CSD86356Q5DT [TI]

采用 5mm x 6mm SON 封装的 40A、25V、N 沟道同步降压 NexFET™ 功率 MOSFET 电源块 | DMV | 8 | -55 to 150;
CSD86356Q5DT
型号: CSD86356Q5DT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 5mm x 6mm SON 封装的 40A、25V、N 沟道同步降压 NexFET™ 功率 MOSFET 电源块 | DMV | 8 | -55 to 150

开关 光电二极管
文件: 总28页 (文件大小:1110K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
CSD86356Q5D  
ZHCSHY1 MARCH 2018  
CSD86356Q5D 同步降压 NexFET™电源块  
1 特性  
3 说明  
1
半桥电源块  
CSD86356Q5D NexFET™电源块是面向同步降压 应  
用 的优化设计方案,能够以 5mm × 6mm 的小巧外形  
提供高电流、高效率以及高频率性能。该产品针对 5V  
栅极驱动 应用进行了优化,在与外部控制器/驱动器的  
任一 5V 栅极驱动配套使用时,可提供一套灵活的解决  
方案来实现高密度电源。  
25A 电流下系统效率高达 93.0%  
工作电流高达 40A  
高频工作(高达 1.5MHz)  
高密度 SON 5mm × 6mm 封装  
针对 5V 栅极驱动进行了优化  
开关损耗较低  
超低电感封装  
符合 RoHS 标准  
俯视图  
无卤素  
VIN  
VIN  
TG  
VSW  
VSW  
VSW  
1
2
3
4
8
7
6
5
无铅引脚镀层  
PGND  
(Pin 9)  
2 应用  
同步降压转换器  
TGR  
BG  
高频 应用  
P0116-01  
高电流、低占空比 应用  
器件信息(1)  
数量  
多相位同步降压转换器  
器件  
介质  
封装  
发货  
负载点 (POL) 直流/直流转换器  
IMVPVRM VRD 应用  
CSD86356Q5D 13 英寸卷带 2500  
CSD86356Q5DT 7 英寸卷带 250  
5.00mm × 6.00mm  
SON 塑料封装  
卷带封  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
典型电路  
典型电源块效率与功率损耗  
100  
95  
90  
85  
80  
75  
70  
65  
7
6
5
4
3
2
1
0
VIN  
BOOT  
VDD  
VDD  
GND  
VIN  
TG  
Control  
FET  
DRVH  
LL  
VSW  
TGR  
VIN = 12 V  
OUT = 1.3 V  
VSW = 5 V  
VOUT  
ENABLE  
PWM  
ENABLE  
PWM  
V
Sync  
FET  
BG  
fSW = 500 kHz  
DRVL  
PGND  
LOUT = 0.3  
mH  
TA = 25  
èC  
CSD86356Q5D  
Driver IC  
Copyright © 2017, Texas Instruments Incorporated  
0
5
10  
15  
20  
25  
30  
35  
40  
Output Current (A)  
D000  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLPS665  
 
 
 
CSD86356Q5D  
ZHCSHY1 MARCH 2018  
www.ti.com.cn  
目录  
6.2 Typical Application .................................................. 14  
Layout ................................................................... 17  
7.1 Recommended Schematic Overview...................... 17  
7.2 Recommended PCB Design Overview................... 18  
器件和文档支持...................................................... 20  
8.1 接收文档更新通知 ................................................... 20  
8.2 社区资源.................................................................. 20  
8.3 ......................................................................... 20  
8.4 静电放电警告........................................................... 20  
8.5 Glossary.................................................................. 20  
机械、封装和可订购信息 ....................................... 21  
9.1 Q5D 封装尺寸 ......................................................... 21  
9.2 引脚配置.................................................................. 21  
9.3 焊盘图案建议........................................................... 22  
9.4 模版建议.................................................................. 23  
1
2
3
4
5
特性.......................................................................... 1  
7
8
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Specifications......................................................... 3  
5.1 Absolute Maximum Ratings ...................................... 3  
5.2 Recommended Operating Conditions....................... 3  
5.3 Thermal Information.................................................. 3  
5.4 Power Block Performance ........................................ 3  
5.5 Electrical Characteristics – Q1 Control FET ............. 4  
5.6 Electrical Characteristics – Q2 Sync FET................. 5  
5.7 Typical Power Block Device Characteristics............. 6  
5.8 Typical Power Block MOSFET Characteristics......... 8  
Application and Implementation ........................ 11  
6.1 Application Information............................................ 11  
9
6
4 修订历史记录  
日期  
修订版本  
说明  
2018 3 月  
*
最初发布版本。  
2
Copyright © 2018, Texas Instruments Incorporated  
 
CSD86356Q5D  
www.ti.com.cn  
ZHCSHY1 MARCH 2018  
5 Specifications  
5.1 Absolute Maximum Ratings  
TA = 25°C (unless otherwise noted)(1)  
MIN  
MAX  
25  
UNIT  
VIN to PGND  
VSW to PGND  
–0.8  
25  
Voltage  
VSW to PGND (10 ns)  
TG to TGR  
27  
V
–8  
–8  
10  
BG to PGND  
10  
Pulsed current rating, IDM(2)  
120  
12  
A
Power dissipation, PD  
W
Sync FET, ID = 88 A, L = 0.1 mH  
387  
101  
150  
Avalanche  
energy, EAS  
mJ  
°C  
Control FET, ID = 45 A, L = 0.1 mH  
TJ and TSTG  
Operating junction and storage temperature  
–55  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated is not implied. Exposure to absolute-  
maximum-rated conditions for extended periods may affect device reliability.  
(2) Pulse duration = 50 µS. Duty cycle = 0.01.  
5.2 Recommended Operating Conditions  
TA = 25°C (unless otherwise noted)  
MIN  
MAX  
8
UNIT  
V
VGS  
VIN  
Gate drive voltage  
4.5  
Input supply voltage(1)  
Switching frequency CBST = 0.1 µF (min)  
Operating current  
22  
V
ƒSW  
1500  
40  
kHz  
A
TJ  
Operating temperature  
Storage temperature  
125  
125  
°C  
°C  
TSTG  
(1) Operating at high VIN can create excessive AC voltage overshoots on the switch node (VSW) during MOSFET switching transients. For  
reliable operation, the switch node (VSW) to ground voltage must remain at or below the Absolute Maximum Ratings.  
5.3 Thermal Information  
TA = 25°C (unless otherwise noted)  
THERMAL METRIC  
MIN  
MAX  
125  
50  
UNIT  
°C/W  
°C/W  
°C/W  
°C/W  
RθJA  
RθJA  
RθJC  
RθJC  
Junction-to-ambient thermal resistance (min Cu)(1)  
Junction-to-ambient thermal resistance (max Cu)(1) (2)  
Junction-to-case thermal resistance (top of package)(1)  
Junction-to-case thermal resistance (PGND pin)(1)  
12  
1.8  
(1)  
R
θJC is determined with the device mounted on a 1-in2 (6.45-cm2), 2-oz (0.071-mm) thick Cu pad on a 1.5-in × 1.5-in  
(3.81-cm × 3.81-cm), 0.06-in (1.52-mm) thick FR4 board. RθJC is specified by design while RθJA is determined by the user’s board  
design.  
(2) Device mounted on FR4 material with 1-in2 (6.45-cm2) Cu.  
5.4 Power Block Performance  
TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
2.8  
10  
MAX  
UNIT  
W
VIN = 12 V, VGS = 5 V, VOUT = 1.3 V, IOUT = 25 A,  
ƒSW = 500 kHz, LOUT = 0.3 μH, TJ = 25°C  
PLOSS  
IQVIN  
Power loss(1)  
VIN quiescent current(1)  
TG to TGR = 0 V, BG to PGND = 0 V  
µA  
(1) Measurement made with six 10-μF (TDK C3216X5R1C106KT or equivalent) ceramic capacitors placed across VIN to PGND pins and  
using a high-current 5-V driver IC.  
Copyright © 2018, Texas Instruments Incorporated  
3
CSD86356Q5D  
ZHCSHY1 MARCH 2018  
www.ti.com.cn  
5.5 Electrical Characteristics – Q1 Control FET  
Tj = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
STATIC CHARACTERISTICS  
BVDSS  
IDSS  
Drain-to-source voltage  
VGS = 0 V, IDS = 250 µA  
25  
V
Drain-to-source leakage current  
Gate-to-source leakage current  
Gate-to-source threshold voltage  
VGS = 0 V, VDS = 20 V  
1
100  
µA  
nA  
V
IGSS  
VDS = 0 V, VGS = +10 / –8 V  
VDS = VGS, IDS = 250 µA  
VGS(th)  
0.95  
1.85  
VIN = 12 V, VGS = 5 V, VOUT = 1.3 V,  
IOUT = 20 A, ƒSW = 500 kHz,  
LOUT = 300 nH  
ZDS(on) Effective AC on-impedance  
4.5  
70  
mΩ  
gfs  
Transconductance  
VDS = 2.5 V, IDS = 20 A  
S
DYNAMIC CHARACTERISTICS  
CISS  
COSS  
CRSS  
RG  
Input capacitance  
803  
548  
27  
1040  
712  
35  
pF  
pF  
pF  
Ω
Output capacitance  
Reverse transfer capacitance  
Series gate resistance  
Gate charge total (4.5 V)  
Gate charge – gate-to-drain  
Gate charge – gate-to-source  
Gate charge at Vth  
Output charge  
VGS = 0 V, VDS = 12.5 V, ƒ = 1 Mhz  
2.1  
6.0  
1.3  
2.6  
1.2  
10.3  
7
4.2  
Qg  
7.9  
nC  
nC  
nC  
nC  
nC  
ns  
ns  
ns  
ns  
Qgd  
Qgs  
Qg(th)  
QOSS  
td(on)  
tr  
VDS = 12.5 V, IDS = 20 A  
VDS = 12.5 V, VGS = 0 V  
Turn on delay time  
Rise time  
26  
VDS = 12.5 V, VGS = 4.5 V, IDS = 20 A,  
RG = 0 Ω  
td(off)  
tf  
Turn off delay time  
Fall time  
12  
3
DIODE CHARACTERISTICS  
VSD  
Qrr  
trr  
Diode forward voltage  
Reverse recovery charge  
Reverse recovery time  
IDS = 20 A, VGS = 0 V  
0.84  
34  
0.95  
V
nC  
ns  
VDD = 12.5 V, IF = 20 A, di/dt = 300 A/µs  
23  
4
Copyright © 2018, Texas Instruments Incorporated  
CSD86356Q5D  
www.ti.com.cn  
ZHCSHY1 MARCH 2018  
5.6 Electrical Characteristics – Q2 Sync FET  
Tj = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
STATIC CHARACTERISTICS  
BVDSS  
IDSS  
Drain-to-source voltage  
VGS = 0 V, IDS = 250 µA  
25  
V
Drain-to-source leakage current  
Gate-to-source leakage current  
Gate-to-source threshold voltage  
VGS = 0 V, VDS = 20 V  
1
100  
1.5  
µA  
nA  
V
IGSS  
VDS = 0 V, VGS = +10 / –8 V  
VDS = VGS, IDS = 250 µA  
VGS(th)  
0.9  
VIN = 12 V, VGS = 5 V, VOUT = 1.3 V,  
IOUT = 20 A, ƒSW = 500 kHz,  
LOUT = 300 nH  
ZDS(on) Effective AC on-impedance  
0.8  
mΩ  
gfs  
Transconductance  
VDS = 2.5 V, IDS = 20 A  
106  
S
DYNAMIC CHARACTERISTICS  
CISS  
COSS  
CRSS  
RG  
Input capacitance  
1930  
1350  
64  
2510  
1760  
83  
pF  
pF  
pF  
Ω
Output capacitance  
Reverse transfer capacitance  
Series gate resistance  
Gate charge total (4.5 V)  
Gate charge – gate-to-drain  
Gate charge – gate-to-source  
Gate charge at Vth  
Output charge  
VGS = 0 V, VDS = 12.5 V, ƒ = 1 Mhz  
0.8  
14.8  
3.3  
5.2  
2.5  
24.9  
10  
1.6  
Qg  
19.3  
nC  
nC  
nC  
nC  
nC  
ns  
ns  
ns  
ns  
Qgd  
Qgs  
Qg(th)  
QOSS  
td(on)  
tr  
VDS = 12.5 V, IDS = 20 A  
VDS = 12.5 V, VGS = 0 V  
Turn on delay time  
Rise time  
25  
VDS = 12.5 V, VGS = 4.5 V, IDS = 20 A,  
RG = 0 Ω  
td(off)  
tf  
Turn off delay time  
Fall time  
18  
4
DIODE CHARACTERISTICS  
VSD  
Qrr  
trr  
Diode forward voltage  
Reverse recovery charge  
Reverse recovery time  
IDS = 20 A, VGS = 0 V  
0.79  
60  
0.95  
V
nC  
ns  
VDS = 12.5 V, IF = 20 A, di/dt = 300 A/µs  
30  
HD  
LD  
HD  
LD  
Max RθJA = 50°C/W  
when mounted on 1-in2  
(6.45-cm2) of  
2-oz (0.071-mm) thick  
Cu.  
Max RθJA = 125°C/W  
when mounted on  
minimum pad area of  
2-oz (0.071-mm) thick  
Cu.  
LG HS  
LG HS  
HG  
LS  
HG  
LS  
M0189-01  
M0190-01  
版权 © 2018, Texas Instruments Incorporated  
5
CSD86356Q5D  
ZHCSHY1 MARCH 2018  
www.ti.com.cn  
5.7 Typical Power Block Device Characteristics  
TJ = 125°C, unless stated otherwise. The typical power block system characteristic curves and 3 are based on  
measurements made on a PCB design with dimensions of 4 in (W) × 3.5 in (L) × 0.062 in (H) and 6 copper layers of 1-oz  
copper thickness. See Application and Implementation section for detailed explanation.  
8
7
6
5
4
3
2
1
0
1.05  
1
0.95  
0.9  
0.85  
0.8  
0.75  
0
5
10  
15  
20  
25  
30  
35  
40  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Output Current (A)  
Junction Temperature (èC)  
D001  
D002  
VIN = 12 V  
ƒSW = 500 kHz  
VGS = 5 V  
VOUT = 1.3 V  
VIN = 12 V  
ƒSW = 500 kHz  
VGS = 5 V  
VOUT = 1.3 V  
IOUT = 40 A  
LOUT = 0.3 µH  
LOUT = 0.3 µH  
1. Power Loss vs Output Current  
2. Normalized Power Loss vs Temperature  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
20  
40  
60  
80  
100  
120  
140  
Board Temperature (èC)  
D005  
VIN = 12 V  
VGS = 5 V  
VOUT = 1.3 V  
ƒSW = 500 kHz  
LOUT = 0.3 µH  
3. Typical Safe Operating Area (SOA)  
6
版权 © 2018, Texas Instruments Incorporated  
 
 
CSD86356Q5D  
www.ti.com.cn  
ZHCSHY1 MARCH 2018  
Typical Power Block Device Characteristics (接下页)  
TJ = 125°C, unless stated otherwise. The typical power block system characteristic curves and 3 are based on  
measurements made on a PCB design with dimensions of 4 in (W) × 3.5 in (L) × 0.062 in (H) and 6 copper layers of 1-oz  
copper thickness. See Application and Implementation section for detailed explanation.  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
6.6  
5.5  
4.4  
3.3  
2.2  
1.1  
0.0  
-1.1  
-2.2  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
3.4  
2.8  
2.3  
1.7  
1.1  
0.6  
0.0  
-0.6  
-1.1  
0.9  
0.8  
100  
300  
500  
700  
900 1100 1300 1500 1700  
0
2
4
6
8
10  
12  
14  
16  
18  
Switching Frequency (kHz)  
Input Voltage (V)  
D006  
D007  
VIN = 12 V  
LOUT = 0.3 µH  
VGS = 5 V  
VOUT = 1.3 V  
VGS = 5 V  
ƒSW = 500 kHz  
VOUT = 1.3 V  
IOUT = 40 A  
LOUT = 0.3 µH  
IOUT = 40 A  
4. Normalized Power Loss vs Switching Frequency  
5. Normalized Power Loss vs Input Voltage  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
9.0  
1.04  
1.03  
1.02  
1.01  
1
0.4  
7.9  
6.7  
5.6  
4.5  
3.4  
2.2  
1.1  
0.0  
-1.1  
0.3  
0.2  
0.1  
0.0  
-0.1  
-0.2  
0.99  
0.98  
0.9  
0.3 0.8 1.3 1.8 2.3 2.8 3.3 3.8 4.3 4.8 5.3  
Output Voltage (V)  
0
150  
300  
450  
600  
750  
900 1050 1200  
Output Inductance (nH)  
D008  
D009  
VIN = 12 V  
VGS = 5 V ƒSW = 500 kHz  
IOUT = 40 A  
VIN = 12 V  
ƒSW = 500 kHz  
VGS = 5 V  
VOUT = 1.3 V  
LOUT = 0.3 µH  
IOUT = 40 A  
6. Normalized Power Loss vs Output Voltage  
7. Normalized Power Loss vs Output Inductance  
版权 © 2018, Texas Instruments Incorporated  
7
 
 
CSD86356Q5D  
ZHCSHY1 MARCH 2018  
www.ti.com.cn  
5.8 Typical Power Block MOSFET Characteristics  
TA = 25°C, unless stated otherwise.  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
20  
VGS = 4.5 V  
VGS = 6 V  
VGS = 8 V  
VGS = 4.5 V  
VGS = 6 V  
VGS = 8 V  
10  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
VDS - Drain-to-Source Voltage (V)  
VDS - Drain-to-Source Voltage (V)  
D010  
D011  
8. Control MOSFET Saturation  
9. Sync MOSFET Saturation  
100  
100  
10  
TC = 125°C  
TC = 25°C  
TC = -55°C  
TC = 125°C  
TC = 25°C  
TC = -55°C  
10  
1
1
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
0.5  
1
1.5  
2
2.5  
3
VGS - Gate-to-Source Voltage (V)  
VGS - Gate-to-Source Voltage (V)  
D012  
D013  
VDS = 5 V  
VDS = 5 V  
10. Control MOSFET Transfer  
11. Sync MOSFET Transfer  
8
7
6
5
4
3
2
1
8
7
6
5
4
3
2
1
0
0
0
0
2
4
6
8
10  
12  
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Qg - Gate Charge (nC)  
Qg - Gate Charge (nC)  
D014  
D015  
ID = 20 A  
VDS = 12.5 V  
ID = 20 A  
VDS = 12.5 V  
12. Control MOSFET Gate Charge  
13. Sync MOSFET Gate Charge  
8
版权 © 2018, Texas Instruments Incorporated  
CSD86356Q5D  
www.ti.com.cn  
ZHCSHY1 MARCH 2018  
Typical Power Block MOSFET Characteristics (接下页)  
TA = 25°C, unless stated otherwise.  
10000  
1000  
100  
10  
10000  
1000  
100  
10  
Ciss = Cgd + Cgs  
Coss = Cds + Cgd  
Crss = Cgd  
Ciss = Cgd + Cgs  
Coss = Cds + Cgd  
Crss = Cgd  
1
1
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
VDS - Drain-to-Source Voltage (V)  
VDS - Drain-to-Source Voltage (V)  
D016  
D017  
ƒ = 1 MHz  
VGS = 0  
ƒ = 1 MHz  
VGS = 0  
14. Control MOSFET Capacitance  
15. Sync MOSFET Capacitance  
1.8  
1.6  
1.4  
1.2  
1
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.8  
0.6  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
TC - Case Temperature (°C)  
TC - Case Temperature (°C)  
D018  
D019  
ID = 250 µA  
ID = 250 µA  
16. Control MOSFET VGS(th)  
17. Sync MOSFET VGS(th)  
12  
10  
8
5
4
3
2
1
0
TC = 25°C, I D = 20 A  
TC = 125°C, I D = 20 A  
TC = 25°C, I D = 20 A  
TC = 125°C, I D = 20 A  
6
4
2
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
VGS - Gate-to-Source Voltage (V)  
VGS - Gate-to-Source Voltage (V)  
D020  
D021  
18. Control MOSFET RDS(ON) vs VGS  
19. Sync MOSFET RDS(ON) vs VGS  
版权 © 2018, Texas Instruments Incorporated  
9
CSD86356Q5D  
ZHCSHY1 MARCH 2018  
www.ti.com.cn  
Typical Power Block MOSFET Characteristics (接下页)  
TA = 25°C, unless stated otherwise.  
1.5  
1.4  
1.3  
1.2  
1.1  
1
1.5  
VGS = 4.5 V  
VGS = 8.0 V  
VGS = 4.5 V  
VGS = 8.0 V  
1.4  
1.3  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.9  
0.8  
0.7  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
TC - Case Temperature (°C)  
TC - Case Temperature (°C)  
D022  
D023  
ID = 20 A  
ID = 20 A  
20. Control MOSFET Normalized RDS(ON)  
21. Sync MOSFET Normalized RDS(ON)  
100  
100  
TC = 25°C  
TC = 25°C  
TC = 125°C  
TC = 125°C  
10  
1
10  
1
0.1  
0.1  
0.01  
0.001  
0.0001  
0.01  
0.001  
0.0001  
0
0.2  
0.4  
0.6  
0.8  
1
0
0.2  
0.4  
0.6  
0.8  
1
VSD - Source-to-Drain Voltage (V)  
VSD - Source-to-Drain Voltage (V)  
D024  
D025  
22. Control MOSFET Body Diode  
23. Sync MOSFET Body Diode  
100  
200  
100  
TC = 25è C  
TC = 125è C  
TC = 25è C  
TC = 125è C  
10  
0.01  
10  
0.01  
0.1  
1
0.1  
1
TAV - Time in Avalanche (ms)  
TAV - Time in Avalanche (ms)  
D026  
D027  
24. Control MOSFET Unclamped Inductive Switching  
25. Sync MOSFET Unclamped Inductive Switching  
版权 © 2018, Texas Instruments Incorporated  
10  
CSD86356Q5D  
www.ti.com.cn  
ZHCSHY1 MARCH 2018  
6 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
6.1 Application Information  
The CSD86356Q5D NexFET power block is an optimized design for synchronous buck applications using 5-V  
gate drive. The control FET and sync FET silicon are parametrically tuned to yield the lowest power loss and  
highest system efficiency. As a result, a new rating method is needed which is tailored towards a more systems-  
centric environment. System-level performance curves such as power loss, Safe Operating Area (SOA), and  
normalized graphs allow engineers to predict the product performance in the actual application.  
6.1.1 Equivalent System Performance  
Many of today's high-performance computing systems require low-power consumption in an effort to reduce  
system operating temperatures and improve overall system efficiency. This has created a major emphasis on  
improving the conversion efficiency of today’s synchronous buck topology. In particular, there has been an  
emphasis in improving the performance of the critical power semiconductor in the power stage of this application  
(see 26). As such, optimization of the power semiconductors in these applications, needs to go beyond simply  
reducing RDS(ON)  
.
Power Stage  
Components  
Power Block  
Components  
Ci  
+
-
Input  
Supply  
Control  
FET  
Driver  
Driver  
PWM  
Lo  
IL  
Switch  
Node  
Co  
Sync  
FET  
Load  
26. Synchronous Buck Topology  
版权 © 2018, Texas Instruments Incorporated  
11  
 
CSD86356Q5D  
ZHCSHY1 MARCH 2018  
www.ti.com.cn  
Application Information (接下页)  
The CSD86356Q5D is part of TI’s power block product family which is a highly optimized product for use in a  
synchronous buck topology requiring high current, high efficiency, and high frequency. It incorporates TI’s latest  
generation silicon which has been optimized for switching performance, as well as minimizing losses associated  
with QGD, QGS, and QRR. Furthermore, TI’s patented packaging technology has minimized losses by nearly  
eliminating parasitic elements between the control FET and sync FET connections (see 27). A key challenge  
solved by TI’s patented packaging technology is the system-level impact of Common Source Inductance (CSI).  
CSI greatly impedes the switching characteristics of any MOSFET which in turn increases switching losses and  
reduces system efficiency. As a result, the effects of CSI need to be considered during the MOSFET selection  
process. In addition, standard MOSFET switching loss equations used to predict system efficiency need to be  
modified in order to account for the effects of CSI. Further details behind the effects of CSI and modification of  
switching loss equations are outlined in TI’s Application Note Power Loss Calculation With Common Source  
Inductance Consideration for Synchronous Buck Converters (SLPA009).  
Input  
Supply  
RPCB  
CESR  
LDRAIN  
CINPUT  
Control  
FET  
Driver  
PWM  
CESL  
LSOURCE  
Lo  
Co  
IL  
Switch  
Node  
Load  
LDRAIN  
CTOTAL  
Sync  
FET  
Driver  
LSOURCE  
27. Elimination of Common Source Inductance  
The combination of TI’s latest generation silicon and optimized packaging technology has created a  
benchmarking solution that outperforms industry standard MOSFET chipsets of similar RDS(ON) and MOSFET  
chipsets with lower RDS(ON). 28 and 29 compare the efficiency and power loss performance of the  
CSD86356Q5D versus industry standard MOSFET chipsets commonly used in this type of application. This  
comparison purely focuses on the efficiency and generated loss of the power semiconductors only. The  
performance of CSD86356Q5D clearly highlights the importance of considering the Effective AC On-Impedance  
(ZDS(ON)) during the MOSFET selection process of any new design. Simply normalizing to traditional MOSFET  
RDS(ON) specifications is not an indicator of the actual in-circuit performance when using TI’s Power Block  
technology.  
12  
版权 © 2018, Texas Instruments Incorporated  
 
CSD86356Q5D  
www.ti.com.cn  
ZHCSHY1 MARCH 2018  
Application Information (接下页)  
96  
94  
92  
90  
88  
86  
10  
9
8
7
6
5
4
3
2
1
0
PowerBlock HS/LS RDS(ON) = 4.5 mW/1.8 mW  
Discrete HS/LS RDS(ON) = 4.5 mW/1.8 mW  
Discrete HS/LS RDS(ON) = 4.5 mW/0.8 mW  
84  
PowerBlock HS/LS RDS(ON) = 4.5 mW/1.8 mW  
Discrete HS/LS RDS(ON) = 4.5 mW/1.8 mW  
Discrete HS/LS RDS(ON) = 4.5 mW/0.8 mW  
82  
80  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
Output Current (A)  
VOUT = 1.3 V  
VDD= 5 V  
Output Current (A)  
VOUT = 1.3 V  
VDD = 5 V  
D030  
D031  
VIN = 12 V  
LOUT = 0.3 µH  
TA = 25°C  
VIN = 12 V  
LOUT = 0.3 µH  
TA = 25°C  
ƒSW = 500 kHz  
ƒSW = 500 kHz  
28. Efficiency  
29. Power Loss  
Comparison of RDS(ON) vs ZDS(ON) compares the traditional DC measured RDS(ON) of CSD86356Q5D versus its  
ZDS(ON). This comparison takes into account the improved efficiency associated with TI’s patented packaging  
technology. As such, when comparing TI’s Power Block products to individually packaged discrete MOSFETs or  
dual MOSFETs in a standard package, the in-circuit switching performance of the solution must be considered.  
In this example, individually packaged discrete MOSFETs or dual MOSFETs in a standard package would need  
to have DC measured RDS(ON) values that are equivalent to CSD86356Q5D’s ZDS(ON) value in order to have the  
same efficiency performance at full load. Mid to light-load efficiency will still be lower with individually packaged  
discrete MOSFETs or dual MOSFETs in a standard package.  
6.1.1.1 Comparison of RDS(ON) vs ZDS(ON)  
HS  
TYP  
LS  
TYP  
PARAMETER  
UNIT  
MAX  
MAX  
Effective AC on-impedance ZDS(ON) (VGS = 5 V)  
DC measured RDS(ON) (VGS = 4.5 V)  
4.5  
4.5  
0.8  
1.8  
mΩ  
5.6  
2.2 mΩ  
6.1.2 Power Loss Curves  
MOSFET centric parameters such as RDS(ON) and Qgd are needed to estimate the loss generated by the devices.  
In an effort to simplify the design process for engineers, Texas Instruments has provided measured power loss  
performance curves. 1 plots the power loss of the CSD86356Q5D as a function of load current. This curve is  
measured by configuring and running the CSD86356Q5D as it would be in the final application (see 30).The  
measured power loss is the CSD86356Q5D loss and consists of both input conversion loss and gate drive loss.  
公式 1 is used to generate the power loss curve.  
(VIN × IIN) + (VDD × IDD) – (VSW_AVG × IOUT) = Power loss  
(1)  
The power loss curve in 1 is measured at the maximum recommended junction temperatures of 125°C under  
isothermal test conditions.  
6.1.3 Safe Operating Area (SOA) Curves  
The SOA curves in the CSD86356Q5D data sheet provides guidance on the temperature boundaries within an  
operating system by incorporating the thermal resistance and system power loss. to 3 outline the temperature  
and airflow conditions required for a given load current. The area under the curve dictates the safe operating  
area. All the curves are based on measurements made on  
a PCB design with dimensions of  
4 in (W) × 3.5 in (L) × 0.062 in (T) and 6 copper layers of 1-oz copper thickness.  
版权 © 2018, Texas Instruments Incorporated  
13  
 
 
CSD86356Q5D  
ZHCSHY1 MARCH 2018  
www.ti.com.cn  
6.1.4 Normalized Curves  
The normalized curves in the CSD86356Q5D data sheet provides guidance on the power loss and SOA  
adjustments based on their application specific needs. These curves show how the power loss and SOA  
boundaries will adjust for a given set of system conditions. The primary Y-axis is the normalized change in power  
loss and the secondary Y-axis is the change in system temperature required in order to comply with the SOA  
curve. The change in power loss is a multiplier for the power loss curve and the change in temperature is  
subtracted from the SOA curve.  
6.2 Typical Application  
Input Current (IIN)  
Gate Drive  
Current (IDD)  
VIN  
A
BOOT  
DRVH  
LL  
VDD  
A
VDD  
V
Input Voltage (VIN)  
VIN  
Control  
FET  
Gate Drive  
Voltage (VDD)  
V
TG  
ENABLE  
PWM  
Output Current (IOUT  
VOUT  
)
VSW  
A
TGR  
Sync  
FET  
PWM  
BG  
DRVL  
GND  
PGND  
Averaged Switch  
V Node Voltage  
Averaging  
Circuit  
CSD86356Q5D  
Driver IC  
(VSW_AVG  
)
Copyright © 2018, Texas Instruments Incorporated  
30. Typical Application  
14  
版权 © 2018, Texas Instruments Incorporated  
CSD86356Q5D  
www.ti.com.cn  
ZHCSHY1 MARCH 2018  
Typical Application (接下页)  
6.2.1 Design Example: Calculating Power Loss and SOA  
The user can estimate product loss and SOA boundaries by arithmetic means (see Operating Conditions).  
Though the power loss and SOA curves in this data sheet are taken for a specific set of test conditions, the  
following procedure will outline the steps the user should take to predict product performance for any set of  
system conditions.  
6.2.2 Operating Conditions  
Output current = 35 A  
Input voltage = 5 V  
Output voltage = 2 V  
Switching frequency = 950 kHz  
Inductor = 0.3 µH  
6.2.2.1 Calculating Power Loss  
Power loss at 35 A = 5.57 W (1)  
Normalized power loss for input voltage 1.12 (5)  
Normalized power loss for output voltage 1.13 (6)  
Normalized power loss for switching frequency 1.21 (4)  
Normalized power loss for output inductor 1 (7)  
Final calculated power loss = 5.57 W × 1.12 × 1.13 × 1.21 × 1 8.5 W  
6.2.2.2 Calculating SOA Adjustments  
SOA adjustment for input voltage 1.37°C (5)  
SOA adjustment for output voltage 1.48°C (6)  
SOA adjustment for switching frequency 2.34°C (4)  
SOA adjustment for output inductor 0.03°C (7)  
Final calculated SOA adjustment = 1.37 + 1.48 + 2.34 + 0.03 5.2°C  
In the previous design example, the estimated power loss of the CSD58915Q5D would increase to 8.5 W. In  
addition, the maximum allowable board and/or ambient temperature would have to decrease by 5.2°C. 31  
graphically shows how the SOA curve would be adjusted accordingly.  
1. Start by drawing a horizontal line from the application current to the SOA curve.  
2. Draw a vertical line from the SOA curve intercept down to the board/ambient temperature.  
3. Adjust the SOA board/ambient temperature by subtracting the temperature adjustment value.  
版权 © 2018, Texas Instruments Incorporated  
15  
 
CSD86356Q5D  
ZHCSHY1 MARCH 2018  
www.ti.com.cn  
Typical Application (接下页)  
In the design example, the SOA temperature adjustment yields a reduction in allowable board/ambient  
temperature of 5.2°C. In the event the adjustment value is a negative number, subtracting the negative number  
would yield an increase in allowable board/ambient temperature.  
31. Power Block SOA  
16  
版权 © 2018, Texas Instruments Incorporated  
CSD86356Q5D  
www.ti.com.cn  
ZHCSHY1 MARCH 2018  
7 Layout  
7.1 Recommended Schematic Overview  
There are several critical components that must be used in conjunction with this power block device. 32  
shows a portion of a schematic with the critical components needed for proper operation.  
C22: Bypass capacitor for VIN to help with ringing reduction (recommend 3.3-nF, 0402, 50-V ceramic  
capacitor)  
C20: Bootstrap capacitor  
C21: Bypass capacitor for VDD  
C7-C14: Bypass capacitors for VIN (minimum of 40 µF)  
C15: Electrolytic capacitor for VIN  
R14, R16: Place holder for gate resistor (optional)  
R15: Place holder for bootstrap resistor (optional)  
R17, C16: Place holder for snubber (optional)  
+VIN  
GND  
GND  
GND  
GND  
8
GND  
GND  
GND  
GND  
GND  
GND  
Q1  
Vin  
Vsw  
1
0603  
R15  
L1  
0603  
HS  
V_OUT  
0
Vsw  
Vsw  
7
6
LS  
C20  
0.1µF  
U2  
BOOT  
R16  
0
0603  
Tg  
1
2
3
4
8
7
6
5
3
4
HG  
+PWM  
PWM PHASE  
R9  
0
Bg  
ENABLE  
Tgr  
5
GND  
LG  
FCCM  
VCC  
Pgnd  
0603  
+VDD  
GND  
GND  
GND  
CSD86356Q5D  
C21  
10µF  
0603  
GND  
GND  
GND  
R14  
0
0603  
Copyright © 2017, Texas Instruments Incorporated  
32. Recommended Schematic  
版权 © 2018, Texas Instruments Incorporated  
17  
 
CSD86356Q5D  
ZHCSHY1 MARCH 2018  
www.ti.com.cn  
7.2 Recommended PCB Design Overview  
There are two key system-level parameters that can be addressed with a proper PCB design: electrical and  
thermal performance. Properly optimizing the PCB layout yields maximum performance in both areas. A brief  
description on how to address each parameter follows.  
7.2.1 Electrical Performance  
The power block has the ability to switch at voltage rates greater than 10 kV/μs. Special care must be taken with  
the PCB layout design and placement of the input capacitors, inductor, driver IC and output capacitors.  
The placement of the input capacitors relative to the power block’s VIN and PGND pins should have the  
highest priority during the component placement routine. It is critical to minimize these node lengths. As such,  
ceramic input capacitors need to be placed as close as possible to the VIN and PGND pins (see 33 and 图  
34). It is recommended that one 3.3-nF (or similar), 0402, 50-V ceramic capacitor be placed on the top side  
of the board as close as possible to VIN and PGND pins. In addition, a minimum of 40 μF of bulk ceramic  
capacitance should be placed as close as possible to the power block in a design. For high-density design,  
some of these ceramic capacitors can be placed on the bottom layer of PCB with appropriate number of vias  
interconnecting both layers.  
The driver IC should be placed relatively close to the power block gate pins. TG and BG should connect to the  
outputs of the driver IC. The TGR pin serves as the return path of the high-side gate drive circuitry and should  
be connected to the phase pin of the IC (sometimes called LX, LL, SW, PH, etc.). The bootstrap capacitor for  
the driver IC will also connect to this pin.  
The switching node of the output inductor should be placed relatively close to the power block VSW pins.  
Minimizing the node length between these two components will reduce the PCB conduction losses and  
actually reduce the switching noise level. In the event the switch node waveform exhibits ringing that reaches  
undesirable levels, the use of a boost resistor or RC snubber can be an effective way to easily reduce the  
peak ring level. The recommended boost resistor value will range between 1.0 Ω to 4.7 Ω depending on the  
output characteristics of driver IC used in conjunction with the power block. The RC snubber values can  
range from 0.5 Ω to 2.2 Ω for the R and 330 pF to 2200 pF for the C. Please refer to Snubber Circuits:  
Theory, Design and Application (SLUP100) for more details on how to properly tune the RC snubber values.  
The RC snubber should be placed as close as possible to the VSW node and PGND (see 33 and 34).  
(1)  
(1) Keong W. Kam, David Pommerenke, “EMI Analysis Methods for Synchronous Buck Converter EMI Root Cause Analysis”, University of  
Missouri – Rolla  
18  
版权 © 2018, Texas Instruments Incorporated  
CSD86356Q5D  
www.ti.com.cn  
ZHCSHY1 MARCH 2018  
Recommended PCB Design Overview (接下页)  
7.2.2 Thermal Performance  
The power block has the ability to utilize the GND planes as the primary thermal path. As such, the use of  
thermal vias is an effective way to pull away heat from the device and into the system board. Concerns of solder  
voids and manufacturability problems can be addressed by the use of three basic tactics to minimize the amount  
of solder attach that will wick down the via barrel:  
Intentionally space out the vias from each other to avoid a cluster of holes in a given area.  
Use the smallest drill size allowed in your design. The examples in 33 and 34 use vias with a 10-mil drill  
hole and a 16-mil capture pad.  
Tent the opposite side of the via with solder-mask.  
In the end, the number and drill size of the thermal vias should align with the end user’s PCB design rules and  
manufacturing capabilities.  
33. Recommended PCB Layout (Top Down View)  
(2)  
34. Recommended PCB Layout (Bottom View)  
(2) The yellow box on 34 signifies an approximate location of the power block on the upper layer.  
版权 © 2018, Texas Instruments Incorporated  
19  
 
 
CSD86356Q5D  
ZHCSHY1 MARCH 2018  
www.ti.com.cn  
8 器件和文档支持  
8.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。请单击右上角的提醒我 进行注册,即可每周接收  
产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
8.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
8.3 商标  
NexFET, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
8.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
8.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
20  
版权 © 2018, Texas Instruments Incorporated  
CSD86356Q5D  
www.ti.com.cn  
ZHCSHY1 MARCH 2018  
9 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请参阅左侧的导航栏。  
9.1 Q5D 封装尺寸  
6.1  
5.9  
A
B
PIN 1 INDEX AREA  
5.1  
4.9  
C
1.05 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
C
3.16 0.1  
EXPOSED  
THERMAL PAD  
4X (0.25)  
4X (1)  
(0.2) TYP  
6X 1.27  
4
5
2X  
9
SYMM  
3.81  
4.32 0.1  
8
1
0.46  
0.36  
8X  
0.5  
0.4  
SYMM  
0.71  
0.51  
6X  
0.71  
0.51  
0.1  
0.05  
C A B  
C
4223291/A 10/2016  
1. 所有线性尺寸的单位均为毫米。括号中的任何尺寸仅供参考。尺寸和公差值符合 ASME Y14.5M 标准。  
2. 本图如有变更,恕不另行通知。  
3. 封装散热焊盘必须焊接在印刷电路板上,以实现最佳的散热和机械性能。  
9.2 引脚配置  
位置  
名称  
VIN  
引脚 1  
引脚 2  
引脚 3  
引脚 4  
引脚 5  
引脚 6  
引脚 7  
引脚 8  
引脚 9  
VIN  
TG  
TGR  
BG  
VSW  
VSW  
VSW  
PGND  
版权 © 2018, Texas Instruments Incorporated  
21  
CSD86356Q5D  
ZHCSHY1 MARCH 2018  
www.ti.com.cn  
9.3 焊盘图案建议  
(3.16)  
0.05 MIN  
TYP  
4X (1.33)  
2X (0.81)  
(0.45)  
6X (0.81)  
6X  
1
8
(0.41)  
2X (0.41)  
METAL UNDER  
SOLDER MASK  
TYP  
(0.7)  
TYP  
9
PKG  
3
3X  
(1.41)  
(4.32)  
2X  
(1.91)  
6X (1.27)  
4
5
(R0.05) TYP  
4X (0.54)  
PKG  
SOLDER MASK  
OPENING  
TYP  
4X (0.25)  
(
0.2) VIA  
TYP  
2X (2.25)  
(5.59)  
1. 所有线性尺寸的单位均为毫米。括号中的任何尺寸仅供参考。尺寸和公差值符合 ASME Y14.5M 标准。  
2. 此封装设计用于焊接到电路板的散热焊盘上。有关更多信息,请参阅QFN/SON  
(SLUA271)。  
PCB  
连接》应用报告  
3. 根据应用决定是否选用过孔,详情请参见器件数据表。如果实现了部分或全部过孔,则会显示建议的过孔位  
置。  
22  
版权 © 2018, Texas Instruments Incorporated  
CSD86356Q5D  
www.ti.com.cn  
ZHCSHY1 MARCH 2018  
9.4 模版建议  
6X (1.37)  
METAL UNDER  
SOLDER MASK  
TYP  
8X (0.81)  
8X (0.41)  
(0.79) TYP  
(0.45)  
9
2X (0.15)  
1
8
6X  
(1.21)  
(0.56)  
4X  
(1.41)  
PKG  
2X (4.92)  
3
4
SOLDER MASK  
EDGE  
6X (1.27)  
TYP  
5
(R0.05) TYP  
4X  
(0.49)  
EXPOSED METAL  
TYP  
PKG  
4X (0.25)  
2X (2.25)  
(5.59)  
1. 所有线性尺寸的单位均为毫米。括号中的任何尺寸仅供参考。尺寸和公差值符合 ASME Y14.5M 标准。  
2. 具有漏斗形壁和圆角的激光切割孔可提供更佳的锡膏脱离。IPC-7525 可能提供替代设计建议。  
版权 © 2018, Texas Instruments Incorporated  
23  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
2500  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CSD86356Q5D  
CSD86356Q5DT  
ACTIVE  
VSON-CLIP  
VSON-CLIP  
DMV  
8
8
RoHS-Exempt  
& Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-55 to 150  
-55 to 150  
86356D  
86356D  
ACTIVE  
DMV  
RoHS-Exempt  
& Green  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
CSD86356Q5DT  
VSON-  
CLIP  
DMV  
8
250  
330.0  
12.4  
5.3  
6.3  
1.2  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VSON-CLIP DMV  
SPQ  
Length (mm) Width (mm) Height (mm)  
336.6 336.6 41.3  
CSD86356Q5DT  
8
250  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY