CSD87355Q5D [TI]

采用 5mm x 6mm SON 封装的 45A、30V、N 沟道同步降压 NexFET™ 功率 MOSFET 电源块;
CSD87355Q5D
型号: CSD87355Q5D
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 5mm x 6mm SON 封装的 45A、30V、N 沟道同步降压 NexFET™ 功率 MOSFET 电源块

开关 光电二极管
文件: 总24页 (文件大小:988K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
CSD87355Q5D  
ZHCSEU6A MARCH 2016REVISED SEPTEMBER 2017  
CSD87355Q5D 同步降压 NexFET™电源块  
1 特性  
3 说明  
1
半桥电源块  
CSD87355Q5D NexFET™电源块是面向同步降压 应  
用 的优化设计方案,能够以 5mm × 6mm 的小巧外形  
提供高电流、高效率以及高频率性能。该产品针对 5V  
栅极驱动 应用进行了优化,在与外部控制器/驱动器的  
任一 5V 栅极驱动配套使用时,可提供一套灵活的解决  
方案来实现高密度电源。  
25A 电流时系统效率达 92.5%  
工作电流高达 45A  
高频工作(高达 1.5MHz)  
高密度 SON 5mm × 6mm 封装  
针对 5V 栅极驱动进行了优化  
低开关损耗  
增加文本,调节间距  
顶视图  
超低电感封装  
符合 RoHS 标准  
VIN  
VIN  
TG  
VSW  
VSW  
VSW  
1
2
3
4
8
7
6
5
无卤素  
无铅引脚镀层  
PGND  
(Pin 9)  
2 应用范围  
TGR  
BG  
同步降压转换器  
P0116-01  
高频 应用  
.
高电流、低占空比 应用  
订购信息(1)  
数量  
多相位同步降压转换器  
器件  
介质  
封装  
出货  
卷带  
负载点 (POL) 直流 - 直流转换器  
CSD87355Q5D  
13 英寸卷带 2500 5mm x 6mm 小外形  
尺寸无引线 (SON)  
IMVPVRM VRD 电感式触控不锈钢键盘参考  
设计  
CSD87355Q5DT  
7 英寸卷带  
250  
塑料封装  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
增加文本,调节间距  
增加文本,调节间距  
增加文本,调节间距  
典型电路  
典型电源块效率与功率损耗  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
11  
10  
9
VIN  
BOOT  
DRVH  
VDD  
VDD  
GND  
VIN  
Control  
FET  
TG  
8
VSW  
TGR  
VOUT  
7
LL  
VGS = 5 V  
ENABLE  
PWM  
ENABLE  
PWM  
V
IN = 12 V  
6
Sync  
FET  
VOUT = 1.3 V  
BG  
DRVL  
5
LOUT = 0.29  
SW = 500 kHz  
TA = 25  
mH  
PGND  
f
CSD87355Q5D  
4
Driver IC  
èC  
3
2
1
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
Output Current (A)  
D000  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLPS575  
 
 
 
CSD87355Q5D  
ZHCSEU6A MARCH 2016REVISED SEPTEMBER 2017  
www.ti.com.cn  
目录  
6.1 Application Information............................................ 10  
6.2 Typical Application .................................................. 13  
Layout ................................................................... 15  
7.1 Layout Guidelines ................................................... 15  
7.2 Layout Example ...................................................... 16  
器件和文档支持...................................................... 17  
8.1 社区资源.................................................................. 17  
8.2 ......................................................................... 17  
8.3 静电放电警告........................................................... 17  
8.4 Glossary.................................................................. 17  
机械、封装和可订购信息 ....................................... 18  
9.1 Q5D 封装尺寸 ......................................................... 18  
9.2 焊盘布局建议........................................................... 19  
9.3 模板建议.................................................................. 19  
1
2
3
4
5
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Specifications......................................................... 3  
5.1 Absolute Maximum Ratings ...................................... 3  
5.2 Handling Ratings....................................................... 3  
5.3 Recommended Operating Conditions....................... 3  
5.4 Thermal Information.................................................. 3  
5.5 Power Block Performance ........................................ 3  
5.6 Electrical Characteristics........................................... 4  
5.7 Typical Power Block Device Characteristics............. 5  
5.8 Typical Power Block MOSFET Characteristics......... 7  
Application and Implementation ........................ 10  
7
8
9
6
4 修订历史记录  
Changes from Original (March 2016) to Revision A  
Page  
Added footnote for ZDS(ON) in the Electrical Characteristics table. ......................................................................................... 4  
已删除 Q5D 卷带封装信息 部分............................................................................................................................................ 19  
2
版权 © 2016–2017, Texas Instruments Incorporated  
 
CSD87355Q5D  
www.ti.com.cn  
ZHCSEU6A MARCH 2016REVISED SEPTEMBER 2017  
5 Specifications  
5.1 Absolute Maximum Ratings  
TA = 25°C (unless otherwise noted)(1)  
MIN  
–0.8  
–8  
MAX  
30  
UNIT  
V
VIN to PGND  
Voltage  
TG to TGR  
10  
V
BG to PGND  
–8  
10  
V
(2)  
Pulsed current rating, IDM  
Power dissipation, PD  
120  
12  
A
W
Sync FET, ID = 89 A, L = 0.1 mH  
Control FET, ID = 50 A, L = 0.1 mH  
396  
125  
150  
mJ  
mJ  
°C  
Avalanche energy EAS  
Operating junction temperature, TJ  
–55  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated is not implied. Exposure to absolute-  
maximum-rated conditions for extended periods may affect device reliability.  
(2) Pulse duration 50 µS. Duty cycle 0.01.  
5.2 Handling Ratings  
MIN  
MAX  
UNIT  
Tstg  
Storage temperature range  
–55  
150  
°C  
5.3 Recommended Operating Conditions  
TA = 25° (unless otherwise noted)  
MIN  
MAX UNIT  
VGS  
VIN  
Gate drive voltage  
4.5  
10  
27  
V
V
Input supply voltage  
ƒSW  
Switching frequency CBST = 0.1 μF (min)  
Operating current  
200  
1500  
45  
kHz  
A
TJ  
Operating temperature  
125  
°C  
5.4 Thermal Information  
TA = 25°C (unless otherwise stated)  
THERMAL METRIC  
MIN  
TYP  
MAX UNIT  
102 °C/W  
50 °C/W  
20 °C/W  
Junction-to-ambient thermal resistance (min Cu)(1)(2)  
Junction-to-ambient thermal resistance (max Cu)(1)(2)  
Junction-to-case thermal resistance (top of package)(2)  
Junction-to-case thermal resistance (PGND pin)(2)  
RθJA  
RθJC  
2
°C/W  
(1) Device mounted on FR4 material with 1 inch2 (6.45 cm2) Cu.  
(2)  
θJC is determined with the device mounted on a 1 inch2 (6.45 cm2), 2 oz. (0.071 mm thick) Cu pad on a 1.5 inches × 1.5 inches  
R
(3.81 cm × 3.81 cm), 0.06 inch (1.52 mm) thick FR4 board. RθJC is specified by design while RθJA is determined by the user’s board  
design.  
5.5 Power Block Performance  
TA = 25° (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
2.8  
10  
MAX  
UNIT  
W
VIN = 12 V, VGS = 5 V, VOUT = 1.3 V,  
IOUT = 25 A, ƒSW = 500 kHz,  
LOUT = 0.29 µH, TJ = 25ºC  
(1)  
Power loss, PLOSS  
VIN quiescent current, IQVIN  
TG to TGR = 0 V ,BG to PGND = 0 V  
µA  
(1) Measurement made with six 10 µF (TDK C3216X5R1C106KT or equivalent) ceramic capacitors placed across VIN to PGND pins and  
using a high current 5 V driver IC.  
Copyright © 2016–2017, Texas Instruments Incorporated  
3
CSD87355Q5D  
ZHCSEU6A MARCH 2016REVISED SEPTEMBER 2017  
www.ti.com.cn  
5.6 Electrical Characteristics  
TA = 25°C (unless otherwise stated)  
Q1 CONTROL FET  
Q2 SYNC FET  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX MIN TYP MAX  
STATIC CHARACTERISTICS  
BVDSS  
IDSS  
Drain-to-source voltage  
VGS = 0 V, IDS = 250 μA  
30  
30  
V
Drain-to-source leakage current  
Gate-to-source leakage current  
VGS = 0 V, VDS = 24 V  
1
1
100  
μA  
VDS = 0 V,  
VGS = +10 / –8 V  
IGSS  
100  
nA  
V
VGS(th)  
Gate-to-source threshold voltage  
Drain-to-source ON impedance  
Transconductance  
VDS = VGS, IDS = 250 μA  
1.00  
1.90 0.75  
1.20  
VIN = 12 V, VGS = 5 V,  
VOUT = 1.3 V, IOUT = 25 A,  
ƒSW = 500 kHz,  
(1)  
ZDS(ON)  
3.9  
90  
0.9  
mΩ  
LOUT = 0.29 µH  
gfs  
VDS = 3 V, IDS = 20 A  
151  
S
DYNAMIC CHARACTERISTICS  
CISS  
COSS  
CRSS  
RG  
Input capacitance  
1430  
716  
25  
1860  
930  
32  
3570 4640  
1730 2240  
pF  
pF  
pF  
Ω
VGS = 0 V, VDS = 15 V,  
ƒ = 1 MHz  
Output capacitance  
Reverse transfer capacitance  
Series gate resistance  
Gate charge total (4.5 V)  
Gate charge – gate-to-drain  
Gate charge – gate-to-source  
Gate charge at Vth  
Output charge  
52  
67  
0.6  
10.5  
2.3  
3.2  
1.7  
18  
1.2  
0.7  
1.4  
Qg  
13.7  
24.3 31.5  
nC  
nC  
nC  
nC  
nC  
ns  
ns  
ns  
ns  
Qgd  
Qgs  
Qg(th)  
QOSS  
td(on)  
tr  
4.1  
5.6  
2.8  
40  
10  
14  
27  
6
VDS = 15 V,  
IDS = 20 A  
VDS = 15 V, VGS = 0 V  
Turn on delay time  
Rise time  
8
18  
VDS = 15 V, VGS = 4.5 V,  
IDS = 20 A, RG = 2 Ω  
td(off)  
tf  
Turn off delay time  
Fall time  
13  
3
DIODE CHARACTERISTICS  
VSD  
Qrr  
trr  
Diode forward voltage  
IDS = 20 A, VGS = 0 V  
0.8  
43  
1.0  
0.8  
82  
1.0  
V
Reverse recovery charge  
Reverse recovery time  
nC  
ns  
Vdd = 17 V, IF = 20 A,  
di/dt = 300 A/μs  
23.8  
32.3  
(1) Equivalent based on application testing. See Application and Implementation section for details.  
HD  
LD  
HD  
LD  
Max RθJA = 50°C/W  
when mounted on  
1 inch2 (6.45 cm2) of  
2 oz. (0.071-mm thick)  
Cu.  
Max RθJA = 102°C/W  
when mounted on  
minimum pad area of  
2 oz. (0.071-mm thick)  
Cu.  
LG HS  
LG HS  
HG  
LS  
HG  
LS  
M0189-01  
M0190-01  
4
版权 © 2016–2017, Texas Instruments Incorporated  
CSD87355Q5D  
www.ti.com.cn  
ZHCSEU6A MARCH 2016REVISED SEPTEMBER 2017  
5.7 Typical Power Block Device Characteristics  
TJ = 125°C, unless stated otherwise. The Typical Power Block System Characteristic curves 3, , and 4 are based on  
measurements made on a PCB design with dimensions of 4” (W) × 3.5” (L) × 0.062” (H) and 6 copper layers of 1-oz. copper  
thickness. See Application and Implementation for detailed explanation.  
10  
9
8
7
6
5
4
3
2
1
0
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Output Current (A)  
Junction Temperature (èC)  
D001  
D002  
VIN = 12 V  
ƒSW = 500 kHz  
VGS = 5 V  
VOUT = 1.3 V  
VIN = 12 V  
VGS = 5 V  
VOUT = 1.3 V  
LOUT = 0.29 µH  
ƒSW = 500 kHz  
LOUT = 0.29 µH  
1. Power Loss vs Output Current  
2. Normalized Power Loss vs Temperature  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
400 LFM  
200 LFM  
100 LFM  
Nat. conv.  
0
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
0
15  
30  
45  
60  
75  
90  
105 120 135  
Ambient Temperature (èC)  
Board Temperature (èC)  
D003  
D005  
VIN = 12 V  
ƒSW = 500 kHz  
VGS = 5 V  
VOUT = 1.3 V  
VIN = 12 V  
ƒSW = 500 kHz  
VGS = 5 V  
VOUT = 1.3 V  
LOUT = 0.29 µH  
LOUT = 0.29 µH  
3. Safe Operating Area (SOA) – Thermal Airflow  
4. Typical Safe Operating Area (SOA)  
Measurement PCB Vertical Mount  
版权 © 2016–2017, Texas Instruments Incorporated  
5
 
 
CSD87355Q5D  
ZHCSEU6A MARCH 2016REVISED SEPTEMBER 2017  
www.ti.com.cn  
Typical Power Block Device Characteristics (接下页)  
TJ = 125°C, unless stated otherwise. The Typical Power Block System Characteristic curves 3, , and 4 are based on  
measurements made on a PCB design with dimensions of 4” (W) × 3.5” (L) × 0.062” (H) and 6 copper layers of 1-oz. copper  
thickness. See Application and Implementation for detailed explanation.  
1.5  
1.4  
1.3  
1.2  
1.1  
1
17.4  
13.9  
10.4  
7.0  
1.35  
11.7  
10.0  
8.3  
1.3  
1.25  
1.2  
6.7  
1.15  
1.1  
5.0  
3.3  
3.5  
1.05  
1
1.7  
0.0  
0.0  
0.9  
0.8  
-3.5  
-7.0  
0.95  
0.9  
-1.7  
-3.3  
50 200 350 500 650 800 950 1100 1250 1400 1550  
0
3
6
9
12  
15  
18  
Switching Frequency (kHz)  
Input Voltage (V)  
D006  
D007  
VIN = 12 V  
LOUT = 0.29 µH  
VGS = 5 V  
VOUT = 1.3 V  
VIN = 12 V  
VOUT = 1.3 V  
IOUT = 45 A  
LOUT = 0.29 µH  
IOUT = 45 A  
ƒSW = 500 kHz  
5. Normalized Power Loss vs Switching Frequency  
6. Normalized Power Loss vs Input Voltage  
1.1  
1.075  
1.05  
1.025  
1
3.4  
1.8  
1.6  
1.4  
1.2  
1
25.7  
2.5  
19.3  
12.9  
6.4  
1.7  
0.8  
0.0  
0.975  
0.95  
0.925  
-0.8  
-1.7  
-2.5  
0.0  
0.8  
-6.4  
0.5  
1.3  
2.1  
2.9  
3.7  
4.5  
5.3  
10  
150  
290  
430  
570  
710  
850  
990 1130  
Output Voltage (V)  
Output Inductance (nH)  
D008  
D009  
VIN = 12 V  
VGS = 5 V  
IOUT = 45 A  
ƒSW = 500 kHz  
VIN = 12 V  
ƒSW = 500 kHz  
VGS = 5 V VOUT = 1.3 V  
LOUT = 0.29 µH  
IOUT = 45 A  
7. Normalized Power Loss vs. Output Voltage  
8. Normalized Power Loss vs Output Inductance  
6
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
CSD87355Q5D  
www.ti.com.cn  
ZHCSEU6A MARCH 2016REVISED SEPTEMBER 2017  
5.8 Typical Power Block MOSFET Characteristics  
TA = 25°C, unless stated otherwise.  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
20  
VGS = 4.5 V  
VGS = 6.0 V  
VGS = 8.0 V  
VGS = 4.5 V  
VGS = 6.0 V  
VGS = 8.0 V  
10  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.04  
0.08  
0.12  
0.16  
0.2  
VDS - Drain-to-Source Voltage (V)  
VDS - Drain-to-Source Voltage (V)  
D010  
D011  
9. Control MOSFET Saturation  
10. Sync MOSFET Saturation  
100  
100  
10  
TC = 125°C  
TC = 25°C  
TC = -55°C  
TC = 125°C  
TC = 25°C  
TC = -55°C  
10  
1
1
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
0
0.5  
1
1.5  
2
2.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
VGS - Gate-to-Source Voltage (V)  
VGS - Gate-to-Source Voltage (V)  
D013  
D012  
VDS = 5 V  
VDS = 5 V  
12. Sync MOSFET Transfer  
11. Control MOSFET Transfer  
8
7
6
5
4
3
2
1
8
7
6
5
4
3
2
1
0
0
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
4
8
12 16 20 24 28 32 36 40 44  
Qg - Gate Charge (nC)  
Qg - Gate Charge (nC)  
D014  
D015  
ID = 20 A  
VDD = 15 V  
ID = 20 A  
VDD = 15 V  
13. Control MOSFET Gate Charge  
14. Sync MOSFET Gate Charge  
版权 © 2016–2017, Texas Instruments Incorporated  
7
CSD87355Q5D  
ZHCSEU6A MARCH 2016REVISED SEPTEMBER 2017  
www.ti.com.cn  
Typical Power Block MOSFET Characteristics (接下页)  
TA = 25°C, unless stated otherwise.  
10000  
1000  
100  
10  
10000  
1000  
100  
10  
Ciss = Cgd + Cgs  
Coss = Cds + Cgd  
Crss = Cgd  
Ciss = Cgd + Cgs  
Coss = Cds + Cgd  
Crss = Cgd  
1
1
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
VDS - Drain-to-Source Voltage (V)  
VDS - Drain-to-Source Voltage (V)  
D016  
D017  
ƒ = 1 MHz  
VGS = 0  
ƒ = 1 MHz  
VGS = 0  
15. Control MOSFET Capacitance  
16. Sync MOSFET Capacitance  
1.8  
1.6  
1.4  
1.2  
1
1.3  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.8  
0.6  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
TC - Case Temperature (°C)  
TC - Case Temperature (°C)  
D018  
D019  
ID = 250 µA  
ID = 250 µA  
17. Control MOSFET VGS(th)  
18. Sync MOSFET VGS(th)  
8
7
6
5
4
3
2
1
0
14  
12  
10  
8
TC = 25°C, I D = 20 A  
TC = 125°C, I D = 20 A  
TC = 25°C, I D = 20 A  
TC = 125°C, I D = 20 A  
6
4
2
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
VGS - Gate-to-Source Voltage (V)  
VGS - Gate-to-Source Voltage (V)  
D020  
D021  
19. Control MOSFET RDS(ON) vs VGS  
20. Sync MOSFET RDS(ON) vs VGS  
8
版权 © 2016–2017, Texas Instruments Incorporated  
CSD87355Q5D  
www.ti.com.cn  
ZHCSEU6A MARCH 2016REVISED SEPTEMBER 2017  
Typical Power Block MOSFET Characteristics (接下页)  
TA = 25°C, unless stated otherwise.  
1.6  
1.4  
1.2  
1
1.6  
VGS = 4.5 V  
VGS = 8.0 V  
VGS = 4.5 V  
VGS = 8.0 V  
1.4  
1.2  
1
0.8  
0.6  
0.8  
0.6  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
TC - Case Temperature (èC)  
TC - Case Temperature (èC)  
D022  
D023  
ID = 20 A  
VGS = 8 V  
ID = 20 A  
VGS = 8 V  
21. Control MOSFET Normalized RDS(ON)  
22. Sync MOSFET Normalized RDS(ON)  
100  
100  
TC = 25èC  
TC = 125èC  
TC = 25èC  
TC = 125èC  
10  
1
10  
1
0.1  
0.1  
0.01  
0.001  
0.0001  
0.01  
0.001  
0.0001  
0
0.2  
0.4  
0.6  
0.8  
1
0
0.2  
0.4  
0.6  
0.8  
1
VSD - Source-to-Drain Voltage (V)  
VSD - Source-to-Drain Voltage (V)  
D024  
D025  
23. Control MOSFET Body Diode  
24. Sync MOSFET Body Diode  
1000  
100  
10  
1000  
100  
10  
TC = 25è C  
TC = 125è C  
TC = 25è C  
TC = 125è C  
1
0.01  
0.1  
1
0.01  
0.1  
1
TAV - Time in Avalanche (ms)  
TAV - Time in Avalanche (ms)  
D026  
D027  
25. Control MOSFET Unclamped Inductive Switching  
版权 © 2016–2017, Texas Instruments Incorporated  
26. Sync MOSFET Unclamped Inductive Switching  
9
CSD87355Q5D  
ZHCSEU6A MARCH 2016REVISED SEPTEMBER 2017  
www.ti.com.cn  
6 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
6.1 Application Information  
The CSD87355Q5D NexFET power block is an optimized design for synchronous buck applications using 5-V  
gate drive. The Control FET and Sync FET silicon are parametrically tuned to yield the lowest power loss and  
highest system efficiency. As a result, a new rating method is needed which is tailored towards a more systems  
centric environment. System level performance curves such as Power Loss, Safe Operating Area, and  
normalized graphs allow engineers to predict the product performance in the actual application.  
6.1.1 Equivalent System Performance  
Many of today's high performance computing systems require low power consumption in an effort to reduce  
system operating temperatures and improve overall system efficiency. This has created a major emphasis on  
improving the conversion efficiency of today’s Synchronous Buck Topology. In particular, there has been an  
emphasis in improving the performance of the critical Power Semiconductor in the Power Stage of this  
application (see 27). As such, optimization of the power semiconductors in these applications, needs to go  
beyond simply reducing RDS(ON)  
.
ꢀower {tꢁge  
/omponents  
ꢀower .lock  
/omponents  
/
i
+
-
Lnput  
{upply  
/ontrol  
C9Ç  
5river  
5river  
ꢀía  
[
o
{witch  
bode  
/
o
{ync  
C9Ç  
L[  
[oꢁd  
27.  
10  
版权 © 2016–2017, Texas Instruments Incorporated  
 
CSD87355Q5D  
www.ti.com.cn  
ZHCSEU6A MARCH 2016REVISED SEPTEMBER 2017  
Application Information (接下页)  
The CSD87355Q5D is part of TI’s Power Block product family which is a highly optimized product for use in a  
synchronous buck topology requiring high current, high efficiency, and high frequency. It incorporates TI’s latest  
generation silicon which has been optimized for switching performance, as well as minimizing losses associated  
with QGD, QGS, and QRR. Furthermore, TI’s patented packaging technology has minimized losses by nearly  
eliminating parasitic elements between the Control FET and Sync FET connections (see 28). A key challenge  
solved by TI’s patented packaging technology is the system level impact of Common Source Inductance (CSI).  
CSI greatly impedes the switching characteristics of any MOSFET which in turn increases switching losses and  
reduces system efficiency. As a result, the effects of CSI need to be considered during the MOSFET selection  
process. In addition, standard MOSFET switching loss equations used to predict system efficiency need to be  
modified in order to account for the effects of CSI. Further details behind the effects of CSI and modification of  
switching loss equations are outlined in TI’s Application Note SLPA009.  
Lnpuꢀ  
{upply  
t/.  
/
9{ꢂ  
[
5ꢂ!Lb  
/
LbtÜÇ  
/onꢀrol  
C9Ç  
5river  
tía  
/
9{[  
[
{ꢃÜꢂ/9  
{wiꢀch  
bode  
[
o
/
o
L[  
[oꢁd  
[
5ꢂ!Lb  
/
ÇꢃÇ![  
{ync  
C9Ç  
5river  
[
{ꢃÜꢂ/9  
28.  
The combination of TI’s latest generation silicon and optimized packaging technology has created a  
benchmarking solution that outperforms industry standard MOSFET chipsets of similar RDS(ON) and MOSFET  
chipsets with lower RDS(ON). 29 and 30 compare the efficiency and power loss performance of the  
CSD87355Q5D versus industry standard MOSFET chipsets commonly used in this type of application. This  
comparison purely focuses on the efficiency and generated loss of the power semiconductors only. The  
performance of CSD87355Q5D clearly highlights the importance of considering the Effective AC On-Impedance  
(ZDS(ON)) during the MOSFET selection process of any new design. Simply normalizing to traditional MOSFET  
RDS(ON) specifications is not an indicator of the actual in-circuit performance when using TI’s Power Block  
technology.  
版权 © 2016–2017, Texas Instruments Incorporated  
11  
 
CSD87355Q5D  
ZHCSEU6A MARCH 2016REVISED SEPTEMBER 2017  
www.ti.com.cn  
Application Information (接下页)  
9
8
7
6
5
4
3
2
1
0
94  
92  
90  
88  
86  
PowerBlock RDS(ON) = 3.9 mW/1.5 mW  
Discrete HS/LS RDS(ON) = 3.9 mW/1.5 mW  
Discrete HS/LS RDS(ON) = 3.9 mW/0.9 mW  
84  
PowerBlock HS/LS RDS(ON) = 3.9 mW/1.5 mW  
82  
Discrete HS/LS RDS(ON) = 3.9 mW/1.5 mW  
Discrete HS/LS RDS(ON) = 3.9 mW/0.9 mW  
80  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Ambient Temperature (èC)  
VOUT = 1.3 V  
VDD= 5 V  
Ambient Temperature (èC)  
VOUT = 1.3 V  
VDD = 5 V  
D030  
D031  
VIN = 12 V  
LOUT = 0.3 µH  
TA = 25°C  
VIN = 12 V  
LOUT = 0.3 µH  
TA = 25°C  
ƒSW = 500 kHz  
ƒSW = 500 kHz  
29. Efficiency  
30. Power Loss  
1 compares the traditional DC measured RDS(ON) of CSD87355Q5D versus its ZDS(ON). This comparison takes  
into account the improved efficiency associated with TI’s patented packaging technology. As such, when  
comparing TI’s Power Block products to individually packaged discrete MOSFETs or dual MOSFETs in a  
standard package, the in-circuit switching performance of the solution must be considered. In this example,  
individually packaged discrete MOSFETs or dual MOSFETs in a standard package would need to have DC  
measured RDS(ON) values that are equivalent to CSD87355Q5D’s ZDS(ON) value in order to have the same  
efficiency performance at full load. Mid to light-load efficiency will still be lower with individually packaged discrete  
MOSFETs or dual MOSFETs in a standard package.  
1. Comparison of RDS(ON) vs ZDS(ON)  
HS  
TYP  
LS  
TYP  
PARAMETER  
MAX  
-
MAX UNIT  
mΩ  
1.8 mΩ  
Effective AC On-Impedance ZDS(ON) (VGS = 5 V)  
DC Measured RDS(ON) (VGS = 4.5 V)  
3.9  
3.9  
0.9  
1.5  
-
4.7  
6.1.2 Power Loss Curves  
MOSFET centric parameters such as RDS(ON) and Qgd are needed to estimate the loss generated by the devices.  
In an effort to simplify the design process for engineers, Texas Instruments has provided measured power loss  
performance curves. 1 plots the power loss of the CSD87355Q5D as a function of load current. This curve is  
measured by configuring and running the CSD87355Q5D as it would be in the final application (see 31).The  
measured power loss is the CSD87355Q5D loss and consists of both input conversion loss and gate drive loss.  
公式 1 is used to generate the power loss curve.  
(VIN × IIN) + (VDD × IDD) – (VSW_AVG × IOUT) = Power Loss  
(1)  
The power loss curve in 1 is measured at the maximum recommended junction temperatures of 125°C under  
isothermal test conditions.  
6.1.3 Safe Operating Curves (SOA)  
The SOA curves in the CSD87355Q5D data sheet provides guidance on the temperature boundaries within an  
operating system by incorporating the thermal resistance and system power loss. 3 to 4 outline the  
temperature and airflow conditions required for a given load current. The area under the curve dictates the safe  
operating area. All the curves are based on measurements made on a PCB design with dimensions of  
4” (W) × 3.5” (L) × 0.062” (T) and 6 copper layers of 1-oz. copper thickness.  
12  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
CSD87355Q5D  
www.ti.com.cn  
ZHCSEU6A MARCH 2016REVISED SEPTEMBER 2017  
6.1.4 Normalized Curves  
The normalized curves in the CSD87355Q5D data sheet provides guidance on the Power Loss and SOA  
adjustments based on their application specific needs. These curves show how the power loss and SOA  
boundaries will adjust for a given set of system conditions. The primary Y-axis is the normalized change in power  
loss and the secondary Y-axis is the change is system temperature required in order to comply with the SOA  
curve. The change in power loss is a multiplier for the Power Loss curve and the change in temperature is  
subtracted from the SOA curve.  
6.2 Typical Application  
Lnput /urrent (LLb)  
Date 5rive  
/urrent (L55)  
ëLb  
!
.hhÇ  
5wëI  
[[  
ë55  
!
ë55  
ë
Lnput ëoltage (ëLb)  
ëLb  
/ontrol  
C9Ç  
Date 5rive  
ëoltage (ë55)  
ë
ÇD  
9b!.[9  
tía  
hutput /urrent (LhÜÇ  
ëhÜÇ  
)
ë{í  
!
ÇDw  
{ync  
C9Ç  
tía  
.
D
5wë[  
Db5  
tDb5  
!veraged {witcꢀ  
ë bode ëoltage  
!veraging  
/ircuit  
/{5873ꢀꢀꢁꢀ5  
5river L/  
{í_!ëD  
)
31.  
版权 © 2016–2017, Texas Instruments Incorporated  
13  
CSD87355Q5D  
ZHCSEU6A MARCH 2016REVISED SEPTEMBER 2017  
www.ti.com.cn  
Typical Application (接下页)  
6.2.1 Design Example: Calculating Power Loss and SOA  
The user can estimate product loss and SOA boundaries by arithmetic means (see Operating Conditions).  
Though the Power Loss and SOA curves in this data sheet are taken for a specific set of test conditions, the  
following procedure will outline the steps the user should take to predict product performance for any set of  
system conditions.  
6.2.2 Operating Conditions  
Output Current = 25 A  
Input Voltage = 7 V  
Output Voltage = 1.4 V  
Switching Frequency = 800 kHz  
Inductor = 0.2 µH  
6.2.2.1 Calculating Power Loss  
Power Loss at 25 A = 3.62 W (1)  
Normalized Power Loss for input voltage 0.99 (6)  
Normalized Power Loss for output voltage 1.02 (7)  
Normalized Power Loss for switching frequency 1.06 (5)  
Normalized Power Loss for output inductor 1.03 (8)  
Final calculated Power Loss = 3.62 W × 0.99 × 1.02 × 1.06 × 1.03 3.99 W  
6.2.2.2 Calculating SOA Adjustments  
SOA adjustment for input voltage –0.24ºC (6)  
SOA adjustment for output voltage 0.63ºC (7)  
SOA adjustment for switching frequency 2.12ºC (5)  
SOA adjustment for output inductor 0.91ºC (8)  
Final calculated SOA adjustment = –0.24 + 0.63 + 2.12 + 0.91 3.42C  
In the previous design example, the estimated power loss of the CSD87355Q5D would increase to 4 W. In  
addition, the maximum allowable board and/or ambient temperature would have to decrease by 3.4ºC. 32  
graphically shows how the SOA curve would be adjusted accordingly.  
1. Start by drawing a horizontal line from the application current to the SOA curve.  
2. Draw a vertical line from the SOA curve intercept down to the board/ambient temperature.  
3. Adjust the SOA board/ambient temperature by subtracting the temperature adjustment value.  
In the design example, the SOA temperature adjustment yields a reduction in allowable board/ambient  
temperature of 3.4ºC. In the event the adjustment value is a negative number, subtracting the negative number  
would yield an increase in allowable board/ambient temperature.  
32. Power Block SOA  
14  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
CSD87355Q5D  
www.ti.com.cn  
ZHCSEU6A MARCH 2016REVISED SEPTEMBER 2017  
7 Layout  
7.1 Layout Guidelines  
There are two key system-level parameters that can be addressed with a proper PCB design: electrical and  
thermal performance. Properly optimizing the PCB layout will yield maximum performance in both areas. The  
following sections provide a brief description on how to address each parameter.  
7.1.1 Electrical Performance  
The Power Block has the ability to switch voltages at rates greater than 10 kV/µs. Take special care with the  
PCB layout design and placement of the input capacitors, Driver IC, and output inductor.  
The placement of the input capacitors relative to the Power Block’s VIN and PGND pins should have the  
highest priority during the component placement routine. It is critical to minimize these node lengths. As such,  
ceramic input capacitors need to be placed as close as possible to the VIN and PGND pins (see 33). The  
example in 33 uses 6 × 10-µF ceramic capacitors (TDK Part # C3216X5R1C106KT or equivalent). Notice  
there are ceramic capacitors on both sides of the board with an appropriate amount of vias interconnecting  
both layers. In terms of priority of placement next to the Power Block, C5, C7, C19, and C8 should follow in  
order.  
The Driver IC should be placed relatively close to the Power Block Gate pins. TG and BG should connect to  
the outputs of the Driver IC. The TGR pin serves as the return path of the high-side gate drive circuitry and  
should be connected to the Phase pin of the IC (sometimes called LX, LL, SW, PH, etc.). The bootstrap  
capacitor for the Driver IC will also connect to this pin.  
The switching node of the output inductor should be placed relatively close to the Power Block VSW pins.  
Minimizing the node length between these two components will reduce the PCB conduction losses and  
actually reduce the switching noise level.  
In the event the switch node waveform exhibits ringing that reaches undesirable levels, the use of a Boost  
Resistor or RC snubber can be an effective way to reduce the peak ring level. The recommended Boost  
Resistor value will range between 1 Ω to 4.7 Ω depending on the output characteristics of Driver IC used in  
conjunction with the Power Block. The RC snubber values can range from 0.5 Ω to 2.2 Ω for the R and 330  
pF to 2200 pF for the C. Refer to TI App Note SLUP100 for more details on how to properly tune the RC  
snubber values. The RC snubber should be placed as close as possible to the Vsw node and PGND see 图  
(1)  
33.  
7.1.2 Thermal Considerations  
The Power Block has the ability to use the GND planes as the primary thermal path. As such, the use of thermal  
vias is an effective way to pull away heat from the device and into the system board. Concerns of solder voids  
and manufacturability problems can be addressed by the use of three basic tactics to minimize the amount of  
solder attach that will wick down the via barrel:  
Intentionally space out the vias from each other to avoid a cluster of holes in a given area.  
Use the smallest drill size allowed in your design. The example in 33 uses vias with a 10 mil drill hole and  
a 16 mil capture pad.  
Tent the opposite side of the via with solder-mask.  
In the end, the number and drill size of the thermal vias should align with the end user’s PCB design rules and  
manufacturing capabilities.  
(1) Keong W. Kam, David Pommerenke, “EMI Analysis Methods for Synchronous Buck Converter EMI Root Cause Analysis”, University of  
Missouri – Rolla  
版权 © 2016–2017, Texas Instruments Incorporated  
15  
CSD87355Q5D  
ZHCSEU6A MARCH 2016REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.2 Layout Example  
Input Capacitors  
Input Capacitors  
TGR  
TG  
VIN  
PGND  
Output Capacitors  
Driver IC  
Power Block  
BG  
VSW VSW VSW  
RC Snubber  
Power Block  
Location on Top  
Layer  
Bottom Layer  
33. Recommended PCB Layout (Top View)  
Top Layer  
Output Inductor  
16  
版权 © 2016–2017, Texas Instruments Incorporated  
CSD87355Q5D  
www.ti.com.cn  
ZHCSEU6A MARCH 2016REVISED SEPTEMBER 2017  
8 器件和文档支持  
8.1 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
8.2 商标  
NexFET, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
8.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
8.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2016–2017, Texas Instruments Incorporated  
17  
CSD87355Q5D  
ZHCSEU6A MARCH 2016REVISED SEPTEMBER 2017  
www.ti.com.cn  
9 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。  
9.1 Q5D 封装尺寸  
E2  
d2  
K
L
E1  
c1  
L
d1  
q
b
9
E
D1  
D2  
d
e
d3  
f
Top View  
Side View  
Bottom View  
Pinout  
Position  
Pin 1  
Pin 2  
Pin 3  
Pin 4  
Pin 5  
Pin 6  
Pin 7  
Pin 8  
Pin 9  
Designation  
VIN  
Exposed Tie Bar May Vary  
q
VIN  
TG  
TGR  
a
BG  
VSW  
VSW  
VSW  
PGND  
c
E1  
Front View  
M0187-01  
毫米  
英寸  
最小值  
0.055  
0.014  
0.006  
0.006  
0.064  
0.011  
0.008  
0.012  
0.193  
0.168  
0.193  
0.232  
0.122  
0.050  
0.016  
0.020  
DIM  
最小值  
1.40  
最大值  
1.5  
最大值  
0.059  
0.018  
0.010  
0.010  
0.068  
0.015  
0.012  
0.015  
0.201  
0.172  
0.201  
0.240  
0.126  
a
b
0.360  
0.150  
0.150  
1.630  
0.280  
0.200  
0.291  
4.900  
4.269  
4.900  
5.900  
3.106  
0.460  
0.250  
0.250  
1.730  
0.380  
0.300  
0.391  
5.100  
4.369  
5.100  
6.100  
3.206  
c
c1  
d
d1  
d2  
d3  
D1  
D2  
E
E1  
E2  
e
1.27 典型值  
f
0.396  
0.510  
0.00  
0.496  
0.710  
0.020  
0.028  
L
θ
K
0.812  
0.032  
18  
版权 © 2016–2017, Texas Instruments Incorporated  
CSD87355Q5D  
www.ti.com.cn  
ZHCSEU6A MARCH 2016REVISED SEPTEMBER 2017  
9.2 焊盘布局建议  
3.480 (0.137)  
0.345 (0.014)  
0.530 (0.021)  
0.415 (0.016)  
0.650 (0.026)  
0.650 (0.026)  
4.460  
(0.176)  
0.620  
(0.024)  
0.620 (0.024)  
4.460  
(0.176)  
1.270  
(0.050)  
1.920  
(0.076)  
0.850 (0.033)  
0.400 (0.016)  
6.240 (0.246)  
0.850 (0.033)  
M0188-01  
NOTE: 尺寸单位为 mm(英寸)。  
9.3 模板建议  
0.250 (0.010)  
0.610 (0.024)  
0.410 (0.016)  
0.300 (0.012)  
0.341 (0.013)  
Stencil Opening  
0.300 (0.012)  
0.300 (0.012)  
1.710  
(0.067)  
1.680  
(0.066)  
0.950 (0.037)  
1.290 (0.051)  
PCB Pattern  
M0208-01  
NOTE: 尺寸单位为 mm(英寸)。  
间距调节文本 如需了解针对 PCB 设计的建议电路布局,请参阅应用手册 SLPA005 《通过 PCB 布局技巧来减少  
振铃》。  
版权 © 2016–2017, Texas Instruments Incorporated  
19  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
2500  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CSD87355Q5D  
CSD87355Q5DT  
ACTIVE  
LSON-CLIP  
LSON-CLIP  
DQY  
8
8
RoHS-Exempt  
& Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-55 to 150  
-55 to 150  
87355D  
87355D  
ACTIVE  
DQY  
RoHS-Exempt  
& Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
CSD87355Q5D  
CSD87355Q5DT  
LSON-  
CLIP  
DQY  
DQY  
8
8
2500  
250  
330.0  
12.4  
5.3  
6.3  
1.8  
8.0  
12.0  
Q2  
LSON-  
CLIP  
180.0  
12.4  
5.3  
6.3  
1.8  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
CSD87355Q5D  
CSD87355Q5DT  
LSON-CLIP  
LSON-CLIP  
DQY  
DQY  
8
8
2500  
250  
346.0  
182.0  
346.0  
182.0  
33.0  
20.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY