CSD95377Q4M [TI]

20V 35A SON 3.5 x 4.5mm 同步降压 NexFET™ 功率级;
CSD95377Q4M
型号: CSD95377Q4M
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

20V 35A SON 3.5 x 4.5mm 同步降压 NexFET™ 功率级

开关 光电二极管
文件: 总20页 (文件大小:827K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
CSD95377Q4M  
ZHCSEI7B DECEMBER 2015REVISED DECEMBER 2017  
CSD95377Q4M 同步降压 NexFET™ 功率级  
1 特性  
2 应用  
1
电流为 15A 时的效率约为 94%  
最大额定持续电流 35A  
服务器、网络互联和电信系统中的负载点同步降压  
多相 Vcore、双倍数据速率 (DDR) 和图形解决方案  
高频运行(高达 2MHz)  
高密度 3.5mm × 4.5mm SON 封装  
超低电感封装  
3 说明  
CSD95377Q4M NexFET™功率级的设计针对高功  
率、高密度同步降压转换器应用进行了高度优化。此产  
品集成了驱动器 IC 和功率 MOSFET,从而可以实现  
功率级开关功能。此驱动器 IC 具有内置可选二极管仿  
真功能,该功能支持非连续导通模式 (DCM) 运行,从  
而提高轻负载效率。该组合在小型 3.5mm x 4.5mm 外  
形尺寸封装中提供高电流、高效率和高速开关功能。此  
外,PCB 封装已经过优化,可帮助减少设计时间并简  
化总体系统设计。  
系统优化的 PCB 封装  
兼容 3.3V 5V PWM 信号  
支持强制连续传导模式 (FCCM) 的二极管仿真模式  
输入电压最高可达 16V  
三态 PWM 输入  
集成型自举二极管  
击穿保护  
符合 RoHS 环保标准-无铅引脚镀层  
无卤素  
器件信息(1)  
器件  
包装介质  
13 英寸卷带 2500  
7 英寸卷带 250  
数量  
封装  
发货  
CSD95377Q4M  
CSD95377Q4MT  
3.50mm × 4.50mm  
SON 塑料封装  
卷带  
封装  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
.
应用图表  
典型功率级效率与功率损耗  
VIN  
100  
90  
80  
70  
60  
50  
40  
9
CSD95377Q4M  
7.5  
6
VOUT  
VCC  
VDD = 5 V  
VIN = 12 V  
VOUT = 1.8 V  
LOUT = 0.29 mH  
fSW = 500 kHz  
TA = 25èC  
4.5  
3
VCC  
PWM1  
+Is1  
-Is2  
VOUT  
VOUT  
SS  
1.5  
0
-Is2  
+Is2  
RT  
0
5
10  
15  
20  
25  
30  
35  
Output Current (A)  
PWM2  
D000  
PGND  
Multi-Phase  
Controller  
CSD95377Q4M  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLPS584  
 
 
 
 
CSD95377Q4M  
ZHCSEI7B DECEMBER 2015REVISED DECEMBER 2017  
www.ti.com.cn  
目录  
8.1 Application Information.............................................. 9  
8.2 Typical Application ................................................... 9  
8.3 System Example ..................................................... 12  
Layout ................................................................... 14  
9.1 Layout Guidelines ................................................... 14  
9.2 Layout Example ...................................................... 14  
9.3 Thermal Considerations.......................................... 14  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
Detailed Description .............................................. 6  
7.1 Overview ................................................................... 6  
7.2 Functional Block Diagram ......................................... 6  
7.3 Feature Description................................................... 6  
7.4 Device Functional Modes.......................................... 8  
Application and Implementation .......................... 9  
9
10 器件和文档支持 ..................................................... 15  
10.1 接收文档更新通知 ................................................. 15  
10.2 社区资源................................................................ 15  
10.3 ....................................................................... 15  
10.4 静电放电警告......................................................... 15  
10.5 Glossary................................................................ 15  
11 机械、封装和可订购信息....................................... 16  
11.1 机械制图................................................................ 16  
11.2 建议印刷电路板 (PCB) 焊盘图案........................... 17  
11.3 建议模版开口......................................................... 17  
7
8
4 修订历史记录  
Changes from Revision A (January 2017) to Revision B  
Page  
特性最大额定持续电流 30A”改为最大额定持续电流 35A............................................................................................. 1  
更新了典型功率级效率和功率损耗图以反映 35A 最大电流................................................................................................. 1  
Changed the IOUT Continuous output current MAX value From: 30 A To: 35 A in the Recommended Operating  
Conditions table. .................................................................................................................................................................... 4  
Updated Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, and Figure 15 to reflect 35  
A maximum current. ............................................................................................................................................................ 10  
Changed the calculating values in the Design Example to reflect 35 A maximum current. ................................................ 13  
Changes from Original (December 2015) to Revision A  
Page  
Changed unit for Hysteresis parameter from mV : to V in the Electrical Characteristics table.............................................. 5  
已添加 接收文档更新通知部分至器件和文档支持.......................................................................................................... 15  
2
Copyright © 2015–2017, Texas Instruments Incorporated  
 
CSD95377Q4M  
www.ti.com.cn  
ZHCSEI7B DECEMBER 2015REVISED DECEMBER 2017  
5 Pin Configuration and Functions  
SON 3.5 × 4.5 mm  
Top View  
SKIP#  
VDD  
1
2
3
8
PWM  
7
6
BOOT  
PGND  
BOOT_R  
9
PGND  
VSW  
VIN  
4
5
Pin Functions  
PIN  
DESCRIPTION  
NO. NAME  
This pin enables the diode emulation function. When this pin is held low, Diode Emulation Mode is enabled for the  
sync FET. When SKIP# is high, the CSD95377Q4M operates in Forced Continuous Conduction Mode. A tri-state  
voltage on SKIP# puts the driver into a very-low power state.  
1
SKIP#  
2
3
4
5
6
VDD  
Supply voltage to gate drivers and internal circuitry.  
PGND  
VSW  
Power ground, needs to be connected to pin 9 and PCB.  
Voltage switching node – pin connection to the output inductor.  
Input voltage pin. Connect input capacitors close to this pin.  
VIN  
BOOT_R  
Bootstrap capacitor connection. Connect a minimum 0.1-µF, 16-V, X5R ceramic capacitor from BOOT to BOOT_R  
pins. The bootstrap capacitor provides the charge to turn on the control FET. The bootstrap diode is integrated.  
7
BOOT  
Boot_R is internally connected to VSW  
.
Pulse width modulated tri-state input from external controller. Logic low sets control FET gate low and sync FET gate  
high. Logic high sets control FET gate high and sync FET gate low. Open or Hi-Z sets both MOSFET gates low if  
greater than the tri-state shutdown hold-off time (t3HT).  
8
9
PWM  
PGND  
Power ground.  
Copyright © 2015–2017, Texas Instruments Incorporated  
3
CSD95377Q4M  
ZHCSEI7B DECEMBER 2015REVISED DECEMBER 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
TA = 25°C (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–7  
MAX  
UNIT  
V
VIN to PGND  
20  
20  
23  
6
VSW to PGND , VIN to VSW  
VSW to PGND, VIN to VSW (<10 ns)  
VDD to PGND  
V
V
–0.3  
–0.3  
–0.3  
–2  
V
PWM, SKIP# to PGND  
BOOT to PGND  
6
V
25  
28  
6
V
BOOT to PGND (<10 ns)  
BOOT to BOOT_R  
V
–0.3  
V
BOOT to BOOT_R (duty cycle < 0.2%)  
8
V
PD  
TJ  
Power dissipation  
8
W
°C  
°C  
Operating temperature  
Storage temperature  
–40  
–55  
150  
150  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated in the Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±1000  
±500  
UNIT  
Human-body model (HBM)(1)  
Charged-device model (CDM)(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
TA = 25°C (unless otherwise noted)  
MIN  
MAX UNIT  
VDD  
Gate drive voltage  
Input supply voltage  
4.5  
5.5  
16  
V
V
(1)  
VIN  
IOUT  
IOUT-PK  
ƒSW  
Continuous output current  
Peak output current(2)(3)  
Switching frequency  
35  
A
VIN = 12 V, VDD = 5 V, VOUT = 1.8 V,  
ƒSW = 500 kHz, LOUT = 0.29 µH(2)  
70  
A
CBST = 0.1 µF (min)  
2000  
85%  
kHz  
On-time duty cycle  
Minimum PWM On-time  
Operating temperature  
40  
ns  
°C  
–40  
125  
(1) Operating at high VIN can create excessive AC voltage overshoots on the switch node (VSW) during MOSFET switching transients. For  
reliable operation, the switch node (VSW) to ground voltage must remain at or below the Absolute Maximum Ratings.  
(2) Peak output current is applied for tp = 10 ms, duty cycle 1%.  
(3) Measurement made with six 10-µF (TDK C3216X5R1C106KT or equivalent) ceramic capacitors placed across VIN to PGND pins.  
6.4 Thermal Information  
TA = 25°C (unless otherwise noted)  
THERMAL METRIC  
Thermal resistance junction-to-case (top of package)(1)  
Junction-to-board thermal resistance(2)  
MIN  
TYP  
MAX UNIT  
22.8 °C/W  
2.5 °C/W  
RθJC(top)  
RθJB  
(1)  
(2)  
R
θJC is determined with the device mounted on a 1-in2 (6.45-cm2), 2-oz (0.071-mm) thick Cu pad on a 1.5-in × 1.5-in, 0.06-in (1.52-mm)  
thick FR4 board.  
θJB value based on hottest board temperature within 1 mm of the package.  
R
4
Copyright © 2015–2017, Texas Instruments Incorporated  
CSD95377Q4M  
www.ti.com.cn  
ZHCSEI7B DECEMBER 2015REVISED DECEMBER 2017  
6.5 Electrical Characteristics  
TA = 25°C, VDD = POR to 5.5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
PLOSS  
VIN = 12 V, VDD = 5 V, VOUT = 1.8 V, IOUT = 15 A,  
ƒSW = 500 kHz, LOUT = 0.29 µH, TJ = 25°C  
Power loss(1)  
Power loss(1)  
1.6  
1.8  
W
W
VIN = 12 V, VDD = 5 V, VOUT = 1.8 V, IOUT = 15 A,  
ƒSW = 500 kHz, LOUT = 0.29 µH, TJ = 125°C  
VIN  
IQ  
VIN quiescent current  
PWM = float  
1
µA  
VDD  
PWM = float, VSKIP# = VDD or 0 V  
VSKIP# = float  
130  
8
IDD  
IDD  
Standby supply current  
Operating supply current  
µA  
PWM = 50% duty cycle, ƒSW = 500 kHz  
8.6  
mA  
POWER-ON RESET AND UNDERVOLTAGE LOCKOUT  
VDD rising  
VDD falling  
Power-on reset  
UVLO  
4.15  
V
V
V
3.7  
Hysteresis  
0.2  
PWM AND SKIP# I/O SPECIFICATIONS  
Pullup to VDD  
1700  
800  
kΩ  
kΩ  
V
RI  
Input impedance  
Pulldown (to GND)  
VIH  
Logic level high  
2.65  
1.3  
VIL  
Logic level low  
0.6  
2
V
VIHH  
Hysteresis  
0.2  
V
VTS  
Tri-state voltage  
V
tTHOLD(off1)  
tTHOLD(off2)  
tTSKF  
Tri-state activation time (falling) PWM  
Tri-state activation time (rising) PWM  
Tri-state activation time (falling) SKIP#  
Tri-state activation time (rising) SKIP#  
Tri-state exit time PWM(2)  
Tri-state exit time SKIP#(2)  
60  
60  
1
ns  
ns  
ns  
µs  
ns  
µs  
tTSKR  
1
t3RD(PWM)  
t3RD(SKIP#)  
BOOTSTRAP SWITCH  
VFBST Forward voltage  
IRLEAK  
Reverse leakage(2)  
100  
50  
IF = 10 mA  
120  
240  
2
mV  
µA  
VBOOT – VDD = 25 V  
(1) Measurement made with six 10-µF (TDK C3216X5R1C106KT or equivalent) ceramic capacitors placed across VIN to PGND pins.  
(2) Specified by design.  
Copyright © 2015–2017, Texas Instruments Incorporated  
5
CSD95377Q4M  
ZHCSEI7B DECEMBER 2015REVISED DECEMBER 2017  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The CSD95377Q4M™ power stage is a highly-optimized design for use in a high-power, high-density  
synchronous buck converter.  
7.2 Functional Block Diagram  
VDD  
7
5
BOOT  
VIN  
+
DRVL  
Control  
FET  
+
DRVH  
Level Shift  
VUVLO  
6
4
BOOT_R  
VSW  
+
+
+
VDD  
1 V  
1.7Meg  
3-State  
Logic  
SKIP#  
1
800k  
VDD  
2
VDD  
+
1 V  
1.7Meg  
Sync  
FET  
3-State  
Logic  
DRVL  
8
3
PWM  
800k  
PGND  
9
PGND  
Copyright © 2016, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 Powering CSD95377Q4M and Gate Drivers  
An external VDD voltage is required to supply the integrated gate driver IC and provide the necessary gate drive  
power for the MOSFETs. TI recommends a 1-µF, 10-V, X5R or higher ceramic capacitor to bypass VDD pin to  
PGND. A bootstrap circuit to provide gate drive power for the control FET is also included. The bootstrap supply to  
drive the control FET is generated by connecting a 100-nF, 16-V, X5R ceramic capacitor between BOOT and  
BOOT_R pins. An optional RBOOT resistor can be used to slow down the turnon speed of the control FET and  
reduce voltage spikes on the VSW node. A typical 1-Ω to 4.7-Ω value is a compromise between switching loss  
and VSW spike amplitude.  
7.3.2 Undervoltage Lockout (UVLO) Protection  
The UVLO comparator evaluates the VDD voltage level. As VVDD rises, both the control FET and sync FET gates  
hold actively low at all times until VVDD reaches the higher UVLO threshold (VUVLO_H). Then the driver becomes  
operational and responds to PWM and SKIP# commands. If VDD falls below the lower UVLO threshold (VUVLO_L  
= VUVLO_H – hysteresis), the device disables the driver and drives the outputs of the control FET and Sync FET  
gates actively low. Figure 1 shows this function.  
CAUTION  
Do not start the driver in the very-low power mode (SKIP# = Tri-state).  
6
Copyright © 2015–2017, Texas Instruments Incorporated  
CSD95377Q4M  
www.ti.com.cn  
ZHCSEI7B DECEMBER 2015REVISED DECEMBER 2017  
Feature Description (continued)  
V
UVLO_H  
V
UVLO_L  
V
VDD  
Driver On  
UDG-12218  
Figure 1. UVLO Operation  
7.3.3 PWM Pin  
The PWM pin incorporates an input tri-state function. The device forces the gate driver outputs to low when  
PWM is driven into the tri-state window and the driver enters a low-power state with zero exit latency. The pin  
incorporates a weak pullup to maintain the voltage within the tri-state window during low-power modes.  
Operation into and out of tri-state mode follows the timing diagram outlined in Figure 2.  
When VDD reaches the UVLO_H level, a tri-state voltage range (window) is set for the PWM input voltage. The  
window is defined as the PWM voltage range between PWM logic high (VIH) and logic low (VIL) thresholds. The  
device sets high-level input voltage and low-level input voltage threshold levels to accommodate both 3.3-V  
(typical) and 5-V (typical) PWM drive signals.  
When the PWM exits tri-state, the driver enters CCM for a period of 4 µs, regardless of the state of the SKIP#  
pin. Normal operation requires this time period for the auto-zero comparator to resume.  
Figure 2. PWM Tri-State Timing Diagram  
7.3.4 SKIP# Pin  
The SKIP# pin incorporates the input tri-state buffer as PWM. The function is somewhat different. When SKIP# is  
low, the zero crossing (ZX) detection comparator is enabled, and DCM operation occurs if the load current is less  
than the critical current. When SKIP# is high, the ZX comparator disables, and the converter enters FCCM mode.  
When both SKIP# and PWM are tri-stated, normal operation forces the gate driver outputs low and the driver  
enters a low-power state. In the low-power state, the UVLO comparator remains off to reduce quiescent current.  
When SKIP# is pulled low, the driver wakes up and is able to accept PWM pulses in less than 50 µs.  
Copyright © 2015–2017, Texas Instruments Incorporated  
7
 
CSD95377Q4M  
ZHCSEI7B DECEMBER 2015REVISED DECEMBER 2017  
www.ti.com.cn  
Feature Description (continued)  
Table 1 shows the logic functions of UVLO, PWM, SKIP#, the control FET gate, and the sync FET gate.  
Table 1. Logic Functions of the Driver IC  
CONTROL FET  
UVLO  
PWM  
SKIP#  
SYNC FET GATE  
MODE  
GATE  
Low  
Low  
Low  
High  
Low  
Low  
Active  
Inactive  
Inactive  
Inactive  
Inactive  
Inactive  
Low  
Low  
Low  
High(1)  
High  
Low  
Disabled  
DCM(1)  
FCCM  
Low  
High  
High  
Tri-state  
H or L  
H or L  
Tri-state  
Low  
LQ(2)  
ULQ(3)  
Low  
(1) Until zero crossing protection occurs.  
(2) Low-quiescent current (LQ).  
(3) Ultra-low quiescent current (ULQ).  
7.3.4.1 Zero Crossing (ZX) Operation  
The zero crossing comparator is adaptive for improved accuracy. As the output current decreases from a heavy  
load condition, the inductor current also reduces and eventually arrives at a valley, where it touches zero current,  
which is the boundary between continuous conduction and discontinuous conduction modes. The SW pin detects  
the zero-current condition. When this zero inductor current condition occurs, the ZX comparator turns off the  
rectifying MOSFET.  
7.3.5 Integrated Boost-Switch  
To maintain a BST-SW voltage close to VDD (to get lower conduction losses on the high-side FET), the  
conventional diode between the VDD pin and the BST pin is replaced by a FET which is gated by the DRVL  
signal.  
7.4 Device Functional Modes  
Table 1 shows the different functional modes of CSD95377. The diode emulation mode is enabled with SKIP#  
pulled low, which improves light load efficiency. With PWM in tri-state, the power stage enters LQ mode and the  
quiescent current is reduced to 130 µA. When SKIP# is held in tri-state, ULQ mode is enabled and the current is  
decreased to 8 µA.  
8
Copyright © 2015–2017, Texas Instruments Incorporated  
 
