CSD87335Q3D [TI]

采用 3mm x 3mm SON 封装的 25A、30V、N 沟道同步降压 NexFET™ 功率 MOSFET 电源块;
CSD87335Q3D
型号: CSD87335Q3D
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 3mm x 3mm SON 封装的 25A、30V、N 沟道同步降压 NexFET™ 功率 MOSFET 电源块

开关 光电二极管
文件: 总23页 (文件大小:850K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
CSD87335Q3D  
ZHCSEO0B FEBRUARY 2016REVISED APRIL 2018  
CSD87335Q3D 同步降压 NexFET™ 电源块  
1 特性  
3 说明  
1
半桥电源块  
CSD87335Q3D NexFET™电源块是面向同步降压 应  
用 的优化设计方案,能够以 3.3mm × 3.3mm 的小巧  
外形提供高电流、高效率以及高频率性能。该产品针对  
5V 栅极驱动 应用进行了优化,可提供一套灵活的解决  
方案,在与来自外部控制器或驱动器的任一 5V 栅极驱  
动配套使用时,均可提供高密度电源。  
VIN 高达 27V  
15A 电流时系统效率达 93.5%  
工作电流高达 25A  
高频工作(高达 1.5MHz)  
高密度小外形尺寸无引线 (SON) 3.3mm × 3.3mm  
封装  
俯视图  
针对 5V 栅极驱动进行了优化  
开关损耗较低  
VIN  
VIN  
TG  
VSW  
VSW  
VSW  
1
2
3
4
8
7
6
5
超低电感封装  
符合 RoHS 标准  
无卤素  
PGND  
(Pin 9)  
无铅引脚镀层  
TGR  
BG  
2 应用  
P0116-01  
同步降压转换器  
高频 应用  
器件信息(1)  
数量  
高电流、低占空比 应用  
器件  
介质  
封装  
发货  
多相位同步降压转换器  
CSD87335Q3D  
CSD87335Q3DT  
13 英寸卷带  
7 英寸卷带  
2500  
250  
SON  
3.30mm × 3.30mm  
塑料封装  
卷带封  
负载点 (POL) 直流/直流转换器  
IMVPVRM VRD 应用  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
典型电路  
典型电源块效率与功率损耗  
100  
90  
6
VIN  
BOOT  
VDD  
VDD  
GND  
VIN  
TG  
Control  
FET  
DRVH  
TGR  
BG  
4.5  
3
VSW  
VOUT  
LL  
ENABLE  
PWM  
ENABLE  
PWM  
Sync  
FET  
VGS = 5 V  
VIN = 12 V  
80  
DRVL  
PGND  
V
OUT = 1.3 V  
LOUT = 950 nH  
SW = 500 kHz  
CSD87335Q3D  
Driver IC  
f
70  
1.5  
TA = 25èC  
Copyright © 2017, Texas Instruments Incorporated  
60  
0
0
5
10  
15  
20  
25  
Output Current (A)  
D000  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLPS574  
 
 
 
CSD87335Q3D  
ZHCSEO0B FEBRUARY 2016REVISED APRIL 2018  
www.ti.com.cn  
目录  
6.4 Normalized Curves.................................................. 12  
6.5 Calculating Power Loss and SOA .......................... 13  
Recommended PCB Design Overview .............. 15  
7.1 Electrical Performance............................................ 15  
7.2 Thermal Performance ............................................. 16  
器件和文档支持...................................................... 17  
8.1 接收文档更新通知 ................................................... 17  
8.2 社区资源.................................................................. 17  
8.3 ......................................................................... 17  
8.4 静电放电警告........................................................... 17  
8.5 Glossary.................................................................. 17  
机械、封装和可订购信息 ....................................... 18  
9.1 Q3D 封装尺寸 ......................................................... 18  
9.2 焊盘布局建议........................................................... 19  
9.3 模板建议.................................................................. 19  
9.4 Q3D 卷带信息 ......................................................... 20  
9.5 引脚配置.................................................................. 20  
1
2
3
4
5
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Specifications......................................................... 3  
5.1 Absolute Maximum Ratings ...................................... 3  
5.2 Recommended Operating Conditions....................... 3  
5.3 Thermal Information.................................................. 3  
5.4 Power Block Performance ........................................ 3  
5.5 Electrical Characteristics........................................... 4  
5.6 Typical Power Block Device Characteristics............. 5  
5.7 Typical Power Block MOSFET Characteristics......... 7  
Applications and Implementation ...................... 10  
6.1 Application Information............................................ 10  
6.2 Power Loss Curves ................................................ 12  
6.3 Safe Operating Curves (SOA) ................................ 12  
7
8
9
6
4 修订历史记录  
Changes from Revision A (October 2017) to Revision B  
Page  
Updated Figure 33 top layer showing pins 1 and 2 connected. .......................................................................................... 16  
Changes from Original (February 2016) to Revision A  
Page  
Corrected X & Y axis labels on Figure 29 ............................................................................................................................ 11  
Corrected X & Y axis labels on Figure 30 ............................................................................................................................ 11  
2
Copyright © 2016–2018, Texas Instruments Incorporated  
 
CSD87335Q3D  
www.ti.com.cn  
ZHCSEO0B FEBRUARY 2016REVISED APRIL 2018  
5 Specifications  
5.1 Absolute Maximum Ratings  
TA = 25°C (unless otherwise noted)(1)  
MIN  
MAX  
30  
UNIT  
VIN to PGND  
VSW to PGND  
30  
Voltage  
VSW to PGND (10 ns)  
32  
V
TG to TGR  
–8  
–8  
10  
BG to PGND  
10  
(2)  
Pulsed current rating, IDM  
Power dissipation, PD  
70  
A
6
W
Sync FET, ID = 51 A, L = 0.1 mH  
Control FET, ID = 33 A, L = 0.1 mH  
130  
54  
Avalanche energy, EAS  
mJ  
°C  
Operating junction and storage temperature, TJ, TSTG  
–55  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated in the Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Pulse duration 50 µs, duty cycle 1%.  
5.2 Recommended Operating Conditions  
TA = 25°C (unless otherwise noted)  
MIN  
MAX  
8
UNIT  
V
VGS  
VIN  
Gate drive voltage  
Input supply voltage  
Switching frequency  
Operating current  
4.5  
27  
V
ƒSW  
CBST = 0.1 µF (min)  
1500  
25  
kHz  
A
TJ  
Operating temperature  
125  
°C  
5.3 Thermal Information  
TA = 25°C (unless otherwise stated)  
THERMAL METRIC  
MIN  
TYP  
MAX UNIT  
Junction-to-ambient thermal resistance (min Cu)(1)  
Junction-to-ambient thermal resistance (max Cu)(1)(2)  
Junction-to-case thermal resistance (top of package)(1)  
Junction-to-case thermal resistance (PGND pin)(1)  
135  
°C/W  
73  
RθJA  
29  
RθJC  
(1)  
°C/W  
2.5  
R
θJC is determined with the device mounted on a 1-in2 (6.45-cm2), 2-oz (0.071-mm) thick Cu pad on a 1.5-in × 1.5-in  
(3.81-cm × 3.81-cm), 0.06-in (1.52-mm) thick FR4 board. RθJC is specified by design while RθJA is determined by the user’s board  
design.  
(2) Device mounted on FR4 material with 1-in2 (6.45-cm2) Cu.  
5.4 Power Block Performance(1)  
TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1.5  
10  
MAX UNIT  
VIN = 12 V, VGS = 5 V, VOUT = 1.3 V,  
IOUT = 15 A, ƒSW = 500 kHz,  
LOUT = 950 nH, TJ = 25°C  
PLOSS  
IQVIN  
Power loss(1)  
W
VIN quiescent current  
TG to TGR = 0 V, BG to PGND = 0 V  
µA  
(1) Measurement made with six 10-µF (TDK C3216X5R1C106KT or equivalent) ceramic capacitors placed across VIN to PGND pins and  
using a high-current 5-V driver IC.  
Copyright © 2016–2018, Texas Instruments Incorporated  
3
CSD87335Q3D  
ZHCSEO0B FEBRUARY 2016REVISED APRIL 2018  
www.ti.com.cn  
5.5 Electrical Characteristics  
TA = 25°C (unless otherwise stated)  
Q1 Control FET  
Q2 Sync FET  
PARAMETER  
TEST CONDITIONS  
UNIT  
MAX  
MIN  
TYP  
MAX  
MIN  
TYP  
STATIC CHARACTERISTICS  
BVDSS  
Drain-to-source voltage  
VGS = 0 V, IDS = 250 µA  
VGS = 0 V, VDS = 24 V  
30  
30  
V
Drain-to-source leakage  
current  
IDSS  
1
100  
1.9  
1
100  
µA  
nA  
V
Gate-to-source leakage  
current  
VDS = 0 V,  
VGS = +10 V / –8 V  
IGSS  
Gate-to-source threshold  
voltage  
VGS(th)  
VDS = VGS, IDS = 250 µA  
1.0  
0.75  
1.20  
VIN = 12 V, VGS = 5 V,  
VOUT = 1.3 V, IOUT = 15 A,  
ƒSW = 500 kHz,  
ZDS(on)  
Effective AC on-impedance  
Transconductance  
6.7  
59  
1.9  
mΩ  
LOUT = 950 nH  
gfs  
VDS = 3 V, IDS = 15 A  
107  
S
DYNAMIC CHARACTERISTICS  
CISS  
COSS  
CRSS  
RG  
Input capacitance  
805  
412  
15  
1.2  
5.7  
1.1  
2.1  
1.1  
11  
8
1050  
536  
20  
1620  
783  
28  
2100  
1020  
36  
pF  
pF  
pF  
Ω
VGS = 0 V, VDS = 15 V,  
ƒ = 1 MHz  
Output capacitance  
Reverse transfer capacitance  
Series gate resistance  
Gate charge total (4.5 V)  
Gate charge – gate-to-drain  
Gate charge – gate-to-source  
Gate charge at Vth  
Output charge  
2.4  
0.6  
10.7  
1.7  
2.8  
1.4  
19  
1.2  
Qg  
7.4  
14.0  
nC  
nC  
nC  
nC  
nC  
ns  
ns  
ns  
ns  
Qgd  
Qgs  
Qg(th)  
QOSS  
td(on)  
tr  
VDS = 15 V,  
IDS = 15 A  
VDS = 15 V, VGS = 0 V  
Turnon delay time  
Rise time  
8
29  
13  
4
27  
VDS = 15 V, VGS = 4.5 V,  
IDS = 15 A, RG = 2 Ω  
td(off)  
tf  
Turnoff delay time  
Fall time  
17  
5
DIODE CHARACTERISTICS  
VSD  
Qrr  
trr  
Diode forward voltage  
Reverse recovery charge  
Reverse recovery time  
IDS = 15 A, VGS = 0 V  
0.8  
24  
17  
1.0  
0.8  
40  
22  
1.0  
V
nC  
ns  
VDS = 15 V, IF = 15 A,  
di/dt = 300 A/µs  
Max RθJA = 135°C/W  
when mounted on  
minimum pad area of  
2-oz. (0.071-mm) thick  
Cu.  
Max RθJA = 73°C/W  
when mounted on 1 in2  
(6.45 cm2) of 2-oz  
(0.071-mm) thick Cu.  
4
Copyright © 2016–2018, Texas Instruments Incorporated  
CSD87335Q3D  
www.ti.com.cn  
ZHCSEO0B FEBRUARY 2016REVISED APRIL 2018  
5.6 Typical Power Block Device Characteristics  
Test conditions: VIN = 12 V, VDD = 5 V, ƒSW = 500 kHz, VOUT = 1.3 V, LOUT = 950 nH, IOUT = 25 A, TJ = 125°C, unless stated  
otherwise.  
5
4
3
2
1
0
1.05  
1
0.95  
0.9  
0.85  
0.8  
0.75  
0.7  
0.65  
0.6  
0.55  
0
5
10  
15  
20  
25  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Output Current (A)  
Junction Temperature (èC)  
D001  
D002  
Figure 1. Power Loss vs Output Current  
Figure 2. Power Loss vs Temperature  
30  
25  
20  
15  
10  
400 LFM  
200 LFM  
100 LFM  
Nat. conv.  
5
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature (èC)  
D004  
Figure 3. Safe Operating Area – PCB Horizontal Mount(1)  
(1) The Typical Power Block System Characteristic curves are based on measurements made on a PCB design with  
dimensions of 4 in (W) × 3.5 in (L) × 0.062 in (H) and 6 copper layers of 1-oz copper thickness. See Applications and  
Implementation section for detailed explanation.  
Copyright © 2016–2018, Texas Instruments Incorporated  
5
 
CSD87335Q3D  
ZHCSEO0B FEBRUARY 2016REVISED APRIL 2018  
www.ti.com.cn  
Typical Power Block Device Characteristics (continued)  
Test conditions: VIN = 12 V, VDD = 5 V, ƒSW = 500 kHz, VOUT = 1.3 V, LOUT = 950 nH, IOUT = 25 A, TJ = 125°C, unless stated  
otherwise.  
30  
25  
20  
15  
10  
5
0
0
15  
30  
45  
60  
75  
90  
105 120 135  
Board Temperature (èC)  
D005  
Figure 4. Typical Safe Operating Area(1)  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
10.2  
8.5  
6.8  
5.1  
3.4  
1.7  
0.0  
-1.7  
-3.4  
1.25  
1.2  
4.3  
3.4  
2.6  
1.7  
0.9  
0.0  
-0.9  
-1.7  
1.15  
1.1  
1.05  
1
0.95  
0.9  
0.9  
0.8  
50 200 350 500 650 800 950 1100 1250 1400 1550  
0
4
8
12  
Input Voltage (V)  
16  
20  
24  
Switching Frequency (kHz)  
D006  
D007  
Figure 5. Normalized Power Loss vs Switching Frequency  
Figure 6. Normalized Power Loss vs Input Voltage  
1.35  
5.8  
5.0  
4.2  
3.3  
2.5  
1.7  
0.8  
0.0  
-0.8  
-1.7  
1.3  
1.2  
1.1  
1
5.1  
1.3  
1.25  
1.2  
3.4  
1.7  
0.0  
-1.7  
-3.4  
1.15  
1.1  
1.05  
1
0.9  
0.95  
0.9  
0.8  
0.7  
1
1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7  
Output Voltage (V)  
50  
200  
350  
500  
650  
800  
950  
1100  
Output Inductance (nH)  
D008  
D009  
Figure 7. Normalized Power Loss vs Output Voltage  
Figure 8. Normalized Power Loss vs Output Inductance  
6
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
 
CSD87335Q3D  
www.ti.com.cn  
ZHCSEO0B FEBRUARY 2016REVISED APRIL 2018  
5.7 Typical Power Block MOSFET Characteristics  
TA = 25°C, unless stated otherwise.  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
20  
VGS = 4.5 V  
VGS = 6 V  
VGS = 8.0 V  
VGS = 4.5 V  
VGS = 6 V  
VGS = 8.0 V  
10  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
VDS - Drain-to-Source Voltage (V)  
VDS - Drain-to-Source Voltage (V)  
D010  
D010  
Figure 9. Control MOSFET Saturation  
Figure 10. Sync MOSFET Saturation  
100  
100  
10  
TC = 125°C  
TC = 25°C  
TC = -55°C  
TC = 125°C  
TC = 25°C  
TC = -55°C  
10  
1
1
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
0
0.5  
1
1.5  
2
2.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
VGS - Gate-to-Source Voltage (V)  
VGS - Gate-to-Source Voltage (V)  
D011  
D011  
VDS = 5 V  
VDS = 5 V  
Figure 12. Sync MOSFET Transfer  
Figure 11. Control MOSFET Transfer  
8
7
6
5
4
3
2
1
8
7
6
5
4
3
2
1
0
0
0
0
2
4
6
8
10  
2
4
6
8
10  
12  
14  
16  
18  
20  
Qg - Gate Charge (nC)  
Qg - Gate Charge (nC)  
D012  
D012  
ID = 15 A  
VDD = 15 V  
ID = 15 A  
VDD = 15 V  
Figure 13. Control MOSFET Gate Charge  
Figure 14. Sync MOSFET Gate Charge  
Copyright © 2016–2018, Texas Instruments Incorporated  
7
CSD87335Q3D  
ZHCSEO0B FEBRUARY 2016REVISED APRIL 2018  
www.ti.com.cn  
Typical Power Block MOSFET Characteristics (continued)  
TA = 25°C, unless stated otherwise.  
5000  
10000  
1000  
100  
10  
1000  
100  
10  
1
Ciss = Cgd + Cgs  
Coss = Cds + Cgd  
Crss = Cgd  
Ciss = Cgd + Cgs  
Coss = Cds + Cgd  
Crss = Cgd  
1
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
VDS - Drain-to-Source Voltage (V)  
VDS - Drain-to-Source Voltage (V)  
D013  
D013  
Figure 15. Control MOSFET Capacitance  
Figure 16. Sync MOSFET Capacitance  
1.8  
1.6  
1.4  
1.2  
1
1.3  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.8  
0.6  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
TC - Case Temperature (°C)  
TC - Case Temperature (°C)  
D014  
D014  
ID = 250 µA  
ID = 250 µA  
Figure 17. Control MOSFET VGS(th)  
Figure 18. Sync MOSFET VGS(th)  
18  
16  
14  
12  
10  
8
12  
10  
8
TC = 25°C, I D = 15 A  
TC = 125°C, I D = 15 A  
TC = 25°C, I D = 15 A  
TC = 125°C, I D = 15 A  
6
6
4
4
2
2
0
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
VGS - Gate-to-Source Voltage (V)  
VGS - Gate-to-Source Voltage (V)  
D014  
D014  
Figure 19. Control MOSFET RDS(on) vs VGS  
Figure 20. Sync MOSFET RDS(on) vs VGS  
8
Copyright © 2016–2018, Texas Instruments Incorporated  
CSD87335Q3D  
www.ti.com.cn  
ZHCSEO0B FEBRUARY 2016REVISED APRIL 2018  
Typical Power Block MOSFET Characteristics (continued)  
TA = 25°C, unless stated otherwise.  
1.6  
1.4  
1.2  
1
1.6  
1.4  
1.2  
1
VGS = 4.5 V  
VGS = 8.0 V  
VGS = 4.5 V  
VGS = 8.0 V  
0.8  
0.6  
0.8  
0.6  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
TC - Case Temperature (°C)  
TC - Case Temperature (°C)  
D016  
D016  
ID = 15 A  
VGS = 4.5 V  
ID = 15 A  
VGS = 4.5 V  
Figure 21. Control MOSFET Normalized RDS(on)  
Figure 22. Sync MOSFET Normalized RDS(on)  
100  
100  
TC = 25°C  
TC = 25°C  
TC = 125°C  
TC = 125°C  
10  
1
10  
1
0.1  
0.1  
0.01  
0.001  
0.0001  
0.01  
0.001  
0.0001  
0
0.2  
0.4  
0.6  
0.8  
1
0
0.2  
0.4  
0.6  
0.8  
1
VSD - Source-to-Drain Voltage (V)  
VSD - Source-to-Drain Voltage (V)  
D017  
D017  
Figure 23. Control MOSFET Body Diode  
Figure 24. Sync MOSFET Body Diode  
100  
10  
1
100  
10  
1
TC = 25è C  
TC = 125è C  
TC = 25è C  
TC = 125è C  
0.01  
0.1  
1
0.01  
0.1  
1
TAV - Time in Avalanche (ms)  
TAV - Time in Avalanche (ms)  
D018  
D018  
Figure 25. Control MOSFET Unclamped Inductive Switching  
Figure 26. Sync MOSFET Unclamped Inductive Switching  
Copyright © 2016–2018, Texas Instruments Incorporated  
9
CSD87335Q3D  
ZHCSEO0B FEBRUARY 2016REVISED APRIL 2018  
www.ti.com.cn  
6 Applications and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
6.1 Application Information  
6.1.1 Equivalent System Performance  
Many of today’s high-performance computing systems require low-power consumption in an effort to reduce  
system operating temperatures and improve overall system efficiency. This has created a major emphasis on  
improving the conversion efficiency of today’s synchronous buck topology. In particular, there has been an  
emphasis in improving the performance of the critical power semiconductor in the power stage of this application  
(see Figure 27). As such, optimization of the power semiconductors in these applications, needs to go beyond  
simply reducing RDS(ON)  
.
Power Stage  
Components  
Power Block  
Components  
Ci  
+
-
Input  
Supply  
Control  
FET  
Driver  
Driver  
PWM  
Lo  
IL  
Switch  
Node  
Co  
Sync  
FET  
Load  
Copyright © 2017, Texas Instruments Incorporated  
Figure 27. Equivalent System Schematic  
The CSD87335Q3D is part of TI’s power block product family which is a highly optimized product for use in a  
synchronous buck topology requiring high current, high efficiency, and high frequency. It incorporates TI’s latest  
generation silicon which has been optimized for switching performance, as well as minimizing losses associated  
with QGD, QGS, and QRR. Furthermore, TI’s patented packaging technology has minimized losses by nearly  
eliminating parasitic elements between the control FET and sync FET connections (see Figure 28). A key  
challenge solved by TI’s patented packaging technology is the system level impact of Common Source  
Inductance (CSI). CSI greatly impedes the switching characteristics of any MOSFET which in turn increases  
switching losses and reduces system efficiency. As a result, the effects of CSI need to be considered during the  
MOSFET selection process. In addition, standard MOSFET switching loss equations used to predict system  
efficiency need to be modified in order to account for the effects of CSI. Further details behind the effects of CSI  
and modification of switching loss equations are outlined in Power Loss Calculation With Common Source  
Inductance Consideration for Synchronous Buck Converters (SLPA009).  
10  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
CSD87335Q3D  
www.ti.com.cn  
ZHCSEO0B FEBRUARY 2016REVISED APRIL 2018  
Application Information (continued)  
Input  
Supply  
RPCB  
CESR  
LDRAIN  
CINPUT  
Control  
FET  
Driver  
PWM  
CESL  
LSOURCE  
Switch  
Node  
Lo  
Co  
IL  
Load  
LDRAIN  
CTOTAL  
Sync  
FET  
Driver  
LSOURCE  
Figure 28. Elimination of Parasitic Inductances  
The combination of TI’s latest generation silicon and optimized packaging technology has created a  
benchmarking solution that outperforms industry standard MOSFET chipsets of similar RDS(ON) and MOSFET  
chipsets with lower RDS(ON). Figure 29 and Figure 30 compare the efficiency and power loss performance of the  
CSD87335Q3D versus industry standard MOSFET chipsets commonly used in this type of application. This  
comparison purely focuses on the efficiency and generated loss of the power semiconductors only. The  
performance of CSD87335Q3D clearly highlights the importance of considering the effective AC on-impedance  
(ZDS(ON)) during the MOSFET selection process of any new design. Simply normalizing to traditional MOSFET  
RDS(ON) specifications is not an indicator of the actual in-circuit performance when using TI’s power block  
technology.  
96  
94  
92  
90  
88  
86  
84  
82  
80  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
PowerBlock HS/LS RDS(ON) = 6.7 mW/3.1 mW  
PowerBlock HS/LS RDS(ON) = 6.7 mW/3.1 mW  
PowerBlock HS/LS RDS(ON) = 6.7 mW/1.9 mW  
VGS = 5 V  
VIN = 12 V  
VOUT = 1.3 V  
VGS = 5 V  
V
IN = 12 V  
VOUT = 1.3 V  
3.0 LOUT = 950 nH  
fSW = 500 kHz  
TA = 25èC  
LOUT = 950 nH  
SW = 500 kHz  
2.5  
f
2.0  
1.5  
1.0  
0.5  
0.0  
TA = 25èC  
PowerBlock HS/LS RDS(ON) = 6.7 mW/3.1 mW  
PowerBlock HS/LS RDS(ON) = 6.7 mW/3.1 mW  
PowerBlock HS/LS RDS(ON) = 6.7 mW/1.9 mW  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
Output Current (A)  
Output Current (A)  
D030  
D031  
Figure 29. Efficiency  
Figure 30. Power Loss  
Copyright © 2016–2018, Texas Instruments Incorporated  
11  
 
CSD87335Q3D  
ZHCSEO0B FEBRUARY 2016REVISED APRIL 2018  
www.ti.com.cn  
Application Information (continued)  
Table 1 compares the traditional DC measured RDS(ON) of CSD87335Q3D versus its ZDS(ON). This comparison  
takes into account the improved efficiency associated with TI’s patented packaging technology. As such, when  
comparing TI’s power block products to individually packaged discrete MOSFETs or dual MOSFETs in a  
standard package, the in-circuit switching performance of the solution must be considered. In this example,  
individually packaged discrete MOSFETs or dual MOSFETs in a standard package would need to have DC  
measured RDS(ON) values that are equivalent to CSD87335Q3D’s ZDS(ON) value in order to have the same  
efficiency performance at full load. Mid to light-load efficiency will still be lower with individually packaged discrete  
MOSFETs or dual MOSFETs in a standard package.  
Table 1. Comparison of RDS(ON) vs. ZDS(ON)  
HS  
LS  
PARAMETER  
TYP  
6.7  
MAX  
TYP  
1.9  
MAX  
Effective AC on-impedance ZDS(ON) (VGS = 5 V)  
DC measured RDS(ON) (VGS = 4.5 V)  
6.7  
8.1  
3.1  
3.9  
The CSD87335Q3D NexFET™ power block is an optimized design for synchronous buck applications using 5-V  
gate drive. The control FET and sync FET silicon are parametrically tuned to yield the lowest power loss and  
highest system efficiency. As a result, a new rating method is needed which is tailored towards a more systems-  
centric environment. System-level performance curves such as power loss, Safe Operating Area (SOA), and  
normalized graphs allow engineers to predict the product performance in the actual application.  
6.2 Power Loss Curves  
MOSFET centric parameters such as RDS(ON) and Qgd are needed to estimate the loss generated by the devices.  
In an effort to simplify the design process for engineers, Texas Instruments has provided measured power loss  
performance curves. Figure 1 plots the power loss of the CSD87335Q3D as a function of load current. This curve  
is measured by configuring and running the CSD87335Q3D as it would be in the final application (see  
Figure 31).The measured power loss is the CSD87335Q3D loss and consists of both input conversion loss and  
gate drive loss. Equation 1 is used to generate the power loss curve.  
(VIN × IIN) + (VDD × IDD) – (VSW_AVG × IOUT) = Power loss  
(1)  
The power loss curve in Figure 1 is measured at the maximum recommended junction temperatures of 125°C  
under isothermal test conditions.  
6.3 Safe Operating Curves (SOA)  
The SOA curves in the CSD87335Q3D data sheet provides guidance on the temperature boundaries within an  
operating system by incorporating the thermal resistance and system power loss. to Figure 4 outline the  
temperature and airflow conditions required for a given load current. The area under the curve dictates the safe  
operating area. All the curves are based on measurements made on a PCB design with dimensions of 4 in (W) ×  
3.5 in (L) × 0.062 in (T) and 6 copper layers of 1-oz copper thickness.  
6.4 Normalized Curves  
The normalized curves in the CSD87335Q3D data sheet provides guidance on the power loss and SOA  
adjustments based on their application specific needs. These curves show how the power loss and SOA  
boundaries will adjust for a given set of systems conditions. The primary Y-axis is the normalized change in  
power loss and the secondary Y-axis is the change in system temperature required in order to comply with the  
SOA curve. The change in power loss is a multiplier for the power loss curve and the change in temperature is  
subtracted from the SOA curve.  
12  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
CSD87335Q3D  
www.ti.com.cn  
ZHCSEO0B FEBRUARY 2016REVISED APRIL 2018  
Normalized Curves (continued)  
Input Current (IIN)  
Gate Drive  
Current (IDD)  
VIN  
A
BOOT  
DRVH  
LL  
VDD  
A
VDD  
V
Input Voltage (VIN)  
VIN  
Control  
Gate Drive  
Voltage (VDD)  
V
TG  
FET  
ENABLE  
PWM  
Output Current (IOUT  
VOUT  
)
VSW  
A
TGR  
Sync  
FET  
PWM  
BG  
DRVL  
GND  
PGND  
Averaged Switch  
V Node Voltage  
Averaging  
Circuit  
CSD87335Q3D  
Driver IC  
(VSW_AVG  
)
Copyright © 2017, Texas Instruments Incorporated  
Figure 31. Typical Application  
6.5 Calculating Power Loss and SOA  
The user can estimate product loss and SOA boundaries by arithmetic means (see Design Example section).  
Though the power loss and SOA curves in this data sheet are taken for a specific set of test conditions, the  
following procedure will outline the steps the user should take to predict product performance for any set of  
system conditions.  
6.5.1 Design Example  
Operating conditions:  
Output current = 15 A  
Input voltage = 14 V  
Output voltage = 1.4 V  
Switching frequency = 750 kHz  
Inductor = 600 nH  
6.5.2 Calculating Power Loss  
Power loss at 15 A = 1.92 W (Figure 1)  
Normalized power loss for input voltage 1.01 (Figure 6)  
Normalized power loss for output voltage 1.01 (Figure 7)  
Normalized power loss for switching frequency 1.08 (Figure 5)  
Normalized power loss for output inductor 1.01 (Figure 8)  
Final calculated power loss = 1.92 W × 1.01 × 1.01 × 1.08 × 1.01 2.14 W  
6.5.3 Calculating SOA Adjustments  
SOA adjustment for input voltage 0.14°C (Figure 6)  
SOA adjustment for output voltage 0.17°C (Figure 7)  
SOA adjustment for switching frequency 1.32°C (Figure 5)  
SOA adjustment for output inductor 0.18°C (Figure 8)  
Final calculated SOA adjustment = 0.14 + 0.17 + 1.32 + 0.18 1.81°C  
Copyright © 2016–2018, Texas Instruments Incorporated  
13  
 
CSD87335Q3D  
ZHCSEO0B FEBRUARY 2016REVISED APRIL 2018  
www.ti.com.cn  
Calculating Power Loss and SOA (continued)  
In the design example above, the estimated power loss of the CSD87335Q3D would increase to 2.14 W. In  
addition, the maximum allowable board and/or ambient temperature would have to decrease by 1.81°C.  
Figure 32 graphically shows how the SOA curve would be adjusted accordingly.  
1. Start by drawing a horizontal line from the application current to the SOA curve.  
2. Draw a vertical line from the SOA curve intercept down to the board/ambient temperature.  
3. Adjust the SOA board/ambient temperature by subtracting the temperature adjustment value.  
In the design example, the SOA temperature adjustment yields a reduction in allowable board/ambient  
temperature of 1.81°C. In the event the adjustment value is a negative number, subtracting the negative number  
would yield an increase in allowable board/ambient temperature.  
Figure 32. Power Block SOA  
14  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
CSD87335Q3D  
www.ti.com.cn  
ZHCSEO0B FEBRUARY 2016REVISED APRIL 2018  
7 Recommended PCB Design Overview  
There are two key system-level parameters that can be addressed with a proper PCB design: electrical and  
thermal performance. Properly optimizing the PCB layout will yield maximum performance in both areas. A brief  
description on how to address each parameter is provided.  
7.1 Electrical Performance  
The power block has the ability to switch voltages at rates greater than 10 kV/µs. Special care must be then  
taken with the PCB layout design and placement of the input capacitors, driver IC, and output inductor.  
The placement of the input capacitors relative to the power block’s VIN and PGND pins should have the  
highest priority during the component placement routine. It is critical to minimize these node lengths. As such,  
ceramic input capacitors need to be placed as close as possible to the VIN and PGND pins (see Figure 33).  
The example in Figure 33 uses 6 × 10-µF ceramic capacitors (TDK Part # C3216X5R1C106KT or equivalent).  
Notice there are ceramic capacitors on both sides of the board with an appropriate amount of vias  
interconnecting both layers. In terms of priority of placement next to the power block, C5, C7, C19, and C8  
should follow in order.  
The driver IC should be placed relatively close to the power block gate pins. TG and BG should connect to the  
outputs of the driver IC. The TGR pin serves as the return path of the high-side gate drive circuitry and should  
be connected to the phase pin of the IC (sometimes called LX, LL, SW, PH, etc.). The bootstrap capacitor for  
the driver IC will also connect to this pin.  
The switching node of the output inductor should be placed relatively close to the power block VSW pins.  
Minimizing the node length between these two components will reduce the PCB conduction losses and  
actually reduce the switching noise level. In the event the switch node waveform exhibits ringing that reaches  
undesirable levels, the use of a boost resistor or RC snubber can be an effective way to easily reduce the  
peak ring level. The recommended boost resistor value will range between 1 Ω to 4.7 Ω depending on the  
output characteristics of driver IC used in conjunction with the power block. The RC snubber values can  
range from 0.5 Ω to 2.2 Ω for the R and 330 pF to 2200 pF for the C. Please refer to Snubber Circuits:  
Theory, Design and Application (SLUP100) for more details on how to properly tune the RC snubber values.  
(1)  
The RC snubber should be placed as close as possible to the Vsw node and PGND (see Figure 33).  
(1) Keong W. Kam, David Pommerenke, “EMI Analysis Methods for Synchronous Buck Converter EMI Root Cause Analysis”, University of  
Missouri – Rolla  
Copyright © 2016–2018, Texas Instruments Incorporated  
15  
CSD87335Q3D  
ZHCSEO0B FEBRUARY 2016REVISED APRIL 2018  
www.ti.com.cn  
7.2 Thermal Performance  
The power block has the ability to utilize the GND planes as the primary thermal path. As such, the use of  
thermal vias is an effective way to pull away heat from the device and into the system board. Concerns of solder  
voids and manufacturability problems can be addressed by the use of three basic tactics to minimize the amount  
of solder attach that will wick down the via barrel:  
Intentionally space out the vias from each other to avoid a cluster of holes in a given area.  
Use the smallest drill size allowed in your design. The example in Figure 33 uses vias with a 10-mil drill hole  
and a 16-mil capture pad.  
Tent the opposite side of the via with solder-mask.  
In the end, the number and drill size of the thermal vias should align with the end user’s PCB design rules and  
manufacturing capabilities.  
Figure 33. Recommended PCB Layout (Top Down)  
16  
版权 © 2016–2018, Texas Instruments Incorporated  
 
CSD87335Q3D  
www.ti.com.cn  
ZHCSEO0B FEBRUARY 2016REVISED APRIL 2018  
8 器件和文档支持  
8.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
8.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
8.3 商标  
NexFET, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
8.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
8.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2016–2018, Texas Instruments Incorporated  
17  
CSD87335Q3D  
ZHCSEO0B FEBRUARY 2016REVISED APRIL 2018  
www.ti.com.cn  
9 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
9.1 Q3D 封装尺寸  
毫米  
最小值  
英寸  
最小值  
DIM  
最大值  
1.500  
0.400  
最大值  
0.059  
0.016  
A
b
1.400  
0.280  
0.055  
0.011  
b1  
c
0.310(标称值)  
0.150  
0.012(标称值)  
0.006  
0.250  
0.250  
1.040  
0.260  
0.250  
0.350  
0.275  
3.400  
2.750  
3.400  
3.400  
1.850  
0.010  
0.010  
0.041  
0.010  
0.010  
0.014  
0.011  
0.134  
0.108  
0.134  
0.134  
0.073  
c1  
d
0.150  
0.006  
0.940  
0.037  
d1  
d2  
d3  
d4  
D1  
D2  
E
0.160  
0.006  
0.150  
0.006  
0.250  
0.010  
0.175  
0.007  
3.200  
0.126  
2.650  
0.104  
3.200  
0.126  
E1  
E2  
e
3.200  
0.126  
1.750  
0.069  
0.650 典型值  
0.400  
0.026 典型值  
0.016  
L
0.500  
0.020  
θ
0.00  
K
0.300 典型值  
0.012 典型值  
18  
版权 © 2016–2018, Texas Instruments Incorporated  
CSD87335Q3D  
www.ti.com.cn  
ZHCSEO0B FEBRUARY 2016REVISED APRIL 2018  
9.2 焊盘布局建议  
1.900 (0.075)  
0.200  
(0.008)  
0.210  
(0.008)  
0.350 (0.014)  
0.440  
(0.017)  
0.650  
(0.026)  
2.800  
(0.110)  
2.390  
(0.094)  
1.090  
(0.043)  
0.210  
(0.008)  
0.300 (0.012)  
0.650 (0.026)  
0.650 (0.026)  
3.600 (0.142)  
M0193-01  
NOTE: 尺寸单位为 mm(英寸)。  
9.3 模板建议  
0.160 (0.005)  
0.550 (0.022)  
0.200 (0.008)  
0.300 (0.012)  
0.300  
(0.012)  
0.340  
(0.013)  
2.290  
(0.090)  
0.333  
(0.013)  
0.990  
(0.039)  
0.100  
(0.004)  
0.350 (0.014)  
0.300 (0.012)  
0.850 (0.033)  
3.500 (0.138)  
M0207-01  
NOTE: 尺寸单位为 mm(英寸)。  
如需了解针对 PCB 设计的建议电路布局,请参阅《通过 PCB 布局技巧来减少振铃》(SLPA005)。  
版权 © 2016–2018, Texas Instruments Incorporated  
19  
CSD87335Q3D  
ZHCSEO0B FEBRUARY 2016REVISED APRIL 2018  
www.ti.com.cn  
9.4 Q3D 卷带信息  
4.00 0.ꢀ0 ꢁ(SS ꢂNoS ꢀ1  
8.00 0.ꢀ0  
2.00 0.0ꢃ  
Ø ꢀ.ꢃ0  
+0.ꢀ0  
–0.00  
3.60  
M0ꢀ44-0ꢀ  
NOTES: 1. 10 链轮孔距累积容差为 ±0.2  
2. 100mm 长度的翘曲不能超过 1mm,在 250mm 长度上不累积。  
3. 材料:黑色抗静电聚苯乙烯。  
4. 全部尺寸单位为 mm,除非另外注明。  
5. 厚度:0.3 ± 0.05mm。  
6. 符合 MSL1 260°C(红外和对流)PbF 回流焊要求。  
9.5 引脚配置  
位置  
名称  
VIN  
引脚 1  
引脚 2  
引脚 3  
引脚 4  
引脚 5  
引脚 6  
引脚 7  
引脚 8  
引脚 9  
VIN  
TG  
TGR  
BG  
VSW  
VSW  
VSW  
PGND  
20  
版权 © 2016–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
2500  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CSD87335Q3D  
CSD87335Q3DT  
ACTIVE  
LSON-CLIP  
LSON-CLIP  
DQZ  
8
8
RoHS-Exempt  
& Green  
NIPDAU | SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-55 to 150  
-55 to 150  
87335D  
87335D  
ACTIVE  
DQZ  
RoHS-Exempt  
& Green  
NIPDAU | SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

CSD87335Q3DT

采用 3mm x 3mm SON 封装的 25A、30V、N 沟道同步降压 NexFET™ 功率 MOSFET 电源块 | DQZ | 8 | -55 to 150
TI

CSD87350Q5D

Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface
TI

CSD87351Q5D

Synchronous Buck NexFET? Power Block
TI

CSD87351ZQ5D

Synchronous Buck NexFET Power Block
TI

CSD87352Q5D

Synchronous Buck NexFET Power Block
TI

CSD87352Q5D_1111

Synchronous Buck NexFET? Power Block
TI

CSD87353Q5D

Synchronous Buck NexFET™ Power Block
TI

CSD87355Q5D

采用 5mm x 6mm SON 封装的 45A、30V、N 沟道同步降压 NexFET™ 功率 MOSFET 电源块
TI

CSD87355Q5DT

采用 5mm x 6mm SON 封装的 45A、30V、N 沟道同步降压 NexFET™ 功率 MOSFET 电源块 | DQY | 8 | -55 to 150
TI

CSD87381P

Synchronous Buck NexFET™ Power Block II
TI

CSD87381PT

30V, Nch synchronous buck NexFET MOSFET&trade;, 3x2.5 LGA, 15A 5-PTAB -55 to 150
TI

CSD87384M

Synchronous Buck NexFET Power Block II
TI