CDCM6208V1FRGZR [TI]

2:8 超低功耗、低抖动时钟发生器,引脚模式型号 F | RGZ | 48 | -40 to 85;
CDCM6208V1FRGZR
型号: CDCM6208V1FRGZR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

2:8 超低功耗、低抖动时钟发生器,引脚模式型号 F | RGZ | 48 | -40 to 85

时钟 外围集成电路 晶体 时钟发生器
文件: 总88页 (文件大小:3396K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
CDCM6208V1F  
ZHCSDT8 MAY 2015  
CDCM6208V1F 具有小数分频器的 2:8 时钟生成器/抖动消除器  
1 特性  
2 应用  
1
性能出色且功耗低:  
基带时钟(无线基础设施)  
网络和数据通信  
低噪声合成器(265 fs-ms 典型抖动)或者低噪  
声抖动清除器(1.6 ps-ms 典型抖动)  
Keystone C66x 多核数字信号处理器 (DSP) 时钟  
存储服务器、便携式测试设备、  
医疗成像、高端 A/V  
0.5W 典型功耗  
高度通道到通道隔离和出色电源抑制比 (PSRR)  
通过灵活的 1.8V2.5V 3.3V 电源,可定制  
器件性能,从而实现混合输出电压  
3 说明  
灵活的频率规划:  
CDCM6208V1F 是一款多用途、低抖动低功耗频率合  
成器,此频率合成器能够利用特有低频晶振或 CML、  
LVPECLLVDS LVCMOS 信号的两路输入之一来  
生成八路低抖动时钟输出(输出可在类似于 LVPECL  
的高摆幅 CML、正常摆幅 CML、类似于 LVDS 的低  
功耗 CMLHCSL LVCMOS 中进行选择),广泛  
适用于各类无线基础设施基带、有线数据通信、计算、  
低功耗医疗成像以及便携式测试和测量应用。  
支持与低压正射极耦合逻辑 (LVPECL) 相似  
的、CML、或者与低压差分信号 (LVDS) 相似的  
信令的 4x 整数向下分频差分时钟输出  
支持主机时钟信号电平 (HCSL),与 LVDS 相似  
的信令、或者 8 CMOS 输出的 4x 小数或者  
整数分频差分时钟输出  
小数输出分频器可实现 0ppm <1ppm 的频率  
误差并且免除了对于晶体振荡器和其它是时钟生  
成器的需要  
CDCM6208V1F 还特有一种用于其中四路输出的创新  
小数分频器架构,能够生成精度高于 1ppm 的任意  
频率。 CDCM6208V1F 可通过 I2C 或串行外设接口  
(SPI) 编程接口轻松配置。在没有串行接口的情况下,  
器件还可以利用自身提供的引脚模式通过控制引脚设置  
32 种不同预编程配置中的一种。  
输出频率高达 800MHz  
两个差分输入、XTAL 支持、智能开关功能  
SPII2C™,和引脚可编程  
用于快速设计周转时间的专业用户图形用户界面  
(GUI)  
7 x 7mm 48 引脚四方扁平无引线 (QFN) 封装  
(RGZ)  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
-40 °C 85 °C 温度范围  
CDCM6208V1F  
VQFN (48)  
7.00mm x 7.00mm  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
4 简化电路原理图  
Timing  
FBADC  
RXADC  
Core  
SyncE  
TXDAC  
DR  
Packet PCIe  
Accel  
Packet  
1pps  
GPS receiver  
network  
RF LO  
CDCM6208  
DPLL  
APLL  
IEEE1588  
timing extract  
1pps  
RF LO  
CDCM6208  
Synthesizer  
Mode  
Ethernet  
TMS320TCI6616/18  
DSP  
Pico Cell Clocking  
AIF  
ALT  
SRIO  
CORE  
Base Band DSP  
Clocking  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SCAS943  
 
 
 
 
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
目录  
Characteristics ......................................................... 15  
8.20 Device Individual Block Current Consumption...... 16  
8.21 Worst Case Current Consumption........................ 17  
8.22 I2C TIMING .......................................................... 18  
8.23 SPI Timing Requirements ..................................... 19  
8.24 Typical Characteristics ......................................... 20  
Parameter Measurement Information ................ 22  
9.1 Characterization Test Setup ................................... 22  
1
2
3
4
5
6
7
8
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
简化电路原理图........................................................ 1  
修订历史记录 ........................................................... 2  
Description (continued)......................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 6  
8.1 Absolute Maximum Ratings ..................................... 6  
8.2 ESD Ratings.............................................................. 6  
8.3 Recommended Operating Conditions....................... 7  
8.4 Thermal Information, Airflow = 0 LFM ..................... 7  
8.5 Thermal Information, Airflow = 150 LFM ................. 8  
8.6 Thermal Information, Airflow = 250 LFM ................. 8  
8.7 Thermal Information, Airflow = 500 LFM ................. 8  
8.8 Single Ended Input Characteristics .......................... 9  
9
10 Detailed Description ........................................... 28  
10.1 Overview ............................................................... 28  
10.2 Functional Block Diagram ..................................... 28  
10.3 Feature Description............................................... 29  
10.4 Device Functional Modes...................................... 30  
10.5 Programming......................................................... 38  
10.6 Register Maps....................................................... 42  
11 Application and Implementation........................ 53  
11.1 Application Information.......................................... 53  
11.2 Typical Applications .............................................. 53  
12 Power Supply Recommendations ..................... 72  
8.9 Single Ended Input Characteristics (PRI_REF,  
SEC_REF) ................................................................. 9  
8.10 Differential Input Characteristics (PRI_REF,  
SEC_REF) ............................................................... 10  
12.1 Power Rail Sequencing, Power Supply Ramp Rate,  
and Mixing Supply Domains .................................... 72  
8.11 Crystal Input Characteristics (SEC_REF)............. 10  
13 Layout................................................................... 74  
13.1 Layout Guidelines ................................................. 74  
13.2 Layout Example .................................................... 74  
14 器件和文档支持 ..................................................... 80  
14.1 ....................................................................... 80  
14.2 文档支持 ............................................................... 80  
14.3 静电放电警告......................................................... 80  
14.4 Glossary................................................................ 80  
15 机械、封装和可订购信息....................................... 80  
8.12 Single Ended Output Characteristics (STATUS1,  
STATUS0, SDO, SDA) ............................................ 11  
8.13 PLL Characteristics............................................... 11  
8.14 LVCMOS Output Characteristics .......................... 12  
8.15 LVPECL (High-Swing CML) Output  
Characteristics ......................................................... 13  
8.16 CML Output Characteristics.................................. 13  
8.17 LVDS (Low-Power CML) Output Characteristics. 14  
8.18 HCSL Output Characteristics............................... 14  
8.19 Output Skew and Sync to Output Propagation Delay  
5 修订历史记录  
日期  
修订版本  
注释  
2015 5 月  
*
首次发布。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
6 Description (continued)  
In synthesizer mode, the overall output jitter performance is less than 0.5 ps-rms (10 k - 20 MHz) or 20 ps-pp  
(unbound) on output using integer dividers and is between 50 to 220 ps-pp (10 k - 40 MHz) on outputs using  
fractional dividers depending on the prescaler output frequency.  
In jitter cleaner mode, the overall output jitter is less than 2.1 ps-rms (10 k - 20 MHz) or 40 ps-pp on output  
using integer dividers and is less than 70 ps to 240 ps-pp on outputs using fractional dividers. The  
CDCM6208V1F is packaged in a small 48-pin 7 mm x 7 mm QFN package.  
7 Pin Configuration and Functions  
RGZ Package  
48 Pin VQFN  
Top View  
DVDD  
SI_MODE0  
1
2
36 Y7_N  
35 Y7_P  
SDI/SDA/PIN1  
VDD_Y7  
3
SDO/AD0/PIN2  
SCS/AD1/PIN3  
SCL/PIN4  
34  
33  
32  
31  
30  
29  
4
Y6_N  
5
Y6_P  
REF_SEL  
6
VDD_Y6  
VDD_Y5  
Y5_P  
VDD_PRI_REF  
7
8
PRI_REFP  
PRI_REFN  
9
28 Y5_N  
27  
VDD_SEC_REF  
10  
VDD_Y4  
SEC_REFP 11  
26 Y4_P  
SEC_REFN  
25  
12  
Y4_N  
VDD_Y0_Y1  
VDD_Y2_Y3  
Pin Functions  
PIN  
NAME  
I/O  
TYPE  
DESCRIPTION  
NO.  
8
PRI_REFP  
PRI_REFN  
Input  
Input  
Universal  
Universal  
Primary Reference Input +  
Primary Reference Input –  
9
Supply pin for reference inputs to set between 1.8 V, 2.5 V, or 3.3 V or connect to  
VDD_SEC_REF.  
VDD_PRI_REF  
7
PWR  
Analog  
SEC_REFP  
SEC_REFN  
11  
12  
Input  
Input  
Universal  
Universal  
Secondary Reference Input +  
Secondary Reference Input –  
Supply pin for reference inputs to set between 1.8 V, 2.5 V, or 3.3 V or connect to  
VDD_SEC_REF 10  
PWR  
Analog  
VDD_PRI_REF(1)  
.
(1) If Secondary input buffer is disabled (Register 4 Bit 5 = 0), it is possible to connect VDD_SEC_REF to GND.  
Copyright © 2015, Texas Instruments Incorporated  
3
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
TYPE  
DESCRIPTION  
NAME  
NO.  
Manual Reference Selection MUX for PLL. In SPI or I2C mode the reference  
LVCMOS  
selection is also controlled through Register 4 bit 12.REF_SEL = 0 (VIL): selects  
REF_SEL  
6
Input  
w/ 50kΩ pull-up PRI_REFREF_SEL = 1 (VIH): selects SEC_REF (when Reg 4.12 = 1). See  
Table 36 for detail.  
ELF  
41  
14  
15  
17  
16  
Output  
Output  
Output  
Output  
Output  
Analog  
External loop filter pin for PLL  
Output 0 Positive Terminal  
Output 0 Negative Terminal  
Output 1 Positive Terminal  
Output 1 Negative Terminal  
Y0_P  
Y0_N  
Y1_P  
Y1_N  
Universal  
Universal  
Universal  
Universal  
VDD_Y0_Y1 (2  
pins)  
13,  
18  
PWR  
Analog  
Supply pin for outputs 0, 1 to set between 1.8 V, 2.5 V or 3.3 V  
Y2_P  
Y2_N  
Y3_P  
Y3_N  
20  
21  
23  
22  
Output  
Output  
Output  
Output  
Universal  
Universal  
Universal  
Universal  
Output 2 Positive Terminal  
Output 2 Negative Terminal  
Output 3 Positive Terminal  
Output 3 Negative Terminal  
VDD_Y2_Y3 (2  
pins)  
19,  
24  
PWR  
Analog  
Supply pin for outputs 2, 3 to set between 1.8 V, 2.5 V or 3.3 V  
Y4_P  
Y4_N  
26  
25  
27  
29  
28  
30  
32  
33  
31  
35  
36  
34  
Output  
Output  
PWR  
Universal  
Universal  
Analog  
Output 4 Positive Terminal  
Output 4 Negative Terminal  
VDD_Y4  
Y5_P  
Supply pin for output 4 to set between 1.8 V, 2.5 V or 3.3 V  
Output 5 Positive Terminal  
Output  
Output  
PWR  
Universal  
Universal  
Analog  
Y5_N  
Output 5 Negative Terminal  
VDD_Y5  
Y6_P  
Supply pin for output 5 to set between 1.8 V, 2.5 V or 3.3 V  
Output 6 Positive Terminal  
Output  
Output  
PWR  
Universal  
Universal  
Analog  
Y6_N  
Output 6 Negative Terminal  
VDD_Y6  
Y7_P  
Supply pin for output 6 to set between 1.8 V, 2.5 V or 3.3 V  
Output 7 Positive Terminal  
Output  
Output  
PWR  
Universal  
Universal  
Analog  
Y7_N  
Output 7 Negative Terminal  
VDD_Y7  
Supply pin for output 7 to set between 1.8 V, 2.5 V or 3.3 V  
Analog power supply for PLL/VCO; This pin is sensitive to power supply noise; The  
supply of this pin and the VDD_PLL2 supply pin can be combined as they are both  
analog and sensitive supplies;  
VDD_VCO  
VDD_PLL1  
VDD_PLL2  
39  
37  
38  
PWR  
PWR  
PWR  
Analog  
Analog  
Analog  
Analog Power Supply Connections  
Analog Power Supply Connections; This pin is sensitive to power supply noise; The  
supply of VDD_PLL2 and VDD_VCO can be combined as these pins are both  
power-sensitive, analog supply pins  
Digital Power Supply Connections; This is also the reference supply voltage for all  
control inputs and must match the expected input signal swing of control inputs.  
DVDD  
48  
PWR  
Analog  
GND  
PAD  
46  
PWR  
Analog  
Power Supply Ground and Thermal Pad  
Status pin 0 (see Table 7 for details)  
STATUS0  
Output  
LVCMOS  
Output  
and  
Input  
LVCMOS  
no pull resistor  
STATUS1: Status pin in SPI/I2C modes. For details see Table 6 for pin modes and  
Table 7 for status mode. PIN0: Control pin 0 in pin mode.  
STATUS1/PIN0  
45  
Serial Interface Mode or Pin mode selection.SI_MODE[1:0]=00: SPI  
mode;SI_MODE[1:0]=01: I2C mode;SI_MODE[1:0]=10: Pin Mode (No serial  
programming);SI_MODE[1:0]=11: RESERVED  
LVCMOSw  
50kΩ pull-up  
SI_MODE1  
SI_MODE0  
47  
1
Input  
I/O  
LVCMOSw  
50kΩ pull-down  
LVCMOS in  
Open drain out SDI: SPI Serial Data Input SDA: I2C Serial Data (Read/Write bi-directional), open  
SDI/SDA/PIN1  
2
LVCMOS in  
drain output; requires a pull-up resistor in I2C mode;PIN1: Control pin 1 in pin mode  
no pull resistor  
4
Copyright © 2015, Texas Instruments Incorporated  
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
Pin Functions (continued)  
PIN  
I/O  
TYPE  
DESCRIPTION  
NAME  
NO.  
LVCMOS out  
LVCMOS in  
LVCMOS in  
Output/I  
nput  
SDO: SPI Serial Data AD0: I2C Address Offset Bit 0 inputPIN2: Control pin 2 in pin  
mode  
SDO/AD0/PIN2  
3
no pull resistor  
LVCMOS no pull SCS: SPI Latch EnableAD1: I2C Address Offset Bit 1 inputPIN3: Control pin 3 in pin  
SCS/AD1/PIN 3  
SCL/PIN4  
4
5
Input  
Input  
resistor  
mode  
LVCMOS no pull  
resistor  
SCL: SPI/I2C ClockPIN4: Control pin 4 in pin mode  
In SPI/I2C programming mode, external RESETN signal (active low).  
RESETN = V IL: device in reset (registers values are retained)  
RESETN = V IH: device active. The device can be programmed via SPI while  
RESETN is held low (this is useful to avoid any false output frequencies at power  
up).  
In Pin mode this pin controls device core and I/O supply voltage setting. 0 = 1.8 V, 1  
= 2.5/3.3 V for the device core and I/O power supply voltage. In pin mode, it is not  
possible to mix and match the supplies. All supplies should either be 1.8 V or 2.5/3.3  
V.  
LVCMOS  
w/ 50kΩ pull-up  
(2)  
RESETN/PWR  
44  
Input  
Regulator Capacitor; connect a 10 µF cap with ESR below 1 Ω to GND at  
frequencies above 100 kHz  
REG_CAP  
PDN  
40  
43  
42  
Output  
Input  
Analog  
Power Down Active low. When PDN = VIH is normal operation. When PDN = VIL, the  
device is disabled and current consumption minimized. Exiting power down resets  
the entire device and defaults all registers. It is recommended to connect a capacitor  
to GND to hold the device in power-down until the digital and PLL related power  
supplies are stable. See section on power down in the application section.  
LVCMOS  
w/ 50kΩ pull-up  
LVCMOS  
Active low. Device outputs are synchronized on a low-to-high transition on the  
w/ 50kΩ pull-up SYNCN pin. SYNCN held low disables all outputs.  
SYNCN  
Input  
(2) Note: the device cannot be programmed in I2C while RESETN is held low.  
Copyright © 2015, Texas Instruments Incorporated  
5
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
8 Specifications  
8.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
Supply Voltage Range, VDD_PRI, VDD_SEC, VDD_Yx_Yy, VDD_PLL[2:1], DVDD  
-0.5  
4.6  
V
4.6  
and  
V DVDD+ 0.5  
Input Voltage Range CMOS control inputs, VIN  
Input Voltage Range PRI/SEC inputs  
-0.5  
-0.5  
-65  
V
V
4.6  
and  
VVDDPRI.SEC+ 0.5  
Output Voltage Range, VOUT  
Input Current, IIN  
VYxYy+ 0.5  
V
20  
50  
mA  
mA  
°C  
Output Current, IOUT  
Junction Temperature, TJ  
Storage temperature range, Tstg  
125  
150  
°C  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute—maximum—rated conditions for extended periods may affect device reliability.  
8.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101, all  
pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6
Copyright © 2015, Texas Instruments Incorporated  
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
8.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
VDD_Yx_Yy  
Output Supply Voltage  
1.71  
1.8/2.5/3.3  
3.465  
V
VDD_PLL1  
VDD_PLL2  
Core Analog Supply Voltage  
1.71  
1.71  
1.71  
1.8/2.5/3.3  
1.8/2.5/3.3  
1.8/2.5/3.3  
3.465  
3.465  
3.465  
V
V
V
DVDD  
Core Digital Supply Voltage  
VDD_PRI,  
VDD_SEC  
Reference Input Supply Voltage  
VDD power-up ramp time (0 to 3.3 V) PDN left open, all VDD tight  
together PDN low-high is delayed  
ΔVDD/Δt  
50 < tPDN  
85  
ms  
°C  
(1)  
TA  
Ambient Temperature  
-40  
SDA and SCL in I 2 C MODE (SI_MODE[1:0] = 01)  
DVDD = 1.8 V  
–0.5  
–0.5  
2.45  
V
V
VI  
Input Voltage  
Data Rate  
DVDD = 3.3 V  
3.965  
100  
400  
dR  
kbps  
V
0.7 x  
DVDD  
VIH  
High-level input voltage  
VIL  
Low-level input voltage  
0.3 x DVDD  
400  
V
CBUS_I2C  
Total capacitive load for each bus line  
pF  
(1) For fast power up ramps under 50 ms and when all supply pins are driven from the same power supply source, PDN can be left floating.  
For slower power up ramps or if supply pins are sequenced with uncertain time delays, PDN needs to be held low until DVDD,  
VDD_PLLx, and VDD_PRI/SEC reach at least 1.45V supply voltage. See application section on mixing power supplies and particularly  
Figure 58 for details.  
8.4 Thermal Information, Airflow = 0 LFM(1) (2) (3) (4)  
CDCM6208  
THERMAL METRIC(1)  
RGZ  
48 PINS VQFN  
30.27  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
16.58  
6.83  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.23  
ψJB  
6.8  
RθJC(bot)  
1.06  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) The package thermal resistance is calculated in accordance with JESD 51 and JEDEC2S2P (high-k board).  
(3) Connected to GND with 36 thermal vias (0.3 mm diameter).  
(4) θJB (junction to board) is used for the QFN package, the main heat flow is from the junction to the GND pad of the QFN.  
Copyright © 2015, Texas Instruments Incorporated  
7
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
8.5 Thermal Information, Airflow = 150 LFM(1) (2) (3) (4)  
CDCM6208  
RGZ  
THERMAL METRIC(1)  
UNIT  
48 PINS  
21.8  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
RθJC(top)  
RθJB  
6.61  
0.37  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
RθJC(bot)  
1.06  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) The package thermal resistance is calculated in accordance with JESD 51 and JEDEC2S2P (high-k board).  
(3) Connected to GND with 36 thermal vias (0.3 mm diameter).  
(4) θJB (junction to board) is used for the QFN package, the main heat flow is from the junction to the GND pad of the QFN.  
8.6 Thermal Information, Airflow = 250 LFM(1) (2) (3) (4)  
CDCM6208  
THERMAL METRIC(1)  
RGZ  
48 PINS  
19.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
6.6  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.45  
ψJB  
RθJC(bot)  
1.06  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) The package thermal resistance is calculated in accordance with JESD 51 and JEDEC2S2P (high-k board).  
(3) Connected to GND with 36 thermal vias (0.3 mm diameter).  
(4) θJB (junction to board) is used for the QFN package, the main heat flow is from the junction to the GND pad of the QFN.  
8.7 Thermal Information, Airflow = 500 LFM(1) (2) (3) (4)  
CDCM6208  
THERMAL METRIC(1)  
RGZ  
48 PINS  
17.7  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
6.58  
0.58  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
RθJC(bot)  
1.05  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) The package thermal resistance is calculated in accordance with JESD 51 and JEDEC2S2P (high-k board).  
(3) Connected to GND with 36 thermal vias (0.3 mm diameter).  
(4) θJB (junction to board) is used for the QFN package, the main heat flow is from the junction to the GND pad of the QFN.  
8
Copyright © 2015, Texas Instruments Incorporated  
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
8.8 Single Ended Input Characteristics  
(SI_MODE[1:0], SDI/SDA/PIN1, SCL/PIN4, SDO/ADD0/PIN2, SCS/ADD1/PIN3, STATUS1/PIN0, RESETN/PWR, PDN,  
SYNCN, REF_SEL), DVDD = 1.71V to 1.89V, 2.375V to 2.625V, 3.135V to 3.465V, TA = –40°C to 85°C  
PARAMETER  
Input High Voltage  
Input Low Voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIH  
VIL  
0.8 x DVDD  
V
0.2 x DVDD  
V
DVDD = 3.465V, VIH = 3.465 V (pull-up  
resistor excluded)  
IIH  
Input High Current  
Input Low Current  
30  
µA  
µA  
IIL  
DVDD = 3.465V, VIL= 0 V  
20% - 80%  
-30  
PDN, RESETN, SYNCN, REF_SEL Input  
Edge Rate  
ΔV/ΔT  
0.75  
10  
V/ns  
PDN, RESETN, SYNCN low pulse to  
trigger proper device reset  
minPulse  
C IN  
ns  
Input Capacitance  
2.25  
50  
pF  
RESETN, PWR, SYNCN, PDN, REF_SEL, SI_MODE[1:0]:  
Input Pullup and Pulldown Resistor  
SDA and SCL in I 2 C Mode (SI_MODE[1:0]=01)  
R
35  
65  
kΩ  
DVDD = 1.8 V  
DVDD = 2.5/3.3 V  
VI = DVDD  
0.1 VDVDD  
0.05 VDVDD  
–5  
V
V
VHYS_I2C  
Input hysteresis  
IH  
High-level input current  
Output Low Voltage  
5
0.2 x DVDD  
5
µA  
V
VOL  
CIN  
IOL= 3mA  
Input Capacitance terminal  
pF  
8.9 Single Ended Input Characteristics (PRI_REF, SEC_REF)  
VDD_PRI, VDD_SEC = 1.71 V to 1.89 V, 2.375 V to 2.625 V, 3.135 V to 3.465 V, TA = –40°C to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
0.008  
0.008  
TYP  
MAX  
200  
UNIT  
MHz  
MHz  
VDD_PRI/SEC = 1.8 V  
Reference and Bypass Input  
Frequency  
fIN  
VDD_PRI/SEC = 3.3 V  
250  
0.8 x  
VDD_PRI/V  
DD_SEC  
VIH  
Input High Voltage  
Input Low Voltage  
V
V
0.2 x  
VDD_PRI/V  
DD_SEC  
VIL  
VHYST  
IIH  
Input hysteresis  
20  
65  
150  
30  
mV  
µA  
Input High Current  
Input Low Current  
VDD_PRI/VDD_SEC = 3.465 V, VIH = 3.465 V  
VDD_PRI/VDD_SEC = 3.465 V, VIL = 0 V  
20% - 80%  
IIL  
-30  
µA  
ΔV/ΔT  
Reference Input Edge Rate  
0.75  
40%  
43%  
V/ns  
f
PRI 200MHz  
60%  
60%  
IDC SE  
CIN  
Reference Input Duty Cycle  
Input Capacitance  
200 fPRI 250 MHz  
2.25  
pF  
Copyright © 2015, Texas Instruments Incorporated  
9
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
8.10 Differential Input Characteristics (PRI_REF, SEC_REF)  
VDD_PRI, VDD_SEC = 1.71 V to 1.89 V, 2.375 V to 2.625 V, 3.135 V to 3.465 V, TA = –40°C TO 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
0.008  
0.2  
TYP  
MAX  
UNIT  
MHz  
VPP  
fIN  
VI  
Reference and Bypass Input Frequency  
250  
1.6  
1
VDD_PRI/SEC = 2.5/3.3 V  
VDD_PRI/SEC = 1.8 V  
Differential Input Voltage Swing, Peak-to-  
Peak  
0.2  
VPP  
VDD_PRI/V  
DD_SEC-  
0.4  
VDD_PRI/V  
DD_SEC-  
0.1  
VICM  
Input Common Mode Voltage  
CML input signaling, R4[7:6] = 00  
V
V
LVDS, VDD_PRI/SEC  
= 1.8/2.5/3.3 V,  
R4[7:6] = 01, R4.1 = d.c.,  
R4.0 = d.c.  
VICM  
Input Common Mode Voltage  
Input hysteresis  
0.8  
1.2  
1.5  
LVDS (Q4[7:6,4:3] = 01)  
15  
20  
65  
85  
mVpp  
mVpp  
µA  
VHYST  
CML (Q4[7:6,4:3] = 00)  
IIH  
Input High Current  
VDD_PRI/SEC = 3.465 V, VIH = 3.465 V  
VDD_PRI/SEC = 3.465V, VIL = 0 V  
20% - 80%  
30  
IIL  
Input Low Current  
-30  
µA  
ΔV/ΔT  
IDCDIFF  
CIN  
Reference Input Edge Rate  
Reference Input Duty Cycle  
Input Capacitance  
0.75  
30%  
V/ns  
70%  
2.7  
pF  
8.11 Crystal Input Characteristics (SEC_REF)  
VDD_SEC = 1.71 to 1.89 V, 2.375 V to 2.625 V, 3.135 V to 3.465 V,TA = –40°C to 85°C  
PARAMETER  
MODE OF OSCILLATION  
MIN  
TYP  
MAX  
UNIT  
FUNDAMENTAL  
10  
(1)  
(2)  
See note  
See note  
10 MHz  
25 MHz  
50 MHz  
30.72  
50  
150(3)  
70(4)  
30(5)  
5.5  
MHz  
MHz  
Frequency  
30.73  
Equivalent Series Resistance (ESR)  
Ω
1.8 V / 3.3 V SEC_REFP  
1.8 V SEC_REFN  
3.5  
5.5  
6.5  
4.5  
7.25  
7.34  
On-chip load capacitance  
Drive Level  
8.5  
pF  
3.3 V SEC_REFN  
8.5  
(6)  
See note  
200  
µW  
(1) Verified with crystals specified for a load capacitance of CL=8pF, the pcb related capacitive load was estimated to be 2.3pF, and  
completed with a load capacitors of 4pF on each crystal terminal connected to GND. XTALs tested: NX3225GA 10MHz EXS00A-  
CG02813 CRG, NX3225GA 19.44MHz EXS00A-CG02810 CRG, NX3225GA 25MHz EXS00A-CG02811 CRG, and NX3225GA  
30.72MHz EXS00A-CG02812 CRG.  
(2) For 30.73 MHz to 50 MHz, it is recommended to verify sufficient negative resistance and initial frequency accuracy with the crystal  
vendor. The 50 MHz use case was verified with a NX3225GA 50MHz EXS00A-CG02814 CRG. To meet a minimum frequency error, the  
best choice of the XTAL was one with CL = 7pF instead of CL = 8pF.  
(3) With NX3225GA_10M the measured remaining negative resistance on the EVM is 6430 Ω (43 x margin)  
(4) With NX3225GA_25M the measured remaining negative resistance on the EVM is 1740 Ω (25 x margin)  
(5) With NX3225GA_50M the measured remaining negative resistance on the EVM is 350 Ω (11 x margin)  
(6) Maximum drive level measured was 145 µW; XTAL should at least tolerate 200 µW  
10  
Copyright © 2015, Texas Instruments Incorporated  
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
8.12 Single Ended Output Characteristics (STATUS1, STATUS0, SDO, SDA)  
VDD_Yx_Yy, VDD_PRI, VDD_SEC, VDD_PLLx, DVDD, VDD_VCO = 1.71V to 1.89V, 2.375V to 2.625V, 3.135V to 3.465V;  
TA = –40°C to 85°C (Output load capacitance 10 pF unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Status 1, Status 0, and SDO only;  
SDA is open drain and relies on  
external pullup for high output; IOH  
1 mA  
0.8 x  
DVDD  
VOH  
Output High Voltage  
V
=
0.2 x  
DVDD  
VOL  
Output Low Voltage  
IOL = 1 mA  
V
Vslew  
IOZH  
IOZL  
Output slew rate  
30% - 70%  
0.5  
V/ns  
µA  
3-stat Output High Current  
3-stat Output Low Current  
DVDD = 3.465 V, VIH = 3.465 V  
DVDD = 3.465 V, VIL = 0 V  
5
-5  
µA  
Status Loss of Signal Detection  
Time  
tLOS  
LOS_REFfvco  
1
2
1/f PFD  
1/f PFD  
Detect lock  
2304  
512  
tLOCK  
Status PLL Lock Detection Time  
Detect unlock  
8.13 PLL Characteristics  
VDD_PLLx, VDD_VCO = 1.71 V to 1.89 V, 2.375 V to 2.625 V, 3.135 V to 3.465 V, TA = –40°C TO 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fVCO  
VCO Frequency Range  
2.39  
2.55  
GHz  
2.39 GHz  
178  
204  
213  
KVCO  
VCO Gain  
2.50 GHz  
2.55 GHz  
MHz/V  
fPFD  
PFD Input Frequency  
0.008  
100  
MHz  
nA  
High Impedance Mode Charge  
Pump Leakage  
ICP-L  
±700  
–224  
Measured in-band phase noise at  
the VCO output minus 20log(N-  
divider) at the flat region  
Estimated PLL Figure of Merit  
(FOM)  
fFOM  
dBc/Hz  
Power supply ramp time of 1ms from  
0 V to 1.7 V, final frequency  
accuracy of 10 ppm, fPFD = 25 MHz,  
CPDN_to_GND = 22nF  
tSTARTUP  
Startup time (see Figure 42 )  
w/ PRI input signal  
12.8  
ms  
ms  
w/ NDK 25 MHz crystal  
12.85  
Copyright © 2015, Texas Instruments Incorporated  
11  
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
8.14 LVCMOS Output Characteristics  
VDD_Yx_Yy = 1.71 V to 1.89V, 2.375 V to 2.625 V, 3.135 V to 3.465 V, TA = –40°C TO 85°C  
PARAMETER  
TEST CONDITIONS  
Fract Out divVDD_Yx_Yy = 2.5/3.3 V  
Integer out divVDD_Yx_Yy = 2.5/3.3 V  
Int or frac out divVDD_Yx_Yy = 1.8 V  
Fractional Output Divider  
MIN  
TYP  
MAX  
UNIT  
0.78  
250  
250  
200  
1
fOUT-F  
Output Frequency  
1.55  
MHz  
0.78/1.5  
–1  
(1)  
fACC-F  
VOH  
Output Frequency Error  
ppm  
V
0.8 x  
VDD_Yx_Yy  
Output High Voltage (normal mode)  
Output Low Voltage(normal mode)  
Output High Voltage (slow mode)  
Output Low Voltage(slow mode)  
VDD_Yx = min to max, IOH = -1 mA  
VDD_Yx = min to max, IOL = 100 µA  
VDD_Yx = min to max, IOH = -100 µA  
VDD_Yx = min to max, IOL = 100 µA  
0.2 x  
VDD_Yx_Yy  
VOL  
VOH  
VOL  
V
V
V
0.7 x  
VDD_Yx_Yy  
0.3 x  
VDD_Yx_Yy  
V OUT = VDD_Yx_Yy/2  
Normal mode  
IOH  
Output High Current  
Output Low Current  
–50  
–45  
-8  
-5  
mA  
mA  
Slow mode  
V OUT = VDD_Yx_Yy/2  
Normal mode  
IOL  
10  
5
55  
40  
mA  
mA  
Slow mode  
20% to 80%, VDD_Yx_Yy = 2.5/3.3 V,  
CL = 5 pF  
Output Rise/Fall Slew Rate (normal  
mode)  
5.37  
2.62  
4.17  
V/ns  
V/ns  
V/ns  
tSLEW-RATE-N  
20% to 80%, VDD_Yx_Yy = 1.8 V,  
CL = 5 pF  
Output Rise/Fall Slew Rate (normal  
mode)  
20% to 80%, VDD_Yx_Yy = 2.5/3.3 V,  
CL = 5 pF  
Output Rise/Fall Slew Rate (slow  
mode)  
tSLEW-RATE-S  
20% to 80%, VDD_Yx_Yy = 1.8 V,  
CL = 5 pF  
Output Rise/Fall Slew Rate (slow  
mode)  
1.46  
V/ns  
PN-floor  
ODC  
Phase Noise Floor  
Output Duty Cycle  
fOUT = 122.88 MHz  
Not in bypass mode  
V OUT = VDD_Yx/2  
–159.5  
–154  
55%  
dBc/Hz  
45%  
ROUT  
Output Impedance  
Normal mode  
Slow mode  
30  
45  
50  
74  
90  
130  
Ω
(1) The User's GUI calculates exact frequency error. It is a fixed, static offset. If the desired output target frequency is with the exact reach  
of a multiple 1 over 220, the actual output frequency error is 0.  
Note: In LVCMOS Mode, positive and negative outputs are in phase.  
12  
Copyright © 2015, Texas Instruments Incorporated  
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
8.15 LVPECL (High-Swing CML) Output Characteristics  
VDD_Yx_Yy = 1.71 V to 3.465 V, VDD_PRI, VDD_SEC, VDD_PLLx, DVDD, VDD_VCO = 1.71 V to 1.89 V, 2.375 V to 2.625  
V, 3.135 V to 3.465 V, TA = –40°C TO 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fOUT-I  
Output frequency  
Integer Output Divider  
1.55  
800  
MHz  
VDD_Yx  
_
Yy – 0.4  
Output DC coupled common mode  
voltage  
VCM-DC  
DC coupled with 50 Ω external termination to VDD_Yx_Yy  
V
100 Ω diff load AC coupling (See Figure 12), fOUT 250 MHz  
VDD_Yx_Yy 1.89 V  
0.45  
0.6  
0.75  
0.8  
1.12  
1.12  
V
V
VDD_Yx_Yy 2.375 V  
|VOD  
|
Differential output voltage  
100 Ω diff load AC coupling (See Figure 12), fOUT 250 MHz  
VDD_Yx_Yy 1.89 V  
0.73  
0.75  
V
V
VDD_Yx_Yy 2.375 V  
0.55  
1.12  
Differential output peak-to-peak  
voltage  
VOUT  
2 x |VOD  
|
V
±200 mV around crossing point  
20% to 80% VOD  
109  
3.7  
217  
7.3  
ps  
ps  
tR/tF  
tslew  
Output rise/fall time  
211  
5.1  
Output rise/fall slew rate  
V/ns  
dBc/Hz  
PN-floor Phase noise floor  
VDD_Yx_Yy = 3.3 V (See Figure 54)  
Not in bypass mode  
–161.4 –155.8  
ODC  
ROUT  
Output duty cycle  
Output impedance  
47.5%  
52.5%  
50  
measured from pin to VDD_Yx_Yy  
Ω
8.16 CML Output Characteristics  
VDD_Yx_Yy, VDD_PRI, VDD_SEC, VDD_PLLx, DVDD, VDD_VCO = 1.71V to 1.89V, 2.375V to 2.625V, 3.135V to 3.465V,  
TA = –40°C to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
fOUT-I  
Output frequency  
Integer Output Divider  
1.55  
800  
MHz  
V
Output AC coupled common  
mode voltage  
VCM-AC  
AC coupled with 50 Ω receiver termination  
VDD_Yx_Yy – 0.46  
DC coupled with 50 Ω on-chip termination  
to VDD_Yx_Yy  
Output DC coupled common  
mode voltage  
VCM-DC  
VDD_Yx_Yy – 0.2  
0.45  
V
V
V
|VOD  
|
Differential output voltage  
100 Ω diff load AC coupling, (See Figure 12)  
0.3  
0.58  
Differential output peak-to-peak  
voltage  
VOUT  
2 x |VOD  
|
VDDYx = 1.8 V  
20% to 80%  
100  
100  
151  
143  
300  
200  
ps  
ps  
tR/tF  
Output rise/fall time  
VDDYx = 2.5 V/3.3 V  
VDD_Yx_Yy = 1.8 V  
–161.2  
–161.2  
–155.8 dBc/Hz  
–153.8 dBc/Hz  
52.5%  
PN-floor  
Phase noise floor at > 5 Hz offset fOUT = 122.88 MHz  
VDD_Yx_Yy = 3.3 V  
ODC  
ROUT  
Output duty cycle  
Output impedance  
Not in bypass mode  
measured from pin to VDD_Yx_Yy  
47.5%  
50  
Ω
Copyright © 2015, Texas Instruments Incorporated  
13  
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
8.17 LVDS (Low-Power CML) Output Characteristics  
VDD_Yx_Yy, VDD_PRI, VDD_SEC, VDD_PLLx, DVDD, VDD_VCO = 1.71 V to 1.89 V, 2.375 V to 2.625 V, 3.135V to  
3.465V, TA = –40°C to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
1.55  
0.78  
-1  
TYP  
MAX  
400  
400  
1
UNIT  
MHz  
MHz  
ppm  
fOUT-I  
fOUT-F  
fACC-F  
Integer output divider  
Output frequency  
Fractional output divider  
Fractional output divider  
(1)  
Output frequency error  
Output AC coupled  
common mode voltage  
VCM-AC  
VCM-DC  
|VOD  
AC coupled with 50 Ω receiver termination  
VDD_Yx_Yy – 0.76  
V
Output DC coupled  
common mode voltage  
DC coupled with 50 Ω on-chip termination to VDD_Yx_Yy  
VDD_Yx_Yy – 0.13  
0.34  
V
V
|
Differential output voltage 100 Ω diff load AC coupling, (See Figure 12)  
0.247  
0.454  
300  
Differential output peak-to-  
peak voltage  
VOUT  
tR/tF  
2 x |VOD  
|
V
Output rise/fall time  
±100mV around crossing point  
ps  
VDD_Yx = 1.8 V  
–159.3  
–159.1  
–154.5 dBc/Hz  
PN-floor  
Phase noise floor  
fOUT= 122.88 MHz  
VDD_Yx = 2.5/3.3 V  
Y[3:0]  
–154.9 dBc/Hz  
47.5%  
45%  
52.5%  
55%  
Ω
ODC  
ROUT  
Output duty cycle  
Output impedance  
Not in bypass mode  
Y[7:4]  
Measured from pin to VDD_Yx_Yy  
167  
(1) The User's GUI calculates exact frequency error. It is a fixed, static offset. If the desired output target frequency is with the exact reach  
of a multiple of 1 over 220, the actual output frequency error is 0.  
8.18 HCSL Output Characteristics  
VDD_Yx_Yy, VDD_PRI, VDD_SEC, VDD_PLLx, DVDD, VDD_VCO = 1.71 to 1.89 V, 2.375 V to 2.625 V,3.135 V to 3.465 V,  
TA = –40°C to 85°C  
PARAMETER  
Output frequency  
Output Frequency Error  
TEST CONDITIONS  
Integer Output Divider  
MIN  
1.55  
0.78  
-1  
TYP  
MAX UNIT  
fOUT-I  
fOUT-F  
fACC-F  
400  
400  
1
MHz  
MHz  
ppm  
V
Fractional Output Divider  
Fractional Output Divider  
VDD_Yx_Yy = 2.5/3.3 V  
VDD_Yx_Yy = 1.8 V  
(1)  
0.2  
0.2  
0.4  
0.4  
1.0  
0.34  
0.33  
0.67  
0.65  
0.55  
0.55  
1.0  
VCM  
Output Common Mode Voltage  
Differential Output Voltage  
V
VDD_Yx_Yy = 2.5/3.3 V  
VDD_Yx_Yy = 1.8 V  
V
|VOD  
|
1.0  
V
VDD_Yx_Yy = 2.5/3.3 V  
VDD_Yx_Yy = 1.8 V  
2.1  
V
Differential Output Peak-to-peak  
Voltage  
VOUT  
2 x|VOD  
|
V
Measured from VDIFF= –100 mV to  
VDIFF = +100mV, VDD_Yx_Yy = 2.5/3.3 V  
100  
120  
167  
192  
250  
295  
tR/tF  
Output Rise/Fall Time  
ps  
Measured from VDIFF= –100 mV to  
VDIFF= +100 mV, VDD_Yx_Yy = 1.8 V  
VDD_Yx_Yy = 1.8 V  
fOUT = 122.88 MHz  
–158.8  
–157.6  
–153 dBc/Hz  
–153 dBc/Hz  
55%  
PN-floor  
ODC  
Phase Noise Floor  
Output Duty Cycle  
VDD_Yx = 2.5/3.3 V  
Not in bypass mode  
45%  
(1) The User's GUI calculates exact frequency error. It is a fixed, static offset. If the desired output target frequency is with the exact reach  
of A 1/220 multiple, the actual output frequency error is 0.  
14  
Copyright © 2015, Texas Instruments Incorporated  
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
8.19 Output Skew and Sync to Output Propagation Delay Characteristics  
VDD_Yx_Yy = 1.71 to 1.89 V, 2.375 V to 2.625 V, 3.135V to 3.465 V, TA = –40°C to 85°C  
PARAMETER  
TEST CONDITIONS  
PS_A = 4  
MIN TYP MAX UNIT  
9
9
9
10.5  
10.2  
10.0  
11 1/fPS_A  
11 1/fPS_A  
11 1/fPS_A  
Propagation delay SYNCNto output  
toggling high  
tPD-PS  
f VCO = 2.5 GHz  
PS_A = 5  
PS_A = 6  
Part-to-Part Propagation delay  
ΔtPD-PS  
variation SYNCNto output toggling Fixed supply voltage, temp, and device setting(1)  
0
1 1/f PS_A  
high(1)  
OUTPUT SKEW – ALL OUTPUTS USE IDENTICAL OUTPUT SIGNALING, INTEGER DIVIDERS ONLY; PS_A = PS_B = 6, OutDiv = 4  
tSK,LVDS  
tSK,LVDS  
tSK,LVDS  
tSK,CML  
tSK,PECL  
tSK,HCSL  
tSK,SE  
Skew between Y[7:4] LVDS  
Skew between Y[3:0] LVDS  
Skew between Y[7:0] LVDS  
Skew between Y[3:0] CML  
Skew between Y[3:0] PECL  
Skew between Y[7:4] HCSL  
Skew between Y[7:4] CMOS  
Y[7:4] = LVDS  
Y[3:0] = LVDS  
Y[7:0] = LVDS  
Y[3:0] = CML  
40  
40  
80  
40  
40  
40  
50  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
Y[3:0] = LVPECL  
Y[7:4] = HCSL  
Y[7:4] = CMOS  
OUTPUT SKEW - MIXED SIGNAL OUTPUT CONFIGURATION, INTEGER DIVIDERS ONLY; PS_A = PS_B = 6, OutDiv = 4  
Skew between Y[7:4] LVDS and  
CMOS mixed  
tSK,CMOS-LVDS  
tSK,CMOS-PECL  
tSK,PECL-LVDS  
tSK,PECL-CML  
tSK,LVDS-PECL  
tSK,LVDS-HCSL  
Y[4] = CMOS, Y[7:5] = LVDS  
Y[7:4] = CMOS, Y[3:0] = LVPECL  
Y[0] = LVPECL, Y[3:1] = LVDS  
Y[0] = LVPECL, Y[3:1] = CML  
Y[7:4] = LVDS, Y[3:0] = LVPECL  
Y[4] = LVDS, Y[7:5] = HCSL  
2.5  
2.5  
ns  
ns  
ps  
ps  
ps  
ps  
Skew between Y[7:0] CMOS and  
LVPECL mixed  
Skew between Y[3:0] LVPECL and  
LVDS mixed  
120  
40  
Skew between Y[3:0] LVPECL and  
CML mixed  
Skew between Y[7:0] LVDS and  
LVPECL mixed  
180  
250  
Skew between Y[7:4] LVDS and  
HCSL mixed  
OUTPUT SKEW - USING FRACTIONAL OUTPUT DIVISION; PS_A = PS_B = 6, OutDiv = 3.125  
Skew between Y[7:4] LVDS using all  
tSK,DIFF, frac  
fractional divider with the same  
divider setting  
Y[7:4] = LVDS  
200  
ps  
(1) SYNC is toggled 10,000 times for each device. Test is repeated over process voltage and temperature (PVT).  
Copyright © 2015, Texas Instruments Incorporated  
15  
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
8.20 Device Individual Block Current Consumption  
VDD_Yx_Yy, VDD_PRI, VDD_SEC, VDD_PLLx, DVDD, VDD_VCO = 1.8 V, 2.5 V, or 3.3 V, TA = –40°C to 85°C, Output  
Types = LVPECL/CML/LVDS/LVCMOS/HCSL  
BLOCK  
CONDITION  
TYPICAL CURRENT CONSUMPTION (mA)  
Core  
CDCM6208V1F Core, active mode, PS_A = PS_B = 4  
CML output, AC coupled w/ 100 Ω diff load  
LVPECL, AC coupled w/ 100 Ω diff load  
75  
24.25  
40  
LVCMOS output, transient, 'C L' load, 'f' MHz output  
frequency, 'V' output swing  
Output Buffer  
1.8 + V x f OUT x (C L+ 12 x 10 -12) x 10 3  
LVDS output, AC coupled w/ 100 Ω diff load  
HCSL output, 50 load to GND on each output pin  
Integer Divider Bypass (Divide = 1)  
19.7  
31  
3
Integer Divide Enabled, Divide > 1  
8
Output Divide Circuitry  
Fractional Divider Enabled  
12  
15  
additional current when PS_A differs from PS_B  
Device Settings (V2)  
1. PRI input enabled, set to LVDS mode  
2. SEC input XTAL  
3. Input bypass off, PRI only sent to PLL  
4. Reference clock 30.72 MHz  
5. PRI input divider set to 1  
(excl. I termination_resistors  
)
6. Reference input divider set to 1  
7. Charge Pump Current = 2.5 mA  
8. VCO Frequency = 3.072 GHz  
9. PS_A = PS_B divider ration = 4  
10. Feedback divider ratio = 25  
(1.8 V: 251 mA  
2.5 V: 254 mA  
3.3 V: 257 mA)  
Total Device, CDCM6208V1F  
(incl. I termination_resistors  
)
(1.8 V: 310 mA  
2.5 V: 313 mA  
11. Output divider ratio = 5  
3.3 V: 316 mA)  
12. Fractional divider pre-divider = 2  
13. Fractional divider core input frequency = 384 MHz  
14. Fractional divider value = 3.84, 5.76, 3.072, 7.68  
15. CML outputs selected for CH0-3 (153.6 MHz)  
LVDS outputs selected for CH4-7 (100 MHz, 66.66 MHz,  
125 MHz, 50 MHz)  
Total Device, CDCM6208V1F Power Down (PDN = '0')  
0.35  
Helpful Note: The CDCM6208V1F User GUI does an excellent job estimating the total device current  
consumption based on the actual device configuration. Therefore, it is recommended to use the GUI to estimate  
device power consumption.  
The individual supply terminal current consumption for Pin mode P23 was measured to come out the following:  
Table 1. Individual Supplies Measured  
SEC  
(VSEC = 1.8V)  
SEC  
(VSEC = 2.5V)  
Y0-1  
Y2-3  
Y4  
Y5  
Y6  
Y7  
PRI  
PLL1  
PLL2  
VCO  
DVDD  
TOTAL  
PWR PIN 39 = GND  
VPRI = 1.8 V  
61 mA 40 mA 21 mA 29 mA 30 mA 31 mA  
12 mA  
70 mA  
1.5 mA 295.5 mA  
VOUT = 1.8 V  
16  
Copyright © 2015, Texas Instruments Incorporated  
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
8.21 Worst Case Current Consumption  
VDD_Yx_Yy, VDD_PRI, VDD_SEC, VDD_PLLx, DVDD, VDD_VCO = 3.45 V, TA = T-40°C to 85°C, Output Types = maximum  
swing, all blocks including duty cycle correction and fractional divider enabled and operating at maximum operation  
BLOCK  
CONDITION  
CURRENT CONSUMPTION  
TYP / MAX  
All conditions over PVT, AC coupled outputs with all outputs  
terminated, device configuration:  
Device Settings (V2)  
1. PRI input enabled, set to LVDS mode  
2. SEC input XTAL  
3. Input bypass off, PRI only sent to PLL  
4. Reference clock 30.72 MHz  
5. PRI input divider set to 1  
6. Reference input divider set to 1  
7. Charge Pump Current = 2.5 mA  
8. VCO Frequency = 3.072 GHz  
1.8 V: 310 mA / +21% (excl term)  
3.3 V: 318 mA / +21% (excl term)  
Total Device, CDCM6208V1F  
9. PS_A = PS_B divider ration = 4  
10. Feedback divider ratio = 25  
11. Output divider ratio = 5  
12. Fractional divider pre-divider = 2  
13. Fractional divider core input frequency = 384 MHz  
14. Fractional divider value = 3.84, 5.76, 3.072, 7.68  
15. CML outputs selected for CH0-3 (153.6 MHz)  
LVDS outputs selected for CH4-7 (100MHz, 66.66 MHz, 125  
MHz, 50 MHz)  
Copyright © 2015, Texas Instruments Incorporated  
17  
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
UNIT  
8.22 I2C TIMING(1)  
PARAMETER  
STANDARD MODE  
FAST MODE  
MIN MAX  
MIN  
0
MAX  
fSCL  
SCL Clock Frequency  
100  
0
400  
kHz  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
ns  
tsu(START)  
th(START)  
tw(SCLL)  
tw(SCLH)  
th(SDA)  
tsu(SDA)  
tr-in  
START Setup Time (SCL high before SDA low)  
START Hold Time (SCL low after SDA low)  
SCL Low-pulse duration  
4.7  
4.0  
4.7  
4.0  
0.6  
0.6  
1.3  
0.6  
0
SCL High-pulse duration  
(2)  
SDA Hold Time (SDA valid after SCL low)  
SDA Setup Time  
0
3.45  
0.9  
250  
100  
SCL / SDA input rise time  
1000  
300  
300  
300  
250  
tf-in  
SCL / SDA input fall time  
tf-out  
SDA Output fall time from VIH min to VIL max with a bus  
capacitance from 10 pF to 400 pF  
250  
tsu(STOP)  
tBUS  
STOP Setup Time  
4.0  
4.7  
75  
0.6  
1.3  
75  
μs  
μs  
ns  
Bus free time between a STOP and START condition  
Pulse width of spikes suppressed by the input glitch filter  
tglitch_filter  
300  
300  
(1) For additional information, refer to the I2C-Bus specification, Version 2.1 (January 2000); the CDCM6208V1F meets the switching  
characteristics for standard mode and fast mode transfer.  
(2) The I2C master must internally provide a hold time of at least 300 ns for the SDA signal to bridge the undefined region of the falling edge  
of SCL.  
t4  
t5  
t1  
SCL  
SDI  
t2  
t3  
A31  
A30  
D1  
D0  
'21¶7ꢀ&$5(  
t6  
SDO  
tri-state  
D15  
D1  
D0  
'21¶7ꢀ&$5(  
t7  
SCS  
t8  
Figure 2. CDCM6208V1F SPI Port Timing  
18  
Copyright © 2015, Texas Instruments Incorporated  
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
8.23 SPI Timing Requirements  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
fClock  
t1  
Clock Frequency for the SCL  
SPI_LE to SCL setup time  
SDI to SCL setup time  
SDO to SCL hold time  
SCL high duration  
20  
10  
10  
10  
25  
25  
10  
20  
10  
t2  
ns  
t3  
ns  
t4  
ns  
t5  
SCL low duration  
ns  
t6  
SCL to SCS Setup time  
SCS Pulse Width  
ns  
t7  
ns  
t8  
SDI to SCL Data Valid (First Valid Bit after SCS)  
ns  
ACK  
STOP  
STOP  
START  
tr(SM)  
tf(SM)  
tW(SCLL) tW(SCLH)  
VIH(SM)  
VIL(SM)  
SCL  
th(START)  
tSU(START)  
tBUS  
tSU(SDATA)  
tr(SM)  
th(SDATA)  
tSU(STOP)  
tf(SM)  
VIH(SM)  
VIL(SM)  
SDA  
Figure 3. I2C Timing Diagram  
Copyright © 2015, Texas Instruments Incorporated  
19  
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
8.24 Typical Characteristics  
Using Divide by x.73 Example  
fFRAC = 300 MHz  
Figure 5. Fractional Divider Input Frequency Impact on Jitter  
Figure 4. Fractional Divider Bit Selection Impact on Jitter  
200  
180  
200 ps-pp  
all zero, (0) typ  
MSB, (1/2) typ  
180 ps-pp  
MSB-1, (1/4) typ  
MSB-9, (1/1024) max  
160  
160 ps-pp  
140 ps-pp  
120 ps-pp  
100 ps-pp  
80 ps-pp  
60 ps-pp  
40 ps-pp  
20 ps-pp  
0 ps-pp  
MSB-2, (1/8) typ  
MSB-3, (1/16) typ  
MSB-4, (1/32) typ  
MSB-5, (1/54) typ  
MSB-6, (1/128) typ  
MSB-9, (1/1024) typ  
140  
MSB-4, (1/32) max  
120  
100  
80  
60  
40  
20  
0
MSB-13, (1/16384) max  
MSB-13, (1/16384) typ  
LSB, (1/1048576) max  
LSB, (1/1048576) typ  
MSB, (1/2) max  
MSB-7, (1/256) typ  
MSB-9, (1/1024) typ  
MSB-13, (1/16384) typ  
LSB, (1/1048576) typ  
0x50A33D (÷x.315) typ  
0x828F5 (÷x.51) typ  
0xBAE14 (÷x.73) typ  
MSB, (1/2) typ  
all zero, (0) max  
200 220 240 260 280 300 320 340 360 380 400  
200  
250  
300  
350  
400  
Frequency (MHz)  
Frequency (MHz)  
Figure 7. Fractional Divider Bit Selection Impact on TJ  
Figure 6. Fractional Divider Bit Selection Impact on TJ  
(Typical)  
(Maximum Jitter Across Process, Voltage & Temperature)  
-50  
-55  
9.2 ps  
-60  
-65  
2.9 ps  
-70  
-75  
-80  
-85  
0.92 ps  
0.29 ps  
-90  
-95  
0.092 ps  
-100  
100  
1000  
10K  
100k  
1M  
10M  
Frequency (Hz)  
f OUT = 122 MHz  
Figure 8. PSRR (in dBc and DJ [ps]) Over Frequency [Hz] and Output Signal Format  
20  
Copyright © 2015, Texas Instruments Incorporated  
 
 
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
8.24.1 Fractional Output Divider Jitter Performance  
The fractional output divider jitter performance is a function of the fraction output divider input frequency as well  
as actual fractional divide setting itself. To minimize the fractional output jitter, it is recommended to use the least  
number of fractional bits and the highest input frequency possible into the divider. As observable in Figure 4, the  
largest jitter contribution occurs when only one fractional divider bit is selected, and especially when the bits in  
the middle range of the fractional divider are selected. Tested using a LeCroy 40 Gbps RealTime scope over a  
time window of 200 ms. The RJ impact on TJ is estimated for a BERT 10(–12) – 1. This measurement result is  
overly pessimistic, as it does not bandwidth limit the high-frequencies. In a real system, the SERDES TX will BW  
limit the jitter through its PLL roll-off above the TX PLL bandwidth of typically bit rate divided by 10.  
8.24.2 Power Supply Ripple Rejection (PSRR) versus Ripple Frequency  
See Figure 8 for reference.  
Many system designs become increasingly more sensitive to power supply noise rejection. In order to simplify  
design and cost, the CDCM6208V1F has built in internal voltage regulation, improving the power supply noise  
rejection over designs with no regulators. As a result, the following output rejection is achieved:  
The DJ due to PSRR can be estimated using Equation 1:  
2 x 10(spur/20)  
p x f  
Deterministic Jitter (ps ) =  
x 10-12  
p-p  
CLK  
(1)  
Example: Therefore, if 100 mV noise with a frequency of 10 kHz were observed at the output supply, the  
according output jitter for a 122.88 MHz output signal with LVDS signaling could be estimated with DJ = 0.7ps.  
Copyright © 2015, Texas Instruments Incorporated  
21  
 
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
9 Parameter Measurement Information  
9.1 Characterization Test Setup  
This section describes the characterization test setup of each block in the CDCM6208V1F.  
High impedance probe  
LVCMOS  
CDCM6208  
Oscilloscope  
5pF  
Figure 9. LVCMOS Output AC Configuration During Device Test (VOH, VOL, tSLEW  
)
High impedance probe  
LVCMOS  
CDCM6208  
Oscilloscope  
1mA  
High impedance probe  
VDD_Yx  
1mA  
CDCM6208  
Oscilloscope  
LVCMOS  
Figure 10. LVCMOS Output DC Configuration During Device Test  
Phase Noise/  
Spectrum  
LVCMOS  
CDCM6208  
50  
Analyzer  
Figure 11. LVCMOS Output AC Configuration During Device Phase Noise Test  
22  
Copyright © 2015, Texas Instruments Incorporated  
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
Characterization Test Setup (continued)  
YP  
YN  
50O  
CDCM6208  
50  
50ꢀ  
Phase Noise/  
Spectrum  
Analyzer  
Set to one of the following signaling  
levels: LVPECL, CML, LVDS  
50Balun  
Figure 12. LVDS, CML, and LVPECL Output AC Configuration During Device Test  
High impedance differential probe  
HCSL  
CDCM6208  
Oscilloscope  
HCSL  
50  
50 ꢀ  
Figure 13. HCSL Output DC Configuration During Device Test  
HCSL  
Phase Noise/  
Balun  
Spectrum  
CDCM6208  
HCSL  
50 Analyzer  
50  
50 ꢀ  
Figure 14. HCSL Output AC Configuration During Device Test  
Offset = VDD_PRI/SEC/2  
LVCMOS  
Signal  
Generator  
CDCM6208  
50  
Figure 15. LVCMOS Input DC Configuration During Device Test  
Copyright © 2015, Texas Instruments Incorporated  
23  
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
Characterization Test Setup (continued)  
CML  
CML  
Signal  
Generator  
CDCM6208  
50  
50 ꢀ  
VDD_PRI/SEC  
Figure 16. CML Input DC Configuration During Device Test  
LVDS  
Signal  
Generator  
CDCM6208  
100  
LVDS  
Figure 17. LVDS Input DC Configuration During Device Test  
LVPECL  
Signal  
Generator  
CDCM6208  
LVPECL  
50  
50 ꢀ  
VDD_PRI/SEC - 2  
Figure 18. LVPECL Input DC Configuration During Device Test  
VDD_PRI/SEC  
100  
100 ꢀ  
Signal  
Generator  
Differential  
CDCM6208  
100 ꢀ  
100 ꢀ  
Figure 19. Differential Input AC Configuration During Device Test  
24  
Copyright © 2015, Texas Instruments Incorporated  
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
Characterization Test Setup (continued)  
Crystal  
CDCM6208  
Figure 20. Crystal Reference Input Configuration During Device Test  
Sine wave  
Modulator  
Phase Noise/  
Spectrum  
Signal  
Generator  
Device Output  
CDCM6208  
Balun  
50 Analyzer  
Reference  
Input  
50  
50 ꢀ  
Figure 21. Jitter transfer Test Setup  
Sine wave  
Modulator  
Power Supply  
Phase Noise/  
Spectrum  
Signal  
Generator  
CDCM6208  
Device Output  
Balun  
50 Analyzer  
Reference  
Input  
50  
50 ꢀ  
Figure 22. PSNR Test Setup  
Copyright © 2015, Texas Instruments Incorporated  
25  
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
Characterization Test Setup (continued)  
Yx_P  
Yx_N  
VOD  
80%  
0 V  
VOUT,DIFF,PP = 2 x VOD  
20%  
tR  
tF  
Figure 23. Differential Output Voltage and Rise and Fall Time  
80%  
OUT_REFx/2  
20%  
VOUT,SE  
tR  
tF  
Figure 24. Single Ended Output Voltage and Rise and Fall Time  
26  
Copyright © 2015, Texas Instruments Incorporated  
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
Characterization Test Setup (continued)  
VCXO_P  
Single Ended  
Differential  
VCXO_P  
VCXO_N  
tPD,DIFF  
Yx_P  
Yx_N  
Yx_P  
Yx_N  
Yx_P  
Yx_N  
Differential, Integer Divide  
tSK,DIFF,INT  
Differential, Integer Divide  
tSK,DIFF,FRAC  
Differential, Fractional Divide  
tSK,SE-DIFF,INT  
Single Ended, Integer Divide  
Yx_P/N  
Yx_P/N  
tSK,SE,INT  
tPD, SE  
Single Ended, Integer Divide  
tSK,SE,FRAC  
Single Ended, Fractional Divide  
Yx_P/N  
Figure 25. Differential and Single Ended Output Skew and Propagation Delay  
Copyright © 2015, Texas Instruments Incorporated  
27  
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
10 Detailed Description  
10.1 Overview  
Supply Voltage: The CDCM6208V1F supply is internally regulated. Therefore each core and I/O supply can be  
mixed and matched in any order according to the application needs. The device jitter performance is independent  
of supply voltage.  
Frequency Range: The PLL includes dual reference inputs with input multiplexer, charge pump, loop filter, and  
VCO that operates from 2.39 GHz to 2.55 GHz.  
Reference inputs: The primary and secondary reference inputs support differential and single ended signals from  
8 kHz to 250 MHz. The secondary reference input also supports crystals from 10 MHz to 50 MHz. There is a 4-  
bit reference divider available on the primary reference input. The input mux between the two references  
supports simply switching or can be configured as Smart MUX and supports glitchless input switching.  
Divider and Prescaler: In addition to the 4-bit input divider of the primary reference a 14-b input divider at the  
output of input MUX and a cascaded 8-b and 10-b continuous feedback dividers are available. Two independent  
prescaler dividers offer divide by /4, /5 and /6 options of the VCO frequency of which any combination can then  
be chosen for a bank of 4 outputs (2 with fractional dividers and 2 that share an integer divider) through an  
output MUX. A total of 2 output MUXes are available.  
Phase Frequency Detector and Charge Pump: The PFD input frequency can range from 8 kHz to 100 MHz. The  
charge pump gain is programmable and the loop filter consists of internal + partially external passive  
components and supports bandwidths from a few Hz up to 400kHz.  
10.2 Functional Block Diagram  
REF_SEL  
ELF  
Y4  
LVDS/  
LVCMOS/  
HCSL  
Fractional Div  
20-b  
Y5  
Y0  
Y1  
Y2  
Y3  
Fractional Div  
20-b  
Differential/  
LVCMOS  
Integer Div  
8-b  
PreScaler PS_A  
÷4, ÷5, ÷6  
R
4-b  
PRI_REF  
SEC_REF  
M
14-b  
LVPECL/  
CML/  
LVDS  
Differential  
LVCMOS/  
XTAL  
Φ
N
8-b,10-b  
VCO:  
(2.39-2.55) GHz  
Integer Div  
8-b  
PreScaler PS_B  
÷4, ÷5, ÷6  
Fractional Div  
20-b  
Y6  
Y7  
Input  
PLL  
LVDS/  
LVCMOS/  
HCSL  
Fractional Div  
20-b  
Control  
Status/  
Monitoring  
Host  
Interface  
Power  
Conditioning  
Output  
CDCM6208  
Figure 26. High-Level Block Diagram of CDCM6208V1F  
28  
Copyright © 2015, Texas Instruments Incorporated  
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
10.3 Feature Description  
Phase Noise: The Phase Noise performance of the device can be summarized to:  
Table 2. Synthesizer Mode (Loop filter BW >250 kHz)  
RANDOM JITTER (ALL OUTPUTS)  
TOTAL JITTER  
MAXIMUM  
Integer divider  
DJ-unbound  
RJ 10k-20MHz  
TYPICAL  
MAXIMUM  
Fractional divider  
DJ 10k-40MHz  
RJ 10k-20MHz  
10k-20MHz  
12k-20MHz  
10k-100MHz  
0.27 ps-rms (Integer division)  
0.7ps-rms (fractional div)  
50-220 ps-pp,  
see Figure 4  
0.3 ps-rms (int div)(1) 0.625 ps-rms (int div)  
20 ps-pp  
(2)  
(1) Integrated Phase Noise (12kHz - 20 MHz) for 156.25 MHz output clock measured at room temperature using a 25 MHz Low Noise  
reference source  
(2) TJ = 20 pspp applies for LVPECL, CML, and LVDS signaling. TJ lab characterization measured 8 pspp, (typical) and 12 pspp (max) over  
PVT.  
Table 3. Jitter Cleaner Mode (Loop filter BW < 1 kHz)  
RANDOM JITTER (ALL OUTPUTS)  
MAXIMUM  
TOTAL JITTER  
MAXIMUM  
TYPICAL  
Integer divider  
DJ unbound  
RJ 10k-20MHz  
Fractional divider  
DJ 10k-40MHz  
RJ 10k-20MHz  
10k-20MHz  
10k-20MHz  
10k-100MHz  
1.6 ps-rms (Integer division)  
2.3 ps-rms (fractional div) 10k-20MHz  
70-240 ps-pp,  
see Figure 4  
2.1 ps-rms (int div)  
2.14 ps-rms (int div)  
40 ps-pp  
Spurious Performance: The spurious performance is as follows:  
Less than -80 dBc spurious from PFD/reference clocks at 122.88 MHz output frequency in the Nyquist range.  
Less than -68 dBc spurious from output channel-to-channel coupling on the victim output at differential  
signaling level operated at 122.88 MHz output frequency in the Nyquist range.  
Device outputs:  
The Device outputs offer multiple signaling formats: high-swing CML (LVPECL like), normal-swing CML (CML),  
low-swing CML (LVDS like), HCSL, and LVCMOS signaling.  
Table 4. Device Outputs  
FREQUENCY  
Outputs  
Y[3:0]  
LVPECL  
CML  
LVDS  
HCSL  
LVCMOS  
OUTPUT DIVIDER  
RANGE  
X
X
X
Integer only  
Integer  
1.55 - 800 MHz  
1.55 - 800 MHz  
1.00 - 400 MHz  
Y[7:4]  
X
X
X
Fractional  
Outputs [Y0:Y3] are driven by 8-b continuous integer dividers per pair. Outputs [Y4:Y7] are each driven by 20-b  
fractional dividers that can achieve any frequency with better than 1ppm frequency accuracy. The output skew is  
typically less than 40 ps for differential outputs. The LVCMOS outputs support adjustable slew rate control to  
control EMI. Pairs of 2 outputs can be operated at 1.8 V, 2.5 V or 3.3 V power supply voltage.  
Device Configuration:32 distinct pin modes are available that cover many common use cases without the need  
for any serial programming of the device. For maximum flexibility the device also supports SPI and I2C  
programming. I2C offers 4 distinct addresses to support up to 4 devices on the same programming lines.  
Copyright © 2015, Texas Instruments Incorporated  
29  
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
10G  
PHY  
PCIe  
1G  
PHY  
DDR  
CDCM6208  
Synthesizer  
Mode  
DPLL  
4x10G Ethernet ASIC  
10G  
PHY  
10G  
PHY  
10G  
PHY  
10G  
PHY  
10GbE  
Figure 27. Typical Use Case: CDCM6208V1F Example in Wireless Infrastructure Baseband Application  
10.4 Device Functional Modes  
10.4.1 Control Pins Definition  
In the absence of a host interface, the CDCM6208V1F can be powered up in one of 32 pre-configured settings  
when the pins are SI_MODE[1:0] = 10. The CDCM6208V1F has 5 control pins identified to achieve commonly  
used networking frequencies, and change output types. The Smart Input MUX for the PLL is set in most  
configurations to manual mode in pin mode. Based on the control pins settings for the on-chip PLL, the device  
generates the appropriate frequencies and appropriate output signaling types at start-up. In the case of the PLL  
loop filter, "JC" denotes PLL bandwidths of 1 kHz and "Synth" denotes PLL bandwidths of 100 kHz.  
30  
Copyright © 2015, Texas Instruments Incorporated  
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
Table 5. Pre-Configured Settings of CDCM6208V1F Accessible by PIN[4:0](1) (2)  
Type  
Type2  
f(PFD) f(VCO)  
SPI  
Default  
MAN-  
SEC  
0
I/O  
I/O  
25  
25  
Disable  
Disable  
25  
25  
Crystal  
Crystal  
25  
25  
2500  
2500  
125  
125  
PECL  
PECL  
125  
125  
PECL  
PECL  
125  
125  
PECL  
PECL  
125  
125  
PECL  
PECL  
25  
25  
HCSL  
HCSL  
100  
100  
HCSL  
HCSL  
100  
100  
Disable  
Disable  
100  
100  
Disable  
Disable  
I2C  
Default  
MAN-  
SEC  
1
Reserv  
ed  
11  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
LVCM  
OS  
MAN-  
SEC  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
1-V1F  
2-V1F  
3-V1F  
4-V1F  
5-V1F  
6-V1F  
7-V1F  
8-V1F  
9-V1F  
10-V1F  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
156.25  
125  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
PECL  
LVDS  
PECL  
PECL  
PECL  
156.25  
125  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
PECL  
LVDS  
PECL  
PECL  
PECL  
156.25  
125  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
PECL  
LVDS  
PECL  
PECL  
CML  
156.25  
125  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
PECL  
LVDS  
PECL  
PECL  
CML  
156.25  
25  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
156.25  
25  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
HCSL  
LVDS  
LVDS  
LVDS  
HCSL  
156.25  
25  
LVDS  
LVDS  
156.25  
25  
LVDS  
LVDS  
LVCM  
OS  
MAN-  
SEC  
LVCM  
OS  
MAN-  
SEC  
LVCM  
OS-PN  
LVCM  
OS-PN  
156.25  
125  
156.25  
125  
156.25  
125  
156.25  
125  
25  
25  
25  
25  
LVCM  
OS  
MAN-  
SEC  
LVCM  
OS-PN  
156.25  
25  
156.25  
25  
25  
LVDS  
125  
LVCM  
OS  
MAN-  
SEC  
LVCM  
OS-PN  
LVCM  
OS-PN  
156.25  
100  
156.25  
100  
156.25  
156.25  
125  
156.25  
156.25  
125  
125  
125  
LVCM  
OS  
MAN-  
SEC  
25  
100  
156.25  
156.25  
100  
LVDS  
LVDS  
HCSL  
HCSL  
LVDS  
156.25  
25  
LVDS  
LVDS  
HCSL  
HCSL  
LVDS  
LVCM  
OS  
MAN-  
SEC  
LVCM  
OS-PN  
125  
125  
125  
125  
156.25  
25  
156.25  
156.25  
156.25  
100  
LVCM  
OS  
MAN-  
SEC  
LVCM  
OS-PN  
156.25  
156.25  
100  
156.25  
156.25  
100  
25  
25  
100  
LVCM  
OS  
MAN-  
SEC  
100  
100  
LVDS  
LVDS  
100  
100  
LVCM  
OS  
MAN-  
SEC  
156.25  
156.25  
156.25  
156.25  
12.000  
000183  
1055  
LVCM  
OS  
MAN-  
SEC  
LVCM  
OS-PN  
LVCM  
OS-PN  
LVCM  
OS-PN  
LVCM  
OS-PN  
10  
0x0A  
11-V1F  
25  
25  
Crystal  
25  
2500  
100  
PECL  
100  
PECL  
100  
PECL  
100  
PECL  
25  
125  
50  
LVCM  
OS  
MAN-  
SEC  
LVCM  
OS-PN  
LVCM  
OS-PN  
LVCM  
OS-PN  
10  
10  
0x0B  
0x0C  
12-V1F  
13-V1F  
25  
25  
25  
25  
Crystal  
Crystal  
25  
25  
2400  
2500  
25  
PECL  
PECL  
25  
PECL  
PECL  
100  
125  
CML  
100  
125  
CML  
25  
25  
25  
25  
100  
25  
HCSL  
LVDS  
12  
LVCM  
OS  
MAN-  
SEC  
LVCM  
OS-PN  
LVCM  
OS-PN  
156.25  
156.25  
PECL  
PECL  
100  
HCSL  
66.666  
LVDS 666666  
6667  
LVCM  
OS  
MAN-  
SEC  
LVCM  
OS-PN  
10  
10  
0x0D  
0x0E  
14-V1F  
15-V1F  
25  
25  
25  
25  
Crystal  
Crystal  
25  
25  
2500  
2500  
25  
PECL  
LVDS  
25  
PECL  
LVDS  
156.25  
125  
PECL  
LVDS  
156.25  
125  
PECL  
LVDS  
100  
25  
HCSL  
LVDS  
100  
25  
HCSL  
LVDS  
156.25  
25  
33.333  
LVDS 333333  
3333  
LVCM  
OS  
MAN-  
SEC  
LVCM  
OS-PN  
125  
125  
(1) The functionality of the status 0 and status 1 pins in SPI and I2C mode is programmable.  
(2) The REF_SEL input pin selects the primary or secondary input in MANUAL mode. That is: If the system only uses a XTAL on the secondary input, REF_SEL should be tied to VDD. The  
primary and secondary input stage power supply must be always connected.  
For all pin modes, STATUS0 outputs the PLL_LOCK signal and STATUS1 the LOSS OF REFERENCE.  
General Note: in all pin mode, all voltage supplies must either be 1.8 V or 2.5/3.3 V and the PWR pin number 44 must be set to 0 or 1 accordingly. In SPI and I2C mode, the supply  
voltages can be "mixed and matched" as long as the corresponding register bits reflect the supply voltage setting for each desired 1.8 V or 2.5/3.3 V supply. Exception: inputs configured  
for LVDS signaling (Type = LVDS) are supply agnostic, and therefore can be powered from 2.5 V/3.3 V or 1.8 V regardless of the supply select setting of pin number 44.  
Copyright © 2015, Texas Instruments Incorporated  
31  
 
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
Table 5. Pre-Configured Settings of CDCM6208V1F Accessible by PIN[4:0](1) (2) (continued)  
Type  
Type2  
f(PFD) f(VCO)  
LVCM  
OS  
MAN-  
SEC  
LVCM  
OS-PN  
10  
10  
0x0F  
0x10  
16-V1F  
17-V1F  
25  
25  
25  
25  
Crystal  
Crystal  
25  
25  
2500  
2500  
156.25  
25  
LVDS  
LVDS  
156.25  
25  
LVDS  
LVDS  
100  
25  
PECL  
LVDS  
100  
25  
PECL  
LVDS  
25  
25  
25  
LVDS  
100  
HCSL  
100  
HCSL  
33.333  
33.333  
333333  
3333  
LVCM  
OS  
MAN-  
SEC  
LVCM  
OS-PN  
LVCM  
OS-PN  
LVDS  
156.25  
LVDS 333333  
3333  
LVCM  
OS  
MAN-  
SEC  
10  
10  
10  
0x11  
0x12  
0x13  
18-V1F  
19-V1F  
20-V1F  
25  
25  
25  
25  
25  
25  
Crystal  
Crystal  
Crystal  
25  
25  
25  
2500  
2500  
2500  
25  
100  
LVDS  
CML  
25  
100  
LVDS  
CML  
25  
LVDS  
CML  
25  
PECL  
CML  
25  
100  
LVDS  
HCSL  
HCSL  
156.25  
100  
LVDS  
HCSL  
HCSL  
156.25  
100  
LVDS  
HCSL  
HCSL  
156.25  
100  
LVDS  
HCSL  
HCSL  
LVCM  
OS  
MAN-  
SEC  
100  
125  
100  
125  
LVCM  
OS  
MAN-  
SEC  
156.25  
PECL  
156.25  
PECL  
PECL  
PECL  
156.25  
156.25  
100  
100  
133.33  
LVDS 333333  
3333  
LVCM  
OS  
MAN-  
SEC  
LVCM  
OS-PN  
LVCM  
OS-PN  
10  
0x14  
21-V1F  
25  
25  
Crystal  
25  
2400  
100  
LVDS  
100  
LVDS  
100  
LVDS  
100  
LVDS  
24  
100  
LVDS  
100  
LVCM  
OS  
MAN-  
SEC  
LVCM  
OS-PN  
LVCM  
OS-PN  
10  
10  
10  
10  
10  
10  
10  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
22-V1F  
23-V1F  
24-V1F  
25-V1F  
26-V1F  
27-V1F  
28-V1F  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
25  
25  
25  
25  
25  
25  
25  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
125  
125  
125  
125  
100  
100  
100  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
125  
125  
125  
125  
100  
100  
100  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
125  
125  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
125  
125  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS  
125  
125  
125  
125  
100  
100  
156.25  
156.25  
125  
LVDS  
LVDS  
LVDS  
LVDS  
HCSL  
HCSL  
HCSL  
156.25  
100  
LVDS  
LVDS  
LVDS  
LVDS  
HCSL  
LVDS  
HCSL  
100  
100  
LVCM  
OS  
MAN-  
SEC  
LVCM  
OS-PN  
LVCM  
OS-PN  
LVCM  
OS  
MAN-  
SEC  
LVCM  
OS-PN  
LVCM  
OS-PN  
125  
125  
156.25  
100  
100  
LVCM  
OS  
MAN-  
SEC  
LVCM  
OS-PN  
LVCM  
OS-PN  
125  
125  
125  
100  
LVCM  
OS  
MAN-  
SEC  
156.25  
156.25  
156.25  
156.25  
156.25  
156.25  
LVDS  
LVDS  
LVDS  
100  
100  
100  
HCSL  
LVDS  
LVDS  
LVCM  
OS  
MAN-  
SEC  
100  
156.25  
100  
156.25  
LVCM  
OS  
MAN-  
SEC  
100  
100  
156.25  
83.333  
23.999  
LVCM  
OS  
MAN-  
SEC  
LVCM  
OS-PN  
LVCM  
OS-PN  
LVCM  
OS-PN  
10  
10  
0x1C  
0x1D  
29-V1F  
30-V1F  
25  
25  
25  
25  
Crystal  
Crystal  
25  
25  
2500  
2500  
100  
100  
LVDS  
LVDS  
100  
100  
LVDS  
LVDS  
100  
100  
LVDS  
LVDS  
100  
100  
LVDS 999267  
5781  
125  
125  
125  
125  
LVDS 333333  
3333  
23.999  
LVDS 999267  
5781  
LVCM  
OS  
MAN-  
SEC  
LVCM  
OS-PN  
LVCM  
OS-PN  
LVCM  
OS-PN  
LVDS  
100  
23.999  
LVDS 999267  
5781  
66.666  
LVDS 666666  
6667  
LVCM  
OS  
MAN-  
SEC  
LVCM  
OS-PN  
LVCM  
OS-PN  
LVCM  
OS-PN  
10  
10  
0x1E  
0x1F  
31-V1F  
32-V1F  
25  
25  
25  
25  
Crystal  
Crystal  
25  
25  
2500  
2500  
100  
LVDS  
LVDS  
100  
LVDS  
LVDS  
100  
100  
LVDS  
LVDS  
100  
100  
125  
25  
125  
100  
MAN-  
SEC  
LVCM  
OS-PN  
LVDS  
156.25  
156.25  
LVDS  
125  
LVDS  
LVDS  
100  
LVDS  
32  
Copyright © 2015, Texas Instruments Incorporated  
 
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
10.4.2 Loop Filter Recommendations for Pin Modes  
The following two tables provide the internal charge pump and R3/C3 settings for pin modes. The designer can  
either design their own optimized loop filter, or use the suggested loop filter in the Table 6.  
Table 6. CDCM6208V1F Loop Filter Recommendation for Pin Mode  
Internal LPF  
Components  
PRI_REF  
SEC_REF  
Recommended  
Loop Filter  
C1/R2/C2  
f(PFD)  
(MHz)  
ICP  
(mA)  
Use Case  
Freq  
Freq  
R3  
C3  
Type  
Type  
(MHz)  
(MHz)  
(Ohm)  
(pF)  
SPI  
Default  
MAN-  
SEC  
100  
Ohm  
0
I/O  
I/O  
25  
25  
Disable  
Disable  
25  
25  
Crystal  
Crystal  
25  
25  
2.5m  
2.5m  
100pF/500Ohm/22nF  
100pF/500Ohm/22nF  
242.5  
242.5  
I2C  
Default  
MAN-  
SEC  
100  
Ohm  
1
Reserv  
ed  
11  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
MAN-  
SEC  
100  
Ohm  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
1-V1F  
2-V1F  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
2.5m  
2.5m  
2.5m  
2.5m  
2.5m  
2.5m  
2.5m  
2.5m  
2.5m  
2.5m  
2.5m  
2.5m  
2.5m  
2.5m  
2.5m  
2.5m  
2.5m  
2.5m  
2.5m  
2.5m  
2.5m  
2.5m  
2.5m  
100pF/500Ohm/22nF  
100pF/500Ohm/22nF  
100pF/500Ohm/22nF  
100pF/500Ohm/22nF  
100pF/500Ohm/22nF  
100pF/500Ohm/22nF  
100pF/500Ohm/22nF  
100pF/500Ohm/22nF  
100pF/500Ohm/22nF  
100pF/500Ohm/22nF  
100pF/500Ohm/22nF  
100pF/500Ohm/22nF  
100pF/500Ohm/22nF  
100pF/500Ohm/22nF  
100pF/500Ohm/22nF  
100pF/500Ohm/22nF  
100pF/500Ohm/22nF  
100pF/500Ohm/22nF  
100pF/500Ohm/22nF  
100pF/500Ohm/22nF  
100pF/500Ohm/22nF  
100pF/500Ohm/22nF  
100pF/500Ohm/22nF  
242.5  
242.5  
242.5  
242.5  
242.5  
242.5  
242.5  
242.5  
337.5  
242.5  
242.5  
242.5  
242.5  
242.5  
242.5  
242.5  
242.5  
242.5  
242.5  
242.5  
242.5  
242.5  
242.5  
MAN-  
SEC  
100  
Ohm  
MAN-  
SEC  
100  
Ohm  
3-V1F  
MAN-  
SEC  
100  
Ohm  
4-V1F  
MAN-  
SEC  
100  
Ohm  
5-V1F  
MAN-  
SEC  
100  
Ohm  
6-V1F  
MAN-  
SEC  
100  
Ohm  
7-V1F  
MAN-  
SEC  
100  
Ohm  
8-V1F  
MAN-  
SEC  
100  
Ohm  
9-V1F  
MAN-  
SEC  
100  
Ohm  
10-V1F  
11-V1F  
12-V1F  
13-V1F  
14-V1F  
15-V1F  
16-V1F  
17-V1F  
18-V1F  
19-V1F  
20-V1F  
21-V1F  
22-V1F  
23-V1F  
MAN-  
SEC  
100  
Ohm  
MAN-  
SEC  
100  
Ohm  
MAN-  
SEC  
100  
Ohm  
MAN-  
SEC  
100  
Ohm  
MAN-  
SEC  
100  
Ohm  
MAN-  
SEC  
100  
Ohm  
MAN-  
SEC  
100  
Ohm  
MAN-  
SEC  
100  
Ohm  
MAN-  
SEC  
100  
Ohm  
MAN-  
SEC  
100  
Ohm  
MAN-  
SEC  
100  
Ohm  
MAN-  
SEC  
100  
Ohm  
MAN-  
SEC  
100  
Ohm  
Copyright © 2015, Texas Instruments Incorporated  
33  
 
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
Table 6. CDCM6208V1F Loop Filter Recommendation for Pin Mode (continued)  
Internal LPF  
Components  
PRI_REF  
SEC_REF  
Recommended  
Loop Filter  
C1/R2/C2  
f(PFD)  
(MHz)  
ICP  
(mA)  
Use Case  
Freq  
Freq  
R3  
C3  
Type  
Type  
(MHz)  
(MHz)  
(Ohm)  
(pF)  
MAN-  
SEC  
100  
Ohm  
10  
10  
10  
10  
10  
10  
10  
10  
10  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
24-V1F  
25-V1F  
26-V1F  
27-V1F  
28-V1F  
29-V1F  
30-V1F  
31-V1F  
32-V1F  
25  
25  
25  
25  
25  
25  
25  
25  
25  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVDS  
25  
25  
25  
25  
25  
25  
25  
25  
25  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
Crystal  
25  
25  
25  
25  
25  
25  
25  
25  
25  
2.5m  
2.5m  
2.5m  
2.5m  
2.5m  
2.5m  
2.5m  
2.5m  
2.5m  
100pF/500Ohm/22nF  
100pF/500Ohm/22nF  
100pF/500Ohm/22nF  
100pF/500Ohm/22nF  
100pF/500Ohm/22nF  
100pF/500Ohm/22nF  
100pF/500Ohm/22nF  
100pF/500Ohm/22nF  
100pF/500Ohm/22nF  
242.5  
242.5  
242.5  
242.5  
242.5  
242.5  
242.5  
242.5  
242.5  
MAN-  
SEC  
100  
Ohm  
MAN-  
SEC  
100  
Ohm  
MAN-  
SEC  
100  
Ohm  
MAN-  
SEC  
100  
Ohm  
MAN-  
SEC  
100  
Ohm  
MAN-  
SEC  
100  
Ohm  
MAN-  
SEC  
100  
Ohm  
MAN-  
SEC  
100  
Ohm  
10.4.3 Status Pins Definition  
The device vitals such as input signal quality, smart mux input selection, and PLL lock can be monitored by  
reading device registers or at the status pins STATUS1, and STATUS0. Register 3[12:7] allows for customization  
of which vitals are mapped to these two pins. Table 7 lists the three events that can be mapped to each status  
pin and which can also be read in the register space.  
Table 7. CDCM6208V1F Status Pin Definition List  
STATUS  
SIGNAL NAME  
REGISTER BIT  
NO.  
SIGNAL TYPE SIGNAL NAME  
DESCRIPTION  
SEL_REF  
LVCMOS  
STATUS0, 1  
Reg 3.12  
Reg 3.9  
Indicates Reference Selected for PLL:  
0 Primary input selected to drive PLL  
1 Secondary input selected to drive PLL  
LOS_REF  
LVCMOS  
STATUS0, 1  
Reg 3.11  
Reg 3.8  
Loss of selected reference input observed at active input:  
0 Reference input present  
1 Loss of reference input  
Important Note 1: For LOS_REF to operate properly, the secondary  
input SEC_IN must be enabled. Set register Q4.5=1. If register  
Q4.5 is set to zero, LOS_REF will output a static high signal  
regardless of the actual input signal status on PRI_IN.  
PLL_UNLOCK  
LVCMOS  
STATUS0, 1  
Reg 3.10  
Reg 3.7  
Indicates unlock status for PLL (digital):  
PLL locked Q21.02 = 0 and VSTATUS0/1= VIH  
(1)  
PLL unlocked Q21.2 = 1 and VSTATUS0/1= VILSee note  
Note 2: I f the smartmux is enabled and both reference clocks stall,  
the STATUSx output signal will 98% of the time indicate the LOS  
condition with a static high signal. However, in 2% of the cases, the  
LOS detection engine erroneously stalls at a state where the  
STATUSx output PLL lock indicator will signalize high for 511 out of  
every 512 PFD clock cycles.  
(1) The reverse logic between the register Q21.2 and the external output signal on STATUS0 or STATUS1.  
34  
Copyright © 2015, Texas Instruments Incorporated  
 
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
NOTE  
It is recommended to assert only one out of the three register bits for each of the status  
pins. For example, to monitor the PLL lock status on STATUS0 and the selected reference  
clock sources on STATUS1 output, the device register settings would be Q3.12 = Q3.7 =  
1 and Q3.11 = Q3.10 = Q3.9 = Q3.8 = 0. If a status pin is unused, it is recommended to  
set the according 3 register bits to zero (e.g. Q3[12:9] = 0 for STATUS0 = 0). If more than  
one bit is enabled for each STATUS signal, the function becomes OR'ed. For example, if  
Q3.11 = Q3.10 = 1 and Q3.12 = 0, the STATUS0 output would be high either if the device  
goes out of lock or the selected reference clock signal is lost.  
10.4.4 PLL Lock Detect  
The PLL lock detection circuit is a digital detection circuit which detects any frequency error, even a single cycle  
slip. The PLL unlock is signalized when a certain number of cycle slips have been exceeded, at which point the  
counter is reset. A frequency error of 2% will cause PLL unlock to stay low. A 0.5% frequency error shows up as  
th  
toggling the PLL lock output with roughly 50% duty cycle at roughly 1/1000 of the PFD update frequency to the  
device. A frequency error of 1ppm would show up as rare toggling low for a duration of approximately 1000 PFD  
update clock cycles. If the system plans using PLL lock to toggle a system reset, then consider adding an RC  
filter on the PLL LOCK output (Status 1 or Status 0) to avoid rare cycle slips from triggering an entire system  
reset.  
10.4.5 Interface and Control  
The host (DSP, Microcontroller, FPGA, etc) configures and monitors the CDCM6208V1F via the SPI or I2C port.  
The host reads and writes to a collection of control/status bits called the register file. Typically, a hardware block  
is controlled and monitored via a specific grouping of bits located within the register file. The host controls and  
monitors certain device-wide critical parameters directly, via control/status pins. In the absence of a host, the  
CDCM6208V1F can be configured to operate in pin mode where the control pins [PIN0-PIN4] can be set  
appropriately to generate the necessary clock outputs out of the device.  
REGISTER SPACE  
Reg31  
15 14 13 12 11 10  
9
9
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
STATUS0  
STATUS1/PIN0  
PDN  
Reg30  
15 14 13 12 11 10  
Control/  
Status  
Pins  
Reg 23  
15 14 13 12 11 10  
9
9
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
RESETN/PWR  
Reg 22  
15 14 13 12 11 10  
Device  
Control  
And  
Device  
Hardware  
Reg 21  
15 14 13 12 11 10  
SCL/PIN4  
SDI/SDA/PIN1  
SDO/AD0/PIN2  
SCS/AD1/PIN3  
9
8
7
6
5
4
3
2
1
0
SPI/  
I2C  
Port  
Reg 20  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Status  
Reg3  
15 14 13 12 11 10  
9
9
9
9
8
8
8
8
7
7
7
7
6
6
6
6
5
5
5
5
4
4
4
4
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
Reg2  
15 14 13 12 11 10  
Reg1  
15 14 13 12 11 10  
SI_MODE0  
SI_MODE1  
Reg 0  
15 14 13 12 11 10  
Comm  
Select  
SPI: SI_MODE[1:0]=00; I2C: SI_MODE[1:0]=01; Pin Mode: SI_MODE[1:0]=10  
Figure 28. CDCM6208V1F Interface and Control Block  
Within this register space, there are certain bits that have read/write access. Other bits are read-only (an attempt  
to write to a read only bit will not change the state of the bit).  
Copyright © 2015, Texas Instruments Incorporated  
35  
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
10.4.5.1 Register File Reference Convention  
Figure 29 shows the method this document employs to refer to an individual register bit or a grouping of register  
bits. If a drawing or text references an individual bit, the format is to specify the register number first and the bit  
number second. The CDCM6208V1F contains 21 registers that are 16 bits wide. The register addresses and the  
bit positions both begin with the number zero (0). A period separates the register address and bit address. The  
first bit in the register file is address 'R0.0' meaning that it is located in Register 0 and is bit position 0. The last  
bit in the register file is address R31.15 referring to the 16thbit of register address 31 (the 32ndregister in the  
device  
Reg05  
Bit Number(s)  
(s)  
Register Number  
5
4
3
2
R0
5
.
2  
Figure 29. CDCM6208V1F Register Reference Format  
36  
Copyright © 2015, Texas Instruments Incorporated  
 
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
10.4.5.2 SPI - Serial Peripheral Interface  
To enable the SPI port, tie the communication select pins SI_MODE[1:0] to ground. SPI is a master/slave  
protocol in which the host system is always the master; therefore, the host always initiates communication  
to/from the device. The SPI interface consists of four signal pins. The device SPI address is 0000.  
Table 8. Serial Port Signals in SPI Mode  
PIN  
I/O  
DESCRIPTION  
NAME  
NUMBER  
SDI/SDA/PIN1  
SDO/AD0/PIN2  
SCS/AD1/PIN3  
SCL/PIN4  
2
3
4
5
Input  
Output  
Input  
SDI: SPI Serial Data Input  
SDO: SPI Serial Data  
SCS: SPI Latch Enable  
SCL: SPI/I2C Clock  
Input  
The host must present data to the device MSB first. A message includes a transfer direction bit, an address field,  
and a data field as depicted in Figure 30  
LSB  
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
MSB  
1
2
0
3
0
4
0
5
0
6
7
8
9
Order of Transmission  
Bit Definition  
A
10  
A
9
A
8
A
7
A
6
A
5
A
4
A
3
A
2
A
1
A
0
D
D
D
D
D
D
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
First Out  
15 14 13 12 11 10  
Fixed (4 bits)  
Examples: Read Register 4:  
Register Address (11 bits)  
Data Payload (16 bits)  
Message Field Definition  
1|000 0|000 0000 0100| xxxx xxxx xxxx xxxx  
0|000 0|000 0000 0101| 1111 0000 1111 0001  
Write 0xF0F1 to Register 5:  
Figure 30. CDCM6208V1F SPI Message Format  
10.4.5.2.1 Configuring the PLL  
The CDCM6208V1F allows configuring the PLL to accommodate various input and output frequencies either  
through an I2C or SPI programming interface or in the absence of programming, the PLL can be configured  
through control pins. The PLL can be configured by setting the Smart Input MUX, Reference Divider, PLL Loop  
Filter, Feedback Divider, Prescaler Divider, and Output Dividers.  
For the PLL to operate in closed loop mode, the following condition in Equation 2 has to be met when using  
primary input for the reference clock, and the condition in Equation 3 has to be met when using secondary input  
for the reference clock.  
f
f
PRI_REF  
(M × R)  
VCO  
(N × PS_A)  
=
(2)  
f
f
SEC_REF  
M
VCO  
(N × PS_A)  
=
(3)  
In Equation 2 and Equation 3, ƒPRI_REF is the reference input frequency on the primary input and ƒSEC_REF is the  
reference input frequency on the secondary input, R is the reference divider, M is the input divider, N is the  
feedback divider, and PS_A the prescaler divider A.  
The output frequency, ƒOUT, is a function of ƒVCO, the prescaler A, and the output divider (O), and is given by  
Equation 4. (Use PS_B in for outputs 2, 3, 6, and 7).  
f
OSC  
(O × PS_A)  
f
=
OUT  
(4)  
Copyright © 2015, Texas Instruments Incorporated  
37  
 
 
 
 
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
When the output frequency plan calls for the use of some output dividers as fractional values, the following steps  
are needed to calculate the closest achievable frequencies for those using fractional output dividers and the  
frequency errors (difference between the desired frequency and the closest achievable frequency).  
Based on system needs, decide the frequencies that need to have best possible jitter performance.  
Once decided, these frequencies need to be placed on integer output dividers.  
Then a frequency plan for these frequencies with strict jitter requirements can be worked out using the  
common divisor algorithm.  
Once the integer divider plans are worked out, the PLL settings (including VCO frequency, feedback divider,  
input divider and prescaler divider) can be worked out to map the input frequency to the frequency out of the  
prescaler divider.  
Then calculate the fractional divider values (whose values must be greater than 2) that are needed to support  
the output frequencies that are not part of the common frequency plan from the common divisor algorithm  
already worked out.  
For each fractional divider value, try to represent the fractional portion in a 20 bit binary scheme, where the  
first fractional bit is represented as 0.5, the second fractional bit is represented as 0.25, third fractional bit is  
represented as 0.125 and so on. Continue this process until the entire 20 bit fractional binary word is  
exhausted.  
Once exhausted, the fraction can be calculated as a cumulative sum of the fractional bit x fractional value of  
the fractional bit. Once this is done, the closest achievable output frequency can be calculated with the  
mathematical function of the frequency out of the prescaler divider divided by the achievable fractional  
divider.  
The frequency error can then be calculated as the difference between the desired frequency and the closest  
achievable frequency.  
10.5 Programming  
10.5.1 Writing to the CDCM6208V1F  
To initiate a SPI data transfer, the host asserts the SCS (serial chip select) pin low. The first rising edge of the  
clock signal (SCL) transfers the bit presented on the SDI pin of the CDCM6208V1F. This bit signals if a read  
(first bit high) or a write (first bit low) will transpire. The SPI port shifts data to the CDCM6208V1F with each  
rising edge of SCL. Following the W/R bit are 4 fixed bits followed by 11 bits that specify the address of the  
target register in the register file. The 16 bits that follow are the data payload. If the host sends an incomplete  
message, (i.e. the host de-asserts the SCS pin high prior to a complete message transmission), then the  
CDCM6208V1F aborts the transfer, and device makes no changes to the register file or the hardware. Figure 32  
shows the format of a write transaction on the CDCM6208V1F SPI port. The host signals the CDCM6208V1F of  
the completed transfer and disables the SPI port by de-asserting the SCS pin high.  
38  
Copyright © 2015, Texas Instruments Incorporated  
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
Programming (continued)  
10.5.2 Reading from the CDCM6208V1F  
As with the write operation, the host first initiates a SPI transfer by asserting the SCS pin low. The host signals a  
read operation by shifting a logical high in the first bit position, signaling the CDCM6208V1F that the host is  
imitating a read data transfer from the device. During the portion of the message in which the host specifies the  
CDCM6208V1F register address, the host presents this information on the SDI pin of the device (for the first 15  
clock cycles after the W/R bit). During the 16 clock cycles that follow, the CDCM6208V1F presents the data from  
the register specified in the first half of the message on the SDO pin. The SDO output is 3-stated anytime SCS is  
high, so that multiple SPI slave devices can be connected to the same serial bus. The host signals the  
CDCM6208V1F that the transfer is complete by de-asserting the SCS pin high.  
SCS (#37)  
&
0
0
0
SDO internal  
enable signal  
SDO  
(#34)  
Data out  
LVCMOS  
CDCM6208  
Figure 31.  
10.5.3 Block Write/Read Operation  
The device supports a block write and block read operation. The host need only specify the lowest address of the  
sequence of addresses that the host needs to access. The CDCM6208V1F will automatically increment the  
internal register address pointer if the SCS pin remains low after the SPI port finishes the initial 32-bit  
transmission sequence. Each transmission of 16 bits (a data payload width) results in the device automatically  
incrementing the address pointer (provided the SCS pin remains active low for all sequences).  
SCS  
SCL  
WRITE  
A29 A28  
A26 A25  
A22 A21 A20 A19  
A16 D15  
D13  
D10 D9 D8  
D6 D5 D4  
D2 D1 D0  
A31 A30  
A27  
A24 A23  
A18 A17  
D14  
D12 D11  
D7  
D3  
SCI  
A31 A30 A29 A28  
A23  
SCI  
A27 A26 A25  
A24  
A21 A20 A19 A18 A17 A16  
A22  
'21¶7ꢀ&$5(  
READ  
D3  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7 D6 D5 D4  
D2 D1 D0  
HI-Z  
SCO  
16-BIT COMMAND  
16-BIT DATA  
Figure 32. CDCM6208V1F SPI Port Message Sequencing  
10.5.4 I2C Serial Interface  
2
With SI_MODE1=0 and SI_MODE0=1 the CDCM6208V1F enters I C mode. The I2C port on the CDCM6208V1F  
works as a slave device and supports both the 100 kHz standard mode and 400 kHz fast mode operations. Fast  
mode imposes a glitch tolerance requirement on the control signals. Therefore, the input receivers ignore pulses  
of less than 50 ns duration. The inputs of the device also incorporates a Schmitt trigger at the SDA and SCL  
inputs to provide receiver input hysteresis for increased noise robustness.  
NOTE  
Communication through I2C is not possible while RESETN is held low.  
Copyright © 2015, Texas Instruments Incorporated  
39  
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
Programming (continued)  
In an I2C bus system, the CDCM6208V1F acts as a slave device and is connected to the serial bus (data bus  
SDA and clock bus SCL). The SDA port is bidirectional and uses an open drain driver to permit multiple devices  
to be connected to the same serial bus. The CDCM6208V1F allows up to four unique CDCM6208V1F slave  
devices to occupy the I2C bus in addition to any other I2C slave device with a different I2C address. These slave  
devices are accessed via a 7-bit slave address transmitted as part of an I2C packet. Only the device with a  
matching slave address responds to subsequent I2C commands. The device slave address is 10101xx (the two  
LSBs are determined by the AD1 and AD0 pins). The five MSBs are hard-wired, while the two LSBs are set  
through pins on device powerup.  
SDA  
Data out  
Data in  
CDCM6208  
Figure 33.  
During the data transfer through the I2C port interface, one clock pulse is generated for each data bit transferred.  
The data on the SDA line must be stable during the high period of the clock. The high or low state of the data  
line can change only when the clock signal on the SCL line is low. The start data transfer condition is  
characterized by a high-to-low transition on the SDA line while SCL is high. The stop data transfer condition is  
characterized by a low-to-high transition on the SDA line while SCL is high. The start and stop conditions are  
always initiated by the master. Every byte on the SDA line must be eight bits long. Each byte must be followed  
by an acknowledge bit and bytes are sent MSB first.  
The acknowledge bit (A) or non-acknowledge bit (A) is the 9thbit attached to any 8-bit data byte and is always  
generated by the receiver to inform the transmitter that the byte has been received (when A = 0) or not (when A  
= 1). A = 0 is done by pulling the SDA line low during the 9thclock pulse and A = 1 is done by leaving the SDA  
line high during the 9thclock pulse.  
The I2C master initiates the data transfer by asserting a start condition which initiates a response from all slave  
devices connected to the serial bus. Based on the 8-bit address byte sent by the master over the SDA line  
(consisting of the 7-bit slave address (MSB first) and an R/W bit), the device whose address corresponds to the  
transmitted address responds by sending an acknowledge bit. All other devices on the bus remain idle while the  
selected device waits for data transfer with the master. The CDCM6208V1F slave address bytes are given in  
below table.  
After the data transfer has occurred, stop conditions are established. In write mode, the master asserts a stop  
condition to end data transfer during the 10 thclock pulse following the acknowledge bit for the last data byte from  
the slave. In read mode, the master receives the last data byte from the slave but does not pull SDA low during  
the 9thclock pulse. This is known as a non-acknowledge bit. By receiving the non-acknowledge bit, the slave  
knows the data transfer is finished and enters the idle mode. The master then takes the data line low during the  
low period before the 10 thclock pulse, and high during the 10 thclock pulse to assert a stop condition.  
40  
Copyright © 2015, Texas Instruments Incorporated  
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
Programming (continued)  
For "Register Write/Read" operations, the I2C master can individually access addressed registers, that are made  
of two 8-bit data bytes.  
Table 9. I2C Slave Address Byte  
A6  
1
A5  
0
A4  
1
A3  
0
A2  
1
AD1  
AD0  
R/W  
1/0  
1/0  
1/0  
1/0  
0
0
1
1
0
1
0
1
1
0
1
0
1
1
0
1
0
1
1
0
1
0
1
Table 10. Generic Programming Sequence  
S
Start Condition  
Repeated Condition  
Sr  
R/W 1 = Read (Rd) from slave; 0 = Write (Wr) to slave  
A
P
Acknowledge (ACK = 0 and NACK = 1)  
Stop Condition  
Master to Slave Transmission  
Slave to Master Transmission  
Figure 34. Register Write Programming Sequence  
1
7
1
1
8
1
8
1
8
1
8
1
1
SLAVE  
Address  
Register  
Address  
Register  
Address  
Data  
Byte  
Data  
Byte  
S
Wr  
A
A
A
A
A
P
Figure 35. Register Read Programming Sequence  
1
7
1
1
8
1
8
1
1
1
1
1
8
1
8
1
1
SLAVE  
Address  
Register  
Address  
Register  
Address  
Slave  
Address  
Data  
Byte  
Data  
Byte  
S
Wr  
A
A
A
S
Rd  
A
A
A
P
Copyright © 2015, Texas Instruments Incorporated  
41  
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
10.6 Register Maps  
In SPI/I2C mode the device can be configured through twenty registers. Register 4 configures the input, Reg 0-3  
the PLL and dividers, and Register 5 - 20 configures the 8 different outputs.  
CDCM6208 Register programming  
INT  
REG 5  
DIV  
REG 6  
REG 4  
REG 4  
PRI  
R
PSB  
M
Charge Pump  
and  
Loop Filter  
PSA  
VCO  
I
REG 4  
SEC  
REG 1  
REG 3  
INT  
DIV  
REG 0  
REG 7  
N
REG 8  
REG 2 / REG1  
REG 9,10,11  
FRAC  
DIV  
PRI  
SEC  
REG 9  
REG 12,13,14  
FRAC  
DIV  
PRI  
SEC  
REG 12  
FRAC  
DIV  
REG 15,16,17  
FRAC  
DIV  
REG 18,19, 20  
Figure 36. Device Register Map  
42  
Copyright © 2015, Texas Instruments Incorporated  
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
Register Maps (continued)  
Table 11. Register 0  
BIT  
BIT NAME  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
These bits must be set to 0  
15:10  
RESERVED  
PLL Internal Loop Filter Capacitor (C3) Selection  
000 35 pF  
001112.5 pF  
010 177.5 pF  
011 242.5 pF  
100 310 pF  
PLL Internal Loop Filter  
(C3)  
9:7  
LF_C3[2:0]  
101 377.5 pF  
110 445 pF  
111 562.5 pF  
PLL Internal Loop Filter Resistor (R3) Selection  
000 10 Ω  
001 30 Ω  
010 60 Ω  
011 100 Ω  
100 530 Ω  
PLL Internal Loop Filter  
(R3)  
6:4  
LF_R3[2:0]  
1011050 Ω  
110 2080 Ω  
111 4010 Ω  
PLL Charge Pump Current Setting  
000 500 µA  
001 1.0 mA  
010 1.5 mA  
3:1  
PLL_ICP[2:0]  
RESERVED  
PLL Charge Pump  
011 2.0 mA  
100 2.5 mA  
101 3.0 mA  
110 3.5 mA  
1114.0 mA  
This bit is tied to zero statically, and it is recommended to set to 0  
when writing to register.  
0
Table 12. Register 1  
BIT  
15:2  
1:0  
BIT NAME  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
PLL Reference 14-b Divider Selection  
(Divider value is register value +1)  
PLL_REFDIV[13:0]  
PLL_FBDIV1[9:8]  
PLL Reference Divider  
PLL Feedback Divider 1 PLL Feedback 10-b Divider Selection, Bits 9:8  
Table 13. Register 2  
BIT  
BIT NAME  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
PLL Feedback 10-b Divider Selection, Bits 7:0  
(Divider value is register value +1)  
15:8  
PLL_FBDIV1[7:0]  
PLL Feedback Divider 1  
PLL Feedback 8-b Divider Selection  
(Divider value is register value +1)  
7:0  
PLL_FBDIV0[7:0]  
PLL Feedback Divider 0  
Copyright © 2015, Texas Instruments Incorporated  
43  
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
Table 14. Register 3  
BIT  
BIT NAME  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
These bits must be set to 0  
15:13  
RESERVED  
Reference clock status enable on Status 1 pin:  
0 Disable  
1 Enable (See Table 7 for full description)  
12  
11  
10  
9
ST1_SEL_REFCLK  
ST1_LOR_EN  
ST1_PLLLOCK_EN  
ST0_SEL_REFCLK  
ST0_LOR_EN  
ST0_PLLLOCK_EN  
RSTN  
Loss-of-reference Enable on Status 1 pin:  
0 Disable"  
1 Enable (See Table 7 for full description)  
PLL Lock Indication Enable on Status 1 pin:  
0 Disable  
1 Enable (See Table 7 for full description)  
Device Status  
Reference clock status enable on Status 0 pin:  
0 Disable  
1 Enable (See Table 7 for full description)  
Loss-of-reference Enable on Status 0 pin:  
0 Disable  
1 Enable (See Table 7 for full description)  
8
PLL Lock Indication Enable on Status 0 pin:"  
0 Disable  
1 Enable (See Table 7 for full description)  
7
Device Reset Selection:  
0 Device In Reset (retains register values)  
1 Normal Operation  
6
Device Reset  
Output Divider  
PLL/VCO  
Output Channel Dividers Synchronization Enable:  
0 Forces synchronization  
1 Exits synchronization  
5
SYNCN  
PLL/VCO Calibration Enable:  
0 Disable  
4
ENCAL  
1 Enable  
PLL Prescaler 1 Integer Divider Selection:  
00 Divide-by-4  
01Divide-by-5  
10 Divide-by-6  
11 RESERVED  
used for Y2, Y3, Y6, and Y7  
3:2  
1:0  
PS_B[1:0]  
PS_A[1:0]  
PLL Prescaler Divider B  
PLL Prescaler Divider A  
PLL Prescaler 0 Integer Divider Selection:  
00 Divide-by-4  
01 Divide-by-5  
10 Divide-by-6  
11 RESERVED  
used in PLL feedback, Y0, Y1, Y4, and Y5  
Table 15. Register 4  
BIT  
BIT NAME  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
Smart MUX Pulse Width Selection. This bit controls the Smart MUX  
delay and waveform reshaping.  
00 PLL Smart MUX Clock Delay and Reshape Disabled (default  
in all pin modes)  
15:14  
SMUX_PW[1:0]  
01 PLL Smart MUX Clock Delay Enable  
10 PLL Smart MUX Clock Reshape Enable  
11 PLL Smart MUX Clock Delay and Reshape Enable  
Smart MUX Mode Selection:  
0 Auto select  
1 Manual select  
Reference Input Smart  
MUX  
13  
12  
SMUX_MODE_SEL  
SMUX_REF_SEL  
Note: in Auto select mode, both input buffers must be enabled. Set  
R4.5 = 1 and R4.2 = 1  
Smart MUX Selection for PLL Reference:  
0 Primary  
1 Secondary (only if REF_SEL pin is high)  
This bit is ignored when smartmux is set to auto select (e.g. R4.13 =  
0). See Table 7 for details.  
44  
Copyright © 2015, Texas Instruments Incorporated  
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
Table 15. Register 4 (continued)  
BIT  
BIT NAME  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
Primary Input (R) Divider Selection:  
0000 Divide by 1  
11:8  
CLK_PRI_DIV[3:0]  
Primary Input Divider  
1111 Divide by 16  
Secondary Input Buffer Type Selection:  
00 CML  
7:6  
5
SEC_SELBUF[1:0]  
EN_SEC_CLK  
01 LVDS  
10 LVCMOS  
11 Crystal  
Secondary Input  
Secondary input enable:  
0 Disable  
1 Enable  
Primary Input Buffer Type Selection:  
00 CML  
4:3  
PRI_SELBUF[1:0]  
EN_PRI_CLK  
01 LVDS  
10 LVCMOS  
11 LVCMOS  
Primary Input  
Primary input enable:  
0 Disable  
1 Enable  
2
1
0
Supply voltage for secondary input:  
0 1.8 V  
1 2.5/3.3 V  
(1)  
SEC_SUPPLY  
Secondary Input  
Primary Input  
Supply voltage for primary input:  
0 1.8 V  
(2)  
PRI_SUPPLY  
1 2.5/3.3 V  
(1) It is ok to power up the device with a 2.5 V/3.3 V supply while this bit is set to 0. To ensure best device performance this registers  
should be updated after power-up to reflect the true VDD_SEC supply voltage used.  
(2) It is ok to power up the device with a 2.5 V/3.3 V supply while this bit is set to 0. To ensure best device performance this registers  
should be updated after power-up to reflect the true VDD_PRI supply voltage used.  
Table 16. Register 5  
BIT  
15  
14  
13  
12  
11  
10  
9
BIT NAME  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
This bit must be set to 0  
This bit must be set to 0  
This bit must be set to 0  
This bit must be set to 0  
This bit must be set to 0  
This bit must be set to 0  
This bit must be set to 0  
Output Channel 1 Type Selection:  
00, 01 LVDS  
10 CML  
8:7  
6:5  
4:3  
2:1  
SEL_DRVR_CH1[1:0]  
11 PECL  
Output Channel 1  
Output channel 1 enable:  
00 Disable  
01 Enable  
10 Drive static 0  
11 Drive static 1  
EN _CH1[1:0]  
Output Channel 0 Type Selection:  
00, 01 LVDS  
10 CML  
SEL_DRVR_CH0[1:0]  
EN_CH0[1:0]  
11 PECL  
Output Channel 0  
Output channel 0 enable:  
00 Disable  
01 Enable  
10 Drive static 0  
11 Drive static 1  
Copyright © 2015, Texas Instruments Incorporated  
45  
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
Table 16. Register 5 (continued)  
BIT  
BIT NAME  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
Output Channels 0 and 1 Supply Voltage Selection:  
0 1.8 V  
1 2.5/3.3 V  
Output Channels 0  
and 1  
(1)  
0
SUPPLY_CH0_1  
(1) It is ok to power up the device with a 2.5 V/3.3 V supply while this bit is set to 0 and to update this bit thereafter.  
Table 17. Register 6  
BIT  
15  
14  
13  
12  
11  
10  
9
BIT NAME  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
This bit must be set to 0  
This bit must be set to 0  
This bit must be set to 0  
This bit must be set to 0  
This bit must be set to 0  
This bit must be set to 0  
This bit must be set to 0  
This bit must be set to 0  
8
Output Channels 0  
and 1  
Output channels 0 and 1 8-b output integer divider setting  
(Divider value is register value +1)  
7:0  
OUTDIV0_1[7:0]  
Table 18. Register 7  
BIT  
15  
14  
13  
12  
11  
10  
9
BIT NAME  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
This bit must be set to 0  
This bit must be set to 0  
This bit must be set to 0  
This bit must be set to 0  
This bit must be set to 0  
This bit must be set to 0  
This bit must be set to 0  
Output Channel 3 Type Selection:  
00, 01 LVDS  
10 CML  
8:7  
6:5  
4:3  
SEL_DRVR_CH3[1:0]  
11 PECL  
Output Channel 3  
Output channel 3 enable:  
00 Disable  
01 Enable  
10 Drive static 0  
11 Drive static 1  
EN_CH3[1:0]  
Output Channel 2 Type Selection:  
00, 01 LVDS  
10 CML"  
SEL_DRVR_CH2[1:0]  
EN_CH2[1:0]  
11 PECL  
Output Channel 2  
Output channel 2 enable:  
00 Disable  
01 Enable  
10 Drive static 0  
11 Drive static 1  
2:1  
0
Output Channels 2 and 3 Supply Voltage Selection:  
0 1.8 V  
1 2.5/3.3 V  
Output Channels 2  
and 3  
(1)  
SUPPLY_CH2_3  
(1) It is ok to power up the device with a 2.5 V/3.3 V supply while this bit is set to 0 and to update this bit thereafter.  
46  
Copyright © 2015, Texas Instruments Incorporated  
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
Table 19. Register 8  
BIT  
15  
14  
13  
12  
11  
10  
9
BIT NAME  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
This bit must be set to 0  
This bit must be set to 0  
This bit must be set to 0  
This bit must be set to 0  
This bit must be set to 0  
This bit must be set to 0  
This bit must be set to 0  
This bit must be set to 0  
8
Output Channels 2  
and 3  
Output channels 2 and 3 8-b output integer divider setting  
(Divider value is register value +1)  
7:0  
OUTDIV2_3[7:0]  
Table 20. Register 9  
BIT  
BIT NAME  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
15  
RESERVED  
This bit must be set to 0  
Output MUX setting for output channel 4:  
00 and 11 PLL  
01 Primary input  
14:13  
12:10  
OUTMUX_CH4[1:0]  
PRE_DIV_CH4[2:0]  
10 Secondary input  
Output channel 4 fractional divider's 3-b pre-divider setting (this pre-  
divider is bypassed if Q9.9 = 0)  
000 Divide by 2  
001 Divide by 3  
111 Divide by 1  
All other combinations reserved  
Output channel 4 fractional divider enable:  
0 Disable  
1 Enable  
9
8
EN_FRACDIV_CH4  
Output channel 4 LVCMOS output slew:  
0 Normal  
1 Slow  
LVCMOS_SLEW_CH4  
Output channel 4 negative-side LVCMOS enable:  
0 Disable  
7
EN_LVCMOS_N_CH4  
Output Channel 4  
1 Enable (Negative side can only be enabled if positive side is  
enabled)  
Output channel 4 positive-side LVCMOS enable:  
6
5
EN_LVCMOS_P_CH4  
RESERVED  
0 Disable  
1 Enable  
This bit must be set to 0  
Output channel 4 type selection:  
00 or 01 LVDS  
10 LVCMOS  
4:3  
SEL_DRVR_CH4[2:0]  
11 HCSL  
Output channel 4 enable:  
00 Disable  
2:1  
0
EN_CH4[1:0]  
01 Enable  
10 Drive static 0  
11 Drive static 1  
Output channel 4 Supply Voltage Selection:  
0 1.8 V  
(1)  
SUPPLY_CH4  
1 2.5/3.3 V  
(1) It is ok to power up the device with a 2.5 V / 3.3 V supply while this bit is set to 0 and to update this bit thereafter.  
Table 21. Register 10  
BIT  
15  
BIT NAME  
RESERVED  
RESERVED  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
This bit must be set to 0  
This bit must be set to 0  
14  
Copyright © 2015, Texas Instruments Incorporated  
47  
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
Table 21. Register 10 (continued)  
BIT  
13  
BIT NAME  
RESERVED  
RESERVED  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
This bit must be set to 0  
This bit must be set to 0  
12  
Output channel 4 8-b integer divider setting  
(Divider value is register value +1)  
11:4  
3:0  
OUTDIV4[7:0]  
Output Channel 4  
FRACDIV4[19:16]  
Output channel 4 20-b fractional divider setting, bits 19 - 16  
Table 22. Register 11  
BIT  
BIT NAME  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
15:0  
FRACDIV4[15:0]  
Output Channel 4  
Output channel 4 20-b fractional divider setting, bits 15 - 0  
Table 23. Register 12  
BIT  
BIT NAME  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
This bit must be set to 0  
15  
RESERVED  
Output MUX setting for output channel 5:  
00 and 11 PLL  
01 Primary input  
14:13  
12:10  
OUTMUX_CH5[1:0]  
PRE_DIV_CH5[2:0]  
10 Secondary input  
Output channel 5 fractional divider's 3-b pre-divider setting (this pre-  
divider is bypassed if Q12.9 = 0)  
000 Divide by 2  
001 Divide by 3  
111 Divide by 1  
All other combinations reserved  
Output channel 5 fractional divider enable:  
0 Disable  
1 Enable  
9
8
EN_FRACDIV_CH5  
Output channel 5 LVCMOS output slew:  
0 Normal  
1 Slow  
LVCMOS_SLEW_CH5  
Output channel 5 negative-side LVCMOS enable:  
0 Disable  
7
EN_LVCMOS_N_CH5  
Output Channel 5  
1 Enable (Negative side can only be enabled if positive side is  
enabled)  
Output channel 5 positive-side LVCMOS enable:  
6
5
EN_LVCMOS_P_CH5  
RESERVED  
0 Disable  
1 Enable  
This bit must be set to 0  
Output channel 5 type selection:  
00 or 01 LVDS  
10 LVCMOS  
4:3  
SEL_DRVR_CH5[2:0]  
11 HCSL  
Output channel 5 enable:  
00 Disable  
2:1  
0
EN_CH5[1:0]  
01 Enable  
10 Drive static 0  
11 Drive static 1  
Output channel 5Supply Voltage Selection:  
0 1.8 V  
(1)  
SUPPLY_CH5  
1 2.5/3.3 V  
(1) It is ok to power up the device with a 2.5 V/3.3 V supply while this bit is set to 0 and to update this bit thereafter.  
Table 24. Register 13  
BIT  
15  
BIT NAME  
RESERVED  
RESERVED  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
This bit must be set to 0  
This bit must be set to 0  
14  
48  
Copyright © 2015, Texas Instruments Incorporated  
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
Table 24. Register 13 (continued)  
BIT  
13  
BIT NAME  
RESERVED  
RESERVED  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
This bit must be set to 0  
This bit must be set to 0  
12  
Output channel 5 8-b integer divider setting  
(Divider value is register value +1)  
11:4  
3:0  
OUTDIV5[7:0]  
Output Channel 5  
FRACDIV5[19:16]  
Output channel 5 20-b fractional divider setting, bits 19-16  
Table 25. Register 14  
BIT  
BIT NAME  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
15:0  
FRACDIV5[15:0]  
Output Channel 5  
Output channel 5 20-b fractional divider setting, bits 15-0  
Table 26. Register 15  
BIT  
15  
BIT NAME  
RESERVED  
RESERVED  
RESERVED  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
This bit must be set to 0  
14  
This bit must be set to 0  
This bit must be set to 0  
13  
Output channel 6 fractional divider's 3-b pre-divider setting (this pre-  
divider is bypassed if Q15.9 = 0)  
000 Divide by 2  
12:10  
PRE_DIV_CH6[2:0]  
001 Divide by 3  
111 Divide by 1  
All other combinations reserved  
Output channel 6 fractional divider enable:  
0 Disable  
1 Enable  
9
8
EN_FRACDIV_CH6  
Output channel 6 LVCMOS output slew:  
0 Normal  
1 Slow  
LVCMOS_SLEW_CH6  
Output channel 6 negative-side LVCMOS enable:  
0 Disable  
7
EN_LVCMOS_N_CH6  
1 Enable (Negative side can only be enabled if positive side is  
enabled)  
Output Channel 6  
Output channel 6 positive-side LVCMOS enable:  
6
5
EN_LVCMOS_P_CH6  
RESERVED  
0 Disable  
1 Enable  
This bit must be set to 0  
Output channel 6 type selection:  
00 or 01 LVDS  
10 LVCMOS  
4:3  
SEL_DRVR_CH6[1:0]  
11 HCSL  
Output channel 6 enable:  
00 Disable  
2:1  
0
EN_CH6[1:0]  
01 Enable  
10 Drive static 0  
11 Drive static 1  
Output channel 6 Supply Voltage Selection:  
0 1.8 V  
(1)  
SUPPLY_CH6  
1 2.5/3.3 V  
(1) It is ok to power up the device with a 2.5 V/3.3 V supply while this bit is set to 0 and to update this bit thereafter.  
Table 27. Register 16  
BIT  
15  
14  
13  
12  
BIT NAME  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
This bit must be set to 0  
This bit must be set to 0  
This bit must be set to 0  
This bit must be set to 0  
Copyright © 2015, Texas Instruments Incorporated  
49  
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
Table 27. Register 16 (continued)  
BIT  
11:4  
3:0  
BIT NAME  
OUTDIV6[7:0]  
FRACDIV6[19:16]  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
Output channel 6 8-b integer divider setting  
(Divider value is register value +1)  
Output Channel 6  
Output channel 6 20-b fractional divider setting, bits 19-16  
Table 28. Register 17  
BIT  
BIT NAME  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
15:0  
FRACDIV6[15:0]  
Output Channel 6  
Output channel 6 20-b fractional divider setting, bits 15-0  
Table 29. Register 18  
BIT  
15  
BIT NAME  
RESERVED  
RESERVED  
RESERVED  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
This bit must be set to 0  
14  
This bit must be set to 0  
This bit must be set to 0  
13  
Output channel 7 fractional divider's 3-b pre-divider setting (this pre-  
divider is bypassed if Q18.9 = 0)  
000 Divide by 2  
12:10  
PRE_DIV_CH7[2:0]  
001 Divide by 3  
111 Divide by 1  
All other combinations reserved  
Output channel 7 fractional divider enable: 0 Disable, 1 →  
Enable  
9
8
EN_FRACDIV_CH7  
LVCMOS_SLEW_CH7  
Output channel 7 LVCMOS output slew: 0 Normal, 1 Slow  
Output channel 7 negative-side LVCMOS enable: 0 Disable, 1 →  
Enable (Negative side can only be enabled if positive side is  
enabled)  
7
EN_LVCMOS_N_CH7  
Output Channel 7  
Output channel 7 positive-side LVCMOS enable: 0 Disable, 1 →  
Enable  
6
5
EN_LVCMOS_P_CH7  
RESERVED  
This bit must be set to 0  
Output channel 7 type selection:00 or 01 LVDS, 10 LVCMOS,  
11 HCSL  
4:3  
SEL_DRVR_CH7[2:0]  
Output channel 7 enable: 00 Disable, 01 Enable, 10 Drive  
static low, 11 Drive static high  
2:1  
0
EN_CH7[1:0]  
Output channel 7 Supply Voltage Selection: 0 1.8 V, 1 2.5/3.3  
V
(1)  
SUPPLY_CH7  
(1) It is ok to power up the device with a 2.5 V/3.3 V supply while this bit is set to 0 and to update this bit thereafter.  
Table 30. Register 19  
BIT  
15  
14  
13  
12  
BIT NAME  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
This bit must be set to 0  
This bit must be set to 0  
This bit must be set to 0  
This bit must be set to 0  
Output channel 7 8-b integer divider setting  
(Divider value is register value +1)  
11:4  
3:0  
OUTDIV7[7:0]  
Output Channel 7  
FRACDIV7[19:16]  
Output channel 7 20-b fractional divider setting, bits 19-16  
Table 31. Register 20  
BIT  
BIT NAME  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
15:0  
FRACDIV7[15:0]  
Output Channel 7  
Output channel 7 20-b fractional divider setting, bits 15-0  
50  
Copyright © 2015, Texas Instruments Incorporated  
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
Table 32. Register 21 (Read Only)  
BIT  
15  
14  
13  
12  
11  
10  
9
BIT NAME  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
This bit will read a 0  
This bit will read a 0  
This bit will read a 0  
This bit will read a 0  
This bit will read a 0  
This bit will read a 0  
This bit will read a 0  
This bit will read a 0  
This bit will read a 0  
This bit will read a 0  
This bit will read a 0  
This bit will read a 0  
This bit will read a 0  
8
7
6
5
4
3
Indicates unlock status for PLL (digital):  
0 PLL locked  
1 PLL unlocked  
2
PLL_UNLOCK  
Note: the external output signal on Status 0 or Status 1 uses a  
reversed logic, and indicates "lock" with a VOH signal and unlock  
with a VOL signaling level.  
Device Status  
Monitoring  
Loss of reference input observed at input Smart MUX output in  
observation window for PLL:  
1
0
LOS_REF  
SEL_REF  
0 Reference input present  
1 Loss of reference input  
Indicates Reference Selected for PLL:  
0 Primary  
1 Secondary  
Table 33. Register 40 (Read Only)  
BIT  
15  
14  
13  
12  
11  
10  
9
BIT NAME  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RELATED BLOCK  
DESCRIPTION/FUNCTION  
Ignore  
Ignore  
Ignore  
Ignore  
Ignore  
Ignore  
Ignore  
Ignore  
Ignore  
Ignore  
8
7
6
Indicates the device version (Read only):  
000 CDCM6208V1F  
5:3  
VCO_VERSION  
Device Information  
Indicates the silicon die revision (Read only):  
00X --> Engineering Prototypes  
010 --> Production Material  
2:0  
DIE_REVISION  
Copyright © 2015, Texas Instruments Incorporated  
51  
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
Table 34. Default Register Setting For SPI/I2C Modes  
Register  
CDCM6208V1F  
0x01B9  
0x0000  
0x0018  
0x08F4  
0x20B7  
0x01BA  
0x0003  
0x0002  
0x0003  
0x0000  
0x0040  
0x0000  
0x0000  
0x0040  
0x0000  
0x0000  
0x0040  
0x0000  
0x0002  
0x0040  
0x7940  
.
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
.
.
.
.
.
40  
0x0001  
52  
Copyright © 2015, Texas Instruments Incorporated  
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
11 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
11.1 Application Information  
The CDCM6208 is a highly integrated clock generator and jitter cleaner. The CDCM6208 derives its output  
clocks from an on-chip oscillator which can be buffered through integer or fractional output dividers.  
11.2 Typical Applications  
DR  
Packet PCIe  
Accel  
CDCM6208  
Synthesizer  
Mode  
TMS320TCI6616/18  
DSP  
AIF  
ALT  
SRIO  
CORE  
Base Band DSP  
Clocking  
Figure 37. Typical Application Circuit  
Timing  
FBADC  
RXADC  
TXDAC  
Core  
SyncE  
Packet  
network  
1pps  
1pps  
GPS receiver  
RF LO  
CDCM6208  
DPLL  
APLL  
IEEE1588  
timing extract  
RF LO  
Ethernet  
Pico Cell Clocking  
Figure 38. Typical Application Circuit  
11.2.1 Design Requirements  
The most jitter sensitive application besides driving A-to-D converters are systems deploying a serial link using  
Serializer and De-serializer implementation (for example, a 10 GigEthernet). Fully estimating the clock jitter  
impact on the link budget requires an understanding of the transmit PLL bandwidth and the receiver CDR  
bandwidth.  
Copyright © 2015, Texas Instruments Incorporated  
53  
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
Typical Applications (continued)  
11.2.1.1 Device Block-level Description  
The CDCM6208V1F includes an on-chip PLL with an on-chip VCO. The PLL blocks consist of a universal input  
interface, a phase frequency detector (PFD), charge pump, partially integrated loop filter, and a feedback divider.  
Completing the CDCM6208V1F device are the combination of integer and fractional output dividers, and  
universal output buffers. The PLL is powered by on-chip low dropout (LDO), linear voltage regulators and the  
regulated supply network is partitioned such that the sensitive analog supplies are running from separate LDOs  
than the digital supplies which use their own LDO. The LDOs provide isolation of the PLL from any noise in the  
external power supply rail with a PSNR of better than -50 dB at all frequencies. The regulator capacitor pin  
REG_CAP should be connected to ground by a 10 µF capacitor with low ESR (e.g. below 1 Ω ESR) to ensure  
stability.  
11.2.1.2 Device Configuration Control  
Figure 40 illustrates the relationships between device states, the control pins, device initialization and  
configuration, and device operational modes. In pin mode, the state of the control pins determines the  
configuration of the device for all device states. In programming mode, the device registers are initialized to their  
default state and the host can update the configuration by writing to the device registers. A system may transition  
a device from pin mode to host connected mode by changing the state of the SI_MODE pins and then triggering  
a device reset (either via the RESETN pin or via setting the RESETN bit in the device registers). In reset, the  
device disables the outputs so that unwanted sporadic activity associated with device initialization does not  
appear on the device outputs.  
54  
Copyright © 2015, Texas Instruments Incorporated  
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
Typical Applications (continued)  
11.2.1.3 Configuring the RESETN Pin  
Figure 39 shows two typical applications examples of the RESETN pin.  
DVDD  
DVDD  
DVDD  
50k  
50k  
50k  
#44 (RESET)  
#44 (RESET)  
#44 (PWR)  
GPO  
5k  
RPD  
Host  
Controller  
CDCM6208  
CDCM6208  
CDCM6208  
if I/O power = 1.8V: RPD=0-Ohm  
if I/O power=3.3V: RPD=open  
(a) (SPI/I2C Host mode)  
(b) (SPI/I2C Host Mode)  
(c) (PIN Mode)  
Figure 39. RESETN/PWR Pin Configurations  
Figure 39 (a) SPI / I2C mode only: shows the RESETN pin connected to a digital device that controls device  
reset. The resistor and capacitor combination ensure reset is held low even if the CDCM6208V1F is powered up  
before the host controller output signal is valid.  
Figure 39 (b) SPI / I2C mode only:shows a configuration in which the user wishes to introduce a delay between  
the time that the system applies power to the device and the device exiting reset. If the user does not use a  
capacitor, then the device effectively ignores the state of the RESETN pin.  
Figure 39 (c) Pin mode only: shows a configuration useful if the device is used in Pin Mode. Here device pin  
number 44 becomes the PWR input. An external pull down resistor can be used to pull this pin down. If the  
resistor is not installed, the pin is internally pulled high.  
Copyright © 2015, Texas Instruments Incorporated  
55  
 
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
Typical Applications (continued)  
Figure 40 shows how the different possible device configurations and when the VCO becomes calibrated and the  
outputs turn on and off.  
Power on  
Reset  
no  
PDN =1?  
(all outputs are disabled)  
SI_MODE1  
SI_MODE0  
01  
I2C Mode  
(activate I2C IF)  
00  
10  
no  
RESETN =1?  
SPI Mode  
(activate SPI IF)  
Pin Mode  
latch PIN0 to PIN4, and  
PWR  
Enter Pin Mode specified by  
the PINx and PWR  
load device registers with defaults; registers  
are customer programmable through serial IF  
wait for selected reference input  
signal (PRI/SEC) to become valid  
Configure all device settings  
no  
wait for selected reference  
input signal (PRI/SEC) to  
become valid  
Disable  
all  
RESETN =1?  
outputs  
Calibrate VCO  
no  
Calibrate VCO  
no  
Disable  
Disable  
all  
all  
SYNCN =1?  
SYNCN =1?  
outputs  
outputs  
Synchronize outputs  
Enable all outputs  
Synchronize outputs  
Enable outputs  
Normal device operation in  
PIN mode  
Normal device operation in  
HOST mode  
no  
no  
no  
SYNCN=1?  
SYNCN=1?  
yes  
RESETN=1?  
yes  
PDN=1?  
PDN=1?  
Disable  
all  
outputs  
Figure 40. Device Power up and Configuration  
56  
Copyright © 2015, Texas Instruments Incorporated  
 
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
Typical Applications (continued)  
11.2.1.4 Preventing False Output Frequencies in SPI/I2C Mode at Startup:  
Some systems require a custom configuration and cannot tolerate any output to start up with a wrong frequency.  
Holding RESET low at power-up until the device is fully configured keeps all outputs disabled. The device  
calibrates automatically after RESET becomes released and starts out with the desired output frequency.  
NOTE  
The RESETN pin cannot be held low during I2C communication. Instead, use the SYNC  
pin to disable the outputs during an I2C write operation, and toggle RESETN pin  
afterwards. Alternatively, other options exist such as using the RESETN bit in the register  
space to disable outputs until the write operation is complete.  
Configure  
Registers  
Register  
Space  
Register  
Space  
0 to 21  
SPI or I2C  
Master  
SPI or I2C  
Master  
DVDD  
DVDD  
Release  
RESETGPO  
50k  
50k  
GPO  
RESET=low  
CDCM6208  
RESET=high  
CDCM6208  
Step 1  
Step 2  
Figure 41. Reset Pin Control During Register Loading  
11.2.1.5 Power Down  
When the PDN pin = 0, the device enters a complete power down mode with a current consumption of no more  
than 1 mA from the entire device.  
11.2.1.6 Device Power Up Timing:  
Before the device outputs turn on after power up, the device goes through the following initialization routine:  
Table 35. Initialization Routine  
STEP  
DURATION  
COMMENTS  
Depends on customer supply  
ramp time  
The POR monitor holds the device in power-down or reset until the  
VDD supply voltage reaches 1.06 V (min) to 1.26 V (max)  
Step 1: Power up ramp  
Depends on XTAL. Could be  
several ms;  
For NX3225GA 25 MHz typical  
XTAL startup time measures 200 circuit, and holds the device in reset until the XTAL stage has  
µs. sufficient swing.  
This step assumes RESETN = 1 and PDN = 1.The XTAL startup  
time is the time it takes for the XTAL to oscillate with sufficient  
amplitude. The CDCM6208V1F has a built-in amplitude detection  
Step 2: XO startup (if crystal is  
used)  
Copyright © 2015, Texas Instruments Incorporated  
57  
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
Typical Applications (continued)  
Table 35. Initialization Routine (continued)  
STEP  
DURATION  
COMMENTS  
This counter of 64 k clock cycles needs to expire before any further  
power-up step is done inside the device. This counter ensures that  
the input to the PFD from PRI or SEC input has stabilized in  
64k Reference clock cycles at  
PFD input  
Step 3: Ref Clock Counter  
frequency. The duration of this step can range from 640 µs (fPFD  
100 MHz) to 8 sec (8 kHz PFD).  
=
64k FBCLK cycles with CW=32;  
The duration is similar to Step 3, The Feedback counter delays the startup by another 64k PFD clock  
or can be more accurately  
estimated as:  
Approximately 64k x PS_A x  
N/2.48 GHz  
cycles. This is so that all counters are well initialized and also ensure  
additional timing margin for the reference clock to settle. This step  
can range from 640 µs (fPFD= 100 MHz) to 8 sec (fPFD= 8kHz).  
Step 4: FBCLK counter  
This step calibrates the VCO to the exact frequency range, and  
Step 5: VCO calibration  
Step 6: PLL lock time  
128k PFD reference clock cycles takes exactly 128k PFD clock cycles. The duration can therefore  
range from 1280 µs (fPFD= 100 MHz) to 16 sec (f PFD= 8 KHz).  
The Outputs turn on immediately after calibration. A small frequency  
error remains for the duration of approximately 3 x LBW (so in  
approximately 3 x LBW  
synthesizer mode typically 10 µs). The initial output frequency will be  
lower than the target output frequency, as the loop filter starts out  
initially discharged.  
The PLL lock indicator if selected on output STATUS0 or STATUS1  
will go high after approximately 2048 to 2560 PFD clock cycles to  
indicate PLL is now locked.  
approximately 2305 PFD clock  
cycles  
Step 7: PLL Lock indicator high  
Y4n  
Device outputs held static lo(wYxP=low, Yxn=high)  
Outputs tristated  
Y4(HCSL)  
Y4p  
Step5  
VCO CAL  
Step2  
XO startup  
Step3  
Ref Clk Cntr  
Step4  
FBCLK Cntr  
From here  
on Device  
is locked  
Step6: PLL lock time  
RESETN held low  
1.8V  
1.05V  
Step1: Pwr up  
Figure 42. Powerup Time  
58  
Copyright © 2015, Texas Instruments Incorporated  
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
Figure 43. XTAL Startup Using NX3225GA 25 MHz (Step 2)  
Copyright © 2015, Texas Instruments Incorporated  
59  
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
Step 7  
Time from PLL Lock  
to LOCK signal asserting high on STATUS0 = 78s  
4=3.5%  
140ns  
250ns  
Figure 44. PLL Lock Behavior (Step 6)  
11.2.1.7 Input Mux and Smart Input Mux  
The Smart Input MUX supports auto-switching and manual-switching using control pin (and through register).  
The Smart Input MUX is designed such that glitches created during switching in both auto and manual modes  
are suppressed at the MUX output.  
Table 36. Input Mux Selection  
REGISTER 4 BIT  
13SMUX_MODE_SE  
L
SI_MODE1  
PIN NO. 47  
REGISTER 4 BIT 12  
SMUX_REF_SEL  
REF_SEL  
PIN NO. 6  
SELECTED INPUT  
Auto Select Priority is given to Primary  
Reference input.  
0
1
X
X
1
0
1
Primary input  
input select through  
SPI/I2C  
0 (SPI/I2C mode)  
Secondary input  
Primary input  
0
1
0
1
input select through  
external pin  
1
Secondary input  
Primary or Auto (see Table 5)  
1 (pin mode)  
not available  
Secondary or Auto (see Table 5)  
Example 1:An application desired to auto-select the clock reference in SPI/I2C mode. During production testing  
however, the system needs to force the device to use the primary followed by the secondary input. The settings  
would be as follows:  
1. Tie REF_SEL pin always high  
2. For primary clock input testing, use R4[13:12] = 10  
3. For secondary clock input testing, set R4[13:12] = 11.  
4. For the auto-mux setting in the final product shipment, set R3[13:12]=01 or 00  
Example 2: The application wants to select the clock input manually without programming SPI/I2C. In this case,  
program R4[13:12] = 11, and select primary or secondary input by toggling REF_SEL low or high.  
60  
Copyright © 2015, Texas Instruments Incorporated  
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
SmartMux input frequency limitation: In the automatic mode, the frequencies of both inputs to the smart mux  
(PRI_REF divided by R and SEC_REF) need to be similar; however, they can vary by up to 20%.  
Switching behavior: The input clocks can have any phase. When switching happens between one input clock to  
the other, the phase of the output clock slowly transitions to the phase of the newly selected input clock. There  
will be no-phase jump at the output. The phase transition time to the new reference clock signal depends on the  
PLL loop filter bandwidth. Auto-switch assigns higher priority to PRI_REF and lower priority to SEC_REF. The  
timing diagram of an auto-switch at the input MUX is shown in Figure 45.  
Figure 45. Smart Input MUX Auto-Switch Mode Timing Diagram  
11.2.1.8 Universal INPUT Buffer (PRI_REF, SEC_REF)  
The universal input buffers support multiple signaling formats (LVDS, CML or LVCMOS) and these require  
external termination schemes. The secondary input buffer also supports crystal inputs and Table 28 provides the  
characteristics of the crystal that can be used. Both inputs incorporate hysteresis.  
11.2.1.9 VCO Calibration  
The LC VCO is designed using high-Q monolithic inductors and has low phase noise characteristics. The VCO of  
the CDCM6208V1F must be calibrated to ensure that the clock outputs deliver optimal phase noise performance.  
Fundamentally, a VCO calibration establishes an optimal operating point within the tuning range of the VCO.  
While transparent to the user, the CDCM6208V1F and the host system perform the following steps comprising a  
VCO calibration sequence:  
1. Normal Operation- When the CDCM6208V1F is in normal (operational) mode, the state of both the power  
down pin (PDN) and reset pin (RESETN) is high.  
2. Entering the reset state – If the user wishes to restore all device defaults and initiate a VCO calibration  
sequence, then the host system must place the device in reset via the PDN pin, via the RESETN pin, or by  
removing and restoring device power. Pulling either of these pins low places the device in the reset state.  
Holding either pin low holds the device in reset.  
3. Exiting the reset state – The device calibrates the VCO either by exiting the device reset state or through  
the device reset command initiated via the host interface. Exiting the reset state occurs automatically after  
power is applied and/or the system restores the state of the PDN or RESETN pins from the low to high state.  
Exiting the reset state using this method causes the device defaults to be loaded/reloaded into the device  
register bank. Invoking a device reset via the register bit does not restore device defaults; rather, the device  
retains settings related to the current clock frequency plan. Using this method allows for a VCO calibration  
for a frequency plan other than the default state (i.e. the device calibrates the VCO based on the settings  
contained within the register bank at the time that the register bit is accessed). The nominal state of this bit is  
low. Writing this bit to a high state and then returning it to the low state invokes a device reset without  
restoring device defaults.  
4. Device stabilization – After exiting the reset state as described in Step 3, the device monitors internal  
voltages and starts a reset timer. Only after internal voltages are at the correct level and the reset time has  
expired will the device initiate a VCO calibration. This ensures that the device power supplies and phase  
locked loops have stabilized prior to calibrating the VCO.  
5. VCO Calibration – The CDCM6208V1F calibrates the VCO. During the calibration routine, the device holds  
Copyright © 2015, Texas Instruments Incorporated  
61  
 
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
all outputs in reset so that the CDCM6208V1F generates no spurious clock signals.  
11.2.1.10 Reference Divider (R)  
The reference (R) divider is a continuous 4-b counter (1 – 16) that is present on the primary input before the  
Smart Input MUX. It is operational in the frequency range of 8 kHz to 250 MHz. The output of the R divider sets  
the input frequency for the Smart MUX, and the auto switch capability of the Smart MUX can then be employed  
as long as the secondary input frequency is no more than ± 20% different from the output of the R divider.  
11.2.1.11 Input Divider (M)  
The input (M) divider is a continuous 14-b counter (1 – 16384) that is present after the Smart Input MUX. It is  
operational in the frequency range of 8 kHz to 250 MHz. The output of the M divider sets the PFD frequency to  
the PLL and should be in the range of 8 kHz to 100 MHz.  
11.2.1.12 Feedback Divider (N)  
The feedback (N) divider is made up of cascaded 8-b counter divider (1 – 256) followed by a 10-b counter divider  
(1 – 1024) that are present on the feedback path of the PLL. It is operational in the frequency range of 8 kHz to  
800 MHz. The output of the N divider sets the PFD frequency to the PLL and should be in the range of 8 kHz to  
100 MHz. The frequency out of the first divider is required to be less than or equal to 200 MHz to ensure proper  
operation.  
11.2.1.13 Prescaler Dividers (PS_A, PS_B)  
The prescaler (PS) dividers are fed by the output of the VCO and are distributed to the output dividers (PS_A to  
the dividers for Outputs 0, 1, 4, and 5 and PS_B to the dividers for Outputs 2, 3, 6, and 7. PS_A also completes  
the PLL as it also drives the input of the Feedback Divider (N).  
11.2.1.14 Phase Frequency Detector (PFD)  
The PFD takes inputs from the Smart Input MUX output and the feedback divider output and produces an output  
that is dependent on the phase and frequency difference between the two inputs. The allowable range of  
frequencies at the inputs of the PFD is from 8 kHz to 100 MHz.  
11.2.1.15 Charge Pump (CP)  
The charge pump is controlled by the PFD which dictates either to pump up or down in order to charge or  
discharge the integrating section of the on-chip loop filter. The integrated and filtered charge pump current is then  
converted to a voltage that drives the control voltage node of the internal VCO through the loop filter. The range  
of the charge pump current is from 500 µA to 4 mA.  
11.2.1.16 Programmable Loop Filter  
The on-chip PLL supports a partially internal and partially external loop filter configuration for all PLL loop  
bandwidths where the passive external components C1, C2, and R2 are connected to the ELF pin as shown in  
Figure 46 to achieve PLL loop bandwidths from 400 kHz down to 10 Hz.  
62  
Copyright © 2015, Texas Instruments Incorporated  
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
C2  
R2  
C1  
ELF  
R3  
C3  
Figure 46. CDCM6208V1F PLL Loop Filter Topology  
11.2.1.16.1 Loop Filter Component Selection  
The loop filter setting and external resistor selection is important to set the PLL to best possible bandwidth and to  
minimize jitter. A high bandwidth (100 kHz) provides best input signal tracking and is therefore desired with a  
clean input reference (synthesizer mode). A low bandwidth (1 kHz) is desired if the input signal quality is  
unknown (jitter cleaner mode). TI provides a software tool that makes it easy to select the right loop filter  
rd  
components. C1, R2, and C2 are external loop filter components, connected to the ELF pin. The 3 pole of the  
loop filter is device internal with R3 and C3 register selectable.  
11.2.1.16.2 Device Output Signaling  
LVDS-like: All outputs Y[7:0] support LVDS-like signaling. The actual output stage uses a CML structure and  
drives a signal swing identical to LVDS (~350mV). The output slew rate is faster than standard LVDS for best  
jitter performance. The LVDS-like outputs should be AC-coupled when interfacing to a LVDS receiver. See  
reference schematic Figure 64 for an example. The supply voltage for outputs configured LVDS can be selected  
freely between 1.8 V and 3.3 V.  
LVPECL-like: Outputs Y[3:0] support LVPECL-like signaling. The actual output stage uses a CML structure but  
drives the same signal amplitude and rise time as true emitter coupled logic output stages. The LVPECL-like  
outputs should be AC-coupled, and contrary to standard PECL designs, no external termination resistor to VCC-  
2V is used (fewer components for lowest BOM cost). See reference schematic Figure 64 for an example. The  
supply voltage for outputs configured LVPECL-like is recommended to be 3.3 V, though even 1.8 V provides  
nearly the same output swing and performance at much lower power consumption.  
CML: Outputs Y[3:0] support standard CML signaling. The supply voltage for outputs configured CML can be  
selected freely between 1.8 V and 3.3 V. A true CML receiver can be driven DC coupled. All other differential  
receiver should connected using AC coupling. See reference schematic Figure 64 for a circuit example.  
HCSL: Outputs Y[7:4] support HCSL signaling. The supply voltage for outputs configured HCSL can be selected  
freely between 1.8 V and 3.3 V. HCSL is referenced to GND, and requires external 50 Ω termination to GND.  
See reference schematic for an example.  
CMOS: Outputs Y[7:4] support 1.8 V, 2.5 V, and 3.3 V CMOS signaling. A fast or reduced slew rate can be  
selected through register programming. Each differential output port can drive one or two CMOS output signals.  
Both signals are “in-phase”, meaning their phase offset is zero degrees, and not 180˚. The output swing is set by  
providing the according supply voltage (for example, if VDD_Y4=2.5 V, the output swing on Y4 will be 2.5 V  
CMOS). Outputs configured for CMOS should only be terminated with a series-resistor near the device output to  
preserve the full signal swing. Terminating CMOS signals with a 50 Ω resistor to GND would reduce the output  
signal swing significantly.  
Copyright © 2015, Texas Instruments Incorporated  
63  
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
11.2.1.16.3 Integer Output Divider (IO)  
Each integer output divider is made up of a continuous 10-b counter. The output buffer itself contributes only little  
to the total device output jitter due to a low output buffer phase noise floor. The typical output phase noise floor  
at an output frequency of 122.88 MHz, 20 MHz offset from the carrier measures as follows: LVCMOS: -157.8  
dBc/Hz, LVDS: -158 dBc/Hz, LVPECL: -158.25 dBc/Hz, HCSL: -160 dBc/Hz. Therefore, the overall contribution  
of the output buffer to the total jitter is approximately 50 fs-rms (12 k - 20 MHz). An actual measurement of phase  
noise floor with different output frequencies for one nominal until yielded the following:  
Table 37. Integer Output Divider (IO)  
fOUT  
LVDS (Y0)  
PECL (Y0)  
CML (Y0)  
HCSL (Y4)  
CMOS 3p3V (Y7)  
-150.9 dBc/Hz  
-153.1 dBc/Hz  
-156.2 dBc/Hz  
-159.4 dBc/Hz  
-162.8 dBc/Hz  
737.28 MHz  
368.64 MHz  
184.32 MHz  
92.16 MHz  
46.08 MHz  
-154.0 dBc/Hz  
-157.0 dBc/Hz  
-157.3 dBc/Hz  
-161.2 dBc/Hz  
-162.2 dBc/Hz  
-154.8 dBc/Hz  
-155.8 dBc/Hz  
-158.6 dBc/Hz  
-161.6 dBc/Hz  
-165.0 dBc/Hz  
-154.4 dBc/Hz  
-156.4 dBc/Hz  
158.1 dBc/Hz  
-161.4 dBc/Hz  
-163.0 dBc/Hz  
-153.1 dBc/Hz  
-153.9 dBc/Hz  
-154.7 dBc/Hz  
-155.2 dBc/Hz  
-154.0 dBc/Hz  
11.2.1.16.4 Fractional Output Divider (FOD)  
The CDCM6208V1F incorporates a fractional output divider on Y[7:4], allowing these outputs to run at non-  
integer output divide ratios of the PLL frequencies. This feature is useful when systems require different,  
unrelated frequencies. The fractional output divider architecture is shown in Figure 47.  
Pre-Scaler PS_A or PS_B  
FracDiv Pre Divider  
Integer Divider  
Fractional division  
VCO  
2.39-2.55GHz  
2.94-3.13GHz  
Limit: 200-400MHz  
Pre-Scaler  
output clock  
398-800MHz  
÷ 4, 5 or 6  
÷ 1, 2 or 3  
÷ 1 to 256  
.xxx  
Reg 10.11:4  
Reg 13.11:4  
Reg 16.11:4  
Reg 19.11:4  
Reg 9.12:10  
Reg 12.12:10  
Reg 15.12:10  
Reg 18.12:10  
Reg 10.3:0 + Reg 11  
Reg 13.3:0 + Reg 14  
Reg 16.3:0 + Reg 17  
Reg 19.3:0 + Reg 20  
Reg 3.4:0  
Fractional Divider (simplified)  
Figure 47. Fractional Output Divider Principle Architecture  
(Simplified Graphic, not Showing Output Divider Bypass Options)  
The fractional output divider requires an input frequency between 400 MHz and 800 MHz, and outputs any  
frequency equal or less than 400 MHz (the minimum fractional output divider setting is 2). The fractional divider  
block has a first stage integer pre-divider followed by a fractional sigma-delta output divider block that is deep  
enough such as to generate any output frequency in the range of 0.78 MHz to 400 MHz from any input frequency  
in the range of 400 MHz to 800 MHz with a worst case frequency accuracy of no more than ±1ppm. The  
fractional values available are all possible 20-b representations of fractions within the following range:  
1.0 ƒracDIV 1.9375  
2.0 ƒracDIV 3.875  
4.0 ƒracDIV 5.875  
x.0 ƒracDIV (x + 1) + 0.875 with x being all even numbers from x = 2, 4, 6, 8, 10, ...., 254  
254.0 ƒracDIV 255.875  
256.0 ƒracDIV 256.99999  
The CDCM6208V1F user GUI comprehends the fractional divider limitations; therefore, using the GUI to  
comprehend frequency planning is recommended.  
64  
Copyright © 2015, Texas Instruments Incorporated  
 
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
The fractional divider output jitter is a function of fractional divider input frequency and furthermore depends on  
which bits are exercised within the fractional divider. Exercising only MSB or LSB bits provides better jitter than  
exercising bits near the center of the fractional divider. Jitter data are provided in this document, and vary from  
50 ps-pp to 200 ps-pp, when the device is operated as a frequency synthesizer with high PLL bandwidths  
(approximately 100 kHz to 400 kHz). When the device is operated as a jitter cleaner with low PLL bandwidths (<  
1 kHz), its additive total jitter increases by as much as 30 ps-pp. The fractional divider can be used in integer  
mode. However, if only an integer divide ratio is needed, it is important to disable the corresponding fractional  
divider enable bit, which engages the higher performing integer divider.  
11.2.1.16.5 Output Synchronization  
Both types of output dividers can be synchronized using the SYNCN signal. For the CDCM6208V1F, this signal  
comes from the SYNCN pin or the soft SYNCN register bit R3.5. The most common way to execute the output  
synchronization is to toggle the SYNCN pin. When SYNC is asserted (VSYNCN VIL), all outputs are disabled  
(high-impedance) and the output dividers are reset. When SYNC is de-asserted (VSYNCN VIH), the device first  
internally latches the signal, then retimes the signal with the pre-scaler, and finally turns all outputs on  
simultaneously. The first rising edge of the outputs is therefore approximately 15 ns to 20 ns delayed from the  
SYNC pin assertion. For one particular device configuration, the uncertainty of the delay is ±1 PS_A clock cycles.  
For one particular device and one particular configuration, the delay uncertainty is one PS_A clock cycle.  
The SYNC feature is particularly helpful in systems with multiple CDCM6208V1F. If SYNC is released  
simultaneously for all devices, the total remaining output skew uncertainty is ±1 clock cycles for all devices  
configured to identical pre-scaler settings. For devices with varying pre-scaler settings, the total part-to-part skew  
uncertainty due to sync remains ±2 clock cycles.  
Outputs Y0, Y1, Y4, and Y5 are aligned with the PS_A output while outputs Y2, Y3, Y6, and Y7 are aligned with  
the PS_B output). All outputs Y[7:0] turn on simultaneously, if PS_B and PS_A are set to identical divide values  
(PS_A=PS_B).  
PS_A  
1
2
3
4
5
6
7
8
9
10  
11  
12  
One pre-scaler clock cycle  
uncertainty, of when the  
output turns on for one  
device in one particular  
configuration  
SYNCN  
Outputs tristates  
Y0  
Possibility (A)  
Outputs turned on  
Y0  
Possibility (B)  
Figure 48. SYNCN to Output Delay Uncertainty  
Copyright © 2015, Texas Instruments Incorporated  
65  
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
11.2.1.16.6 Output MUX on Y4 and Y5  
The CDCM6208V1F device outputs Y4 and Y5 can either be used as independent fractional outputs or allow  
bypassing of the PLL in order to output the primary or secondary input signal directly.  
11.2.1.16.7 Staggered CLK Output Powerup for Power Sequencing of a DSP  
DSPs are sensitive to any kind of voltage swing on unpowered input rails. To protect the DSP from long-term  
reliability problems, it is recommended to avoid any clock signal to the DSP until the DSP power rail is also  
powered up. This can be achieved in two ways using the CDCM6208V1F:  
1. Digital control: Initiating a configuration of all registers so that all outputs are disabled, and then turning on  
outputs one by one through serial interface after each DSP rail becomes powered up accordingly.  
2. Output Power supply domain control: An even easier scheme might be to connect the clock output power  
supply VDD_Yx to the corresponding DSP input clock supply domain. In this case, the CDCM6208V1F  
output will remain disabled until the DSP rails ramps up as well. Figure 49 shows the turn-on behavior.  
Figure 49. Sequencing the Output Turn-on Through Sequencing the Output Supplies. Output Y2 Powers  
Up While Output Y0 is Already Running.  
66  
Copyright © 2015, Texas Instruments Incorporated  
 
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
11.2.2 Detailed Design Procedure  
11.2.2.1 Jitter Considerations in SERDES Systems  
The most jitter sensitive application besides driving A-to-D converters are systems deploying a serial link using  
Serializer and De-serializer implementation (for example, 10 GigEthernet). Fully estimating the clock jitter impact  
on the link budget requires an understanding of the transmit PLL bandwidth and the receiver CDR bandwidth. As  
can be seen in Figure 50, the bandwidth of TX and RX is the frequency range in which clock jitter adds without  
any attenuation to the jitter budget of the link. Outside of these frequencies, the SERDES link will attenuate clock  
jitter with a 20 dB/dec or even steeper roll-off.  
Serializer  
De-Serializer  
serial data with  
embedded clock  
TX PLL  
RX PLL  
CDR  
TX REF  
CLOCK  
RX REF  
CLOCK  
fhigh=BWTX PLL  
flow=BWRX PLL  
HTransfer(f) = HTXPLL * ( 1 - HRXPLL  
)
flow fhigh  
f
=20MHz for 10GbE  
flow=1.875MHz for 10GbE  
high  
Figure 50. Serial Link Jitter Budget Explanation  
Example: SERDES link with KeyStone™ I DSP  
The SERDES TX PLL of the TI KeyStone™ I DSP family (see SPRABI2) for the SRIO interface, has a 13 MHz  
PLL bandwidth (Low Pass Characteristic, see Figure 50). The CDCM6208V2, pin-mode 27, was characterized in  
this example over Process, Voltage and Temperature (PVT) with a low pass filter of 13 MHz to simulate the TX  
PLL. The attenuation is higher or equal to 20 dB/dec; therefore, the characterization used 20 dB/dec as worst  
case.  
Table 38 shows the maximum Total Jitter(1) over PVT with and without Low Pass Filter.  
Table 38. Maximum Total Jitter Over PVT With and Without Low Pass Filter  
MAX TJ [ps]  
with 13 MHz LOW PASS  
FILTER  
FREQUENCY  
[MHz]  
MAX TJ [ps]  
DSP SPEC  
MAX TJ [ps]  
without LOW PASS FILTER  
OUTPUT  
Y0  
Y2  
Y3  
122.88  
30.72  
30.72  
56  
56  
56  
9.43  
9.60  
9.47  
8.19  
7.36  
7.42  
(1) Input signal: 250fs RMS (Integration Range 12kHz to 5MHz)  
Copyright © 2015, Texas Instruments Incorporated  
67  
 
 
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
Table 38. Maximum Total Jitter Over PVT With and Without Low Pass Filter (continued)  
MAX TJ [ps]  
with 13 MHz LOW PASS  
FILTER  
FREQUENCY  
[MHz]  
MAX TJ [ps]  
DSP SPEC  
MAX TJ [ps]  
without LOW PASS FILTER  
OUTPUT  
156.25  
(6 bit fraction)  
Y4  
Y5  
56  
56  
57.66  
76.87  
17.48  
32.32  
156.25  
(20 bit fraction)  
Y6  
Y7  
100.00  
66.667  
56  
86.30  
81.71  
33.86  
35.77  
300  
Figure 51 shows the maximum Total Jitter with, without Low Pass Filter characteristic and the maximum TI  
KeyStone™ I specification.  
Figure 51. Maximum Jitter Over PVT  
NOTE  
Due to the damping characteristic of the DSP SERDES PLLs, the actual TJ data can be  
worse.  
68  
Copyright © 2015, Texas Instruments Incorporated  
 
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
11.2.2.2 Jitter Considerations in ADC and DAC Systems  
A/D and D/A converters are sensitive to clock jitter in two ways: They are sensitive to phase noise in a particular  
frequency band, and also have maximum spur level requirements to achieve maximum noise floor sensitivity.  
The following test results were achieved connecting the CDCM6208V1F to ADC and DACs:  
Figure 52. IF = 60 MHz Fclk = 122.88 MHz Baseline (Lab Clk Generator) ADC: ADS62P48-49  
Figure 53. IF = 60 MHz Fclk = 122.88 MHz CDCM6208V1F driving ADC  
Copyright © 2015, Texas Instruments Incorporated  
69  
 
 
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
Observation: up to an IF = 100 MHz, The ADC performance when driven by the CDCM6208V1F (Figure 53) is  
similar to when the ADC is driven by an expensive lab signal generator with additional passive source filtering  
(Figure 52).  
Conclusion Therefore, the CDCM6208V1F is usable for applications up to 100 MHz IF. For IF above 100 MHz,  
the SNR starts degrading in our experiments. Measurements were conducted with ADC connected to Y0 and  
other outputs running at different integer frequencies.  
Important note on crosstalk: it is highly recommended that both pre-dividers are configured identically, as  
otherwise SFDR and SNR suffer due to crosstalk between the two pre-divider frequencies.  
245.76MHz DAC  
driven from ³LGHDOꢀVRXUFH´ꢀ  
245.76MHz DAC  
driven from CDCM6208  
(Wenzel oscillator buffered by HP8133A)  
(no performance degradation observed)  
* RBW 30 kHz  
* VBW 300 kHz  
* RBW 30 kHz  
* VBW 300 kHz  
Ref -14.1 dBm  
* Att  5 dB  
* SWT 1 s  
Ref -14.1 dBm  
* Att  5 dB  
* SWT 1 s  
-20  
-30  
-40  
-50  
-60  
-70  
-20  
-30  
-40  
-50  
-60  
-70  
 A  
 A  
1 RM *  
CLRWR  
1 RM *  
CLRWR  
-80  
-80  
NOR  
PRN  
NOR  
PRN  
-90  
-90  
-100  
-100  
-110  
-110  
Center 245.76 MHz  
2.55 MHz/  
 W-CDMA 3GPP FWD  
Span 25.5 MHz  
Center 245.76 MHz  
2.55 MHz/  
 W-CDMA 3GPP FWD  
Span 25.5 MHz  
 Tx Channel  
 Bandwidth             3.84 MHz  
 
 Tx Channel  
 Bandwidth             3.84 MHz  
 
 Power      -9.40 dBm  
 Power      -9.39 dBm  
 Adjacent Channel  
 Bandwidth             3.84 MHz  
 Spacing                  5 MHz  
 Adjacent Channel  
 Bandwidth             3.84 MHz  
 Spacing                  5 MHz  
 Lower     -73.12 dB  
 Upper     -73.06 dB  
 Lower     -72.81 dB  
 Upper     -72.40 dB  
 Alternate Channel  
 Bandwidth             3.84 MHz  
 Spacing                 10 MHz  
 Alternate Channel  
 Bandwidth             3.84 MHz  
 Spacing                 10 MHz  
 Lower     -79.22 dB  
 Upper     -79.19 dB  
 Lower     -77.79 dB  
 Upper     -78.31 dB  
Figure 54. DAC Driven by Lab Source and CDCM6208V1F in Comparison (Performance Identical)  
Observation/Conclusion: The DAC performance was not degraded at all by the CDCM6208V1F compared to  
driving the DAC with a perfect lab source. Therefore, the CDCM6208V1F provides sufficient low noise to drive a  
245.76 MHz DAC.  
70  
Copyright © 2015, Texas Instruments Incorporated  
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
11.2.3 Application Performance Plots  
11.2.3.1 Typical Device Jitter  
Figure 55. Typical Device Output Phase Noise and Jitter  
for 25 MHz  
Figure 56. Typical Device Output Phase Noise and Jitter  
for 312.5 MHz  
0
156.25MHz output using 60Hz Loop  
Bandwidth; Clock source is ok to be noisy,  
as CDCM6208 filters the jitter out of the  
noisy source; RJ=1.2ps-rms (12k-20MHz)  
-20  
-40  
-60  
156.25 MHZ  
with 60 Hz BW  
-80  
156.25 MHZ  
closed loop  
-100  
-120  
156.25MHz output using 300kHz  
-140 bandwidth; Clock source needs to  
be clean (e.g. XTAL source)  
RJ=265fs-rms  
-160  
1
10  
100  
1k  
10k 100k 1M 10M 100M  
Frequency (Hz)  
Figure 57. Phase Noise Plot for Jitter Cleaning Mode (blue) and Synthesizer Mode (green)  
Copyright © 2015, Texas Instruments Incorporated  
71  
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
12 Power Supply Recommendations  
12.1 Power Rail Sequencing, Power Supply Ramp Rate, and Mixing Supply Domains  
Mixing Supplies: The CDCM6208V1F incorporates a very flexible power supply architecture. Each building  
block has its own power supply domain, and can be driven independently with 1.8 V, 2.5 V, or 3.3 V . This is  
especially of advantage to minimize total system cost by deploying multiple low-cost LDOs instead of one, more-  
expensive LDO. This also allows mixed IO supply voltages (e.g. one CMOS output with 1.8 V, another with 3.3  
V) or interfacing to a SPI/I2C controller with 3.3 V supply while other blocks are driven from a lower supply  
voltage to minimize power consumption. The CDCM6208V1F current consumption is practically independent of  
the supply voltage, and therefore a lower supply voltage consumes lower device power. Also note that outputs  
Y3:0 if used for PECL swing will provide higher output swing if the according output domains are connected to  
2.5 V or 3.3 V.  
Power-on Reset: The CDCM6208V1F integrates a built-in POR circuit, that holds the device in powerdown until  
all input, digital, and PLL supplies have reached at least 1.06 V (min) to 1.24 V (max). After this power-on  
release, device internal counters start (see previous section on device power up timing) followed by device  
calibration. While the device digital circuit resets properly at this supply voltage level, the device is not ready to  
calibrate at such a low voltage. Therefore, for slow power up ramps, the counters expire before the supply  
voltage reaches the minimum voltage of 1.71 V. Hence for slow power-supply ramp rates, it is necessary to delay  
calibration further using the PDN input.  
Slow power-up supply ramp: No particular power supply sequence is required for the CDCM6208V1F.  
However, it is necessary to ensure that device calibration occurs AFTER the DVDD supply as well as the  
VDD_PLL1, VDD_PLL2, VDD_PRI, and VDD_SEC supply are all operational, and the voltage on each supply is  
higher than 1.45. This is best realized by delaying the PDN low-to-high transition. The PDN input incorporates a  
50 kΩ resistor to DVDD. Assuming the DVDD supply ramp has a fixed time relationship to the slowest of all PLL  
and input power supplies, a capacitor from PDN to GND can delay the PDN input signal sufficiently to toggle  
PDN low-to-high AFTER all other supplies are stable. However, if the DVDD supply ramps much sooner than the  
PLL or input supplies, additional means are necessary to prevent PDN from toggling too early. A premature  
toggling of PDN would possibly result in failed PLL calibration, which can only be corrected by re-calibrating the  
PLL by either toggling PDN or RESET high-low-high.  
1.8V,  
2.5V, or  
3.3V  
VDVDD  
1.3V  
VDD_PLL1, VDD_PLL2, VDD_PRI,  
50k  
VDVDD  
PDN  
VDD_SEC all must rise before PDN toggles high  
0V  
t?0  
CPDN  
VDVDD  
CDCM6208  
VIH(min)  
VPDN  
0V  
Figure 58. PDN Delay When Using Slow Ramping Power Supplies (Supply Ramp > 50 ms)  
12.1.1 Fast Power-up Supply Ramp  
If the supply ramp time for DVDD, VDD_PLL1, VDD_PLL2, VDD_PRI, and VDD_SEC are faster than 50 ms from  
0 V to 1.8 V, no special provisions are necessary on PDN; the PDN pin can be left floating. Even an external  
capacitor to GND can be omitted in this circumstance, as the device delays calibration sufficiently by internal  
means.  
72  
Copyright © 2015, Texas Instruments Incorporated  
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
Power Rail Sequencing, Power Supply Ramp Rate, and Mixing Supply Domains (continued)  
12.1.2 Delaying VDD_Yx_Yy to Protect DSP IOs  
DSPs and other highly integrated processors sometimes do not permit any clock signal to be present until the  
DSP power supply for the corresponding IO is also present. The CDCM6208V1F allows to either sequence  
output clock signals by writing to the corresponding output enable bit through SPI/I2C, or alternatively it is  
possible to connect the DSP IO supply and the CDCM6208V1F output supply together, in which case the  
CDCM6208V1F output will not turn on until the DSP supply is also valid. This second implementation avoids  
SPI/I2C programming.  
Copyright © 2015, Texas Instruments Incorporated  
73  
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
13 Layout  
13.1 Layout Guidelines  
Employing the thermally enhanced printed circuit board layout shown in Figure 59 insures good thermal  
performance of the solution. Observing good thermal layout practices enables the thermal pad on the backside of  
the QFN-48 package to provide a good thermal path between the die contained within the package and the  
ambient air. This thermal pad also serves as the ground connection the device; therefore, a low inductance  
connection to the ground plane is essential.  
13.2 Layout Example  
Figure 59 shows a layout optimized for good thermal performance and a good power supply connection as well.  
The 7×7 filled via pattern facilitates both considerations.  
Figure 59. Recommended PCB layout of CDCM6208  
74  
Copyright © 2015, Texas Instruments Incorporated  
 
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
Layout Example (continued)  
Figure 60 shows two conceptual layouts detailing recommended placement of power supply bypass capacitors. If  
the capacitors are mounted on the back side, 0402 components can be employed; however, soldering to the  
Thermal Dissipation Pad can be difficult. For component side mounting, use 0201 body size capacitors to  
facilitate signal routing. Keep the connections between the bypass capacitors and the power supply on the  
device as short as possible. Ground the other side of the capacitor using a low impedance connection to the  
ground plane.  
Figure 60. PCB Conceptual Layouts  
Copyright © 2015, Texas Instruments Incorporated  
75  
 
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
13.2.1 Reference Schematic  
5
4
3
2
1
STATUS1_PIN0  
SDI_SDA_PIN1  
SDO_AD0_PIN2  
SCS_AD1_PIN3  
SCL_PIN4  
REG_CAP  
C82  
Place 10uF close to  
device pin to minimize  
series resistance  
10uF/6.3V  
General Power supply related note:  
Place all 0.1uF bypass caps as close as possible to device pins.  
BLM15HD102SN1D  
L1  
DNI  
DNI  
DNI  
DNI  
DNI  
DNI  
DNI  
DNI  
DNI  
DNI  
1
2
VDD_PLL  
C298  
C283  
C280  
C282  
C281  
D
C
B
A
D
C
B
A
VDD_PLL_A  
DVDD  
DVDD  
DVDD  
DVDD  
DVDD  
0.1uF  
100pF  
0.1uF  
1uF  
10uF  
VDD_OUT01  
VDD_OUT23  
PWR_MONITOR  
RESET_PWR  
C288  
0.1uF  
C279  
C275  
C295  
Device Reset can connect to  
power monitor or left unconnected;  
pin has internal 150k pullup  
0.1uF  
1uF  
0.1uF  
C289  
0.1uF  
C284  
C276  
0.1uF  
1uF  
VDD_OUT4  
VDD_OUT5  
VDD_OUT6  
C290  
0.1uF  
C285  
C277  
0.1uF  
1uF  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
0.1uF  
0.1uF  
SI_MODE0  
Y7_N  
Y7_P  
SI_MODE0  
SDI_SDA_PIN1  
SDO_AD0_PIN2  
SCS_AD1_PIN3  
SCL_PIN4  
DSP_CLK7N  
C291  
0.1uF  
C287  
C286  
SDI/SDA/PIN1  
SDO/AD0/PIN2  
SCS/AD1/PIN3  
SCL/PIN4  
DSP_CLK7P  
VDD_OUT7  
3
0.1uF  
1uF  
VDD_Y7  
Y6_N  
4
0.1uF  
0.1uF  
DSP_CLK6N  
5
C292  
0.1uF  
C299  
C300  
Y6_P  
DSP_CLK6P  
VDD_OUT6  
6
0.1uF  
1uF  
REF_SEL  
VDD_Y6  
VDD_Y5  
Y5_P  
REF_SEL  
CDCM6208  
7
VDD_PRI_IN  
VDD_OUT5  
DSP_CLK5N  
VDD_PRI_REF  
PRI_REFP  
8
0.1uF  
0.1uF  
U1  
VDD_OUT7  
PRI_REFP  
C301  
0.1uF  
C303  
C302  
9
PRI_REFN  
Y5_N  
PRI_REFN  
DSP_CLK5P  
VDD_OUT4  
0.1uF  
1uF  
10  
11  
12  
VDD_SEC_IN  
VDD_SEC_REF  
SEC_REFP  
SEC_REFN  
VDD_Y4  
Y4_P  
0.1uF  
0.1uF  
SEC_REFP  
SEC_REFN  
DSP_CLK4N  
DSP_CLK4P  
VDD_PRI_IN  
Y4_N  
C304  
0.1uF  
C305  
1uF  
VDD_SEC_IN  
DVDD  
C307  
0.1uF  
C308  
C274  
0.1uF  
C293  
1uF  
1uF  
Title  
Rev  
01  
CDCM6208 Reference Schematic  
Date:  
December, 2011  
2
Sheet  
1
of  
3
5
4
3
1
Figure 61. Schematic Page 1  
76  
Copyright © 2015, Texas Instruments Incorporated  
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
5
4
3
2
1
PRIMARY REFERENCE INPUT  
C_PRI_P  
LOOP FILTER  
CLKIN_PRIP  
PRI_REFP  
R_PRI_PUP  
C2  
C1  
R2  
1uF  
49.9  
ELF  
D
D
C
B
A
VDD_PRI_IN  
R83  
C296  
49.9  
R_PRI_PDN  
1uF  
R84  
C_PRI_N  
CLKIN_PRIN  
PRI_REFN  
1uF  
Synthesizer mode (high loop bandwidth)  
CDCM6208V1:  
With C1=100pF, R2=500Ö, C2=22nF and  
Internal components R3=100Ö, C3=242.5pF,  
fPFD=25MHz, and ICP=2.5mA:  
Loop Filter  
Examples:  
The following input biasing is recommended:  
Loop bandwidth ~ (300kHz)  
AC coupled differential signals with VDD_PRI/SEC=2.5/3.3V:  
select Reg4[7:6]=01 and/or Reg4[4:3]=01 (LVDS),  
target VBIAS=1.2V, therefore  
for VDD_PRI/SEC=1.8V:  
target VBIAS=0.9V, therefore  
CDCM6208V2:  
C
B
A
With C1=470pF, R2=560Ö, C2=100nF and  
Internal components R3=100Ö, C3=242.5pF,  
fPFD=30.72MHz, and ICP=2.5mA:  
Loop bandwidth ~ (300kHz)  
set R_PRI_PUP=5.5k, RPRI_PDN=3.14k  
set R_PRI_PUP=5.5k, RPRI_PDN=5.5k  
DC coupled LVDS signals with VDD_PRI/SEC=2.5/3.3V:  
select Reg4[7:6]=01 and/or Reg4[4:3]=01 (LVDS),  
R_PRI_PUP=5.5k, RPRI_PDN=3.14k  
for VDD_PRI/SEC=1.8V:  
R_PRI_PUP=5.5k, RPRI_PDN=3.14k  
Jitter cleaner mode (low loop bandwidth):  
CDCM6208V1:  
With C1=4.7éF, R2=145Ö, C2=47éF and  
Internal components R3=4.01kÖ, C3=662.5pF,  
fPFD=40kHz, and ICP=500éA:  
replace C_PRI_P=C_PRI_N=0Ö  
Y1  
DC coupled 3.3V CMOS signals:  
Connect VDD_SEC_IN=3.3V,  
select Reg4[7:6]=10 and/or Reg4[4:3]=10 (CMOS),  
R83,R84,R85, & R86=DNI, replace C_PRI_P=C_PRI_N=0Ö  
for 1.8V CMOS signals:  
25MHz  
GND0  
Connect VDD_SEC_IN=1.8V:  
4
1
3
2
3
Loop bandwidth ~ (40Hz)  
CDCM6208V2:  
DC coupled CML only (VDD_PRI/6(&ꢀYROWDJHꢀLVꢀGRQ¬WꢀFDUH):  
1
GND1  
With C1=5éF, R2=100Ö, C2=100éF and  
Internal components R3=4.01kÖ, C3=662.5pF,  
select Reg4[7:6]=00 and/or Reg4[4:3]=00 (CML),  
set R_PRI_PUP=0Ö, RPRI_PDN=DNI,  
Replace CPRI_P=0Ö, C_PRI_N=0Ö  
f
PFD=80kHz, and ICP=500éA:  
NX3225GA  
Loop bandwidth ~ (100Hz)  
Use of Crystal on secondary reference input (VDD_SEC_,1ꢀYROWDJHꢀLVꢀGRQ¬WꢀFDUH):  
select Reg4[7:6]=11 (XTAL),  
set R87=DNI, R89=DNI, R72=0Ö, R73=0Ö  
C27  
4pF  
C28  
4pF  
R73  
DNI  
R72  
DNI  
SECONDARY REFERENCE INPUT  
C29  
0.0  
R87  
CLKIN_SECP  
SEC_REFP  
1uF  
49.9  
R_SEC_PUP  
R_SEC_PDN  
VDD_SEC_IN  
R85  
C297  
49.9  
1uF  
R86  
C30  
1uF  
0.0  
CLKIN_SECN  
SEC_REFN  
R89  
Title  
Rev  
CDCM6208 Reference Schematic  
01  
Date:  
December, 2011  
2
of  
3
Sheet  
5
4
3
2
1
Figure 62. Schematic Page 2  
Copyright © 2015, Texas Instruments Incorporated  
77  
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
5
4
3
2
1
3.3V Power Supply  
3p3V  
+5V  
1
5
6
7
8
C37  
510pF  
R40  
30.9k  
C34  
10uF/6.3V  
OUT1  
OUT2  
FB  
EN  
NR  
D
C
B
A
D
2
3
4
TPS7A8001  
C38  
0.01uF  
IN2  
IN1  
R1p8  
0
2
2
2
VDD_PLL  
VDD_OUT01  
VDD_OUT23  
VDD_OUT4  
VDD_OUT5  
1p8V  
2p5V  
3p3V  
VDD_OUT6  
VDD_OUT7  
VDD_PRI_IN  
VDD_SEC_IN  
DVDD  
1p8V  
2p5V  
3p3V  
0
R41  
10k  
GND  
R2p5  
DNI  
DNI  
DNI  
U6  
C39  
10uF/6.3V  
R3p3  
DNI  
MANY VIAS with Heat Sink  
2
2
2
2
2
2
1p8V  
2p5V  
3p3V  
1p8V  
2p5V  
3p3V  
0
0
DNI  
DNI  
DNI  
DNI  
2.5V Power Supply  
2p5V  
2
2
2
2
2
2
C
B
A
1p8V  
2p5V  
3p3V  
1p8V  
2p5V  
3p3V  
0
0
+5V  
1
5
6
7
8
C50  
750pF  
R55  
21k  
C35  
OUT1  
OUT2  
FB  
EN  
NR  
DNI  
DNI  
DNI  
DNI  
2
3
4
TPS7A8001  
10uF/6.3V  
C48  
0.01uF  
IN2  
IN1  
R54  
10k  
GND  
2
2
2
2
2
2
1p8V  
2p5V  
3p3V  
1p8V  
2p5V  
3p3V  
0
0
U7  
C49  
10uF/6.3V  
DNI  
DNI  
DNI  
DNI  
MANY VIAS with Heat Sink  
2
2
2
2
2
2
1p8V  
2p5V  
3p3V  
1p8V  
2p5V  
3p3V  
0
0
DNI  
DNI  
1.8V Power Supply  
DNI  
DNI  
1p8V  
VDD_OUT4, 5, 6, and VDD_OUT7 supply setting  
reflect the CMOS signal output swing  
If SPI or I2C is used, set DVDD to the same  
supply voltage (e.g. 1.8V, 2.5V, or 3.3V)  
+5V  
1
5
6
7
8
C53  
1300pF  
R58  
12.5k  
C36  
OUT1  
OUT2  
FB  
EN  
NR  
2
3
4
TPS7A8001  
10uF/6.3V  
C51  
0.01uF  
IN2  
IN1  
Every supply can individually be connected to either 1.8V, 2.5V, or 3.3V. It is also possible to  
run all IO from one single supply at 1.8V, 2.5V, or 3.3V.  
R56  
10k  
GND  
U8  
C52  
10uF/6.3V  
MANY VIAS with Heat Sink  
Title  
Rev  
CDCM6208 Reference Schematic  
01  
Date:  
December, 2011  
Sheet  
1
3
of  
3
5
4
3
2
Figure 63. Schematic Page 3  
78  
Copyright © 2015, Texas Instruments Incorporated  
CDCM6208V1F  
www.ti.com.cn  
ZHCSDT8 MAY 2015  
5
4
3
2
1
HCSL connection example (DC coupled)  
LVDS or LVPECL connection example (AC coupled)  
RS(P)  
Y4-7_HCSL_P  
Y4-7_HCSL_N  
TX-line 50Ö  
TX-line 50Ö  
PCIe_PHY_P  
PCIe_PHY_N  
D
0
TX-line 50Ö  
TX-line 50Ö  
Diff_in_P  
Y0-7 LVDS_P  
Y0-7 LVDS_N  
RS(N)  
0
1uF  
1uF  
DSP with receiver input  
termination and self-  
biasing  
D
Diff_in_N  
49.9  
49.9  
PICe phy  
Outputs 4 to 7 have option for HCSL, LVCMOS, LPCML  
For HCSL, install 50 ohm termination resistors and adjust  
series resistor between 0 and 33 ohms to improve ringing.  
C
LVDS or LVPECL connection example (AC coupled)  
TX-line 50Ö  
TX-line 50Ö  
Diff_in_P  
Y0-7 LVDS_P  
Y0-7 LVDS_N  
1uF  
DSP without receiver  
input termination and  
self-biasing  
B
B
Diff_in_N  
1uF  
49.9  
49.9  
Vbias  
100n  
A
A
Title  
Rev  
CDCM6208 Reference Schematic (Extra: output termination)  
01  
extra  
Date:  
December, 2011  
2
Sheet  
of  
5
4
3
1
Figure 64. Schematic Page 4  
Copyright © 2015, Texas Instruments Incorporated  
79  
CDCM6208V1F  
ZHCSDT8 MAY 2015  
www.ti.com.cn  
14 器件和文档支持  
14.1 商标  
KeyStone is a trademark of Texas Instruments.  
I2C is a trademark of NXP B.V. Corporation.  
All other trademarks are the property of their respective owners.  
14.2 文档支持  
14.2.1 相关文档  
应用报告《IC 封装热指标》SPRA953.  
关于 SRIO 接口,请参见KeyStone 器件的硬件设计指南》SPRABI2。  
14.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
14.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
15 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
80  
版权 © 2015, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2015, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CDCM6208V1FRGZR  
CDCM6208V1FRGZT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGZ  
RGZ  
48  
48  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
CM6208V1F  
CM6208V1F  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RGZ 48  
7 x 7, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUADFLAT PACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224671/A  
www.ti.com  
PACKAGE OUTLINE  
RGZ0048B  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
7.15  
6.85  
A
B
PIN 1 INDEX AREA  
7.15  
6.85  
1 MAX  
C
SEATING PLANE  
0.05  
0.00  
0.08 C  
2X 5.5  
4.1 0.1  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
13  
24  
44X 0.5  
12  
25  
49  
SYMM  
2X  
5.5  
0.30  
0.18  
36  
48X  
1
0.1  
0.05  
C B A  
48  
37  
SYMM  
PIN 1 ID  
(OPTIONAL)  
0.5  
0.3  
48X  
4218795/B 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGZ0048B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
4.1)  
(1.115) TYP  
(0.685)  
TYP  
37  
48  
48X (0.6)  
1
36  
48X (0.24)  
(1.115)  
TYP  
44X (0.5)  
(0.685)  
TYP  
SYMM  
49  
(
0.2) TYP  
VIA  
(6.8)  
(R0.05)  
TYP  
12  
25  
13  
24  
SYMM  
(6.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218795/B 02/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGZ0048B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.37)  
TYP  
37  
48  
48X (0.6)  
1
36  
48X (0.24)  
44X (0.5)  
(1.37)  
TYP  
SYMM  
49  
(R0.05) TYP  
(6.8)  
9X  
METAL  
TYP  
(
1.17)  
12  
25  
13  
24  
SYMM  
(6.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 49  
73% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:12X  
4218795/B 02/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY