulses that are feed to the external filter. The Output of the external filter  
is a DC level that controls the Voltage reference of the VCO/VCXO sitting outside and feeding the CDCE72010  
at the VCXO Input. The VCO/VCXO drifts its outputs frequency with respect to the voltage applied to its Voltage  
Control pin. This is how the loop is closed.  
PRI_REF  
Maximum Frequency = 250 MHz  
Div 1,2  
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
::Register 10  
Register 2  
Register 11::  
0
1
SEC_REF  
RAM Bit 5:0  
Div 1,2  
PFD Out to  
Charge Pump  
R’ Divider  
M Delay  
N Delay  
Smart Mux  
P Divider  
VCXO_IN  
Feedback Mux  
AUX_IN  
M Divider (14 Bits)  
N Divider (14 Bits)  
Feedback Divider  
1,2,3,4,5,6,8,10,12…..80  
5
6
7
8
9
10 11  
Divide Function Register 11::  
::Register 10  
14 15 16 17 18 19 20 21 22 23 24 25 26 27  
Phase Function Register 11::  
12 13 14 15 16 17 18  
Maximum Frequency = 250 MHz  
Figure 19. Phase Frequency Detection  
50  
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
 
 
 
 
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
Table 10. Feedback Divider Settings  
FEEDBACK DIVIDER SETTINGS (REGISTER 11: BITS)  
DIVIDER  
SETTING  
11  
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
10  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
8
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
7
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
6
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
5
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
2
3
4
5
4'  
6
8
10  
8'  
12  
16  
20  
12'  
18  
24  
30  
16'  
24'  
32  
40  
20'  
30'  
40'  
50  
24'  
36  
48  
60  
28  
42  
56  
70  
32'  
48'  
64  
80  
Copyright © 2008–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Link(s): CDCE72010  
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
PHASE DELAY FOR M AND N  
Delay Block in M/N Path  
Table 11. Reference Delay M (PRI_REF or SEC_REF) and Feedback Delay N (VCXO) Phase Adjustment  
(1)  
(Register 2 RAM Bits [5:0])  
DLYM2/DLYN2  
DLYM1/DLYN1  
DLYM0/DLYN0  
PHASE OFFSET  
0ps(2)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
±160ps  
±320ps  
±480ps  
±830ps  
±1130ps  
±1450ps  
±1750ps  
(1) If Progr Delay M is set, all Yx outputs are lagging to the Reference Clock according to the value set. If Progr Delay N is set, all Yx  
outputs are leading to the Reference Clock according to the value set. Above are typical values at VCC = 3.3 V, TA = 25°C, PECL-output  
relate to Div4 mode.  
(2) Default  
Table 12. Reference Divider M/N 14-Bit (Register 10 RAM Bits [13:0] for M and RAM Bits [27:14] for N)  
N13  
0
N12  
0
N11  
0
N10  
0
N9  
0
N8  
0
N7  
N6  
0
N5  
0
N4  
0
N3  
0
N2  
0
N1  
0
N0  
0
DIV BY(1)  
0
1
2
3
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
128(2)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
16382  
16383  
16384  
(1) If the divider value is Q, then the code will be the binary value of (Q - 1).  
(2) Default  
52  
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
CHARGE PUMP  
The Charge Pump drives the loop filter that controls the external VCO/VCXO. The Charge pump frequency is  
determined by the PFD frequency since the function of the charge pump is to translate the UP DOWN signals of  
the PFD into current pulses that drives the external filter. The Charge pump current is set by the control vector  
ICP [3:0]. The error amplifier operates from 0.7V to the VDD supply voltage. See the table below for ICP settings.  
Table 13. CP, Charge Pump Current (Register 0 RAM Bits [17:14])  
TYPICAL CHARGE PUMP  
ICP3  
ICP2  
ICP1  
ICP0  
CURRENT  
0 µA (3-State)  
200 µA  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
400 µA  
600 µA  
800 µA  
1.0 mA  
1.2 mA  
1.4 mA  
1.6 mA  
1.8 mA  
2.0 mA  
2.2 mA(1)  
2.4 mA  
2.6 mA  
2.8 mA  
3.0 mA  
(1) Default  
The ‘Preset Charge-Pump to VCC_CP/2 is a useful feature to quickly set the center frequency of the VC(X)O after  
Power-up or Reset. The adequate control voltage for the VC(X)O will be provided to the Charge-Pump output by  
an internal voltage divider of 1K/1Kto VCC_CP and GND (VCC_CP/2).  
This feature helps to get the initial frequency accuracy, i.e. required at CPRI (Common Public Radio Interface) or  
OBSAI (Open Base Station Architecture Initiative).  
The Preset Charge-Pump to VCC_CP/2 can be set and reset by SPI register.  
Copyright © 2008–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Link(s): CDCE72010  
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
Charge-Pump Current Direction  
The direction of the charge-pump (CP) current pulse can be changed by the SPI register settings. It determines  
in which direction CP current will regulate (Reference Clock leads to Feedback Clock). Most applications use the  
positive CP output current (power-up condition) because of the use of a passive loop filter. The negative CP  
current is useful when using an active loop filter concept with inverting operational amplifier. The Figure below  
shows the internal PFD signal and the corresponding CP current.  
Reference Clock After  
the M Divider and Delay  
Reference Clock After  
the N Divider and Delay  
V(PFD1) (Internal Signal)  
V(PFD2) (Internal Signal)  
Charge Pump Output  
Current Icp  
Charge Pump Output  
Current Icp (Inverted)  
PFD pulse width delay improves spurious suppression.  
Figure 20. Charge Pump  
54  
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
PLL LOCK FOR ANALOG AND DIGITAL DETECT  
The CDCE72010 supports two PLL Lock indications: the digital lock signal or the analog lock signal. Both signals  
indicate logic high-level at PLL_LOCK if the PLL locks according the selected lock condition.  
The PLL is locked (set high), if the rising edge of the Reference Clock (PRI_REF or SEC_REF clock) and  
Feedback Clock (VCXO_IN clock) at the PFD (Phase Frequency Detect) are inside a predefined lock detect  
window for a pre-defined number of successive clock cycles.  
The PLL is out-of-lock (set low), if the rising edge of the Reference Clock (PRI_REF or SEC_REF clock) and  
Feedback Clock (VCXO_IN clock) at the PFD are outside the predefined lock detect window.  
Both, the lock detect window and the number of successive clock cycles are user definable in the SPI register  
settings.  
Selected REF at PFD  
(clock fed through M Divider  
and M Delay  
t
(lockdetect)  
VCXO_IN at PFD  
(clock fed through N Divider  
and N Delay)  
Figure 21. PLL Lock  
The lock detect window describes the maximum allowed time difference for lock detect between the rising edge  
of PRI_REF or SEC_REF and VCXO_IN. The time difference is detected at the phase frequency detector. The  
rising edge of PRI_REF or SEC_REF is taken as reference. The rising edge of VCXO_IN is outside the lock  
detect window, if there is a phase displacement of more than +0.5*t(lockdetect) or -0.5*t(lockdetect)  
.
Table 14. Lock-Detect Window (Register 7 RAM Bits [1:0] and Register 9 RAM Bits [7:6])  
LOCKW3  
[7]  
LOCKW2  
[6]  
LOCKW1  
[1]  
LOCKW0  
[0]  
PHASE-OFFSET AT PFD-INPUT(1)  
0
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.5 ns  
5.8 ns(2)  
15.1 ns  
Reserved  
3.4 ns  
7.7 ns  
17.0 ns  
Reserved  
5.4 ns  
9.7 ns  
19.0 ns  
Reserved  
15.0 ns  
19.3 ns  
28.6 ns  
Reserved  
(1) Typical values at VCC = 3.3 V, TA = 25°C  
(2) Default  
Copyright © 2008–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Link(s): CDCE72010  
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
Table 15. Number of Successive Lock Events Inside the Lock Detect Window  
(Register 7 RAM Bits [4:3]) the PLL Lock Signal is Delayed for Number of  
FB_CLK Events  
NO. OF SUCCESSIVE LOCK  
LOCKC1  
LOCKC0  
EVENTS  
0
0
1
1
0
1
0
1
1
16  
64(1)  
256  
(1) Default  
DIGITAL LOCK DETECT  
When selecting the digital PLL lock option, PLL_LOCK will possibly jitter several times between lock and out of  
lock until a stable lock is detected. A single “low-to-high” step can be reached with a wide lock detect window  
and high number of successive clock cycles. PLL_LOCK will return to out of lock if just one cycle is outside the  
lock detect window.  
VOut  
Digital Lock Detection  
Power_Down  
PLL_LOCK  
Lock  
Output  
Lock_Out  
160 kW  
5pF  
Out-of-Lock  
t
Lock_In  
Vhigh = 0.6 VCC  
Vlow = 0.4 VCC  
Figure 22. Digital Lock  
56  
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
ANALOG LOCK DETECT  
When selecting the analog PLL Lock option, the high-pulses load the external capacitor via the internal 110 µA  
current source until logic high-level is reached. Therefore, more time is needed to detect logic high level, but  
jittering of PLL_LOCK will be suppressed like possible in case of digital lock. The time PLL_LOCK needs to  
return to out of lock depends on the level of VOUT, when the current source starts to unload the external  
capacitor.  
VCC  
110 µA  
(Lock)  
VOut  
PLL_LOCK  
(Output)  
Power_Down  
Lock_Out  
5pF  
VOut = 1/C * I * t  
C
110 µA  
(Out-of-Lock)  
t
160 kW  
Example:  
for I = 110 µA, C = 10 n, VCC = 3.3 V and  
Vhigh = VOut = 0.55 * VCC = 1.8 V  
=> t = 164 µs  
Lock_In  
Vhigh = 0.55 VCC  
Vlow = 0.35 VCC  
Figure 23. Analog Lock  
FREQUENCY HOLD-OVER MODE  
The HOLD-Function is a CDCE72010 feature that helps to improve system reliability. The HOLD-Function holds  
the output frequency in case the input reference clock fails or is disrupted. During HOLD, the Charge-Pump is  
switched off (3-State) freezing the last valid output frequency. The Hold-Function will be released after a valid  
reference clock is reapplied to the clock input and detected by the CDCE72010. For proper HOLD function, the  
Analog PLL-Lock-Detect mode has to be active. The following settings are involved with the HOLD Function:  
Lock Detect Window: Defines the window in ns inwhich the Lock is valid. The size is 3.5ns, 8.5ns, 18.5ns.  
Lock is set if Reference Clock and Feedback Clock are inside this predefined Lock-Detect Window for a  
pre-selected number of successive cycles.  
Out-of-Lock: Defines the out-of-lock condition: If the Reference Clock and the Feedback Clock at the PFD are  
outside the predefined Lock Detect Window.  
Number of Clock Cycles: Defines the number of successive PFD cycles which have to occur inside the lock  
window to set Lock detect. This does not apply for Out-of-Lock condition.  
Hold-Function: Selects HOLD-Function (see more details below).  
Hold-Trigger: Defines whether the HOLD-Function is always activated or whether it is dependent on the state  
of the analog PLL Lock detect output. In the latter case, HOLD is activated if Lock is set (high) and  
de-activated if Lock is reset (low).  
Analog PLL Lock Detect: Analog Lock output charges or discharges an external capacitor with every valid  
Lock cycle. The time constant for Lock detect can be set by the value of the capacitor.  
The CDCE72010 supports two types of HOLD functions, one external controllable HOLD mode and one internal  
mode, HOLD.  
Copyright © 2008–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
Product Folder Link(s): CDCE72010  
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
EXTERNAL/HOLD FUNCTION  
The Charge Pump can directly be switched into 3-State. This function is also available via SPI register. If logic  
low is applied to HOLD pin the Charge Pump will be switched to 3-State. After HOLD pin is released, the charge  
pump is switched back in to normal operation, with the next valid reference clock cycle at PRI_REF or SEC_REF  
and the next valid feedback clock cycle at the PFD. During HOLD, all divider and all outputs are at normal  
operation.  
INTERNAL/HOLD FUNCTION  
In Internal HOLD Function or HOLD-Over-Function the PLL has to be in lock to start the HOLD function. It  
switches the Charge Pump in to 3-State when an ‘out-of-lock’ event occurs. It leaves the ‘3-State Charge Pump’  
state when the Reference Clock is back. Then it starts a locking sequence of 64 cycles before it goes back to the  
beginning of the HOLD-Over loop.  
PLL has to be in LOCK to start  
HOLD-Function.  
(The Analog Lock output is not reset by the first Out-of-  
Lock event. It stays ‘High’ depending on the analog time  
delay(output C-load). The time delay must be long enough  
to guarantee proper HOLD function)  
The Charge-Pump remains into 3-State  
until the Reference Clock is back. The 1st  
valid Reference Clock at the PFD releases  
Frequency Hold-Over Function works in  
combination with the Analog Lock-Detect  
no  
the Charge-Pump.  
Charge-Pump is switched into 3-State.  
no  
no  
yes  
yes  
PLL  
Out-of-Lock  
PLL-Lock  
Output Set  
3-State  
Charge Pump  
Ref. Clock  
is Back  
64 PFD  
Lock Cycles  
Start  
PLL is out-of-lock if the phase  
difference of Reference Clock and  
Feedback Clock at PFD are outside the  
predefined Lock  
-Detect-Window or if a  
Cycle-Slip occurs.  
no  
The PLL acquire 64 lock cycles to phase  
align to the input clock.  
Figure 24. Frequency Hold Over  
58  
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
OUTPUT DIVIDERS AND PHASE ADJUST  
The CDCE72010 is designed with individual Output Dividers for Outputs 1 to 8. Output Divider 1 drives Output 1  
and Output 0 and Output Divider 8 drives Output 8 and Output 9. Each output divider has a bypass function or it  
is referred to as divide by “one”. Since divide by one bypasses the divider block it can address higher operating  
frequencies.  
The output divider is designed to address divide by 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40,  
42, 48, 50, 56, 60, 64, 70 and 80.The output divider includes a coarse phase adjust that shifts the divided clock  
signal. The phase adjust resolution is a function of the divide function. The maximum number of phase steps  
equals to the divider setting.  
If the output is divide by 2, then two phase adjustment settings (0 and 180 degrees) are available. The resolution  
of phase adjustment is related to the output divider setting by the following: Phase adjust resolution = (1/Output  
Divider settings) X 360 Degrees.  
Example: For a 491.52MHz VCXO where one of the outputs of the device is set to divide by 16 for a 30.72MHz  
desired output, this will mean that the 30.72MHz clock will have (1/16) X 360 = 22.5 Degrees of phase  
adjustment resolution.  
Output Divide Select (OUT#DIVSEL#) and Coarse Phase Adjust Select (PH#ADJC#) registers are located in  
Register 1 thought 8 for Output 1 thought 8 respectively.  
The Phase difference between 2 divider settings on different output can be calculated using the following formula  
and referring to the Phase Lag number in the Output Divider Table ( see Table 7).  
Integer Remainder of [(Phase Lag X - Phase Lag Y)/ Divide X ] as an example if we need to calculate the phase  
difference between divide by 4 and divide by 8 with respect to divide by 4 clock.  
The Integer Remainder [(28.5 - 0.5)/4] = 0. This means there is 0 Cycle phase delay between Divide by 4 and  
Divide by 8 with respect to Divide by 4 Clock.  
If we need to do the same calculation with respect to Divide by 8 we will have Intger Remainder [(28.5 – 0.5)/8] =  
0.5 that means that there is 0.5 Cycles between Divide by 4 and divide by 8 with respect to a divide by 8 clock.  
(PH#ADJC#)  
Phase Adjust Period  
Coarse Phase Adjust Select  
Start Divider  
D
D
D
D
D
Output Divider  
(OUT#DIVSEL#)  
Figure 25. Maximum Output Frequency With Phase Alighment  
For a complete listing of the coarse phase adjust settings, refer to the "CDCE72010 Coarse Phase Adjust"  
document.  
Copyright © 2008–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
Product Folder Link(s): CDCE72010  
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
DEVICE LAYOUT  
The CDCE72010 is a high performance device packaged in a QFN-64. The die has all the ground pins bounded  
to the thermal PAD on the bottom of the package. Therefore it is essential that the connection from the thermal  
PAD to the ground layers should be low impedance. In addition, the thermal path in a QFN package is via the  
thermal PAD on the bottom of the package. Therefore, the layout of the PAD is very important and it will affect  
the thermal performance as well as the overall performance of the device. The illustration shown provides  
optimal performance in terms of thermal issues, inductance and power supply bypassing. The 10 X 10 Filled VIA  
pattern recommended allows for a low inductance connection between the thermal ground pad and the ground  
plane of the board. This pattern forms a low thermal resistive path for the heat generated by the die to get  
dissipated through the ground plane and to the exposed bottom side ground pad. It is recommended that solder  
mask not be used on this bottom side pad to maximize its effectiveness as a thermal heat sink. The  
recommended layout drives the thermal conductivity to 22.8 C/W in still air and 13.8 C/W in a 100LFM air flow if  
implemented on a JEDEC compliant test thermal board.  
Top Side Thermal PAD Layout  
Only two capacitors are illustrated.  
Only one side of the pin pads is shown.  
Bottom Side Thermal PAD Layout  
Only two capacitors are illustrated.  
Figure 26. Device Layout  
60  
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
DEVICE POWER  
The CDCE72010 is designed as a high performance device, therefore careful attention must be paid to device  
configuration with respect to power consumption. Total power consumption of the device can be estimated by  
adding up the total power consumed by each block in the device.  
The Table below describes the blocks used and power consumed per block. The total power of the device can  
be calculated by multiplying the number of blocks used by the power consumption per block.  
Table 16. Device Power  
INTERNAL BLOCK POWER AT 3.3V (Typ)  
PLL Core and Input and Feedback Circuitries  
Output Dividers  
Output Buffers ( LVPECL-HISWING)(1)  
Output Buffers (LVDS-HISWING)(1)  
Output Buffers (LVCMOS at 122 MHz)(1)  
POWER DISSIPATED / BLOCK  
NUMBER OF BLOCKS / DEVICE  
530mW  
180mW  
150mW  
75mW  
1
8
10  
10  
20  
50mW  
(1) Output buffers can be a total of 10 LVDS, 10 LVPECL, or 20 LVCMOS.  
125  
Max Die Temp  
100  
75  
50  
25  
0
JEDEC 0 LFM 25 C  
JEDEC 100 LFM 25 C  
RL 0 LFM 25 C  
RL 100 LFM 25 C  
JEDEC 0 LFM 85 C  
JEDEC 100 LFM 85 C  
RL 0 LFM 85 C  
RL 100 LFM 85 C  
0
1
2
3
4
Power (W)  
Figure 27. Die Temperature  
Copyright © 2008–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
61  
Product Folder Link(s): CDCE72010  
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
LOOP FILTER  
The CDCE72010 is designed to control an external Voltage Controlled Oscillator (VCO) or a Voltage Controlled  
Crystal Oscillator (VCXO) and to synchronize the controlled oscillators to the input reference. Controlling the  
Oscillator happens via a DC voltage that is applied to the Voltage control pin. This DC voltage is generated by  
the CDCE72010 in the form of AC pulses that get filtered by the external loop filter.  
CDCE72010  
VccCP  
VccCP  
VCO/VCXO  
R3  
Charge  
Pump  
Clock Out  
R2  
C2  
C1  
C3  
Figure 28. Loop Filter  
62  
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
UNIVERSAL OUTPUT BUFFERS  
The CDCE72010 is designed to drive three types of clock signaling, LVPECL, LVDS, and LVCMOS from each of  
the ten outputs. This super buffer that contains all three drivers is refered to as the Universal Output Buffer. Only  
one driver can be enabled at one time. Each universal output buffer is made from four independent buffers in  
parallel. When LVPECL mode is selected, only the LVPECL Buffer is enabled and the rest of the buffers are  
3-stated and in low power mode. When Selecting LVDS, only the LVDS Buffer is enabled and the rest of the  
buffers are 3-stated and in low power mode. When LVCMOS mode is selected, both LVCMOS drivers are  
enabled. One LVCMOS buffer drives the negative side and the other buffer drives the positive pin.  
The LVCMOS drivers are driven from the same output divider but have separate control bits. In SPI Mode, bits  
22, 23, 24, and 25 of Registers 0 to 9 are used to put the LVCMOS buffer in active, inverting, low, or 3-state. In  
CD Mode, those bits are used for different functions and the LVCMOS buffer can be active when selected or  
3-state when their not.  
LVCMOS  
LVPECL  
Register (0 to 9)  
RAM Bits::  
21  
22  
23  
24  
25  
26  
27  
LVDS  
LVCMOS  
Figure 29. Universal Output Buffer  
Copyright © 2008–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
63  
Product Folder Link(s): CDCE72010  
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
Output Dividers Synchronization  
The CDCE72010 is a 10 output clock device with 8 output dividers and to insure that all the outputs are  
synchronous a synchronization startup circuitry is used. The synchronization circuitry generates a pulse to reset  
all the dividers in a way, that a predictable synchronous output is generated. The Synchronization signal can be  
generated from different sources and can be synchronized to a specific clock. The Block diagram below  
illustrates the signal path of the Output Divider Sync Signal. This function is assured up to 500 MHz.  
NOTE:  
The minimum frequency required for the output synchronization block to work properly  
is 1 MHz.  
Any of the Conditions will Produce a Conditional SYNC Start Signal:  
1- REG9 <Bit11> INDET_BP is set to “0” & VCXO or AUX_CLK is available  
2- REG9<Bit12> PLL_LOCK_BP is set to “0” & we have 1st Lock State  
3- REG11<Bit19> PD_PLL is set to “0”& the PLL is ON  
4- REG9<Bit13> LOW_FD_FB_EN is set to “1” N Divider Input Frequency above 600KHz  
5- Write Activity to the Output Divider (s)  
6- REG12<Bit8> Set to 1 ( /RESET Bit is Set to “1”)  
7- REG12<Bit7> Set to 1 ( /Power Down Bit is Set to “1”)  
If the value of the bits described as inverted the function associated with it will be ignored  
with respect to the sync start signal generation.  
/RESET Pin  
Feedback Clock  
“1”  
“0” REG6<Bit5>  
DET_START_BYPASS  
REG6<Bit2> FB_DETERM_DIV_SEL  
“0” Feedback Divider Clock  
“1” Divide by 2 Feedback Clock  
“0”  
“1”  
Reference Clock  
REG0<Bit4> VCXOSEL  
Synchronizing Output Divider SYNC Signal  
“0”  
1” REG9<Bit10>  
STARTBYPASS  
OUTPUT DIVIDERS SYNC SIGNAL  
Figure 30. Output Divider Synchronization Block Diagram  
64  
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
 
CDCE72010  
www.ti.com.............................................................................................................................................................. SCAS858AJUNE 2008REVISED JULY 2009  
POWER UP RESET, POWER DOWN MODE AND RESET OR HOLD  
The CDCE72010 is designed to address various clock synchronization applications. Some functions can be set  
to be in automatic and manual mode or some functions can be controlled by software or by the internal circuitry.  
Figure 31 below explains the various functionalities of power up reset internal circuitry functionality, power down  
functionality and reset functionality. The hold function shares the same block with Reset and one bit in the  
EEPROM will select either function.  
VCC  
Reset SPI Interface and Register 12 to Default  
POR  
(Force Sleep/PD and /RESET or /HOLD)  
11 12  
REG12:  
Power All Clocking Circuitry Down  
- Shut Down All Analog Circuitry (/PD = 0 or Sleep = 0)  
- Shut Down All Digital Circuitry (/PD = 0 or Sleep = 0)  
- Disable All Output Buffers (/PD = 0 or Sleep = 0)  
Sleep  
/PD  
PD or  
Sleep  
- Load EEPROM Into RAM When Released (at Rising Edge of /PD)  
Reset Digital Circuitry  
- Disable All Output Buffers (When /RESET = 0)  
- Reset PLL (Load With RAM Content Values at Rising Edge)  
- Reset Output Dividers and Phase Adjust Circuitry (at Rising Edge)  
Reset  
Hold  
Reset  
or  
Hold  
/Reset_Hold  
When Hold Function Is Asserted  
- Tri-state the Charge Pump Output When /HOLD = 0  
Hold Function Is Deasserted When  
- /HOLD = 1 and We Have Valid Reference Clock  
REG11:  
REG4:  
29  
04  
Loss of Reference  
Figure 31. Powerup, Reset, and Powerdown Block Diagram  
Copyright © 2008–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
65  
Product Folder Link(s): CDCE72010  
 
CDCE72010  
SCAS858AJUNE 2008REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
REVISION HISTORY  
Changes from Original (June 2008) to Revision A ......................................................................................................... Page  
Changed Frequency equation result from (R*M)/(P*N) to (P*N)/(R*M)................................................................................. 2  
Added table note to Table 4................................................................................................................................................. 19  
Added table note to Register 0: SPI Mode table description............................................................................................... 21  
Changed Register 12: SPI Mode (RAM only Register) Note............................................................................................... 33  
Added table note to Register 0:CD Mode table description................................................................................................. 36  
Added additional information to INTERFACE, CONFIGURATION, AND CONTROL description....................................... 48  
Changed Figure 16 ............................................................................................................................................................. 48  
Changed Figure 17 ............................................................................................................................................................. 49  
Added “P” to PHASE FREQUENCY DETECTOR feedback divider description ................................................................. 50  
Changed Frequency equation from (R*M)/(P*N) to (P*N)/(R*M)......................................................................................... 50  
Deleted P is the product of X Divider and FB Divider R and X Divider is set to be divide by 1 or 2................................... 50  
Changed Figure 19 by adding maximum frequency = 250 MHz ......................................................................................... 50  
Added note to Output Dividers Synchronization description ............................................................................................... 64  
66  
Submit Documentation Feedback  
Copyright © 2008–2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE72010  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Jul-2009  
PACKAGING INFORMATION  
Orderable Device  
CDCE72010RGCR  
CDCE72010RGCRG4  
CDCE72010RGCT  
CDCE72010RGCTG4  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
VQFN  
RGC  
64  
64  
64  
64  
2000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
VQFN  
VQFN  
VQFN  
RGC  
RGC  
RGC  
2000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Jul-2009  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
CDCE72010RGCR  
CDCE72010RGCT  
VQFN  
VQFN  
RGC  
RGC  
64  
64  
2000  
250  
330.0  
330.0  
16.4  
16.4  
9.3  
9.3  
9.3  
9.3  
1.5  
1.5  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Jul-2009  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
CDCE72010RGCR  
CDCE72010RGCT  
VQFN  
VQFN  
RGC  
RGC  
64  
64  
2000  
250  
333.2  
333.2  
345.9  
345.9  
28.6  
28.6  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
Automotive  
www.ti.com/automotive  
www.ti.com/communications  
Communications and  
Telecom  
DSP  
dsp.ti.com  
Computers and  
Peripherals  
www.ti.com/computers  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Consumer Electronics  
Energy  
www.ti.com/consumer-apps  
www.ti.com/energy  
Logic  
Industrial  
www.ti.com/industrial  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Medical  
www.ti.com/medical  
microcontroller.ti.com  
www.ti-rfid.com  
Security  
www.ti.com/security  
Space, Avionics &  
Defense  
www.ti.com/space-avionics-defense  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2010, Texas Instruments Incorporated  

相关型号:

CDCE72010_09

Ten Output High Performance Clock Synchronizer, Jitter Cleaner, and Clock Distributor
TI

CDCE813-Q1

具有 2.5V 和 3.3V 输出的可编程 1-PLL 时钟合成器和抖动消除器
TI

CDCE813QPWRQ1

具有 2.5V 和 3.3V 输出的可编程 1-PLL 时钟合成器和抖动消除器 | PW | 14 | -40 to 105
TI

CDCE813R02TPWRQ1

具有 2.5V 和 3.3V 输出的可编程 1-PLL 时钟合成器和抖动消除器 | PW | 14 | -40 to 105
TI

CDCE906

PROGRAMMABLE 3-PLL CLOCK SYNTHESIZER / MULTIPLIER / DIVIDER
TI

CDCE906PW

PROGRAMMABLE 3-PLL CLOCK SYNTHESIZER / MULTIPLIER / DIVIDER
TI

CDCE906PWG4

PROGRAMMABLE 3-PLL CLOCK SYNTHESIZER / MULTIPLIER / DIVIDER
TI

CDCE906PWR

PROGRAMMABLE 3-PLL CLOCK SYNTHESIZER / MULTIPLIER / DIVIDER
TI

CDCE906PWRG4

PROGRAMMABLE 3-PLL CLOCK SYNTHESIZER / MULTIPLIER / DIVIDER
TI

CDCE906_10

PROGRAMMABLE 3-PLL CLOCK SYNTHESIZER / MULTIPLIER / DIVIDER
TI

CDCE913

Programmable 1-PLL VCXO Clock Synthesizer With 1.8-V, 2.5-V, and 3.3-V Outputs
TI

CDCE913-Q1

具有 2.5V 或 3.3V LVCMOS 输出的汽车类可编程 1-PLL VCXO 时钟合成器
TI