CSD95377Q4M  
www.ti.com.cn  
ZHCSEI7B DECEMBER 2015REVISED DECEMBER 2017  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The power stage CSD95377Q4M is a highly-optimized design for synchronous buck applications using NexFET  
devices with a 5-V gate drive. The control FET and sync FET silicon are parametrically tuned to yield the lowest  
power loss and highest system efficiency. As a result, a rating method is used that is tailored toward a more  
systems-centric environment. The high-performance gate driver IC integrated in the package helps minimize the  
parasitics and results in extremely fast switching of the power MOSFETs. System-level performance curves such  
as power loss, SOA, and normalized graphs allow engineers to predict the product performance in the actual  
application.  
8.2 Typical Application  
Copyright © 2016, Texas Instruments Incorporated  
Figure 3. Application Schematic  
Copyright © 2015–2017, Texas Instruments Incorporated  
9
CSD95377Q4M  
ZHCSEI7B DECEMBER 2015REVISED DECEMBER 2017  
www.ti.com.cn  
Typical Application (continued)  
8.2.1 Application Curves  
TJ = 125°C, unless stated otherwise.  
8
1.05  
1
Typ  
Max  
7
6
5
4
3
2
1
0
0.95  
0.9  
0.85  
0.8  
0.75  
0.7  
0
5
10  
15  
20  
25  
30  
35  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Output Current (A)  
TC - Junction Temperature (èC)  
D001  
D002  
VIN = 12 V  
VDD = 5 V  
VOUT = 1.8 V  
VIN = 12 V  
ƒSW = 500 kHz  
VDD = 5 V  
VOUT = 1.8 V  
ƒSW = 500 kHz  
LOUT = 0.29 µH  
LOUT = 0.29 µH  
Figure 4. Power Loss vs Output Current  
Figure 5. Power Loss vs Temperature  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
400 LFM  
200 LFM  
100 LFM  
Nat. conv.  
Min  
Typ  
0
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
20  
40  
60  
80  
100  
120  
140  
Ambient Temperature (èC)  
Board Temperature (èC)  
D003  
D004  
VIN = 12 V  
ƒSW = 500 kHz  
VDD = 5 V  
VOUT = 1.8 V  
VIN = 12 V  
VDD = 5 V  
VOUT = 1.8 V  
LOUT = 0.29 µH  
ƒSW = 500 kHz  
LOUT = 0.29 µH  
(1)  
Figure 6. Safe Operating Area – PCB Horizontal Mount (1)  
Figure 7. Typical Safe Operating Area  
1. The typical CSD95377Q4M system characteristic curves are based on measurements made on a PCB  
design with dimensions of 4 in (W) × 3.5 in (L) × 0.062 in (T) and 6 copper layers of 1-oz copper thickness.  
See System Example for detailed explanation.  
10  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
CSD95377Q4M  
www.ti.com.cn  
ZHCSEI7B DECEMBER 2015REVISED DECEMBER 2017  
Typical Application (continued)  
TJ = 125°C, unless stated otherwise.  
1.35  
4.8  
4.1  
3.4  
2.8  
2.1  
1.4  
0.7  
0.0  
-0.7  
-1.4  
1.2  
1.16  
1.12  
1.08  
1.04  
1
3.2  
2.5  
1.9  
1.3  
0.6  
0.0  
-0.6  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.96  
100  
300  
500  
700  
900 1100 1300 1500 1700  
4
6
8
10  
12  
14  
16  
Switching Frequency (kHz)  
Input Voltage (V)  
D005  
D006  
VIN = 12 V  
IOUT = 35 A  
VDD = 5 V  
VOUT = 1.8 V  
IOUT = 35 A  
ƒSW = 500 kHz  
VDD = 5 V  
VOUT = 1.8 V  
LOUT = 0.29 µH  
LOUT = 0.29 µH  
Figure 8. Normalized Power Loss vs Frequency  
Figure 9. Normalized Power Loss vs Input Voltage  
1.5  
1.4  
1.3  
1.2  
1.1  
1
7.0  
5.6  
4.2  
2.8  
1.4  
0.0  
-1.4  
-2.8  
-4.2  
-5.6  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
2.9  
2.2  
1.5  
0.7  
0.0  
-0.7  
-1.5  
-2.2  
0.9  
0.8  
0.7  
0.6  
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Output Voltage (V)  
3
3.3 3.6  
0
145  
290  
435  
580  
725  
870  
1015 1160  
Output Inductance (nH)  
D007  
D008  
VIN = 12 V  
VDD = 5 V  
LOUT = 0.29 µH  
IOUT = 35 A  
VIN = 12 V  
ƒSW = 500 kHz  
VDD = 5 V  
IOUT = 35 A  
ƒSW = 500 kHz  
VOUT = 1.8 V  
Figure 10. Normalized Power Loss vs Output Voltage  
Figure 11. Normalized Power Loss vs Output Inductance  
35  
10.2  
10.1  
10  
30  
25  
20  
15  
10  
5
9.9  
9.8  
9.7  
9.6  
9.5  
9.4  
9.3  
0
0
400  
800  
1200  
1600  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
Switching Frequency (kHz)  
TC - Junction Temperature (èC)  
D009  
D010  
VIN = 12 V  
LOUT = 0.29 µH  
VDD = 5 V  
IOUT = 35 A  
VIN = 12 V  
IOUT = 35 A  
VDD = 5 V  
VOUT = 1.8 V  
VOUT = 1.8 V  
LOUT = 0.29 µH  
Figure 12. Driver Current vs Frequency  
Figure 13. Driver Current vs Temperature  
Copyright © 2015–2017, Texas Instruments Incorporated  
11  
 
 
CSD95377Q4M  
ZHCSEI7B DECEMBER 2015REVISED DECEMBER 2017  
www.ti.com.cn  
8.3 System Example  
8.3.1 Power Loss Curves  
MOSFET-centric parameters such as RDS(ON) and Qgd are primarily needed by engineers to estimate the loss  
generated by the devices. In an effort to simplify the design process for engineers, Texas Instruments has  
provided measured power loss performance curves. Figure 4 plots the power loss of the CSD95377Q4M as a  
function of load current. This curve is measured by configuring and running the CSD95377Q4M as it would be in  
the final application (see Figure 14). The measured power loss is the CSD95377Q4M device power loss which  
consists of both input conversion loss and gate drive loss. Equation 1 is used to generate the power loss curve.  
Power loss = (VIN × IIN) + (VDD × IDD) – (VSW_AVG × IOUT  
)
(1)  
The power loss curve in Figure 4 is measured at the maximum recommended junction temperature of  
TJ = 125°C under isothermal test conditions.  
8.3.2 Safe Operating Area (SOA) Curves  
The SOA curves in the CSD95377Q4M data sheet give engineers guidance on the temperature boundaries  
within an operating system by incorporating the thermal resistance and system power loss. Figure 6 and Figure 7  
outline the temperature and airflow conditions required for a given load current. The area under the curve  
dictates the safe operating area. All the curves are based on measurements made on a PCB design with  
dimensions of 4 in (W) × 3.5 in (L) × 0.062 in (T) and 6 copper layers of 1-oz copper thickness.  
8.3.3 Normalized Curves  
The normalized curves in the CSD95377Q4M data sheet give engineers guidance on the power loss and SOA  
adjustments based on their application specific needs. These curves show how the power loss and SOA  
boundaries will adjust for a given set of systems conditions. The primary Y-axis is the normalized change in  
power loss and the secondary Y-axis is the change is system temperature required in order to comply with the  
SOA curve. The change in power loss is a multiplier for the power loss curve and the change in temperature is  
subtracted from the SOA curve.  
CSD95377Q4M  
Input Current (IIN  
)
Boot  
Gate Drive  
Current (IDD  
Vin  
)
A
VDD  
VIN  
A
VDD  
BST  
Cin  
Input Voltage  
CBoot  
Control  
FET  
(VIN  
)
V
HSgate  
Gate Drive  
Voltage (VDD  
V
DRVH  
)
Boot_R  
LO  
VO  
Vsw  
VSW  
SKIP#  
PWM  
A
LL  
SKIP#  
PWM  
Sync  
FET  
Co  
Output Current  
LSgate  
(IOUT  
)
DRVL  
GND  
PGND  
Averaging  
Circuit  
V
Averaged Switched  
Node Voltage  
(VSW_AVG  
)
Copyright © 2016, Texas Instruments Incorporated  
Figure 14. Power Loss Test Circuit  
8.3.4 Calculating Power Loss and SOA  
The user can estimate product loss and SOA boundaries by arithmetic means (see the Design Example).  
Though the power loss and SOA curves in this data sheet are taken for a specific set of test conditions, the  
following procedure will outline the steps engineers should take to predict product performance for any set of  
system conditions.  
12  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
CSD95377Q4M  
www.ti.com.cn  
ZHCSEI7B DECEMBER 2015REVISED DECEMBER 2017  
System Example (continued)  
8.3.4.1 Design Example  
Operating conditions: Output current (lOUT) = 25 A, input voltage (VIN) = 7 V, output voltage (VOUT) = 2 V,  
switching frequency (ƒSW) = 800 kHz, output inductor (LOUT) = 0.2 µH  
8.3.4.2 Calculating Power Loss  
Typical power loss at 25 A = 3.74 W (Figure 4)  
Normalized power loss for switching frequency 1.02 (Figure 8)  
Normalized power loss for input voltage 0.99 (Figure 9)  
Normalized power loss for output voltage 1.04 (Figure 10)  
Normalized power loss for output inductor 1.01 (Figure 11)  
Final calculated Power Loss = 3.741 W × 1.02 × 0.99 × 1.04 × 1.01 3.97 W  
8.3.4.3 Calculating SOA Adjustments  
SOA adjustment for switching frequency 0.3°C (Figure 8)  
SOA adjustment for input voltage –0.12°C (Figure 9)  
SOA adjustment for output voltage 0.62°C (Figure 10)  
SOA adjustment for output inductor 0.25°C (Figure 11)  
Final calculated SOA adjustment = 0.3 + (–0.12) + 0.62 + 0.25 1.05°C  
Figure 15. Power Stage CSD95377Q4M SOA  
In the previous design example, the estimated power loss of the CSD95377Q4M would increase to 3.97 W. In  
addition, the maximum allowable board and/or ambient temperature would have to decrease by 1.05°C.  
Figure 15 graphically shows how the SOA curve would be adjusted accordingly.  
1. Start by drawing a horizontal line from the application current to the SOA curve.  
2. Draw a vertical line from the SOA curve intercept down to the board/ambient temperature.  
3. Adjust the SOA board/ambient temperature by subtracting the temperature adjustment value.  
In the design example, the SOA temperature adjustment yields a reduction in allowable board/ambient  
temperature of 1.05°C. In the event the adjustment value is a negative number, subtracting the negative number  
would yield an increase in allowable board and ambient temperature.  
Copyright © 2015–2017, Texas Instruments Incorporated  
13  
 
CSD95377Q4M  
ZHCSEI7B DECEMBER 2015REVISED DECEMBER 2017  
www.ti.com.cn  
9 Layout  
9.1 Layout Guidelines  
9.1.1 Recommended PCB Design Overview  
Two key system-level parameters can be addressed with a proper PCB design: electrical and thermal  
performance. Properly optimizing the PCB layout yields maximum performance in both areas. A brief description  
follows on how to address each parameter.  
9.1.2 Electrical Performance  
The CSD95377Q4M has the ability to switch at voltage rates greater than 10 kV/µs. Take special care with the  
PCB layout design and placement of the input capacitors, inductor, and output capacitors.  
The placement of the input capacitors relative to VIN and PGND pins of the CSD95377Q4M device should have  
the highest priority during the component placement routine. It is critical to minimize these node lengths. As  
such, ceramic input capacitors need to be placed as close as possible to the VIN and PGND pins (see  
Figure 16). The example in Figure 16 uses 1 × 1-nF 0402, 25-V and 3 × 10-µF 1206, 25-V ceramic capacitors  
(TDK part number C3216X5R1C106KT or equivalent). Notice there are ceramic capacitors on both sides of  
the board with an appropriate amount of vias interconnecting both layers. In terms of priority of placement  
next to the power stage C5, C8, C6, and C19 should follow in order.  
The bootstrap capacitor CBOOT 0.1-µF 0603, 16-V ceramic capacitor should be closely connected between  
BOOT and BOOT_R pins.  
The switching node of the output inductor should be placed relatively close to the power stage  
CSD95377Q4M VSW pins. Minimizing the VSW node length between these two components will reduce the  
(1)  
PCB conduction losses and actually reduce the switching noise level.  
9.2 Layout Example  
Figure 16. Recommended PCB Layout (Top-Down View)  
9.3 Thermal Considerations  
The CSD95377Q4M has the ability to use the PGND planes as the primary thermal path. As such, the use of  
thermal vias is an effective way to pull away heat from the device and into the system board. Concerns of solder  
voids and manufacturability problems can be addressed by the use of three basic tactics to minimize the amount  
of solder attach that will wick down the via barrel:  
Intentionally space out the vias from each other to avoid a cluster of holes in a given area.  
Use the smallest drill size allowed in your design. The example in Figure 16 uses vias with a 10-mil drill hole  
and a 16-mil capture pad.  
Tent the opposite side of the via with solder-mask.  
The number and drill size of the thermal vias should align with the end user’s PCB design rules and  
manufacturing capabilities.  
(1) Keong W. Kam, David Pommerenke, “EMI Analysis Methods for Synchronous Buck Converter EMI Root Cause Analysis”, University of  
Missouri – Rolla  
14  
版权 © 2015–2017, Texas Instruments Incorporated  
 
CSD95377Q4M  
www.ti.com.cn  
ZHCSEI7B DECEMBER 2015REVISED DECEMBER 2017  
10 器件和文档支持  
10.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
10.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
10.3 商标  
NexFET, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
10.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
10.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2015–2017, Texas Instruments Incorporated  
15  
CSD95377Q4M  
ZHCSEI7B DECEMBER 2015REVISED DECEMBER 2017  
www.ti.com.cn  
11 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修  
订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。  
11.1 机械制图  
°
Ө
c1  
a1  
D2  
4
1
0.300  
(x45°)  
8
5
毫米  
英寸  
标称值  
DIM  
最小值  
0.800  
0.000  
0.150  
2.000  
0.150  
0.150  
3.850  
4.400  
3.400  
2.000  
标称值  
0.900  
0.000  
0.200  
2.200  
0.200  
0.200  
3.950  
4.500  
3.500  
2.100  
最大值  
1.000  
0.080  
0.250  
2.400  
0.250  
0.250  
4.050  
4.600  
3.600  
2.200  
最小值  
0.031  
0.000  
0.006  
0.079  
0.006  
0.006  
0.152  
0.173  
0.134  
0.079  
最大值  
0.039  
0.003  
0.010  
0.095  
0.010  
0.010  
0.160  
0.181  
0.142  
0.087  
A
a1  
b
0.035  
0.000  
0.008  
b1  
b2  
c1  
D2  
E
0.087  
0.008  
0.008  
0.156  
0.177  
E1  
E2  
e
0.138  
0.083  
0.400 典型值  
0.300 典型值  
0.400  
0.016 典型值  
0.012 典型值  
0.016  
K
L
0.300  
0.180  
0.00  
0.500  
0.280  
0.012  
0.007  
0.00  
0.020  
0.011  
L1  
θ
0.230  
0.009  
16  
版权 © 2015–2017, Texas Instruments Incorporated  
CSD95377Q4M  
www.ti.com.cn  
ZHCSEI7B DECEMBER 2015REVISED DECEMBER 2017  
11.2 建议印刷电路板 (PCB) 焊盘图案  
(0.006)  
0.150  
(0.016)  
0.400  
(0.010)  
0.250  
(x18)  
(0.006)  
0.150  
(0.024)  
0.600 (x 2)  
(0.008)  
0.200  
(x2)  
(0.087)  
2.200  
R0.100  
R0.100  
0.225 ( x 2)  
(0.009)  
(0.088)  
2.250  
(0.012)  
0.300  
(0.159)  
4.050  
11.3 建议模版开口  
(0.016)  
0.400  
(0.029)  
0.738 (x 8)  
(0.008)  
0.200  
(0.008)  
0.200  
(0.015)  
0.390  
(0.014)  
0.350  
0.300  
R0.100  
(0.012)  
0.850 (x8)  
(0.033)  
(0.012)  
0.300  
R0.100  
(0.004)  
0.115  
0.440 (0.017)  
(0.008)  
0.200  
(0.009)  
0.225  
0.200  
(0.008)  
(0.087)  
2.200  
NOTE: 尺寸单位为 mm(英寸)。  
模版厚度为 100µm。  
版权 © 2015–2017, Texas Instruments Incorporated  
17  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
2500  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CSD95377Q4M  
CSD95377Q4MT  
ACTIVE  
VSON-CLIP  
VSON-CLIP  
DPC  
8
8
RoHS-Exempt  
& Green  
NIPDAU | SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 150  
-40 to 150  
95377M  
95377M  
ACTIVE  
DPC  
RoHS-Exempt  
& Green  
NIPDAU | SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

CSD95377Q4MT

20V 35A SON 3.5 x 4.5mm 同步降压 NexFET™ 功率级 | DPC | 8 | -40 to 150
TI

CSD95378BQ5M

带 TAO 偏移的 60A 同步降压 NexFET™ 智能功率级
TI

CSD95378BQ5MC

Synchronous Buck NexFET Smart Power Stage
TI

CSD95378BQ5MCT

Synchronous Buck NexFET Smart Power Stage
TI

CSD95378BQ5MC_15

Synchronous Buck NexFET Smart Power Stage
TI

CSD95378BQ5MT

带 TAO 偏移的 60A 同步降压 NexFET™ 智能功率级 | DQP | 12 | -55 to 150
TI

CSD95379Q3M

CSD95379Q3M Synchronous Buck NexFET Power Stage
TI

CSD95379Q3MT

CSD95379Q3M Synchronous Buck NexFET Power Stage
TI

CSD95379Q3M_15

CSD95379Q3M Synchronous Buck NexFET Power Stage
TI

CSD95410RRB

90A 峰值连续同步降压 NexFET™ 智能功率级
TI

CSD95410RRBT

90A 峰值连续同步降压 NexFET™ 智能功率级 | RRB | 41 | -40 to 125
TI

CSD95411

65A 峰值连续电流同步降压 NexFET™ 功率级
TI