CDCI6214RGER [TI]

支持 PCIe 第 4 代标准且带四个可编程输出和 EEPROM 的超低功耗时钟发生器 | RGE | 24 | -40 to 85;
CDCI6214RGER
型号: CDCI6214RGER
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

支持 PCIe 第 4 代标准且带四个可编程输出和 EEPROM 的超低功耗时钟发生器 | RGE | 24 | -40 to 85

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 时钟 PC 外围集成电路 晶体 时钟发生器
文件: 总103页 (文件大小:1824K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
CDCI6214 超低功耗时钟发生器(具有 PCIe 支持、四路可编程输出和  
EEPROM)  
1 特性  
3 说明  
1
具有 4 路可编程输出的一个可配置的高性能低功耗  
PLL  
CDCI6214 器件是一款超低功耗时钟发生器。此器件在  
锁相环的两个独立基准输入之间进行选择,并在可配置  
的差分输出通道上产生多达四个不同的频率,还在  
LVCMOS 输出通道上生成参考时钟。  
RMS 抖动性能  
支持不带 SSC 的第 1/2/3/4 PCIe  
典型功耗:1.8V 时为 150mW(2)  
四个输出通道中的每个通道均有一个可配置的整数分频  
器。通过与输出多路复用器结合,这样可产生五种不同  
的频率。时钟分配分频器通过确定性方式进行复位,以  
便实现干净的时钟门控以及无毛刺更新功能。可通过灵  
活的断电选项优化器件以便在工作和待机模式中实现最  
低功耗。通常,四路 156.25MHz LVDS 输出在 1.8V  
下消耗 150mW100MHz HCSL 输出的 386fs 典型  
RMS 抖动增强了 PCIe 应用的系统裕度。  
通用时钟输入  
差分交流耦合输入或 LVCMOS 输入:1MHz 至  
250MHz  
晶振输入:8MHz 50MHz  
灵活输出频率  
44.1kHz 350MHz  
无毛刺输出分频器切换  
四路可独立配置的输出  
CDCI6214 由内部寄存器进行配置,可通过与 I2C 兼容  
的串行接口和内部 EEPROM 来访问内部寄存器。  
LVCMOSLVDS HCSL 输出  
具有可编程摆幅的差分交流耦合输出(与  
LVDSCML-LVPECL 兼容)  
CDCI6214 采用小外形封装并以超低功耗通过单个基准  
实现高性能时钟树。工厂和用户可编程的 EEPROM 使  
CDCI6214 适合作为低功耗、易于使用、瞬时启动  
的时钟解决方案。  
完全集成的 PLL、可配置的环路带宽:100kHz 至  
3MHz  
通过单电源或混合电源供电以进行电平转  
换:1.8V2.5V 3.3V  
器件信息(1)  
可配置 GPIO  
状态信号  
器件型号  
CDCI6214  
封装  
VQFN (24)  
封装尺寸(标称值)  
最多 4 个独立输出使能端子  
输出分频器同步  
4.00mm × 4.00mm  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
灵活的配置选项  
(2) 四路 LVDS 输出,156.25MHz(含晶振参考)。  
I2C 兼容的接口:最高 400kHz  
具有两个页面和外部选择引脚的集成 EEPROM  
应用示例 CDCI6214  
仅支持 100Ω 系统  
Voltage Domain  
1.8V / 2.5V / 3.3V  
工业温度范围:–40ºC 85ºC  
小外形封装:24 引脚 VQFN (4mm × 4mm)  
FPGA  
DAC  
Crystal  
2 应用  
Voltage Domain  
1.8V / 2.5V / 3.3V  
CDCI6214  
PCIe 1/2/3/4 代时钟  
MCU  
1G/10G 以太网交换机、NIC、加速器  
测试和测量、手持设备  
多功能打印机  
Ethernet  
LVCMOS  
Crystal Copy  
PCIe  
Voltage Domain  
1.8V / 2.5V / 3.3V  
广播基础设施  
Copyright © 2017, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNAS734  
 
 
 
 
 
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
目录  
6.22 Timing Requirements, I2C-Compatible Serial  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 EEPROM Characteristics.......................................... 6  
Interface (SDA/GPIO2, SCL/GPIO3) ....................... 11  
6.23 Power Supply Characteristics ............................... 11  
6.24 Typical Characteristics.......................................... 12  
Parameter Measurement Information ................ 13  
7.1 Parameters.............................................................. 13  
Detailed Description ............................................ 17  
8.1 Overview ................................................................. 17  
8.2 Functional Block Diagram ....................................... 17  
8.3 Feature Description................................................. 18  
8.4 Device Functional Modes........................................ 26  
8.5 Programming .......................................................... 27  
8.6 Register Maps ........................................................ 36  
Application and Implementation ........................ 86  
9.1 Application Information............................................ 86  
9.2 Typical Applications ................................................ 86  
9.3 Do's and Don'ts....................................................... 89  
9.4 Initialization Setup .................................................. 89  
7
8
6.6 Reference Input, Single-Ended and Differential Mode  
Characteristics (REFP, REFN, FB_P, FB_N) ............ 6  
9
6.7 Reference Input, Crystal Mode Characteristics (XIN,  
XOUT)........................................................................ 6  
6.8 General-Purpose Input and Output Characteristics  
(GPIO[4:1], SYNC/RESETN) ..................................... 6  
6.9 Triple Level Input Characteristics (EEPROMSEL,  
REFSEL).................................................................... 7  
10 Power Supply Recommendations ..................... 91  
10.1 Power-Up Sequence............................................. 91  
10.2 De-Coupling .......................................................... 91  
11 Layout................................................................... 91  
11.1 Layout Guidelines ................................................. 91  
11.2 Layout Examples................................................... 92  
12 器件和文档支持 ..................................................... 94  
12.1 器件支持 ............................................................... 94  
12.2 接收文档更新通知 ................................................. 94  
12.3 社区资源................................................................ 94  
12.4 ....................................................................... 94  
12.5 静电放电警告......................................................... 94  
12.6 Glossary................................................................ 94  
13 机械、封装和可订购信息....................................... 95  
6.10 Reference Mux Characteristics .............................. 7  
6.11 Phase-Locked Loop Characteristics ....................... 7  
6.12 Closed-Loop Output Jitter Characteristics .............. 8  
6.13 Output Mux Characteristics .................................... 8  
6.14 LVCMOS Output Characteristics ............................ 8  
6.15 HCSL Output Characteristics ................................. 9  
6.16 LVDS DC-Coupled Output Characteristics ............. 9  
6.17 Programmable Differential AC-Coupled Output  
Characteristics ........................................................... 9  
6.18 Output Skew and Delay Characteristics ............... 10  
6.19 Output Synchronization Characteristics................ 10  
6.20 Timing Characteristics........................................... 10  
6.21 I2C-Compatible Serial Interface Characteristics  
(SDA/GPIO2, SCL/GPIO3) ...................................... 11  
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision D (June 2019) to Revision E  
Page  
删除了数据表中的分数输出分频器 (FOD) 和扩频时钟 (SSC) 信息......................................................................................... 1  
Added footnote to Timing Characteristics table ................................................................................................................... 10  
Removed FOD from Functional Block Diagram ................................................................................................................... 17  
Changed REFSEL selection from L to H.............................................................................................................................. 19  
Removed Output Channel Divider Types and Delay table .................................................................................................. 21  
Removed the FOD control bits in the Power Management graphic..................................................................................... 26  
Added Page-mode EEPROM read instructions.................................................................................................................... 29  
Changed Pre-Configured EEPROM Page 0 graphic............................................................................................................ 34  
Changed Pre-Configured EEPROM Page 1 graphic............................................................................................................ 35  
Removed fractional output divider information from the registers ....................................................................................... 36  
Removed FOD information from the CDCI6214 Registers table.......................................................................................... 36  
Added additional details on pullup resistor and load capacitor added to power-up sequence ............................................ 91  
2
版权 © 2017–2020, Texas Instruments Incorporated  
 
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
Changes from Revision C (November 2018) to Revision D  
Page  
Added VDDREF and tablenote to the output supply voltage parameter in the Recommended Operating Conditions ......... 5  
Added statement on chX_1p8vdet setting ........................................................................................................................... 20  
Changed CDCI6214 - Pre-Configured EEPROM Page 0 graphic........................................................................................ 34  
Changes from Revision B (April 2018) to Revision C  
Page  
Changed pin names for pins 1 and 2 from: XIN and XOUT to: XOUT/FB_P and XIN/FB_N. ............................................... 4  
Changed descriptions for pins 1 and 2................................................................................................................................... 4  
Changed pin names for pins 1 and 2 in Absolute Maximum Ratings .................................................................................... 5  
Changed pin names for pins 1 and 2 in Reference Input, Single-Ended and Differential Mode Characteristics  
(REFP, REFN, FB_P, FB_N).................................................................................................................................................. 6  
Changed Input capacitance specification symbols in Reference Input, Single-Ended and Differential Mode  
Characteristics (REFP, REFN, FB_P, FB_N) from: CIN_XOUT and CIN_XIN to: CIN_XOUT/FB_P and CIN_XIN/FB_P ........................... 6  
Changed pins 1 and 2 from: XIN and XOUT to: XOUT/FB_P and XIN/FB_N in the Functional Block Diagram ................. 17  
Changed pins 1 and 2 from: XIN and XOUT to: XOUT/FB_P and XIN/FB_N in the Reference Block graphic................... 18  
Changed External (XIN) pin to: FB_P/N in the Phase-Locked Loop Circuit graphic............................................................ 20  
Changed pins 1 and 2 from: XIN and XOUT to: XOUT/FB_P and XIN/FB_N in the CDCI6214 - Pre-Configured  
EEPROM Page 0 and CDCI6214 - Pre-Configured EEPROM Page 1 graphics ................................................................. 34  
Changed pins XIN and XOUT to: XOUT/FB_P and XIN/FB_N in the Typical Applications schematics.............................. 86  
Changed design parameter superscript to a subscript ........................................................................................................ 87  
Changes from Revision A (October 2017) to Revision B  
Page  
Changed pinout pins 5 and 6 from NC to REFP, REFN inputs.............................................................................................. 4  
Changed supply voltage maximum from: 3.6 V to: 3.65 V..................................................................................................... 5  
Removed Skew between HCSL maximum from the Output Skew and Delay Characteristics table ................................... 10  
Changes from Original (July 2017) to Revision A  
Page  
将器件状态从预告信息更改为生产数据.............................................................................................................................. 1  
Changed REFSEL pin description to reflext REFMUX control. ........................................................................................... 22  
Copyright © 2017–2020, Texas Instruments Incorporated  
3
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
RGE Package  
24-Pin VQFN  
Top View  
XOUT / FB_P  
XIN / FB_N  
VDDREF  
REFSEL  
REFP  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
Y2P  
Y2N  
VDDO12  
VDDO34  
Y3P  
25 (GND)  
REFN  
Y3N  
Not to scale  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
1
XOUT/FB_P  
XIN/FB_N  
VDDREF  
REFSEL  
REFP  
IO  
I
Crystal Driver Output / LVCMOS Input / Differential Positive Reference  
Crystal Input / Differential Negative Reference  
Power Supply Pin for Input Path, Digital and EEPROM  
Manual Reference Selection MUX for PLL, RPU = 50 kΩ, RPD = 50 kΩ  
Differential Positive Reference  
2
3
P
I
4
5
I
REFN  
6
I
Differential Negative Reference  
Y0  
7
O
I
Output 0 Pin  
RESETN/SYNC  
Y4N  
8
Chip Reset. Alternatively, Output Divider Sync, RPU = 50 kΩ(1)  
9
O
O
IO  
IO  
O
O
P
P
O
O
IO  
IO  
O
O
I
Output 4 Negative Pin  
Y4P  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
Output 4 Positive Pin  
OE/GPIO4  
SCL/GPIO3  
Y3N  
Global output enable (default) or programmable GPIO, RPU = 50 kΩ(1)  
Serial interface clock (default) or programmable GPIO  
Output 3 Negative Pin  
Y3P  
Output 3 Positive Pin  
VDDO34  
VDDO12  
Y2N  
Power Supply for Outputs 3 and 4  
Power Supply for Outputs 1 and 2  
Output 2 Negative Pin  
Y2P  
Output 2 Positive Pin  
SDA/GPIO2  
STATUS/GPIO1  
Y1N  
Serial interface data (default) or programmable GPIO  
Status (default) or programmable GPIO, RPU = 50 kΩ(1)  
Output 1 Negative Pin  
Y1P  
Output 1 Positive Pin  
EEPROM Page Mode Select, RPU = 50 kΩ, RPD = 50 kΩ(1)  
EEPROMSEL  
VDDVCO  
GND  
P
G
Power Supply Pin for VCO / PLL  
Ground, Thermal Pad  
(1) RPU is an internal pullup resistor. RPD is an internal pulldown resistor.  
4
Copyright © 2017–2020, Texas Instruments Incorporated  
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
VDDREF, VDDVCO, VDDO12, VDDO34  
XIN/FB_P, XOUT/FB_N, REFP, REFN  
Supply voltage  
Input voltage  
–0.3  
3.65  
V
VDDREF +  
0.3  
–0.3  
–0.3  
–0.3  
–0.3  
V
V
V
V
STATUS/GPIO1, SDA/GPIO2, SCL/GPIO3, OE/GPIO4,  
REFSEL, EEPROMSEL, RESETN/SYNC  
VDDREF +  
0.3  
Input voltage  
Output voltage  
Output voltage  
VDDO_x +  
0.3  
Y0, Y1P, Y1N, Y2P, Y2N, Y3P, Y3N, Y4P, Y4N  
VDDREF +  
0.3  
STATUS/GPIO1, SDA/GPIO2, SCL/GPIO3, OE/GPIO4  
TJ  
Junction temperature  
Storage temperature  
125  
150  
ºC  
ºC  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
VDDREF,  
VDDVCO  
Core supply voltage(1)  
1.71  
3.465  
V
VDDO1  
VDDO2  
VDDO3  
VDDO4  
TA  
Output supply voltage  
Output supply voltage  
Output supply voltage  
Output supply voltage  
Ambient temperature  
1.71  
1.71  
3.465  
3.465  
3.465  
3.465  
85  
V
V
1.71  
V
1.71  
V
–40ºC  
ºC  
(1) VDDREF and VDDVCO must be powered from the same supply voltage.  
6.4 Thermal Information  
CDCI6214  
THERMAL METRIC(1)  
RGE (VQFN)  
24 PINS  
39.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
RθJC(bot)  
ψJT  
29.5  
16.9  
Junction-to-case (bottom) thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
2.6  
0.4  
ψJB  
16.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2017–2020, Texas Instruments Incorporated  
5
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
6.5 EEPROM Characteristics  
VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C  
PARAMETER  
TEST CONDITIONS  
each word  
MIN  
10  
TYP  
MAX  
10,000  
UNIT  
cycles  
years  
nEEcyc  
tEEret  
EEPROM programming cycles  
EEPROM data retention  
10  
6.6 Reference Input, Single-Ended and Differential Mode Characteristics (REFP, REFN, FB_P,  
FB_N)  
VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fIN_Ref  
VIH  
Reference frequency  
1
250  
MHz  
0.8 ×  
VDDREF  
Input high voltage  
Input low voltage  
LVCMOS input buffer  
V
V
V
0.2 ×  
VDDREF  
VIL  
LVCMOS input buffer  
Differential input voltage swing,  
peak-to-peak  
VDDREF = 2.5 V or 3.3 V, AC-  
coupled differential input buffer  
VIN_DIFF  
VIN_DIFF  
0.5  
0.5  
1.6  
1.0  
Differential input voltage swing,  
peak-to-peak  
VDDREF = 1.8 V, AC-coupled  
differential input buffer  
V
dVIN/dT  
IDC  
Input slew rate  
Input duty cycle  
20% – 80%  
3
V/ns  
40%  
60%  
No xtal active, on-chip load  
disabled, at 25°C  
CIN_XOUT/FB_P Input capacitance  
7
pF  
No xtal active, on-chip load  
disabled, at 25°C  
CIN_XIN/FB_P  
CIN_REF  
Input capacitance  
Input capacitance  
5
5
pF  
pF  
at 25°C  
6.7 Reference Input, Crystal Mode Characteristics (XIN, XOUT)  
VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C  
PARAMETER  
TEST CONDITIONS  
Fundamental mode  
MIN  
8
TYP  
MAX  
50  
UNIT  
MHz  
Ω
fIN_Xtal  
ZESR  
Crystal frequency  
Crystal equivalent series resistance A supported crystal is within  
30  
100  
Using on-chip load capacitance. A  
Crystal load capacitance  
CL  
5
100  
3
8
pF  
uW  
pF  
fF  
supported crystal is within.  
PXTAL  
CXIN_LOAD  
Crystal tolerated drive power  
On-Chip load capacitance  
A supported crystal tolerates up to  
Programmable in typical 200-  
fF steps at room temp  
9.1  
DNLXIN_LOAD Differential non-linearity  
at room temp  
200  
6.8 General-Purpose Input and Output Characteristics (GPIO[4:1], SYNC/RESETN)  
VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0.8 ×  
VDDREF  
VIH  
VIL  
Input high voltage  
V
0.2 ×  
VDDREF  
Input low voltage  
V
IIH  
Input high level current  
Input high level current  
Input low level current  
Input low level current  
Input slew rate  
VIH = VDDREF  
–0.02  
0.004  
–50  
μA  
μA  
IIH  
VIH = VDDREF, Pin 12, 19  
VIL = GND  
IIL  
μA  
IIL  
VIL = GND, Pin 12, 19  
20% – 80%  
–0.004  
μA  
dVIN/dT  
CIN_GPIO  
0.5  
V/ns  
pF  
Input Capacitance  
10  
6
Copyright © 2017–2020, Texas Instruments Incorporated  
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
General-Purpose Input and Output Characteristics (GPIO[4:1], SYNC/RESETN) (continued)  
VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0.8 ×  
VDDREF  
VOH  
VOL  
Output high voltage  
only capacitive load  
V
0.2 ×  
VDDREF  
Output low voltage  
only capacitive load  
V
dVOUT/dT Output slew rate  
RPU Pullup resistance  
20% - 80%, at 10pF  
Pin 11, 20  
0.3  
77  
V/ns  
kΩ  
6.9 Triple Level Input Characteristics (EEPROMSEL, REFSEL)  
VDDVCO,VDDO12, VDDO34, VDDREF = 1.8V ±5%, 2.5V ±5%, 3.3V ±5% and TA = –40ºC to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0.8 ×  
VDDREF  
VIH  
VIM  
VIL  
Input high voltage  
V
0.41 ×  
VDDREF  
0.5 ×  
VDDREF  
0.58 ×  
VDDREF  
Input mid voltage  
Input low voltage  
V
V
0.2 ×  
VDDREF  
IIH  
Input high level current  
Input mid level current  
Input low level current  
input slew rate  
VIH = VDDREF  
40  
–1  
μA  
μA  
μA  
ns  
IIM  
VIH = VDDREF/2  
VIL = GND  
IIL  
–40  
tRIN  
10% - 90%  
50  
CIN_TRI  
RPDPU  
10  
pF  
kΩ  
64  
6.10 Reference Mux Characteristics(1)  
VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
XIN = Crystal 25 MHz, REF = 27  
MHz  
LREF_MUX  
LREF_MUX  
Reference mux isolation  
89  
dBc  
XIN = Crystal 25 MHz, REF =  
24.576 MHz  
Reference mux isolation  
78  
dBc  
(1) Mux isolation is defined as the attenuation relative to the carrier base harmonic as a positive dBc number.  
6.11 Phase-Locked Loop Characteristics  
VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fPFD  
fVCO  
Phase detector frequency  
1
100  
MHz  
Voltage-controlled oscillator  
frequency  
2400  
2800  
MHz  
kHz  
Configurable closed-loop PLL  
bandwidth  
fBW  
REF = 25 MHz  
100  
400  
3000  
700  
fCLKDIST  
KVCO  
Clock distribution frequency  
MHz  
Voltage-controlled oscillator gain  
Voltage-controlled oscillator gain  
Voltage-controlled oscillator gain  
fVCO = 2.4 GHz  
fVCO = 2.5 GHz  
fVCO = 2.8 GHz  
62  
62  
92  
MHz/V  
MHz/V  
MHz/V  
KVCO  
KVCO  
Allowable temperature drift for  
continuous lock  
|ΔTCL  
|
dT/dt 20 K / min  
125  
ºC  
Copyright © 2017–2020, Texas Instruments Incorporated  
7
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
6.12 Closed-Loop Output Jitter Characteristics  
VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
int. Range from 10 kHz to 20 MHz ,  
XIN = Crystal 25 MHz, Integer  
Output Divider, Yx = 156.25 MHz  
LVDS  
500  
750  
800  
500  
fs  
int. Range from 10 kHz to 20 MHz ,  
XIN = Crystal 25 MHz, Integer  
Output Divider, Yx = 100 MHz HCSL  
tRJ_CL  
RMS phase jitter  
386  
fs  
fs  
PCIe Gen 3/4 Common Clock  
transfer functions applied, XIN =  
Crystal 25 MHz, Integer Output  
Divider, Yx = 100 MHz HCSL  
6.13 Output Mux Characteristics(1)  
VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
REF = 27 MHz, XIN = 25 MHz, VCO  
= 2500 MHz, PSFB = 4, Y_ODD =  
312.5 MHz, Y_EVEN = 208.3 MHz,  
LVPECL  
LOUT_MUX  
LOUT_MUX  
LOUT_MUX  
LOUT_MUX  
LOUT_MUX  
Output mux isolation  
65  
dBc  
REF = 27 MHz, XIN = 25 MHz, VCO  
= 2500 MHz, PSFB = 4, Y_ODD =  
312.5 MHz, Y_EVEN = 250 MHz,  
LVPECL  
Output mux isolation  
Output mux isolation  
Output mux isolation  
Output mux isolation  
63  
72  
64  
57  
dBc  
dBc  
dBc  
dBc  
REF = 27 MHz, XIN = 25 MHz, VCO  
= 2500 MHz, PSFB = 4, Y_ODD =  
312.5 MHz, Y_EVEN = 89.3 MHz,  
LVPECL  
REF = 27 MHz, XIN = 25 MHz, VCO  
= 2500 MHz, PSFB = 4, IODs =  
312.5 MHz, Yx=BYPASS (XIN),  
LVPECL  
REF = 27 MHz, XIN = 25 MHz, VCO  
= 2500 MHz, PSFB = 4, Y_ODD =  
100 MHz, Y_EVEN = 266.6 MHz,  
LVPECL  
(1) Mux isolation is defined as the attenuation relative to the carrier base harmonic as a positive dBc number.  
6.14 LVCMOS Output Characteristics  
VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C  
PARAMETER  
fO_LVCMOS Output frequency  
fO_LVCMOS Output frequency  
TEST CONDITIONS  
MIN  
TYP  
MAX  
350  
UNIT  
MHz  
MHz  
V
VDDO_x = 2.5 V or 3.3 V, normal  
drive  
0.1  
VDDO_x = 1.8 V, normal drive  
0.1  
250  
VOH_LVCMO  
0.8 ×  
VDDREF  
Output high voltage  
Normal mode, only capacitive load  
S
VOL_LVCMO  
S
0.2 ×  
VDDREF  
Output low voltage  
Normal mode, only capacitive load  
Slow mode, only capacitive load  
Slow mode, only capacitive load  
Normal mode  
V
V
V
Ω
Ω
VOH_LVCMO  
S
0.7 ×  
VDDREF  
Output high voltage  
VOL_LVCMO  
S
0.3 ×  
VDDREF  
Output low voltage  
RON_LVCMO  
S
Output impedance  
28  
80  
RON_LVCMO  
S
Output impedance  
Weak mode  
8
Copyright © 2017–2020, Texas Instruments Incorporated  
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
LVCMOS Output Characteristics (continued)  
VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LLVCMOS_10  
0M  
fCARRIER = 100 MHz, fOFFSET = 10  
MHz  
Phase noise floor, single side band  
–148  
dBc/Hz  
6.15 HCSL Output Characteristics  
VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
0.1  
0.2  
0.4  
TYP  
MAX  
350  
0.55  
1.0  
UNIT  
MHz  
V
fO_HCSL  
Output frequency  
VCM_HCSL Output common mode  
0.34  
VOD  
Differential output voltage  
fO_HCSL = 100 MHz  
V
Differential output voltage, peak to  
peak  
VSS  
fO_HCSL = 100 MHz  
0.8  
2.0  
Vpp  
mV  
Rp = 49.9 Ω ±5%, fO_HCSL = 100  
MHz  
VCROSS  
ΔVCROSS  
dV/dt  
Absolute crossing point  
250  
550  
w.r.t to average crossing  
point, fO_HCSL = 100 MHz  
Relative crossing point variation  
Slew rate for rising and falling edge  
Slew rate matching  
100  
mV  
Differential, at VCROSS ±150 mV,  
fO_HCSL = 100 MHz  
1
4
V/ns  
(1)  
Single-ended, at VCR(1O) SS ±75 mV,  
fO_HCSL = 100 MHz  
ΔdV/dt  
20%  
ODC  
RP  
Output duty cycle  
Not in PLL bypass mode  
45%  
45  
55%  
55  
Parallel termination  
Rp = 49.9 Ω ±5% required  
Ω
fCARRIER = 100 MHz, fOFFSET = 10  
MHz  
LHCSL_100M Phase noise floor, single side band  
(1) PCIe test load slew rate  
-152  
dBc/Hz  
6.16 LVDS DC-Coupled Output Characteristics  
VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fO_PRG_AC Output frequency  
0.1  
350  
MHz  
VDDO_X = 2.5 V, 3.3 V,  
chx_lvds_cmtrim_inc = 2  
VCM  
VCM  
Output common mode  
Output common mode  
1.125  
1.2  
0.9  
1.375  
V
V
VDDO_X = 1.8 V,  
chx_lvds_cmtrim_inc = 2  
0.8  
1
VOD  
tRF  
Differential output voltage  
Output rise/fall times  
Output duty cycle  
LVDS  
0.25  
0.3  
0.45  
V
LVDS (20% to 80%)  
Not in PLL bypass mode  
675  
ps  
ODC  
45%  
55%  
LLVDS_DC_1  
00M  
fCARRIER = 100MHz, fOFFSET  
10MHz  
=
Phase noise floor, single side band  
–152  
dBc/Hz  
6.17 Programmable Differential AC-Coupled Output Characteristics  
VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C and AC-coupled  
outputs  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
V
fO_PRG_AC Output frequency  
0.1  
350  
VOD  
VOD  
VOD  
tRF  
Differential output voltage  
LVDS-like  
0.45  
0.8  
Differential output voltage  
Differential output voltage  
Output rise/fall times  
CML-like  
V
LVPECL-like  
0.9  
V
LVDS-like (20% to 80%)  
675  
ps  
Copyright © 2017–2020, Texas Instruments Incorporated  
9
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
Programmable Differential AC-Coupled Output Characteristics (continued)  
VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C and AC-coupled  
outputs  
PARAMETER  
Output rise/fall times  
Output rise/fall times  
Output duty cycle  
TEST CONDITIONS  
CML-like (20% to 80%)  
MIN  
TYP  
520  
500  
MAX  
UNIT  
ps  
tRF  
tRF  
LVPECL-like (20% to 80%)  
Not in PLL bypass mode  
ps  
ODC  
45%  
55%  
LDIFF_AC_10  
0M  
fCARRIER = 100 MHz, fOFFSET = 10  
MHz  
Phase noise floor, single side band  
–152  
dBc/Hz  
6.18 Output Skew and Delay Characteristics  
VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tSK_HCSL  
Skew between HCSL  
Y[4:1] = HCSL, fOY[4:1] = 100 MHz  
140  
ps  
Y[4:1] = programmable output  
swing, fOY[4:1] = 100 MHz  
tSK_DIFFAC Skew between progr. differential AC  
tSK_LVCMOS Skew between LVCMOS  
150  
100  
3
ps  
ps  
ns  
Y[4:1] = LVCMOS, fOY[4:1] = 100  
MHz  
tSK_LVCMOS  
Y[4:0] = LVCMOS, fOY[4:0] = 100  
MHz  
Skew between LVCMOS to Bypass  
_BYP  
REF = 67 MHz, VCO = 2680 MHz,  
PSFB = 4, PSAY_ODD = 4,  
tPD_ZDM  
Propagation delay  
PSBY_EVEN = 4, IODY_ODD = 10,  
IODY_EVEN = 10, YP_ODD = YN_ ODD  
= IOD, in ext. ZDM, LVCMOS  
–600  
600  
ps  
6.19 Output Synchronization Characteristics  
VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
With respect to PLL reference rising  
edge at 100 MHz with R = 1  
tSU_SYNC  
tH_SYNC  
Setup time SYNC pulse  
3
ns  
With respect to PLL reference rising  
edge at 100 MHz with R = 1  
Hold time SYNC pulse  
3
ns  
With R = 1, at least 2 PFD periods  
+ 24 feedback pre-scaler periods  
tPWH_SYNC High pulse width for SYNC  
tPWL_SYNC Low pulse width for SYNC  
60  
6
ns  
ns  
With R = 1, at least 1 PFD period  
Tri-state to first rising edge, fY[4:1]  
200 MHz  
<
tEN  
Individual output enable time(1)  
Individual output disable time(1)  
4
4
nCK  
Last falling edge to tri-state, fY[4:1]  
200 MHz  
<
tDIS  
nCK  
(1) Output clock cycles of respective output channel. Global output enable handled by digital logic, additional propagation will be added.  
6.20 Timing Characteristics  
VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Initialization time from POR to  
device releasing PLL outputs.  
tINIT  
tVDD  
Initialization time(1)  
5
ms  
Timing requirement for any VDD pin  
while RESETN = LOW  
Power supply ramp(2)(3)  
50  
2000  
µs  
(1) tINIT = tEELOAD+ tSTAB  
(2) RESETN pin should be LOW until VDD reaches 95% of final value. TI recommends adding a pullup resistor of 4.7 kΩ and a capacitance  
of 0.47 µF to Ground on RESETN pin to meet the POR timing requirement.  
(3) After supply is settled within ±5% of target value, initial rising edge on RESETN will start internal logic. When POR voltage is exceeded  
10  
Copyright © 2017–2020, Texas Instruments Incorporated  
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
6.21 I2C-Compatible Serial Interface Characteristics (SDA/GPIO2, SCL/GPIO3)  
VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0.7 ×  
VDDREF  
VIH  
VIL  
Input voltage, logic high  
V
0.3 ×  
VDDREF  
Input voltage, logic low  
V
VHYS  
VHYS  
VHYS  
IIH  
Input Schmitt trigger hysteresis  
Input Schmitt trigger hysteresis  
Input Schmitt trigger hysteresis  
Input leakage current  
VDDREF = 3.3 V, fSCL = 400 kHz  
VDDREF = 2.5 V, fSCL = 400 kHz  
VDDREF = 1.8 V, fSCL = 400 kHz  
VDDREF = 0.17 V..3.12 V  
156  
118  
85  
mV  
mV  
mV  
μA  
–10  
10  
At 3-mA sink current, VDDREF = 3.3  
V – 5%  
VOL  
VOL  
VOL  
Low-level output voltage  
Low-level output voltage  
Low-level output voltage  
0.4  
V
V
V
At 3-mA sink current, VDDREF = 2.5  
V – 5%  
0.4  
At 2-mA sink current, VDDREF = 1.8  
V – 5%  
0.342  
IOL  
Low-level output current  
Input capacitance  
VOL = 0.4 V  
3
mA  
pF  
CIN  
10  
6.22 Timing Requirements, I2C-Compatible Serial Interface (SDA/GPIO2, SCL/GPIO3)  
VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ns  
tPW_G  
fSCL  
Pulse width of suppressed glitches  
SCL clock frequency  
50  
Standard  
100  
400  
0.6  
kHz  
kHz  
μs  
fSCL  
SCL clock frequency  
Fast-mode  
tSU_STA  
Setup time start condition  
SCL = VIH before SDA = VIL  
SCL = VIL after SCL = VIL. After this  
time, the first clock edge is  
generated.  
tH_STA  
Hold time start condition  
0.6  
μs  
SDA valid after SCL = VIL, fSCL  
100 kHz  
=
tSU_SDA  
tSU_SDA  
Setup time data  
Setup time data  
250  
100  
ns  
ns  
SDA valid after SCL = VIL, fSCL  
400 kHz  
=
tH_SDA  
Hold time data  
SDA valid before SCL = VIH  
fSCL = 100 kHz  
0
4
μs  
μs  
μs  
μs  
μs  
ns  
tPWH_SCL  
tPWH_SCL  
tPWL_SCL  
tPWL_SCL  
tOF  
Pulse width high, SCL  
Pulse width high, SCL  
Pulse width low, SCL  
Pulse width low, SCL  
Output fall time  
fSCL = 400 kHz  
0.6  
4.7  
1.3  
fSCL = 100 kHz  
fSCL = 400 kHz  
COUT = 10..400 pF  
250  
6.23 Power Supply Characteristics  
VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C  
PARAMETER  
Reference input current  
Crystal input current  
TEST CONDITIONS  
DBL = on  
MIN  
TYP  
4
MAX  
UNIT  
mA  
IDD_REF  
IDD_XIN  
Crystal with Pmax = 200 μW  
2
mA  
fVCO = 2500 MHz, PSFB = PSA = 4  
and PSB = off  
IDD_VCO  
IDD_OUT  
VCO and PLL current  
Output channel current  
13  
10  
mA  
mA  
Activated output channel, 1x LVDS  
156.25 MHz  
IDD_IOD  
IDD_PDN  
Output integer divider current  
Power-down current  
2
3
mA  
mA  
Using reset pin / bits  
Copyright © 2017–2020, Texas Instruments Incorporated  
11  
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
Power Supply Characteristics (continued)  
VDDVCO, VDDO12, VDDO34, VDDREF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = –40ºC to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
4x 156.25-MHz LVDS case using  
crystal input and doubler  
IDD_TYP  
Typical current  
83  
mA  
Yx = 100 MHz LVDS, on one of  
VDDx injected sine wave 50 mV at  
fINJ = 10 kHz,  
LPSNR  
Power supply noise rejection(1)  
Power supply noise rejection(1)  
Power supply noise rejection(1)  
Power supply noise rejection(1)  
Power supply noise rejection(1)  
Power supply noise rejection(1)  
–56  
–46  
–49  
–69  
–74  
–73  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
Yx = 100MHz LVDS, on one of  
VDDx injected sine wave 50 mV at  
fINJ = 100 kHz  
LPSNR  
LPSNR  
LPSNR  
LPSNR  
LPSNR  
Yx = 100MHz LVDS, on one of  
VDDx injected sine wave 50 mV at  
fINJ = 1 MHz  
Yx = 100MHz LVDS, on one of  
VDDx injected sine wave 50 mV at  
fINJ = 10 MHz  
Yx = 100MHz LVDS, on one of  
VDDx injected sine wave 50 mV at  
fINJ = 20 MHz  
Yx = 100MHz LVDS, on one of  
VDDx injected sine wave 50 mV at  
fINJ = 40 MHz  
(1) dBc with respect to output carrier frequency.  
6.24 Typical Characteristics  
VDDx = 1.8 V at room temperature  
-20  
-30  
-20  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
102  
103  
104  
105  
106  
107  
4x107  
102  
103  
104  
105  
106  
107  
4x107  
Frequency in Hz  
Frequency in Hz  
Reference: Crystal  
25 MHz  
Closed-Loop Phase Noise 100-MHz HCSL  
from 2.4-GHz VCO  
Reference: Crystal  
25 MHz  
Closed-Loop Phase Noise 156.25-MHz  
LVDS from 2.5-GHz VCO  
Figure 1. 100-MHz Carrier  
Figure 2. 156.25-MHz Carrier  
12  
Copyright © 2017–2020, Texas Instruments Incorporated  
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
7 Parameter Measurement Information  
7.1 Parameters  
7.1.1 Reference Inputs  
V
V
DD  
DD  
R1 = 100 W  
R
S
Z
O
= 50 W  
XOUT/FB_P  
XIN/FB_N  
R
INT  
mF  
C = 0.1  
R2 = 100 W  
Clock Generator:  
+ R = 50 W  
R
INT  
S
Figure 3. Single-Ended LVCMOS Crystal Input  
Signal  
Generator  
100  
< 2 VPP  
DUT  
(1) Applied signal has to stay within VIN_DIFF limits.  
Figure 4. Differential AC-Coupled Input  
7.1.2 Outputs  
Scope  
LVCMOS  
50  
DUT  
GND  
Figure 5. LVCMOS Output  
<2 pF  
GND  
DUT  
100  
>100 kꢀ  
LVDS  
High  
Impedance  
Probe  
<2 pF  
GND  
Figure 6. LVDS Output, DC-Coupled  
Copyright © 2017–2020, Texas Instruments Incorporated  
13  
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
Parameters (continued)  
Scope  
50  
50ꢀ  
DUT  
LVDS  
GND  
Figure 7. LVDS Output AC-Coupled  
Scope  
50  
50  
CML,  
LVPECL  
DUT  
GND  
Figure 8. Differential AC-Coupled (CML, LVPECL)  
QAx, QBx  
VOD  
nQAx, nQBx  
80%  
0 V  
20%  
VOUT,DIFF,PP = 2xVOD  
tf  
tf  
Figure 9. Differential Output Voltage and Rise/Fall Time  
Differential Waveform HCSL  
+ / - 150 mV  
(1) Differential waveform created using math function in scope subtracting positive from negative output pin waveform:  
YxP - YxN.  
(2) Slew rate measured using absolute ± 150 mV on the differential waveform. This correlates to the cross-point of the  
single ended positive and negative waveform.  
Figure 10. HCSL, Differential Rise and Fall Time  
14  
Copyright © 2017–2020, Texas Instruments Incorporated  
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
Parameters (continued)  
YxN  
VCROSSMEDIAN  
YxP  
VCROSSMEDIAN + 75 mV  
VCROSSMEDIAN - 75 mV  
Figure 11. HCSL, Slew Rate Variation  
YxN  
û VCROSS  
YxP  
(1) Measurement conducted using the single ended waveforms. Total variation of the crossing point of rising YxP and  
falling YxN edges.  
Figure 12. HCSL, Delta Crossing Voltage  
RS  
Balun  
DUT  
HCSL  
RS ꢀ  
50 ꢀ  
50 ꢀ  
Figure 13. HCSL, Phase Noise Measurement  
Copyright © 2017–2020, Texas Instruments Incorporated  
15  
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
Parameters (continued)  
TI: 3.5 in  
33  
1 pF  
< 1 pF  
GND  
>100 k  
DUT  
HCSL  
Differential impedance 100  
High  
Impedance  
Probe  
1 pF  
< 1 pF  
GND  
33 ꢀ  
50 ꢀ  
50 ꢀ  
(1) Measured using Tektronix DPO75902SX oscilloscope. Recommended to use an oscilloscope bandwidth setting of 4/8  
GHz and vertical setting of 50mV/division. Data processed using Clock Jitter Tool: Ver:1.6.7.2.  
Figure 14. HCSL PCIe Test Load Setup  
7.1.3 Serial Interface  
ACK  
STOP  
STOP  
START  
tIR  
tIF  
tPWL_SCL tPWH_SCL  
VIH  
VIL  
SCL  
tH_STA  
tSU_STA  
tBUS  
tSU_SDA  
tIR  
tH_SDA  
tSU_STOP  
tIF  
VIH  
VIL  
SDA  
Figure 15. I2C Timing  
7.1.4 Power Supply  
Sine  
Wave  
Modulator  
Power Supply  
Phase Noise/  
Spectrum  
Analyzer  
Signal  
Generator  
DUT  
Device Output  
Balun  
Reference  
Input  
Figure 16. PSNR Setup  
16  
Copyright © 2017–2020, Texas Instruments Incorporated  
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
8 Detailed Description  
8.1 Overview  
The CDCI6214 clock generator is a phase-locked loop with integrated loop filter and selectable input reference.  
The output of the integrated voltage-controlled oscillator (VCO) is connected to a clock distribution network,  
which includes multiple frequency dividers and feeds four output channels with configurable differential and  
single-ended output buffers.  
8.2 Functional Block Diagram  
VDDVCO  
24  
CDCI6214  
7
Y0  
LVCMOS  
4
Differential  
REFP  
REFN  
5
6
PSA  
PSB  
BYP  
DS  
IOD1  
14 Bit  
22  
21  
Y1P  
Y1N  
Phase Locked Loop  
1 MHz  
to 250 MHz  
ch2  
DS  
100 kHz  
to 3000 kHz  
@25 MHz  
ch1_mux  
PSA  
1 MHz  
to 50 MHz  
1 MHz  
to 100 MHz  
2400 MHz  
to 2800 MHz  
ch1_iod_mux  
REFSEL  
4
/4, /5, /6  
x2  
16 VDDO12  
CP  
LF  
8 MHz  
to 50 MHz  
R
PFD  
VCO  
DS  
8 Bits  
PSB  
/4, /5, /6  
OSC  
PSA  
PSB  
BYP  
DS  
XOUT/FB_P  
XIN/FB_N  
18  
ch1  
ch3  
Y2P  
Y2N  
17  
IOD2  
14 Bit  
N
PSFB  
1
2
14 Bits  
/4, /5, /6  
ZDM  
CL  
ch2_mux  
ch2_iod_mux  
3 pF  
to 9 pF  
LDOs for Analog  
LDO for Digital  
PSA  
PSB  
BYP  
DS  
IOD3  
14 Bit  
14  
ch2  
VDDREF  
3
Y3P  
Y3N  
13  
ch4  
ch3_mux  
ch3_iod_mux  
M
Default  
H
L
Osc.  
Registers  
15 VDDO34  
12  
19  
SCL  
SDA  
I2C  
Digital  
Page 1  
Page 0  
PSA  
PSB  
BYP  
DS  
10  
ch3  
Y4P  
Y4N  
9
IOD4  
14 Bit  
GPIOGPO Reset Sync  
DS  
ch4_mux  
ch4_iod_mux  
EEPROM  
11  
20  
8
23  
EEPROMSEL  
blockdiag_detailed_pg1p0_v7  
Copyright © 2020, Texas Instruments Incorporated  
GPIO4  
GPIO1  
RESETN / SYNC  
Figure 17. CDCI6214 Clock Generator With Four Outputs  
Copyright © 2017–2020, Texas Instruments Incorporated  
17  
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
8.3 Feature Description  
The following sections describe the individual blocks of the CDCI6214 ultra-low power clock generator.  
8.3.1 Reference Block  
A reference clock to the PLL is fed to pins 1 (XOUT/FB_P) and 2 (XIN/FB_N) or to pins 5 (REFP) and 6 (REFN).  
There are multiple input stages available to adapt to many clock references. The bit-fields that control the  
reference input type selection are xin_inbuf_ctrl and ref_inbuf_ctrl.  
The reference mux selects the reference for the PLL and the PLL-bypass path. For debug purposes ip_byp_mux  
allows to connect the reference divider or doubler output to the clock distribution.  
The buffers for the PLL-bypass path can be individually enabled and disabled using ip_byp_en_ch[4:1] and  
ip_byp_en_y0.  
ref_inbuf_ctrl  
ch0_lvcmos_drv  
REFP  
REFN  
5
6
ip_byp_en_y0  
7
Y0  
ip_byp_mux  
4
REFSEL  
4
ip_rdiv = 0  
ref_mux  
x2  
ref_mux_src  
PLL  
chX  
chX_iod_mux  
ip_byp_en_chX  
ip_xo_gm  
R
ip_xo_gm_fine  
ip_rdiv  
ip_rdiv í 1  
OSC  
ip_xo_cload  
1
2
XOUT/FB_P  
XIN/FB_N  
CL  
PLL  
xin_inbuf_ctrl  
Internal  
Zero Delay  
Feedback  
Figure 18. Reference Block  
8.3.1.1 Input Stages  
8.3.1.1.1 Crystal Oscillator  
The XIN and XOUT pins provide a crystal oscillator stage to drive a fundamental mode crystal in the range of 8  
MHz to 50 MHz. The crystal input stage integrates a tunable load capacitor array up to 9 pF using ip_xo_cload.  
The drive capability of the oscillator is adjusted using ip_xo_gm.  
8.3.1.1.2 LVCMOS  
The LVCMOS input buffer threshold voltage follows VDDREF. This helps to use the device as a level shifter as  
the outputs have separate supplies.  
8.3.1.1.3 Differential AC-Coupled  
The differential input stage has an internal bias generator and should only be used with AC-coupled reference  
inputs.  
8.3.1.2 Reference Mux  
Either XIN or REF can be selected as reference to the PLL and clock distribution path. The reference mux is  
controlled using the REFSEL pin with ref_mux_src = 0 or the ref_mux bit-field with ref_mux_src = 1.  
8.3.1.3 Reference Divider  
A reference divider can be used to divide higher input frequencies to the permitted PFD range. It supports  
division values of 1 to 255 using ip_rdiv.  
18  
Copyright © 2017–2020, Texas Instruments Incorporated  
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
Feature Description (continued)  
8.3.1.3.1 Doubler  
The reference path contains a doubler circuit. It is used to double the input frequency and can be used to  
achieve the highest PFD update frequency of 100 MHz using a 50-MHz crystal. The doubler activates using  
ip_rdiv = 0.  
8.3.1.4 Bypass-Mux  
The input reference or the input to the PFD can be routed to the bypass path using ip_byp_mux.  
8.3.1.5 Zero Delay, Internal and External Path  
In zero delay mode the REF input clock is used as reference clock at the PFD. The FB_P clock (LVCMOS) or  
FB_P/N clock (differential) can be used to feed an external source as feedback clock to the PFD. The external  
feedback path is recommended for zero delay operation. Moreover there is an additional internal feedback path  
which is sourced by output channel 2.  
Table 1. Zero Delay Operation(1)  
Operation  
Reference  
Feedback  
ref_mux_  
src  
ref_inbuf xin_inbuf zdm_mo zdm_cloc zdm_aut  
ch2_iod_  
div(2)  
REFSEL  
ref_mux  
ip_rdiv  
pll_psfb  
pll_psa  
pll_ndiv  
_ctrl  
_ctrl  
de  
ksel  
o
Normal PLL, XIN  
Reference  
L
H
x
x
x
1
1
1
0
0
1
1
1
1
1
1
1
1
x
0
0
x
x
x
x
x
x
x
x
x
x
Normal PLL, REF  
Reference  
x
x
x
x
0
0
1
1
x
x
0
1
x
x
1
1
Normal PLL, REF  
Reference  
x
x
x
x
Zero Delay, Internal  
Feedback  
x
A
A
A
A
B
B
B
B
C
C
C
C
Zero Delay, External  
Feedback  
x
(1) 'x' allows any possible bit-field value. An entry of 'A', 'B' or 'C' indicates the same bit-field value.  
(2) For internal feedback channel 2 is required. For external feedback the output clock connected to FB_P/N is recommended to have same  
settings as default PLL feedback path.  
8.3.2 Phase-Locked Loop  
The CDCI6214 contains a fully integrated phase-locked loop circuit. The error between a reference phase and an  
internal feedback phase is compared at the phase-frequency-detector. The comparison result is fed to a charge  
pump that is connected to an integrated loop filter. The control voltage resulting from the loop filter tunes an  
internal voltage-controlled oscillator (VCO). The frequency of the VCO is fed through a pre-scaler feedback  
divider (PSFB) and another feedback divider back to the PFD.  
The PLL closed-loop bandwidth is configurable using registers PLL0, PLL1, and PLL2.  
Integer PLL  
PFD operates 1 MHz to 100 MHz  
Live Lock-Detector provides PLL lock status on status pin and bit lock_det (there is an additional sticky bit  
unlock_s)  
Integrated selectable loop filter components  
For 25-MHz PFD bandwidths between 100 kHz and 3000 kHz can be achieved to optimize PLL to input  
reference  
Voltage-Controlled Oscillator (VCO) tuning range of 2400 to 2800 MHz  
VCO is compatible to 0.5% spread spectrum (SSC) references at 100 MHz.  
Copyright © 2017–2020, Texas Instruments Incorporated  
19  
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
Clock Distribution  
/4, /5 /6  
4
DS  
Clock Distribution  
Pre-Scaler A  
Voltage Controlled  
Oscillator  
pll_cp_up  
pll_cp_dn  
pll_lf_res  
RRes  
pll_psa  
Charge  
Pump  
Reference Clock  
Phase  
Frequency  
CPcap  
CZcap  
pll_lf_zcap  
DS  
Detector  
Feedback Clock  
/4, /5 /6  
Clock Distribution  
Pre-Scaler B  
pll_lf_pcap  
GND  
pll_psb  
Divider  
Synchronization  
14 Bit  
Feedback Divider  
/4, /5 /6  
Feedback Pre-Scaler  
DS  
pll_ndiv  
pll_psfb  
zdm_mode  
zdm_clocksel  
FB_P/N  
Internal (CH2)  
Figure 19. Phase-Locked Loop Circuit  
Table 2. Common Clock Generator Loop Filter Settings(1)  
ICP in mA  
pll_cp_up(2)  
CPcap IN pF  
pll_lf_pcap  
17.5  
RRes IN kΩ  
CZcap IN pF  
pll_lf_zcap  
450  
Phase  
Margin in °  
Damping  
Factor  
fVCO in MHz  
fPFD in MHz  
BW in MHz  
pll_lf_res  
2400  
2400  
2400  
2457.6  
2500  
2500  
2680  
2688  
2688  
2800  
2800  
25  
50  
0.51  
67  
0.9  
2.0  
2.5  
0.97  
1.41  
1.04  
0.49  
0.93  
0.38  
0.93  
0.36  
1.00  
1.00  
67  
68  
67  
67  
68  
67  
68  
67  
68  
68  
1.3  
1.2  
1.4  
0.9  
1.3  
1.3  
1.3  
1.0  
1.0  
1.0  
2.0  
2.4  
1.8  
2.0  
2.0  
0.2  
1.5  
0.2  
2.6  
1.3  
17.5  
2.5  
1.5  
2.5  
2.5  
2.5  
5.5  
2.5  
3.5  
1.5  
1.5  
450  
100  
61.44  
25  
17.5  
450  
17.5  
450  
17.5  
450  
50  
17.5  
450  
67  
19.5  
480  
48  
17.5  
480  
96  
19.5  
480  
50  
17.5  
450  
100  
17.5  
450  
(1) All values typical design targets.  
(2) Program same value to pll_cp_dn.  
8.3.3 Clock Distribution  
The VCO connects to two individually configurable pre-scaler dividers sourcing the on-chip clock distribution.  
The clock distribution consists of four output channels. Each output channel contains a divider with integer  
division and synchronization capabilities.  
A mux after each divider allows to feed the generated frequency to the adjacent output buffers. Thus for single  
frequency clock generation only a single output divider needs to be active.  
The output buffers are compatible to various signaling standards: LVDS, CML-like, LVPECL-like, LVCMOS and  
HCSL using ch1_outbuf_ctrl.  
HCSL must be directly connected to a load termination to ground. A series resistance can be used to adapt to  
the trace impedance.  
LVDS requires a differential termination connected between the positive and negative output buffer pins. The  
termination can be connected directly or using AC-coupling. When using the LVDS output type, set  
ch1_1p8vdet, ch2_1p8vdet, ch3_1p8vdet, andch4_1p8vdet to match the VDDO12 and VDDO34.  
CML and LVPECL are only supported in an AC-coupled configuration. The receiver and the termination may  
only be connected through AC-coupling capacitors to the device pins.  
LVCMOS outputs are designed for capacitive loads only. A series resistance should be used to adapt the  
20  
Copyright © 2017–2020, Texas Instruments Incorporated  
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
driver impedance to the trace impedance. For a typical 50-Ω trace, a resistor between 22 Ω to 33 Ω should be  
used. The polarity of the positive and negative pins can be adjusted separately.  
The output buffers support a wide frequency range of up to 350 MHz. Higher output frequencies up to 700 MHz  
are functional, but are not covered by electrical specifications.  
8.3.3.1 Output Channel  
Figure 20. Clock Distribution Pre-Scaler Dividers(1)  
chX_sync_en  
chX_iod_div  
PSA  
DS  
chX-1  
5 Bit  
Digital Delay  
YXP  
YXN  
14 Bit  
Integer Divider  
PSB  
BYP  
chX+1  
chX_sync_delay  
chX_mux  
chX_iod_mux  
chX_outbuf_ctrl  
chX_mute_sel  
chX_cmos_pol  
chX_1p8vdet  
Clock Distribution  
chx_lvcmos_drv  
Figure 21. Clock Distribution, Output Channel  
INSTANCES  
PSA  
DIVISION VALUES  
4, 5, 6  
PSB  
4, 5, 6  
(1) A known phase relationship for divider synchronization with mixed division values is ensured by architecture.  
Table 3. Output Buffer Signal Standards  
OUTPUT  
Y0  
LVCMOS  
HCSL(1)  
LVDS  
AC-CML(2)  
AC-LVPECL(2)  
X
Y1  
X
X
X
x
X
X
X
X
X
X
X
x
X
X
X
X
Y2  
X
X
Y3  
Y4  
(1) For highest performance it is recommended to use HCSL on output Y1 or Y4.  
(2) The common mode shall be provided externally through an external bias source, like a voltage divider or pullup resistor. The output  
buffer will provide sufficient swing.  
Table 4. Output Channel Signal Selection  
NO.  
0
INPUT SOURCE  
Channel N-1  
IOD N  
Y1 (N=1)  
Y2 (N=2)  
Y3 (N=3)  
Y4 (N=4)  
x
x
x
x
x
x
x
x
1
x
x
2
Channel N+1  
Table 5. Integer Divider Input Selection  
NO.  
0
SOURCE  
Pre-scaler A  
Pre-scaler B  
Bypass  
1
3
Copyright © 2017–2020, Texas Instruments Incorporated  
21  
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
8.3.3.2 Divider Glitch-Less Update  
The bit fields ch1_glitchless_en can be used to enable glitch-less output divider update. This feature ensures that  
the high pulse of a clock period is not cut off by the output divider update process. It ensures that setup and hold  
time of a receiver is not violated. The low pulse in the transition from earlier period to the new period is extended  
accordingly.  
Glitch-Less Divider Disabled:  
Glitch-Less Divider Enabled:  
tper1 > tper2  
tper1 < tper2  
Figure 22. Glitch-Less Divider Update  
8.3.4 Control Pins  
The ultra-low power clock generator is controlled by multiple LVCMOS input pins.  
EEPROMSEL acts as EEPROM page select. The CDCI6214 clock generator contains two pages of configuration  
settings. The level of this pin is sampled after device power-up. A low level selects page zero. A high level  
selects page one. The EEPROMSEL pin is a tri-level input pin. This third voltage level is automatically applied by  
an internal voltage divider. The mid-level is used to select an internal default where the serial interface is  
enabled.  
RESETN/SYNC (pin 8) , SCL (pin 12), and SDA (pin 19) have a secondary functionality and can act as general-  
purpose inputs and outputs (GPIO). This means that either the serial interface or the GPIO functionality can be  
active.  
RESETN/SYNC resets the internal circuitry and is used in the initial power-up sequence. The pin can be  
reconfigured to act as synchronization input. The differential outputs are kept in mute while SYNC is low. When  
SYNC is high, outputs are active. Moreover status signals can be driven by this pin.  
SCL can act as general-purpose input.  
SDA can act as general-purpose input and output.  
REFSEL is used to select between the input references to the PLL. A low level selects the crystal reference on  
XIN. A high level selects the differential input reference on REFP, REFN.  
Table 6. Control and GPIO List  
PIN  
INPUT  
OUTPUT  
2-LEVEL  
TERMINATION  
RECONFIGU  
RABLE?  
2-LOGIC-  
3-LOGIC-  
LEVELS  
NO.  
NAME  
GPIO  
PULLDOWN  
PULLUP  
LEVELS  
23  
20  
19  
12  
11  
8
EEPROMSEL  
STATUS  
SDA  
-
yes  
50 kΩ  
50 kΩ  
50 kΩ  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO0  
-
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
SCL  
OE  
yes  
yes  
50 kΩ  
50 kΩ  
50 kΩ  
RESETN  
REFSEL  
4
yes  
50 kΩ  
22  
Copyright © 2017–2020, Texas Instruments Incorporated  
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
Table 7. GPIO - Input Signal List(1)  
SIGNAL NO.  
ABBREVIATION  
FREQ_INC  
FREQ_DEC  
OE (global)  
OE_Y1  
DESCRIPTION  
0
1
2
4
5
6
7
Frequency increment; increments the IOD(2)  
Frequency decrement; decrements the IOD.(2)  
Enables or disables all differential outputs Y[4:1] (bypass not affected).(3)  
(3)  
Enables or disables Y1.  
(3)  
OE_Y2  
Enables or disables Y2.  
(3)  
OE_Y3  
Enables or disables Y3.  
(3)  
OE_Y4  
Enables or disables Y4.  
(1) Signals from this list are available on pin 11 (OE / GPIO4) and pin 20 (STATUS / GPIO1), see GENERIC1.  
(2) Selected using bit mask in GENERIC3.  
(3) Disable / Mute behaviour configured individually using ch_mute_sel bit in GENERIC0 table.  
Table 8. GPIO - Output Signal List(1)  
SIGNAL NO.  
ABBREVIATION  
PLL_LOCK  
DESCRIPTION  
0 = PLL out of lock; 1 = indicates PLL in lock  
0
1
XTAL_OSC  
0 = crystal failure; 1 = crystal oscillates  
0 = PLL (VCO) calibration ongoing; 1 = calibration done  
0 = device logic busy; 1 = device operational  
0 = output sync ongoing, muted; 1 = outputs released operational  
0 = EEPROM idle; 1 = EEPROM access ongoing  
0 = EEPROM pin sees low level; 1 = EEPROM pin sees high level  
0 = EEPROM pin sees low or high level; 1 = EEPROM pin sees mid level  
Indicates I2C slave address LSB config from loaded EEPROM  
Clock, State machine  
2
CAL_DONE  
CONF_DONE  
SYNC_DONE  
EEPROM_BUSY  
EEPROM_Y12  
EEPROM_M12  
I2C_LSB  
3
4
5
6
7
8
9
CLK_FSM  
10  
11  
12  
13  
14  
CLK_PFD_REF  
CLK_PFD_FB  
BUF_SYNC  
BUF_SCL  
Clock, PFD, reference  
Clock, PFD, feedback  
buffered SYNC pin  
buffered SCL pin  
BUF_SDA  
buffered received SDA pin  
(1) Signals from this list are available on pin 8 (RESETN/SYNC or GPIO0), pin 11 (OE / GPIO4) and pin 20 (STATUS / GPIO1).  
8.3.4.1 Global and Individual Output Enable: OE and OE_Y[4:1]  
The output enable functionality allows to enable or disable all or a specific output buffer. The bypass copy on Y0  
is excluded from the global output enable signal. When an output is disabled, it drives a configurable mute-state,  
ch[4:1]_mute_sel. When the serial interface is deactivated one can use all individual output enable signals at the  
same time, see mode. The individual output enable signal controls the respective output channel integer divider  
to gate the clock. Therefore each integer divider needs to be active. When multiple outputs are sourced from the  
(1)  
same integer divider, the respective OE signal will enable/disable the output(s).  
NOTE  
When multiple output enable signals are configured on multiple-GPIO pins, then the global  
output enable OE has higher priority than the individual output enable OE[4:1]. An  
individual output enable OE[4:1] may only be configured on a single pin.  
The individual output enable signal enables and disables the respective output in a deterministic way. Therefore  
the high and low level of the signal is qualified by counting four cycles of the respective output clock. The  
following steps can be seen in Figure 23:  
1. The OE falling edge which disables the outputs.  
2. Transition from logic high to logic low / logic low to logic high for Y2 after four rising edges.  
(1) The GPIO direction of pins 12 and 19 is automatically set through the mode bit. Pin 11 and 20 must be set as inputs using gpio1_dir_sel  
and gpio4_dir_sel bit in the GENERIC0 table.  
Copyright © 2017–2020, Texas Instruments Incorporated  
23  
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
3. Transition from logic high to logic low / logic low to logic high for Y1 after four rising edges.  
4. The OE rising edge which enables the outputs.  
5. Output Y2 starts toggling after four rising edges.  
6. Output Y1 starts toggling after four rising edges.  
MUTE_SEL= Logic Low  
OE  
Y1P  
1
2
3
4
1
2
3
4
Y1N  
Y2P  
Y2N  
1
2
3
4
1
2
3
4
1
2
3
4
5
6
MUTE_SEL= Logic High  
OE  
Y1P  
1
2
3
4
1
2
3
4
Y1N  
Y2P  
Y2N  
1
2
3
4
1
2
3
4
1
2
3
4
5
6
Figure 23. Individual Output Enable and Disable  
NOTE  
The deterministic behaviour of the individual output enable is designed for an output  
frequency up to 200 MHz.  
8.3.5 Operation Modes  
The device can operate in different modes.  
Following operating modes can be set and the GPIOs configured. An operating mode change only becomes  
effective when it is loaded from the EEPROM after a power cycle.  
Table 9. Modes of Operation  
DESCRIPTION  
I2C + GPIOs  
I2C + GPIOs  
OEs  
MODE  
REFSEL  
EEPROMSEL  
GPIO4  
I/O  
GPIO3  
SCL  
GPIO2  
SDA  
GPIO1  
I/O  
Fallback  
M
M
0
1
LH  
LH  
LH  
LH  
I/O  
SCL  
SDA  
I/O  
OE4  
OE3  
OE2  
OE1  
24  
Copyright © 2017–2020, Texas Instruments Incorporated  
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
8.3.6 Divider Synchronization - SYNC  
The output dividers can be reset in a deterministic way. This can be achieved using the sync bit or the pin 8  
configured for SYNC function using gpio0_input_sel and gpio0_dir_sel. The level of the pin is qualified internally  
using the reference frequency at the PFD. A low level will mute the outputs. A high level will synchronously  
release all output dividers to operation, so that all outputs share a common rising edge, see Figure 24. The first  
rising edge can be individually delayed in steps of the respective pre-scaler period, up to 32 cycles using  
ch1_sync_delay. This allows to compensate external delays like routing mismatch, cables or inherent delays  
introduced by logic gates in an FPGA design. Each channel can be included or excluded from the SYNC process  
(1) (2)  
using ch1_sync_en.  
For a deterministic behaviour over power-cycles seen from input to output the reference divider must be set to 1.  
It should not divide the reference clock nor should the reference doubler be used.  
VCO  
Clock Distribution Pre-Scaler Dividers  
PS[BA]=4  
PS[BA]=5  
PS[BA]=6  
Output Channel Dividers  
All clocks muted.  
PS[BA]=4  
IOD=4  
PS[BA]=5  
IOD=4  
PS[BA]=6  
IOD=4  
Internal SYNC  
PFD qualified)  
1
2
3
Internal synchronization start  
All signals muted  
Synchronized dividers released  
Figure 24. Divider Synchronization  
(1) ch[4:1]_sync_en may only be activated with an active clock source selected in ch1_iod_mux bit in the CH1_CTRL2 table.  
(2) The LVCMOS bypass output Y0 is not part of the SYNC process, neither are the dividers of the PLL.  
Table 10. Digital Delay Step Size  
PRE-SCALER STEP IN ns  
VCO FREQUENCY IN MHz  
/4  
/5  
/6  
2400  
2457.6  
2500  
1.67  
1.63  
1.60  
1.43  
2.08  
2.03  
2.00  
1.79  
2.50  
2.44  
2.40  
2.14  
2800  
8.3.7 EEPROM - Cyclic Redundancy Check  
The device contains a cyclic redundancy check (CRC) function for reads from the EEPROM to the device  
registers. At start-up the EEPROM will be read internally and a CRC value calculated. One of the EEPROM  
words contains an earlier stored CRC value. The stored and the actual CRC value are compared and the result  
transferred to STATUS1 register. The CRC calculation can be triggered again by writing a '1' to the update_crc  
bit. A mismatch between stored and calculated CRC value is informational only and non-blocking to the device  
operation. Just reading back the CRC status bit and the live CRC value can speed up in-system EEPROM  
programming and avoid reading back each word of the EEPROM for known configurations.  
The polynomial used is CCITT-CRC16: x16 + x12 + x5 + 1.  
Copyright © 2017–2020, Texas Instruments Incorporated  
25  
 
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
...  
GENERIC0 ... GENERIC3 ...  
CHX_CTRL4  
Registers  
STATUS1  
nvmcrcerr  
update_crc  
CRC  
(CCITT-CRC16)  
Transfer Logic  
EEPROM  
Figure 25. EEPROM CRC  
8.3.8 Power Supplies  
The CDCI6214 provides multiple power supply pins. Each of the power supplies supports 1.8 V, 2.5 V, or 3.3 V.  
Internal low-dropout regulators (LDO) source the internal blocks and allow each pin to be supplied with its  
individual supply voltage. The VDDREF pin supplies the control pins and the serial interface. Therefore, any  
pullup resistors shall be connected to the same domain as VDDREF. By default the LDOs are configured for  
1.8-V ±5% operation.  
8.3.8.1 Power Management  
The device is very flexible with respect to internal power management. Each block offers a power-down bit and  
can be disabled to save power when the block is not required. The available bits are illustrated in Figure 26. The  
bypass output Y0 is connected to the pdn_ch4 bit. Each output channel has a bit which should be adapted to the  
applied supply voltage, ch[4:1]_1p8vdet.  
VDDREF  
VDDVCO  
VDDO12  
VDDO34  
3
24  
16  
15  
pdn_ref  
pdn_pll  
pdn_ch1  
pdn_ch3  
pdn_pll_vco  
ch1_1p8vdet  
pdn_ch2  
ch3_1p8vdet  
pdn_ch4  
pdn_pll_vcobuf  
pdn_pll_vcobuf2  
pdn_pll_cp  
ch2_1p8vdet  
ch4_1p8vdet  
pdn_pll_pfd  
pdn_pll_lockdet  
pdn_pll_psfb  
pdn_pll_psa  
pdn_pll_psb  
Figure 26. Power Management  
8.4 Device Functional Modes  
8.4.1 Pin Mode  
In pin mode, pins 12 and 19 are input pins that act as individual output enable pins. Together with pins 11 and  
20, this mode allows for one output enable pin per output channel.  
8.4.2 Serial Interface Mode  
In serial interface mode, pins 12 and 19 are configured as an I2C interface.  
26  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
Device Functional Modes (continued)  
8.4.2.1 Fall-Back Mode  
As the programming interface can be intentionally deactivated using the EEPROM, an accidental disabling of the  
I2C blocks further access to the device. The serial interface can be forced using the fall-back mode. To enter this  
mode, the user leaves pin 4 and pin 23 floating while the supply voltage is applied to VDDREF. In this mode, pin  
11 is preconfigured as an input and pin 20 is configured as an output.  
8.5 Programming  
The CDCI6214 ultra-low power clock generator provides an I2C-compatible serial interface for register and  
EEPROM access. The device is compatible to standard-mode I2C at 100 kHz and the fast-mode I2C at 400-kHz  
clock frequency.  
Table 11. I2C-Compatible Serial Interface, Slave Address Byte  
7
6
5
4
3
2
1
0
Slave Address A[6:0](1)  
R/W# Bit(2)  
(1) The slave address consists of two sections. The hardwired MSBs A[6:2] and the software-selectable LSBs A[1:0].  
(2) The R/W# bit indicates a read (1) or a write (0) transfer.  
Table 12 shows the slave address decoding with respect to EEPROMSEL pin. This enables the user to avoid in-  
system conflicts with different configurations, as the selected EEPROM page can be reflected in the slave  
address least significant bit A0. Moreover a device being powered up in the silicon default, can always be  
expected under the default address of 0xE9 for reads (or 0xE8 for writes).  
Table 12. I2C-Compatible Serial Interface, Programmable Slave Address  
A6  
A5  
A4  
A3  
A2  
A1  
0
A0  
EEPROMSEL  
MID  
DESCRIPTION  
Device Default  
0
1
1
1
0
1
1
I2C_A0(1)  
I2C_A0(2)  
LOW  
EEPROM, Page 0  
EEPROM, Page 1  
1
HIGH  
(1) Configuration Bit in EEPROM Page 0, default value of 0.  
(2) Configuration Bit in EEPROM Page 1, default value of 1.  
Copyright © 2017–2020, Texas Instruments Incorporated  
27  
 
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
The serial interface uses the following protocol as shown in Figure 27. The slave address is followed by a word-  
wide register offset and a word-wide register value.  
Write Transfer  
7
1
1
S
Slave Address  
Wr  
A
8
8
1
1
Register Address High  
A
Register Address Low  
A
8
8
1
1
Date Byte High  
A
Date Byte Low  
A
P
Read Transfer  
7
1
1
S
Slave Address  
Wr  
A
8
8
1
1
Register Address High  
A
Register Address Low  
A
7
1
1
Sr  
Slave Address  
Rd  
A
8
8
1
1
Date Byte High  
A
Date Byte Low  
N
P
Legend  
S
Sr  
Start condition sent by master device  
Write bit = 0 sent by master device  
Acknowledge sent by master device  
Stop condition sent by master device  
Not-acknowledge sent by master device  
|
|
|
Repeated start condition sent by master device  
Read bit = 1 sent by master device  
Wr Rd  
A
P
N
A
Acknowledge sent by slave device  
N
|
|
Not-acknowledge sent by slave device  
Data sent by slave  
Data  
Data  
Data sent by master  
Figure 27. I2C-Compatible Serial Interface, Supported Protocol  
8.5.1 Recommended Programming Procedure  
TI recommends programming the registers of the device in the following way:  
1. Ensure that ee_lock is set when overwriting the EEPROM.  
2. Configure the voltage domain bits appropriately ch[4:1]_1p8vdet.  
3. Program register addresses in descending order from 0x44 to 0x00 including all register addresses with  
reserved values.  
8.5.2 EEPROM Access  
NOTE  
The EEPROM word write access time is typically 8 ms. The EEPROM_BUSY signal  
indicates when the EEPROM is busy and can be observed as a status signal on a GPIO  
pin to optimally time the writes (for example, in gpio4_output_sel).  
There are two methods to write into the internal EEPROM:  
1. Register Commit  
2. EEPROM Direct Access  
Use the following steps to bring the device into a known state and be able to conduct the programming:  
1. Power down all device supplies  
2. Apply RESETN=LOW.  
3. Apply REFSEL=MID (leave tri-stated).  
4. Apply EEPROMSEL=MID (leave tri-stated).  
28  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
5. Apply 1.8 V/2.5 V/3.3 V to all device supplies. When device operation is not required, only apply 1.8  
V/2.5V/3.3 V to VDDREF.  
6. Apply RESETN=HIGH.  
7. Use the I2C interface to configure the device using slave address 0x74. See Table 12 for more details.  
In the Register Commit flow all bits from the device registers are copied into the EEPROM. The  
recommended flow is:  
1. Pre-configure the device as desired, except the serial interface using mode.  
2. Write 1 to recal to calibrate the VCO in this operation mode.  
3. Select the EEPROM page, to copy the register settings into, using regcommit_page.  
4. Unlock the EEPROM for write access with ee_lock = 0x5  
5. Start the commit operation by writing a 1 to regcommit  
6. Force a CRC update by writing a 1 to update_crc.  
7. Read back the calculated CRC in nvmlcrc.  
8. Store the read CRC value in the EEPROM by writing 0x3F to nvm_wr_addr and then the CRC value to  
nvm_wr_data.  
In the EEPROM Direct Access flow the EEPROM words are directly accessed using the address and the  
data bit-fields. The recommended flow is:  
1. Prepare an EEPROM image consisting of 64 words.  
2. Unlock the EEPROM for write access with ee_lock = 0x5  
3. Write the initial address offset to the address bit-field. Write a 0x00 to nvm_wr_addr.  
4. Loop through the EEPROM image from address 0 to 63 by writing each word from the image to  
nvm_wr_data. The EEPROM word address is automatically incremented by every write access to  
nvm_wr_data.  
5. The EEPROM read is similar to EEPROM write. First write 0x00 to nvm_rd_addr, then loop through all  
bytes by reading from nvm_rd_data. The EEPROM word address is automatically incremented by every  
write access to nvm_rd_data.  
Write Transfer  
I2C register  
offset  
15  
15  
6
5
0
0
Reserved  
NVM_WR_ADDR  
0x0E  
NVM_WR_DATA  
0x0D  
Read Transfer  
I2C register  
offset  
15  
15  
6
5
0
0
Reserved  
NVM_RD_ADDR  
0x0B  
0x0C  
NVM_RD_DATA  
Copyright  
© 2017, Texas Instruments Incorporated  
Figure 28. EEPROM Direct Access Using I2C  
Copyright © 2017–2020, Texas Instruments Incorporated  
29  
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
8.5.3 Device Defaults  
The CDCI6214 contains the following defaults:  
Table 13. CDCI6214 Register Defaults  
ADDRESS  
0x46  
0x45  
0x44  
0x43  
0x42  
0x41  
0x40  
0x3F  
0x3E  
0x3D  
0x3C  
0x3B  
0x3A  
0x39  
0x38  
0x37  
0x36  
0x35  
0x34  
0x33  
0x32  
0x31  
0x30  
0x2F  
0x2E  
0x2D  
0x2C  
0x2B  
0x2A  
0x29  
0x28  
0x27  
0x26  
0x25  
0x24  
0x23  
0x22  
0x21  
0x20  
0x1F  
0x1E  
0x1D  
0x1C  
0x1B  
0x1A  
0x19  
0x18  
0x17  
DEFAULT  
EEPROM PAGE 0  
EEPROM PAGE 1  
0x00460000  
0x00450000  
0x00440000  
0x00430020  
0x00420000  
0x00410F34  
0x0040000D  
0x003F0210  
0x003E4210  
0x003D1000  
0x003C0010  
0x003B0009  
0x003A0008  
0x00390A65  
0x00380405  
0x00370004  
0x00360000  
0x00358000  
0x00340008  
0x00330A65  
0x00320405  
0x00310004  
0x00300000  
0x002F8000  
0x002E0008  
0x002D0A65  
0x002C0405  
0x002B0004  
0x002A0000  
0x00298000  
0x00280008  
0x00270A65  
0x00260405  
0x00250004  
0x00240000  
0x00238000  
0x00220050  
0x00210007  
0x00200000  
0x001F1E72  
0x001E5140  
0x001D400A  
0x001C0000  
0x001B0000  
0x001A0718  
0x00190000  
0x00180601  
0x00170000  
0x00460000  
0x00450000  
0x00440000  
0x00430020  
0x00420200  
0x00410F34  
0x0040000D  
0x003F4210  
0x003E4218  
0x003D1500  
0x003C0018  
0x003B0061  
0x003A0008  
0x00398851  
0x00380409  
0x00370006  
0x00360000  
0x00358000  
0x00340008  
0x00338861  
0x00320429  
0x00310006  
0x00300000  
0x002F8000  
0x002E0008  
0x002D0851  
0x002C0409  
0x002B0006  
0x002A0000  
0x00298000  
0x00280008  
0x00270851  
0x00260409  
0x00250006  
0x00240000  
0x00238000  
0x00220050  
0x00210007  
0x00200000  
0x001F1E72  
0x001E5140  
0x001D000C  
0x001C0000  
0x001B0000  
0x001A0A1C  
0x00190406  
0x00180601  
0x00170595  
0x00460000  
0x00450000  
0x00440000  
0x00430020  
0x00420200  
0x00410F34  
0x0040000D  
0x003F4210  
0x003E4218  
0x003D1500  
0x003C0018  
0x003B0061  
0x003A0008  
0x00398851  
0x00380008  
0x00370000  
0x00360000  
0x00358000  
0x00340008  
0x00338861  
0x00320431  
0x00310006  
0x00300000  
0x002F8000  
0x002E0008  
0x002D0851  
0x002C0010  
0x002B0000  
0x002A0000  
0x00298000  
0x00280008  
0x00270851  
0x00260409  
0x00250006  
0x00240000  
0x00238000  
0x00220050  
0x00210007  
0x00200000  
0x001F1E72  
0x001E5140  
0x001D000C  
0x001C0000  
0x001B0000  
0x001A0A1C  
0x00192406  
0x00180601  
0x00170595  
30  
Copyright © 2017–2020, Texas Instruments Incorporated  
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
Table 13. CDCI6214 Register Defaults (continued)  
ADDRESS  
0x16  
0x15  
0x14  
0x13  
0x12  
0x11  
0x10  
0xF  
DEFAULT  
EEPROM PAGE 0  
EEPROM PAGE 1  
0x00160000  
0x00150000  
0x00140000  
0x00130000  
0x00120000  
0x001126C4  
0x0010921F  
0x000FA037  
0x000E0000  
0x000D0000  
0x000C0000  
0x000B0000  
0x000A0000  
0x00090000  
0x00080000  
0x00070000  
0x00060000  
0x00050028  
0x00040055  
0x00030000  
0x00020053  
0x00016882  
0x00000000  
0x00160000  
0x00150000  
0x00140001  
0x00130000  
0x0012FFFF  
0x001126C4  
0x0010921F  
0x000FA037  
0x000E0000  
0x000D0000  
0x000C0000  
0x000B0000  
0x000AC964  
0x0009C964  
0x00080001  
0x00070C0D  
0x0006159F  
0x00050028  
0x00040055  
0x00030000  
0x00020053  
0x00016865  
0x00000001  
0x00160000  
0x00150000  
0x00140001  
0x00130000  
0x0012FFFF  
0x001126C4  
0x0010921F  
0x000FA037  
0x000E0000  
0x000D0000  
0x000C0000  
0x000B0000  
0x000AC964  
0x0009C964  
0x00080001  
0x00070C0D  
0x000619CA  
0x00050028  
0x000400DD  
0x00030800  
0x00020053  
0x00016864  
0x00000000  
0xE  
0xD  
0xC  
0xB  
0xA  
0x9  
0x8  
0x7  
0x6  
0x5  
0x4  
0x3  
0x2  
0x1  
0x0  
Table 14. Default EEPROM Image  
ADDRESS  
Section  
Word Value  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
0xB  
0xEE00  
0x490F  
0x0362  
0x0E00  
0x1400  
0xC104  
0x0C00  
0x5000  
0x0861  
0x8421  
0x0006  
0x0000  
Base  
Copyright © 2017–2020, Texas Instruments Incorporated  
31  
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
Table 14. Default EEPROM Image (continued)  
ADDRESS  
0xC  
Section  
Word Value  
0x6501  
0x5368  
0xAA80  
0x4382  
0x0001  
0x0030  
0x4500  
0x79C9  
0x8000  
0x0C00  
0x1200  
0x2904  
0x0002  
0x3002  
0x4800  
0xA410  
0x0008  
0xC008  
0x2000  
0x1045  
0x0033  
0x0020  
0x8003  
0x4104  
0x39CA  
0x0000  
0xD  
0xE  
0xF  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
Page 0  
32  
Copyright © 2017–2020, Texas Instruments Incorporated  
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
Table 14. Default EEPROM Image (continued)  
ADDRESS  
Section  
Word Value  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x6400  
0x5368  
0xEE80  
0x4382  
0x0001  
0x0030  
0x4500  
0x79C9  
0x8000  
0x0C00  
0x1200  
0x2904  
0x0002  
0x0002  
0x8000  
0xA400  
0x0008  
0xC008  
0x2000  
0x1046  
0x0033  
0x0020  
0x0000  
0x4004  
0x39CA  
0xC964  
Page 1  
Copyright © 2017–2020, Texas Instruments Incorporated  
33  
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
VDDVCO  
24  
CDCI6214  
7
Y0  
Disabled  
LVCMOS  
4
Differential  
REFP  
5
6
REFN  
DS  
22  
21  
PSA  
PSB  
BYP  
Y1P  
Y1N  
100 MHz  
HCSL  
Phase Locked Loop  
6
25 MHz  
ch2  
DS  
ch1_mux  
970 kHz  
4
1 MHz  
ch1_iod_mux  
50 MHz  
2400 MHz  
67 °  
REFSEL  
4
to 50 MHz  
/4, /5, /6  
x2  
16 VDDO12 1.8 V  
CP  
LF  
R
PFD  
VCO  
25 MHz  
DS  
8 Bits  
PSB  
/4, /5, /6  
OSC  
DS  
6
XOUT  
18  
ch1  
ch3  
PSA  
PSB  
BYP  
Y2P  
Y2N  
100 MHz  
HCSL  
12  
4
1
2
17  
ZDM  
14 Bits  
/4, /5, /6  
CL  
ch2_mux  
ch2_iod_mux  
5 pF  
XIN  
LDOs for Analog  
LDO for Digital  
DS  
14  
13  
ch2  
PSA  
PSB  
BYP  
VDDREF  
3
Y3P  
Y3N  
100 MHz  
HCSL  
6
ch4  
ch3_mux  
ch3_iod_mux  
M
H
L
Default  
Osc.  
Registers  
15 VDDO34 1.8 V  
12  
19  
OE3  
OE2  
I2C  
Digital  
Page 1  
Page 0  
DS  
6
10  
ch3  
PSA  
PSB  
BYP  
Y4P  
Y4N  
100 MHz  
HCSL  
9
GPIOGPO Reset Sync  
DS  
ch4_mux  
ch4_iod_mux  
EEPROM  
11  
OE4  
20  
8
23  
blockdiag_detailed_pg1p0_v7  
OE1  
RESETN  
EEPROMSEL  
LOW  
Figure 29. CDCI6214 - Pre-Configured EEPROM Page 0  
34  
Copyright © 2017–2020, Texas Instruments Incorporated  
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
VDDVCO  
24  
CDCI6214  
7
Y0  
Disabled  
LVCMOS  
4
Differential  
REFP  
REFN  
5
6
DS  
22  
21  
PSA  
PSB  
BYP  
Y1P  
Y1N  
100 MHz  
HCSL  
Phase Locked Loop  
6
25 MHz  
ch2  
DS  
ch1_mux  
970 kHz  
4
1 MHz  
ch1_iod_mux  
50 MHz  
2400 MHz  
67 °  
REFSEL  
4
to 50 MHz  
/4, /5, /6  
x2  
16 VDDO12 1.8 V  
CP  
LF  
R
PFD  
VCO  
25 MHz  
DS  
8 Bits  
PSB  
/4, /5, /6  
OSC  
DS  
PD  
XOUT/FB_P  
18  
ch1  
ch3  
PSA  
PSB  
BYP  
Y2P  
Powered Down  
12  
4
1
2
Y2N  
17  
ZDM  
14 Bits  
/4, /5, /6  
CL  
ch2_mux  
ch2_iod_mux  
5 pF  
XOUT/FB_N  
VDDREF  
LDOs for Analog  
LDO for Digital  
DS  
14  
13  
ch2  
PSA  
PSB  
BYP  
3
Y3P  
Y3N  
100 MHz  
LVPECL  
6
ch4  
ch3_mux  
ch3_iod_mux  
M
H
L
Default  
Osc.  
Registers  
15 VDDO34 1.8 V  
12  
19  
SCL  
SDA  
I2C  
Digital  
Page 1  
Page 0  
DS  
PD  
10  
ch3  
PSA  
PSB  
BYP  
Y4P  
Powered Down  
Y4N  
9
GPIOGPO Reset Sync  
DS  
ch4_mux  
ch4_iod_mux  
EEPROM  
11  
OE3  
20  
8
23  
blockdiag_detailed_pg1p0_v7  
OE1  
RESETN  
EEPROMSEL  
HIGH  
Figure 30. CDCI6214 - Pre-Configured EEPROM Page 1  
Copyright © 2017–2020, Texas Instruments Incorporated  
35  
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
8.6 Register Maps  
8.6.1 CDCI6214 Registers  
Table 15 lists the memory-mapped registers for the CDCI6214.  
NOTE  
All register offset addresses not listed in Table 15 should be considered as reserved  
locations and the register contents should not be modified.  
NOTE  
All bit-field combinations not listed in the description column should be considered as  
reserved combinations and should only be programmed using the given values.  
Table 15. CDCI6214 Registers  
ADDRESS  
ACRONYM  
REGISTER NAME  
SECTION  
Generic setting, device operation mode, synchronization, control pins, reset, and  
power down.  
0h  
GENERIC0  
Go  
1h  
2h  
GENERIC1  
GENERIC2  
GENERIC3  
POWER0  
POWER1  
STATUS0  
STATUS1  
STATUS2  
STATUS3  
EEPROM0  
EEPROM1  
EEPROM2  
EEPROM3  
EEPROM4  
STARTUP0  
STARTUP1  
STARTUP2  
REV0  
Generic settings, GPIO input signal selection.  
Generic settings, GPIO output signal selection.  
Generic settings, EEPROM and frequency increment / decrement.  
Power-down bits, output channels.  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
3h  
4h  
5h  
Power-down bits, phase-locked-loop.  
6h  
Status information, calibration bus.  
7h  
Status information, PLL lock and EEPROM.  
Status information, miscellaneous  
8h  
9h  
Status information, live CRC of EEPROM  
EEPROM, stored CRC of EEPROM  
Ah  
Bh  
EEPROM, direct access read address  
Ch  
EEPROM, direct access read data  
Dh  
EEPROM, direct access write address  
Eh  
EEPROM, direct access write data  
Fh  
Start-up configuration, EEPROM lock, auto-calibration, and I2C glitch filter  
Start-up configuration, digital state machine counters  
Start-up configuration, digital state machine counters  
Revision ID  
10h  
11h  
18h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
21h  
23h  
24h  
25h  
INPUT0  
Input reference, buffer configuration, and crystal oscillator controls.  
Input reference, reference divider, and bypass buffers.  
Input reference debug, status pin buffers.  
PLL, feedback dividers.  
INPUT1  
INPUT_DBG0  
PLL0  
PLL1  
PLL, charge pump current and clock distribution pre-scaler dividers.  
PLL, loop filter configuration  
PLL2  
PLL4  
PLL, lock detector and PFD delay  
CH1_CTRL0  
CH1_CTRL1  
CH1_CTRL2  
Output channel 1, RESERVED  
Output channel 1, RESERVED  
Output channel 1, integer divider and mux control.  
Output channel 1, synchronization, digital delay, output buffer, mux and mute  
controls.  
26h  
CH1_CTRL3  
Go  
27h  
28h  
CH1_CTRL4  
CH1_CTRL5  
Output channel 1, divider glitchless enable and spread spectrum controls.  
Output channel 1, RESERVED  
Go  
Go  
36  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
Table 15. CDCI6214 Registers (continued)  
ADDRESS  
29h  
ACRONYM  
CH2_CTRL0  
CH2_CTRL1  
CH2_CTRL2  
REGISTER NAME  
SECTION  
Go  
Output channel 2, RESERVED  
Output channel 2, RESERVED  
Output channel 2, integer divider and mux control.  
2Ah  
Go  
2Bh  
Go  
Output channel 2, synchronization, digital delay, output buffer, mux and mute  
controls.  
2Ch  
CH2_CTRL3  
Go  
2Dh  
2Eh  
2Fh  
30h  
31h  
CH2_CTRL4  
CH2_CTRL5  
CH3_CTRL0  
CH3_CTRL1  
CH3_CTRL2  
Output channel 2, divider glitchless enable and spread spectrum controls.  
Output channel 2 , RESERVED  
Go  
Go  
Go  
Go  
Go  
Output channel 3, RESERVED  
Output channel 3, RESERVED  
Output channel 3, integer divider and mux control.  
Output channel 3, synchronization, digital delay, output buffer, mux and mute  
controls.  
32h  
CH3_CTRL3  
Go  
33h  
34h  
35h  
36h  
37h  
CH3_CTRL4  
CH3_CTRL5  
CH4_CTRL0  
CH4_CTRL1  
CH4_CTRL2  
Output channel 3, divider glitchless enable and spread spectrum controls.  
Output channel 3, RESERVED  
Go  
Go  
Go  
Go  
Go  
Output channel 4, RESERVED  
Output channel 4, RESERVED  
Output channel 4, integer divider and mux control.  
Output channel 4, synchronization, digital delay, output buffer, mux and mute  
controls.  
38h  
CH4_CTRL3  
Go  
39h  
3Ah  
3Bh  
3Ch  
3Dh  
3Eh  
3Fh  
CH4_CTRL4  
CH4_CTRL5  
CHX_CTRL0  
CHX_CTRL1  
CHX_CTRL2  
CHX_CTRL3  
CHX_CTRL4  
Output channel 4, divider glitchless enable and spread spectrum controls.  
Output channel 4, RESERVED  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Output channels, generic clock distribution and bypass output controls.  
Output channels, RESERVED  
Output channels, RESERVED  
Output channels, RESERVED  
Output channels, RESERVED  
Complex bit access types are encoded to fit into small table cells. Table 16 shows the codes that are used for  
access types in this section.  
Table 16. CDCI6214 Access Type Codes  
ACCESS TYPE CODE  
READ TYPE  
DESCRIPTION  
R
R
Read  
RC  
C
R
to Clear  
Read  
WRITE TYPE  
W
W
W
W
W
W
W
Write  
Write  
Write  
Write  
Write  
Write  
WEX  
WMC  
WPD  
WSC  
WST  
RESET OR DEFAULT VALUE  
Value after reset or the default  
value  
-n  
Copyright © 2017–2020, Texas Instruments Incorporated  
37  
 
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
8.6.1.1 GENERIC0 Register (Address = 0h) [reset = 0h]  
GENERIC0 is shown in Figure 31 and described in Table 17.  
Return to Summary Table.  
Figure 31. GENERIC0 Register  
15  
14  
13  
12  
11  
10  
9
8
i2c_a0  
R/W-0h  
gpio0_input_sel gpio4_dir_sel  
gpio1_dir_sel  
R/W-0h  
gpio0_dir_sel  
R/W-0h  
zdm_clocksel  
R/W-0h  
RESERVED  
R/W-0h  
zdm_mode  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
pll_rst_lockdet  
R/W-0h  
sync  
recal  
resetn_soft  
R/W-0h  
swrst  
powerdown  
R/WPD-0h  
mode  
R/W-0h  
R/WSC-0h  
R/WSC-0h  
R/WSC-0h  
Table 17. GENERIC0 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15  
i2c_a0  
R/W  
0h  
When regcommit is used to program an EEPROM page, using  
regcommit_page, this defines the LSB of the I2C slave address.  
When a configuration is loaded into the registers from an EEPROM  
page, this represents the saved LSB bit.  
14  
13  
12  
11  
10  
gpio0_input_sel  
gpio4_dir_sel  
gpio1_dir_sel  
gpio0_dir_sel  
zdm_clocksel  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
Input signal select for GPIO0, Pin 8.  
0h = RESETN  
1h = SYNC  
GPIO4 direction select.  
0h = Input  
1h = Output  
GPIO1 direction select.  
0h = Input  
1h = Output  
Direction select for Pin 8.  
0h = Input  
1h = Output  
Selects the internal or external clock for calibration, in the ZDM  
mode. In non-ZDM mode, always internal clock will be selected and  
this register doesn't have any meaning.  
0h = Internal Feedback  
1h = External Feedback  
9
8
RESERVED  
zdm_mode  
R/W  
R/W  
0h  
0h  
RESERVED  
Zero Delay Mode  
0h = ZDM Off  
1h = ZDM On  
7
6
5
RESERVED  
pll_rst_lockdet  
sync  
R/W  
0h  
0h  
0h  
RESERVED.  
R/W  
Reset (active high) to PLL lock detect circuit.  
R/WSC  
Generates sync pulse (for output decoder). This is a self clearing  
register bit and writing '1' will create the SYNC pulse.  
4
recal  
R/WSC  
0h  
Self clearing bit. Writing '1' will do the re-calibration. For example -  
after the configuration followed by calibration if '1' is written to this  
register the calibration engine will start with the current capcode and  
cross code.  
38  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
 
 
 
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
Table 17. GENERIC0 Register Field Descriptions (continued)  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
3
resetn_soft  
R/W  
0h  
Configure the pin RESETN/SYNC as a soft reset.  
0h = Hard Reset (reset state machines and registers)  
1h = Soft Reset (state machines only, register content stays as is)  
2
swrst  
R/WSC  
0h  
Soft reset bit. This is a self clearing bit. Writing a '0' has no effect  
and writing a '1' creates a reset pulse which resets the digital logic  
except the programmable registers. Also, this soft reset has similar  
effect on digital logic as hard reset (RESENTN/SYNC). Soft reset will  
restart the configuration and calibration.  
1
0
powerdown  
mode  
R/WPD  
R/W  
0h  
0h  
Analog Power Down.  
0h = Active  
1h = Power down  
Mode of Operation.  
0h = Serial Interface, I2C  
1h = Pin Mode, Output Enable  
Copyright © 2017–2020, Texas Instruments Incorporated  
39  
 
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
8.6.1.2 GENERIC1 Register (Address = 1h) [reset = 6A32h]  
GENERIC1 is shown in Figure 32 and described in Table 18.  
Return to Summary Table.  
Figure 32. GENERIC1 Register  
15  
7
14  
13  
12  
4
11  
3
10  
2
9
8
RESERVED  
R/W-1Ah  
ref_mux_src  
R/W-0h  
ref_mux  
R/W-0h  
6
5
1
0
gpio4_input_sel  
R/W-3h  
gpio1_input_sel  
R/W-2h  
Table 18. GENERIC1 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-10  
9
RESERVED  
R/W  
1Ah  
RESERVED  
ref_mux_src  
R/W  
R/W  
R/W  
0h  
0h  
3h  
Reference mux control signal source.  
0h = Pin  
1h = ref_mux bit-field  
8
ref_mux  
Reference mux bit override.  
0h = XIN  
1h = REF  
7-4  
gpio4_input_sel  
GPIO4 input signal select. Do not choose the same signal on  
gpio1_input_sel.  
2h = OE  
4h = OE1  
5h = OE2  
6h = OE3  
7h = OE4  
3-0  
gpio1_input_sel  
R/W  
2h  
GPIO1 input signal select.Do not choose the same signal on  
gpio4_input_sel.  
2h = OE  
4h = OE1  
5h = OE2  
6h = OE3  
7h = OE4  
40  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
 
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
8.6.1.3 GENERIC2 Register (Address = 2h) [reset = 53h]  
GENERIC2 is shown in Figure 33 and described in Table 19.  
Return to Summary Table.  
Figure 33. GENERIC2 Register  
15  
14  
13  
12  
4
11  
10  
gpio0_output_sel  
R/W-0h  
9
8
0
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
7
6
5
3
2
1
gpio4_output_sel  
R/W-5h  
gpio1_output_sel  
R/W-3h  
Table 19. GENERIC2 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-12  
RESERVED  
R/W  
0h  
Reserved.  
11-8  
gpio0_output_sel  
R/W  
0h  
GPIO0, Pin 8, output select ,  
0h = PLL_LOCK  
1h = XTAL_OSC  
2h = CAL_DONE  
3h = CONF_DONE  
4h = SYNC_DONE  
5h = EEPROM_BUSY  
6h = EEPROM_Y12  
7h = EEPROM_M12  
8h = I2C_LSB  
9h = CLK_FSM  
Ah = CLK_PFD_REF  
Bh = CLK_PFD_FB  
Ch = BUF_SYNC  
Dh = BUF_SCL  
Eh = BUF_SDA  
7-4  
gpio4_output_sel  
R/W  
5h  
GPIO4 , output select ,  
0h = PLL_LOCK  
1h = XTAL_OSC  
2h = CAL_DONE  
3h = CONF_DONE  
4h = SYNC_DONE  
5h = EEPROM_BUSY  
6h = EEPROM_Y12  
7h = EEPROM_M12  
8h = I2C_LSB  
9h = CLK_FSM  
Ah = CLK_PFD_REF  
Bh = CLK_PFD_FB  
Ch = BUF_SYNC  
Dh = BUF_SCL  
Eh = BUF_SDA  
Copyright © 2017–2020, Texas Instruments Incorporated  
41  
 
 
 
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
Table 19. GENERIC2 Register Field Descriptions (continued)  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
3-0  
gpio1_output_sel  
R/W  
3h  
GPIO1 , output select ,  
0h = PLL_LOCK  
1h = XTAL_OSC  
2h = CAL_DONE  
3h = CONF_DONE  
4h = SYNC_DONE  
5h = EEPROM_BUSY  
6h = EEPROM_Y12  
7h = EEPROM_M12  
8h = I2C_LSB  
9h = CLK_FSM  
Ah = CLK_PFD_REF  
Bh = CLK_PFD_FB  
Ch = BUF_SYNC  
Dh = BUF_SCL  
Eh = BUF_SDA  
42  
Copyright © 2017–2020, Texas Instruments Incorporated  
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
8.6.1.4 GENERIC3 Register (Address = 3h) [reset = 0h]  
GENERIC3 is shown in Figure 34 and described in Table 20.  
Return to Summary Table.  
Figure 34. GENERIC3 Register  
15  
14  
13  
12  
11  
10  
9
8
disable_crc  
update_crc  
nvmcommit  
regcommit  
regcommit_pag  
e
RESERVED  
RESERVED  
RESERVED  
R/W-0h  
R/WMC-0h  
R/WSC-0h  
R/WSC-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/WSC-0h  
RESERVED  
R/WSC-0h  
RESERVED  
R/W-0h  
Table 20. GENERIC3 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15  
disable_crc  
R/W  
0h  
Disable the CRC computation. However if Page is selected CRC will  
happen after PoR (power on reset from analog). For example- after  
the calibration if this bit is set to '1' and apply a soft reset (or reset  
through pin) the configuration will bypass the CRC computation.  
14  
update_crc  
R/WMC  
0h  
This is a self clearing register bit. Writing a '1' will cause the re-  
computation of CRC. The computed CRC can be read from the live  
CRC (nvmlcrc) register after the status bit nvmbusyh = 0.  
13  
12  
11  
nvmcommit  
R/WSC  
R/WSC  
R/W  
0h  
0h  
0h  
Commits contents of the EEPROM page selected by  
REGCOMMIT_PAGE to internal register. This register will self-clear  
regcommit  
Commits contents of the registers to EEPROM selected by  
REGCOMMIT_PAGE register. This register will self-clear.  
regcommit_page  
Decide which page of EEPROM to use for the Register/NVM commit  
operations. Note= this register is used only after the initial power-up  
configuration from EEPROM if any. Once power-up configuration is  
done with the page chosen by EEPROMSEL the value of this  
register will be used for subsequent configurations using  
Register/NVM commit operations.  
0h = Page 0  
1h = Page 1  
10-3  
2-1  
0
RESERVED  
RESERVED  
RESERVED  
R/W  
0h  
0h  
0h  
Reserved  
Reserved  
Reserved  
R/WSC  
R/W  
Copyright © 2017–2020, Texas Instruments Incorporated  
43  
 
 
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
8.6.1.5 POWER0 Register (Address = 4h) [reset = 54h]  
POWER0 is shown in Figure 35 and described in Table 21.  
Return to Summary Table.  
Figure 35. POWER0 Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R/W-0h  
7
6
5
4
3
2
1
0
pdn_ch4  
R/W-0h  
RESERVED  
R/W-1h  
pdn_ch3  
R/W-0h  
RESERVED  
R/W-1h  
pdn_ch2  
R/W-0h  
RESERVED  
R/W-1h  
pdn_ch1  
R/W-0h  
RESERVED  
R/W-0h  
Table 21. POWER0 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-8  
RESERVED  
pdn_ch4  
R/W  
0h  
Reserved.  
7
R/W  
0h  
Powers Down CH4 LDO.  
0h = Active  
1h = Power down  
6
5
RESERVED  
pdn_ch3  
R/W  
R/W  
1h  
0h  
Reserved.  
Powers Down CH3 LDO.  
0h = Active  
1h = Power down  
4
3
RESERVED  
pdn_ch2  
R/W  
R/W  
1h  
0h  
Reserved.  
Powers Down CH2 LDO.  
0h = Active  
1h = Power down  
2
1
RESERVED  
pdn_ch1  
R/W  
R/W  
1h  
0h  
Reserved.  
Powers Down CH1 LDO.  
0h = Active  
1h = Power down  
0
RESERVED  
R/W  
0h  
Reserved.  
44  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
8.6.1.6 POWER1 Register (Address = 5h) [reset = 30h]  
POWER1 is shown in Figure 36 and described in Table 22.  
Return to Summary Table.  
Figure 36. POWER1 Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
pdn_pll_vcobuf  
2
pdn_pll_vco  
pdn_pll_vcobuf  
R/W-0h  
5
R/W-0h  
R/W-0h  
R/W-0h  
7
6
4
3
2
1
0
pdn_pll_cp  
R/W-0h  
pdn_pll_lockdet pdn_pll_psfbb  
R/W-0h R/W-1h  
pdn_pll_psfba  
R/W-1h  
RESERVED  
R/W-0h  
pdn_pll_pfd  
R/W-0h  
pdn_pll_psfb  
R/W-0h  
pdn_ref  
R/W-0h  
Table 22. POWER1 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-11  
RESERVED  
R/W  
0h  
Reserved.  
10  
pdn_pll_vcobuf2  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
1h  
1h  
Power down of VCO buffer LDO.  
0h = Active  
1h = Power down  
9
pdn_pll_vco  
Power down of VCO LDO.  
0h = Active  
1h = Power down  
8
pdn_pll_vcobuf  
pdn_pll_cp  
Power down of VCO buffer.  
0h = Active  
1h = Power down  
7
Power down of charge pump LDO.  
0h = Active  
1h = Power down  
6
pdn_pll_lockdet  
pdn_pll_psfbb  
pdn_pll_psfba  
Power down of PLL lock detector.  
0h = Active  
1h = Power down  
5
Power down of PLL feedback pre-scaler.  
0h = Active  
1h = Power down  
4
Active low enable of prescaler-a. Active (low) during PoR and '1'  
later. 1h = Power Down PFD. 0h = Otherwise.  
3
2
RESERVED  
pdn_pll_pfd  
R/W  
R/W  
0h  
0h  
Reserved.  
Active low enable of PFD. Inactive (high) till calibration and '0'  
afterwards. 1h = Power Down PFD. 0h = Otherwise.  
1
0
pdn_pll_psfb  
pdn_ref  
R/W  
R/W  
0h  
0h  
Active low enable of prescaler. Active (low) during PoR and '1' later.  
1h = Powers Down PS, 0h = Otherwise.  
Powers Down Input Path LDO. Kill Switch. Do not use. 1h = PD, 0h  
= Otherwise.  
Copyright © 2017–2020, Texas Instruments Incorporated  
45  
 
 
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
8.6.1.7 STATUS0 Register (Address = 6h) [reset = 0h]  
STATUS0 is shown in Figure 37 and described in Table 23.  
Return to Summary Table.  
Figure 37. STATUS0 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
cal_status  
R-0h  
Table 23. STATUS0 Register Field Descriptions  
BIT  
15-0  
FIELD  
cal_status  
TYPE  
RESET  
DESCRIPTION  
R
0h  
Calibration word.  
8.6.1.8 STATUS1 Register (Address = 7h) [reset = 0h]  
STATUS1 is shown in Figure 38 and described in Table 24.  
Return to Summary Table.  
Figure 38. STATUS1 Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R-0h  
lock_det_a  
pll_vco_cal_rea nvm_rd_error  
dy  
nvm_wr_error  
R-0h  
R-0h  
RC-0h  
RC-0h  
7
6
5
4
3
2
1
0
rd_error  
R-0h  
wr_error  
R-0h  
nvmcrcerr  
R-0h  
nvmbusy  
R-0h  
cal_done  
R-0h  
config_done  
R-0h  
unlock_s  
R/WEX-0h  
lock_det  
R-0h  
Table 24. STATUS1 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-12  
RESERVED  
R
0h  
Reserved.  
11  
10  
lock_det_a  
R
R
0h  
0h  
Reads the PLL Lock status. 0h: PLL is Unlocked. 1h: PLL is locked.  
VCO Buffer LDO POR can be read through this register.  
pll_vco_cal_ready  
9
nvm_rd_error  
RC  
0h  
Occurs when any NVM operation is issued during Read Phase of the  
NVM. The Read Phase of the NVM includes CRC calculation or a  
simple read through RD NVM Addr/Data registers from any NVM  
location or a NVM commit operation.  
8
nvm_wr_error  
RC  
0h  
Occurs when any NVM operation is issued during Write Phase of the  
NVM. Write Phase of the NVM includes a simple write into any NVM  
location through WR NVM Addr/Data registers or a Register Commit  
operation.  
7
6
5
rd_error  
wr_error  
nvmcrcerr  
R
R
R
0h  
0h  
0h  
Reading using the I2C interface with an address above the address  
of the last register gives this error.  
Writing using the I2C interface with an address above the address of  
the last register gives this error.  
NVM CRC Error Indication. The NVMCRCERR bit is set to 1 if a  
CRC Error has been detected when reading back from on-chip  
EEPROM during device configuration. This bit will be cleared when  
NVMCOMMIT is submitted or Update CRC is issued.  
4
nvmbusy  
R
0h  
NVM Program Busy Indication. The NVMBUSY bit is 1 during an on-  
chip EEPROM Erase/Program cycle. While NVMBUSY is 1 the on-  
chip EEPROM cannot be accessed. When the NVM operation is  
completed this bit will be cleared. NVM related operations are  
REGcommit NVMcommit CRC calculation or simple Read/Write  
through RD/WR NVM.  
46  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
 
 
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
Table 24. STATUS1 Register Field Descriptions (continued)  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
3
cal_done  
R
0h  
1h = Calibration (Two rounds of Amplitude followed by calibration) is  
done.  
2
1
config_done  
unlock_s  
R
0h  
0h  
1 h = Configuration (CRC Check followed by transfer of EEPROM to  
registers) is done.  
R/WEX  
Lock Detect Sticky Bit. This indicates the loss of lock of the PLL and  
this is cleared only by recalibration or  
RESETN/SYNC pin  
a hard reset through  
0h = locked  
1h = unlocked  
0
lock_det  
R
0h  
When the calibration is done frequency may or may not be locked.  
1h = Frequency is locked. 0h = Otherwise  
0h = unlocked  
1h = locked  
8.6.1.9 STATUS2 Register (Address = 8h) [reset = 0h]  
STATUS2 is shown in Figure 39 and described in Table 25.  
Return to Summary Table.  
Figure 39. STATUS2 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
misc_status  
R-0h  
Table 25. STATUS2 Register Field Descriptions  
BIT  
15-0  
FIELD  
misc_status  
TYPE  
RESET  
DESCRIPTION  
R
0h  
Miscellaneous status word.  
8.6.1.10 STATUS3 Register (Address = 9h) [reset = 0h]  
STATUS3 is shown in Figure 40 and described in Table 26.  
Return to Summary Table.  
Figure 40. STATUS3 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
nvmlcrc  
R-0h  
Table 26. STATUS3 Register Field Descriptions  
BIT  
15-0  
FIELD  
nvmlcrc  
TYPE  
RESET  
DESCRIPTION  
R
0h  
The NVMLCRC register holds the Live CRC byte that has been  
calculated while reading on-chip EEPROM.  
8.6.1.11 EEPROM0 Register (Address = Ah) [reset = 0h]  
EEPROM0 is shown in Figure 41 and described in Table 27.  
Return to Summary Table.  
Copyright © 2017–2020, Texas Instruments Incorporated  
47  
 
 
 
 
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
Figure 41. EEPROM0 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
nvmscrc  
R-0h  
Table 27. EEPROM0 Register Field Descriptions  
BIT  
15-0  
FIELD  
nvmscrc  
TYPE  
RESET  
DESCRIPTION  
R
0h  
Stored CRC value. This value is used to compare with the computed  
CRC and to update the CRC Status bit  
8.6.1.12 EEPROM1 Register (Address = Bh) [reset = 0h]  
EEPROM1 is shown in Figure 42 and described in Table 28.  
Return to Summary Table.  
Figure 42. EEPROM1 Register  
15  
7
14  
6
13  
5
12  
4
11  
10  
2
9
1
8
0
RESERVED  
R/W-0h  
3
RESERVED  
R/W-0h  
nvm_rd_addr  
R/W-0h  
Table 28. EEPROM1 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-6  
5-0  
RESERVED  
nvm_rd_addr  
R/W  
0h  
Reserved.  
R/W  
0h  
Writing an address into the NVM WR Address starts the read loop.  
This register will contain the data read from the EEPROM at the  
address provided by the NVM WR Address. The address is auto-  
incremented and subsequent read from the NVM RD Data register  
will give the data from the next EEPROM location.  
48  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
8.6.1.13 EEPROM2 Register (Address = Ch) [reset = 0h]  
EEPROM2 is shown in Figure 43 and described in Table 29.  
Return to Summary Table.  
Figure 43. EEPROM2 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
nvm_rd_data  
R-0h  
Table 29. EEPROM2 Register Field Descriptions  
BIT  
15-0  
FIELD  
nvm_rd_data  
TYPE  
RESET  
DESCRIPTION  
R
0h  
Reading from this register will return the data present at the  
EEPROM from the immediate next address location than what was  
programmed in the NVM RD Address register since writing into NVM  
RD Address register already returned the data from EEPROM from  
the written address. Subsequent read from this register will cause  
the address to be auto-incremented and cause a read from the next  
EEPROM location.  
8.6.1.14 EEPROM3 Register (Address = Dh) [reset = 0h]  
EEPROM3 is shown in Figure 44 and described in Table 30.  
Return to Summary Table.  
Figure 44. EEPROM3 Register  
15  
7
14  
6
13  
5
12  
4
11  
10  
2
9
1
8
0
RESERVED  
R/W-0h  
3
RESERVED  
R/W-0h  
nvm_wr_addr  
R/W-0h  
Table 30. EEPROM3 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-6  
5-0  
RESERVED  
R/W  
0h  
Reserved.  
nvm_wr_addr  
R/W  
0h  
Writing an address into the NVM WR Address starts the write loop.  
But Writing a data into the NVM WR Data register will program the  
EEPROM with that data at the address provided by writing into NVM  
WR Address initially.  
Copyright © 2017–2020, Texas Instruments Incorporated  
49  
 
 
 
 
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
8.6.1.15 EEPROM4 Register (Address = Eh) [reset = 0h]  
EEPROM4 is shown in Figure 45 and described in Table 31.  
Return to Summary Table.  
Figure 45. EEPROM4 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
nvm_wr_data  
R/W-0h  
Table 31. EEPROM4 Register Field Descriptions  
BIT  
15-0  
FIELD  
nvm_wr_data  
TYPE  
RESET  
DESCRIPTION  
R/W  
0h  
Writing a data into this register will program the EEPROM with the  
written data at the address given by NVM WR Address. Subsequent  
write into this register will cause the address to be auto-incremented  
and cause a program at the next EEPROM location.  
8.6.1.16 STARTUP0 Register (Address = Fh) [reset = 37h]  
STARTUP0 is shown in Figure 46 and described in Table 32.  
Return to Summary Table.  
Figure 46. STARTUP0 Register  
15  
14  
13  
12  
4
11  
10  
9
8
ee_lock  
R/W-0h  
RESERVED  
R/W-0h  
zdm_auto  
R/W-0h  
7
6
5
3
2
1
0
bypass_cal  
R/W-0h  
bypass_config  
R/W-0h  
cal_mute  
R/W-1h  
shift_left  
R/W-2h  
gpio3_gf_en  
R/W-1h  
gpio2_gf_en  
R/W-1h  
acal_en  
R/W-1h  
Table 32. STARTUP0 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-12  
ee_lock  
R/W  
0h  
Locks EEPROM for regcommit and EEPROM write operations. To  
unlock, write 5h, any other value to lock.  
11-9  
8
RESERVED  
zdm_auto  
R/W  
R/W  
0h  
0h  
Reserved.  
Setting this bit 1 will allow state machine to control the value of  
pll_ndiv and pll_psfb internally in Normal/ZDM mode of calibration. If  
set 0 the user has to manually program the pll_ndiv and pll_psfb  
7
6
bypass_cal  
R/W  
R/W  
0h  
0h  
Bypass the calibration. By default two rounds of calibrations (AC  
followed by FC) will be done. Setting this bit to 1 will bypass the  
calibration.  
bypass_config  
Bypass the configuration. Note that on PoR this bit is zero and  
hence configuration will happen. However after the first configuration  
this bit can be set and apply the soft/pin reset so that configuration  
will be bypassed.  
5
cal_mute  
R/W  
1h  
Mute the output during the calibration.  
0h = Outputs stay active  
1h = Outputs muted  
50  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
 
 
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
Table 32. STARTUP0 Register Field Descriptions (continued)  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
4-3  
shift_left  
R/W  
2h  
Divide the ref clock (PFD clock) during calibration by 2 to the power  
of value  
0h = 1  
1h = 2  
2h = 4  
3h = 8  
2
1
0
gpio3_gf_en  
gpio2_gf_en  
acal_en  
R/W  
R/W  
R/W  
1h  
1h  
1h  
Enable the glitch filter for SCL, GPIO3.  
0h = Disabled  
1h = Enabled  
Enable the glitch filter for SDA, GPIO2.  
0h = Disabled  
1h = Enabled  
Enable automatic frequency calibration at power-up or EEPROM re-  
load.  
0h = Disabled  
1h = Enabled  
8.6.1.17 STARTUP1 Register (Address = 10h) [reset = 921Fh]  
STARTUP1 is shown in Figure 47 and described in Table 33.  
Return to Summary Table.  
Figure 47. STARTUP1 Register  
15  
7
14  
13  
12  
4
11  
3
10  
9
8
0
pll_lock_dly  
R/W-12h  
ac_init_dly  
R/W-10h  
6
5
2
1
ac_init_dly  
R/W-10h  
cp_dly  
R/W-1Fh  
Table 33. STARTUP1 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-11  
10-5  
4-0  
pll_lock_dly  
ac_init_dly  
cp_dly  
R/W  
12h  
Wait time before lock detect goes high after the calibration. Expected  
value is approximately 1 ms. The actual delay will be 4 × T ×  
{programmed value} where T = 200ns typically.  
R/W  
R/W  
10h  
1Fh  
Peak detector settlig time, that is, pll_en_peakdet_vco going high to  
first cross code change. Expected value is 1.6 µs. The actual delay  
will be 4 × T × {programmed value} where T = 200ns typically.  
Delay from vtune driver enable (pll_en_vtune_drv) going high to  
peak detector enable (pll_en_peakdet_vco) going high. Expected  
delay is 200 µs. The actual delay will be 64 × T × {programmed  
value} where T = 200ns typically.  
Copyright © 2017–2020, Texas Instruments Incorporated  
51  
 
 
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
8.6.1.18 STARTUP2 Register (Address = 11h) [reset = 6C4h]  
STARTUP2 is shown in Figure 48 and described in Table 34.  
Return to Summary Table.  
Figure 48. STARTUP2 Register  
15  
14  
6
13  
5
12  
4
11  
3
10  
2
9
8
0
RESERVED  
R/W-0h  
switch_dly  
R/W-0h  
err_cnt  
R/W-6h  
7
1
fc_setl_dly  
ac_cmp_dly  
R/W-4h  
R/W-3h  
Table 34. STARTUP2 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15  
RESERVED  
switch_dly  
R/W  
0h  
Reserved.  
14-11  
10-8  
R/W  
R/W  
0h  
6h  
Indicates number of digital clocks to wait before SSM clock is turned  
off after all the active signals are low. Internally scaled up by 26.  
Digital clock period is 200ns typically.  
err_cnt  
Indicates how long to wait for before declaring lock detect. In PFD  
clocks period.  
0h = 32  
1h = 64  
2h = 128  
3h = 256  
7-6  
5-0  
fc_setl_dly  
R/W  
R/W  
3h  
4h  
Delay between two cap codes in terms of REFCLK period. Expected  
value is 1 µs. The actual delay will be 32 × T × {programmed value}  
where T is the refclk period.  
ac_cmp_dly  
Delay between successive cross code change. Expected value is 1  
µs. The actual delay will be 4 × T × {programmed value} where T =  
200ns typically.  
8.6.1.19 REV0 Register (Address = 18h) [reset = 601h]  
REV0 is shown in Figure 49 and described in Table 35.  
Return to Summary Table.  
Figure 49. REV0 Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
RESERVED  
R/W-6h  
4
3
rev_reg  
R-1h  
Table 35. REV0 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
06h  
DESCRIPTION  
15-8  
7-0  
Reserved  
rev_reg  
R
R
Reserved  
1h  
Revision ID register.  
1h = CDCI6214  
52  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
 
 
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
8.6.1.20 INPUT0 Register (Address = 1Ah) [reset = B14h]  
INPUT0 is shown in Figure 50 and described in Table 36.  
Return to Summary Table.  
Figure 50. INPUT0 Register  
15  
14  
13  
12  
4
11  
10  
9
1
8
0
ref_inbuf_ctrl  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
ip_xo_cload  
R/W-Bh  
7
6
5
3
2
RESERVED  
ip_xo_gm  
R/W-5h  
xin_inbuf_ctrl  
R/W-0h  
R/W-0h  
Table 36. INPUT0 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15  
ref_inbuf_ctrl  
R/W  
0h  
Reference input buffer select.  
0h = LVCMOS  
1h = AC-Differential  
RESERVED  
14  
13  
RESERVED  
RESERVED  
R/W  
R/W  
0h  
0h  
RESERVED  
Copyright © 2017–2020, Texas Instruments Incorporated  
53  
 
 
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
Table 36. INPUT0 Register Field Descriptions (continued)  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
12-8  
ip_xo_cload  
R/W  
Bh  
Selects load cap for XO (up to 9 pF) in 5 bit binary selection). Step  
size is about 200 fF.  
0h = 3.0 pF  
1h = 3.2 pF  
2h = 3.4 pF  
3h = 3.6 pF  
4h = 3.8 pF  
5h = 4.0 pF  
6h = 4.2 pF  
7h = 4.4 pF  
8h = 4.6 pF  
9h = 4.8 pF  
Ah = 5.0 pF  
Bh = 5.2 pF  
Ch = 5.4 pF  
Dh = 5.6 pF  
Eh = 5.8 pF  
Fh = 6.0 pF  
10h = 6.2 pF  
11h = 6.4 pF  
12h = 6.5 pF  
13h = 6.7 pF  
14h = 6.9 pF  
15h = 7.1 pF  
16h = 7.3 pF  
17h = 7.5 pF  
18h = 7.7 pF  
19h = 7.9 pF  
1Ah = 8.1 pF  
1Bh = 8.3 pF  
1Ch = 8.5 pF  
1Dh = 8.7 pF  
1Eh = 8.9 pF  
1Fh = 9.0 pF  
RESERVED  
7-6  
RESERVED  
R/W  
0h  
54  
Copyright © 2017–2020, Texas Instruments Incorporated  
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
Table 36. INPUT0 Register Field Descriptions (continued)  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
5-2  
ip_xo_gm  
R/W  
5h  
Tune bias current for XO. Gm programmability. Typical values:  
0h = Disabled  
1h = 14 µA  
2h = 29 µA  
3h = 44 µA  
4h = 59 µA  
5h = 148 µA  
6h = 295 µA  
7h = 443 µA  
8h = 591 µA  
9h = 884 µA  
Ah = 1177 µA  
Bh = 1468 µA  
Ch = 1758 µA  
1-0  
xin_inbuf_ctrl  
R/W  
0h  
Input buffer select.  
0h = XO  
1h = CMOS  
2h = DIFF  
Copyright © 2017–2020, Texas Instruments Incorporated  
55  
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
8.6.1.21 INPUT1 Register (Address = 1Bh) [reset = 0h]  
INPUT1 is shown in Figure 51 and described in Table 37.  
Return to Summary Table.  
Figure 51. INPUT1 Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R/W-0h  
ip_byp_en_ch4 ip_byp_en_ch3 ip_byp_en_ch2 ip_byp_en_ch1 ip_byp_en_y0  
ip_byp_mux  
R/W-0h  
ip_rst_rdiv  
R/W-0h  
R/W-0h  
6
R/W-0h  
5
R/W-0h  
4
R/W-0h  
3
R/W-0h  
2
7
1
0
ip_rdiv  
R/W-0h  
Table 37. INPUT1 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15  
RESERVED  
R/W  
0h  
RESERVED  
14  
13  
12  
11  
ip_byp_en_ch4  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
Bypass path buffer enable for CH4. This is required to drive a  
bypass signal using ch4_iod_mux.  
0h = disabled  
1h = enabled  
ip_byp_en_ch3  
ip_byp_en_ch2  
ip_byp_en_ch1  
Bypass path buffer enable for CH3. This is required to drive a  
bypass signal using ch3_iod_mux.  
0h = disabled  
1h = enabled  
Bypass path buffer enable for CH2. This is required to drive a  
bypass signal using ch2_iod_mux.  
0h = disabled  
1h = enabled  
Bypass path buffer enable for CH1. This is required to drive a  
bypass signal using ch1_iod_mux.  
0h = disabled  
1h = enabled  
10  
9
ip_byp_en_y0  
ip_byp_mux  
R/W  
R/W  
0h  
0h  
Enable input clock to come out on Y0 buffer.  
Selects Y0 clock between "REF_CLK" and "PFD_CLK".  
0h = REF  
1h = PFD  
8
ip_rst_rdiv  
ip_rdiv  
R/W  
R/W  
0h  
0h  
Resets flops in ref divider. Active (high) during power on reset or  
SWRST or pin reset and inactive afterwards.  
7-0  
Reference clock divider. 0 = Doubler ON, 1 = /1, 2 = /2. and so forth.  
0h = x2  
1h = /1  
2h = /2  
3h = /3  
4h = /4  
5h = /5  
...  
FFh = /255  
56  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
8.6.1.22 INPUT_DBG0 Register (Address = 1Ch) [reset = 0h]  
INPUT_DBG0 is shown in and described in Table 38.  
Return to Summary Table.  
Figure 52. INPUT_DBG0 Register  
15  
7
14  
6
13  
12  
11  
10  
9
8
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
5
4
3
2
1
0
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
Table 38. INPUT_DBG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
RESERVED.  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
15-6  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R/W  
0h  
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
8.6.1.23 PLL0 Register (Address = 1Dh) [reset = Ch]  
PLL0 is shown in Figure 53 and described in Table 39.  
Return to Summary Table.  
Figure 53. PLL0 Register  
15  
7
14  
6
13  
5
12  
4
11  
10  
2
9
1
8
0
pll_psfb  
R/W-0h  
pll_ndiv  
R/W-Ch  
3
pll_ndiv  
R/W-Ch  
Table 39. PLL0 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-14  
pll_psfb  
R/W  
0h  
Programming bits for PLL feedback pre-scaler.  
0h = /4  
1h = /5  
2h = /6  
13-0  
pll_ndiv  
R/W  
Ch  
Feedback divider, must be at least 6h.  
Copyright © 2017–2020, Texas Instruments Incorporated  
57  
 
 
 
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
8.6.1.24 PLL1 Register (Address = 1Eh) [reset = 5140h]  
PLL1 is shown in Figure 54 and described in Table 40.  
Return to Summary Table.  
Figure 54. PLL1 Register  
15  
7
14  
6
13  
5
12  
4
11  
10  
2
9
1
8
pll_cp_up  
R/W-14h  
pll_cp_dn  
R/W-14h  
3
0
pll_cp_dn  
R/W-14h  
pll_psb  
R/W-0h  
pll_psa  
R/W-0h  
Table 40. PLL1 Register Field Descriptions  
BIT  
15-10  
FIELD  
TYPE  
RESET  
DESCRIPTION  
pll_cp_up  
R/W  
14h  
Programming bits for up current of CP.  
0h = 0.0 mA  
1h = 0.1 mA  
2h = 0.2 mA  
3h = 0.3 mA  
[...]  
1Fh = 3.1 mA  
37h = 3.2 mA  
38h = 3.3 mA  
[...]  
3Dh = 3.8 mA  
3Eh = 3.9 mA  
3Fh = 4.0 mA  
9-4  
pll_cp_dn  
R/W  
14h  
Programming bits for down current of CP.  
0h = 0.0 mA  
1h = 0.1 mA  
2h = 0.2 mA  
3h = 0.3 mA  
[...]  
1Fh = 3.1 mA  
37h = 3.2 mA  
38h = 3.3 mA  
[...]  
3Dh = 3.8 mA  
3Eh = 3.9 mA  
3Fh = 4.0 mA  
3-2  
1-0  
pll_psb  
pll_psa  
R/W  
R/W  
0h  
0h  
Programming bits for pre-scaler B.  
0h = /4  
1h = /5  
2h = /6  
Programming bits for pre-scaler A.  
0h = /4  
1h = /5  
2h = /6  
58  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
 
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
8.6.1.25 PLL2 Register (Address = 1Fh) [reset = 1E72h]  
PLL2 is shown in Figure 55 and described in Table 41.  
Return to Summary Table.  
Figure 55. PLL2 Register  
15  
7
14  
13  
5
12  
4
11  
10  
9
1
8
RESERVED  
R/W-0h  
pll_lf_zcap  
R/W-Fh  
pll_lf_res  
R/W-3h  
6
3
2
0
pll_lf_res  
R/W-3h  
pll_lf_pcap  
R/W-12h  
Table 41. PLL2 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-14  
13-9  
RESERVED  
pll_lf_zcap  
R/W  
0h  
RESERVED.  
R/W  
Fh  
Programming bits of cap value of zero of loop-filter.  
0h = 000 pF  
1h = 030 pF  
2h = 060 pF  
3h = 090 pF  
4h = 120 pF  
5h = 150 pF  
6h = 180 pF  
7h = 210 pF  
8h = 240 pF  
9h = 270 pF  
Ah = 300 pF  
Bh = 330 pF  
Ch = 360 pF  
Dh = 390 pF  
Eh = 420 pF  
Fh = 450 pF  
10h = 480 pF  
11h = 510 pF  
12h = 540 pF  
13h = 570 pF  
14h = 600 pF  
Copyright © 2017–2020, Texas Instruments Incorporated  
59  
 
 
 
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
Table 41. PLL2 Register Field Descriptions (continued)  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
8-5  
pll_lf_res  
R/W  
3h  
Programming bits of res value of zero of loop-filter.  
0h = open kΩ  
1h = 00.5 kΩ  
2h = 01.5 kΩ  
3h = 02.5 kΩ  
4h = 03.5 kΩ  
5h = 04.5 kΩ  
6h = 05.5 kΩ  
7h = 06.5 kΩ  
8h = 07.5 kΩ  
9h = 08.5 kΩ  
Ah = 09.5 kΩ  
Bh = 10.5 kΩ  
Ch = 11.5 kΩ  
4-0  
pll_lf_pcap  
R/W  
12h  
Programming bits of cap value of pole of loop-filter.  
0h = 00.0 pF  
1h = 00.5 pF  
2h = 01.5 pF  
3h = 02.5 pF  
4h = 03.5 pF  
5h = 04.5 pF  
6h = 05.5 pF  
7h = 06.5 pF  
8h = 07.5 pF  
9h = 08.5 pF  
Ah = 09.5 pF  
Bh = 10.5 pF  
Ch = 11.5 pF  
Dh = 12.5 pF  
Eh = 13.5 pF  
Fh = 14.5 pF  
10h = 15.5 pF  
11h = 16.5 pF  
12h = 17.5 pF  
13h = 18.5 pF  
14h = 19.5 pF  
60  
Copyright © 2017–2020, Texas Instruments Incorporated  
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
8.6.1.26 PLL4 Register (Address = 21h) [reset = 7h]  
PLL4 is shown in Figure 56 and described in Table 42.  
Return to Summary Table.  
Figure 56. PLL4 Register  
15  
14  
6
13  
12  
4
11  
10  
9
1
8
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
7
5
3
2
0
RESERVED  
R/W-0h  
pll_pfd_dly_ctrl  
R/W-0h  
pll_lockdet_window  
R/W-1h  
pll_lockdet_wait  
R/W-3h  
Table 42. PLL4 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-7  
RESERVED  
R/W  
0h  
Reserved.  
6-5  
pll_pfd_dly_ctrl  
R/W  
0h  
Programming of PFD reset delay. In PFD period.  
0h = 2  
1h = 6  
2h = 10  
3h = 14  
4-2  
pll_lockdet_window  
R/W  
1h  
Programmability of PFD input and output time window for lock  
detect.  
0h = disabled  
1h = typical 1.4 ns  
2h = typical 2.6 ns  
3h = typical 3.9 ns  
4h = typical 5.2 ns  
5h = typical 6.4 ns  
6h = typical 7.6 ns  
7h = typical 8.9 ns  
1-0  
pll_lockdet_wait  
R/W  
3h  
Programmability of analog lock detect timer. In PFD cycles  
0h = 1  
1h = 16  
2h = 64  
3h = 128  
Copyright © 2017–2020, Texas Instruments Incorporated  
61  
 
 
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
8.6.1.27 CH1_CTRL0 Register (Address = 23h) [reset = 8000h]  
CH1_CTRL0 is shown in Figure 57 and described in Table 43.  
Return to Summary Table.  
Figure 57. CH1_CTRL0 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/WEX-8000h  
Table 43. CH1_CTRL0 Register Field Descriptions  
BIT  
15-0  
FIELD  
RESERVED  
TYPE  
RESET  
DESCRIPTION  
R/WEX  
8000h  
RESERVED  
8.6.1.28 CH1_CTRL1 Register (Address = 24h) [reset = 0h]  
CH1_CTRL1 is shown in Figure 58 and described in Table 44.  
Return to Summary Table.  
Figure 58. CH1_CTRL1 Register  
15  
7
14  
6
13  
5
12  
11  
3
10  
2
9
1
8
RESERVED  
R/W-0h  
RESERVED  
R/WEX-0h  
4
0
RESERVED  
R/WEX-0h  
Table 44. CH1_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
RESERVED.  
RESERVED.  
15-9  
8-0  
RESERVED  
RESERVED  
R/W  
0h  
R/WEX  
0h  
62  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
 
 
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
8.6.1.29 CH1_CTRL2 Register (Address = 25h) [reset = 8003h]  
CH1_CTRL2 is shown in Figure 59 and described in Table 45.  
Return to Summary Table.  
Figure 59. CH1_CTRL2 Register  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
8
0
ch1_iod_mux  
R/W-2h  
ch1_iod_div  
R/WEX-3h  
ch1_iod_div  
R/WEX-3h  
Table 45. CH1_CTRL2 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-14  
ch1_iod_mux  
R/W  
2h  
Input Clock selection for IOD.  
0h = PSA  
1h = PSB  
3h = REF  
13-0  
ch1_iod_div  
R/WEX  
3h  
IOD Division Value. 0h = Powers Down, Output=Input/IOD_DIV  
Copyright © 2017–2020, Texas Instruments Incorporated  
63  
 
 
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
8.6.1.30 CH1_CTRL3 Register (Address = 26h) [reset = 9h]  
CH1_CTRL3 is shown in Figure 60 and described in Table 46.  
Return to Summary Table.  
Figure 60. CH1_CTRL3 Register  
15  
14  
6
13  
12  
4
11  
10  
9
8
ch1_sync_delay  
R/W-0h  
ch1_sync_en  
R/W-0h  
RESERVED  
R/W-0h  
ch1_mute_sel  
R/W-0h  
7
5
3
2
1
0
ch1_mute  
R/W-0h  
ch1_cmos_pol  
R/W-0h  
ch1_outbuf_ctrl  
R/W-2h  
ch1_mux  
R/W-1h  
Table 46. CH1_CTRL3 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-11  
ch1_sync_delay  
R/W  
0h  
Sync Delay cycles of IOD Input Clock. One cycle is a period of the  
selected pre-scaler clock.  
10  
ch1_sync_en  
R/W  
0h  
Enables SYNC for the channel.  
0h = Disabled  
1h = Enabled  
9
8
RESERVED  
R/W  
R/W  
0h  
0h  
Reserved.  
ch1_mute_sel  
Mute selection for Output Channel.  
0h = P=L N=H  
1h = P=H N=L  
7
ch1_mute  
R/W  
R/W  
0h  
2h  
To mute the output on this channel.  
0h = Un-mutes the output. 1h = mutes the output.  
4-2  
ch1_outbuf_ctrl  
Select the output buffer format.  
0h = disabled  
(1)  
1h = LVDS  
2h = HCSL  
3h = CML  
4h = LVPECL  
1-0  
ch1_mux  
R/W  
1h  
Output Clock Selection.  
1h = CH1  
2h = CH2  
(1) For DC-connection program chx_lvds_cmtrim_inc = 2 and ch[4:1]_1p8vdet in Table 67 and Table 66 accordingly.  
64  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
8.6.1.31 CH1_CTRL4 Register (Address = 27h) [reset = 679h]  
CH1_CTRL4 is shown in Figure 61 and described in Table 47.  
Return to Summary Table.  
Figure 61. CH1_CTRL4 Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-3h  
RESERVED  
R/W-0h  
7
6
5
4
3
2
1
0
RESERVED  
RESERVED  
R/W-3h  
RESERVED  
RESERVED  
RESERVED  
ch1_glitchless_  
en  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-1h  
Table 47. CH1_CTRL4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
15-12  
RESERVED  
R/W  
0h  
11-9  
8
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
ch1_glitchless_en  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
3h  
0h  
1h  
3h  
1h  
0h  
0h  
1h  
7-6  
5-4  
3
2
1
0
Enables Glitchless switching for Output Channel.  
0h = Immediate  
1h = Glitchless  
8.6.1.32 CH1_CTRL5 Register (Address = 28h) [reset = 8h]  
CH1_CTRL5 is shown in Figure 62 and described in Table 48.  
Return to Summary Table.  
Figure 62. CH1_CTRL5 Register  
15  
7
14  
6
13  
5
12  
4
11  
10  
9
8
RESERVED  
R/W-0h  
3
2
1
0
RESERVED  
R/W-0h  
ch1_1p8vdet  
R/W-1h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
Table 48. CH1_CTRL5 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-4  
3
RESERVED  
ch1_1p8vdet  
R/W  
0h  
RESERVED.  
R/W  
R/W  
1h  
0h  
Specify supply on the channel.  
0h = 2.5 V or 3.3 V  
1h = 1.8 V  
2-0  
RESERVED  
RESERVED  
Copyright © 2017–2020, Texas Instruments Incorporated  
65  
 
 
 
 
 
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
8.6.1.33 CH2_CTRL0 Register (Address = 29h) [reset = 8000h]  
CH2_CTRL0 is shown in Figure 63 and described in Table 49.  
Return to Summary Table.  
Figure 63. CH2_CTRL0 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/WEX-8000h  
Table 49. CH2_CTRL0 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/WEX  
8000h  
RESERVED  
66  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
8.6.1.34 CH2_CTRL1 Register (Address = 2Ah) [reset = 0h]  
CH2_CTRL1 is shown in Figure 64 and described in Table 50.  
Return to Summary Table.  
Figure 64. CH2_CTRL1 Register  
15  
7
14  
6
13  
5
12  
11  
3
10  
2
9
1
8
RESERVED  
R/W-0h  
RESERVED  
R/WEX-0h  
4
0
RESERVED  
R/WEX-0h  
Table 50. CH2_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
RESERVED.  
RESERVED.  
15-9  
8-0  
RESERVED  
RESERVED  
R/W  
0h  
R/WEX  
0h  
8.6.1.35 CH2_CTRL2 Register (Address = 2Bh) [reset = 0h]  
CH2_CTRL2 is shown in Figure 65 and described in Table 51.  
Return to Summary Table.  
Figure 65. CH2_CTRL2 Register  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
8
0
ch2_iod_mux  
R/W-0h  
ch2_iod_div  
R/WEX-0h  
ch2_iod_div  
R/WEX-0h  
Table 51. CH2_CTRL2 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-14  
ch2_iod_mux  
R/W  
0h  
Input Clock selection for IOD.  
0h = PSA  
1h = PSB  
3h = REF  
13-0  
ch2_iod_div  
R/WEX  
0h  
IOD Division Value. 0h = Powers Down, Output = Input/IOD_DIV  
Copyright © 2017–2020, Texas Instruments Incorporated  
67  
 
 
 
 
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
8.6.1.36 CH2_CTRL3 Register (Address = 2Ch) [reset = 8h]  
CH2_CTRL3 is shown in Figure 66 and described in Table 52.  
Return to Summary Table.  
Figure 66. CH2_CTRL3 Register  
15  
14  
6
13  
12  
4
11  
10  
9
8
ch2_sync_delay  
R/W-0h  
ch2_sync_en  
R/W-0h  
RESERVED  
R/W-0h  
ch2_mute_sel  
R/W-0h  
7
5
3
2
1
0
ch2_mute  
R/W-0h  
ch2_cmos_pol  
R/W-0h  
ch2_outbuf_ctrl  
R/W-2h  
ch2_mux  
R/W-0h  
Table 52. CH2_CTRL3 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-11  
ch2_sync_delay  
R/W  
0h  
Sync Delay cycles of IOD Input Clock. One cycle is a period of the  
selected pre-scaler clock.  
10  
ch2_sync_en  
R/W  
0h  
Enables SYNC for the channel.  
0h = Disabled  
1h = Enabled  
9
8
RESERVED  
R/W  
R/W  
0h  
0h  
RESERVED.  
ch2_mute_sel  
Mute selection for Output Channel.  
0h = P=L N=H  
1h = P=H N=L  
7
ch2_mute  
R/W  
R/W  
0h  
0h  
To mute the output on this channel.  
0h = Un-mutes the output. 1h = mutes the output.  
6-5  
ch2_cmos_pol  
programmability of output CMOS buffer polarity.  
0h = P+ N+  
1h = P+ N–  
2h = P– N+  
3h = P– N–  
4-2  
ch2_outbuf_ctrl  
R/W  
2h  
Select the output buffer format.  
0h = disabled  
1h = LVDS(1)  
2h = HCSL  
3h = CML  
4h = LVPECL  
5h = CMOSPN  
6h = CMOSP  
7h = CMOSN  
1-0  
ch2_mux  
R/W  
0h  
Output Clock Selection.  
0h = CH1  
1h = CH2  
2h = CH3  
(1) For DC-connection program chx_lvds_cmtrim_inc = 2 and ch[4:1]_1p8vdet in Table 67 and Table 66 accordingly.  
68  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
8.6.1.37 CH2_CTRL4 Register (Address = 2Dh) [reset = 71h]  
CH2_CTRL4 is shown in Figure 67 and described in Table 53.  
Return to Summary Table.  
Figure 67. CH2_CTRL4 Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
7
6
5
4
3
2
1
0
RESERVED  
RESERVED  
R/W-3h  
RESERVED  
RESERVED  
RESERVED  
ch2_glitchless_  
en  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-1h  
Table 53. CH2_CTRL4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
15-12  
RESERVED  
R/W  
0h  
11-8  
7-6  
5-4  
3-1  
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
ch2_glitchless_en  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
1h  
3h  
0h  
1h  
Enables Glitchless switching for Output Channel.  
0h = Immediate  
1h = Glitchless  
8.6.1.38 CH2_CTRL5 Register (Address = 2Eh) [reset = 8h]  
CH2_CTRL5 is shown in Figure 68 and described in Table 54.  
Return to Summary Table.  
Figure 68. CH2_CTRL5 Register  
15  
7
14  
6
13  
5
12  
4
11  
10  
9
8
RESERVED  
R/W-0h  
3
2
1
0
RESERVED  
R/W-0h  
ch2_1p8vdet  
R/W-1h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
Table 54. CH2_CTRL5 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-4  
3
RESERVED  
ch2_1p8vdet  
R/W  
0h  
RESERVED.  
R/W  
R/W  
1h  
0h  
Specify supply on the channel.  
0h = 2.5 V or 3.3 V  
1h = 1.8 V  
2-0  
RESERVED  
RESERVED  
Copyright © 2017–2020, Texas Instruments Incorporated  
69  
 
 
 
 
 
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
8.6.1.39 CH3_CTRL0 Register (Address = 2Fh) [reset = 8000h]  
CH3_CTRL0 is shown in Figure 69 and described in Table 55.  
Return to Summary Table.  
Figure 69. CH3_CTRL0 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/WEX-8000h  
Table 55. CH3_CTRL0 Register Field Descriptions  
BIT  
15-0  
FIELD  
RESERVED  
TYPE  
RESET  
DESCRIPTION  
R/WEX  
8000h  
RESERVED  
70  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
8.6.1.40 CH3_CTRL1 Register (Address = 30h) [reset = 0h]  
CH3_CTRL1 is shown in Figure 70 and described in Table 56.  
Return to Summary Table.  
Figure 70. CH3_CTRL1 Register  
15  
7
14  
6
13  
5
12  
11  
3
10  
2
9
1
8
RESERVED  
R/W-0h  
RESERVED  
R/WEX-0h  
4
0
RESERVED  
R/WEX-0h  
Table 56. CH3_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
RESERVED.  
RESERVED  
15-9  
8-0  
RESERVED  
RESERVED  
R/W  
0h  
R/WEX  
0h  
8.6.1.41 CH3_CTRL2 Register (Address = 31h) [reset = 0h]  
CH3_CTRL2 is shown in Figure 71 and described in Table 57.  
Return to Summary Table.  
Figure 71. CH3_CTRL2 Register  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
8
0
ch3_iod_mux  
R/W-0h  
ch3_iod_div  
R/WEX-0h  
ch3_iod_div  
R/WEX-0h  
Table 57. CH3_CTRL2 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-14  
ch3_iod_mux  
R/W  
0h  
Input Clock selection for IOD.  
0h = PSA  
1h = PSB  
3h = REF  
13-0  
ch3_iod_div  
R/WEX  
0h  
IOD Division Value. 0h = Powers Down, Output=Input/IOD_DIV  
Copyright © 2017–2020, Texas Instruments Incorporated  
71  
 
 
 
 
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
8.6.1.42 CH3_CTRL3 Register (Address = 32h) [reset = 4h]  
CH3_CTRL3 is shown in Figure 72 and described in Table 58.  
Return to Summary Table.  
Figure 72. CH3_CTRL3 Register  
15  
14  
6
13  
12  
4
11  
10  
9
8
ch3_sync_delay  
R/W-0h  
ch3_sync_en  
R/W-0h  
RESERVED  
R/W-0h  
ch3_mute_sel  
R/W-0h  
7
5
3
2
1
0
ch3_mute  
R/W-0h  
ch3_cmos_pol  
R/W-0h  
ch3_outbuf_ctrl  
R/W-1h  
ch3_mux  
R/W-0h  
Table 58. CH3_CTRL3 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-11  
ch3_sync_delay  
R/W  
0h  
Sync Delay cycles of IOD Input Clock. One cycle is a period of the  
selected pre-scaler clock.  
10  
ch3_sync_en  
R/W  
0h  
Enables SYNC for the channel.  
0h = Disabled  
1h = Enabled  
9
8
RESERVED  
R/W  
R/W  
0h  
0h  
RESERVED.  
ch3_mute_sel  
Mute selection for Output Channel.  
0h = P=L N=H  
1h = P=H N=L  
7
ch3_mute  
R/W  
R/W  
0h  
0h  
To mute the output on this channel.  
0h = Un-mutes the output. 1h = mutes the output.  
6-5  
ch3_cmos_pol  
programmability of output CMOS buffer polarity.  
0h = P+ N+  
1h = P+ N–  
2h = P– N+  
3h = P– N–  
4-2  
ch3_outbuf_ctrl  
R/W  
1h  
Select the output buffer format.  
0h = disabled  
1h = LVDS(1)  
2h = HCSL  
3h = CML  
4h = LVPECL  
5h = CMOSPN  
6h = CMOSP  
7h = CMOSN  
1-0  
ch3_mux  
R/W  
0h  
Output Clock Selection.  
0h = CH2  
1h = CH3  
2h = CH4  
(1) For DC-connection program chx_lvds_cmtrim_inc = 2 and ch[4:1]_1p8vdet in Table 67 and Table 66 accordingly.  
72  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
8.6.1.43 CH3_CTRL4 Register (Address = 33h) [reset = 671h]  
CH3_CTRL4 is shown in Figure 73 and described in Table 59.  
Return to Summary Table.  
Figure 73. CH3_CTRL4 Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-3h  
RESERVED  
R/W-0h  
7
6
5
4
3
2
1
0
RESERVED  
RESERVED  
R/W-3h  
RESERVED  
RESERVED  
RESERVED  
ch3_glitchless_  
en  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-1h  
Table 59. CH3_CTRL4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
15-12  
RESERVED  
R/W  
0h  
11-9  
8
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
ch3_glitchless_en  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
3h  
0h  
1h  
3h  
0h  
1h  
7-6  
5-4  
3-1  
0
Enables Glitchless switching for Output Channel.  
0h = Immediate  
1h = Glitchless  
8.6.1.44 CH3_CTRL5 Register (Address = 34h) [reset = 8h]  
CH3_CTRL5 is shown in Figure 74 and described in Table 60.  
Return to Summary Table.  
Figure 74. CH3_CTRL5 Register  
15  
7
14  
6
13  
5
12  
4
11  
10  
9
8
RESERVED  
R/W-0h  
3
2
1
0
RESERVED  
R/W-0h  
ch3_1p8vdet  
R/W-1h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
Table 60. CH3_CTRL5 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-4  
3
RESERVED  
ch3_1p8vdet  
R/W  
0h  
RESERVED.  
R/W  
R/W  
1h  
0h  
Specify supply on the channel.  
0h = 2.5 V or 3.3 V  
1h = 1.8 V  
2-0  
RESERVED  
RESERVED  
Copyright © 2017–2020, Texas Instruments Incorporated  
73  
 
