CDCEL925PWR [TI]

PROGRAMMABLE 2-PLL VCXO CLOCK SYNTHESIZER WITH 1.8-V, 2.5-V and 3.3-V LVCMOS OUTPUTS; 采用1.8 V, 2.5 V和3.3 V LVCMOS输出的可编程2 -PLL VCXO时钟合成器
CDCEL925PWR
型号: CDCEL925PWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

PROGRAMMABLE 2-PLL VCXO CLOCK SYNTHESIZER WITH 1.8-V, 2.5-V and 3.3-V LVCMOS OUTPUTS
采用1.8 V, 2.5 V和3.3 V LVCMOS输出的可编程2 -PLL VCXO时钟合成器

晶体 时钟发生器 微控制器和处理器 外围集成电路 石英晶振 压控振荡器 光电二极管 输出元件
文件: 总27页 (文件大小:484K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CDCE925  
CDCEL925  
www.ti.com  
SCAS847F JULY 2007REVISED MARCH 2010  
PROGRAMMABLE 2-PLL VCXO CLOCK SYNTHESIZER WITH 1.8-V, 2.5-V and 3.3-V  
LVCMOS OUTPUTS  
Check for Samples: CDCE925, CDCEL925  
1
FEATURES  
Flexible Input Clocking Concept  
234  
Member of Programmable Clock Generator  
Family  
External Crystal: 8 MHz to 32 MHz  
On-Chip VCXO: Pull Range ±150 ppm  
Single-Ended LVCMOS up to 160 MHz  
CDCE913/CDCEL913: 1-PLL, 3 Outputs  
CDCE925/CDCEL925: 2-PLL, 5 Outputs  
CDCE937/CDCEL937: 3-PLL, 7 Outputs  
CDCE949/CDCEL949: 4-PLL, 9 Outputs  
Selectable Output Frequency up to 230 MHz  
Low-Noise PLL Core  
PLL Loop Filter Components Integrated  
Low Period Jitter (Typ 60 ps)  
Flexible Clock Driver  
Three User-Definable Control Inputs  
[S0/S1/S2] e.g., SSC Selection, Frequency  
Switching, Output Enable or Power Down  
1.8-V Device Power Supply  
Separate Output Supply Pins  
CDCE925: 3.3 V and 2.5 V  
CDCEL925: 1.8 V  
Programmable SSC Modulation  
Enables 0-PPM Clock Generation  
Temperature Range –40°C to 85°C  
Packaged in TSSOP  
Generates Common Clock Frequencies  
Used With Texas Instruments DaVinci™,  
OMAP™, DSPs  
Development and Programming Kit for Easy  
PLL Design and Programming (TI Pro-Clock™)  
Generates Highly Accurate Clocks for  
Video, Audio, USB, IEEE1394, RFID,  
Bluetooth™, WLAN, Ethernet™, and GPS  
APPLICATIONS  
D-TV, STB, IP-STB, DVD-Player, DVD-Recorder,  
Printer  
In-System Programmability and EEPROM  
Serial Programmable Volatile Register  
Nonvolatile EEPROM to Store Customer  
Setting  
V
V
DDOUT  
DD  
GND  
Vctr  
LV  
CMOS  
Y1  
VCXO  
XO  
Xin/Clk 1  
S0 2  
16 Xout  
15 S1/SDA  
14 S2/SCL  
13 Y1  
LV  
CMOS  
LVCMOS  
Y2  
Y3  
Y4  
Y5  
PLL1  
Vdd 3  
Vctr 4  
GND 5  
Vddout 6  
Y4 7  
Divider  
and  
Output  
Control  
EEPROM  
With SSC  
3
LV  
CMOS  
Programming  
and  
Control Register  
S2/S1/S0 or  
SDA/SCL  
12 GND  
11 Y2  
10 Y3  
LV  
CMOS  
PLL2  
Y5 8  
9 Vddout  
With SSC  
LV  
CMOS  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
4
DaVinci, OMAP, Pro-Clock are trademarks of Texas Instruments.  
Bluetooth is a trademark of Bluetooth SIG.  
Ethernet is a trademark of Xerox Corporattion.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2007–2010, Texas Instruments Incorporated  
 
CDCE925  
CDCEL925  
SCAS847F JULY 2007REVISED MARCH 2010  
www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
DESCRIPTION  
The CDCE925 and CDCEL925 are modular PLL-based low-cost, high-performance, programmable clock  
synthesizers, multipliers, and dividers. They generate up to five output clocks from a single input frequency. Each  
output can be programmed in-system for any clock frequency up to 230 MHz, using up to two independent  
configurable PLLs.  
The CDCx925 has separate output supply pins, VDDOUT, which is 1.8 V for CDCEL925 and 2.5 V to 3.3 V for  
CDCE925.  
The input accepts an external crystal or LVCMOS clock signal. In case of a crystal input, an on-chip load  
capacitor is adequate for most applications. The value of the load capacitor is programmable from 0 pF to 20 pF.  
Additionally, an on-chip VCXO is selectable which allows synchronization of the output frequency to an external  
control signal, that is, PWM signal.  
The deep M/N divider ratio allows the generation of zero-ppm audio/video, networking (WLAN, BlueTooth,  
Ethernet, GPS) or interface (USB, IEEE1394, Memory Stick) clocks from a 27 MHz reference input frequency, for  
example.  
All PLLs supports SSC (spread-spectrum clocking). SSC can be center-spread or down-spread clocking which is  
a common technique to reduce electro-magnetic interference (EMI).  
Based on the PLL frequency and the divider settings, the internal loop filter components are automatically  
adjusted to achieve high stability and optimized jitter transfer characteristic of each PLL.  
The device supports nonvolatile EEPROM programming for easy customization of the device in the application. It  
is preset to a factory default configuration and can be re-programmed to a different application configuration  
before it goes onto the PCB or re-programmed by in-system programming. All device settings are programmable  
through SDA/SCL bus, a 2-wire serial interface.  
Three, free programmable control inputs, S0, S1, and S2, can be used to select different frequencies, or change  
SSC setting for lowering EMI, or other control features like outputs disable to low, outputs 3-state, power down,  
PLL bypass, etc.).  
The CDCx925 operates in a 1.8 V environment. It operates in a temperature range of –40 °C to 85 °C.  
Terminal Functions for CDCE925, CDCEL925  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
Y1, Y2, ... Y5  
Xin/CLK  
Xout  
NO.  
7, 8, 10, 11, 13  
O
LVCMOS outputs  
1
16  
4
I
Crystal oscillator input or LVCMOS clock Input (selectable via SDA/SCL bus)  
Crystal oscillator output (leave open or pullup when not used)  
VCXO control voltage (leave open or pullup when not used)  
1.8-V power supply for the device  
O
I
VCtrl  
VDD  
3
Power  
CDCEL925: 1.8-V supply for all outputs  
VDDOUT  
6, 9  
Power  
CDCE925: 3.3-V or 2.5-V supply for all outputs  
GND  
S0  
5, 12  
2
Ground Ground  
User-programmable control input S0; LVCMOS inputs; internal pullup  
SDA: bidirectional serial data input/output (default configuration), LVCMOS; internal  
I/O or I pullup; or  
S1: user-programmable control input; LVCMOS inputs; internal pullup  
I
SDA/S1  
SCL/S2  
15  
14  
SCL: serial clock input (default configuration), LVCMOS; internal pullup or  
S2: user-programmable control input; LVCMOS inputs; internal pullup  
I
2
Submit Documentation Feedback  
Copyright © 2007–2010, Texas Instruments Incorporated  
Product Folder Link(s): CDCE925 CDCEL925  
CDCE925  
CDCEL925  
www.ti.com  
SCAS847F JULY 2007REVISED MARCH 2010  
FUNCTIONAL BLOCK DIAGRAM for CDCE925, CDCEL925  
V
V
GND  
DDOUT  
DD  
Input Clock  
Vctr  
LV  
CMOS  
Pdiv1  
10-Bit  
Y1  
Xin/CLK  
VCXO  
XO  
LV  
CMOS  
Pdiv2  
7-Bit  
Y2  
Y3  
PLL 1  
LVCMOS  
With SSC  
Xout  
LV  
CMOS  
Pdiv3  
7-Bit  
PLL Bypass  
EEPROM  
Programming  
and  
SDA/SCL  
Register  
S0  
S1/SDA  
S2/SCL  
LV  
CMOS  
Pdiv4  
7-Bit  
Y4  
Y5  
PLL 2  
With SSC  
LV  
CMOS  
Pdiv5  
7-Bit  
PLL Bypass  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
VALUE  
–0.5 to 2.5  
–0.5 to VDD + 0.5  
–0.5 to VDD + 0.5  
20  
UNIT  
V
VDD  
VI  
Supply voltage range  
Input voltage range(2) (3)  
Output voltage range(2)  
Input current (VI < 0, VI > VDD  
Continuous output current  
Storage temperature range  
V
VO  
II  
V
)
mA  
mA  
°C  
°C  
IO  
50  
Tstg  
TJ  
–65 to 150  
125  
Maximum junction temperature  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
(2) The input and output negative voltage ratings may be exceeded if the input and output clamp–current ratings are observed.  
(3) SDA and SCL can go up to 3.6V as stated in the Recommended Operating Conditions table.  
PACKAGE THERMAL RESISTANCE for TSSOP (PW) PACKAGE(1)  
over operating free-air temperature range (unless otherwise noted)  
AIRFLOW  
(lfm)  
TSSOP16  
°C/W  
PARAMETER  
0
101  
85  
84  
82  
74  
42  
64  
1.0  
58  
150  
200  
250  
500  
TJA  
Thermal Resistance Junction to Ambient  
TJC  
Thermal Resistance Junction to Case  
Thermal Resistance Junction to Board  
Thermal Resistance Junction to Top  
Thermal Resistance Junction to Bottom  
TJB  
RqJT  
RqJB  
(1) The package thermal impedance is calculated in accordance with JESD 51 and JEDEC2S2P (high-k board).  
Submit Documentation Feedback  
Copyright © 2007–2010, Texas Instruments Incorporated  
3
Product Folder Link(s): CDCE925 CDCEL925  
 
 
CDCE925  
CDCEL925  
SCAS847F JULY 2007REVISED MARCH 2010  
www.ti.com  
RECOMMENDED OPERATING CONDITIONS  
MIN  
1.7  
2.3  
1.7  
NOM  
MAX  
1.9  
UNIT  
VDD  
Device supply voltage  
1.8  
V
Output Yx supply voltage for CDCE925  
Output Yx supply voltage for CDCEL925  
Low-level input voltage LVCMOS  
High-level input voltage LVCMOS  
Input voltage threshold LVCMOS  
Input voltage range S0  
3.6  
VDDOUT  
1.9  
V
V
V
V
VIL  
0.3 VDD  
VIH  
0.7 VDD  
VI(thresh)  
0.5 VDD  
0
0
0
1.9  
3.6  
1.9  
±12  
±10  
±8  
VI(S)  
V
V
Input voltage range S1, S2, SDA, SCL; V(Ithresh) = 0.5 VDD  
Input voltage range CLK  
VI(CLK)  
Output current (VDDOUT = 3.3 V)  
Output current (VDDOUT = 2.5 V)  
Output current (VDDOUT = 1.8 V)  
Output load LVCMOS  
IOH /IOL  
mA  
CL  
TA  
15  
pF  
°C  
Operating free-air temperature  
–40  
85  
RECOMMENDED CRYSTAL/VCXO SPECIFICATIONS(1)  
MIN  
NOM  
MAX  
32  
UNIT  
MHz  
fXtal  
Crystal input frequency range (fundamental mode)  
Effective series resistance  
Pulling range (0 V VCtrl 1.8 V)(2)  
8
27  
ESR  
fPR  
100  
±120  
0
±150  
ppm  
V
VCtrl  
C0/C1  
CL  
Frequency control voltage  
VDD  
220  
20  
Pullability ratio  
On-chip load capacitance at Xin and Xout  
0
pF  
(1) For more information about VCXO configuration, and crystal recommendation, see application report (SCAA085).  
(2) Pulling range depends on crystal-type, on-chip crystal load capacitance and PCB stray capacitance; pulling range of min ±120 ppm  
applies for crystal listed in the application report (SCAA085).  
EEPROM SPECIFICATION  
MIN  
100  
10  
TYP  
MAX  
UNIT  
cycles  
years  
EEcyc  
EEret  
Programming cycles of EEPROM  
Data retention  
1000  
4
Submit Documentation Feedback  
Copyright © 2007–2010, Texas Instruments Incorporated  
Product Folder Link(s): CDCE925 CDCEL925  
CDCE925  
CDCEL925  
www.ti.com  
SCAS847F JULY 2007REVISED MARCH 2010  
TIMING REQUIREMENTS  
over recommended ranges of supply voltage, load, and operating free-air temperature  
MIN  
NOM  
MAX  
UNIT  
CLK_IN REQUIREMENTS  
PLL bypass mode  
0
8
160  
160  
3
fCLK  
LVCMOS clock input frequency  
MHz  
ns  
PLL mode  
tr / tf  
Rise and fall time CLK signal (20% to 80%)  
Duty cycle CLK at VDD / 2  
dutyCLK  
40%  
60%  
STANDARD  
MODE  
FAST  
MODE  
UNIT  
MIN  
MAX  
MIN MAX  
SDA/SCL TIMING REQUIREMENTS (see Figure 12)  
fSCL  
SCL clock frequency  
0
4.7  
4
100  
0
0.6  
0.6  
1.3  
0.6  
0
400  
kHz  
ms  
ms  
ms  
ms  
ms  
ns  
ns  
ns  
ms  
ms  
tsu(START)  
th(START)  
tw(SCLL)  
tw(SCLH)  
th(SDA)  
tsu(SDA)  
tr  
START setup time (SCL high before SDA low)  
START hold time (SCL low after SDA low)  
SCL low-pulse duration  
4.7  
4
SCL high-pulse duration  
SDA hold time (SDA valid after SCL low)  
SDA setup time  
0
3.45  
0.9  
250  
100  
SCL/SDA input rise time  
1000  
300  
300  
300  
tf  
SCL/SDA input fall time  
tsu(STOP)  
tBUS  
STOP setup time  
4
0.6  
1.3  
Bus free time between a STOP and START condition  
4.7  
Copyright © 2007–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): CDCE925 CDCEL925  
CDCE925  
CDCEL925  
SCAS847F JULY 2007REVISED MARCH 2010  
www.ti.com  
DEVICE CHARACTERISTICS  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX  
UNIT  
OVERALL PARAMETER  
All outputs off, fCLK=27 MHz,  
fVCO = 135 MHz; fOUT = 27  
MHz  
All PLLS on  
Per PLL  
20  
9
IDD  
Supply current (see Figure 3)  
mA  
mA  
CDCE925 VDDOUT = 3.3 V  
CDCEL925 VDDOUT = 1.8 V  
2
1
No load, all outputs on,  
fOUT = 27 MHz  
IDDOUT  
Supply current (see Figure 4 and Figure 5)  
Power-down current. Every circuit powered  
down except SDA/SCL  
IDDPD  
VPUC  
fIN = 0 MHz,  
VDD = 1.9 V  
30  
mA  
Supply voltage VDD threshold for power-up  
control circuit  
0.85  
1.45  
230  
V
fVCO  
fOUT  
VCO frequency range of PLL  
LVCMOS output frequency  
80  
MHz  
MHz  
CDCE(L)925 VDDOUT = 1.8 V  
230  
LVCMOS PARAMETER  
VIK  
II  
LVCMOS input voltage  
VDD = 1.7 V; Is = –18 mA  
VI = 0 V or VDD; VDD = 1.9 V  
VI = VDD; VDD = 1.9 V  
VI = 0 V; VDD = 1.9 V  
VIClk = 0 V or VDD  
–1.2  
±5  
5
V
LVCMOS Input current  
mA  
mA  
mA  
IIH  
IIL  
LVCMOS Input current for S0/S1/S2  
LVCMOS Input current for S0/S1/S2  
Input capacitance at Xin/Clk  
Input capacitance at Xout  
–4  
6
2
3
CI  
VIXout = 0 V or VDD  
pF  
Input capacitance at S0/S1/S2  
VIS = 0 V or VDD  
CDCE925 - LVCMOS PARAMETER FOR VDDOUT = 3.3 V – MODE  
VDDOUT = 3 V, IOH = –0.1 mA  
2.9  
2.4  
2.2  
VOH  
LVCMOS high-level output voltage  
LVCMOS low-level output voltage  
VDDOUT = 3 V, IOH = –8 mA  
VDDOUT = 3 V, IOH = –12 mA  
VDDOUT = 3 V, IOL = 0.1 mA  
VDDOUT = 3 V, IOL = 8 mA  
VDDOUT = 3 V, IOL = 12 mA  
All PLL bypass  
V
V
0.1  
0.5  
0.8  
VOL  
tPLH, tPHL Propagation delay  
3.2  
0.6  
50  
ns  
ns  
tr/tf  
Rise and fall time  
VDDOUT = 3.3 V (20%–80%)  
1 PLL switching, Y2-to-Y3  
2 PLL switching, Y2-to-Y5  
1 PLL switching, Y2-to-Y3  
2 PLL switching, Y2-to-Y5  
fOUT = 50 MHz; Y1-to-Y3  
fOUT = 50 MHz; Y2-to-Y5  
fVCO = 100 MHz; Pdiv = 1  
70  
130  
100  
160  
70  
(3)  
tjit(cc)  
Cycle-to-cycle jitter(2)  
ps  
ps  
ps  
90  
60  
tjit(per)  
Peak-to-peak period jitter(3)  
100  
(4)  
tsk(o)  
odc  
Output skew  
150  
55%  
(5)  
Output duty cycle  
45%  
CDCE925 – LVCMOS PARAMETER for VDDOUT = 2.5 V – Mode  
VDDOUT = 2.3 V, IOH = –0.1 mA  
2.2  
1.7  
1.6  
VOH  
LVCMOS high-level output voltage  
LVCMOS low-level output voltage  
VDDOUT = 2.3 V, IOH = –6 mA  
VDDOUT = 2.3 V, IOH = –10 mA  
VDDOUT = 2.3 V, IOL = 0.1 mA  
VDDOUT = 2.3 V, IOL = 6 mA  
VDDOUT = 2.3 V, IOL = 10 mA  
All PLL bypass  
V
V
0.1  
0.5  
0.7  
VOL  
tPLH, tPHL Propagation delay  
tr/tf Rise and fall time  
3.6  
0.8  
ns  
ns  
VDDOUT = 2.5 V (20%–80%)  
(1) All typical values are at respective nominal VDD  
.
(2) 10000 cycles.  
(3) Jitter depends on configuration. Jitter data is for input frequency = 27 MHz, fVCO = 135 MHz, fOUT = 27 MHz. fOUT = 3.072 MHz or input  
frequency = 27 MHz, fVCO = 108 MHz, fOUT = 27 MHz. fOUT = 16.384 MHz, fOUT = 25 MHz, fOUT = 74.25 MHz, fOUT = 48 MHz  
(4) The tsk(o) specification is only valid for equal loading of each bank of outputs, and the outputs are generated from the same divider,  
data sampled on rising edge (tr).  
(5) odc depends on output rise- and fall time (tr/tf);  
6
Submit Documentation Feedback  
Copyright © 2007–2010, Texas Instruments Incorporated  
Product Folder Link(s): CDCE925 CDCEL925  
 
 
 
 
CDCE925  
CDCEL925  
www.ti.com  
SCAS847F JULY 2007REVISED MARCH 2010  
DEVICE CHARACTERISTICS (continued)  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX  
70  
UNIT  
1 PLL switching, Y2-to-Y3  
50  
90  
(6) (7)  
tjit(cc)  
Cycle-to-cycle jitter  
ps  
2 PLL switching, Y2-to-Y5  
1 PLL switching, Y2-to-Y3  
2 PLL switching, Y2-to-Y5  
fOUT = 50 MHz; Y1-to-Y3  
fOUT = 50 MHz; Y2-to-Y5  
fVCO = 100 MHz; Pdiv = 1  
130  
100  
160  
70  
60  
(7)  
tjit(per)  
Peak-to-peak period jitter  
ps  
ps  
100  
(8)  
tsk(o)  
odc  
Output skew  
150  
(9)  
Output duty cycle  
45%  
55%  
CDCEL925 — LVCMOS PARAMETER for VDDOUT = 1.8 V – Mode  
VDDOUT = 1.7 V, IOH = –0.1 mA  
1.6  
1.4  
1.1  
VOH  
LVCMOS high-level output voltage  
LVCMOS low-level output voltage  
VDDOUT = 1.7 V, IOH = –4 mA  
VDDOUT = 1.7 V, IOH = –8 mA  
VDDOUT = 1.7 V, IOL = 0.1 mA  
VDDOUT = 1.7 V, IOL = 4 mA  
VDDOUT = 1.7 V, IOL = 8 mA  
All PLL bypass  
V
V
0.1  
0.3  
0.6  
VOL  
tPLH, tPHL Propagation delay  
2.6  
0.7  
ns  
ns  
tr/tf  
Rise and fall time  
VDDOUT = 1.8 V (20%–80%)  
1 PLL switching, Y2-to-Y3  
2 PLL switching, Y2-to-Y5  
1 PLL switching, Y2-to-Y3  
2 PLL switching, Y2-to-Y5  
fOUT = 50 MHz; Y1-to-Y3  
fOUT = 50 MHz; Y2-to-Y5  
fVCO = 100 MHz; Pdiv = 1  
80  
110  
200  
130  
220  
50  
(6) (7)  
tjit(cc)  
Cycle-to-cycle jitter  
ps  
ps  
ps  
130  
100  
150  
(10)  
tjit(per)  
Peak-to-peak period jitter  
(11)  
tsk(o)  
odc  
Output skew  
110  
55%  
(12)  
Output duty cycle  
45%  
SDA/SCL PARAMETER  
VIK  
IIH  
SCL and SDA input clamp voltage  
SCL and SDA input current  
SDA/SCL input high voltage(13)  
SDA/SCL input low voltage(13)  
SDA low-level output voltage  
SCL/SDA Input capacitance  
VDD = 1.7 V; II = –18 mA  
VI = VDD; VDD = 1.9 V  
–1.2  
±10  
V
mA  
V
VIH  
VIL  
VOL  
CI  
0.7 VDD  
0.3 VDD  
0.2 VDD  
10  
V
IOL = 3 mA VDD = 1.7 V  
VI = 0 V or VDD  
V
3
pF  
(6) 10000 cycles.  
(7) Jitter depends on configuration. Jitter data is for input frequency = 27 MHz, fVCO = 135 MHz, fOUT = 27 MHz. fOUT = 3.072 MHz or input  
frequency = 27 MHz, fVCO = 108 MHz, fOUT = 27 MHz. fOUT = 16.384 MHz, fOUT = 25 MHz, fOUT = 74.25 MHz, fOUT = 48 MHz  
(8) The tsk(o) specification is only valid for equal loading of each bank of outputs, and the outputs are generated from the same divider,  
data sampled on rising edge (tr).  
(9) odc depends on output rise- and fall time (tr/tf);  
(10) Jitter depends on configuration. Jitter data is for input frequency = 27 MHz, fVCO = 135 MHz, fOUT = 27 MHz. fOUT = 3.072 MHz or input  
frequency = 27 MHz, fVCO = 108 MHz, fOUT = 27 MHz. fOUT = 16.384 MHz, fOUT = 25 MHz, fOUT = 74.25 MHz, fOUT = 48 MHz  
(11) The tsk(o) specification is only valid for equal loading of each bank of outputs, and the outputs are generated from the same divider,  
data sampled on rising edge (tr).  
(12) odc depends on output rise- and fall time (tr/tf);  
(13) SDA and SCL pins are 3.3 V tolerant.  
Copyright © 2007–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): CDCE925 CDCEL925  
 
CDCE925  
CDCEL925  
SCAS847F JULY 2007REVISED MARCH 2010  
www.ti.com  
PARAMETER MEASUREMENT INFORMATION  
CDCE925  
CDEL925  
1 kW  
1 kW  
LVCMOS  
10 pF  
Figure 1. Test Load  
CDCE925  
CDCEL925  
LVCMOS  
LVCMOS  
Series  
Termination  
~ 18 W  
Line Impedance  
Zo = 50 W  
Typical Driver  
Impedance  
~ 32 W  
Figure 2. Test Load for 50-Board Environment  
8
Submit Documentation Feedback  
Copyright © 2007–2010, Texas Instruments Incorporated  
Product Folder Link(s): CDCE925 CDCEL925  
 
 
CDCE925  
CDCEL925  
www.ti.com  
SCAS847F JULY 2007REVISED MARCH 2010  
TYPICAL CHARACTERISTICS  
CDCE925 AND CDCEL925 SUPPLY CURRENT  
CDCE925 OUTPUT CURRENT  
vs  
vs  
PLL FREQUENCY  
OUTPUT FREQUENCY  
25  
20  
60  
50  
V
V
= 1.8 V,  
= 3.3 V,  
DD  
V
= 1.8 V  
DD  
DDOUT  
No Load  
5 outputs on  
3 outputs on  
40  
30  
20  
15  
10  
2 PLL on  
1 output on  
all outputs off  
1 PLL on  
5
0
10  
0
all PLL off  
10 30 50 70 90 110 130 150 170 190 210 230  
10  
60  
110 160  
f - Frequency - MHz  
210  
f
- Output Frequency - MHz  
OUT  
Figure 3.  
Figure 4.  
CDCEL925 OUTPUT CURRENT  
vs  
OUTPUT FREQUENCY  
8
V
= 1.8 V,  
DD  
V
= 1.8 V,  
7
6
DDOUT  
No Load  
5 outputs on  
3 outputs on  
5
4
3
1 output on  
all outputs off  
2
1
0
10 30 50 70 90 110 130 150 170 190 210 230  
f
- Output Frequency - MHz  
OUT  
Figure 5.  
Copyright © 2007–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): CDCE925 CDCEL925  
CDCE925  
CDCEL925  
SCAS847F JULY 2007REVISED MARCH 2010  
www.ti.com  
APPLICATION INFORMATION  
CONTROL TERMINAL SETTING  
The CDCE925/CDCEL925 has three user-definable control terminals (S0, S1, and S2) which allow external  
control of device settings. They can be programmed to any of the following setting:  
Spread spectrum clocking selection spread type and spread amount selection  
Frequency selection switching between any of two user-defined frequencies  
Output state selection output configuration and power down control  
The user can predefine up to eight different control settings. Table 1 and Table 2 explain these settings.  
Table 1. Control Terminal Definition  
External  
Control Bits  
PLL1 Setting  
PLL2 Setting  
Y1 Setting  
Control  
Function  
PLL Frequency  
Selection  
SSC  
Selection  
Output Y2/Y3 PLL Frequency  
Selection Selection  
SSC  
Selection  
Output Y4/Y5  
Selection  
Output Y1 and  
Power-Down Selection  
Table 2. PLL Setting (Can Be Selected for Each PLL Individual)(1)  
SSC SELECTION (CENTER/DOWN)  
SSCx [3-Bits]  
Center  
0% (off)  
±0.25%  
±0.5%  
Down  
0% (off)  
–0.25%  
–0.5%  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
±0.75%  
±1.0%  
–0.75%  
–1.0%  
±1.25%  
±1.5%  
–1.25%  
–1.5%  
±2.0%  
–2.0%  
FREQUENCY SELECTION(2)  
FSx  
0
FUNCTION  
Frequency0  
Frequency1  
1
OUTPUT SELECTION(3) (Y2 ... Y5)  
YxYx  
FUNCTION  
0
1
State0  
State1  
(1) Center/Down-Spread, Frequency0/1 and State0/1 are user-definable in PLLx Configuration Register;  
(2) Frequency0 and Frequency1 can be any frequency within the specified fVCO range.  
(3) State0/1 selection is valid for both outputs of the corresponding PLL module and can be power down,  
3-state, low or active  
Table 3. Y1 Setting(1)  
Y1 SELECTION  
Y1  
0
FUNCTION  
State 0  
1
State 1  
(1) State0 and State1 are user definable in Generic Configuration  
Register and can be power down, 3-state, low, or active.  
10  
Submit Documentation Feedback  
Copyright © 2007–2010, Texas Instruments Incorporated  
Product Folder Link(s): CDCE925 CDCEL925  
 
 
 
CDCE925  
CDCEL925  
www.ti.com  
SCAS847F JULY 2007REVISED MARCH 2010  
SDA/S1 and SCL/S2 pins of the CDCE925/CDCEL925 are dual-function pins. In default configuration, they are  
predefined as SDA/SCL serial programming interface. They can be programmed to control pins (S1/S2) by  
setting the relevant bits in the EEPROM. Note that the changes of the bits in the Control Register (bit [6] of byte  
02h) have no effect until they are written into the EEPROM.  
Once they are set as control pins, the serial programming interface is no longer available. However, if VDDOUT is  
forced to GND, the two control pins, S1 and S2, temporally act as serial programming pins (SDA/SCL).  
S0 is not a multi use pin; it is a control pin only.  
DEFAULT DEVICE SETTING  
The internal EEPROM of CDCE925/CDCEL925 is preconfigured as shown in Figure 6 The input frequency is  
passed through the output as a default. This allows the device to operate in default mode without the extra  
production step of programming it. The default setting appears after power is supplied or after power-down/up  
sequence until it is reprogrammed by the user to a different application configuration. A new register setting is  
programmed via the serial SDA/SCL interface.  
V
V
DDOUT  
DD  
GND  
Input Clock  
LV  
CMOS  
Pdiv1 =1  
Y1 = 27MHz  
Xin  
27-MHz  
Crystal  
Xtal  
LV  
CMOS  
Y2 = 27 MHz  
Y3 = 27 MHz  
PLL1  
Power Down  
Pdiv2 = 1  
Xout  
S0  
LV  
CMOS  
Pdiv3 = 1  
PLL Bypass  
EEPROM  
“1” = Outputs Enabled  
“0” = Outputs  
-State  
Programming Bus  
Programming  
and  
SDA/SCL  
Register  
3
SDA  
SCL  
LV  
CMOS  
Y4 = 27 MHz  
Y5 = 27 MHz  
PLL2  
Pdiv4 = 1  
Pdiv5 = 1  
Power Down  
LV  
CMOS  
PLL Bypass  
Figure 6. Preconfiguration of CDCE925/CDCEL925 Internal EEPROM  
Table 4 shows the factory default setting for the Control Terminal Register (external control pins). Note that even  
though eight different register settings are possible, in default configuration, only the first two settings (0 and 1)  
can be selected with S0, as S1 and S2 are configured as programming pins in default mode.  
Table 4. Factory Default Setting for Control Terminal Register(1)  
Y1  
PLL1 Settings  
PLL2 Settings  
Output  
Selection  
Frequency  
Selection  
SSC  
Selection  
Output  
Selection  
Frequency  
Selection  
SSC  
Selection  
Output  
Selection  
External Control Pins  
S2  
S1  
S0  
0
Y1  
FS1  
SSC1  
off  
Y2Y3  
3-state  
enabled  
FS2  
SSC2  
off  
Y4Y5  
3-state  
enabled  
SCL (I2C)  
SCL (I2C)  
SDA (I2C)  
SDA (I2C)  
3-state  
enabled  
fVCO1_0  
fVCO1_0  
fVCO2_0  
fVCO2_0  
1
off  
off  
(1) In default mode or when programmed respectively, S1 and S2 act as serial programming interface, SDA/SCL. They do not have any  
control-pin function but they are internally interpreted as if S1=0 and S2=0. S0, however, is a control-pin which in the default mode  
switches all outputs ON or OFF (as previously predefined).  
Copyright © 2007–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): CDCE925 CDCEL925  
 
 
 
CDCE925  
CDCEL925  
SCAS847F JULY 2007REVISED MARCH 2010  
www.ti.com  
SDA/SCL SERIAL INTERFACE  
This section describes the SDA/SCL interface of the CDCE925/CDCEL925 device. The CDCE925/CDCEL925  
operates as a slave device of the 2-wire serial SDA/SCL bus, compatible with the popular SMBus or I2C  
specification. It operates in the standard-mode transfer (up to 100 kbit/s) and fast-mode transfer (up to 400 kbit/s)  
and supports 7-bit addressing.  
The SDA/S1 and SCL/S2 pins of the CDCE925/CDCEL925 are dual-function pins. In the default configuration  
they are used as SDA/SCL serial programming interface. They can be reprogrammed as general-purpose control  
pins, S1 and S2, by changing the corresponding EEPROM setting, byte 02h, bit [6].  
DATA PROTOCOL  
The device supports Byte Write and Byte Read and Block Write and Block Read operations.  
For Byte Write/Read operations, the system controller can individually access addressed bytes.  
For Block Write/Read operations, the bytes are accessed in sequential order from lowest to highest byte (with  
most-significant bit first) with the ability to stop after any complete byte has been transferred. The numbers of  
bytes read out are defined by byte count in the Generic Configuration Register. At Block Read instruction all  
bytes defined in the byte count has to be read out to correctly finish the read cycle.  
Once a byte has been sent, it is written into the internal register and is effective immediately. This applies to  
each transferred byte regardless of whether this is a Byte Write or a Block Write sequence.  
If the EEPROM Write Cycle is initiated, the internal SDA registers are written into the EEPROM. During this Write  
Cycle, data is not accepted at the SDA/SCL bus until the write cycle is completed. However, data can be read  
out during the programming sequence (Byte Read or Block Read). The programming status can be monitored by  
EEPIP, byte 01h–bit 6.  
The offset of the indexed byte is encoded in the command code, as described in Table 5.  
Table 5. Slave Receiver Address (7 Bits)  
DEVICE  
A6  
1
A5  
1
A4  
0
A3  
0
A2  
1
A1(1)  
A0(1)  
R/W  
1/0  
1/0  
1/0  
1/0  
CDCE913/CDCEL913  
CDCE925/CDCEL925  
CDCE937/CDCEL937  
CDCE949/CDCEL949  
0
0
0
0
1
0
1
0
1
1
0
0
1
1
1
0
1
1
1
1
0
1
1
(1) Address bits A0 and A1 are programmable via the SDA/SCL bus (byte 01, bit [1:0]. This allows addressing up to four devices connected  
to the same SDA/SCL bus. The least-significant bit of the address byte designates a write or read operation.  
12  
Submit Documentation Feedback  
Copyright © 2007–2010, Texas Instruments Incorporated  
Product Folder Link(s): CDCE925 CDCEL925  
 
CDCE925  
CDCEL925  
www.ti.com  
SCAS847F JULY 2007REVISED MARCH 2010  
COMMAND CODE DEFINITION  
Table 6. Command Code Definition  
BIT  
DESCRIPTION  
0 = Block Read or Block Write operation  
1 = Byte Read or Byte Write operation  
7
(6:0)  
Byte Offset for Byte Read, Block Read, Byte Write and Block Write operation.  
Generic Programming Sequence  
1
7
1
1
8
1
1
S
Slave Address  
A
Data Byte  
A
P
R/W  
MSB  
LSB  
MSB  
LSB  
S
Start Condition  
Sr Repeated Start Condition  
1 = Read (Rd) From CDCE9xx Device; 0 = Write (Wr) to CDCE9xxx  
Acknowledge (ACK = 0 and NACK =1)  
Stop Condition  
R/W  
A
P
Master-to-Slave Transmission  
Slave-to-Master Transmission  
Figure 7. Generic Programming Sequence  
Byte Write Programming Sequence  
1
7
1
1
8
1
8
1
1
S
Slave Address  
Wr  
A
CommandCode  
A
Data Byte  
A
P
Figure 8. Byte Write Protocol  
Byte Read Programming Sequence  
1
7
1
1
8
1
1
7
1
1
S
Slave Address  
Wr  
A
CommandCode  
A
S
Slave Address  
Rd  
A
8
1
1
Data Byte  
A
P
Figure 9. Byte Read Protocol  
Block Write Programming Sequence  
1
7
1
1
8
1
8
1
S
Slave Address  
Wr  
A
CommandCode  
A
Byte Count = N  
A
8
1
8
1
8
1
1
Data Byte 0  
A
Data Byte 1  
A
Data Byte N-1  
A
P
(1) Data byte 0 bits [7:0] is reserved for Revision Code and Vendor Identification. Also, it is used for internal test purpose  
and should not be overwritten.  
Figure 10. Block Write Protocol  
Copyright © 2007–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): CDCE925 CDCEL925  
CDCE925  
CDCEL925  
SCAS847F JULY 2007REVISED MARCH 2010  
www.ti.com  
Block Read Programming Sequence  
1
7
1
1
8
1
1
7
1
1
S
Slave Address  
Wr  
A
CommandCode  
A
Sr  
Slave Address  
Rd  
A
8
1
8
1
8
1
1
Byte Count N  
A
Data Byte 0  
A
Data Byte N-1  
A
P
Figure 11. Block Read Protocol  
Timing Diagram for the SDA/SCL Serial Control Interface  
Bit 7 (MSB)  
Bit 6  
Bit 0 (LSB)  
P
S
A
P
t
w(SCLL)  
t
w(SCLH)  
t
r
t
f
V
IH  
SCL  
V
IL  
t
t
t
su(START)  
h(START)  
su(SDA)  
t
t
h(SDA)  
su(STOP)  
t
f
t
t
r
(BUS)  
V
IH  
SDA  
V
IL  
Figure 12. Timing Diagram for SDA/SCL Serial Control Interface  
SDA/SCL HARDWARE INTERFACE  
Figure 13 shows how the CDCE925/CDCEL925 clock synthesizer is connected to the SDA/SCL serial interface  
bus. Multiple devices can be connected to the bus but the speed may need to be reduced (400 kHz is the  
maximum) if many devices are connected.  
Note that the pullup resistors (RP) depends on the supply voltage, bus capacitance, and number of connected  
devices. The recommended pullup value is 4.7 k. It must meet the minimum sink current of 3 mA at VOLmax  
=
0.4 V for the output stages (for more details see SMBus or I2C Bus specification).  
CDCE925  
CDCEL925  
R
R
P
P
Master  
SDA  
Slave  
SCL  
C
C
BUS  
BUS  
Figure 13. SDA / SCL Hardware Interface  
14  
Submit Documentation Feedback  
Copyright © 2007–2010, Texas Instruments Incorporated  
Product Folder Link(s): CDCE925 CDCEL925  
 
CDCE925  
CDCEL925  
www.ti.com  
SCAS847F JULY 2007REVISED MARCH 2010  
SDA/SCL CONFIGURATION REGISTERS  
The clock input, control pins, PLLs, and output stages are user configurable. The following tables and  
explanations describe the programmable functions of the CDCE925/CDCEL925. All settings can be manually  
written into the device via the SDA/SCL bus or easily programmed by using the TI Pro-Clock™ software. TI  
Pro-Clock™ software allows the user to quickly make all settings and automatically calculates the values for  
optimized performance at lowest jitter.  
Table 7. SDA/SCL Registers  
Address Offset  
Register Description  
Generic Configuration Register  
PLL1 Configuration Register  
PLL2 Configuration Register  
Table  
00h  
10h  
20h  
Table 9  
Table 10  
Table 11  
The grey-highlighted bits, described in the Configuration Registers tables in the following pages, belong to the  
Control Terminal Register. The user can predefine up to eight different control settings. These settings then can  
be selected by the external control pins, S0, S1, and S2. Table 8 explains the corresponding bit assignment  
between the Control Terminal Register and the Configuration Registers.  
Table 8. Configuration Register, External Control Terminals  
Y1  
PLL1 Settings  
PLL2 Settings  
Output  
Selection  
Frequency  
Selection  
SSC  
Selection  
Output  
Selection  
Frequency  
Selection  
SSC  
Selection  
Output  
Selection  
External Control Pins  
S2  
0
S1  
0
S0  
0
Y1  
FS1  
SSC1  
Y2Y3  
FS2  
SSC2  
Y4Y5  
0
1
2
3
4
5
6
7
Y1_0  
Y1_1  
Y1_2  
Y1_3  
Y1_4  
Y1_5  
Y1_6  
Y1_7  
04h  
FS1_0  
FS1_1  
FS1_2  
FS1_3  
FS1_4  
FS1_5  
FS1_6  
FS1_7  
13h  
SSC1_0  
SSC1_1  
SSC1_2  
SSC1_3  
SSC1_4  
SSC1_5  
SSC1_6  
SSC1_7  
10h–12h  
Y2Y3_0  
Y2Y3_1  
Y2Y3_2  
Y2Y3_3  
Y2Y3_4  
Y2Y3_5  
Y2Y3_6  
Y2Y3_7  
15h  
FS2_0  
FS2_1  
FS2_2  
FS2_3  
FS2_4  
FS2_5  
FS2_6  
FS2_7  
23h  
SSC2_0  
SSC2_1  
SSC2_2  
SSC2_3  
SSC2_4  
SSC2_5  
SSC2_6  
SSC2_7  
20h–22h  
Y4Y5_0  
Y4Y5_1  
Y4Y5_2  
Y4Y5_3  
Y4Y5_4  
Y4Y5_5  
Y4Y5_6  
Y4Y5_7  
25h  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Address Offset(1)  
(1) Address Offset refers to the byte address in the Configuration Register in Table 9, Table 10, and Table 11.  
Copyright © 2007–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): CDCE925 CDCEL925  
 
CDCE925  
CDCEL925  
SCAS847F JULY 2007REVISED MARCH 2010  
www.ti.com  
Table 9. Generic Configuration Register  
Offset(1)  
00h  
Bit(2)  
7
Acronym  
E_EL  
RID  
Default(3)  
Description  
Device identification (read-only): 1 is CDCE925 (3.3 V out), 0 is CDCEL925 (1.8 V out)  
Revision Identification Number (read only)  
Xb  
Xb  
1h  
0b  
6:4  
3:0  
7
VID  
Vendor Identification Number (read only)  
01h  
Reserved – always write 0  
EEPROM Programming Status4:(4) (read only)  
0 – EEPROM programming is completed  
1 – EEPROM is in programming mode  
6
5
EEPIP  
0b  
0b  
Permanently Lock EEPROM Data(5)  
0 – EEPROM is not locked  
1 – EEPROM will be permanently locked  
EELOCK  
Device Power Down (overwrites S0/S1/S2 setting; configuration register settings are unchanged)  
Note: PWDN cannot be set to 1 in the EEPROM.  
4
PWDN  
0b  
0 – device active (all PLLs and all outputs are enabled)  
1 – device power down (all PLLs in power down and all outputs in 3-state)  
3:2  
1:0  
7
INCLK  
SLAVE_ADR  
M1  
00b  
00b  
1b  
Input clock selection:  
00 – Xtal 01 – VCXO  
10 – LVCMOS 11 – reserved  
Address Bits A0 and A1 of the Slave Receiver Address  
Clock source selection for output Y1:  
0 – input clock  
1 – PLL1 clock  
Operation mode selection for pin 14/15(6)  
6
SPICON  
0b  
0 – serial programming interface SDA (pin 15) and SCL (pin 14)  
1 – control pins S1 (pin 15) and S2 (pin 14)  
02h  
5:4  
3:2  
Y1_ST1  
Y1_ST0  
11b  
01b  
Y1-State0/1 Definition  
00 – device power down (all PLLs in power down and all  
outputs in 3-State)  
10 – Y1 disabled to low  
11 – Y1 enabled  
01 – Y1 disabled to 3-state  
1:0  
7:0  
7
Pdiv1 [9:8]  
Pdiv1 [7:0]  
Y1_7  
10-Bit Y1-Output-Divider Pdiv1:  
0 – divider reset and stand-by  
1-to-1023 – divider value  
001h  
03h  
04h  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
Y1_ST0/Y1_ST1 State Selection(7)  
6
Y1_6  
0 – State0 (predefined by Y1_ST0)  
1 – State1 (predefined by Y1_ST1)  
5
Y1_6  
4
Y1_6  
3
Y1_6  
2
Y1_6  
1
Y1_6  
0
Y1_6  
Vctr  
Xin  
05h  
06h  
Crystal Load Capacitor Selection(8)  
Reserved – do not write other than 0  
00h 0 pF  
01h 1 pF  
02h 2 pF  
:
VCXO  
XO  
20pF  
20pF  
i.e.  
XCSEL = 10pF  
7:3  
XCSEL  
0Ah  
14h-to-1Fh 20 pF  
Xout  
2:0  
7:1  
0b  
7-Bit Byte Count (defines the number of bytes which will be sent from this device at the next Block Read transfer); all bytes  
have to be read out to correctly finish the read cycle.)  
BCOUNT  
EEWRITE  
30h  
0– no EEPROM write cycle  
Initiate EEPROM Write Cycle(9)  
0
0b  
1 – start EEPROM write cycle (internal register are saved to the EEPROM)  
(1) Writing data beyond ‘30h’ may affect device function.  
(2) All data transferred with the MSB first.  
(3) Unless customer-specific setting.  
(4) During EEPROM programming, no data is allowed to be sent to the device via the SDA/SCL bus until the programming sequence is  
completed. Data, however, can be read out during the programming sequence (Byte Read or Block Read).  
(5) If this bit is set to high in the EEPROM, the actual data in the EEPROM is permanently locked. No further programming is possible.  
Data, however can still be written via SDA/SCL bus to the internal register to change device function on the fly. But new data can no  
longer be saved to the EEPROM. EELOCK is effective only, if written into the EEPROM.  
(6) Selection of “control pins” is effective only if written into the EEPROM. Once written into the EEPROM, the serial programming pins are  
no longer available. However, if VDDOUT is forced to GND, the two control pins, S1 and S2, temporally act as serial programming pins  
(SDA/SCL), and the two slave receiver address bits are reset to A0=”0” and A1=“0”.  
(7) These are the bits of the Control Terminal Register. The user can predefine up to eight different control settings. These settings then  
can be selected by the external control pins, S0, S1, and S2.  
(8) The internal load capacitor (C1, C2) has to be used to achieve the best clock performance. External capacitors should be used only to  
finely adjust CL by a few picofarads. The value of CL can be programmed with a resolution of 1 pF for a crystal load range of 0 pF to 20  
pF. For CL > 20 pF, use additional external capacitors. Also, the value of the device input capacitance has to be considered which  
always adds 1.5 pF (6 pF//2 pF) to the selected CL. For more information about VCXO configuration and crystal recommendation, see  
application report SCAA085.  
(9) Note: The EEPROM WRITE bit must be sent last. This ensures that the content of all internal registers are stored in the EEPROM. The  
EEWRITE cycle is initiated with the rising edge of the EEWRITE bit. A static level high does not trigger an EEPROM WRITE cycle. The  
EEWRITE bit has to be reset to low after the programming is completed. The programming status can be monitored by reading out  
EEPIP. If EELOCK is set to high, no EEPROM programming is possible.  
16  
Submit Documentation Feedback  
Copyright © 2007–2010, Texas Instruments Incorporated  
Product Folder Link(s): CDCE925 CDCEL925  
 
 
 
 
CDCE925  
CDCEL925  
www.ti.com  
SCAS847F JULY 2007REVISED MARCH 2010  
Table 9. Generic Configuration Register (continued)  
Offset(1)  
Bit(2)  
Acronym  
Default(3)  
Description  
07h-0Fh  
0h  
Reserved – do not write other than 0  
Table 10. PLL1 Configuration Register  
OFFSET(1)  
Bit(2)  
Acronym  
Default(3)  
DESCRIPTION  
SSC1: PLL1 SSC Selection (Modulation Amount)(4)  
10h  
7:5  
4:2  
1:0  
7
SSC1_7 [2:0]  
SSC1_6 [2:0]  
SSC1_5 [2:1]  
SSC1_5 [0]  
SSC1_4 [2:0]  
SSC1_3 [2:0]  
SSC1_2 [2]  
SSC1_2 [1:0]  
SSC1_1 [2:0]  
SSC1_0 [2:0]  
FS1_7  
000b  
000b  
Down  
Center  
000 (off)  
000 (off)  
001 – 0.25%  
010 – 0.5%  
011 – 0.75%  
100 – 1.0%  
101 – 1.25%  
110 – 1.5%  
111 – 2.0%  
001 ± 0.25%  
010 ± 0.5%  
011 ± 0.75%  
100 ± 1.0%  
101 ± 1.25%  
110 ± 1.5%  
111 ± 2.0%  
000b  
11h  
6:4  
3:1  
0
000b  
000b  
000b  
12h  
13h  
7:6  
5:3  
2:0  
7
000b  
000b  
0b  
FS1_x: PLL1 Frequency Selection(4)  
6
FS1_6  
0b  
0 – fVCO1_0 (predefined by PLL1_0 – Multiplier/Divider value)  
1 – fVCO1_1 (predefined by PLL1_1 – Multiplier/Divider value)  
5
FS1_5  
0b  
4
FS1_4  
0b  
3
FS1_3  
0b  
2
FS1_2  
0b  
1
FS1_1  
0b  
0
FS1_0  
0b  
14h  
PLL1 Multiplexer:  
0 – PLL1  
7
6
MUX1  
M2  
1b  
1b  
1 – PLL1 Bypass (PLL1 is in power down)  
Output Y2 Multiplexer:  
Output Y3 Multiplexer:  
0 – Pdiv1  
1 – Pdiv2  
00 – Pdiv1-Divider  
01 – Pdiv2-Divider  
10 – Pdiv3-Divider  
11 – reserved  
5:4  
M3  
10b  
3:2  
1:0  
Y2Y3_ST1  
Y2Y3_ST0  
11b  
01b  
Y2, Y3-State0/1definition: 00 – Y2/Y3 disabled to 3-State (PLL1 is in power down)  
01 – Y2/Y3 disabled to 3-State (PLL1 on)  
10–Y2/Y3 disabled to low (PLL1 on)  
11 – Y2/Y3 enabled (normal operation, PLL1 on)  
Y2Y3_x Output State Selection(4)  
15h  
7
6
5
4
3
2
1
0
Y2Y3_7  
Y2Y3_6  
Y2Y3_5  
Y2Y3_4  
Y2Y3_3  
Y2Y3_2  
Y2Y3_1  
Y2Y3_0  
0b  
0b  
0b  
0b  
0b  
0b  
1b  
0b  
0 – state0 (predefined by Y2Y3_ST0)  
1 – state1 (predefined by Y2Y3_ST1)  
16h  
17h  
PLL1 SSC down/center selection:  
7-Bit Y2-Output-Divider Pdiv2:  
0 – down  
1 – center  
7
SSC1DC  
0b  
0 – reset and stand-by  
1-to-127 – divider value  
6:0  
7
Pdiv2  
01h  
0b  
Reserved – do not write others than 0  
7-Bit Y3-Output-Divider Pdiv3:  
0 – reset and stand-by  
1-to-127 – divider value  
6:0  
Pdiv3  
01h  
(1) Writing data beyond 30h may adversely affect device function.  
(2) All data is transferred MSB-first.  
(3) Unless a custom setting is used  
(4) The user can predefine up to eight different control settings. In normal device operation, these settings can be selected by the external  
control pins, S0, S1, and S2.  
Copyright © 2007–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): CDCE925 CDCEL925  
CDCE925  
CDCEL925  
SCAS847F JULY 2007REVISED MARCH 2010  
www.ti.com  
Table 10. PLL1 Configuration Register (continued)  
OFFSET(1)  
18h  
Bit(2)  
7:0  
7:4  
3:0  
7:3  
2:0  
7:5  
4:2  
Acronym  
Default(3)  
DESCRIPTION  
PLL1_0N [11:4  
PLL1_0N [3:0]  
PLL1_0R [8:5]  
PLL1_0R[4:0]  
PLL1_0Q [5:3]  
PLL1_0Q [2:0]  
PLL1_0P [2:0]  
PLL1_0(5): 30-Bit Multiplier/Divider value for frequency fVCO1_0  
(for more information, see paragraph PLL Multiplier/Divider Definition).  
004h  
19h  
000h  
1Ah  
1Bh  
10h  
010b  
fVCO1_0 range selection:  
00 – fVCO1_0 < 125 MHz  
01 – 125 MHz fVCO1_0 < 150 MHz  
10 – 150 MHz fVCO1_0 < 175 MHz  
11 – fVCO1_0 175 MHz  
1:0  
VCO1_0_RANGE  
00b  
1Ch  
1Dh  
7:0  
7:4  
3:0  
7:3  
2:0  
7:5  
4:2  
PLL1_1N [11:4]  
PLL1_1N [3:0]  
PLL1_1R [8:5]  
PLL1_1R[4:0]  
PLL1_1Q [5:3]  
PLL1_1Q [2:0]  
PLL1_1P [2:0]  
PLL1_1(5): 30-Bit Multiplier/Divider value for frequency fVCO1_1  
(for more information see paragraph PLL Multiplier/Divider Definition)  
004h  
000h  
1Eh  
1Fh  
10h  
010b  
fVCO1_1 range selection:  
00 – fVCO1_1 < 125 MHz  
01 – 125 MHz fVCO1_1 < 150 MHz  
10 – 150 MHz fVCO1_1 < 175 MHz  
11 – fVCO1_1 175 MHz  
1:0  
VCO1_1_RANGE  
00b  
(5) PLL settings limits: 16q63, 0p7, 0r511, 0<N<4096  
18  
Submit Documentation Feedback  
Copyright © 2007–2010, Texas Instruments Incorporated  
Product Folder Link(s): CDCE925 CDCEL925  
 
CDCE925  
CDCEL925  
www.ti.com  
SCAS847F JULY 2007REVISED MARCH 2010  
Table 11. PLL2 Configuration Register  
OFFSET(1)  
Bit(2)  
7:5  
4:2  
1:0  
7
Acronym  
SSC2_7 [2:0]  
SSC2_6 [2:0]  
SSC2_5 [2:1]  
SSC2_5 [0]  
SSC2_4 [2:0]  
SSC2_3 [2:0]  
SSC2_2 [2]  
SSC2_2 [1:0]  
SSC2_1 [2:0]  
SSC2_0 [2:0]  
FS2_7  
Default(3)  
DESCRIPTION  
SSC2: PLL2 SSC Selection (Modulation Amount)(4)  
20h  
000b  
000b  
Down  
Center  
000 (off)  
000 (off)  
001 – 0.25%  
010 – 0.5%  
011 – 0.75%  
100 – 1.0%  
101 – 1.25%  
110 – 1.5%  
111 – 2.0%  
001 ± 0.25%  
010 ± 0.5%  
011 ± 0.75%  
100 ± 1.0%  
101 ± 1.25%  
110 ± 1.5%  
111 ± 2.0%  
000b  
21h  
6:4  
3:1  
0
000b  
000b  
000b  
22h  
23h  
7:6  
5:3  
2:0  
7
000b  
000b  
0b  
FS2_x: PLL2 Frequency Selection(4)  
6
FS2_6  
0b  
0 – fVCO2_0 (predefined by PLL2_0 – Multiplier/Divider value)  
1 – fVCO2_1 (predefined by PLL2_1 – Multiplier/Divider value)  
5
FS2_5  
0b  
4
FS2_4  
0b  
3
FS2_3  
0b  
2
FS2_2  
0b  
1
FS2_1  
0b  
0
FS2_0  
0b  
24h  
PLL2 Multiplexer:  
0 – PLL2  
7
6
MUX2  
M4  
1b  
1b  
1 – PLL2 Bypass (PLL2 is in power down)  
Output Y4 Multiplexer:  
Output Y5 Multiplexer:  
0 – Pdiv2  
1 – Pdiv4  
00 – Pdiv2-Divider  
01 – Pdiv4-Divider  
10 – Pdiv5-Divider  
11 – reserved  
5:4  
M5  
10b  
3:2  
1:0  
Y4Y5_ST1  
Y4Y5_ST0  
11b  
01b  
Y4,  
00 – Y4/Y5 disabled to 3-State (PLL2 is in power down)  
01 – Y4/Y5 disabled to 3-State (PLL2 on)  
10–Y4/Y5 disabled to low (PLL2 on)  
Y5-State0/1definition:  
11 – Y4/Y5 enabled (normal operation, PLL2 on)  
Y4Y5_x Output State Selection(4)  
25h  
7
6
5
4
3
2
1
0
Y4Y5_7  
Y4Y5_6  
Y4Y5_5  
Y4Y5_4  
Y4Y5_3  
Y4Y5_2  
Y4Y5_1  
Y4Y5_0  
0b  
0b  
0b  
0b  
0b  
0b  
1b  
0b  
0 – state0 (predefined by Y4Y5_ST0)  
1 – state1 (predefined by Y4Y5_ST1)  
26h  
27h  
PLL2 SSC down/center selection:  
7-Bit Y4-Output-Divider Pdiv4:  
0 – down  
1 – center  
7
SSC2DC  
0b  
0 – reset and stand-by  
1-to-127 – divider value  
6:0  
7
Pdiv4  
01h  
0b  
Reserved – do not write others than 0  
7-Bit Y5-Output-Divider Pdiv5:  
0 – reset and stand-by  
1-to-127 – divider value  
6:0  
Pdiv5  
01h  
(1) Writing data beyond 30h may adversely affect device function.  
(2) All data is transferred MSB-first.  
(3) Unless a custom setting is used  
(4) The user can predefine up to eight different control settings. In normal device operation, these settings can be selected by the external  
control pins, S0, S1, and S2.  
Copyright © 2007–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): CDCE925 CDCEL925  
CDCE925  
CDCEL925  
SCAS847F JULY 2007REVISED MARCH 2010  
www.ti.com  
Table 11. PLL2 Configuration Register (continued)  
OFFSET(1)  
28h  
Bit(2)  
7:0  
7:4  
3:0  
7:3  
2:0  
7:5  
4:2  
Acronym  
Default(3)  
DESCRIPTION  
PLL2_0N [11:4  
PLL2_0N [3:0]  
PLL2_0R [8:5]  
PLL2_0R[4:0]  
PLL2_0Q [5:3]  
PLL2_0Q [2:0]  
PLL2_0P [2:0]  
PLL2_0(5): 30-Bit Multiplier/Divider value for frequency fVCO2_0  
(for more information see paragraph PLL Multiplier/Divider Definition)  
004h  
29h  
000h  
2Ah  
2Bh  
10h  
010b  
fVCO2_0 range selection:  
00 – fVCO2_0 < 125 MHz  
01 – 125 MHz fVCO2_0 < 150 MHz  
10 – 150 MHz fVCO2_0 < 175 MHz  
11 – fVCO2_0 175 MHz  
1:0  
VCO2_0_RANGE  
00b  
2Ch  
2Dh  
7:0  
7:4  
3:0  
7:3  
2:0  
7:5  
4:2  
PLL2_1N [11:4]  
PLL2_1N [3:0]  
PLL2_1R [8:5]  
PLL2_1R[4:0]  
PLL2_1Q [5:3]  
PLL2_1Q [2:0]  
PLL2_1P [2:0]  
PLL2_1(5): 30-Bit Multiplier/Divider value for frequency fVCO2_1  
(for more information see paragraph PLL Multiplier/Divider Definition)  
004h  
000h  
2Eh  
2Fh  
10h  
010b  
fVCO2_1 range selection:  
00 – fVCO2_1 < 125 MHz  
01 – 125 MHz fVCO2_1 < 150 MHz  
10 – 150 MHz fVCO2_1 < 175 MHz  
11 – fVCO2_1 175 MHz  
1:0  
VCO2_1_RANGE  
00b  
(5) PLL settings limits: 16q63, 0p7, 0r511, 0<N<4096.  
20  
Submit Documentation Feedback  
Copyright © 2007–2010, Texas Instruments Incorporated  
Product Folder Link(s): CDCE925 CDCEL925  
 
CDCE925  
CDCEL925  
www.ti.com  
SCAS847F JULY 2007REVISED MARCH 2010  
PLL Multiplier/Divider Definition  
At a given input frequency (ƒIN), the output frequency (ƒOUT) of the CDCE925/CDCEL925 can be calculated:  
ƒ
IN  
N
M
ƒ
+
 
OUT  
Pdiv  
(1)  
where  
M (1 to 511) and N (1 to 4095) are the multiplier/divide values of the PLL; Pdiv (1 to 127) is the output  
divider.  
The target VCO frequency (ƒVCO) of each PLL can be calculated:  
N
M
ƒ
+ ƒ  
 
VCO  
IN  
(2)  
The PLL internally operates as fractional divider and needs the following multiplier/divider settings:  
N
NȀ  
ǒlog Ǔ[if P t 0 then P + 0]  
ǒ Ǔ  
2 M  
M
NP = 4 – int  
where  
Q = int  
R = N– M × Q  
N= N × 2PN M100 MHz < ƒVCO > 200 MHz  
16 q 63  
0 p 7  
0 r 511  
Example:  
for ƒIN = 27 MHz; M = 1; N = 4; Pdiv = 2;  
fOUT = 54 MHz  
for ƒIN = 27 MHz; M = 2; N = 11; Pdiv = 2;  
fOUT = 74.25 MHz  
fVCO = 108 MHz  
fVCO = 148.50 MHz  
P = 4 – int(log24) = 4 – 2 = 2  
N’ = 4 × 22 = 16  
P = 4 – int(log25.5) = 4 – 2 = 2  
N’ = 11 × 22 = 44  
Q = int(16) = 16  
Q = int(22) = 22  
R = 16 – 16 = 0  
R = 44 – 44 = 0  
The values for P, Q, R, and N’ is automatically calculated when using TI Pro-Clock™ software.  
Copyright © 2007–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): CDCE925 CDCEL925  
 
CDCE925  
CDCEL925  
SCAS847F JULY 2007REVISED MARCH 2010  
www.ti.com  
REVISION HISTORY  
Changes from Original (July 2007) to Revision A  
Page  
Changed the data sheet status From: Product Preview To: Production data. ..................................................................... 1  
Changes from Revision A (August 2007) to Revision B  
Page  
Changed IDDPD Power-down current Typ value From: 20 To: 30 .......................................................................................... 6  
Changed II LVCMOS Input current value From: ±5 Typ To: ±5 Max .................................................................................... 6  
Changed IIH LVCMOS Input current for S0/S1/S2 value From: 5 Typ To: 5 Max ................................................................ 6  
Changed IIL LVCMOS Input current for S0/S1/S2 value From: -4 Typ To: -4 Max .............................................................. 6  
Changed text of Note 4 in the DEVICE CHARACTERISTIC table ....................................................................................... 7  
Changed Figure 2, Test Load for 50-Board Environment ................................................................................................. 8  
Changed Table 2 header From: OUTPUT SELECTION (Y2 ... Y9) To: OUTPUT SELECTION (Y2 ... Y5) ...................... 10  
Changed Table 9 - 01h Bit 7 From: For interla use – always write To: Reserved – always write ..................................... 16  
Changed Table 9 - PLL2_1N [11:4] description From: fVCO1_1 To: fVCO2_1 .......................................................................... 20  
Changes from Revision B (August 2007) to Revision C  
Page  
Changed the PACKAGE THERMAL RESISTANCE for TSSOP table ................................................................................. 3  
Changed Table 9 - RID From: 0h To: Xb ........................................................................................................................... 16  
Added note to the PWDN description, Table 9 ................................................................................................................... 16  
Changes from Revision C (December 2007) to Revision D  
Page  
Added Note 3: SDA and SCL can go up to 3.6V as stated in the Recommended Operating Conditions table. .................. 3  
Changes from Revision D (September 2009) to Revision E  
Page  
Deleted sectence - A different default setting can be programmed on customer request. Contact Texas Instruments  
sales or marketing representative for more information. .................................................................................................... 11  
Changes from Revision E (October 2009) to Revision F  
Page  
Added PLL settings limits: 16q63, 0p7, 0r511, 0<N<4096 to PLL1 and PLL2 Configure Register tables ............. 18  
Added PLL settings limits: 16q63, 0p7, 0r511, 0<N<511 to PLL Multiplier/Divder Definition Section .................... 21  
22  
Submit Documentation Feedback  
Copyright © 2007–2010, Texas Instruments Incorporated  
Product Folder Link(s): CDCE925 CDCEL925  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Jan-2010  
PACKAGING INFORMATION  
Orderable Device  
CDCE925PW  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TSSOP  
PW  
16  
16  
16  
16  
16  
16  
16  
16  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
CDCE925PWG4  
CDCE925PWR  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
CDCE925PWRG4  
CDCEL925PW  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
CDCEL925PWG4  
CDCEL925PWR  
CDCEL925PWRG4  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Jul-2010  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
CDCE925PWR  
CDCEL925PWR  
TSSOP  
TSSOP  
PW  
PW  
16  
16  
2000  
2000  
330.0  
330.0  
12.4  
12.4  
6.9  
6.9  
5.6  
5.6  
1.6  
1.6  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Jul-2010  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
CDCE925PWR  
CDCEL925PWR  
TSSOP  
TSSOP  
PW  
PW  
16  
16  
2000  
2000  
346.0  
346.0  
346.0  
346.0  
29.0  
29.0  
Pack Materials-Page 2  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
Automotive  
www.ti.com/automotive  
www.ti.com/communications  
Communications and  
Telecom  
DSP  
dsp.ti.com  
Computers and  
Peripherals  
www.ti.com/computers  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Consumer Electronics  
Energy  
www.ti.com/consumer-apps  
www.ti.com/energy  
Logic  
Industrial  
www.ti.com/industrial  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Medical  
www.ti.com/medical  
microcontroller.ti.com  
www.ti-rfid.com  
Security  
www.ti.com/security  
Space, Avionics &  
Defense  
www.ti.com/space-avionics-defense  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2010, Texas Instruments Incorporated  

相关型号:

CDCEL925PWRG4

PROGRAMMABLE 2-PLL VCXO CLOCK SYNTHESIZER WITH 1.8-V, 2.5-V and 3.3-V LVCMOS OUTPUTS
TI

CDCEL937

Programmable 1-PLL VCXO Clock Synthesizer With 1.8-V, 2.5-V, and 3.3-V Outputs
TI

CDCEL937-Q1

Flexible Low Power LVCMOS Clock Generator With SSC Support For EMI Reduction
TI

CDCEL937PW

Programmable 3-PLL VCXO Clock Synthesizer With 1.8-V, 2.5-V and 3.3-V LVCMOS Outputs
TI

CDCEL937PWG4

Programmable 3-PLL VCXO Clock Synthesizer With 1.8-V, 2.5-V and 3.3-V LVCMOS Outputs
TI

CDCEL937PWR

Programmable 3-PLL VCXO Clock Synthesizer With 1.8-V, 2.5-V and 3.3-V LVCMOS Outputs
TI

CDCEL937PWRG4

Programmable 3-PLL VCXO Clock Synthesizer With 1.8-V, 2.5-V and 3.3-V LVCMOS Outputs
TI

CDCEL937QPWRQ1

PROGRAMMABLE 3-PLL VCXO CLOCK SYNTHESIZER WITH 1.8-V, 2.5-V, AND 3.3-V LVCMOS OUTPUTS
TI

CDCEL949

Programmable 4-PLL VCXO Clock Synthesizer with 1.8V, 2.5V and 3.3V LVCMOS Outputs
TI

CDCEL949PW

Programmable 4-PLL VCXO Clock Synthesizer with 1.8V, 2.5V and 3.3V LVCMOS Outputs
TI

CDCEL949PWG4

Programmable 4-PLL VCXO Clock Synthesizer with 1.8V, 2.5V and 3.3V LVCMOS Outputs
TI

CDCEL949PWR

Programmable 4-PLL VCXO Clock Synthesizer with 1.8V, 2.5V and 3.3V LVCMOS Outputs
TI