 
 
 
 
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
8.6.1.45 CH4_CTRL0 Register (Address = 35h) [reset = 8000h]  
CH4_CTRL0 is shown in Figure 75 and described in Table 61.  
Return to Summary Table.  
Figure 75. CH4_CTRL0 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/WEX-8000h  
Table 61. CH4_CTRL0 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/WEX  
8000h  
RESERVED  
74  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
8.6.1.46 CH4_CTRL1 Register (Address = 36h) [reset = 0h]  
CH4_CTRL1 is shown in and described in .  
Return to Summary Table.  
Figure 76. CH4_CTRL1 Register  
15  
7
14  
6
13  
5
12  
11  
3
10  
2
9
1
8
RESERVED  
R/W-0h  
RESERVED  
R/WEX-0h  
4
0
RESERVED  
R/WEX-0h  
Table 62. CH4_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
RESERVED.  
RESERVED  
15-9  
8-0  
RESERVED  
RESERVED  
R/W  
0h  
R/WEX  
0h  
8.6.1.47 CH4_CTRL2 Register (Address = 37h) [reset = 0h]  
CH4_CTRL2 is shown in Figure 77 and described in Table 63.  
Return to Summary Table.  
Figure 77. CH4_CTRL2 Register  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
8
0
ch4_iod_mux  
R/W-0h  
ch4_iod_div  
R/WEX-0h  
ch4_iod_div  
R/WEX-0h  
Table 63. CH4_CTRL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-14  
ch4_iod_mux  
R/W  
0h  
Input Clock selection for IOD.  
0h = PSA  
1h = PSB  
3h = REF  
13-0  
ch4_iod_div  
R/WEX  
0h  
IOD Division Value. 0h = Powers Down, Output=Input/IOD_DIV.  
Copyright © 2017–2020, Texas Instruments Incorporated  
75  
 
 
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
8.6.1.48 CH4_CTRL3 Register (Address = 38h) [reset = 4h]  
CH4_CTRL3 is shown in Figure 78 and described in Table 64.  
Return to Summary Table.  
Figure 78. CH4_CTRL3 Register  
15  
14  
6
13  
12  
4
11  
10  
9
8
ch4_sync_delay  
R/W-0h  
ch4_sync_en  
R/W-0h  
RESERVED  
R/W-0h  
ch4_mute_sel  
R/W-0h  
7
5
3
2
1
0
ch4_mute  
R/W-0h  
ch4_cmos_pol  
R/W-0h  
ch4_outbuf_ctrl  
R/W-1h  
ch4_mux  
R/W-0h  
Table 64. CH4_CTRL3 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-11  
ch4_sync_delay  
R/W  
0h  
Sync Delay cycles of IOD Input Clock. One cycle is a period of the  
selected pre-scaler clock.  
10  
ch4_sync_en  
R/W  
0h  
Enables SYNC for the channel.  
0h = Disabled  
1h = Enabled  
9
8
RESERVED  
R/W  
R/W  
0h  
0h  
RESERVED.  
ch4_mute_sel  
Mute selection for Output Channel.  
0h = P=L N=H  
1h = P=H N=L  
7
ch4_mute  
R/W  
R/W  
0h  
1h  
To mute the output on this channel.  
0h = Un-mutes the output. 1h = mutes the output.  
4-2  
ch4_outbuf_ctrl  
Select the output buffer format.  
0h = disabled  
1h = LVDS(1)  
2h = HCSL  
3h = CML  
4h = LVPECL  
1-0  
ch4_mux  
R/W  
0h  
Output Clock Selection. 0h = Previous Channel, 1h = Current  
Channel, 2h = Next Channel, 3h = AGND  
0h = CH3  
1h = CH4  
(1) For DC-connection program chx_lvds_cmtrim_inc = 2 and ch[4:1]_1p8vdet in Table 67 and Table 66 accordingly.  
76  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
8.6.1.49 CH4_CTRL4 Register (Address = 39h) [reset = 71h]  
CH4_CTRL4 is shown in Figure 79 and described in Table 65.  
Return to Summary Table.  
Figure 79. CH4_CTRL4 Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
7
6
5
4
3
2
1
0
RESERVED  
RESERVED  
R/W-3h  
RESERVED  
RESERVED  
RESERVED  
ch4_glitchless_  
en  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-1h  
Table 65. CH4_CTRL4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
15-12  
RESERVED  
R/W  
0h  
11-8  
7-6  
5-4  
3-1  
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
ch4_glitchless_en  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
1h  
3h  
0h  
1h  
Enables Glitchless switching for Output Channel.  
0h = Immediate  
1h = Glitchless  
8.6.1.50 CH4_CTRL5 Register (Address = 3Ah) [reset = 8h]  
CH4_CTRL5 is shown in Figure 80 and described in Table 66.  
Return to Summary Table.  
Figure 80. CH4_CTRL5 Register  
15  
7
14  
6
13  
5
12  
4
11  
10  
9
8
RESERVED  
R/W-0h  
3
2
1
0
RESERVED  
R/W-0h  
ch4_1p8vdet  
R/W-1h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
Table 66. CH4_CTRL5 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-4  
3
RESERVED  
ch4_1p8vdet  
R/W  
0h  
RESERVED.  
R/W  
R/W  
1h  
0h  
Specify supply on the channel.  
0h = 2.5 V or 3.3 V  
1h = 1.8 V  
2-0  
RESERVED  
RESERVED  
Copyright © 2017–2020, Texas Instruments Incorporated  
77  
 
 
 
 
 
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
8.6.1.51 CHX_CTRL0 Register (Address = 3Bh) [reset = 61h]  
CHX_CTRL0 is shown in Figure 81 and described in Table 67.  
Return to Summary Table.  
Figure 81. CHX_CTRL0 Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
RESERVED  
chx_rst  
chx_lvds_cmtrim_inc  
chx_lvds_cmtrim_dec  
chx_diffbuf_ibia  
s_trim  
R/W-0h  
7
R/W-0h  
R/W-0h  
5
R/W-0h  
R/W-0h  
R/W-3h  
6
4
3
2
1
0
chx_diffbuf_ibias_trim  
chx_lvcmos_dr  
v
RESERVED  
ch0_lvcmos_drv  
R/W-0h  
RESERVED  
R/W-3h  
R/W-1h  
R/W-0h  
R/W-1h  
Table 67. CHX_CTRL0 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-14  
RESERVED  
R/W  
0h  
RESERVED  
13  
chx_rst  
R/W  
R/W  
0h  
0h  
All Channel RST during power up and later. 1h = RST, 0h = Normal.  
12-11  
chx_lvds_cmtrim_inc  
Increments differential output buffer output common-mode  
programmability.  
Use  
either  
CHX_LVDS_CMTRIM_INC  
or  
CHX_LVDS_CMTRIM_DEC.  
10-9  
8-5  
chx_lvds_cmtrim_dec  
chx_diffbuf_ibias_trim  
R/W  
R/W  
0h  
3h  
Decrements differential output buffer output common-mode  
programmability. Increment  
Use  
either  
CHX_LVDS_CMTRIM_INC  
or  
CHX_LVDS_CMTRIM_DEC.  
Differential output buffer tail current programmability.  
Ch = 350 µA  
8h = 400 µA  
4h = 450 µA  
0h = 500 µA  
0h = 500 µA  
1h = 550 µA  
2h = 600 µA  
3h = 650 µA  
4
chx_lvcmos_drv  
R/W  
1h  
Adjust CH1 to CH4 LVCMOS driver strength.  
0h = Normal  
1h = Fast  
3
RESERVED  
R/W  
R/W  
1h  
0h  
RESERVED  
2-1  
ch0_lvcmos_drv  
Enable Y0 channel and adjust LVCMOS driver strength.  
0h = Off  
1h = Normal  
3h = Fast  
0
RESERVED  
R/W  
1h  
RESERVED  
78  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
8.6.1.52 CHX_CTRL1 Register (Address = 3Ch) [reset = 18h]  
CHX_CTRL1 is shown in Figure 82 and described in Table 68.  
Return to Summary Table.  
Figure 82. CHX_CTRL1 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/W-18h  
Table 68. CHX_CTRL1 Register Field Descriptions  
BIT  
15-0  
FIELD  
RESERVED  
TYPE  
RESET  
DESCRIPTION  
R/W  
18h  
RESERVED  
8.6.1.53 CHX_CTRL2 Register (Address = 3Dh) [reset = 1500h]  
CHX_CTRL2 is shown in Figure 83 and described in Table 69.  
Return to Summary Table.  
Figure 83. CHX_CTRL2 Register  
15  
14  
13  
12  
11  
3
10  
9
1
8
0
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-15h  
7
6
5
4
2
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
Table 69. CHX_CTRL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
RESERVED  
RESERVED  
RESERVED  
15-13  
RESERVED  
RESERVED  
RESERVED  
R/W  
0h  
12-8  
7-0  
R/W  
R/W  
15h  
0h  
Copyright © 2017–2020, Texas Instruments Incorporated  
79  
 
 
 
 
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
8.6.1.54 CHX_CTRL3 Register (Address = 3Eh) [reset = 4210h]  
CHX_CTRL3 is shown in and described in Table 70.  
Return to Summary Table.  
Figure 84. CHX_CTRL3 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/W-4210h  
Table 70. CHX_CTRL3 Register Field Descriptions  
BIT  
15-0  
FIELD  
RESERVED  
TYPE  
RESET  
DESCRIPTION  
R/W  
4210h  
RESERVED  
8.6.1.55 CHX_CTRL4 Register (Address = 3Fh) [reset = 210h]  
CHX_CTRL4 is shown in Figure 85 and described in Table 71.  
Return to Summary Table.  
Figure 85. CHX_CTRL4 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/W-210h  
Table 71. CHX_CTRL4 Register Field Descriptions  
BIT  
15-0  
FIELD  
RESERVED  
TYPE  
RESET  
DESCRIPTION  
R/W  
210h  
RESERVED  
8.6.1.56 DBG0 Register (Address = 42h) [reset = 200h]  
DBG0 is shown in and described in Table 72.  
Return to Summary Table.  
Figure 86. DBG0 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/W-200h  
Table 72. DBG0 Register Field Descriptions  
BIT  
15-0  
FIELD  
RESERVED  
TYPE  
RESET  
DESCRIPTION  
R/W  
200h  
RESERVED  
80  
版权 © 2017–2020, Texas Instruments Incorporated  
 
 
 
 
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
8.6.2 EEPROM Map  
The EEPROM is split into a common base page which holds common settings. Then there are two pages for customized settings. Page 0 is selected  
using EEPROMSEL = Low. Page 1 is selected using EEPROMSEL = High.  
The CRC value is stored at the end of page 1 in word 0x3F.  
73. EEPROM, Base  
WORD  
NO.  
SECTION  
Base  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
shift_left[1 shift_left[0 gpio3_gf_ gpio2_gf_  
en en  
pdn_pll_v pdn_pll_v pdn_pll_v pdn_pll_c pdn_pll_lo pdn_pll_p pdn_pll_p regcommi resetn_so  
cobuf2 co cobuf ckdet fd sfb t_page ft  
0h  
cp_dly[0] cal_mute  
acal_en  
]
]
p
ac_cmp_ pll_lock_d pll_lock_d pll_lock_d pll_lock_d pll_lock_d ac_init_dl ac_init_dl ac_init_dl ac_init_dl ac_init_dl ac_init_dl  
1h  
2h  
Base  
cp_dly[4] cp_dly[3] cp_dly[2] cp_dly[1]  
dly[0]  
ly[4]  
ly[3]  
ly[2]  
ly[1]  
ly[0]  
y[5]  
y[4]  
y[3]  
y[2]  
y[1]  
y[0]  
fc_setl_dl fc_setl_dl ac_cmp_ ac_cmp_ ac_cmp_ ac_cmp_ ac_cmp_  
Base  
0
0
0
0
0
0
err_cnt[2] err_cnt[1] err_cnt[0]  
y[1]  
0
y[0]  
0
dly[5]  
dly[4]  
dly[3]  
dly[2]  
dly[1]  
pll_lockde pll_lockde pll_lockde  
t_window[ t_window[ t_window[  
pll_pfd_dl pll_pfd_dl  
y_ctrl[1]  
pll_lockde pll_lockde  
t_wait[1]  
3h  
4h  
5h  
Base  
Base  
Base  
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
y_ctrl[0]  
t_wait[0]  
2]  
1]  
0]  
0
0
0
1
0
1
0
0
0
chx_diffbu chx_diffbu  
f_ibias_tri f_ibias_tri  
m[1]  
chx_lvcm chx_en_c  
os_drv  
0
1
0
1
0
0
0
0
mosslow  
m[0]  
chx_lvds_ chx_lvds_ chx_lvds_ chx_lvds_ chx_diffbu chx_diffbu  
cmtrim_in cmtrim_in cmtrim_d cmtrim_d f_ibias_tri f_ibias_tri  
6h  
Base  
0
0
0
0
0
0
0
c[1]  
c[0]  
ec[1]  
ec[0]  
m[3]  
m[2]  
7h  
8h  
9h  
Ah  
Bh  
Base  
Base  
Base  
Base  
Base  
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
0
0
0
0
版权 © 2017–2020, Texas Instruments Incorporated  
81  
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
74. EEPROM, Page 0  
WORD  
NO.  
SECTION  
Page 0  
Page 0  
Page 0  
Page 0  
Page 0  
Page 0  
Page 0  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
gpio4_inp gpio4_inp gpio4_inp gpio4_inp gpio1_inp gpio1_inp gpio1_inp gpio1_inp  
ut_sel[3] ut_sel[2] ut_sel[1] ut_sel[0] ut_sel[3] ut_sel[2] ut_sel[1] ut_sel[0]  
gpio0_inp gpio4_dir gpio1_dir gpio0_dir zdm_cloc zdm_mod  
ut_sel  
Ch  
i2c_a0  
mode  
_sel  
_sel  
_sel  
ksel  
e
gpio4_out gpio4_out gpio4_out gpio4_out gpio1_out gpio1_out gpio1_out gpio1_out  
put_sel[3] put_sel[2] put_sel[1] put_sel[0] put_sel[3] put_sel[2] put_sel[1] put_sel[0]  
ref_mux_  
src  
Dh  
Eh  
0
1
1
1
0
1
0
ref_mux  
gpio0_out gpio0_out gpio0_out gpio0_out  
put_sel[3] put_sel[2] put_sel[1] put_sel[0]  
1
pdn_ch4  
1
pdn_ch3  
0
1
0
pdn_ch2  
1
pdn_ch1  
0
rsrvd_1[1] rsrvd_1[0]  
ip_xo_clo ip_xo_clo ip_xo_clo  
ad[2] ad[1] ad[0]  
ip_xo_gm ip_xo_gm ip_xo_gm ip_xo_gm xin_inbuf_ xin_inbuf_  
bypass_c bypass_c pdn_pll_p pdn_pll_p  
Fh  
zdm_auto  
[3]  
[2]  
[1]  
[0]  
ctrl[1]  
ctrl[0]  
al  
onfig  
sb  
sa  
ip_byp_e ip_byp_e ip_byp_e ip_byp_e ip_byp_m  
n_ch3 n_ch2 n_ch1 n_y0 ux  
ref_inbuf_ ip_xo_clo ip_xo_clo  
10h  
11h  
12h  
ip_rdiv[7] ip_rdiv[6] ip_rdiv[5] ip_rdiv[4] ip_rdiv[3] ip_rdiv[2] ip_rdiv[1] ip_rdiv[0]  
ctrl  
ad[4]  
0
ad[3]  
pll_ndiv[1 pll_ndiv[1 pll_ndiv[1 pll_ndiv[1  
3] 2] 1] 0]  
ip_byp_e  
n_ch4  
pll_ndiv[9] pll_ndiv[8] pll_ndiv[7] pll_ndiv[6] pll_ndiv[5] pll_ndiv[4] pll_ndiv[3] pll_ndiv[2] pll_ndiv[1] pll_ndiv[0]  
pll_cp_up[ pll_cp_up[ pll_cp_up[ pll_cp_up[ pll_cp_dn[ pll_cp_dn[ pll_cp_dn[ pll_cp_dn[ pll_cp_dn[ pll_cp_dn[  
3] 2] 1] 0] 5] 4] 3] 2] 1] 0]  
pll_psb[1] pll_psb[0] pll_psa[1] pll_psa[0] pll_psfb[1] pll_psfb[0]  
pll_lf_zca pll_lf_zca pll_lf_zca pll_lf_zca pll_lf_zca pll_lf_res[ pll_lf_res[ pll_lf_res[ pll_lf_res[ pll_lf_pca pll_lf_pca pll_lf_pca pll_lf_pca pll_lf_pca pll_cp_up[ pll_cp_up[  
13h  
14h  
15h  
Page 0  
Page 0  
Page 0  
p[4]  
p[3]  
p[2]  
p[1]  
p[0]  
3]  
2]  
1]  
0]  
p[4]  
p[3]  
p[2]  
p[1]  
p[0]  
5]  
4]  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ch1_iod_ ch1_iod_ ch1_iod_ ch1_iod_ ch1_iod_ ch1_iod_ ch1_iod_  
0
0
0
0
0
0
0
0
0
div[6]  
div[5]  
div[4]  
div[3]  
div[2]  
div[1]  
div[0]  
ch1_outb ch1_outb ch1_outb ch1_mux[ ch1_mux[ ch1_iod_ ch1_iod_ ch1_iod_ ch1_iod_ ch1_iod_ ch1_iod_ ch1_iod_ ch1_iod_ ch1_iod_  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
Page 0  
Page 0  
Page 0  
Page 0  
Page 0  
Page 0  
Page 0  
Page 0  
Page 0  
Page 0  
Page 0  
Page 0  
0
0
uf_ctrl[2]  
uf_ctrl[1]  
uf_ctrl[0]  
1]  
0]  
mux[1]  
mux[0]  
div[13]  
div[12]  
div[11]  
div[10]  
div[9]  
div[8]  
div[7]  
ch1_glitch ch1_sync ch1_sync ch1_sync ch1_sync ch1_sync ch1_sync ch1_mute  
0
0
0
0
1
0
1
0
0
ch1_mute  
less_en  
0
_delay[4] _delay[3] _delay[2] _delay[1] _delay[0]  
_en  
0
_sel  
ch1_1p8v  
det  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ch2_iod_ ch2_iod_ ch2_iod_ ch2_iod_ ch2_iod_  
div[4] div[3] div[2] div[1] div[0]  
0
0
1
ch2_outb ch2_outb ch2_outb ch2_mux[ ch2_mux[ ch2_iod_ ch2_iod_ ch2_iod_ ch2_iod_ ch2_iod_ ch2_iod_ ch2_iod_ ch2_iod_ ch2_iod_ ch2_iod_ ch2_iod_  
uf_ctrl[2]  
uf_ctrl[1]  
uf_ctrl[0]  
1]  
0]  
mux[1]  
mux[0]  
div[13]  
div[12]  
div[11]  
div[10]  
div[9]  
div[8]  
div[7]  
div[6]  
div[5]  
ch2_glitch ch2_sync ch2_sync ch2_sync ch2_sync ch2_sync ch2_sync ch2_mute  
ch2_cmos ch2_cmos  
1
0
1
0
0
ch2_mute  
less_en  
0
_delay[4] _delay[3] _delay[2] _delay[1] _delay[0]  
_en  
0
_sel  
_pol[1]  
0
_pol[0]  
0
ch2_1p8v  
det  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ch3_iod_ ch3_iod_ ch3_iod_  
div[2] div[1] div[0]  
0
0
1
0
0
ch3_outb ch3_mux[ ch3_mux[ ch3_iod_ ch3_iod_ ch3_iod_ ch3_iod_ ch3_iod_ ch3_iod_ ch3_iod_ ch3_iod_ ch3_iod_ ch3_iod_ ch3_iod_ ch3_iod_ ch3_iod_  
uf_ctrl[0]  
1]  
0]  
mux[1]  
mux[0]  
div[13]  
div[12]  
div[11]  
div[10]  
div[9]  
div[8]  
div[7]  
div[6]  
div[5]  
div[4]  
div[3]  
ch3_glitch ch3_sync ch3_sync ch3_sync ch3_sync ch3_sync ch3_sync ch3_mute  
ch3_cmos ch3_cmos ch3_outb ch3_outb  
0
0
0
ch3_mute  
less_en  
0
_delay[4] _delay[3] _delay[2] _delay[1] _delay[0]  
_en  
0
_sel  
_pol[1]  
0
_pol[0]  
0
uf_ctrl[2]  
1
uf_ctrl[1]  
0
ch3_1p8v  
det  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
ch4_iod_  
div[0]  
0
0
1
0
0
0
0
82  
版权 © 2017–2020, Texas Instruments Incorporated  
CDCI6214  
www.ti.com.cn  
WORD  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
74. EEPROM, Page 0 (接下页)  
SECTION  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
NO.  
ch4_mux[ ch4_iod_ ch4_iod_ ch4_iod_ ch4_iod_ ch4_iod_ ch4_iod_ ch4_iod_ ch4_iod_ ch4_iod_ ch4_iod_ ch4_iod_ ch4_iod_ ch4_iod_ ch4_iod_ ch4_iod_  
22h  
Page 0  
Page 0  
0]  
0
mux[1]  
mux[0]  
div[13]  
div[12]  
div[11]  
div[10]  
div[9]  
div[8]  
div[7]  
div[6]  
0
div[5]  
0
div[4]  
div[3]  
div[2]  
div[1]  
ch4_glitch ch4_sync ch4_sync ch4_sync ch4_sync ch4_sync ch4_sync ch4_mute  
less_en  
ch4_outb ch4_outb ch4_outb ch4_mux[  
uf_ctrl[2]  
23h  
ch4_mute  
_delay[4] _delay[3] _delay[2] _delay[1] _delay[0]  
ch0_lvcm ch0_lvcm  
_en  
1
_sel  
uf_ctrl[1]  
uf_ctrl[0]  
1]  
0
ch4_1p8v  
det  
24h  
25h  
Page 0  
Page 0  
0
0
0
0
1
1
pll_en_cp  
1
0
0
0
0
0
1
0
0
0
1
0
os_drv[1] os_drv[0]  
0
0
0
0
0
0
0
0
版权 © 2017–2020, Texas Instruments Incorporated  
83  
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
75. EEPROM, Page 1  
WORD  
NO.  
SECTION  
Page 1  
Page 1  
Page 1  
Page 1  
Page 1  
Page 1  
Page 1  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
gpio4_inp gpio4_inp gpio4_inp gpio4_inp gpio1_inp gpio1_inp gpio1_inp gpio1_inp  
ut_sel[3] ut_sel[2] ut_sel[1] ut_sel[0] ut_sel[3] ut_sel[2] ut_sel[1] ut_sel[0]  
gpio0_inp gpio4_dir gpio1_dir gpio0_dir zdm_cloc zdm_mod  
ut_sel  
26h  
i2c_a0  
mode  
_sel  
_sel  
_sel  
ksel  
e
gpio4_out gpio4_out gpio4_out gpio4_out gpio1_out gpio1_out gpio1_out gpio1_out  
put_sel[3] put_sel[2] put_sel[1] put_sel[0] put_sel[3] put_sel[2] put_sel[1] put_sel[0]  
ref_mux_  
src  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
0
1
1
1
0
1
0
ref_mux  
gpio0_out gpio0_out gpio0_out gpio0_out  
put_sel[3] put_sel[2] put_sel[1] put_sel[0]  
1
pdn_ch4  
1
pdn_ch3  
0
1
0
pdn_ch2  
1
pdn_ch1  
0
rsrvd_1[1] rsrvd_1[0]  
ip_xo_clo ip_xo_clo ip_xo_clo  
ad[2] ad[1] ad[0]  
ip_xo_gm ip_xo_gm ip_xo_gm ip_xo_gm xin_inbuf_ xin_inbuf_  
bypass_c bypass_c pdn_pll_p pdn_pll_p  
zdm_auto  
[3]  
[2]  
[1]  
[0]  
ctrl[1]  
ctrl[0]  
al  
onfig  
sb  
sa  
ip_byp_e ip_byp_e ip_byp_e ip_byp_e ip_byp_m  
n_ch3 n_ch2 n_ch1 n_y0 ux  
ref_inbuf_ ip_xo_clo ip_xo_clo  
ip_rdiv[7] ip_rdiv[6] ip_rdiv[5] ip_rdiv[4] ip_rdiv[3] ip_rdiv[2] ip_rdiv[1] ip_rdiv[0]  
ctrl  
ad[4]  
0
ad[3]  
pll_ndiv[1 pll_ndiv[1 pll_ndiv[1 pll_ndiv[1  
3] 2] 1] 0]  
ip_byp_e  
n_ch4  
pll_ndiv[9] pll_ndiv[8] pll_ndiv[7] pll_ndiv[6] pll_ndiv[5] pll_ndiv[4] pll_ndiv[3] pll_ndiv[2] pll_ndiv[1] pll_ndiv[0]  
pll_cp_up[ pll_cp_up[ pll_cp_up[ pll_cp_up[ pll_cp_dn[ pll_cp_dn[ pll_cp_dn[ pll_cp_dn[ pll_cp_dn[ pll_cp_dn[  
3] 2] 1] 0] 5] 4] 3] 2] 1] 0]  
pll_psb[1] pll_psb[0] pll_psa[1] pll_psa[0] pll_psfb[1] pll_psfb[0]  
pll_lf_zca pll_lf_zca pll_lf_zca pll_lf_zca pll_lf_zca pll_lf_res[ pll_lf_res[ pll_lf_res[ pll_lf_res[ pll_lf_pca pll_lf_pca pll_lf_pca pll_lf_pca pll_lf_pca pll_cp_up[ pll_cp_up[  
2Dh  
2Eh  
2Fh  
Page 1  
Page 1  
Page 1  
p[4]  
p[3]  
p[2]  
p[1]  
p[0]  
3]  
2]  
1]  
0]  
p[4]  
p[3]  
p[2]  
p[1]  
p[0]  
5]  
4]  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ch1_iod_ ch1_iod_ ch1_iod_ ch1_iod_ ch1_iod_ ch1_iod_ ch1_iod_  
0
0
0
0
0
0
0
0
0
div[6]  
div[5]  
div[4]  
div[3]  
div[2]  
div[1]  
div[0]  
ch1_outb ch1_outb ch1_outb ch1_mux[ ch1_mux[ ch1_iod_ ch1_iod_ ch1_iod_ ch1_iod_ ch1_iod_ ch1_iod_ ch1_iod_ ch1_iod_ ch1_iod_  
30h  
31h  
32h  
33h  
34h  
35h  
36h  
37h  
38h  
39h  
3Ah  
3Bh  
Page 1  
Page 1  
Page 1  
Page 1  
Page 1  
Page 1  
Page 1  
Page 1  
Page 1  
Page 1  
Page 1  
Page 1  
0
0
uf_ctrl[2]  
uf_ctrl[1]  
uf_ctrl[0]  
1]  
0]  
mux[1]  
mux[0]  
div[13]  
div[12]  
div[11]  
div[10]  
div[9]  
div[8]  
div[7]  
ch1_glitch ch1_sync ch1_sync ch1_sync ch1_sync ch1_sync ch1_sync ch1_mute  
0
0
0
0
1
0
1
0
0
ch1_mute  
less_en  
0
_delay[4] _delay[3] _delay[2] _delay[1] _delay[0]  
_en  
0
_sel  
ch1_1p8v  
det  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ch2_iod_ ch2_iod_ ch2_iod_ ch2_iod_ ch2_iod_  
div[4] div[3] div[2] div[1] div[0]  
0
0
1
ch2_outb ch2_outb ch2_outb ch2_mux[ ch2_mux[ ch2_iod_ ch2_iod_ ch2_iod_ ch2_iod_ ch2_iod_ ch2_iod_ ch2_iod_ ch2_iod_ ch2_iod_ ch2_iod_ ch2_iod_  
uf_ctrl[2]  
uf_ctrl[1]  
uf_ctrl[0]  
1]  
0]  
mux[1]  
mux[0]  
div[13]  
div[12]  
div[11]  
div[10]  
div[9]  
div[8]  
div[7]  
div[6]  
div[5]  
ch2_glitch ch2_sync ch2_sync ch2_sync ch2_sync ch2_sync ch2_sync ch2_mute  
ch2_cmos ch2_cmos  
1
0
1
0
0
ch2_mute  
less_en  
0
_delay[4] _delay[3] _delay[2] _delay[1] _delay[0]  
_en  
0
_sel  
_pol[1]  
0
_pol[0]  
0
ch2_1p8v  
det  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ch3_iod_ ch3_iod_ ch3_iod_  
div[2] div[1] div[0]  
0
0
1
0
0
ch3_outb ch3_mux[ ch3_mux[ ch3_iod_ ch3_iod_ ch3_iod_ ch3_iod_ ch3_iod_ ch3_iod_ ch3_iod_ ch3_iod_ ch3_iod_ ch3_iod_ ch3_iod_ ch3_iod_ ch3_iod_  
uf_ctrl[0]  
1]  
0]  
mux[1]  
mux[0]  
div[13]  
div[12]  
div[11]  
div[10]  
div[9]  
div[8]  
div[7]  
div[6]  
div[5]  
div[4]  
div[3]  
ch3_glitch ch3_sync ch3_sync ch3_sync ch3_sync ch3_sync ch3_sync ch3_mute  
ch3_cmos ch3_cmos ch3_outb ch3_outb  
0
0
0
ch3_mute  
less_en  
0
_delay[4] _delay[3] _delay[2] _delay[1] _delay[0]  
_en  
0
_sel  
_pol[1]  
0
_pol[0]  
0
uf_ctrl[2]  
1
uf_ctrl[1]  
1
ch3_1p8v  
det  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
ch4_iod_  
div[0]  
0
0
1
0
0
0
0
84  
版权 © 2017–2020, Texas Instruments Incorporated  
CDCI6214  
www.ti.com.cn  
WORD  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
75. EEPROM, Page 1 (接下页)  
SECTION  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
NO.  
ch4_mux[ ch4_iod_ ch4_iod_ ch4_iod_ ch4_iod_ ch4_iod_ ch4_iod_ ch4_iod_ ch4_iod_ ch4_iod_ ch4_iod_ ch4_iod_ ch4_iod_ ch4_iod_ ch4_iod_ ch4_iod_  
3Ch  
Page 1  
Page 1  
0]  
0
mux[1]  
mux[0]  
div[13]  
div[12]  
div[11]  
div[10]  
div[9]  
div[8]  
div[7]  
div[6]  
0
div[5]  
0
div[4]  
div[3]  
div[2]  
div[1]  
ch4_glitch ch4_sync ch4_sync ch4_sync ch4_sync ch4_sync ch4_sync ch4_mute  
less_en  
ch4_outb ch4_outb ch4_outb ch4_mux[  
uf_ctrl[2]  
3Dh  
ch4_mute  
_delay[4] _delay[3] _delay[2] _delay[1] _delay[0]  
ch0_lvcm ch0_lvcm  
_en  
1
_sel  
uf_ctrl[1]  
uf_ctrl[0]  
1]  
0
ch4_1p8v  
det  
3Eh  
3Fh  
Page 1  
Page 1  
0
1
0
1
1
1
pll_en_cp  
1
1
0
1
0
0
1
0
0
1
1
0
os_drv[1] os_drv[0]  
0
0
1
0
0
1
0
0
版权 © 2017–2020, Texas Instruments Incorporated  
85  
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
An ultra-low power clock generator is ideal to drive clocks in industrial, portable and data center applications. The  
device is flexible in its configuration and be pre-preprogramed with two separate configuration. For example a  
production test and an application configuration, or two different configurations for two flavors of a product. The  
internal EEPROM is protected by a CRC hash which is available as a status bit. The two EEPROM pages are  
selected using a control pin. As each major block of the device is powered by its own supply pin, the device can  
easily be used for signal translation and to accommodate various supply voltages which may be available in a  
system. Up to five different frequencies can be generated from a single device and feed different parts of an  
application. Each of the four differential outputs supports various signal standards. On one hand the general  
purpose pin functionality allows to provide status information to other parts of the system, on the other hand it  
adds modularity and flexibility to an application. Clock outputs can be muted individually or globally, the division  
ratio updated, the output dividers synchronized and a spread spectrum function enabled or disabled. The clock  
generator PLL can also be used in a zero delay mode which will compensate most of the seen phase delay  
between an external reference clock and the output clocks. Together with an external feedback option this allows  
to compensate traces on top of the digital delay steps provided inside the device. All these features make the  
ultra-low power clock generator for design library integration and re-use in modular projects.  
9.2 Typical Applications  
1.8V  
/ 2.5V  
/ 3.3V  
1.8V  
/ 2.5V  
/ 3.3V  
1.8V  
/ 2.5V  
/ 3.3V  
1.8V  
/ 2.5V  
/ 3.3V  
VDDREF VDDVCO  
XOUT/FB_P  
VDDO12 VDDO34  
Y0  
Y1P  
Y1N  
Y2P  
Y2N  
Y3P  
Y3N  
Y4P  
Y4N  
100 nF  
25 MHz  
XIN/FB_N  
100 nF  
100 nF  
100 nF  
MCU_CLK_SYNC  
RESETN/SYNC  
U1  
CDCI6214  
100 nF  
100 nF  
REFSEL  
EEPROMSEL  
100 nF  
VDD_REF  
PAD  
100 nF  
GND  
OE/GPIO4  
SCL/GPIO3  
SDA/GPIO2 STATUS/GPIO1  
MCU_CLK_OE  
MCU_SCL  
MCU_SDA  
MCU_CLK_STATUS  
Copyright © 2017, Texas Instruments Incorporated  
Figure 87. Typical Serial Interface Application Schematic  
86  
Copyright © 2017–2020, Texas Instruments Incorporated  
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
Typical Applications (continued)  
VDD_CLK_3V3  
GND  
GND  
GND  
GND  
VDDREF  
VDDVCO  
VDDO12  
VDDO34  
XOUT/FB_P  
Y0  
Y1P  
Y1N  
Y2P  
Y2N  
Y3P  
Y3N  
Y4P  
Y4N  
25 MHz  
U1  
XIN/FB_N  
REFP  
FPGA_PCIe_HCSL_AP  
FPGA_PCIe_HCSL_AN  
OPT_MODULE_LVDS_AP  
CDCI6214  
REFP  
REFN  
100 nF  
100 nF  
100 Ω  
100 Ω  
REFN  
VDDREF  
OPT_MODULE_LVDS_AN  
OPT_MODULE_LVDS_BP  
OPT_MODULE_LVDS_BN  
FPGA_PCIe_HCSL_BP  
FPGA_PCIe_HCSL_BN  
50 kΩ  
CLKGen_RSTN  
RESETN  
VDDREF  
GND  
4.7 k  
50 kΩ  
50 kΩ  
REFSEL  
VDDREF  
GND  
4.7 kꢀ  
50 kΩ  
50 kΩ  
EEPROMSEL  
VDD_CLK_3V3  
VDDREF  
VDDREF  
50 kΩ  
50 kΩ  
PAD  
OE4  
OE3  
OE2  
OE1  
GND  
GND  
CLKGen_PCIe_A  
CLKGen_OPTMOD_A  
CLKGen_OPTMOD_B  
CLKGen_PCIe_B  
Figure 88. Typical Individual Output Enable Application Schematic  
9.2.1 Design Requirements  
For this example, the design parameters are listed in Table 76  
Table 76. Design Parameters  
PARAMETER  
tVDD  
EXAMPLE VALUE  
Larger than 50 µs and smaller than 3 ms  
tPWL_SYNC  
fXIN  
Larger than (1 / fXIN  
)
Crystal 8 MHz to 50 MHz  
Input slew rate for external clock reference better  
than 3 V / ns  
dVIN /dT  
9.2.2 Detailed Design Procedure  
For this application, TI recommends the following steps:  
1. Decide how the device shall receive the register settings to plan for in-system programming of the EEPROM.  
2. Choose which operation mode to use on the device (I2C or GPIOs) and which pins are inputs and which are  
outputs (see registers GENERIC0, GENERIC1, and GENERIC2).  
3. Consider that the serial interface and the GPIOs are supplied by VDDREF as well as the input pins (for  
example, a 3.3-V crystal oscillator (XO) driving XIN forces uses 3.3-V I2C).  
4. Keep track of which voltage levels the output supplies will have. There are configuration bits in the output  
channels (see CH1_CTRL5, CH2_CTRL5, CH3_CTRL5, and CH4_CTRL5).  
5. Consider which output frequency has the most stringent phase noise specifications. Select this frequency to  
decide on the reference and VCO frequency.  
6. Cross-check if your specific bandwidth requirement for an external reference can be achieved using the  
internal loop filter components (see registers PLL1 and PLL2).  
7. Optimize the clock distribution using output muxes to run the least amount of blocks to conserve power,  
Copyright © 2017–2020, Texas Instruments Incorporated  
87  
 
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
8. For HCSL output buffer format, optimize the signal integrity and slew rate at the receiver input using a series  
resistor between device pin and the 50 Ω termination to GND.Y1,Y4 provide higher slew rates compared to  
Y2,Y3.  
Use Equation 1 through Equation 4 to calculate the a basic frequency plan or use the provided software TICS  
Pro to generate settings.  
NOTE  
The user has to ensure PLL stability is given by applying the adequate loop filter and  
charge pump settings. A phase margin of 68º is recommended. The target bandwidth is  
recommended between 600 kHz .. 1100 kHz.  
fY0 = fXIN = fREF  
(1)  
(2)  
(3)  
fPFD = fREF / ip_ref_div  
where  
ip_ref_div 1  
1 MHz <= fPFD <= 100 MHz  
fVCO = fPFD · pll_nc · (pll_ps + 4)  
with  
2400 <= fVCO <= 2800  
0 <= pll_ps <= 2  
fY[4:1] = fVCO / ((pll_ps[ab] + 4) · ch[4:1]_iod_div)  
with  
0 <= pll_ps[ab] <= 2  
1 <= ch[4:1]_iod_div <= 16383  
44.1 kHz <= fY[4:1] <= 350 MHz  
(4)  
9.2.3 Application Curves  
Reference 25 MHz  
crystal with  
HCSL output with  
Integrated RMS  
Jitter from 10 kHz  
to 40 MHz 370 fs  
at 3.3 V, room  
PSA=4,  
PSB=6  
C1 = PSA/4, C2 =  
PSA/4 and 30 PSA  
cycles delayed  
C3 = PSB/4, C4 =  
PSB/4 and 30 PSA  
cycles delayed  
50 Ω onboard  
termination to  
balun into 5052A  
Signal Source  
Analyzer  
Doubler to VCO  
2.4 GHz  
temperature  
Figure 90. Divider Sync and Digital Delay  
Figure 89. Typical Phase Noise Y1, HCSL, 3.3 V  
88  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
9.3 Do's and Don'ts  
The maximum swing and level must match to the applied VDDREF (for example, for a 3.3-V XO as reference,  
VDDREF must be 3.3 V).  
VDDREF and VDDVCO must be powered from the same supply voltage.  
9.4 Initialization Setup  
The device digital logic starts after the internal power-on-release circuit triggered (POR). The digital core is  
connected to the VDDREF domain. The EEPROM settings are loaded into the device registers and the new  
settings applied to the device. The EEPROM page is selected according to the EEPROMSEL pin logic level. A  
low level loads page 0, and a logic high level loads page 1. By default, the differential outputs are muted for the  
initial VCO calibration and PLL lock process. After the PLL circuit achieved a phase lock to the input reference,  
the output dividers are synchronized and then released to operation. By default, pin 8 is configured as RESETN  
pin (see gpio0_dir_sel and gpio0_input_sel). The start of the initialization sequence, as well the as serial  
interface, can be kept in reset using RESETN= LOW. When pin 8 is not configured as RESETN, the device  
initialization relies on the POR triggered by application of VDDREF.  
Copyright © 2017–2020, Texas Instruments Incorporated  
89  
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
Initialization Setup (continued)  
Power-On-Reset  
(POR)  
Delay  
Low  
RESETN?  
High  
EEPROM  
Base  
Defaults  
Configuration?  
Operational  
Mode  
REFSEL = Low or High  
Fall-Back  
Mode  
REFSEL = Middle  
EEPROMSEL = Low or High  
EEPROMSEL = Middle  
Low  
High  
EEPROM  
Page?  
EEPROM  
Page 0  
EEPROM  
Page 1  
Control Pin  
Configuration  
Control Pin  
Configuration  
I2C or  
Output Enables  
I2C  
Status  
^/}v(]P 5}vꢀ_  
PLL  
Configuration  
PLL  
Configuration  
Status  
^/}v(]P 5}vꢀ_  
VCO Cal.  
Bypass  
VCO  
Calibration  
Status  
^/ꢁo]ꢂŒꢁš]}v 5}vꢀ_  
PLL  
Locked?  
Status  
^t[[ [}lꢀꢄ_  
Yes  
Syn-  
chronization  
Bypass  
Synchronize  
Clock  
Distribution  
Status  
^{Çvꢃ 5}vꢀ_  
Normal  
Operation  
Figure 91. Initialization Flow Chart  
The pins 8, 11, 12, 19, and 20 are general-purpose inputs and outputs (GPIO). The functions are determined  
through the register settings saved in the selected EEPROM page. See GENERIC0, GENERIC1, and  
GENERIC2 for the relevant bit-fields.  
The EEPROM allows to choose between two modes of operation: pin Mode and serial interface mode. This is  
done using mode.  
90  
Copyright © 2017–2020, Texas Instruments Incorporated  
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
10 Power Supply Recommendations  
10.1 Power-Up Sequence  
There are no restrictions from the device for applying power to the supply pins. From an application perspective,  
TI recommends to either apply all VDDs at the same time or apply VDDREF first. The digital core is connected to  
VDDREF, and thus the settings of the EEPROM are applied automatically. All VDDs should reach 95% of final  
value within 2 ms. RESETN should be held low before VDDREF reaches 95% of the final value. TI recommends  
adding a 4.7-kΩ pullup resistor on RESETN and a 470-nF capacitor to ground to provide additional delay in  
release of RESETN at power-up.  
10.2 De-Coupling  
TI recommends isolating all power supplies using a ferrite bead and provide decoupling for each of the supplies.  
TI also recommends optimizing the decoupling for the respective layout and consider the power supply  
impedance and optimize for the individual frequency plan.  
An example for a decoupling per supply pin: 1x 4.7 µF, 1x 470 nF, and 1x 100 nF.  
11 Layout  
11.1 Layout Guidelines  
For this example, follow these guidelines:  
Isolate inputs and outputs using a GND shield. Figure 92 routes all inputs and outputs as differential pairs.  
Isolate outputs to adjacent outputs when generating multiple frequencies.  
Isolate the crystal area, connect the GND pads of the crystal package and flood the adjacent area. Figure 93  
shows a foot print which supports multiple crystal sizes.  
Try to avoid impedance jumps in the fan-in and fan-out areas when possible.  
Use five VIAs to connect the thermal pad to a solid GND plane. Full-through VIAs are prefered.  
Place decoupling capacitors with small capacitance values very close to the supply pins. Try to place them  
very close on the same layer or directly on the backside layer. Larger values can be placed more far away.  
Figure 93 shows three de-coupling capacitors close to the device. Ferrite beads are recommended to isolate  
the different frequency domains and the VDDVCO domain.  
Preferably use multiple VIAs to connect wide supply traces to the respective power planes.  
Copyright © 2017–2020, Texas Instruments Incorporated  
91  
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
11.2 Layout Examples  
Figure 92. Layout Example, Top Layer  
Figure 93. Layout Example, Bottom Layer  
92  
Copyright © 2017–2020, Texas Instruments Incorporated  
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
Layout Examples (continued)  
Land Pattern Example  
2.45 mm  
0.6 mm  
0.2 mm  
Figure 94. Layout Example, Land Pattern  
版权 © 2017–2020, Texas Instruments Incorporated  
93  
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 开发支持  
请联系您的 TI 代表了解更多信息。  
12.1.2 器件命名规则  
CDCI6214 – 62= 时钟发生器;1 = 1 PLL4 = 4 路输出;I = 独立输出使能  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
94  
版权 © 2017–2020, Texas Instruments Incorporated  
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2017–2020, Texas Instruments Incorporated  
95  
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
PACKAGE OUTLINE  
RGE0024B  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
B
A
0.5  
0.3  
PIN 1 INDEX AREA  
4.1  
3.9  
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 2.5  
(0.2) TYP  
2.45 0.1  
7
12  
EXPOSED  
THERMAL PAD  
SEE TERMINAL  
DETAIL  
6
13  
2X  
SYMM  
25  
2.5  
18  
1
0.3  
24X  
20X 0.5  
0.2  
19  
24  
0.1  
C A B  
SYMM  
24X  
PIN 1 ID  
(OPTIONAL)  
0.05  
0.5  
0.3  
4219013/A 05/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
96  
版权 © 2017–2020, Texas Instruments Incorporated  
CDCI6214  
www.ti.com.cn  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
EXAMPLE BOARD LAYOUT  
RGE0024B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.45)  
SYMM  
24  
19  
24X (0.6)  
1
18  
24X (0.25)  
(R0.05)  
TYP  
25  
SYMM  
(3.8)  
20X (0.5)  
13  
6
(
0.2) TYP  
VIA  
7
12  
(0.975) TYP  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4219013/A 05/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
版权 © 2017–2020, Texas Instruments Incorporated  
97  
CDCI6214  
ZHCSGV7E JULY 2017REVISED JANUARY 2020  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
RGE0024B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.08)  
(0.64) TYP  
19  
24  
24X (0.6)  
1
25  
18  
24X (0.25)  
(R0.05) TYP  
SYMM  
(0.64)  
TYP  
(3.8)  
20X (0.5)  
6
13  
METAL  
TYP  
7
12  
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 25  
78% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219013/A 05/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
98  
版权 © 2017–2020, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CDCI6214RGER  
CDCI6214RGET  
ACTIVE  
VQFN  
VQFN  
RGE  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
CDCI  
6214A1  
ACTIVE  
RGE  
NIPDAU  
CDCI  
6214A1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
CDCI6214RGER  
CDCI6214RGET  
VQFN  
VQFN  
RGE  
RGE  
24  
24  
3000  
250  
330.0  
180.0  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
CDCI6214RGER  
CDCI6214RGET  
VQFN  
VQFN  
RGE  
RGE  
24  
24  
3000  
250  
346.0  
210.0  
346.0  
185.0  
33.0  
35.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

CDCI6214RGET

支持 PCIe 第 4 代标准且带四个可编程输出和 EEPROM 的超低功耗时钟发生器 | RGE | 24 | -40 to 85
TI

CDCL1810

1.8V, 10 Output, High-Performance Clock Distributor
TI

CDCL1810A

Single 1.8 V Supply
TI

CDCL1810ARGZR

1.8V 1-to-10 High Performance Differential Clock Buffer with Individual Output Enable/Disable 48-VQFN -40 to 85
TI

CDCL1810ARGZT

暂无描述
TI

CDCL1810RGZR

1.8V, 10 Output, High-Performance Clock Distributor
TI

CDCL1810RGZRG4

1.8V, 10 Output, High-Performance Clock Distributor
TI

CDCL1810RGZT

1.8V, 10 Output, High-Performance Clock Distributor
TI

CDCL1810RGZTG4

1.8V, 10 Output, High-Performance Clock Distributor
TI

CDCL6010

1.8V, 11 Output Clock Multiplier, Distributor, Jitter Cleaner, and Buffer
TI

CDCL6010RGZR

1.8V, 11 Output Clock Multiplier, Distributor, Jitter Cleaner, and Buffer
TI

CDCL6010RGZRG4

1.8V, 11 Output Clock Multiplier, Distributor, Jitter Cleaner, and Buffer
TI