DAC12DL3200ACF [TI]

12 位、低延迟、双通道 3.2GSPS 或单通道 6.4GSPS 射频采样 DAC(LVDS 接口) | ACF | 256 | -40 to 85;
DAC12DL3200ACF
型号: DAC12DL3200ACF
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

12 位、低延迟、双通道 3.2GSPS 或单通道 6.4GSPS 射频采样 DAC(LVDS 接口) | ACF | 256 | -40 to 85

射频
文件: 总132页 (文件大小:7432K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
DAC12DL3200 具有低延LVDS 接口的高6.4GSPS 单通道3.2GSPS 双通道  
12 位数模转换(DAC)  
DAC12DL3200 用作双通道模式下的 I/Q 带  
DAC。高采样率和输出频率范围还使 DAC12DL3200  
1 特性  
12 位分辨率  
• 最大输入和输出采样率  
能够支持任意波形生成和直接数字合成 (DDS)。集成  
DDS 块可在片上实现单音和双音生成。  
– 单通道采样率高6.4GSPS  
– 双通道采样率高3.2GSPS  
• 多奈奎斯特工作模式:  
– 单通道模式NRZRTZRF  
– 双通道模式NRZRTZRF2xRF  
• 通过器件的延迟较低6ns 8ns  
• 为低延迟接收ADC12DL3200 提供合适的发送功  
DAC12DL3200 具有并行 LVDS 接口该接口包含多  
48 LVDS 对和 4 DDR LVDS 时钟。选通信号  
用于同步可通过最低有效位 (LSB) 或专用选通 LVDS  
通道发送的接口。每个 LVDS 对可高达 1.6Gbps。使  
用同步信号 (SYSREF) 支持多器件同步多器件同步  
JESD204B/C 时钟器件兼容。SYSREF 窗口化简化  
了多器件系统中的同步。  
封装信息  
封装(1)  
DAC ADC 总延< 15ns不包FPGA)  
• 并DDR LVDS 接口:  
– 源同步接口可简化时序:  
24 48 个速率高1.6Gbps LVDS 对  
– 每12 位总线1 LVDS DDR 时钟  
• 输出频率范围> 8GHz  
封装尺寸标称值)  
器件型号  
DAC12DL3200  
FCBGA (256)  
17mm x 17mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
10  
NRZ Mode  
RTZ Mode  
RF Mode  
2xRF Mode  
Nyquist Boundary  
• 满量程电流21mA  
• 简化时钟和同步  
5
0
SYSREF 窗口化可简化设置和保持时间  
• 片上直接数字合成(DDS)  
-5  
– 单音和双音正弦波生成  
32 x 32 位数控振荡器  
– 快速跳频功(< 500ns)  
-10  
-15  
-20  
-25  
-30  
– 同CMOS 频率/相位输入  
fOUT = 4.703GHz6.4GSPS、射频模式下的性能  
– 输出功率-3dBm  
0
0.5  
1
1.5  
2
Normalized Frequency (fOUT / fS)  
2.5  
3
– 本底噪声70MHz 偏移):-147dBc/Hz  
SFDR60dBc  
MNMo  
• 电源1.0V1.8V、–1.8V  
双通道模式频率响应  
• 功耗1.49W双通道、射频模式、3.2GSPS)  
• 封装256 FCBGA17x17mm1mm 间距)  
2 应用  
电子战  
• 发生器脉冲、图形和任意波(AWG)  
3 说明  
DAC12DL3200 是一款延迟非常低的双通道射频采样数  
模转换器 (DAC)输入和输出速率在双通道模式下高  
3.2GSPS或在单通道模式下高达 6.4GSPS。当使  
用多种奈奎斯特输出模式时DAC 可以在接近 8GHz  
的载波频率下传输超过 2GHz 的信号带宽。高输出频  
率范围支持在 C 频带 (8GHz) 及以上的带宽下直接采  
样。  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBAS649  
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
Table of Contents  
7.2 Functional Block Diagram.........................................54  
7.3 Feature Description...................................................55  
7.4 Device Functional Modes..........................................72  
7.5 Programming............................................................ 74  
8 Application and Implementation.................................111  
8.1 Application Information............................................111  
8.2 Typical Application.................................................. 113  
8.3 Power Supply Recommendations...........................116  
8.4 Layout..................................................................... 117  
9 Device and Documentation Support..........................122  
9.1 接收文档更新通知................................................... 122  
9.2 支持资源..................................................................122  
9.3 Trademarks.............................................................122  
9.4 Electrostatic Discharge Caution..............................122  
9.5 术语表..................................................................... 122  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications................................................................ 11  
6.1 Absolute Maximum Ratings...................................... 11  
6.2 ESD Ratings..............................................................11  
6.3 Recommended Operating Conditions.......................12  
6.4 Thermal Information..................................................14  
6.5 Electrical Characteristics - DC Specifications...........15  
6.6 Electrical Characteristics - Power Consumption.......17  
6.7 Electrical Characteristics - AC Specifications........... 19  
6.8 Timing Requirements................................................29  
6.9 Switching Characteristics..........................................30  
6.10 Typical Characteristics............................................31  
7 Detailed Description......................................................54  
7.1 Overview...................................................................54  
Information.................................................................. 122  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (October 2021) to Revision B (June 2022)  
Page  
Added the Trigger Clock section.......................................................................................................................73  
Deleted text Streaming mode can be disabled by setting the ADDR_HOLD bit from the Streaming Mode  
section.............................................................................................................................................................. 75  
Changed the description of Bit 2 in SYS_ALM Register Field Descriptions .................................................... 75  
Changed the description of Bit 1 in FIFO_ALIGN Register Field Descriptions ................................................75  
Changes from Revision * (June 2021) to Revision A (October 2021)  
Page  
• 将文档从预告信更改为数据....................................................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
ACF, 256 Ball FCBGA, Top View  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
D14, D15,  
D16, E15,  
F15, G15,  
G16, K15,  
K16, L15,  
M15, N13,  
N14, N15,  
N16, P15,  
P16, T16  
AGND  
Analog supply ground, must be directly connected to DGND and VSSCLK  
ALARM pin is asserted when an internal unmasked alarm is detected. Alarm mask is set by  
ALM_MASK register.  
ALARM  
ATEST  
P14  
R15  
O
O
Analog test pin. Can be left disconnected if not used.  
Device clock input positive terminal. There is an internal 100-Ωdifferential termination  
between CLK+ and CLK. This input is self-biased and should be AC coupled to the clock  
source.  
CLK+  
A15  
A14  
I
I
Device clock input negative terminal. See CLK+ description.  
CLK–  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DAC12DL3200  
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
LVDS bus A bit 0 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DA0+ and DA0.  
DA0+  
L5  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
LVDS bus A bit 0 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DA0+ and DA0.  
M5  
L6  
DA0–  
DA1+  
LVDS bus A bit 1 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DA1+ and DA1.  
LVDS bus A bit 1 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DA1+ and DA1.  
M6  
R7  
T7  
R8  
T8  
L7  
DA1–  
DA10+  
DA10–  
DA11+  
DA11–  
DA2+  
LVDS bus A bit 10 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DA10+ and DA10.  
LVDS bus A bit 10 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DA10+ and DA10.  
LVDS bus A bit 11 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DA11+ and DA11.  
LVDS bus A bit 11 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DA11+ and DA11.  
LVDS bus A bit 2 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DA2+ and DA2.  
LVDS bus A bit 2 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DA2+ and DA2.  
M7  
L8  
DA2–  
DA3+  
LVDS bus A bit 3 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DA3+ and DA3.  
LVDS bus A bit 3 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DA3+ and DA3.  
M8  
N5  
P5  
N6  
P6  
N7  
P7  
N8  
P8  
R5  
T5  
R6  
T6  
DA3–  
DA4+  
LVDS bus A bit 4 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DA4+ and DA4.  
LVDS bus A bit 4 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DA4+ and DA4.  
DA4–  
DA5+  
LVDS bus A bit 5 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DA5+ and DA5.  
LVDS bus A bit 5 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DA5+ and DA5.  
DA5–  
DA6+  
LVDS bus A bit 6 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DA6+ and DA6.  
LVDS bus A bit 6 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DA6+ and DA6.  
DA6–  
DA7+  
LVDS bus A bit 7 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DA7+ and DA7.  
LVDS bus A bit 7 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DA7+ and DA7.  
DA7–  
DA8+  
LVDS bus A bit 8 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DA8+ and DA8.  
LVDS bus A bit 8 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DA8+ and DA8.  
DA8–  
DA9+  
LVDS bus A bit 9 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DA9+ and DA9.  
LVDS bus A bit 9 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DA9+ and DA9.  
DA9–  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
DACLK+  
DACLK–  
NO.  
K8  
LVDS bus A data clock positive terminal. A DDR data clock is applied to DACLK+/to  
capture the DA[11:0]+/and DASTR+/inputs. There is an internal 100-Ωdifferential  
termination between DACLK+ and DACLK.  
I
I
K7  
LVDS bus A data clock negative terminal. See DACLK+ description.  
LVDS bus A strobe positive terminal. DASTR+/is used to synchronize the input pointer of  
the interface FIFO by marking a specific sample on each LVDS bus. DAx+/can optionally  
be used for this purpose instead to reduce the number of LVDS pairs, where x = (12 -  
LVDS_RESOLUTION). There is an internal 100-Ωdifferential termination between DASTR+  
and DASTR.  
DASTR+  
K6  
I
K5  
K1  
I
I
LVDS bus A strobe negative terminal. See DASTR+ description.  
DASTR–  
LVDS bus B bit 0 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DB0+ and DB0.  
DB0+  
LVDS bus B bit 0 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DB0+ and DB0.  
L1  
L2  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
DB0–  
DB1+  
LVDS bus B bit 1 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DB1+ and DB1.  
LVDS bus B bit 1 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DB1+ and DB1.  
M2  
R3  
T3  
R4  
T4  
L3  
DB1–  
DB10+  
DB10–  
DB11+  
DB11–  
DB2+  
LVDS bus B bit 10 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DB10+ and DB10.  
LVDS bus B bit 10 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DB10+ and DB10.  
LVDS bus B bit 11 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DB11+ and DB11.  
LVDS bus B bit 11 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DB11+ and DB11.  
LVDS bus B bit 2 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DB2+ and DB2.  
LVDS bus B bit 2 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DB2+ and DB2.  
M3  
L4  
DB2–  
DB3+  
LVDS bus B bit 3 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DB3+ and DB3.  
LVDS bus B bit 3 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DB3+ and DB3.  
M4  
M1  
N1  
N2  
P2  
N3  
P3  
N4  
P4  
DB3–  
DB4+  
LVDS bus B bit 4 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DB4+ and DB4.  
LVDS bus B bit 4 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DB4+ and DB4.  
DB4–  
DB5+  
LVDS bus B bit 5 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DB5+ and DB5.  
LVDS bus B bit 5 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DB5+ and DB5.  
DB5–  
DB6+  
LVDS bus B bit 6 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DB6+ and DB6.  
LVDS bus B bit 6 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DB6+ and DB6.  
DB6–  
DB7+  
LVDS bus B bit 7 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DB7+ and DB7.  
LVDS bus B bit 7 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DB7+ and DB7.  
DB7–  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
LVDS bus B bit 8 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DB8+ and DB8.  
DB8+  
P1  
I
I
I
I
LVDS bus B bit 8 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DB8+ and DB8.  
R1  
R2  
T2  
DB8–  
DB9+  
LVDS bus B bit 9 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DB9+ and DB9.  
LVDS bus B bit 9 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DB9+ and DB9.  
DB9–  
LVDS bus B data clock positive terminal. A DDR data clock is applied to DBCLK+/to  
capture the DB[11:0]+/and DBSTR+/inputs. There is an internal 100-Ωdifferential  
termination between DBCLK+ and DBCLK.  
DBCLK+  
K4  
K3  
I
I
LVDS bus B data clock negative terminal. See DBCLK+ description.  
DBCLK–  
LVDS bus B strobe positive terminal. DBSTR+/is used to synchronize the input pointer of  
the interface FIFO by marking a specific sample on each LVDS bus. DBx+/can optionally  
be used for this purpose instead to reduce the number of LVDS pairs, where x = (12 -  
LVDS_RESOLUTION).  
DBSTR+  
J2  
I
There is an internal 100-Ωdifferential termination between DBSTR+ and DBSTR.  
J1  
I
I
LVDS bus B strobe negative terminal. See DBSTR+ description.  
DBSTR–  
LVDS bus C bit 0 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DC0+ and DC0.  
DC0+  
F5  
LVDS bus C bit 0 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DC0+ and DC0.  
E5  
F6  
E6  
B7  
A7  
B8  
A8  
F7  
E7  
F8  
E8  
D5  
C5  
D6  
C6  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
DC0–  
DC1+  
LVDS bus C bit 1 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DC1+ and DC1.  
LVDS bus C bit 1 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DC1+ and DC1.  
DC1–  
DC10+  
DC10–  
DC11+  
DC11–  
DC2+  
LVDS bus C bit 10 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DC10+ and DC10.  
LVDS bus C bit 10 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DC10+ and DC10.  
LVDS bus C bit 11 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DC11+ and DC11.  
LVDS bus C bit 11 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DC11+ and DC11.  
LVDS bus C bit 2 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DC2+ and DC2.  
LVDS bus C bit 2 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DC2+ and DC2.  
DC2–  
DC3+  
LVDS bus C bit 3 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DC3+ and DC3.  
LVDS bus C bit 3 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DC3+ and DC3.  
DC3–  
DC4+  
LVDS bus C bit 4 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DC4+ and DC4.  
LVDS bus C bit 4 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DC4+ and DC4.  
DC4–  
DC5+  
LVDS bus C bit 5 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DC5+ and DC5.  
LVDS bus C bit 5 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DC5+ and DC5.  
DC5–  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
LVDS bus C bit 6 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DC6+ and DC6.  
DC6+  
D7  
I
I
I
I
I
I
I
I
LVDS bus C bit 6 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DC6+ and DC6.  
C7  
D8  
C8  
B5  
A5  
B6  
A6  
DC6–  
DC7+  
DC7–  
DC8+  
DC8–  
DC9+  
DC9–  
LVDS bus C bit 7 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DC7+ and DC7.  
LVDS bus C bit 7 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DC7+ and DC7.  
LVDS bus C bit 8 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DC8+ and DC8.  
LVDS bus C bit 8 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DC8+ and DC8.  
LVDS bus C bit 9 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DC9+ and DC9.  
LVDS bus C bit 9 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DC9+ and DC9.  
LVDS bus C data clock positive terminal. A DDR data clock is applied to DCCLK+/to  
capture the DC[11:0]+/and DCSTR+/inputs. There is an internal 100-Ωdifferential  
termination between DCCLK+ and DCCLK.  
DCCLK+  
G8  
G7  
I
I
LVDS bus C data clock negative terminal. See DCCLK+ description.  
DCCLK–  
LVDS bus C strobe positive terminal. DCSTR+/is used to synchronize the input pointer of  
the interface FIFO by marking a specific sample on each LVDS bus. DCx+/can optionally  
be used for this purpose instead to reduce the number of LVDS pairs, where x = (12 -  
LVDS_RESOLUTION). There is an internal 100-Ωdifferential termination between DCSTR+  
and DCSTR.  
DCSTR+  
G6  
I
G5  
G1  
I
I
LVDS bus C strobe negative terminal. See DCSTR+ description.  
DCSTR–  
LVDS bus D bit 0 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DD0+ and DD0.  
DD0+  
LVDS bus D bit 0 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DD0+ and DD0.  
F1  
F2  
E2  
B3  
A3  
B4  
A4  
F3  
E3  
F4  
E4  
I
I
I
I
I
I
I
I
I
I
I
DD0–  
DD1+  
LVDS bus D bit 1 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DD1+ and DD1.  
LVDS bus D bit 1 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DD1+ and DD1.  
DD1–  
DD10+  
DD10–  
DD11+  
DD11–  
DD2+  
LVDS bus D bit 10 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DD10+ and DD10.  
LVDS bus D bit 10 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DD10+ and DD10.  
LVDS bus D bit 11 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DD11+ and DD11.  
LVDS bus D bit 11 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DD11+ and DD11.  
LVDS bus D bit 2 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DD2+ and DD2.  
LVDS bus D bit 2 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DD2+ and DD2.  
DD2–  
DD3+  
LVDS bus D bit 3 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DD3+ and DD3.  
LVDS bus D bit 3 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DD3+ and DD3.  
DD3–  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
LVDS bus D bit 4 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DD4+ and DD4.  
DD4+  
E1  
I
I
I
I
I
I
I
I
I
I
I
I
LVDS bus D bit 4 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DD4+ and DD4.  
D1  
D2  
C2  
D3  
C3  
D4  
C4  
C1  
B1  
B2  
A2  
DD4–  
DD5+  
DD5–  
DD6+  
DD6–  
DD7+  
DD7–  
DD8+  
DD8–  
DD9+  
DD9–  
LVDS bus D bit 5 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DD5+ and DD5.  
LVDS bus D bit 5 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DD5+ and DD5.  
LVDS bus D bit 6 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DD6+ and DD6.  
LVDS bus D bit 6 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DD6+ and DD6.  
LVDS bus D bit 7 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DD7+ and DD7.  
LVDS bus D bit 7 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DD7+ and DD7.  
LVDS bus D bit 8 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DD8+ and DD8.  
LVDS bus D bit 8 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DD8+ and DD8.  
LVDS bus D bit 9 data input positive terminal. There is an internal 100-Ωdifferential  
termination between DD9+ and DD9.  
LVDS bus D bit 9 data input negative terminal. There is an internal 100-Ωdifferential  
termination between DD9+ and DD9.  
LVDS bus D data clock positive terminal. A DDR data clock is applied to DDCLK+/to  
capture the DD[11:0]+/and DDSTR+/inputs. There is an internal 100-Ωdifferential  
termination between DDCLK+ and DDCLK.  
DDCLK+  
G4  
G3  
I
I
LVDS bus D data clock negative terminal. See DDCLK+ description.  
DDCLK–  
LVDS bus D strobe positive terminal. DDSTR+/is used to synchronize the input pointer of  
the interface FIFO by marking a specific sample on each LVDS bus. DDx+/can optionally  
be used for this purpose instead to reduce the number of LVDS pairs, where x = (12 -  
LVDS_RESOLUTION). There is an internal 100-Ωdifferential termination between DDSTR+  
and DDSTR.  
DDSTR+  
H2  
H1  
I
I
LVDS bus D strobe negative terminal. See DDSTR+ description.  
DDSTR–  
A1, A9, B9,  
D10, E9, F10,  
G2, G9, H10,  
H5, H6, H7,  
H8, J3, J4,  
J9, K10, K2,  
L9, M10, N9,  
T1  
DGND  
Digital supply ground, must be directly connected to AGND and VSSCLK  
Reference voltage output. Requires a 0.1 μF decoupling capacitor to AGND.  
EXTIO  
T15  
O
I
Used to select the NCO bank updated by NCOSEL[0:3] inputs (0=A, 1=B). It is also possible  
to update both banks at once, in which case NCOBANKSEL can be used as a 5th bit to  
effectively have 32 different NCO accumulators. Latched by TRIGCLK.  
NCOBANKSE  
L
P11  
Internal pulldown.  
NCOSEL0  
NCOSEL1  
NCOSEL2  
T9  
R9  
I
I
I
Bit 0 of NCOSEL. Internal pulldown.  
Bit 1 of NCOSEL. Internal pulldown.  
Bit 2 of NCOSEL. Internal pulldown.  
T10  
NCOSEL3  
R10  
I
Bit 3 of NCOSEL. Internal pulldown.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Full-scale output current bias is set by the resistor tied from this terminal to AGND. A 3.6-kΩ  
resistor is expected for 20.5 mA full scale output with default settings. The full-scale output  
current can be adjusted using the SPI interface by programming the COARSE_CUR_A/B  
and FINE_CUR_A/B register settings.  
RBIAS  
R16  
O
I
Device reset input, active low. Must be toggled after power up and application of a stable  
clock. Internal pullup.  
RESET  
T12  
SCLK  
SCS  
SDI  
T13  
T14  
R14  
R13  
I
I
Serial programming interface (SPI) clock input. Internal pulldown.  
Serial programming interface (SPI) device select input, active low. Internal pullup.  
Serial programming interface (SPI) data input. Internal pulldown.  
I
SDO  
O
Serial programming interface (SPI) data output. High-Z when not outputting SPI data.  
Device sleep control. The device changes to the mode specified by the SLEEP_CFG  
register when high. Internal pulldown.  
SLEEP  
SYNC  
R12  
R11  
I
I
Allows data LSB to be used as the LVDS sync input. Internal pullup. Has SPI register  
override: LSB_SYNC.  
System timing reference (SYSREF) input positive terminal. This input is used to synchronize  
internal clock dividers and the LVDS interface FIFO output pointer. SYSREF+/and data  
interface strobes must be used to achieve deterministic latency through the device. There is  
an internal 100-Ωdifferential termination between SYSREF+ and SYSREF. This input is  
self-biased when AC coupled.  
SYSREF+  
A11  
I
A12  
P13  
P12  
I
I
System timing reference (SYSREF) input negative terminal. See SYSREF+ description.  
SYSREF–  
SCAN_EN  
TRIGCLK  
This pin is used for factory testing. Connect to ground for normal operation. Internal  
pulldown.  
O
Trigger clock output. Rising edge latches NCOBANKSEL and NCOSEL[3:0].  
Transmit enable active high input. This pin must be enabled using register TXEN_SEL. The  
DAC output is forced to midcode (0x0000 in 2's complement) when transmission is disabled.  
Internal pullup.  
TXENABLE  
T11  
I
1.0-V supply voltage for internal reference. Must be separate from VDDDIG for best  
performance.  
VDDA  
H15, J15  
J16  
I
I
I
1.8-V supply voltage for DAC channel A. Can be combined with VDDA18B, but may degrade  
channel-to-channel crosstalk (XTALK).  
VDDA18A  
VDDA18B  
1.8-V supply voltage for DAC channel B. Can be combined with VDDA18A, but may degrade  
channel-to-channel crosstalk (XTALK).  
H16  
1.0-V supply voltage for internal sampling clock distribution path. Noise or spurs on this  
supply may degrade phase noise performance. Recommended to separate from VDDDIG  
and VDDA for best performance.  
D13, F13,  
H13, J13, L13  
VDDCLK10  
VDDCLK18  
I
I
1.8-V supply voltage for clock (CLK+/) input buffer. Noise or spurs on this supply may  
degrade phase noise performance.  
B14, B15  
D9, E10, F9,  
G10, H3, H4,  
H9, J10, J5,  
J6, J7, J8, K9,  
L10, M9, N10  
1.0-V supply voltage for digital block and LVDS input receivers. Recommended to separate  
from VDDA and VDDCLK for best performance.  
VDDDIG  
I
J11, K11, L11,  
M11, N11  
VDDEA  
VDDEB  
I
I
1.0-V supply voltage for channel A DAC encoder. Can be combined with VDDEB.  
1.0-V supply voltage for channel B DAC encoder. Can be combined with VDDEA.  
D11, E11,  
F11, G11, H11  
1.0-V supply voltage. Can be combined with VDDCLK10. Noise or spurs on this supply may  
degrade phase noise performance.  
VDDHAF  
VDDIO  
C14, C15  
P9, P10  
J12, J14  
I
I
I
1.8-V supply for CMOS input and output terminals.  
1.0-V supply for DAC analog latch for channel A. Separate from VDDL2B for best channel-  
to-channel crosstalk (XTALK). Must be separated from VDDDIG for best performance.  
VDDL2A  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
1.0-V supply for DAC analog latch for channel B. Separate from VDDL2A for best channel-  
to-channel crosstalk (XTALK). Must be separated from VDDDIG for best performance.  
VDDL2B  
H12, H14  
I
I
1.8-V supply voltage for SYSREF (SYSREF+/) input buffer. Can be combined with  
VDDCLK18 when SYSREF is disabled during normal operation. This supply should be  
separate from VDDCLK18 when SYSREF is run continuously during operation to avoid  
noise and spur coupling and reduced phase noise performance.  
VDDSYS18  
VEEAM18  
C11, C12  
1.8-V supply voltage for DAC current source bias for channel A. Can be combined with  
VEEBM18, but may degrade channel-to-channel crosstalk (XTALK).  
L14, M14  
E14, F14  
M16  
I
1.8-V supply voltage for DAC current source bias for channel B. Can be combined with  
VEEAM18, but may degrade channel-to-channel crosstalk (XTALK).  
VEEBM18  
VOUTA+  
VOUTA–  
VOUTB+  
I
DAC channel A analog output positive terminal. Output voltage must comply with DAC  
compliance voltage to maintain specified performance.  
O
O
O
DAC channel A analog output negative terminal. Output voltage must comply with DAC  
compliance voltage to maintain specified performance.  
L16  
DAC channel B analog output positive terminal. Output voltage must comply with DAC  
compliance voltage to maintain specified performance.  
E16  
DAC channel B analog output negative terminal. Output voltage must comply with DAC  
compliance voltage to maintain specified performance.  
F16  
O
I
VOUTB–  
VQPS  
C9, C10  
These pins are used for factory testing. Connect to DGND.  
A10, A13,  
A16, B10,  
B11, B12,  
B13, B16,  
C13, C16,  
D12, E12,  
E13, G13,  
G14, K13,  
K14, M12,  
M13, N12  
VSSCLK  
Clock supply ground, must be directly connected to AGND and DGND  
DAC latch supply ground, must be directly connected to AGND, DGND, VSSCLK and  
VSSL2B through a common low-impedance ground plane.  
VSSL2A  
VSSL2B  
K12, L12  
F12, G12  
DAC latch supply ground, must be directly connected to AGND, DGND, VSSCLK and  
VSSL2A through a common low-impedance ground plane.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
-0.3  
-2.0  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
MAX  
2.45  
0.3  
UNIT  
V
VDDA18A, VDDA18B(2)  
VEEAM18, VEEBM18(2)  
VDDA(2)  
V
1.3  
V
Supply voltage  
VDDCLK18, VDDSYS18(3)  
2.45  
1.3  
V
VDDHAF, VDDL2B, VDDL2A, VDDCLK10(3)  
Supply voltage range, VDDIO18, VQPS(4)  
VDDDIG, VDDEB, VDDEA(4)  
V
2.45  
1.3  
V
V
Voltage between any combination of AGND, DGND  
and VSSCLK  
-0.1  
0.1  
V
DA[11:0]+, DA[11:0], DACLK+, DACLK,  
DASTR+, DASTR, DB[11:0]+, DB[11:0],  
DBCLK+, DBCLK, DBSTR+,  
-0.3  
VDDIO18+0.3  
DBSTR, DC[11:0]+, DC[11:0], DCCLK+,  
DCCLK, DCSTR+, DCSTR, DD[11:0]+,  
DD[11:0], DDCLK+, DDCLK, DDSTR+,  
DDSTR(4)  
Input voltage  
V
CLK+, CLK(3)  
-0.3  
-0.3  
VDDCLK18+0.3  
VDDSYS18+0.3  
SYSREF+, SYSREF(3)  
SCLK, SCS, SDI, RESET, NCOBANKSEL,  
NCOSEL[0:3], SLEEP, SYNC, TESTMODE,  
TXENABLE(4)  
-0.3  
VDDIO18+0.3  
VOUTA+, VOUTA(2)  
-0.3  
-0.3  
-0.3  
-0.3  
VDDA18A + 0.5  
VDDA18B + 0.5  
VDDA18A + 0.3  
VDDIO18 + 0.3  
150  
VOUTB+, VOUTB(2)  
Output voltage  
V
ATEST, EXTIO, RBIAS(2)  
SDI, SDO, ALARM, TRIGCLK(4)  
Junction temperature, TJ  
Storage temperature, Tstg  
°C  
°C  
-65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) Measured to AGND.  
(3) Measured to VSSCLK.  
(4) Measured to DGND.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/  
ESDA/JEDEC JS-001, all pins(1)  
±1000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ANSI/  
ESDA/JEDEC JS-002, all pins(2)  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.71  
-1.89  
0.95  
1.71  
NOM  
1.8  
-1.8  
1
MAX  
1.89  
-1.71  
1.05  
1.89  
UNIT  
VDDA18A, VDDA18B(1)  
VEEAM18, VEEBM18(1)  
VDDA(1)  
V
V
V
V
VDDCLK18, VDDSYS18(2)  
1.8  
Supply voltage range  
VDDHAF, VDDL2B, VDDL2A,  
VDDCLK10(2)  
0.95  
1
1.05  
V
VDDIO18(3)  
1.71  
0
1.8  
0
1.89  
1.89  
1.05  
V
V
V
VQPS(3)  
VDDDIG, VDDEB, VDDEA(3)  
0.95  
1
DA[11:0]+, DA[11:0], DACLK+,  
DACLK, DASTR+,  
DASTR, DB[11:0]+, DB[11:0],  
DBCLK+, DBCLK, DBSTR+,  
DBSTR, DC[11:0]+, DC[11:0],  
DCCLK+, DCCLK, DCSTR+,  
DCSTR, DD[11:0]+, DD[11:0],  
DDCLK+, DDCLK, DDSTR+,  
DDSTR(3)  
1.0  
1.2  
1.5  
VCMI  
Input common mode voltage  
V
CLK+, CLK(2) (4)  
0.5  
0.5  
SYSREF+, SYSREF(2) (4) (6)  
0.3  
0.7  
DA[11:0]+ to DA[11:0], DACLK+ to  
DACLK, DASTR+ to  
DASTR, DB[11:0]+ to DB[11:0],  
DBCLK+ to DBCLK, DBSTR+ to  
DBSTR, DC[11:0]+ to DC[11:0],  
DCCLK+ to DCCLK, DCSTR+ to  
DCSTR, DD[11:0]+ to DD[11:0],  
DDCLK+ to DDCLK, DDSTR+ to  
DDSTR–  
350  
700  
1000  
VID  
Input differential peak-to-peak voltage  
mVPP-DIFF  
800  
200  
1000  
1000  
2000  
2000  
CLK+ to CLK–  
SYSREF+ to SYSREF, AC coupled  
with self bias  
SYSREF+ to SYSREF, DC coupled  
with Vcm between 0.3 and 0.7V, 125ps  
rise/fall time  
200  
1000  
1000  
DACLK±, DBCLK±, DCCLK±, DDCLK  
±
TDCLKH  
TDCLKL  
Data Clock input pulse high time  
Data Clock input pulse low time  
540  
540  
ps  
ps  
DACLK±, DBCLK±, DCCLK±, DDCLK  
±
DC  
45  
50  
55  
85  
%
°C  
°C  
°C  
CLK+/duty cycle  
TA  
Operating free-air temperature  
-40  
TJ  
Recommended operating junction temperature  
Maximum rated operating junction temperature  
105(5)  
TJ-MAX  
125  
(1) Measured to AGND.  
(2) Measured to VSSCLK.  
(3) Measured to DGND.  
(4) CLK+/- and SYSREF+/- are weakly self-biased to the optimal common mode voltage. CLK+/- should always be AC coupled to the  
clock source. SYSREF+/- is recommended to be AC coupled to the clock source when possible.  
(5) Prolonged use above this junction temperature may increase the device failure-in-time (FIT) rate.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
(6) Max VID for the larger Vcm range can be as large as 2VPP-DIFF without any reliability concerns. However, it may degrade the accuracy  
of the SYSREF windowing by 1 bit.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DAC12DL3200  
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.4 Thermal Information  
DAC12DL3200  
ACF or ALJ (FCBGA)  
256 BALLS  
THERMAL METRIC(1)  
UNIT  
RΘJA  
RΘJC(top)  
RΘJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
16.7  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1.1  
5.8  
0.6  
5.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
ΨJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.5 Electrical Characteristics - DC Specifications  
Typical values at TA = +25°C, minimum and maximum values over operating free-air temperature range, typical supply  
voltages, single channel (MODE2) at 6.4 GSPS, RF mode, IOUTFS = 20.5mA, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC ACCURACY  
BITS  
DNL  
DAC core resolution(1)  
16  
bits  
LVDS input with 12-bit resolution (1  
LSB = Fullscale/4096)  
Differential nonlinearity  
±0.6  
±0.9  
LSB  
LVDS input with 12-bit resolution (1  
LSB = Fullscale/4096)  
INL  
Integral nonlinearity  
LSB  
dBm  
DAC ANALOG OUTPUT (IOUTA+, IOUTA, IOUTB+, IOUTB)  
DACFS = 0xF, NRZ mode, 6.4 Gsps,  
fOUT = 397 MHz, measured into 100-Ω  
load(5) (4)  
POUTFS  
Output power  
1.4  
20.5  
5.2  
3.6-kresistor from RBIAS to AGND,  
COARSE_CUR_A/B = 0xF and  
FINE_CUR_A/FINE_CUR_B = 0x1F  
IFS  
Switched full scale output current(2)  
mA  
3.6-kresistor from RBIAS to AGND,  
COARSE_CUR_A/B = 0x0 and  
FINE_CUR_A/FINE_CUR_B = 0x00  
0.6  
23  
3.6-kresistor from RBIAS to AGND,  
COARSE_CUR_A/B = 0xF and  
FINE_CUR_A/FINE_CUR_B = 0x1F  
uA/℃  
Full scale output current temperature  
drift  
IFSDRIFT  
PPM/℃  
Meaured from VOUTA+, VOUTA,  
VOUTB+ or VOUTBto AGND  
VCOMP  
COUT  
Output compliance voltage range  
Output capacitance  
1.3  
2.3  
V
Single-ended capacitance to ground  
0.04  
109  
pF  
Ω
Output differential termination  
resistance  
RTERM  
-0.13  
-133  
mΩ/℃  
Output differential termination  
resistance temperature coeff  
RTERMDRIFT  
PPM/℃  
CLOCK AND SYSREF INPUTS (CLKIN+, CLKIN-, SYSREF+, SYSREF-)  
RT  
Internal differential termination resistance  
Input common mode voltage  
107  
0.5  
0.5  
Ω
V
VCM  
CIN  
Internal differential input capacitance  
pF  
REFERENCE OUTPUT (EXTIO)  
VREF  
Reference output voltage  
0.9  
±34  
100  
V
ppm/°C  
nA  
VREF-DRIFT  
IREF  
Reference output voltage drift over temperature  
Maximum reference output current sourcing capability  
LVDS INTERFACE (DAx±, DBx±, DCx±, DDx±, DxSTR±, DCLKx±)  
RT Internal differential termination resistance  
CMOS INTERFACE (SCLK, SCS, SDI, SDO, RESET, NCOBANKSEL, NCOSEL[0:3], SLEEP, SYNC)  
115  
Ω
IIH  
IIL  
High level input current  
Low level input current  
High level input current(6)  
Low level input current(6)  
200  
uA  
uA  
-200  
SCLK, SCS, SDI, RESET,  
NCOBANKSEL, NCOSEL[0:3],  
SLEEP, SYNC, TESTMODE,  
TXENABLE(3)  
0.7 x  
VDDIO1  
8
VIH  
High level input voltage  
V
SCLK, SCS, SDI, RESET,  
NCOBANKSEL, NCOSEL[0:3],  
SLEEP, SYNC, TESTMODE,  
TXENABLE(3)  
0.3 x  
VDDIO1  
8
VIL  
CI  
Low level input voltage  
Input capacitance  
V
Input capacitance  
2
pF  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DAC12DL3200  
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.5 Electrical Characteristics - DC Specifications (continued)  
Typical values at TA = +25°C, minimum and maximum values over operating free-air temperature range, typical supply  
voltages, single channel (MODE2) at 6.4 GSPS, RF mode, IOUTFS = 20.5mA, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOH  
VOL  
High level output voltage  
Low level output voltage  
1.55  
V
ILOAD = 400 uA  
ILOAD = 400 uA  
0.25  
V
TEMPERATURE SENSOR  
Res  
Resolution  
8
bits  
Range  
Digital Range  
-64  
127  
TA = 25, device powered down  
except for temperature sensor and SPI  
interface  
TERROR  
Temperature Error  
±5  
(1) When using LVDS input, the resolution is limited by the LVDS interface to 12-bits. 16-bits only applies when using the NCO.  
(2) In addition to the switched full scale output current, each output (VOUTA+, VOUTA-, VOUTB+, VOUTB-) has a fixed output current of ~  
3mA at a coarse DAC setting of 15.  
(3) Measured to DGND.  
(4) See DAC Output Modes for information on the frequency response of different DAC output modes. Output power vs frequency for  
different modes relative to NRZ mode at low frequency is shown in Single Channel: Output Power vs Output Frequency and Mode  
through Single Channel RTZ Mode: Output Power vs Output Frequency  
(5) A 100load is equivalent to a 2:1 with 50single ended load  
(6) With no IO supply voltage offset in connecting device.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.6 Electrical Characteristics - Power Consumption  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
mA  
W
1.8-V combined supply current for  
VDDA18A and VDDA18B  
IVDDA18  
38  
40  
1.8-V combined supply current for  
VEEAM18 and VEEBM18  
IVEE  
-90  
-84  
0.15  
8.0  
IVDDA  
1.0-V supply current for VDDA  
0.4  
10  
1.8-V combined supply current for  
VDDCLK18 and VDDSYS18  
IVDDCLK18  
Dual channel, NRZ mode, fCLK = 3.2  
GHz, fDATA = 3.2 Gsps, LVDS_MODE  
= 1  
1.0-V combined supply current for  
VDDHAF, VDDL2B, VDDL2A and  
VDDCLK10  
IVDDCLK  
597  
800  
IVDDIO  
IVDDE  
1.8-V supply current for VDDIO  
7
10  
1.0-V combined supply current for  
VDDEB and VDDEA  
242  
350  
IVDDDIG  
PDIS  
1.0-V supply current for VDDDIG  
Total power dissipation  
319  
800  
1.49  
1.95  
1.8-V combined supply current for  
VDDA18A and VDDA18B  
IVDDA18  
38  
40  
1.8-V combined supply current for  
VEEAM18 and VEEBM18  
IVEE  
-90  
-84  
0.15  
8.0  
IVDDA  
1.0-V supply current for VDDA  
0.4  
10  
1.8-V combined supply current for  
VDDCLK18 and VDDSYS18  
IVDDCLK18  
Dual channel, RF mode, fCLK = 3.2  
GHz, fDATA = 3.2 Gsps, LVDS_MODE  
= 1  
mA  
1.0-V combined supply current for  
VDDHAF, VDDL2B, VDDL2A and  
VDDCLK10  
IVDDCLK  
597  
800  
IVDDIO  
IVDDE  
1.8-V supply current for VDDIO  
7
10  
1.0-V combined supply current for  
VDDEB and VDDEA  
242  
350  
IVDDDIG  
PDIS  
1.0-V supply current for VDDDIG  
Total power dissipation  
320  
800  
1.49  
1.95  
W
1.8-V combined supply current for  
VDDA18A and VDDA18B  
IVDDA18  
38  
40  
1.8-V combined supply current for  
VEEAM18 and VEEBM18  
IVEE  
-90  
-84  
0.15  
7.8  
IVDDA  
1.0-V supply current for VDDA  
0.4  
10  
1.8-V combined supply current for  
VDDCLK18 and VDDSYS18  
IVDDCLK18  
Dual channel, 2xRF mode, fCLK = 6.4  
GHz (double rate DAC), fDATA = 3.2  
Gsps, LVDS_MODE = 1  
mA  
1.0-V combined supply current for  
VDDHAF, VDDL2B, VDDL2A and  
VDDCLK10  
IVDDCLK  
945  
1200  
IVDDIO  
IVDDE  
1.8-V supply current for VDDIO  
6.5  
10  
1.0-V combined supply current for  
VDDEB and VDDEA  
400  
500  
IVDDDIG  
PDIS  
1.0-V supply current for VDDDIG  
Total power dissipation  
400  
2.1  
800  
2.95  
W
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DAC12DL3200  
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
UNIT  
6.6 Electrical Characteristics - Power Consumption (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.8-V combined supply current for  
VDDA18A and VDDA18B  
IVDDA18  
24  
30  
1.8-V combined supply current for  
VEEAand VEEB–  
IVEE  
-52  
-48  
0.15  
7.8  
IVDDA  
1.0-V supply current for VDDA  
0.4  
10  
1.8-V combined supply current for  
VDDCLK18 and VDDSYS18  
IVDDCLK18  
Single channel, RF mode, fCLK = 6.4  
GHz, fDATA = 6.4 Gsps, LVDS_MODE  
= 2  
mA  
1.0-V combined supply current for  
VDDHAF, VDDL2B, VDDL2A and  
VDDCLK10  
IVDDCLK  
935  
1200  
IVDDIO  
IVDDE  
1.8-V supply current for VDDIO  
6.5  
10  
1.0-V combined supply current for  
VDDEB and VDDEA  
365  
500  
IVDDDIG  
PDIS  
1.0-V supply current for VDDDIG  
Total power dissipation  
420  
800  
2.05  
2.75  
W
1.8-V combined supply current for  
VDDA18A and VDDA18B  
IVDDA18  
38  
40  
1.8-V combined supply current for  
VEEAM18 and VEEBM18  
IVEE  
-90  
-84  
0.15  
7.8  
IVDDA  
1.0-V supply current for VDDA  
0.4  
10  
1.8-V combined supply current for  
VDDCLK18 and VDDSYS18  
Dual channel, RF mode, fCLK = 6.4  
GHz, fDATA = 6.4 Gsps, LVDS_MODE  
= 2, DAC A outputting data from LVDS  
interface and DAC B operating as  
DDS  
IVDDCLK18  
mA  
1.0-V combined supply current for  
VDDHAF, VDDL2B, VDDL2A and  
VDDCLK10  
IVDDCLK  
950  
1200  
IVDDIO  
IVDDE  
1.8-V supply current for VDDIO  
6.5  
10  
1.0-V combined supply current for  
VDDEB and VDDEA  
400  
525  
IVDDDIG  
PDIS  
1.0-V supply current for VDDDIG  
Total power dissipation  
697  
1050  
3.3  
2.27  
W
MODE = 0b11, SHUNTREG_EN  
Register (Offset = 1A0h-1A1h) =  
0x0000  
PDIS  
Total power dissipation  
148  
mW  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.7 Electrical Characteristics - AC Specifications  
Typical values at TA = +25°C, minimum and maximum values over operating free-air temperature range, typical supply  
voltages, single channel (MODE2) at 6.4 GSPS, single tone amplitude = 0 dBFS, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Excluding sinx/x response. Useable  
bandwidth may exceed the -3 dB  
point.  
BW  
Analog output bandwidth (-3 dB)  
8
GHz  
fOUTA = 97 MHz, fOUTB = 127 MHz,  
NRZ mode  
-96  
-90  
-84  
-75  
-77  
-66  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
fOUTA = 897 MHz, fOUTB = 927 MHz,  
NRZ mode  
fOUTA = 1703 MHz, fOUTB = 1927  
MHz, RF mode  
Isolation between channel A  
Crosstalk  
(VOUTA+/) and channel B  
(VOUTB+/-), dual channel (MODE0)  
fOUTA = 4097 MHz, fOUTB = 3927  
MHz, 2xRF mode  
fOUTA = 5803 MHz, fOUTB = 5927  
MHz, 2xRF mode  
fOUTA = 7897 MHz, fOUTB = 7927  
MHz, 2xRF mode  
fOUT = 1597 MHz, 100-Hz offset  
fOUT = 1597 MHz, 1-KHz offset  
fOUT = 1597 MHz, 10-kHz offset  
fOUT = 1597 MHz, 100-kHz offset  
fOUT = 1597 MHz, 1-MHz offset  
fOUT = 1597 MHz, 10-MHz offset  
fOUT = 1597 MHz  
-104  
-122  
-134  
-144  
-153  
-159  
-74.3  
-67.1  
Residual DAC phase noise, NRZ  
mode  
dBc/Hz  
ΦNOISE  
dBc  
dBc  
Integrated Phase Noise, SSB, 100Hz -  
100MHz  
fOUT = 4597 MHz, RF Mode  
3.2 GSPS, DUAL CHANNEL, NRZ MODE  
fOUT = 97 MHz  
fOUT = 597 MHz  
fOUT = 897 MHz  
fOUT = 1497 MHz  
79  
67  
70  
67  
Spurious free dynamic range, across  
full Nyquist zone  
SFDR  
dBc  
60(1)  
f1 = 92 MHz, f1 = 102 MHz, 6 dBFS/  
tone  
-94  
-77  
f1 = 592 MHz, f1 = 602 MHz, 6  
dBFS/tone  
Third-order two tone intermodulation  
distortion  
f1 = 892 MHz, f1 = 902 MHz, 6  
dBFS/tone  
IMD3  
-73  
dBc  
f1 = 847 MHz, f1 = 947 MHz, 6  
dBFS/tone  
-72  
-70  
f1 = 1492 MHz, f1 = 1502 MHz, 6  
dBFS/tone  
-75  
fOUT = 97 MHz, 70-MHz offset from  
fOUT  
-163  
-163  
-161  
fOUT = 597 MHz, 70-MHz offset from  
fOUT  
Noise spectral density, sinusoidal  
output  
NSD  
dBc/Hz  
dBm  
fOUT = 897 MHz, 70-MHz offset from  
fOUT  
fOUT = 1497 MHz, 70-MHz offset from  
fOUT  
-157  
-96  
SPUR  
Signal independent spurs  
fS / 2  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DAC12DL3200  
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.7 Electrical Characteristics - AC Specifications (continued)  
Typical values at TA = +25°C, minimum and maximum values over operating free-air temperature range, typical supply  
voltages, single channel (MODE2) at 6.4 GSPS, single tone amplitude = 0 dBFS, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Signal spanning 90% of 1st Nyquist  
zone, notch at center of Nyquist zone  
of 5% of Nyquist zone  
NPR  
Noise power ratio, peak  
51  
dBc  
Calculated from peak NPR, 1st  
Nyquist zone  
ENOB  
Effective number of bits  
10.3  
bits  
3.2 GSPS, DUAL CHANNEL, RTZ MODE  
fOUT = 97 MHz  
73  
68  
70  
73  
70  
64  
65  
66  
fOUT = 597 MHz  
fOUT = 897 MHz  
fOUT = 1497 MHz  
fOUT = 1703 MHz  
fOUT = 2303 MHz  
fOUT = 2603 MHz  
fOUT = 3103 MHz  
Spurious free dynamic range, across  
full Nyquist zone  
SFDR  
dBc  
f1 = 92 MHz, f1 = 102 MHz, 6 dBFS/  
tone  
-87  
-79  
-76  
-77  
-80  
-80  
-73  
-71  
-73  
-73  
f1 = 592 MHz, f1 = 602 MHz, 6  
dBFS/tone  
f1 = 892 MHz, f1 = 902 MHz, 6  
dBFS/tone  
f1 = 847 MHz, f1 = 947 MHz, 6  
dBFS/tone  
f1 = 1492 MHz, f1 = 1502 MHz, 6  
dBFS/tone  
Third-order two tone intermodulation  
distortion  
IMD3  
dBc  
f1 = 1698 MHz, f1 = 1708 MHz, 6  
dBFS/tone  
f1 = 2298 MHz, f1 = 2308 MHz, 6  
dBFS/tone  
f1 = 2598 MHz, f1 = 2608 MHz, 6  
dBFS/tone  
f1 = 2253 MHz, f1 = 2353 MHz, 6  
dBFS/tone  
f1 = 3098 MHz, f1 = 3108 MHz, 6  
dBFS/tone  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.7 Electrical Characteristics - AC Specifications (continued)  
Typical values at TA = +25°C, minimum and maximum values over operating free-air temperature range, typical supply  
voltages, single channel (MODE2) at 6.4 GSPS, single tone amplitude = 0 dBFS, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fOUT = 97 MHz, 70-MHz offset from  
fOUT  
-153  
fOUT = 597 MHz, 70-MHz offset from  
fOUT  
-158  
-157  
-154  
-153  
-151  
-150  
-147  
fOUT = 897 MHz, 70-MHz offset from  
fOUT  
fOUT = 1497 MHz, 70-MHz offset from  
fOUT  
Noise spectral density, sinusoidal  
output  
NSD  
dBc/Hz  
fOUT = 1703 MHz, 70-MHz offset from  
fOUT  
fOUT = 2303 MHz, 70-MHz offset from  
fOUT  
fOUT = 2603 MHz, 70-MHz offset from  
fOUT  
fOUT = 3103 MHz, 70-MHz offset from  
fOUT  
fS / 2  
fS  
-100  
-65  
SPUR  
NPR  
Signal independent spurs  
Noise power ratio, peak  
dBm  
dBc  
Signal spanning 90% of 1st Nyquist  
zone, notch at center of Nyquist zone  
of 5% of Nyquist zone  
48  
42  
Signal spanning 90% of 2nd Nyquist  
zone, notch at center of Nyquist zone  
of 5% of Nyquist zone  
Calculated from peak NPR, 1st  
Nyquist zone  
ENOB  
ENOB  
Effective number of bits  
Effective number of bits  
9.7  
8.7  
bits  
Calculated from peak NPR, 2nd  
Nyquist zone  
3.2 GSPS, DUAL CHANNEL, RF MODE  
fOUT = 1703 MHz  
fOUT = 2303 MHz  
fOUT = 2603 MHz  
fOUT = 3103 MHz  
fOUT = 3297 MHz  
fOUT = 3797 MHz  
fOUT = 4097 MHz  
fOUT = 4697 MHz  
67  
66  
65  
57  
58  
59  
61  
63  
Spurious free dynamic range, across  
full Nyquist zone  
SFDR  
dBc  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.7 Electrical Characteristics - AC Specifications (continued)  
Typical values at TA = +25°C, minimum and maximum values over operating free-air temperature range, typical supply  
voltages, single channel (MODE2) at 6.4 GSPS, single tone amplitude = 0 dBFS, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
f1 = 1698 MHz, f1 = 1708 MHz, 6  
dBFS/tone  
-73  
f1 = 2298 MHz, f1 = 2308 MHz, 6  
dBFS/tone  
-76  
-75  
f1 = 2598 MHz, f1 = 2608 MHz, 6  
dBFS/tone  
f1 = 2253 MHz, f1 = 2353 MHz, 6  
dBFS/tone  
-80  
f1 = 3098 MHz, f1 = 3108 MHz, 6  
dBFS/tone  
-64  
Third-order two tone intermodulation  
distortion  
IMD3  
dBc  
f1 = 3292 MHz, f1 = 3302 MHz, 6  
dBFS/tone  
-63  
f1 = 3792 MHz, f1 = 3802 MHz, 6  
dBFS/tone  
-68  
f1 = 4092 MHz, f1 = 4102 MHz, 6  
dBFS/tone  
-69  
f1 = 4047 MHz, f1 = 4147 MHz, 6  
dBFS/tone  
-72  
f1 = 4692 MHz, f1 = 4702 MHz, 6  
dBFS/tone  
-62  
fOUT = 1703 MHz, 70-MHz offset from  
fOUT  
-156  
-155  
-154  
-152  
-151  
-151  
-150  
-147  
fOUT = 2303 MHz, 70-MHz offset from  
fOUT  
fOUT = 2603 MHz, 70-MHz offset from  
fOUT  
fOUT = 3103 MHz, 70-MHz offset from  
fOUT  
Noise spectral density, sinusoidal  
output  
NSD  
dBc/Hz  
fOUT = 3297 MHz, 70-MHz offset from  
fOUT  
fOUT = 3797 MHz, 70-MHz offset from  
fOUT  
fOUT = 4097 MHz, 70-MHz offset from  
fOUT  
fOUT = 4697 MHz, 70-MHz offset from  
fOUT  
fS / 2  
fS  
-96  
-63  
SPUR  
NPR  
Signal independent spurs  
Noise power ratio, peak  
dBm  
dBc  
3 * fS / 2  
-102  
Signal spanning 90% of 2nd Nyquist  
zone, notch at center of Nyquist zone  
of 5% of Nyquist zone  
47  
44  
Signal spanning 90% of 3rd Nyquist  
zone, notch at center of Nyquist zone  
of 5% of Nyquist zone  
Calculated from peak NPR, 2nd  
Nyquist zone  
9.5  
9.1  
ENOB  
Effective number of bits  
bits  
Calculated from peak NPR, 3rd  
Nyquist zone  
3.2 GSPS, DUAL CHANNEL, 2xRF MODE  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.7 Electrical Characteristics - AC Specifications (continued)  
Typical values at TA = +25°C, minimum and maximum values over operating free-air temperature range, typical supply  
voltages, single channel (MODE2) at 6.4 GSPS, single tone amplitude = 0 dBFS, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
60  
57  
59  
61  
59  
56  
54  
59  
59  
62  
58  
54  
MAX  
UNIT  
fOUT = 3297 MHz  
fOUT = 3797 MHz  
fOUT = 4097 MHz  
fOUT = 4697 MHz  
fOUT = 4903 MHz  
fOUT = 5503 MHz  
fOUT = 5803 MHz  
fOUT = 6303 MHz  
fOUT = 6497 MHz  
fOUT = 6997 MHz  
fOUT = 7297 MHz  
fOUT = 7897 MHz  
Spurious free dynamic range, across  
full Nyquist zone  
SFDR  
dBc  
f1 = 3292 MHz, f1 = 3302 MHz, 6  
dBFS/tone  
-62  
-63  
-63  
-63  
-62  
-61  
-58  
-60  
-62  
-61  
-61  
-60  
-57  
-48  
f1 = 3792 MHz, f1 = 3802 MHz, 6  
dBFS/tone  
f1 = 4092 MHz, f1 = 4102 MHz, 6  
dBFS/tone  
f1 = 4047 MHz, f1 = 4147 MHz, 6  
dBFS/tone  
f1 = 4692 MHz, f1 = 4702 MHz, 6  
dBFS/tone  
f1 = 4898 MHz, f1 = 4908 MHz, 6  
dBFS/tone  
f1 = 5498 MHz, f1 = 5508 MHz, 6  
dBFS/tone  
Third-order two tone intermodulation  
distortion  
IMD3  
dBc  
f1 = 5798 MHz, f1 = 5808 MHz, 6  
dBFS/tone  
f1 = 5453 MHz, f1 = 5553 MHz, 6  
dBFS/tone  
f1 = 6298 MHz, f1 = 6308 MHz, 6  
dBFS/tone  
f1 = 6492 MHz, f1 = 6502 MHz, 6  
dBFS/tone  
f1 = 6992 MHz, f1 = 7002 MHz, 6  
dBFS/tone  
f1 = 7292 MHz, f1 = 7302 MHz, 6  
dBFS/tone  
f1 = 7892 MHz, f1 = 7902 MHz, 6  
dBFS/tone  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.7 Electrical Characteristics - AC Specifications (continued)  
Typical values at TA = +25°C, minimum and maximum values over operating free-air temperature range, typical supply  
voltages, single channel (MODE2) at 6.4 GSPS, single tone amplitude = 0 dBFS, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fOUT = 3297 MHz, 70-MHz offset from  
fOUT  
-146  
fOUT = 3797 MHz, 70-MHz offset from  
fOUT  
-149  
-150  
-148  
-148  
-149  
-147  
-142  
-142  
-146  
-145  
-139  
fOUT = 4097 MHz, 70-MHz offset from  
fOUT  
fOUT = 4697 MHz, 70-MHz offset from  
fOUT  
fOUT = 4903 MHz, 70-MHz offset from  
fOUT  
fOUT = 5503 MHz, 70-MHz offset from  
fOUT  
Noise spectral density, sinusoidal  
output  
NSD  
dBc/Hz  
fOUT = 5803 MHz, 70-MHz offset from  
fOUT  
fOUT = 6303 MHz, 70-MHz offset from  
fOUT  
fOUT = 6497 MHz, 70-MHz offset from  
fOUT  
fOUT = 6997 MHz, 70-MHz offset from  
fOUT  
fOUT = 7297 MHz, 70-MHz offset from  
fOUT  
fOUT = 7897 MHz, 70-MHz offset from  
fOUT  
fS  
-60  
-101  
-66  
3 * fS / 2  
2 * fS  
SPUR  
Signal independent spurs  
Noise power ratio, peak  
Effective number of bits  
dBm  
dBc  
bits  
5 * fS / 2  
3 * fS  
-109  
-46  
Signal spanning 90% of 3rd Nyquist  
zone, notch at center of Nyquist zone  
of 5% of Nyquist zone  
42  
41  
33  
Signal spanning 90% of 4th Nyquist  
zone, notch at center of Nyquist zone  
of 5% of Nyquist zone  
NPR  
Signal spanning 90% of 5th Nyquist  
zone, notch at center of Nyquist zone  
of 5% of Nyquist zone  
Calculated from peak NPR, 3rd  
Nyquist zone  
8.7  
8.6  
7.2  
Calculated from peak NPR, 4th  
Nyquist zone  
ENOB  
Calculated from peak NPR, 5th  
Nyquist zone  
6.4 GSPS, SINGLE CHANNEL, NRZ MODE  
fOUT = 97 MHz  
80  
63  
71  
67  
55  
fOUT = 897 MHz  
fOUT = 1697 MHz  
fOUT = 2497 MHz  
fOUT = 3097 MHz  
60(1)  
Spurious free dynamic range, across  
full Nyquist zone  
SFDR  
dBc  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.7 Electrical Characteristics - AC Specifications (continued)  
Typical values at TA = +25°C, minimum and maximum values over operating free-air temperature range, typical supply  
voltages, single channel (MODE2) at 6.4 GSPS, single tone amplitude = 0 dBFS, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
f1 = 92 MHz, f1 = 102 MHz, 6 dBFS/  
tone  
-93  
f1 = 892 MHz, f1 = 902 MHz, 6  
dBFS/tone  
-69  
-71  
f1 = 847 MHz, f1 = 947 MHz, 6  
dBFS/tone  
-68  
Third-order two tone intermodulation  
distortion  
f1 = 1692 MHz, f1 = 1702 MHz, 6  
dBFS/tone  
IMD3  
-71  
dBc  
f1 = 2492 MHz, f1 = 2502 MHz, 6  
dBFS/tone  
-65  
f1 = 2447 MHz, f1 = 2547 MHz, 6  
dBFS/tone  
-69  
f1 = 3092 MHz, f1 = 3102 MHz, 6  
dBFS/tone  
-59  
fOUT = 97 MHz, 70-MHz offset from  
fOUT  
-165  
-162  
-157  
-154  
fOUT = 897 MHz, 70-MHz offset from  
fOUT  
Noise spectral density, sinusoidal  
output  
fOUT = 1697 MHz, 70-MHz offset from  
fOUT  
NSD  
dBc/Hz  
fOUT = 2497 MHz, 70-MHz offset from  
fOUT  
fOUT = 3097 MHz, 70-MHz offset from  
fOUT  
-151  
-88  
SPUR  
NPR  
Signal independent spurs  
Noise power ratio, peak  
fS / 2  
dBm  
dBc  
Signal spanning 90% of 1st Nyquist  
zone, notch at center of Nyquist zone  
of 5% of Nyquist zone  
48  
Calculated from peak NPR, 1st  
Nyquist zone  
ENOB  
Effective number of bits  
9.7  
bits  
6.4 GSPS, SINGLE CHANNEL, RTZ MODE  
fOUT = 97 MHz  
73  
56  
68  
65  
56  
52  
56  
60  
52  
59  
fOUT = 897 MHz  
fOUT = 1697 MHz  
fOUT = 2497 MHz  
fOUT = 3097 MHz  
fOUT = 3303 MHz  
fOUT = 3903 MHz  
fOUT = 4703 MHz  
fOUT = 5503 MHz  
fOUT = 6303 MHz  
Spurious free dynamic range, across  
full Nyquist zone  
SFDR  
dBc  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.7 Electrical Characteristics - AC Specifications (continued)  
Typical values at TA = +25°C, minimum and maximum values over operating free-air temperature range, typical supply  
voltages, single channel (MODE2) at 6.4 GSPS, single tone amplitude = 0 dBFS, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
f1 = 92 MHz, f1 = 102 MHz, 6 dBFS/  
tone  
-86  
f1 = 892 MHz, f1 = 902 MHz, 6  
dBFS/tone  
-66  
-69  
f1 = 847 MHz, f1 = 947 MHz, 6  
dBFS/tone  
f1 = 1692 MHz, f1 = 1702 MHz, 6  
dBFS/tone  
-69  
f1 = 2492 MHz, f1 = 2502 MHz, 6  
dBFS/tone  
-66  
f1 = 2447 MHz, f1 = 2547 MHz, 6  
dBFS/tone  
-65  
f1 = 3092 MHz, f1 = 3102 MHz, 6  
dBFS/tone  
-59  
Third-order two tone intermodulation  
distortion  
IMD3  
dBc  
f1 = 3298 MHz, f1 = 3308 MHz, 6  
dBFS/tone  
-59  
f1 = 3898 MHz, f1 = 3908 MHz, 6  
dBFS/tone  
-59  
f1 = 3853 MHz, f1 = 3953 MHz, 6  
dBFS/tone  
-63  
f1 = 4698 MHz, f1 = 4708 MHz, 6  
dBFS/tone  
-64  
f1 = 5498 MHz, f1 = 5508 MHz, 6  
dBFS/tone  
-55  
f1 = 5453 MHz, f1 = 5553 MHz, 6  
dBFS/tone  
-63  
f1 = 6298 MHz, f1 = 6308 MHz, 6  
dBFS/tone  
-66  
fOUT = 97 MHz, 70-MHz offset from  
fOUT  
-149  
-155  
-154  
-152  
-149  
-148  
-149  
-147  
-147  
-142  
fOUT = 897 MHz, 70-MHz offset from  
fOUT  
fOUT = 1697 MHz, 70-MHz offset from  
fOUT  
fOUT = 2497 MHz, 70-MHz offset from  
fOUT  
fOUT = 3097 MHz, 70-MHz offset from  
fOUT  
Noise spectral density, sinusoidal  
output  
NSD  
dBc/Hz  
fOUT = 3303 MHz, 70-MHz offset from  
fOUT  
fOUT = 3903 MHz, 70-MHz offset from  
fOUT  
fOUT = 4703 MHz, 70-MHz offset from  
fOUT  
fOUT = 5503 MHz, 70-MHz offset from  
fOUT  
fOUT = 6303 MHz, 70-MHz offset from  
fOUT  
fS / 2  
fS  
-88  
-55  
SPUR  
Signal independent spurs  
dBm  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.7 Electrical Characteristics - AC Specifications (continued)  
Typical values at TA = +25°C, minimum and maximum values over operating free-air temperature range, typical supply  
voltages, single channel (MODE2) at 6.4 GSPS, single tone amplitude = 0 dBFS, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Signal spanning 90% of 1st Nyquist  
zone, notch at center of Nyquist zone  
of 5% of Nyquist zone  
40  
NPR  
Noise power ratio, peak  
dBc  
Signal spanning 90% of 2nd Nyquist  
zone, notch at center of Nyquist zone  
of 5% of Nyquist zone  
32  
Calculated from peak NPR, 1st  
Nyquist zone  
8.4  
7.1  
ENOB  
Effective number of bits  
bits  
Calculated from peak NPR, 2nd  
Nyquist zone  
6.4 GSPS, SINGLE CHANNEL, RF MODE  
fOUT = 3303 MHz  
fOUT = 3903 MHz  
fOUT = 4703 MHz  
fOUT = 5503 MHz  
fOUT = 6303 MHz  
fOUT = 6497 MHz  
fOUT = 7297 MHz  
fOUT = 8097 MHz  
fOUT = 8897 MHz  
fOUT = 9497 MHz  
57  
57  
58  
56  
56  
54  
50  
50  
54  
52  
50(1)  
Spurious free dynamic range, across  
full Nyquist zone  
SFDR  
dBc  
f1 = 3298 MHz, f1 = 3308 MHz, 6  
dBFS/tone  
-58  
-63  
-62  
-62  
-54  
-60  
-61  
-60  
-51  
-52  
-56  
-46  
f1 = 3898 MHz, f1 = 3908 MHz, 6  
dBFS/tone  
f1 = 3853 MHz, f1 = 3953 MHz, 6  
dBFS/tone  
f1 = 4698 MHz, f1 = 4708 MHz, 6  
dBFS/tone  
f1 = 5498 MHz, f1 = 5508 MHz, 6  
dBFS/tone  
f1 = 5453 MHz, f1 = 5553 MHz, 6  
dBFS/tone  
-53  
Third-order two tone intermodulation  
IMD3  
dBc  
distortion  
f1 = 6298 MHz, f1 = 6308 MHz, 6  
dBFS/tone  
f1 = 6492 MHz, f1 = 6502 MHz, 6  
dBFS/tone  
f1 = 7292 MHz, f1 = 7302 MHz, 6  
dBFS/tone  
f1 = 8092 MHz, f1 = 8102 MHz, 6  
dBFS/tone  
f1 = 8892 MHz, f1 = 8902 MHz, 6  
dBFS/tone  
f1 = 9492 MHz, f1 = 9502 MHz, 6  
dBFS/tone  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.7 Electrical Characteristics - AC Specifications (continued)  
Typical values at TA = +25°C, minimum and maximum values over operating free-air temperature range, typical supply  
voltages, single channel (MODE2) at 6.4 GSPS, single tone amplitude = 0 dBFS, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fOUT = 3303 MHz, 70-MHz offset from  
fOUT  
-151  
fOUT = 3903 MHz, 70-MHz offset from  
fOUT  
-152  
-150  
-150  
-145  
-145  
-147  
-145  
-143  
-137  
fOUT = 4703 MHz, 70-MHz offset from  
fOUT  
fOUT = 5503 MHz, 70-MHz offset from  
fOUT  
fOUT = 6303 MHz, 70-MHz offset from  
fOUT  
Noise spectral density, sinusoidal  
output  
NSD  
dBc/Hz  
fOUT = 6497 MHz, 70-MHz offset from  
fOUT  
fOUT = 7297 MHz, 70-MHz offset from  
fOUT  
fOUT = 8097 MHz, 70-MHz offset from  
fOUT  
fOUT = 8897 MHz, 70-MHz offset from  
fOUT  
fOUT = 9497 MHz, 70-MHz offset from  
fOUT  
fS / 2  
fS  
-88  
-55  
-88  
SPUR  
NPR  
Signal independent spurs  
Noise power ratio, peak  
dBm  
dBc  
3 * fS / 2  
Signal spanning 90% of 2nd Nyquist  
zone, notch at center of Nyquist zone  
of 5% of Nyquist zone  
42  
32  
Signal spanning 90% of 3rd Nyquist  
zone, notch at center of Nyquist zone  
of 5% of Nyquist zone  
Calculated from peak NPR, 2nd  
Nyquist zone  
8.7  
7.1  
ENOB  
Effective number of bits  
bits  
Calculated from peak NPR, 3rd  
Nyquist zone  
(1) SFDR MIN specification is the worst of HD2, HD3 and HD5.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.8 Timing Requirements  
Typical values at TA = +25°C, minimum and maximum values over operating free-air temperature range, typical supply  
voltages, single channel (MODE2) at 6.4 GSPS, single tone amplitude = 0 dBFS, unless otherwise noted.  
MIN  
NOM  
MAX  
6400  
1600  
UNIT  
INPUT CLOCK (CLKIN+, CLKIN-)  
fCLK Input clock frequency  
LVDS INTERFACE  
800  
MHz  
fBIT  
UI  
Dx[11:0]+/- DDR data rate  
Mbps  
ps  
Dx[11:0]+/- DDR data unit interval  
625  
Setup time, Dx[11:0]+/and  
DxSTR+/valid to DxCLK+/rising  
or falling edge  
tSU(LVDS)  
All LVDS buses  
All LVDS buses  
-375  
495  
-240  
ps  
Hold time, DxCLK+/rising or falling  
edge to Dx[11:0]+/and DxSTR+/–  
transition  
tH(LVDS)  
fDCLK  
565  
800  
ps  
DxCLK+/- DDR data clock frequency  
MHz  
TRIGGER CLOCK  
FTRIGCLKMAX Trigger clock maximum frequency  
100  
3.5  
MHz  
ns  
setup time for NCO_SEL[3:0] and  
tS_TRIGCLK  
NCOBANKSEL to TRIGCLK rising  
edge  
hold time for NCO_SEL[3:0] and  
NCOBANKSEL to TRIGCLK rising  
edge  
tH_TRIGCLK  
-1.5  
ns  
SYSREF (SYSREF+, SYSREF-)  
Width of invalid SYSREF capture region of CLK± period, indicating setup or  
hold time violation, as measured by SYSREF_POS status register(1)  
tINV(SYSREF)  
tINV(TEMP)  
48  
-0.12  
0.33  
ps  
Drift of invalid SYSREF capture region over temperature, positive number  
indicates a shift toward MSB of SYSREF_POS register  
ps/°C  
ps/mV  
Drift of invalid SYSREF capture region over VDDHAF supply voltage, positive  
number indicates a shift toward MSB of SYSREF_POS register  
tINV(VDDHAF)  
SYSREF_ZOOM = 0  
Delay of SYSREF_SEL LSB  
22  
9
tSTEP(SP)  
ps  
ns  
SYSREF_ZOOM = 1  
t(PH_SYS)  
RESET  
tRESET  
Minimum SYSREF± assertion duration after SYSREF± rising edge event  
4
Minimum RESET pulse width  
25  
ns  
(1) Use SYSREF_POS to select an optimal SYSREF_SEL value for the SYSREF capture, see the section Multi-Device Synchronization  
(SYSREF+/-) for more information on SYSREF windowing. The invalid region, specified by tINV(SYSREF), indicates the portion of the  
CLK± period(tCLK), as measured by SYSREF_SEL, that may result in a setup and hold violation. Verify that the timing skew between  
SYSREF± and CLK± over system operating conditions from the nominal conditions (that used to find optimal SYSREF_SEL) does not  
result in the invalid region occurring at the selected SYSREF_SEL position in SYSREF_POS, otherwise a temperature dependent  
SYSREF_SEL selection may be needed to track the skew between CLK± and SYSREF±.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DAC12DL3200  
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.9 Switching Characteristics  
Typical values at TA = +25°C, minimum and maximum values over operating free-air temperature range, typical supply  
voltages, single channel (MODE2) at 6.4 GSPS, single tone amplitude = 0 dBFS, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LATENCY  
TDAC  
DAC sampling period  
1 / fCLK  
35.5  
s
single clock mode, 4 LVDS banks for 1  
DAC  
single clock mode, 2 LVDS banks per  
DAC  
20.5  
12.5  
35.5  
20.5  
680  
digital input to DAC output sample  
latency  
single clock mode, 1 LVDS bank per  
DAC  
tLAT  
TDAC  
dual clock mode, 2 LVDS banks per  
DAC  
dual clock mode, 1 LVDS bank per  
DAC  
Input clock rising edge cross-over to  
output sample cross-over  
tPDI  
ps  
SERIAL PROGRAMMING INTERFACE  
Fs_c_r  
Fs_c_w  
Fs_cts  
tP_W  
tP_R  
tPH  
serial clock frequency reading  
serial clock frequency writing  
serial clock frequency temp sensor  
serial clock period for writing  
serial clock period for reading  
serial clock pulse width high  
serial clock pulse width low  
SDI setup  
100  
200  
1
MHz  
MHz  
MHz  
ns  
5
10  
2
ns  
ns  
tPL  
2
ns  
tSU  
1
ns  
tH  
SDI hold  
1
ns  
tIZ  
SDI TRI-STATE  
1
1.5  
1.5  
6
ns  
tODZ  
tOZD  
tOD  
SDO driven to TRI-STATE  
SDO TRI-STATE to driven  
SDO output delay  
200 fF load  
200 fF load  
200 fF load  
0
0
0
1
1
1
ns  
ns  
ns  
tCSS  
tCSH  
tIAG  
SCS setup  
ns  
SCS hold  
ns  
Inter-access gap  
ns  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.10 Typical Characteristics  
Typical values at TA = 25°C, nominal supply voltages, COARSE_CUR_A/B = 0xFF (IFS_SWITCH = 21 mA), output  
from VOUTA± in single-channel modes, AOUT = 0 dBFS, fCLK = 3.2 GHz in dual channel NRZ, RTZ and RF  
mode, fCLK = 6.4 GHz in dual channel 2xRF and single channel NRZ, RTZ and RF mode, filtered,  
SHUNTREF_EN = 0x0FFF (unless otherwise noted);  
2
1.5  
1
3
2
IOUTA  
IOUTB  
1
0.5  
0
0
-0.5  
-1  
-1  
-2  
-3  
-1.5  
-2  
IOUTA  
IOUTB  
0
500 1000 1500 2000 2500 3000 3500 4000  
Code  
0
500 1000 1500 2000 2500 3000 3500 4000  
Code  
6-1. Output Current DNL vs Code  
6-2. Output Current INL vs Code  
fCLK = 6.4 GHz, relative to NRZ mode at low frequency, ripple  
at > 5 GHz are due to cable reflections  
fCLK = 6.4 GHz, relative to NRZ mode at low frequency, ripple  
at > 5 GHz are due to cable reflections  
6-3. Single Channel: Output Power vs Output Frequency and  
6-4. Single Channel NRZ Mode: Output Power vs Output  
Mode  
Frequency  
5
NRZ  
RF  
3
RTZ  
1
-1  
-3  
-5  
-7  
-9  
-11  
-13  
-15  
0
2000  
4000  
6000  
8000  
10000  
Output Frequency (MHz)  
FSAMPLE = 6.4GSPS, cable and transformer loss removed  
fCLK = 6.4 GHz, relative to NRZ mode at low frequency, ripple  
at > 5 GHz are due to cable reflections  
6-6. Single Channel Mode: DAC12DL3200EVM Output Power  
vs Output Frequency  
6-5. Single Channel RF Mode: Output Power vs Output  
Frequency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DAC12DL3200  
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
0
NRZ  
RF  
-2  
RTZ  
2XRF  
-4  
-6  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
0
1000 2000 3000 4000 5000 6000 7000 8000  
Output Frequency (MHz)  
FSAMPLE = 3.2 GSPS, cable and transformer loss removed  
fCLK = 6.4 GHz, relative to NRZ mode at low frequency, ripple  
at > 5 GHz are due to cable reflections  
6-7. Dual Channel Modes: DAC12DL3200EVM Output Power  
vs Output Frequency  
6-8. Single Channel RTZ Mode: Output Power vs Output  
Frequency  
fCLK = 3.2 GHz, 1st and 2nd Nyquist Zones Displayed  
fCLK = 3.2 GHz, 1st and 2nd Nyquist Zones Displayed  
6-9. Dual Channel NRZ Mode: Single Tone Spectrum at 100  
6-10. Dual Channel NRZ Mode: Single Tone Spectrum at 500  
MHz  
MHz  
fCLK = 3.2 GHz, 1st and 2nd Nyquist Zones Displayed  
fCLK = 3.2 GHz, 1st and 2nd Nyquist Zones Displayed  
6-11. Dual Channel NRZ Mode: Single Tone Spectrum at 1  
6-12. Dual Channel NRZ Mode: Single Tone Spectrum at 1.5  
GHz  
GHz  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
each tone at -6 dBFS, fCLK = 3.2 GHz, 1st and 2nd Nyquist  
Zones Displayed  
each tone at -6 dBFS, fCLK = 3.2 GHz, 1st and 2nd Nyquist  
Zones Displayed  
6-13. Dual Channel NRZ Mode: Dual Tone Spectrum at 100  
6-14. Dual Channel NRZ Mode: Dual Tone Spectrum at 500  
MHz ± 10 MHz  
MHz ± 10 MHz  
each tone at -6 dBFS, fCLK = 3.2 GHz, 1st and 2nd Nyquist  
Zones Displayed  
each tone at -6 dBFS, fCLK = 3.2 GHz, 1st and 2nd Nyquist  
Zones Displayed  
6-15. Dual Channel NRZ Mode: Dual Tone Spectrum at 1 GHz  
6-16. Dual Channel NRZ Mode: Dual Tone Spectrum at 1.5  
± 10 MHz  
GHz ± 10 MHz  
fCLK = 3.2 GHz, 1st, 2nd and 3rd Nyquist Zones Displayed  
fCLK = 3.2 GHz, 1st, 2nd and 3rd Nyquist Zones Displayed  
6-17. Dual Channel RF Mode: Single Tone Spectrum at 1.7  
6-18. Dual Channel RF Mode: Single Tone Spectrum at 2.1  
GHz  
GHz  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
fCLK = 3.2 GHz, 1st, 2nd and 3rd Nyquist Zones Displayed  
fCLK = 3.2 GHz, 1st, 2nd and 3rd Nyquist Zones Displayed  
6-19. Dual Channel RF Mode: Single Tone Spectrum at 2.6  
6-20. Dual Channel RF Mode: Single Tone Spectrum at 3.1  
GHz  
GHz  
each tone at -6 dBFS, fCLK = 3.2 GHz, 1st, 2nd and 3rd Nyquist  
Zones Displayed  
each tone at -6 dBFS, fCLK = 3.2 GHz, 1st, 2nd and 3rd Nyquist  
Zones Displayed  
6-21. Dual Channel RF Mode: Dual Tone Spectrum at 1.7G Hz 6-22. Dual Channel RF Mode: Dual Tone Spectrum at 2.1 GHz  
± 10 MHz  
± 10 MHz  
each tone at -6 dBFS, fCLK = 3.2 GHz, 1st, 2nd and 3rd Nyquist  
Zones Displayed  
each tone at -6 dBFS, fCLK = 3.2 GHz, 1st, 2nd and 3rd Nyquist  
Zones Displayed  
6-23. Dual Channel RF Mode: Dual Tone Spectrum at 2.6 GHz 6-24. Dual Channel RF Mode: Dual Tone Spectrum at 3.1 GHz  
± 10 MHz  
± 10 MHz  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
fCLK = 3.2 GHz, 1st and 2nd Nyquist Zones Displayed  
fCLK = 3.2 GHz, 1st and 2nd Nyquist Zones Displayed  
6-25. Dual Channel RTZ Mode: Single Tone Spectrum at 100  
6-26. Dual Channel RTZ Mode: Single Tone Spectrum at 500  
MHz  
MHz  
fCLK = 3.2 GHz, 1st and 2nd Nyquist Zones Displayed  
fCLK = 3.2G Hz, 1st and 2nd Nyquist Zones Displayed  
6-27. Dual Channel RTZ Mode: Single Tone Spectrum at 1  
6-28. Dual Channel RTZ Mode: Single Tone Spectrum at 1.5  
GHz  
GHz  
each tone at -6 dBFS, fCLK = 3.2 GHz, 1st and 2nd Nyquist  
Zones Displayed  
each tone at -6 dBFS, fCLK = 3.2 GHz, 1st and 2nd Nyquist  
Zones Displayed  
6-29. Dual Channel RTZ Mode: Dual Tone Spectrum at 100  
6-30. Dual Channel RTZ Mode: Dual Tone Spectrum at 500  
MHz ± 10 MHz  
MHz ± 10 MHz  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
each tone at -6 dBFS, fCLK = 3.2 GHz, 1st and 2nd Nyquist  
Zones Displayed  
each tone at -6 dBFS, fCLK = 3.2 GHz, 1st and 2nd Nyquist  
Zones Displayed  
6-31. Dual Channel RTZ Mode: Dual Tone Spectrum at 1 GHz  
6-32. Dual Channel RTZ Mode: Dual Tone Spectrum at 1.5  
± 10 MHz  
GHz ± 10 MHz  
fCLK = 3.2 GHz, 1st through 5th Nyquist Zones Displayed  
fCLK = 3.2 GHz, 1st through 5th Nyquist Zones Displayed  
6-33. Dual Channel 2xRF Mode: Single Tone Spectrum at 3.3 6-34. Dual Channel 2xRF Mode: Single Tone Spectrum at 3.8  
to 6.3 GHz  
to 5.8 GHz  
fCLK = 3.2 GHz, 1st through 5th Nyquist Zones Displayed  
fCLK = 3.2 GHz, 1st through 5th Nyquist Zones Displayed  
6-35. Dual Channel 2xRF Mode: Single Tone Spectrum at 4.3 6-36. Dual Channel 2xRF Mode: Single Tone Spectrum at 4.7  
to 5.3 GHz  
to 4.9 GHz  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
each tone at -6 dBFS, fCLK = 3.2 GHz, 1st through 5th Nyquist  
Zones Displayed  
each tone at -6 dBFS, fCLK = 3.2 GHz, 1st through 5th Nyquist  
Zones Displayed  
6-37. Dual Channel 2xRF Mode: Dual Tone Spectrum at 3.3 to 6-38. Dual Channel 2xRF Mode: Dual Tone Spectrum at 3.8 to  
6.3 GHz ± 10 MHz  
5.8 GHz ± 10 MHz  
each tone at -6 dBFS, fCLK = 3.2 GHz, 1st through 5th Nyquist  
Zones Displayed  
each tone at -6 dBFS, fCLK = 3.2 GHz, 1st through 5th Nyquist  
Zones Displayed  
6-39. Dual Channel 2xRF Mode: Dual Tone Spectrum at 4.3 to 6-40. Dual Channel 2xRF Mode: Dual Tone Spectrum at 4.7 to  
5.3 GHz ± 10 MHz  
4.9 GHz ± 10 MHz  
fCLK = 6.4 GHz, 1st and 2nd Nyquist Zones Displayed  
fCLK = 6.4 GHz, 1st and 2nd Nyquist Zones Displayed  
6-41. Single Channel NRZ Mode: Single Tone Spectrum at  
6-42. Single Channel NRZ Mode: Single Tone Spectrum at 1  
200 MHz  
GHz  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
fCLK = 6.4 GHz, 1st and 2nd Nyquist Zones Displayed  
fCLK = 6.4 GHz, 1st and 2nd Nyquist Zones Displayed  
6-43. Single Channel NRZ Mode: Single Tone Spectrum at 2  
6-44. Single Channel NRZ Mode: Single Tone Spectrum at 3  
GHz  
GHz  
each tone at -6 dBFS, fCLK = 6.4 GHz, 1st and 2nd Nyquist  
Zones Displayed  
each tone at -6 dBFS, fCLK = 6.4 GHz, 1st and 2nd Nyquist  
Zones Displayed  
6-45. Single Channel NRZ Mode: Dual Tone Spectrum at 200  
6-46. Single Channel NRZ Mode: Dual Tone Spectrum at 1  
MHz ± 25 MHz  
GHz ± 25 MHz  
each tone at -6 dBFS, fCLK = 6.4 GHz, 1st and 2nd Nyquist  
Zones Displayed  
each tone at -6 dBFS, fCLK = 6.4 GHz, 1st and 2nd Nyquist  
Zones Displayed  
6-47. Single Channel NRZ Mode: Dual Tone Spectrum at 2  
6-48. Single Channel NRZ Mode: Dual Tone Spectrum at 3  
GHz ± 25 MHz  
GHz ± 25 MHz  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
fCLK = 6.4 GHz, 1st through 3rd Nyquist Zones Displayed  
fCLK = 6.4 GHz, 1st through 3rd Nyquist Zones Displayed  
6-49. Single Channel RF Mode: Single Tone Spectrum at 3.4  
6-50. Single Channel RF Mode: Single Tone Spectrum at 4.2  
GHz  
GHz  
fCLK = 6.4 GHz, 1st through 3rd Nyquist Zones Displayed  
fCLK = 6.4 GHz, 1st through 3rd Nyquist Zones Displayed  
6-51. Single Channel RF Mode: Single Tone Spectrum at 5.2  
6-52. Single Channel RF Mode: Single Tone Spectrum at 6.2  
GHz  
GHz  
each tone at -6 dBFS, fCLK = 6.4 GHz, 1st through 3rd Nyquist  
Zones Displayed  
each tone at -6 dBFS, fCLK = 6.4 GHz, 1st through 3rd Nyquist  
Zones Displayed  
6-53. Single Channel RF Mode: Dual Tone Spectrum at 3.4  
6-54. Single Channel RF Mode: Dual Tone Spectrum at 4.2  
GHz ± 25 MHz  
GHz ± 25 MHz  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
each tone at -6 dBFS, fCLK = 6.4 GHz, 1st through 3rd Nyquist  
Zones Displayed  
each tone at -6 dBFS, fCLK = 6.4 GHz, 1st through 3rd Nyquist  
Zones Displayed  
6-55. Single Channel RF Mode: Dual Tone Spectrum at 5.2  
6-56. Single Channel RF Mode: Dual Tone Spectrum at 6.2  
GHz ± 25 MHz  
GHz ± 25 MHz  
fCLK = 6.4 GHz, 1st and 2nd Nyquist Zones Displayed  
fCLK = 6.4 GHz, 1st and 2nd Nyquist Zones Displayed  
6-57. Single Channel RTZ Mode: Single Tone Spectrum at  
6-58. Single Channel RTZ Mode: Single Tone Spectrum at 1  
200 MHz  
GHz  
fCLK = 6.4 GHz, 1st and 2nd Nyquist Zones Displayed  
fCLK = 6.4 GHz, 1st and 2nd Nyquist Zones Displayed  
6-59. Single Channel RTZ Mode: Single Tone Spectrum at 2  
6-60. Single Channel RTZ Mode: Single Tone Spectrum at 3  
GHz  
GHz  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
each tone at -6 dBFS, fCLK = 6.4 GHz, 1st and 2nd Nyquist  
Zones Displayed  
each tone at -6d BFS, fCLK = 6.4 GHz, 1st and 2nd Nyquist  
Zones Displayed  
6-61. Single Channel RTZ Mode: Dual Tone Spectrum at 200  
6-62. Single Channel RTZ Mode: Dual Tone Spectrum at 1  
MHz ± 25 MHz  
GHz ± 25 MHz  
each tone at -6 dBFS, fCLK = 6.4 GHz, 1st and 2nd Nyquist  
Zones Displayed  
each tone at -6d BFS, fCLK = 6.4GHz, 1st and 2nd Nyquist  
Zones Displayed  
6-63. Single Channel RTZ Mode: Dual Tone Spectrum at 2  
6-64. Single Channel RTZ Mode: Dual Tone Spectrum at 3  
GHz ± 25 MHz  
GHz ± 25 MHz  
90  
-60  
-65  
-70  
-75  
-80  
NRZ, IOUTFS = 11mA  
NRZ, IOUTFS = 16mA  
NRZ, IOUTFS = 21mA  
RF, IOUTFS = 11mA  
RF, IOUTFS = 16mA  
RF, IOUTFS = 21mA  
85  
80  
75  
70  
65  
60  
55  
50  
NRZ, IOUTFS = 11mA  
NRZ, IOUTFS = 16mA  
NRZ, IOUTFS = 21mA  
RF, IOUTFS = 11mA  
RF, IOUTFS = 16mA  
RF, IOUTFS = 21mA  
-85  
-90  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Output Frequency (MHz)  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Output Frequency (MHz)  
fCLK = 3.2 GHz  
fCLK = 3.2 GHz  
6-65. Dual Channel NRZ and RF Mode: SFDR vs Output  
6-66. Dual Channel NRZ and RF Mode: HD2 vs Output  
Frequency and Output Current  
Frequency and Output Current  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-140  
-145  
-150  
-155  
-160  
-165  
-170  
NRZ, IOUTFS = 11mA  
NRZ, IOUTFS = 16mA  
NRZ, IOUTFS = 21mA  
RF, IOUTFS = 11mA  
RF, IOUTFS = 16mA  
RF, IOUTFS = 21mA  
NRZ, IOUTFS = 11mA  
NRZ, IOUTFS = 16mA  
NRZ, IOUTFS = 21mA  
RF, IOUTFS = 11mA  
RF, IOUTFS = 16mA  
RF, IOUTFS = 21mA  
-95  
-100  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Output Frequency (MHz)  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Output Frequency (MHz)  
fCLK = 3.2 GHz  
fCLK = 3.2 GHz  
6-67. Dual Channel NRZ and RF Mode: HD3 vs Output  
6-68. Dual Channel NRZ and RF Mode: NSD vs Output  
Frequency and Output Current  
Frequency and Output Current  
-50  
90  
80  
70  
60  
50  
40  
30  
NRZ, IOUTFS = 11mA  
NRZ, IOUTFS = 16mA  
NRZ, IOUTFS = 21mA  
RF, IOUTFS = 11mA  
RF, IOUTFS = 16mA  
RF, IOUTFS = 21mA  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
NRZ, 0dBFS  
RF, 0dBFS  
NRZ, -6dBFS  
NRZ, -12dBFS  
NRZ, -18dBFS  
NRZ, -24dBFS  
RF, -6dBFS  
RF, -12dBFS  
RF, -18dBFS  
RF, -24dBFS  
20  
10  
0
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Output Frequency (MHz)  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Output Frequency (MHz)  
fCLK = 3.2 GHz, tone spacing = 20 MHz  
fCLK = 3.2 GHz  
6-69. Dual Channel NRZ and RF Mode: IMD3 vs Output  
6-70. Dual Channel NRZ and RF Mode: SFDR vs Output  
Frequency and Output Current  
Frequency and Digital Level  
0
0
NRZ, 0dBFS  
RF, 0dBFS  
NRZ, 0dBFS  
RF, 0dBFS  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
NRZ, -6dBFS  
NRZ, -12dBFS  
NRZ, -18dBFS  
NRZ, -24dBFS  
RF, -6dBFS  
RF, -12dBFS  
RF, -18dBFS  
RF, -24dBFS  
NRZ, -6dBFS  
NRZ, -12dBFS  
NRZ, -18dBFS  
NRZ, -24dBFS  
RF, -6dBFS  
RF, -12dBFS  
RF, -18dBFS  
RF, -24dBFS  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Output Frequency (MHz)  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Output Frequency (MHz)  
fCLK = 3.2 GHz  
fCLK = 3.2 GHz  
6-71. Dual Channel NRZ and RF Mode: HD2 vs Output  
6-72. Dual Channel NRZ and RF Mode: HD3 vs Output  
Frequency and Digital Level  
Frequency and Digital Level  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
-130  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
NRZ, 0dBFS  
RF, 0dBFS  
NRZ, 0dBFS  
RF, 0dBFS  
NRZ, -6dBFS  
NRZ, -12dBFS  
NRZ, -18dBFS  
NRZ, -24dBFS  
RF, -6dBFS  
RF, -12dBFS  
RF, -18dBFS  
RF, -24dBFS  
NRZ, -6dBFS  
NRZ, -12dBFS  
NRZ, -18dBFS  
NRZ, -24dBFS  
RF, -6dBFS  
RF, -12dBFS  
RF, -18dBFS  
RF, -24dBFS  
-135  
-140  
-145  
-150  
-155  
-160  
-165  
-170  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Output Frequency (MHz)  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Output Frequency (MHz)  
fCLK = 3.2 GHz  
fCLK = 3.2 GHz, tone spacing = 20 MHz  
6-73. Dual Channel NRZ and RF Mode: NSD vs Output  
6-74. Dual Channel NRZ and RF Modes: IMD3 vs Output  
Frequency and Digital Level  
Frequency and Digital Level  
fCLK = 3.2 GHz  
fCLK = 3.2 GHz  
6-75. Dual Channel RTZ Mode: SFDR vs Output Frequency  
6-76. Dual Channel RTZ Mode: HD2 vs Output Frequency and  
and Digital Level  
Digital Level  
fCLK = 3.2 GHz  
fCLK = 3.2 GHz, 70 MHz offset  
6-77. Dual Channel RTZ Mode: HD3 vs Output Frequency and  
6-78. Dual Channel RTZ Mode: NSD vs Output Frequency  
Digital Level  
and Digital Level  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
fCLK = 3.2 GHz, tone spacing = 20 MHz  
fCLK = 3.2 GHz  
6-79. Dual Channel RTZ Mode: IMD3 vs Output Frequency  
6-80. Dual Channel RTZ Mode: SFDR vs Output Frequency  
and Digital Level  
and Output Current  
fCLK = 3.2 GHz  
fCLK = 3.2 GHz  
6-81. Dual Channel RTZ Mode: HD2 vs Output Frequency and 6-82. Dual Channel RTZ Mode: HD3 vs Output Frequency and  
Output Current  
Output Current  
fCLK = 3.2 GHz, 70 MHz offset  
fCLK = 3.2 GHz, tone spacing = 20 MHz  
6-83. Dual Channel RTZ Mode: NSD vs Output Frequency  
6-84. Dual Channel RTZ Mode: IMD3 vs Output Frequency  
and Output Current  
and Output Current  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
fCLK = 6.4 GHz  
fCLK = 6.4 GHz  
6-85. Dual Channel 2xRF Mode: SFDR vs Output Frequency  
6-86. Dual Channel 2xRF Mode: HD2 vs Output Frequency  
and Digital Level  
and Digital Level  
fCLK = 6.4 GHz  
fCLK = 6.4 GHz  
6-87. Dual Channel 2xRF Mode: HD3 vs Output Frequency  
6-88. Dual Channel 2xRF Mode: NSD vs Output Frequency  
and Digital Level  
and Digital Level  
fCLK = 6.4 GHz  
fCLK = 6.4 GHz, tone spacing = 20 MHz  
6-90. Dual Channel 2xRF Mode: SFDR vs Output Frequency  
6-89. Dual Channel 2xRF Mode: IMD3 vs Output Frequency  
and Output Current  
and Digital Level  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
IOUTFS = 20.5mA  
IOUTFS = 15.5mA  
IOUTFS = 10.5mA  
IOUTFS = 5.5mA  
3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000  
Output Frequency (MHz)  
fCLK = 6.4 GHz  
fCLK = 6.4 GHz  
6-91. Dual Channel 2xRF Mode: HD2 vs Output Frequency  
6-92. Dual Channel 2xRF Mode: HD3 vs Output Frequency  
and Output Current  
and Output Current  
fCLK = 6.4 GHz  
fCLK = 6.4 GHz, tone spacing = 20 MHz  
6-93. Dual Channel 2xRF Mode: NSD vs Output Frequency  
6-94. Dual Channel 2xRF Mode: IMD3 vs Output Frequency  
and Output Current  
and Output Current  
90  
-40  
NRZ, IOUTFS = 11mA  
NRZ, IOUTFS = 16mA  
NRZ, IOUTFS = 21mA  
RF, IOUTFS = 11mA  
RF, IOUTFS = 16mA  
RF, IOUTFS = 21mA  
NRZ, IOUTFS = 11mA  
NRZ, IOUTFS = 16mA  
NRZ, IOUTFS = 21mA  
RF, IOUTFS = 11mA  
RF, IOUTFS = 16mA  
RF, IOUTFS = 21mA  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
0
1000 2000 3000 4000 5000 6000 7000 8000 9000  
Output Frequency (MHz)  
0
1000 2000 3000 4000 5000 6000 7000 8000 9000  
Output Frequency (MHz)  
fCLK = 6.4 GHz  
fCLK = 6.4 GHz  
6-95. Single Channel NRZ and RF Modes: SFDR vs Output  
6-96. Single Channel NRZ and RF Modes: HD2 vs Output  
Frequency and Output Current  
Frequency and Output Current  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-130  
-135  
-140  
-145  
-150  
-155  
-160  
-165  
-170  
NRZ, IOUTFS = 11mA  
NRZ, IOUTFS = 16mA  
NRZ, IOUTFS = 21mA  
RF, IOUTFS = 11mA  
RF, IOUTFS = 16mA  
RF, IOUTFS = 21mA  
NRZ, IOUTFS = 11mA  
NRZ, IOUTFS = 16mA  
NRZ, IOUTFS = 21mA  
RF, IOUTFS = 11mA  
RF, IOUTFS = 16mA  
RF, IOUTFS = 21mA  
-85  
-90  
0
1000 2000 3000 4000 5000 6000 7000 8000 9000  
Output Frequency (MHz)  
0
1000 2000 3000 4000 5000 6000 7000 8000 9000  
Output Frequency (MHz)  
fCLK = 6.4 GHz  
fCLK = 6.4 GHz  
6-97. Single Channel NRZ and RF Modes: HD3 vs Output  
6-98. Single Channel NRZ and RF Modes: NSD vs Output  
Frequency and Output Current  
Frequency and Output Current  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
80  
70  
60  
50  
40  
30  
NRZ, 0dBFS  
RF, 0dBFS  
20  
10  
0
NRZ, -6dBFS  
NRZ, -12dBFS  
NRZ, -18dBFS  
NRZ, -24dBFS  
RF, -6dBFS  
RF, -12dBFS  
RF, -18dBFS  
RF, -24dBFS  
NRZ, IOUTFS = 11mA  
NRZ, IOUTFS = 16mA  
NRZ, IOUTFS = 21mA  
RF, IOUTFS = 11mA  
RF, IOUTFS = 16mA  
RF, IOUTFS = 21mA  
-85  
-90  
0
1000 2000 3000 4000 5000 6000 7000 8000 9000  
Output Frequency (MHz)  
0
1000 2000 3000 4000 5000 6000 7000 8000 9000  
Output Frequency (MHz)  
fCLK = 6.4 GHz, tone spacing = 20 MHz  
fCLK = 6.4 GHz  
6-99. Single Channel NRZ and RF Modes: IMD3 vs Output  
6-100. Single Channel NRZ and RF Modes: SFDR vs Output  
Frequency and Output Current  
Frequency and Digital Level  
0
0
NRZ, 0dBFS  
RF, 0dBFS  
NRZ, 0dBFS  
RF, 0dBFS  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
NRZ, -6dBFS  
NRZ, -12dBFS  
NRZ, -18dBFS  
NRZ, -24dBFS  
RF, -6dBFS  
RF, -12dBFS  
RF, -18dBFS  
RF, -24dBFS  
NRZ, -6dBFS  
NRZ, -12dBFS  
NRZ, -18dBFS  
NRZ, -24dBFS  
RF, -6dBFS  
RF, -12dBFS  
RF, -18dBFS  
RF, -24dBFS  
0
1000 2000 3000 4000 5000 6000 7000 8000 9000  
Output Frequency (MHz)  
0
1000 2000 3000 4000 5000 6000 7000 8000 9000  
Output Frequency (MHz)  
fCLK = 6.4 GHz  
fCLK = 6.4 GHz  
6-101. Single Channel NRZ and RF Modes: HD2 vs Output  
6-102. Single Channel NRZ and RF Modes: HD3 vs Output  
Frequency and Digital Level  
Frequency and Digital Level  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
-130  
-135  
-140  
-145  
-150  
-155  
-160  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
NRZ, 0dBFS  
RF, 0dBFS  
NRZ, 0dBFS  
RF, 0dBFS  
-165  
-170  
-175  
-180  
-90  
NRZ, -6dBFS  
NRZ, -12dBFS  
NRZ, -18dBFS  
NRZ, -24dBFS  
RF, -6dBFS  
RF, -12dBFS  
RF, -18dBFS  
RF, -24dBFS  
NRZ, -6dBFS  
NRZ, -12dBFS  
NRZ, -18dBFS  
NRZ, -24dBFS  
RF, -6dBFS  
RF, -12dBFS  
RF, -18dBFS  
RF, -24dBFS  
-100  
-110  
-120  
0
1000 2000 3000 4000 5000 6000 7000 8000 9000  
Output Frequency (MHz)  
0
1000 2000 3000 4000 5000 6000 7000 8000 9000  
Output Frequency (MHz)  
fCLK = 6.4 GHz  
fCLK = 6.4 GHz, tone spacing = 20 MHz  
6-103. Single Channel NRZ and RF Modes: Noise Spectral  
6-104. Single Channel NRZ and RF Modes: IMD3 vs Output  
Density vs Output Frequency and Digital Level  
Frequency and Digital Level  
-50  
-55  
-60  
-65  
-70  
IOUTFS = 10.5mA  
IOUTFS = 15.5mA  
IOUTFS = 20.5mA  
-75  
0
1000  
2000  
3000  
4000  
5000 6000  
Output Frequency (MHz)  
fCLK = 6.4 GHz  
fCLK = 6.4 GHz  
6-106. Single Channel RTZ Mode: HD2 vs Output Frequency  
6-105. Single Channel RTZ Mode: SFDR vs Output Frequency  
and Output Current  
and Output Current  
fCLK = 6.4 GHz  
fCLK = 6.4 GHz, 70 MHz offset  
6-107. Single Channel RTZ Mode: HD3 vs Output Frequency 6-108. Single Channel RTZ Mode: NSD vs Output Frequency  
and Output Current  
and Output Current  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
fCLK = 6.4 GHz, tone spacing = 20 MHz  
fCLK = 6.4 GHz  
6-109. Single Channel RTZ Mode: IMD3 vs Output Frequency 6-110. Single Channel RTZ Mode: SFDR vs Output Frequency  
and Output Current  
and Digital Level  
fCLK = 6.4 GHz  
fCLK = 6.4 GHz  
6-111. Single Channel RTZ Mode: HD2 vs Output Frequency  
6-112. Single Channel RTZ Mode: HD3 vs Output Frequency  
and Digital Level  
and Digital Level  
fCLK = 6.4 GHz, 70 MHz offset  
fCLK = 6.4 GHz, tone spacing = 20 MHz  
6-113. Single Channel RTZ Mode: NSD vs Output Frequency 6-114. Single Channel RTZ Mode: IMD3 vs Output Frequency  
and Digital Level  
and Digital Level  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
Signal 90% Nyquist BW, 5% notch in center, PAR = 11.4 dB,  
fCLK = 3.2 GHz  
Signal 90% Nyquist BW, 5% notch in center, PAR = 11.4 dB,  
fCLK = 3.2 GHz  
6-115. Dual Channel NRZ and RF Modes: NPR vs Digital  
6-116. Dual Channel RTZ Mode: NPR vs Digital Level  
Level  
Signal 90% Nyquist BW, 5% notch in center, PAR = 11.4 dB,  
fCLK = 6.4 GHz  
Signal 90% Nyquist BW, 5% notch in center, PAR = 11.4 dB,  
fCLK = 6.4 GHz  
6-117. Dual Channel 2xRF Mode: NPR vs Digital Level  
6-118. Single Channel NRZ and RF Modes: NPR vs Digital  
Level  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
100  
101  
102  
103  
104  
105  
106  
107  
108  
Offset Frequency (Hz)  
FOUT = 995 MHz, input clock phase noise removed  
Signal 90% Nyquist BW, 5% notch in center, PAR = 11.4 dB,  
fCLK = 6.4 GHz  
6-120. Single Channel NRZ Mode: Additive Phase Noise  
6-119. Single Channel RTZ Mode: NPR vs Digital Level  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
-60  
-62  
-64  
-66  
-68  
-70  
-72  
-74  
-76  
-150  
-152  
-154  
-156  
-158  
-160  
-162  
-164  
-166  
-168  
-170  
0dBFS, FOUT=2096MHz  
0dBFS, FOUT=4304MHz, RF  
-20dBFS, FOUT=2096MHz  
-20dBFS, FOUT=4304MHz, RF  
FOUT=2100MHz (NRZ Mode)  
-78  
FOUT=4300MHz (RF Mode)  
-80  
-10%  
-5%  
0
5%  
10%  
-10%  
-5%  
0
5%  
10%  
Supply Voltage (% change from nominal)  
Supply Voltage (% change from nominal)  
70 MHz offset, all supplies changed together  
50 MHz tone spacing, -6dBFS/tone, all supplies changed  
together  
6-122. Single Channel Mode: NSD vs Supply Voltage  
6-121. Single Channel Mode: IMD3 vs Supply Voltage  
-60  
-62  
-64  
-66  
-68  
-70  
-72  
-74  
-76  
-150  
-152  
-154  
-156  
-158  
-160  
-162  
-164  
-166  
0dBFS, 2096MHz  
0dBFS, 4304MHz, RF  
-20dBFS, 2096MHz  
-20dBFS, 4304MHz, RF  
FOUT = 2100MHz (NRZ Mode)  
-78  
-168  
-170  
FOUT = 4300MHz (RF Mode)  
-80  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (C  
Temperature (C)  
70 MHz offset  
50 MHz tone spacing, -6dBFS/tone  
6-124. Single Channel Mode: NSD vs Temperature  
6-123. Single Channel Mode: IMD3 vs Temperature  
2.5  
2.25  
2
38.5  
2xRF mode  
NRZ mode  
RF mode  
RTZ mode  
38.4  
1.75  
1.5  
1.25  
1
38.3  
38.2  
38.1  
38  
0.75  
2xRF mode  
NRZ mode  
RF mode  
RTZ mode  
0.5  
0.25  
0
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
0
500 1000 1500 2000 2500 3000 3500 4000  
Sample Rate (MSPS)  
Sample Rate (MSPS)  
6-125. Dual Channel Mode: Power Dissipation vs Sample  
6-126. Dual Channel Mode: IVDDA18 vs Sample Rate  
Rate  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
0.2  
0.15  
0.1  
0.05  
0
2xRF mode  
NRZ mode  
RF mode  
RTZ mode  
6-128. Dual Channel Mode: IVDDCLK18 vs Sample Rate  
0
500 1000 1500 2000 2500 3000 3500 4000  
Sample Rate (MSPS)  
6-127. Dual Channel Mode: IVDDA vs Sample Rate  
1000  
900  
800  
700  
600  
500  
400  
300  
2xRF mode  
NRZ mode  
200  
RF mode  
RTZ mode  
100  
0
0
500 1000 1500 2000 2500 3000 3500 4000  
Sample Rate (MSPS)  
6-129. Dual Channel Mode: IVDDCLK vs Sample Rate  
6-130. Dual Channel Mode: IVDDDIG vs Sample Rate  
500  
450  
400  
350  
300  
250  
200  
7
6.9  
6.8  
6.7  
6.6  
6.5  
6.4  
150  
6.3  
2xRF mode  
NRZ mode  
RF mode  
RTZ mode  
2xRF mode  
NRZ mode  
RF mode  
RTZ mode  
100  
6.2  
50  
0
6.1  
6
0
500 1000 1500 2000 2500 3000 3500 4000  
Sample Rate (MSPS)  
0
500 1000 1500 2000 2500 3000 3500 4000  
Sample Rate (MSPS)  
6-131. Dual Channel Mode: IVDDE vs Sample Rate  
6-132. Dual Channel Mode: IVDDIO vs Sample Rate  
84.5  
2
1.75  
1.5  
2xRF mode  
NRZ mode  
RF mode  
RTZ mode  
84.4  
1.25  
1
84.3  
84.2  
84.1  
84  
0.75  
0.5  
NRZ mode  
RF mode  
RTZ mode  
0.25  
0
0
500 1000 1500 2000 2500 3000 3500 4000  
Sample Rate (MSPS)  
0
1000  
2000  
3000  
4000  
5000  
6000  
7000  
Sample Rate (MSPS)  
6-133. Dual Channel Mode: IVEE18 vs Sample Rate  
6-134. Single Channel Mode: Power Dissipation vs Sample  
Rate  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
0.2  
0.18  
0.16  
0.14  
0.12  
0.1  
0.08  
0.06  
0.04  
0.02  
0
NRZ mode  
RF mode  
RTZ mode  
0
1000  
2000  
3000  
4000  
5000  
6000  
7000  
Sample Rate (MSPS)  
6-135. Single Channel Mode: IVDDA18 vs Sample Rate  
6-136. Single Channel Mode: IVDDA vs Sample Rate  
8
7.9  
7.8  
7.7  
7.6  
7.5  
7.4  
7.3  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
7.2  
NRZ mode  
RF mode  
RTZ mode  
NRZ mode  
RF mode  
RTZ mode  
100  
0
7.1  
7
0
1000  
2000  
3000  
4000  
5000  
6000  
7000  
0
1000  
2000  
3000  
4000  
5000  
6000  
7000  
Sample Rate (MSPS)  
Sample Rate (MSPS)  
6-138. Single Channel Mode: IVDDCLK vs Sample Rate  
6-137. Single Channel Mode: IVDDCLK18 vs Sample Rate  
500  
450  
400  
350  
300  
250  
200  
150  
100  
NRZ mode  
RF mode  
RTZ mode  
50  
0
0
1000  
2000  
3000  
4000  
5000  
6000  
7000  
Sample Rate (MSPS)  
6-139. Single Channel Mode: IVDDDIG vs Sample Rate  
6-140. Single Channel Mode: IVDDE vs Sample Rate  
48  
47.9  
47.8  
47.7  
47.6  
47.5  
47.4  
47.3  
47.2  
NRZ mode  
RF mode  
RTZ mode  
47.1  
47  
0
1000  
2000  
3000  
4000  
5000  
6000  
7000  
Sample Rate (MSPS)  
6-142. Single Channel Mode: IVEE vs Sample Rate  
6-141. Single Channel Mode: IVDDIO vs Sample Rate  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DAC12DL3200 is a dual channel, RF sampling digital-to-analog converter (DAC) capable of input and  
output rates of up to 3.2-GSPS in dual channel mode or 6.4-GSPS in single channel mode. The DAC can  
transmit signal bandwidths beyond 2 GHz at carrier frequencies approaching 8 GHz when using the multi-  
Nyquist output modes. The high output frequency range enables direct sampling through C-band (8 GHz) and  
beyond.  
The DAC12DL3200 can be used as an I/Q baseband DAC in dual channel mode. The high sampling rate and  
output frequency range also makes the DAC12DL3200 capable of arbitrary waveform generation (AWG) and  
direct digital synthesis (DDS). An integrated DDS block enables single tone and two tone generation on chip.  
The DAC12DL3200 has a parallel LVDS interface that consists of up to 48 LVDS pairs and 4 DDR LVDS clocks.  
A strobe signal is used to synchronize the interface which can be sent over the least significant bit (LSB) or  
optionally over dedicated strobe LVDS lanes. Each LVDS pair is capable of up to 1.6 Gbps. The LVDS interface  
has a total latency of 6 to 8 ns (depending on mode of operation) from digital data input to analog output for  
latency sensitive applications.  
Multi-device synchronization is supported using a synchronization signal (SYSREF). SYSREF windowing eases  
synchronization in multi-device systems. The clocking scheme is compatible with JESD204B clocking devices.  
7.2 Functional Block Diagram  
SCAN_EN  
DACCLK+  
DACCLK  
SYSREF  
SCLK  
DACCLKt  
SCS  
SDI  
SYSREF  
Windowing  
SYSREF+  
÷4  
SDO  
SYSREFt  
TXENABLE  
RESET  
SLEEP  
ALARM  
BUS A  
BUS B  
BUS C  
BUS D  
FIFO A  
DA[11:0]+  
12  
12  
12  
12  
Pattern  
Checker  
DA[11:0]t  
SYNC  
Rst Rst  
Offset  
DASTR+  
DASTRt  
VOUTA+  
DACLK+  
DACLKt  
Multi-Nyquist DAC  
VOUTAt  
FIFO B  
DACA_SRC  
DB[11:0]+  
Pattern  
Checker  
DB[11:0]t  
Rst Rst  
Offset  
÷N  
TRIGCLK  
DBSTR+  
DBSTRt  
Direct Digital  
Synthesis  
(DDS) Block  
NCO  
Selection  
Data MUX  
(1ch/2ch)  
(24/48 pairs)  
NCOSEL3  
NCOSEL2  
NCOSEL1  
NCOSEL0  
DBCLK+  
DBCLKt  
Single-Tone  
and Two-Tone  
Generation  
FIFO C  
DC[11:0]+  
Pattern  
Checker  
NCOBANKSEL  
DC[11:0]t  
Rst Rst  
Offset  
DCSTR+  
DCSTRt  
VOUTB+  
DCCLK+  
DCCLKt  
Multi-Nyquist DAC  
VOUTBt  
FIFO D  
DACB_SRC  
DD[11:0]+  
Pattern  
Checker  
DD[11:0]t  
Rst Rst  
Offset  
DDSTR+  
FIFO OFFSET  
(Latency  
Optimization)  
FIFO  
Latency  
Measure  
DDSTRt  
DDCLK+  
DDCLKt  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 DAC Output Modes  
DAC12DL3200 consists of a multi-Nyquist DAC core capable of direct transmission through the third Nyquist  
zone. The high output frequency capabilities are enabled by specific output waveforms that alter the output  
waveform response. In other words, the waveforms change the frequency response of the DAC to enhance the  
DAC images in alternate Nyquist zones. The output waveform can be selected in the MXMODE register. A list of  
output modes along with their properties and uses are provided in 7-1 and in the following sections. Note that  
TS is the period of the sampling clock provided to the DACCLK input. The output waveform responses shown in  
this section do not consider the effect of the DAC analog bandwidth or external passive or active signal chain  
components.  
7-1. Summary of Multi-Nyquist Output Modes and Uses  
USABLE OPERATING  
MODES  
OPTIMAL NYQUIST  
ZONE  
PEAK THEORETICAL  
OUTPUT POWER(1)  
DAC MODE  
PASSES DC  
Non-return-to-zero (NRZ)  
Return-to-zero (RZ)  
Single DAC, Dual DAC  
Single DAC, Dual DAC  
Single DAC, Dual DAC  
Yes  
Yes  
No  
1
1, 2  
2
0 dBFS  
6 dBFS  
2.8 dBFS  
Radio Frequency (RF)  
2x Radio Frequency  
(2xRF)  
Dual DAC with 2x  
DACCLK  
No  
3, 4, 5  
8.8 dBFS  
(1) Peak power here does not include the effect of analog output bandwidth due to parasitic passive components or external components  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.3.1.1 NRZ Mode  
Non-return-to-zero (NRZ) mode is the standard zero-order hold output waveform. The sample is output from the  
DAC and held until the next sample is output. The timing diagram for NRZ mode is given in 7-1. This output  
waveform can be thought of as a rectangular filter in time domain resulting in a sinc response in the frequency  
domain. The result is a frequency response that has significant power loss in the 2nd and 3rd Nyquist zones and  
a null at the sampling rate. It is meant for 1st Nyquist operation only. A plot of the frequency response of NRZ  
mode is shown in 7-2.  
DACCLK+  
DACCLKt  
tpd  
+IFS  
DAC Output  
0
(Sine Wave)  
-IFS  
TS = 1/FDACCLK  
7-1. NRZ Mode Timing Diagram  
0
-10  
-20  
-30  
-40  
-50  
0
0.5  
1
FOUT/FDAC  
1.5  
2
NRZm  
7-2. NRZ Mode Output Waveform Frequency Response  
7.3.1.2 RTZ Mode  
Return-to-zero (RTZ) mode is similar to the standard zero-order hold output waveform used by DACs, however  
the response adds a return-to-zero pulse for the second half of the sample period. The timing diagram for RTZ  
mode is given in 7-3. This output waveform can be thought of as a rectangular filter in time domain that is half  
the length of which is used in NRZ mode, resulting in a sinc response that is expanded by two times in the  
frequency domain. The result is a frequency response with less power loss in the 2nd Nyquist zone and a null at  
twice the sampling rate. It can be used for 1st and 2nd Nyquist zone applications. The return-to-zero pulse  
provides a flatter response through the first Nyquist zone at a tradeoff of 6-dB lower peak power. A plot of the  
frequency response of RTZ mode is shown in 7-4.  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
DACCLK+  
DACCLKt  
tpd  
+IFS  
DAC Output  
0
(Sine Wave)  
-IFS  
TS = 1/FDACCLK  
tPULSE  
7-3. RTZ Mode Timing Diagram  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
0
0.5  
1
1.5  
FOUT/FDAC  
2
2.5  
3
RTZm  
7-4. RTZ Mode Output Waveform Response  
7.3.1.3 RF Mode  
RF mode adds a mixing function to the DAC output response by inverting the sample halfway through the  
sample period. The result is a sinc response that peaks and provides maximum flatness in the 2nd Nyquist zone.  
The timing diagram for RF mode is given in 7-5. A plot of the frequency response of RF mode is shown in 图  
7-6.  
DACCLK+  
DACCLKt  
tpd  
+VFS  
DAC Output  
0
(Sine Wave)  
TS /2  
-VFS  
TS = 1/FDACCLK  
7-5. RF Mode Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: DAC12DL3200  
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
0
0.5  
1
1.5  
Fout/Fs  
2
2.5  
3
RFmo  
7-6. RF Mode Output Waveform Response  
7.3.1.4 2xRF Mode  
2xRF mode is a combination of RF mode (return to complement) for the first half of the sample period and a  
return-to-zero for the second half of the sample period. The result is a sinc response that peaks and provides  
maximum flatness in the 3rd, 4th and 5th Nyquist zones. 2xRF mode is only available in dual channel mode and  
requires an input clock at twice the DAC sample rate. The timing diagram for 2xRF mode is given in 7-7. A  
plot of the frequency response of RF mode is shown in 7-8.  
DACCLK+  
DACCLKt  
tpd  
+VFS  
DAC Output  
0
(Sine Wave)  
TS /4  
TS /2  
-VFS  
TS = 2/FDACCLK  
7-7. 2xRF Mode Timing Diagram  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
0
0.5  
1
1.5  
FOUT/FDAC  
2
2.5  
3
2xRF  
7-8. 2xRF Mode Output Waveform Frequency Response  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.3.2 DAC Output Interface  
The DAC output is designed for high output frequencies of 8 GHz and above. Careful layout and component  
choices are needed in order to achieve high output frequencies. The full frequency response of the DAC can be  
found by combining the analog frequency response of the DAC to the output mode responses shown in 7.3.1.  
7.3.2.1 DAC Output Structure  
DAC12DL3200 analog output structure is shown in 7-9 for one DAC channel. The outputs VOUTx+/- must  
have a DC path to an external supply voltage, and the DAC sink current from the external supply. A differential  
termination resistance sits between the two current output pins, VOUTx+/-. The current steering switch array  
connects to the outputs and steers current between the output pins based on the digital code. A constant DC  
current bias, IBIAS, draws current from both outputs regardless of the digital code.  
VOUTx+  
VOUTxt  
RTERM  
Current Steering  
Switch Array  
DATA[11:0]  
IBIAS  
IFS  
IBIAS  
VADAC18t  
VADAC18t  
VADAC18t  
7-9. DAC12DL3200 Analog Output Structure  
Examples of conversions from digital codes to currents on the VOUTx+/- outputs are given in 7-2. The  
currents provided include both the current steered portion and the bias currents on each leg.  
7-2. Example Code to Current Conversions  
2's COMPLEMENT  
0111 1111 1111  
0011 1111 1111  
0000 0000 0000  
1100 0000 0001  
1000 0000 0000  
IOUTx+ CURRENT  
IOUTx- CURRENT  
IBIAS  
IFS + IBIAS  
¾ IFS + IBIAS  
½ IFS + IBIAS  
¼ IFS + IBIAS  
IBIAS  
¼ IFS + IBIAS  
½ IFS + IBIAS  
¾ IFS + IBIAS  
IFS + IBIAS  
7.3.2.2 Full-scale Current Adjustment  
The total DAC output current is set through the external RBIAS resistor and the COARSE_CUR_A/B and the  
FINE_CUR_A and FINE_CUR_B registers. There is a switched fullscale current and a static fullscale current.  
The switched current is divided between VOUTA/B+ and VOUTA/B- in proportion to the digital signal value at the  
DAC. The static current is fixed at the output of each ball VOUTA/B+ and VOUTA/B-.  
The equation for the total DAC switched output current is  
where  
Rbias is the external bias resistor  
COARSE is the value of the register COARSE_CUR_A/B (0 to 15)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: DAC12DL3200  
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
FINE is the value of register FINE_CUR_A/FINE_CUR_B (0 to 63)  
The static current is a fixed fraction of the switched current  
IFSSTATIC = 0.125*IFSSWITCH  
(1)  
With a 3.6kΩ bias resistor, COARSE_CUR_A/B = 15 and FINE_CUR_A/B = 31, IFSSWITCHED is nominaly  
20.5mA and IFSSTATIC nominally 2.56mA (on each ball + and -).  
7.3.2.3 Example Analog Output Interfaces  
There are numerous ways to interface with the DAC analog output. A few are shown below. In all cases a DC  
path for current must be provided from a positive voltage source, typically VADAC18+. Further, the voltage at  
each output pin must be within the compliance voltage range for all digital codes.  
The most common interface makes use of a transformer or balun. Some transformers have a center tap that can  
be used to provide a DC bias to the secondary transformer winding. This is demonstrated in 7-10. For a  
center-tapped transformer the center tap should be tied to the VDDA18A and VDDA18B supply voltages. RF  
choke inductors can be used to provide the DC bias for baluns without a center tap as shown in 7-11. The  
chokes should be well matched and carefully laid out in order to optimize even order distortion suppression.  
Many high frequency baluns will not have a center tap for the DC bias.  
VADAC18+  
DAC Core  
RTERM  
RL  
7-10. DAC Output Interface using Center-Tapped Transformer  
VADAC18+  
DAC Core  
RTERM  
RL  
7-11. DAC Output Interface using RF Chokes and Transformer  
Both transformer and balun output interfaces will not pass DC and low frequency signals. Instead, a higher bias  
voltage should be used with pull-up resistors to bias the DAC within its compliance voltage range. Careful supply  
sequencing is required to prevent damage to the DAC if VBIAS exceeds the absolute maximum rated voltage. In  
all cases, voltages at the DAC pins must be within the absolute maximum rated voltages.  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
VBIAS  
RBIAS  
RBIAS  
DAC Core  
RTERM  
7-12. DAC Output Interface with DC Coupling  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.3.3 LVDS Interface  
Data is provided to DAC12DL3200 through a parallel low-voltage differential signaling (LVDS) interface. The high  
input data rate capabilities of the DAC require up to four 12-bit buses resulting in a total of 48 LVDS lanes at up  
to 1.6 Gbps per lane. Up to four source-synchronous dual-data rate (DDR) clocks, one per 12-bit LVDS bus, are  
used to simplify interface timing requirements. In addition, four synchronization strobes (DxSTR+/) can be  
used in conjunction with SYSREF+/- to achieve deterministic latency through the DAC. The strobes are also  
used to align the data in modes with multiple input buses per DAC. Flexible interface modes allow a tradeoff in  
the number of lanes, bit rates and DAC sample rates. The modes are described in 7-3. Each mode is  
described in additional detail in the following sections.  
Data samples in all modes are sent to the DAC from earliest sample to latest sample based on the LVDS bus  
alphabetic order. For example, in MODE0 the first two samples for channel A are sent in order from buses A and  
B, while the first two samples for channel B are sent in order from buses C and D (See 7-14).  
7-3. DAC12DL3200 Operating Modes  
MAX FBIT  
(Mbps)  
MAX FS  
(Mbps)  
MAX FCLK  
(MHz)  
MODE LVDS_MODE DCM_MODE  
DESCRIPTION  
# DACs TOTAL BUSES  
Dual channel, 2 LVDS  
banks/channel  
1
1
0
0
2
0
1
0
1
0
2
2
2
2
1
4
4
2
2
4
1600  
1600  
1600  
1600  
1600  
3200  
3200  
1600  
1600  
6400  
3200  
6400  
1600  
3200  
6400  
0
2xRF, Dual channel, 2  
LVDS banks/channel  
Dual channel, 1 LVDS  
bank/channel  
1
2
2xRF, Dual channel, 1  
LVDS bank/channel  
Single channel, 4 LVDS  
banks/channel  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.3.3.1 MODE0: Two LVDS banks per channel  
MODE0 uses two 12-bit LVDS data buses per channel. Due to the high bit rate, each 12-bit LVDS bus has its  
own dual-data rate (DDR) clock to maximize timing windows resulting in four total data clocks. This mode allows  
half of the maximum data rate into dual DACs. 7-4 shows the LVDS bus, data clock and strobe assignments  
for each channel. 7-13 shows the block diagram for this mode for further understanding, including the signal  
assignments.  
7-4. MODE0 LVDS Bus, Data Clock and Strobe Signal Assignments  
DAC CHANNEL  
LVDS BUSES  
DATA CLOCKS  
DACLK, DBCLK  
DCCLK, DDCLK  
STROBE USED  
DASTR, DBSTR  
DCSTR, DDSTR  
A
B
A, B  
C, D  
DACLK+/t  
DASTR+/t  
LVDS  
Bus A  
DA0...11+/t  
2x MUX  
DAC A  
DBCLK+/t  
DBSTR+/t  
LVDS  
Bus B  
DB0...11+/t  
DCCLK+/t  
DCSTR+/t  
LVDS  
Bus C  
DC0...11+/t  
2x MUX  
DAC B  
DDCLK+/t  
DDSTR+/t  
LVDS  
Bus D  
DD0...11+/t  
7-13. MODE0 Block Diagram  
7-14 shows the functional timing diagram for MODE0. Four 12-bit buses are used, with buses A and B for  
DAC channel A data and buses C and D for DAC channel B data. There is no strict timing skew requirement  
between LVDS buses (e.g. A to B or A to D) as long as the internal FIFOs maintain sufficient offset between read  
and write pointers.  
Having the LVDS banks staggered as shown in 7-14 allows the data from each bank to arrive as it is needed  
and results in minimal latency from each bank. If the LVDS banks have their clocks aligned, then the data on  
buses B and D are provided to the chip 1 DAC clocks before it is needed.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: DAC12DL3200  
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
DACCLK+  
Sampling  
Clock  
DACCLK–  
DCLKA+/–  
LVDS Bus  
DASTR+/–  
A
DA[11...0]+/–  
XX  
A0[11:0]  
A2[11:0]  
DCLKB+/–  
DBSTR+/–  
LVDS Bus  
B
DB[11...0]+/–  
XX  
A1[11:0]  
A3[11:0]  
DCLKC+/–  
DCSTR+/–  
LVDS Bus  
C
DC[11...0]+/–  
XX  
B0[11:0]  
B2[11:0]  
DCLKD+/–  
DDSTR+/–  
LVDS Bus  
D
DD[11...0]+/–  
XX  
B1[11:0]  
B3[11:0]  
7-14. MODE0 Functional Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.3.3.2 MODE1: One LVDS bank per channel  
MODE1 uses one 12-bit LVDS data bus per channel. One dual-data rate (DDR) clock is used for each 12-bit  
LVDS data bus resulting in two total data clocks. This mode allows one fourth of the maximum sampling rate of  
the DAC. 7-5 shows the LVDS bus, data clock and strobe assignments for each channel. 7-15 shows the  
block diagram for this mode for further understanding, including the signal assignments.  
7-5. MODE1 LVDS Bus, Data Clock and Strobe Signal Assignments  
DAC CHANNEL  
LVDS BUSES  
DATA CLOCKS  
STROBE USED  
A
B
A
C
DACLK  
DASTR  
DCCLK  
DCSTR  
DACLK+/t  
DASTR+/t  
LVDS  
Bus A  
1x MUX  
DAC A  
DA0...11+/t  
DCCLK+/t  
DCSTR+/t  
LVDS  
Bus C  
1x MUX  
DAC B  
DC0...11+/t  
7-15. MODE1 Block Diagram  
7-16 shows the functional timing diagram for MODE1. Two 12-bit buses are used, with bus A for DAC channel  
A data and bus C for DAC channel B data. There is no strict timing skew requirement between LVDS buses (e.g.  
A to C) as long as the internal FIFOs maintain sufficient offset between read and write pointers.  
DACCLK+  
Sampling  
Clock  
DACCLK–  
DACLK+/–  
LVDS Bus  
DASTR+/–  
A
DA[11...0]+/–  
XX  
A0[11:0]  
A1[11:0]  
DCCLK+/–  
DCSTR+/–  
LVDS Bus  
C
DC[11...0]+/–  
XX  
B0[11:0]  
B1[11:0]  
7-16. MODE1 Functional Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: DAC12DL3200  
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.3.3.3 MODE2: Four LVDS banks, single channel mode  
MODE2 uses a single DAC channel fed by four 12-bit LVDS data buses resulting in 48 LVDS lanes total. Due to  
the high bit rate, each 12-bit LVDS bus has its own dual-data rate (DDR) clock to maximize timing windows. This  
mode allows the maximum data rate into a single DAC. 7-6 shows the LVDS bus, data clock and strobe  
assignments for each channel. 7-17 shows the block diagram for this mode for further understanding,  
including the signal assignments.  
7-6. MODE2 LVDS Bus, Data Clock and Strobe Assignments  
DAC CHANNEL  
LVDS BUSES  
DATA CLOCKS  
STROBE USED  
DACLK, DBCLK, DCCLK,  
DDCLK  
DASTR, DBSTR, DCSTR,  
DDSTR  
A or B  
A, B, C, D  
DACLK+/t  
DASTR+/t  
LVDS  
Bus A  
DA0...11+/t  
DBCLK+/t  
DBSTR+/t  
LVDS  
Bus B  
DB0...11+/t  
DAC A  
4x MUX  
DCCLK+/t  
DCSTR+/t  
LVDS  
Bus C  
DC0...11+/t  
DDCLK+/t  
DDSTR+/t  
LVDS  
Bus D  
DD0...11+/t  
7-17. MODE2 Block Diagram  
7-18 shows the functional timing diagram for MODE2. Four 12-bit buses are used (A, B, C and D) to send  
data to the DAC. There is no strict timing skew requirement between LVDS buses (e.g. A to B or A to D) as long  
as the internal FIFOs maintain sufficient offset between read and write pointers.  
Having the LVDS banks staggered as shown in 7-18 allows the data from each bank to arrive as it is needed  
and results in minimal latency from each bank. If the LVDS banks have their clocks aligned, then the data on  
bank 3 is provided to the chip 3 DAC clocks before it is needed.  
Copyright © 2022 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
DACCLK+  
Sampling  
Clock  
DACCLK–  
DACLK+/–  
DASTR+/–  
LVDS Bus  
A
DA[11...0]+/–  
XX  
S0[11:0]  
S4[11:0]  
DBCLK+/–  
DBSTR+/–  
LVDS Bus  
B
DB[11...0]+/–  
XX  
S1[11:0]  
S5[11:0]  
S6[11:0]  
S7[11:0]  
DCCLK+/–  
DCSTR+/–  
LVDS Bus  
C
DC[11...0]+/–  
XX  
S2[11:0]  
DDCLK+/–  
DDSTR+/–  
LVDS Bus  
D
DD[11...0]+/–  
XX  
S3[11:0]  
7-18. MODE2 Functional Timing Diagram  
7.3.3.4 LVDS Interface Input Strobe  
The LVDS strobe can be provided on either the dedicated strobe pin or the LSB of the data pins. The strobe can  
be provided at any multiple of 4 LVDS clocks, which is equivalent to 8 input samples per LVDS bus per DAC.  
The strobe must be provided on the rising edge of the LVDS clock and coincide with the data captured on that  
edge. The LVDS strobe is used to reset the FIFO write pointer for each LVDS bus.  
When the strobe is provided on the LSB, the actual pin that is used is determined by the LVDS input width set by  
LVDS_RESOLUTION.  
When using the LSB for the strobe pin, a couple of LVDS clocks are required to switch between using the LSB  
for strobe and using it for data. The user should make sure the data on this bit is held at zero during this  
transition. The dedicated strobe input needs to be tied low in order to use a strobe on the LSB. If using  
LSB_SYNC instead of the SYNC pin to switch the LSB between strobe and data, the SYNC input must be tied  
high.  
When the LSB is being used as a strobe (either SYNC is low or register LSB_SYNC=1), the LSB of the input  
data passed to the datapath will be zero.  
Note that there is only one FIFO_DLY setting for the chip. When the FIFO is aligned to the LVDS strobe it aligns  
to the strobe for LVDS bus 0 (if bus 0 is enabled). Otherwise it aligns to bus 2. This means that in dual DAC  
mode, it is required that the strobes for the LVDS buses used for DACB must be aligned to the strobes for the  
LVDS buses for DACA within the FIFO tolerance.  
7.3.3.5 FIFO Operation  
DAC12DL3200 uses a source-synchronous interface to simplify signal timing. The DDR data clocks are sent  
from the logic device along with the data such that propagation delays through the logic device and receiving  
DAC are well matched over all process, voltage and temperature variations. Test patterns can be used to verify  
proper timing at all LVDS input receivers. Internal FIFOs absorb skew between the data clock domains before  
being aligned to the DAC sampling clock domain (DACCLK). Each LVDS data bus should have matched trace  
lengths relative to the associated data clock (e.g. DACLK for bus A), however each bus does not have to be  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: DAC12DL3200  
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
trace length matched to the others due to the internal FIFOs. For example, the signals for bus A (DACLK,  
DASTR, DA011) should be matched in length, but they do not need to be length matched to the signals for bus  
B.  
7.3.3.5.1 Using FIFO Delay Readback Values  
The FIFO_DLY_R0 through FIFO_DLY_R3 values provide an approximate value for FIFO_DLY that would result  
in the sample being used just as it arrives for each channel. These values are asynchronously sampled between  
clock domains and may vary from channel to channel even with exactly the same relationship between DCLK  
and DACCLK.  
If all four LVDS clocks have the same relationship to the consuming DACCLK (i.e., LVDS clocks DACLK -  
DDCLK are staggered as shown in LVDS Input waveforms), all FIFO_DLY_R* values should vary by no more  
than 1 (in a circular sense). If the LVDS clocks are aligned in time, this will result in successive FIFO_DLY_R*  
values increasing by 1±1. The user must select a FIFO_DLY setting that will work for all banks.  
The valid programming range for FIFO_DLY and FIFO_DLY_R* is shown in the following table.  
7-7. FIFO_DLY and FIFO_DLY_R* range per mode  
LVDS_MODE=2 & DCM_EN=0 or  
LVDS_MODE=1 & DCM_EN=1  
LVDS_MODE=1 & DCM_EN=0 or  
LVDS_MODE=0 & DCM_EN=1  
LVDS_MODE=0 & DCM_EN=0  
0-31  
0-15  
0-7  
7.3.3.5.2 FIFO Delay Handling  
Data from the LVDS banks are latched into the write side of the FIFO using the LVDS clock. The user must set  
FIFO_DLY to an appropriate value to ensure that the data is read away from the point where it is changing. To  
help with this, the FIFO_DLY_R* registers provide the user with an approximate FIFO_DLY setting that would  
result in the data being sampled just as it arrives under current conditions.  
The number of usable settings for FIFO_DLY is determined by LVDS_MODE and DCM_EN as shown in 7-19.  
1
4
0
3
5
1
8
8
2
5
FIFO_DLY circle  
FIFO_DLY circle  
LVDS_MODE=2 & DCM_EN=0  
or  
LVDS_MODE=1 & DCM_EN=1  
LVDS_MODE=1 & DCM_EN=0  
or  
LVDS_MODE=0 & DCM_EN=1  
FIFO_DLY circle  
LVDS_MODE=0 & DCM_EN=0  
3
1
1
2
4
2
7
1
1
1
6
0
2
9
7-19. FIFO_DLY Circles  
In the above picture we will assume that if FIFO_DLY=1, it would result in the data being sampled just as the  
input latch is changing. Ideally, FIFO_DLY_R* would report 1in this condition. In reality, this is not a precise  
measurement and it will only report a value close to this setting. If minimum latency is not a concern, it may be  
sufficient to just select a FIFO_DLY value on the opposite side of the circle from the FIFO_DLY_R* value.  
Setting FIFO_DLY to a value before (counter-clockwise from) the FIFO_DLY_R* value will result in the lowest  
possible latency. For example, if running in LVDS_MODE=2, with FIFO_DLY_R*=1, a value of 30 may be an  
appropriate low latency setting while a value of 4 would be a high latency setting.  
If the goal is to create a system with minimum latency, the user will need to characterize the system to find the  
optimal value of FIFO_DLY that will consistently work across process, voltage and temperature (PVT). The less  
variation that exists between the SYSREF, LVDSCLK, and DEVCLK, the tighter the FIFO_DLY can be set.  
Copyright © 2022 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
Note that if the LVDS strobe is used to align the DACCLK domain side of the FIFO instead of SYSREF,  
additional margin should be added to FIFO_DLY to allow for inconsistent setup of the FIFO from one alignment  
to the next. It is not possible to have deterministic latency using the LVDS strobe.  
To help with system characterization, underflow and overflow alarms are provided in FIFO_ALM. It is important  
to realize toggling data must be provided on the input for these alarms to work. Constant input data will not  
generate alarms. See FIFO Over/Under Flow Alarming.  
To characterize the FIFO_DLY for minimum latency with SYSREF:  
1. Align the system using SYSREF (refer to section Startup Procedure with LVDS Input)  
2. Read the FIFO_DLY_R* values to determine a reasonable starting point for FIFO_DLY characterization.  
3. Set a FIFO_DLY value that is near the sampling point. For example, if FIFO_DLY_R*=1, a setting for 30  
might be a good starting point.  
4. Characterize the system over PVT and monitor FIFO_ALM for any alarms.  
5. If alarms occurred, move FIFO_DLY one setting counter-clockwise and repeat from step 3. If no alarms  
occurred, move FIFO_DLY one setting clockwise and repeat from step 3. The goal is to determine the  
tightest setting that will not cause alarms.  
It is important to understand that there will be some number of FIFO_DLY settings that are unusable. In 4-banks  
per DAC mode this may be as many as 4 settings. Reducing the LVDS rate will reduce the number of invalid  
FIFO_DLY settings.  
7.3.3.5.3 FIFO Delay and NCO Operation  
The setting for FIFO_DLY shifts the timing of the NCO sync with respect to SYSREF. When DCM_EN=0, the  
sync is shifted later in time by modulo(FIFO_DLY, 8) DACCLKs with respect to FIFO_DLY =0. When  
DCM_EN=1, the sync is shifted later in time by modulo(FIFO_DLY, 16) DACCLKs with respect to FIFO_DLY=0.  
If attempting to output a specific NCO phase with respect to sysref, the FFH_PHASE_A/FFH_PHASE_B  
registers will need to include the desired setting for FIFO_DLY .  
7.3.3.5.4 FIFO Over/Under Flow Alarming  
Each of the capture flops on the read side of the FIFO is actually constructed of 3 flops (see 7-20). This  
allows detection of close timing violations that could corrupt the data flop and is used for detecting under and  
overflow alarms. This will only detect slow drifts. It will not detect sudden jumps in the operation that might jump  
over the alarm detection. This will also only detect alarms if the violation occurs when the data is changing.  
Constant input data will not produce alarms.  
D Q  
Early CLK  
Underflow Alarm  
D Q  
CLK  
Overflow Alarm  
D Q  
Late CLK  
7-20. Datapath Showing FIFO Over/Under Flow Alarming  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: DAC12DL3200  
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.3.4 Multi-Device Synchronization (SYSREF+/-)  
Synchronizing multiple DAC12DL3200 involves two synchronization functions as illustrated by 7-21. The first  
is to synchronize the DACCLK clock domain in all DAC devices which includes clock dividers and FIFO outputs  
pointers. Secondly, the data clock domain (LVDS interface) must be synchronized using an input strobe signal  
from either the DxSTR input or LSB data lane of each bus (bit x, where x = [12 - LVDS_RESOLUTION]).Using  
the LSB eliminates the need for the DxSTR signals eliminating up to four LVDS pairs. Synchronization using  
DxSTR and LSB is described in 7.3.3.4.  
Data Clock  
Domain  
DACCLK  
Domain  
DACCLK+  
DACCLKt  
SYSREF+  
SYSREF  
Window  
SYSREFt  
FIFO  
DACLK+  
WR RD  
CLK CLK  
Clock Divider  
Reset  
÷
DACLKt  
DA11+  
DA11t  
WR  
DATA  
RD  
DATA  
VOUTA+  
Multi-Nyquist DAC  
DA1+  
VOUTAt  
DA1t  
DA0+  
DA0t  
Output Pointer  
Synchronization  
Pointer  
Reset  
MUX  
DASTR+  
DASTRt  
SYNC  
7-21. FIFO Synchronization Logic Diagram  
7.3.4.1 DACCLK Domain Synchronization  
DACCLK domain synchronization is accomplished by providing SYSREF to each DAC and capturing it in the  
same DACCLK cycle at each DAC. SYSREF can be a continuous signal or a single pulse, however if run  
continuously it must be an integer division of DACCLK/(8*# LVDS buses per channel), meaning DACCLK/(8*#  
LVDS buses per channel*n) where n is any integer greater than or equal to 1. SYSREF can also be run  
continuously during synchronization and shutoff after synchronization has been achieved by disabling SYSREF  
processing through the SPI interface before stopping the SYSREF signal.  
7.3.4.2 SYSREF Position Detector and Sampling Position Selection (SYSREF Windowing)  
The SYSREF windowing block is used to first detect the position of SYSREF relative to the DEVCLK rising edge  
and then to select a desired SYSREF sampling instance, to maximize setup and hold timing margins. In many  
cases a single SYSREF sampling position (SYSREF_SEL) is sufficient to meet timing for all systems (part-to-  
part variation) and conditions (temperature and voltage variations). However, the feature can also be used by the  
system to expand the timing window by tracking the movement of SYSREF as operating conditions change or to  
remove system-to-system variation at production test by finding a unique optimal value at nominal conditions for  
each system.  
Copyright © 2022 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
Use of the SYSREF windowing block is as follows. First, the device clock and SYSREF should be applied to the  
device. The location of SYSREF relative to the device clock cycle is determined and stored in SYSREF_POS.  
Each bit of SYSREF_POS represents a potential SYSREF sampling position. If a bit in SYSREF_POS is set to  
'1', then the corresponding SYSREF sampling position has a potential setup or hold violation. Upon determining  
the valid SYSREF sampling positions (the positions of SYSREF_POS that are set to '0') the desired sampling  
position can be chosen by setting SYSREF_SEL to the value corresponding to that SYSREF_POS position. In  
general the middle sampling position between two setup and hold instances should be chosen. Ideally,  
SYSREF_POS and SYSREF_SEL should be performed at the system's nominal operating conditions  
(temperature and supply voltage) to provide maximum margin for operating condition variations. This process  
can be performed at final test and the optimal SYSREF_SEL setting can be stored for use at every system  
power up. Further, SYSREF_POS can be used to characterize the skew between DEVCLK and SYSREF over  
operating conditions for a system by sweeping the system temperature and supply voltages. For systems that  
have large variations in DEVCLK to SYSREF skew this characterization can be used to track the optimal  
SYSREF sampling position as system operating conditions change. In general, a single value can be found that  
meets timing over all conditions for well matched systems, such as those where DEVCLK and SYSREF come  
from a single clocking device.  
The step size between each SYSREF_POS sampling position can be adjusted using SYSREF_ZOOM. When  
SYSREF_ZOOM is set to '0', the delay steps are more coarse. When SYSREF_ZOOM is set to '1', the delay  
steps finer steps. In general, SYSREF_ZOOM should always be used ( SYSREF_ZOOM = 1) unless a transition  
region (defined by 1's in SYSREF_POS) is not seen, which is possible for low clock rates. Bits 0 and 15 of  
SYSREF_POS will always be set to '1' since it cannot be determined if these settings are close to a timing  
violation, although the actual valid window could extend beyond these sampling positions. The value  
programmed into SYSREF_SEL is the decimal number representing the desired bit location in SYSREF_POS.  
The table below shows some example SYSREF_POS readings and the optimal SYSREF_SEL settings. In  
general, lower values of SYSREF_SEL should be selected due to variation of the delays over supply voltage,  
however in the second example a value of 8 provides additional margin and may be selected instead.  
7-8. Examples of SYSREF_POS Readings and SYSREF_SEL Selections  
SYSREF_POS[15:0]  
b11100000_00011001  
b10011000_00110001  
b11100000_00000001  
b10000011_00000001  
b11100011_00011001  
OPTIMAL SYSREF_SEL SETTING  
8 or 9  
2 or 8  
6 or 7  
4
6
To use the SYSREF windowing:  
1. Apply SYSREF and DEVCLK  
2. Set SYSREF_RECV_SLEEP=0, SYSREF_POS_SEL=0, and SYSREF_ZOOM=1  
3. Set SYSREF_PROC_EN=1  
4. Read SYSREF_POS and determine proper setting for SYSREF_SEL. If proper sampling point cannot be  
determined, set SYSREF_ZOOM=0 and retry.  
The SYSREF_POS register can report either an accumulation of all the SYSREF edges seen since  
SYSREF_PS_EN transitioned from 0 to 1 (infinite persistence) or just the last SYSREF edge (when  
SYSREF_PS_EN=0). The user should reset the persistence after changing SYSREF_POS_SEL.  
7.3.5 Alarms  
DAC12DL3200 contains a number of alarms that can be used to determine whether the DAC is operating  
optimally, marginally, or in a faulty state. These alarms are sticky, such that if an error occurs then the alarm will  
be set and remain set until 1s are written to that alarm register to reset the alarm.  
The alarms are not valid until the part is fully programmed and operating. At this point, the alarm registers should  
all be cleared. They can then be monitored periodically, or by watching the ALARM pin, to determine if an alarm  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
has occurred. The alarms that trigger the ALARM pin can be selected by unmasking the alarms in register  
ALM_MASK.  
If an alarm occurs, the DAC can be programmed to mute the output signal until all alarms have been cleared.  
When this occurs, the faulty condition should be fixed by the system before resuming operation.  
The alarms include:  
FIFO empty alarm  
FIFO full alarm  
LVDS Clock alarm  
LVDS Strobe alarm  
TRIGCLK realignment alarm  
Clock realignment alarm  
Clock alignment alarm  
7.4 Device Functional Modes  
7.4.1 Direct Digital Synthesis (DDS) Mode  
The DAC12DL3200 contains two numerically controlled oscillators (NCOs) that can optionally be used for direct  
digital synthesis of tones for each DAC. The block diagram for the DDS is shown in 7-22. There are two NCO  
banks, each with 16 separate 32-bit NCOs. The banks can be used separately for each DAC, or together to  
provide 32 NCOs for one DAC. The two NCOs can be summed as a two tone source for one DAC. The NCO  
can be selected either through registers NCO_SEL_A and NCO_SEL_B, or through balls NCOSEL[0:3] and  
NCOBANKSEL.  
DACCLK SYSREF  
From LVDS  
data path  
DAC_A_SRC  
FREQ_Ax[31:0]  
PHASE_Ax[15:0]  
0
1
NCO Bank A  
(16x 32-bit NCOs)  
Multi-Nyquist DAC  
NCO_SYNC_MODE  
NCO_A_GAIN  
NCOA  
1
0
0
TRIGCLK_OUT_EN  
RST  
4
0
NCO_SEL_SRC_A  
TRIGCLK  
÷N  
TRIGSYNC  
SPI_SYNC  
NCOSEL3  
NCOSEL2  
NCOSEL1  
NCOSEL0  
NCOBANKSEL  
NCO_SEL_SRC_B  
NCOB  
NCO_SYNC_SEL  
1
1
0
SNGL_BANK  
NCO_B_GAIN  
FREQ_Bx[31:0]  
PHASE_Bx[15:0]  
0
1
NCO Bank B  
(16x 32-bit NCOs)  
Multi-Nyquist DAC  
NCO_SYNC_MODE  
DAC_B_SRC  
From LVDS  
data path  
7-22. DDS Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.4.1.1 NCO Gain Scaling  
The NCO output value is internally scaled based on the dither setting to ensure that the output will not saturate.  
The scaling point is selected to prevent unnecessary quantization error.  
The sine wave generation produces full-scale positive values that are one LSB higher than can be represented  
by the DAC output. In addition, ~1/2 LSB of dither is added to the signal before rounding. Thus setting  
NCO_GAIN_A or NCO_GAIN_B to values below 0x0003 results in clipping for some frequencies. This range  
also needs to be taken into account when summing the two NCOs.  
When TXENABLE transitions low, the output of the NCO is linearly scaled to zero in a programmable number of  
clocks set by NCO_RAMPRATE . The same setting is used when TXENABLE transition high.  
7.4.1.2 NCO Phase Continuous Operation  
To operate the NCO in phase continuous mode, the user can change the frequency word instead of switching to  
a different NCO. NCO_CHG_BLK must be used when changing frequency values while NCO_EN =1. Phase  
continuous operation is only supported using FFH_FREQ_A[0] and FFH_FREQ_B[0].  
7.4.1.3 Trigger Clock  
The trigger clock (TRIGCLK) is an output clock generated by dividing the input CLK+/- according to register  
TRIG_DIV. The trigger clock is output when TRIG_OUT_EN=1 and NCO_EN=1.  
The divider is reset on each rising edge of SYSREF. If a SYSREF edge is detected that realigns the system  
clock divider, CLK_REALIGNED_ALM (register SYS_ALM) will be set. If this occurs, the trigger clock location  
will have moved even though TRIG_REALIGNED_ALM is not set. The TRIG_REALIGNED_ALM is set when a  
SYSREF edge realigns the trigger clock divider. When TRIG_REALIGNED_ALM occurs without  
CLK_REALIGNED_ALM or CLK_ALIGNMENT_ALM, this indicates that the SYSREF period is not an integer  
multiple of the trigger clock period. Be aware that if the CLK_REALIGNED_ALM occurs while NCO_EN is high,  
the state of the NCO accumulators may be corrupted.  
NCOBANKSEL and NCOSEL[3:0] inputs are sampled by TRIGCLK, even when TRIG_OUT_EN=0. This allows  
the user to turn on the trigger clock output to find the phase of the trigger clock, and then turn it off to prevent the  
output from injecting noise into the DAC.  
The value sampled by TRIGCLK is applied to both channels with a fixed relationship to the effective SYSREF  
edge.  
If the SYSREF location changes during operation, it may require 2 SYSREF pulses at the new location to  
properly realign the trigger clock.  
Be aware that the trigger clock may respond to changes in SYSREF position even though  
SYSREF_ALIGN_EN=0. If this occurs TRIG_REALIGNED_ALM will be set. If SYSREF returns to its correct  
position, the trigger clock will also return to its correct position. However, if SYSREF remains at the new  
alignment, the entire system must be realigned (using SYSREF_ALIGN_EN) to restore the proper relationship  
between SYSREF and trigger clock  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: DAC12DL3200  
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.5 Programming  
7.5.1 Using the Serial Interface  
The serial interface is accessed using the following four pins: serial clock (SCLK), serial data in (SDI), serial data  
out (SDO), and serial interface chip-select (SCS). Register access is enabled through the SCS pin.  
7.5.1.1 SCS  
This signal must be asserted low to access a register through the serial interface. Setup and hold times with  
respect to the SCLK must be observed.  
7.5.1.2 SCLK  
Serial data input is accepted at the rising edge of this signal. SCLK has no minimum frequency requirement.  
7.5.1.3 SDI  
Each register access requires a specific 24-bit pattern at this input. This pattern consists of a read-and-write  
(R/W) bit, register address, and register value. Setup and hold times with respect to the SCLK must be  
observed.  
7.5.1.4 SDO  
The SDO signal provides the output data requested by a read command. This output is high impedance during  
write bus cycles and during the R/W bit and register address portion of read bus cycles.  
7.5.1.5 Serial Interface Operation  
As shown in 7-23, each register access consists of 24 bits. The first bit is high for a read and low for a write.  
The next 15 bits are the address of the register that is to be accessed. During write operations, the last eight bits  
are the data written to the addressed register. The data are shifted in MSB first. During read operations, the last  
eight bits on SDI are ignored and, during this time, the SDO outputs the data from the addressed register.  
Single Register Access  
SCS  
1
8
16  
17  
24  
SCLK  
SDI  
Command Field  
Data Field  
R/W A14 A13 A12 A11 A10 A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1 A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1 D0  
Data Field  
High Z  
High Z  
SDO  
(read mode)  
D7  
D6  
D5  
D4  
D3 D2  
D1  
D0  
7-23. Serial Interface Protocol: Single Read/Write  
Copyright © 2022 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.5.1.6 Streaming Mode  
The serial interface supports streaming reads and writes. In this mode, the initial 24 bits of the transaction  
specifies the access type, register address, and data value as normal. Additional clock cycles of write or read  
data are immediately transferred, as long as the SCS input is maintained in the asserted (logic low) state. The  
register address auto increments (default) or decrements for each subsequent 8-bit transfer of the streaming  
transaction. Register bit ASCEND controls whether the address value ascends (increments) or descends  
(decrements). 7-24 shows the streaming mode transaction details.  
Multiple Register Access  
SCS  
1
8
16 17  
24 25  
32  
SCLK  
SDI  
Command Field  
Data Field (write mode)  
Data Field (write mode)  
R/WA14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
Data Field  
Data Field  
High Z  
High Z  
SDO  
(read mode)  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
7-24. Serial Interface Protocol: Streaming Read/Write  
See 7.5.2 for detailed information regarding the registers.  
7.5.2 SPI Register Map  
7-10 lists the SPI registers. All register addresses not listed in 7-10 should be considered as reserved  
locations and the register contents should not be modified. Reserved fields should be written to their default  
settings. Multi-byte registers are always in little-endian format (least significant byte stored at the lowest  
address).  
The different register types are listed in 7-9.  
7-9. Register Types  
Type  
Description  
Read Only  
R
R/W  
W1C  
Read and Write  
Write 1 to Clear  
7-10. SPI Registers  
Register Name  
Address  
0h  
Acronym  
Section  
Go  
CONFIG_A  
Configuration A  
2h  
DEVICE_CONFIG  
CHIP_TYPE  
CHIP_ID  
Device Configuration  
Chip Type  
Go  
3h  
Go  
4h  
Chip Identification  
Go  
6h  
CHIP_VERSION  
VENDOR_ID  
PIN_CFG  
Chip Version  
Go  
Ch  
Vendor Identification  
Pin Configuration  
Go  
20h  
21h  
22h  
3Ch  
48h  
50h  
51h  
80h  
90h  
100h  
Go  
TXEN_SEL  
TXEN  
Transmitter Enable Control Selection  
Transmitter Enable Configuration  
Current State of Input IOs  
Dual Clock Mode  
Go  
Go  
IO_STATE  
Go  
DCM_EN  
Go  
TRIG_DIV  
Trigger Clock Divide  
Trigger Clock Output Enable  
SYSREF Control  
Go  
TRIG_OUT_EN  
SYSREF_CTRL  
SYSREF_POS  
DP_EN  
Go  
Go  
SYSREF Capture Position  
Datapath Enable  
Go  
Go  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-10. SPI Registers (continued)  
Register Name  
Address  
101h  
106h  
107h  
140h  
160h  
170h  
171h  
172h  
180h  
181h  
1A0h  
200h  
210h  
211h  
212h  
213h  
220h  
300h  
301h  
303h  
308h  
310h  
320h  
330h  
331h  
332h  
334h  
400h  
440h  
480h  
4A0h  
700h  
701h  
710h  
711h  
712h  
720h  
750h  
752h  
754h  
756h  
760h  
770h  
780h  
790h  
Acronym  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
CH_CFG  
Channel Configuration  
LVDS_CFG  
LSB Strobe Control  
LVDS_TERM  
LVDS Termination Configuration  
DAC Dither Enable  
DITH_EN  
MXMODE  
DAC Output Mode  
COARSE_CUR  
CUR_A  
Coarse Current Control (DAC A and B)  
Current Control for DAC A  
Current Control for DAC B  
SPIDAC Change Block  
CUR_B  
SPIDAC_CHG_BLK  
SPIDAC_VALUE  
SHUNTREF-EN  
FIFO_DLY  
Sample Value for SPIDAC Mode  
Enable Shunt Regulators  
FIFO Delay  
FIFO_DLY_R0  
FIFO_DLY_R1  
FIFO_DLY_R2  
FIFO_DLY_R3  
FIFO_ALIGN  
Current FIFO Delay for FIFO0  
Current FIFO Delay for FIFO1  
Current FIFO Delay for FIFO2  
Current FIFO Delay for FIFO3  
FIFO Alignment Control  
NCO_SYNC  
NCO Sync Source Select  
NCO Fast-Frequency Hopping Frequency Selection  
NCO Bank Configuration  
NCO_SPISEL  
NCO_BANKCFG  
NCO_EN  
NCO Enable  
SPI_SYNC  
SPI Sync  
NCO_CHG_BLK  
NCO_RAMPRATE  
NCO_CONFIG  
NCO_GAIN_A  
NCO_GAIN_B  
FFH_FREQ_A[15:0]  
FFH_FREQ_B[15:0]  
FFH_PHASE_A[15:0]  
FFH_PHASE_B[15:0]  
TS_TEMP  
NCO Change Blocking  
NCO Ramp Rate Control  
NCO Ramp Rate Control  
Gain Backoff for NCO A  
Gain Backoff for NCO B  
Frequency Word for Fast-Frequency Hopping  
Frequency Word for Fast-Frequency Hopping  
Phase Word for Fast-Frequency Hopping  
Phase Word for Fast-Frequency Hopping  
Temperature Reading in Celsius  
Temperature Sensor Sleep  
IOTEST Configuration  
TS_SLEEP  
IOTEST_CFG  
IOTEST_CTRL  
IOTEST_SUM  
IOTEST_PAT[7:0]  
IOTEST_STAT0  
IOTEST_STAT1  
IOTEST_STAT2  
IOTEST_STAT3  
IOTEST_CAP0[7:0]  
IOTEST_CAP1[7:0]  
IOTEST_CAP2[7:0]  
IOTEST_CAP3[7:0]  
IOTEST Control  
IOTEST Status  
IOTEST Pattern Memory  
IOTEST Bank0 Failure Status  
IOTEST Bank1 Failure Status  
IOTEST Bank2 Failure Status  
IOTEST Bank3 Failure Status  
IOTEST Bank0 Capture Memory  
IOTEST Bank1 Capture Memory  
IOTEST Bank2 Capture Memory  
IOTEST Bank3 Capture Memory  
Copyright © 2022 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-10. SPI Registers (continued)  
Register Name  
Address  
800h  
820h  
821h  
822h  
823h  
824h  
900h  
B02h  
Acronym  
Section  
Go  
SYNC_STATUS  
FIFO_ALM  
Synchronization Status  
FIFO Alarm Status  
LVDS Strobe Alarm  
System Alarm Status  
Alarm Mask  
Go  
LVDS_ALM  
Go  
SYS_ALM  
Go  
ALM_MASK  
MUTE_MASK  
FUSE_STATUS  
SYSREF_PS_EN  
Go  
DAC Mute Mask  
Go  
Fuse Status  
Go  
SYSREF Windowing Persistence Enable  
Go  
7.5.2.1 CONFIG_A Register (Address = 0h) [reset = 30h]  
CONFIG_A is shown in 7-25 and described in 7-11.  
Return to the Summary Table.  
Configuration A (default: 0x30)  
7-25. CONFIG_A Register  
7
6
5
4
3
2
1
0
SOFT_RESET  
R/W-0h  
RESERVED  
R/W-0h  
ASCEND  
R/W-1h  
RESERVED  
R/W-1h  
RESERVED  
R/W-0h  
7-11. CONFIG_A Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SOFT_RESET  
R/W  
0h  
Writing a 1 to this bit causes a full reset of the chip and all SPI  
registers (including CONFIG_A). This bit is self-clearing and will  
always read zero. After writing this bit, the part may take up to 5 ns  
to reset. During this time, do not perform any SPI transactions.  
6
5
RESERVED  
ASCEND  
R/W  
R/W  
0h  
1h  
0 : Address is decremented during streaming reads/writes  
1 : Address is incremented during streaming reads/writes (default)  
4
RESERVED  
RESERVED  
R
1h  
0h  
Always read 1.  
3-0  
R/W  
7.5.2.2 DEVICE_CONFIG Register (Address = 2h) [reset = 00h]  
DEVICE_CONFIG is shown in 7-26 and described in 7-12.  
Return to the Summary Table.  
Device Configuration (default: 0x00)  
7-26. DEVICE_CONFIG Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
MODE  
R/W-0h  
7-12. DEVICE_CONFIG Register Field Descriptions  
Bit  
7-2  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0h  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-12. DEVICE_CONFIG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1-0  
MODE  
R/W  
0h  
0 : Normal operation (default)  
1 : Full operation with reduced power/performance (not supported).  
2 : Sleep operation (low power, fast resume). This will sleep both  
DACs, clock receiver, bandgap, LVDS receivers, and temp sensor.  
3 : Full power down (lowest power, slowest resume).  
7.5.2.3 CHIP_TYPE Register (Address = 3h) [reset = 04h]  
CHIP_TYPE is shown in 7-27 and described in 7-13.  
Return to the Summary Table.  
Chip Type (read-only: 0x04)  
7-27. CHIP_TYPE Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
CHIP_TYPE  
R-4h  
7-13. CHIP_TYPE Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R
Reset  
Description  
7-4  
3-0  
RESERVED  
CHIP_TYPE  
0h  
4h  
Always returns 0x4, indicating that the part is a high speed DAC.  
7.5.2.4 CHIP_ID Register (Address = 4h) [reset = 3Ah]  
CHIP_ID is shown in 7-28 and described in 7-14.  
Return to the Summary Table.  
Chip Identification (read-only)  
7-28. CHIP_ID Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
CHIP_ID  
R-0h  
4
3
CHIP_ID  
R-3Ah  
7-14. CHIP_ID Register Field Descriptions  
Bit  
15-0  
Field  
Type  
Reset  
Description  
CHIP_ID  
R
003Ah  
Always returns 3A, indicating it is a DAC12DL3200  
7.5.2.5 CHIP_VERSION Register (Address = 6h) [reset = 2h]  
CHIP_VERSION is shown in 7-29 and described in 7-15.  
Return to the Summary Table.  
Chip Version (read-only)  
Copyright © 2022 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-29. CHIP_VERSION Register  
7
6
5
4
3
2
1
0
CHIP_VERSION  
R-2h  
7-15. CHIP_VERSION Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CHIP_VERSION  
R
2h  
7.5.2.6 VENDOR_ID Register (Address = Ch) [reset = 0451h]  
VENDOR_ID is shown in 7-30 and described in 7-16.  
Return to the Summary Table.  
Vendor Identification (default: 0x0451)  
7-30. VENDOR_ID Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
VENDOR_ID  
R-451h  
4
3
VENDOR_ID  
R-451h  
7-16. VENDOR_ID Register Field Descriptions  
Bit  
15-0  
Field  
VENDOR_ID  
Type  
Reset  
Description  
R
451h  
7.5.2.7 PIN_CFG Register (Address = 20h) [reset = 00h]  
PIN_CFG is shown in 7-31 and described in 7-17.  
Return to the Summary Table.  
Pin Configuration (default: 0x00)  
7-31. PIN_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
SLEEP_CFG  
R/W-0h  
7-17. PIN_CFG Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-1  
0
RESERVED  
SLEEP_CFG  
0h  
0h  
Set the behavior of the sleep input (SLEEP pin on part):  
0: Asserting the pin is equivalent to setting MODE = 2  
1: Asserting the pin is equivalent to setting MODE = 3  
Note: Asserting the sleep input only affects the behavior of the part,  
not the value in the MODE register.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.5.2.8 TXEN_SEL Register (Address = 21h) [reset = 0Fh]  
TXEN_SEL is shown in 7-32 and described in 7-18.  
Return to the Summary Table.  
Transmitter Enable Control Selection (default: 0x0F)  
7-32. TXEN_SEL Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
AUTOMUTE_B AUTOMUTE_A USE_TXEN_B USE_TXEN_A  
R/W-1h R/W-1h R/W-1h R/W-1h  
7-18. TXEN_SEL Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-4  
3
RESERVED  
0h  
AUTOMUTE_B  
1h  
When set, DACB is automatically muted by alarms whose mute  
mask is not set. When cleared, DACB is not automatically muted by  
any alarms.  
2
1
AUTOMUTE_A  
USE_TXEN_B  
R/W  
R/W  
1h  
1h  
When set, DACA is automatically muted by alarms whose mute  
mask is not set. When cleared, DACA is not automatically muted by  
any alarms.  
0: DACB is controlled by the txenable input (TXENABLE pin on part).  
In this mode, TXEN_B is ignored.  
1: DACB is controlled by TXEN_B. In this mode the txenable input  
does not affect DACB.  
0
USE_TXEN_A  
R/W  
1h  
[0] USE_TXEN_A  
0: DACA is controlled by the txenable input (TXENABLE pin on part).  
In this mode, TXEN_A is ignored.  
1: DACA is controlled by TXEN_A. In this mode the txenable input  
does not affect DACA.  
7.5.2.9 TXEN Register (Address = 22h) [reset = 00h]  
TXEN is shown in 7-33 and described in 7-19.  
Return to the Summary Table.  
Transmitter Enable Configuration (default: 0x00)  
7-33. TXEN Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
TXEN_B  
R/W-0h  
TXEN_A  
R/W-0h  
7-19. TXEN Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-2  
1
RESERVED  
TXEN_B  
0h  
0h  
When USE_TXEN_B = 1, this bit controls the transmitter enable for  
DACB.  
0
TXEN_A  
R/W  
0h  
When USE_TXEN_A = 1, this bit controls the transmitter enable for  
DACA.  
Copyright © 2022 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.5.2.10 IO_STATE Register (Address = 3Ch) [reset = 0h]  
IO_STATE is shown in 7-34 and described in 7-20.  
Return to the Summary Table.  
Current State of Input IOs (read-only)  
7-34. IO_STATE Register  
7
6
5
4
3
2
1
0
SLEEP_IN  
SYNCB_IN  
TXENABLE_IN NCO_BANKSE  
L_IN  
NCO_SEL_IN  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
7-20. IO_STATE Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
SLEEP_IN  
R
0h  
Returns the current state of the sleep input.  
Returns the current state of the sync_n input.  
Returns the current state of the txenable input.  
6
SYNCB_IN  
R
0h  
5
TXENABLE_IN  
NCO_BANKSEL_IN  
R
0h  
4
R
0h  
Returns the sampled value on nco_banksel at the last rising edge of  
trig_c. This value will not update if DEVCLK is not running.  
3-0  
NCO_SEL_IN  
R
0h  
Returns the sampled value on nco_sel at the last rising edge of  
trig_c. This value will not update if DEVCLK is not running.  
7.5.2.11 DCM_EN Register (Address = 48h) [reset = 0h]  
DCM_EN is shown in 7-35 and described in 7-21.  
Return to the Summary Table.  
Dual Clock Mode (default:0x00)  
7-35. DCM_EN Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
DCM_EN  
R/W-0h  
7-21. DCM_EN Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-1  
0
RESERVED  
DCM_EN  
0h  
0h  
0: Single Clock Mode (SCM) DAC puts out each sample for one  
clock  
1: Dual Clock Mode (DCM) DAC puts out each sample for two  
clocks  
Note: This register should only be changed when DP_EN=0  
Note: Enabling transmission while DCM_EN=1 && LVDS_MODE=2  
will result in undefined behavior. Enabling transmission while  
DCM_EN=0 && (MXMODE_A=3 || MXMODE_B=3) will result in  
undefined behavior.  
7.5.2.12 TRIG_DIV Register (Address = 50h) [reset = 0h]  
TRIG_DIV is shown in 7-36 and described in 7-22.  
Return to the Summary Table.  
Trigger Clock Divide (default: 0x7F)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-36. TRIG_DIV Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
TRIG_DIV  
R/W-0h  
7-22. TRIG_DIV Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
TRIG_DIV  
0h  
6-0  
0h  
FTRIGCLK = FDEVCLK / 8 /(DCM_EN+1)/ (TRIG_DIV+1)  
Note: TRIG_DIV should be programmed to keep the output clock  
<100MHz.  
Note: This register should only be changed when NCO_EN=0  
7.5.2.13 TRIG_OUT_EN Register (Address = 51h) [reset = 00h]  
TRIG_OUT_EN is shown in 7-37 and described in 7-23.  
Return to the Summary Table.  
Trigger Clock Output Enable (default: 0x00)  
7-37. TRIG_OUT_EN Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
TRIG_OUT_EN  
R/W-0h  
7-23. TRIG_OUT_EN Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-1  
0
RESERVED  
0h  
TRIG_OUT_EN  
0h  
0: trig_clk output is driven low  
1: The trigger clock (trig_c) is driven on the trig_clk output whenever  
NCO_EN is high.  
7.5.2.14 SYSREF_CTRL Register (Address = 80h) [reset = 002000h]  
SYSREF_CTRL is shown in 7-38 and described in 7-24.  
Return to the Summary Table.  
SYSREF Control (default: 0x200000)  
7-38. SYSREF_CTRL Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
SYSREF_PRO  
C_EN  
RESERVED  
SYSREF_REC  
V_SLEEP  
RESERVED  
R-0h  
SYSREF_POS_  
SEL  
R/W-0h  
7
R/W-0h  
R/W-1h  
5
R/W-0h  
0
6
4
3
RESERVED  
SYSREF_ZOO  
M
SYSREF_SEL  
R/W-0h  
R-0h  
R/W-0h  
Copyright © 2022 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-24. SYSREF_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
SYSREF_PROC_EN  
R/W  
0h  
When set, this bit enables the SYSREF processor. When this is  
enabled, the system receives and processes each new SYSREF  
edge. User should always clear SYSREF_RECV_SLEEP before  
setting this bit. This bit is provided to allow the SYSREF receiver to  
stabilize before allowing the SYSREF to come to the digital.  
14  
13  
RESERVED  
R/W  
0h  
1h  
SYSREF_RECV_SLEEP R/W  
Clear this bit to enable the SYSREF receiver circuit. User should  
always clear SYSREF_PROC_EN before setting this bit.  
12-9  
8
RESERVED  
R
0h  
0h  
0h  
0h  
SYSREF_POS_SEL  
RESERVED  
R/W  
R
Always write 0.  
7-6  
4
SYSREF_ZOOM  
R/W  
Set this bit to zoomin the SYSREF strobe status (impacts  
SYSREF_POS and the step size of SYSREF_SEL).  
3-0  
SYSREF_SEL  
R/W  
0h  
Set this field to select which SYSREF delay to use. Set this based on  
the results returned by SYSREF_POS.  
7.5.2.15 SYSREF_POS Register (Address = 90h) [reset = 0h]  
SYSREF_POS is shown in 7-39 and described in 7-25.  
Return to the Summary Table.  
SYSREF Capture Position (read-only)  
7-39. SYSREF_POS Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
SYSREF_POS  
R-0h  
4
3
SYSREF_POS  
R-0h  
7-25. SYSREF_POS Register Field Descriptions  
Bit  
15-0  
Field  
SYSREF_POS  
Type  
Reset  
Description  
R
0h  
Returns a 16-bit status value that indicates the position of the  
SYSREF edge with respect to DEVCLK. Use this to determine the  
proper programming for SYSREF_SEL and SYSREF_ZOOM.  
For CHIP_VERSION=2, this register can report either an  
accumulation of all the SYSREF edges seen since SYSREF_PS_EN  
transitioned from 0 to 1 (infinite persistence) or just the last SYSREF  
edge (when SYSREF_PS_EN=0). The user should reset the  
persistence after changing SYSREF_POS_SEL  
7.5.2.16 DP_EN Register (Address = 100h) [reset = 00h]  
DP_EN is shown in 7-40 and described in 7-26.  
Return to the Summary Table.  
Datapath Enable (default: 0x00)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-40. DP_EN Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
DP_EN  
R/W-0h  
7-26. DP_EN Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-1  
0
RESERVED  
DP_EN  
0h  
0h  
Setting this bit enables datapath operation. When cleared, the  
datapath is held in reset. This bit should be set after the chip is  
configured for proper operation.  
Note: This register should only be changed from 0 to 1 when  
FUSE_DONE=1 and NCO_EN=0.  
7.5.2.17 CH_CFG Register (Address = 101h) [reset = 02h]  
CH_CFG is shown in 7-41 and described in 7-27.  
Return to the Summary Table.  
Channel Configuration (default: 0x02).  
Note: This register should only be changed when DP_EN=0.  
Note: When neither DAC is using LVDS as the source, LVDS_MODE and DCM_EN are still used to determine  
the max DACCLK rate. See 7-3. Note: Enabling transmission while LVDS_MODE=2 && DCM_EN=1 will  
result in undefined behavior.  
7-41. CH_CFG Register  
7
6
5
4
3
2
1
0
DACB_SRC  
R/W-0h  
DACA_SRC  
R/W-0h  
RESERVED  
R/W-0h  
LVDS_MODE  
R/W-2h  
7-27. CH_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
DACB_SRC  
R/W  
0h  
0: Disable (DACB powered down)  
1: LVDS  
2: NCO  
3: SPIDAC  
5-4  
DACA_SRC  
R/W  
0h  
0: Disable (DACA powered down)  
1: LVDS  
2: NCO  
3: SPIDAC  
3-2  
1-0  
RESERVED  
R/W  
R/W  
0h  
2h  
LVDS_MODE  
0: 1 bank per DAC  
1: 2 banks per DAC  
2: 4 banks per DAC  
3: RESERVED  
7.5.2.18 LVDS_CFG Register (Address = 106h) [reset = 00h]  
LVDS_CFG is shown in 7-42 and described in 7-28.  
Return to the Summary Table.  
Copyright © 2022 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
LSB Strobe Control (default: 0x00)  
7-42. LVDS_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
LVDS_RESOLUTION  
R/W-0h  
RESERVED  
R/W-0h  
LSB_SYNC  
R/W-0h  
7-28. LVDS_CFG Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
0h  
6-4  
LVDS_RESOLUTION  
0h  
The value of LVDS_RESOLUTION will determine the operating  
resolution according to the following table:  
0: 12-bit input mode  
1: 11-bit input mode  
2: 10-bit input mode  
3: 9-bit input mode  
>3: 8-bit input mode  
3-1  
0
RESERVED  
LSB_SYNC  
R/W  
R/W  
0h  
0h  
When set, this bit causes the LSB of the LVDS data to be used as  
SYNC regardless of the state of the sync_n input.  
7.5.2.19 LVDS_TERM Register (Address = 107h) [reset = 01h]  
LVDS_TERM is shown in 7-43 and described in 7-29.  
Return to the Summary Table.  
LVDS Termination Configuration (default: 0x01)  
7-43. LVDS_TERM Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
LVDS_TERM  
R/W-1h  
7-29. LVDS_TERM Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-1  
0
RESERVED  
LVDS_TERM  
0h  
1h  
When set, this bit causes the LVDS inputs to be differentially  
terminated with 100 Ohms. If this bit isnt set there is no termination  
resistance between the pairs.  
7.5.2.20 DITH_EN Register (Address = 140h) [reset = 00h]  
DITH_EN is shown in 7-44 and described in 7-30.  
Return to the Summary Table.  
DAC Dither Enable (default: 0x00).  
Note: Changes to this register may only be made while TXENABLE (ball or register) for the channels being  
reconfigured is low.  
7-44. DITH_EN Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
DITH_EN_B  
R/W-0h  
DITH_EN_A  
R/W-0h  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-44. DITH_EN Register (continued)  
7-30. DITH_EN Register Field Descriptions  
Bit  
7-4  
3-2  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
RESERVED  
DITH_EN_B  
0h  
0: Dither Disabled  
1: Use +1 to -2 LSBs of dither  
2: Use +3 to -4 LSBs of dither  
3: Use +7 to -8 LSBs of dither  
1-0  
DITH_EN_A  
R/W  
0h  
0: Dither Disabled  
1: Use +1 to -2 LSBs of dither  
2: Use +3 to -4 LSBs of dither  
3: Use +7 to -8 LSBs of dither  
7.5.2.21 MXMODE Register (Address = 160h) [reset = 00h]  
MXMODE is shown in 7-45 and described in 7-31.  
Note: This register should only be changed when DP_EN=0.  
Note: Enabling transmission while DCM_EN=0 && (MXMODE_A=3 || MXMODE_B=3) will result in undefined  
behavior.  
Return to the Summary Table.  
DAC Pulse Mode (default: 0x00)  
7-45. MXMODE Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
MXMODE_B  
R/W-0h  
RESERVED  
R/W-0h  
MXMODE_A  
R/W-0h  
7-31. MXMODE Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5-4  
RESERVED  
MXMODE_B  
0h  
0h  
Specify the DAC pulse format for DACB.  
0 : Normal mode (non-return-to-zero) (sinc nulls at n*FS)  
1 : Mixed Mode (return to inverse) (sinc nulls at DC and 2n*FS)  
2 : Return-to-Zero (RTZ) (sinc nulls at 2n*FS)  
3 : 2XRF Mode (zero, signal, inverse, zero) requires DCM_EN=1  
3-2  
1-0  
RESERVED  
MXMODE_A  
R/W  
R/W  
0h  
0h  
Specify the DAC pulse format for DACA.  
0 : Normal mode (non-return-to-zero) (sinc nulls at n*FS)  
1 : Mixed Mode (return to inverse) (sinc nulls at DC and 2n*FS)  
2 : Return-to-Zero (RTZ) (sinc nulls at 2n*FS)  
3 : 2XRF Mode (zero, signal, inverse, zero) requires DCM_EN=1  
7.5.2.22 COARSE_CUR Register (Address = 170h) [reset = 00h]  
COARSE_CUR is shown in 7-46 and described in 7-32.  
Return to the Summary Table.  
Coarse Current Control (DAC A and B) (default: 0x00)  
Copyright © 2022 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-46. COARSE_CUR Register  
7
6
5
4
3
2
1
0
COARSE_CUR_B  
R/W-0h  
COARSE_CUR_A  
R/W-0h  
7-32. COARSE_CUR Register Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
COARSE_CUR_B  
COARSE_CUR_A  
0h  
Coarse current control for DAC B.  
Coarse current control for DAC A.  
0h  
7.5.2.23 CUR_A Register (Address = 171h) [reset = 9Fh]  
CUR_A is shown in 7-47 and described in 7-33.  
Return to the Summary Table.  
Current Control for DAC A (default: 0x9f)  
7-47. CUR_A Register  
7
6
5
4
3
2
1
0
CUR_EN_A  
R/W-1h  
RESERVED  
R/W-0h  
FINE_CUR_A  
R/W-1Fh  
7-33. CUR_A Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CUR_EN_A  
R/W  
1h  
Current enable for DAC A. If this is disabled, user needs to pulldown  
their DAC output bias to avoid reliability concerns. Disabling this  
causes the DAC to lose its DC operating point and will take some  
time to recover when it is turned on.  
6
RESERVED  
R/W  
R/W  
0h  
5-0  
FINE_CUR_A  
1Fh  
Fine current control for DAC A.  
7.5.2.24 CUR_B Register (Address = 172h) [reset = 9Fh]  
CUR_B is shown in 7-48 and described in 7-34.  
Return to the Summary Table.  
Current Control for DAC B (default: 0x9f)  
7-48. CUR_B Register  
7
6
5
4
3
2
1
0
CUR_EN_B  
R/W-1h  
RESERVED  
R/W-0h  
FINE_CUR_B  
R/W-1Fh  
7-34. CUR_B Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CUR_EN_B  
R/W  
1h  
Current enable for DAC B. If this is disabled, user needs to pulldown  
their DAC output bias to avoid reliability concerns. Disabling this  
causes the DAC to lose its DC operating point and will take some  
time to recover when it is turned on.  
6
RESERVED  
R/W  
R/W  
0h  
5-0  
FINE_CUR_B  
1Fh  
Fine current control for DAC B.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.5.2.25 SPIDAC_CHG_BLK Register (Address = 180h) [reset = 00h]  
SPIDAC_CHG_BLK is shown in 7-49 and described in 7-35.  
Return to the Summary Table.  
SPIDAC Change Block (default: 0x00)  
7-49. SPIDAC_CHG_BLK Register  
7
6
5
4
3
2
1
0
RESERVED  
SPIDAC_CHG_  
BLK  
R/W-0h  
R/W-0h  
7-35. SPIDAC_CHG_BLK Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-1  
0
RESERVED  
0h  
SPIDAC_CHG_BLK  
0h  
When set, changes to the SPIDAC_VALUE are not propagated to the  
high speed clocks and any DAC configured to use the SPIDAC  
continues to use its current value. When cleared, the  
SPIDAC_VALUE is used by the DACs. The user must set this  
before changing SPIDAC_VALUE if DP_EN=1.  
7.5.2.26 SPIDAC_VALUE Register (Address = 181h) [reset = 0000h]  
SPIDAC_VALUE is shown in 7-50 and described in 7-36.  
Return to the Summary Table.  
Sample value for SPIDAC Mode (default: 0x0000)  
7-50. SPIDAC_VALUE Register  
15  
7
14  
6
13  
5
12  
SPIDAC_VALUE  
R/W-0h  
11  
10  
2
9
1
8
0
4
3
SPIDAC_VALUE  
R/W-0h  
7-36. SPIDAC_VALUE Register Field Descriptions  
Bit  
15-0  
Field  
SPIDAC_VALUE  
Type  
Reset  
Description  
R/W  
0h  
This field defines the constant sample value fed to a DAC configured  
to use the SPIDAC. Changes to this register are synchronously  
applied to both DACs. See DACA_SRC and DACB_SRC. This value  
should only be changed when DP_EN=0 or SPIDAC_CHG_BLK=1.  
Note: Changes to the value can only propagate to the DAC output  
when SPIDAC_CHG_BLK is clear.  
7.5.2.27 SHUNTREG_EN Register (Address = 1A0h-1A1h) [reset = 0000h]  
SHUNTREG_EN is shown in 7-51 and described in 7-37.  
Return to the Summary Table.  
Enable Shunt Regulators (default: 0x0000). Recommended setting used in device characterization is 0x0FFF.  
Copyright © 2022 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-51.  
SHUNTREG_  
EN Register  
15  
14  
13  
12  
11  
10  
9
8
SHUNTREG_C SHUNTREG_C SHUNTREG_S  
RESERVED  
SHUNTREG_MUX_DACB_EN  
SHUNTREG_SWDRV_DACB_E  
N
LKDIST_EN  
LKGEN_EN  
YSREF_EN  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7-51.  
SHUNTREG_  
EN Register  
7
6
5
4
3
2
1
0
SHUNTREG_CLKDRV_DACB_E SHUNTREG_MUX_DACA_EN  
N
SHUNTREG_SWDRV_DACA_E SHUNTREG_CLKDRV_DACA_E  
N
N
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7-37. SHUNTREG_EN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
SHUNTREG_CLKDIST_E R/W  
N
0h  
Enable shunt regulators on SYSREF receiver.  
14  
SHUNTREG_CLKGEN_E R/W  
N
0h  
0h  
Enable shunt regulators on clock distribution supply.  
Enable shunt regulators on SYSREF receiver.  
SHUNTREG_SYSREF_E R/W  
N
12  
RESERVED  
R/W  
0h  
0h  
Reserved.  
11:10  
SHUNTREG_MUX_DACB R/W  
_EN  
Enable shunt regulators on the DACB MUX supplies.  
9:8  
7:6  
5:4  
3:2  
1:0  
SHUNTREG_SWDRV_DA R/W  
CB_EN  
0h  
0h  
0h  
0h  
0h  
Enable shunt regulators on the DACB Switch Driver supplies.  
Enable shunt regulators on the DACB Clock Driver supplies.  
Enable shunt regulators on the DACA MUX supplies.  
SHUNTREG_CLKDRV_D R/W  
ACB_EN  
SHUNTREG_MUX_DACA R/W  
_EN  
SHUNTREG_SWDRV_DA R/W  
CA_EN  
Enable shunt regulators on the DACA Switch Driver supplies.  
Enable shunt regulators on the DACA Clock Driver supplies.  
SHUNTREG_CLKDRV_D R/W  
ACA_EN  
7.5.2.28 FIFO_DLY Register (Address = 200h) [reset = 0h]  
FIFO_DLY is shown in 7-52 and described in 7-38.  
Return to the Summary Table.  
FIFO Delay (default: 0x08)  
7-52. FIFO_DLY Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
FIFO_DLY  
R/W-0h  
7-38. FIFO_DLY Register Field Descriptions  
Bit  
7-5  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0h  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-38. FIFO_DLY Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4-0  
FIFO_DLY  
R/W  
0h  
This sets the number of DAC clocks after the effective SYSREF edge  
before the first samples are expected to be available at the back of  
the FIFO.  
Note: Changes to this register should only be made while  
TXENABLE is low for both DACs.  
Note: This register should only be changed when NCO_EN=0. This  
register does affect the NCO alignment with respect to SYSREF. See  
7.3.3.5.3.  
7.5.2.29 FIFO_DLY_R0 Register (Address = 210h) [reset = 0h]  
FIFO_DLY_R0 is shown in 7-53 and described in 7-39.  
Return to the Summary Table.  
Current FIFO Delay for FIFO0 (read-only)  
7-53. FIFO_DLY_R0 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
FIFO_DLY_R0  
R-0h  
7-39. FIFO_DLY_R0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-0  
RESERVED  
R
0h  
FIFO_DLY_R0  
R
0h  
This reports the approximate setting for FIFO_DLY that would result  
in sample being used just as it arrives under current conditions. (This  
is the approximate number of DAC clocks after the effective SYSREF  
edge when the first sample is available at the back of the FIFO.)  
7.5.2.30 FIFO_DLY_R1 Register (Address = 211h) [reset = 0h]  
FIFO_DLY_R1 is shown in 7-54 and described in 7-40.  
Return to the Summary Table.  
Current FIFO Delay for FIFO1 (read-only)  
7-54. FIFO_DLY_R1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
FIFO_DLY_R1  
R-0h  
7-40. FIFO_DLY_R1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-0  
RESERVED  
R
0h  
FIFO_DLY_R1  
R
0h  
This reports the approximate setting for FIFO_DLY that would result  
in sample being used just as it arrives under current conditions. (This  
is the approximate number of DAC clocks after the effective SYSREF  
edge when the first sample is available at the back of the FIFO  
minus 1.)  
Copyright © 2022 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.5.2.31 FIFO_DLY_R2 Register (Address = 212h) [reset = 0h]  
FIFO_DLY_R2 is shown in 7-55 and described in 7-41.  
Return to the Summary Table.  
Current FIFO Delay for FIFO2 (read-only)  
7-55. FIFO_DLY_R2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
FIFO_DLY_R2  
R-0h  
7-41. FIFO_DLY_R2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-0  
RESERVED  
R
0h  
FIFO_DLY_R2  
R
0h  
This reports the approximate setting for FIFO_DLY that would result  
in sample being used just as it arrives under current conditions. (This  
is the approximate number of DAC clocks after the effective SYSREF  
edge when the first sample is available at the back of the FIFO  
minus 2 for LVDS_MODE==0 and minus 0 otherwise.)  
7.5.2.32 FIFO_DLY_R3 Register (Address = 213h) [reset = 0h]  
FIFO_DLY_R3 is shown in 7-56 and described in 7-42.  
Return to the Summary Table.  
Current FIFO Delay for FIFO3 (read-only)  
7-56. FIFO_DLY_R3 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
FIFO_DLY_R3  
R-0h  
7-42. FIFO_DLY_R3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-0  
RESERVED  
R
0h  
FIFO_DLY_R3  
R
0h  
This reports the approximate setting for FIFO_DLY that would result  
in sample being used just as it arrives under current conditions. (This  
is the approximate number of DAC clocks after the effective SYSREF  
edge when the first sample is available at the back of the FIFO  
minus 3 for LVDS_MODE==0 and minus 1 otherwise.)  
7.5.2.33 FIFO_ALIGN Register (Address = 220h) [reset = 0h]  
FIFO_ALIGN is shown in 7-57 and described in 7-43.  
Return to the Summary Table.  
FIFO Alignment Control (default: 0x00)  
7-57. FIFO_ALIGN Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
LVDS_STROBE SYSREF_ALIG  
_ALIGN  
N_EN  
R/W-0h  
R/W-0h  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-57. FIFO_ALIGN Register (continued)  
7-43. FIFO_ALIGN Register Field Descriptions  
Bit  
7-2  
1
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
RESERVED  
LVDS_STROBE_ALIGN  
0h  
Writing 1to this register when it is 0will cause the FIFO to  
re-align to the LVDS receiver. If LVDS bank 0 is in use, it will be used  
for alignment. Otherwise, LVDS bank 2 will be used. (Continuous  
alignment is not performed because the LVDS clock is asynchronous  
to the DAC clock and may cause realignment each time alignment is  
performed.) The alignment will cause a CLK_REALIGNED_ALM if  
realignment occurs. This bit should only be set while DP_EN=1, the  
DAC data path is zeroed (TXENABLE ball or register is low), and  
NCO_EN=0.  
Note: This bit aligns to the current internal operating alignment of the  
LVDS receiver circuitry. Alignment does not wait for an actual strobe  
to be provided on the LVDS bank and can be performed even if a  
strobe is not currently being provided. However, it is important that  
an LVDS strobe be provided to align the LVDS receiver prior to  
aligning the FIFO with this bit.  
Note: Once the system has been synchronized to SYSREF, this bit  
cannot be used again until the part has been reset or DP_EN has  
been returned to zero.  
0
SYSREF_ALIGN_EN  
R/W  
0h  
When this register is set, the FIFO re-aligns to each detected  
SYSREF edge. This bit should only be high while DP_EN=1,  
transmit_en_a=0, transmit_en_b=0, and NCO_EN=0. When a mis-  
aligned SYSREF edge occurs while this bit is set,  
CLK_REALIGNED_ALM will be set and the clocks will re-align.  
When this register is clear, the FIFO does not re-align on SYSREF  
edges. However, mis-aligned SYSREF edges are still reported in  
CLK_ALIGNMENT_ALM.  
Note: It is possible that a SYSREF edge provided very near the SPI  
clock edge that commits the write of this bit will be processed for  
alignment even though it technically arrived at the chip pins prior to  
the SPI clock edge.  
7.5.2.34 NCO_SYNC Register (Address = 300h) [reset = 00h]  
NCO_SYNC is shown in 7-58 and described in 7-44.  
Return to the Summary Table.  
NCO Sync Source Select (default: 0x00)  
Note: This register should only be changed when NCO_EN=0.  
Note: You cannot use the same SYSREF edge to align the FIFO and to sync the NCO since FIFO alignment  
requires NCO_EN=0.  
7-58. NCO_SYNC Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
NCO_CHG_SR NCO_CHG_SR  
RESERVED  
R/W-0h  
NCO_SYNC_SRC  
C_B  
C_A  
R/W-0h  
R/W-0h  
R/W-0h  
7-44. NCO_SYNC Register Field Descriptions  
Bit  
7-6  
Field  
Type  
Reset  
Description  
RESERVED  
R/W  
0h  
Copyright © 2022 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-44. NCO_SYNC Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5
NCO_CHG_SRC_B  
R/W  
0h  
0: NCO B will use the NCO accumulator specified in NCO_SEL_B.  
1: NCO B accumulator selection is performed using the nco_sel[3:0]  
and nco_banksel inputs and occurs on the rising edge of trig_c.  
Note: If nco_sel[3:0] and nco_banksel are not changed synchronous  
to trig_c, the part may temporarily switch to an unintended  
accumulator before switching to the correct one.  
4
NCO_CHG_SRC_A  
R/W  
0h  
0: NCO A will use the NCO accumulator specified in NCO_SEL_A.  
1: NCO A selection is performed using the nco_sel[3:0] and  
nco_banksel inputs and occurs on the rising edge of trig_c.  
Note: If nco_sel[3:0] and nco_banksel are not changed synchronous  
to trig_c, the part may temporarily switch to an unintended NCO  
before switching to the correct one.  
3-2  
1-0  
RESERVED  
R/W  
R/W  
0h  
0h  
NCO_SYNC_SRC  
0: Setting SPI_SYNC will immediately reset the NCO accumulators  
(both A & B)  
1: Setting SPI_SYNC will cause the NCO accumulators to reset on  
the next SYSREF rising edge.  
2: Setting SPI_SYNC will cause the NCO accumulators to reset on  
the next rising edge of trig_c with nco_banksel = 1.  
3: RESERVED  
7.5.2.35 NCO_SPISEL Register (Address = 301h) [reset = 0000h]  
NCO_SPISEL is shown in 7-59 and described in 7-45.  
Note: This register should only be changed when NCO_EN=0 or NCO_CHG_BLK=1.  
Return to the Summary Table.  
NCO Fast-Frequency Hopping Frequency Selection (default: 0x0000)  
7-59. NCO_SPISEL Register  
15  
7
14  
13  
5
12  
4
11  
3
10  
9
1
8
0
RESERVED  
R/W-0h  
NCO_SEL_B  
R/W-0h  
6
2
RESERVED  
R/W-0h  
NCO_SEL_A  
R/W-0h  
7-45. NCO_SPISEL Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
15-13  
12-8  
RESERVED  
NCO_SEL_B  
0h  
0h  
Selects which frequency/phase values to use for NCO B if  
NCO_CHG_SRC_B = 0. The MSB here selects which NCO bank to  
use. (0=A, 1=B)  
7-5  
4-0  
RESERVED  
NCO_SEL_A  
R/W  
R/W  
0h  
0h  
Selects which frequency/phase values to use for NCO A if  
NCO_CHG_SRC_A = 0. The MSB here selects which NCO bank to  
use. (0=A, 1=B)  
7.5.2.36 NCO_BANKCFG Register (Address = 303h) [reset = 00h]  
NCO_BANKCFG is shown in 7-60 and described in 7-46.  
Note: This register should only be changed when NCO_EN=0 or NCO_CHG_BLK=1.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
Return to the Summary Table.  
NCO Bank Configuration (default: 0x00)  
7-60. NCO_BANKCFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
NCO_BANKCFG  
R/W-0h  
7-46. NCO_BANKCFG Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-2  
1-0  
RESERVED  
0h  
NCO_BANKCFG  
0h  
0: The value of nco_sel[3:0] sampled on trig_c selects the respective  
A and B channel NCO accumulator.  
1: The value of nco_sel[3:0] sampled on trig_c selects the same  
NCO accumulator for both A and B channels based on the value of  
nco_banksel (0=A, 1=B). This makes it look like there are 32 NCO  
accumulators and nco_banksel is the MSB of nco_sel.  
2: The value of nco_sel[3:0] sampled on trig_c changes only the  
accumulator for the NCO selected by nco_banksel. (0=A, 1=B). Only  
one of the two NCOs can change per trig_c in this mode. In this  
case, nco_banksel is more like an NCO select.  
3: RESERVED  
NOTE: This register should only be changed when NCO_EN=0.  
7.5.2.37 NCO_EN Register (Address = 308h) [reset = 00h]  
NCO_EN is shown in 7-61 and described in 7-47.  
Return to the Summary Table.  
NCO Enable (default: 0x00)  
7-61. NCO_EN Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
NCO_EN  
R/W-0h  
7-47. NCO_EN Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-1  
0
RESERVED  
NCO_EN  
0h  
0h  
Setting this bit enables NCO operation. When this bit is cleared, the  
entire NCO is held in reset. This bit should be set after the NCO  
operation is configured and DP_EN=1.  
7.5.2.38 SPI_SYNC Register (Address = 310h) [reset = 00h]  
SPI_SYNC is shown in 7-62 and described in 7-48.  
Return to the Summary Table.  
SPI Sync (default: 0x00)  
7-62. SPI_SYNC Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
SPI_SYNC  
R/W-0h  
Copyright © 2022 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-62. SPI_SYNC Register (continued)  
7-48. SPI_SYNC Register Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
RESERVED  
SPI_SYNC  
0h  
Writing 1to this register when it is 0will trigger  
synchronization events that are bound to this register (see  
NCO_SYNC_SRC). This register will return the last value written.  
7.5.2.39 NCO_CHG_BLK Register (Address = 320h) [reset = 00h]  
NCO_CHG_BLK is shown in 7-63 and described in 7-49.  
Return to the Summary Table.  
NCO Change Blocking (default: 0x00)  
7-63. NCO_CHG_BLK Register  
7
6
5
4
3
2
1
0
RESERVED  
NCO_CHG_BL  
K
R/W-0h  
R/W-0h  
7-49. NCO_CHG_BLK Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-1  
0
RESERVED  
0h  
NCO_CHG_BLK  
0h  
When set, changes to NCO_SEL_A, NCO_SEL_B, FFH_FREQ_A,  
FFH_FREQ_B, FFH_PHASE_A, and FFH_PHASE_B, are not  
propagated to the high speed clocks and the NCOs continue to use  
their current values. When cleared, the NCOs use the values from  
these registers. The user must set this if changing any of these  
values while NCO_EN=1.  
Note: Phase continuous operation is only supported from  
FFH_FREQ_A[0] and FFH_FREQ_B[0].  
Note: Changing frequency values during operation only makes sense  
if phase coherency is unimportant since the user cannot control  
when the frequency change will take effect.  
7.5.2.40 NCO_RAMPRATE Register (Address = 330h) [reset = 00h]  
NCO_RAMPRATE is shown in 7-64 and described in 7-50.  
Note: If NCO_MODE=1 and both DACs use the NCO source and transmit_en_a != transmit_en_b, the rampup/  
rampdown behavior is undefined.  
Return to the Summary Table.  
NCO Ramp Rate Control (default: 0x00)  
7-64. NCO_RAMPRATE Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
NCO_RAMPRATE  
R/W-0h  
7-50. NCO_RAMPRATE Register Field Descriptions  
Bit  
7-3  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0h  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-50. NCO_RAMPRATE Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2-0  
NCO_RAMPRATE  
R/W  
0h  
Each of the NCO sources is linearly ramped up/down over the  
specified number of DEVCLK cycles when transmission is enabled/  
disabled.  
0: 0 DEVCLK cycles  
1: 16 DEVCLK cycles  
2: 32 DEVCLK cycles  
3: 64 DEVCLK cycles  
4: 128 DEVCLK cycles  
5: 256 DEVCLK cycles  
6: 512 DEVCLK cycles  
7: 1024 DEVCLK cycles  
Note: This register should only be changed when TXENABLE (ball or  
register) is low.  
7.5.2.41 NCO_CONFIG Register (Address = 331h) [reset = 02h]  
NCO_CONFIG is shown in 7-65 and described in 7-51.  
Note: This register should only be changed when TXENABLE (ball or register) is low.  
Return to the Summary Table.  
NCO Configuration (default: 0x02)  
7-65. NCO_CONFIG Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
NCO_DITH_EN NCO_MODE  
R/W-1h R/W-0h  
7-51. NCO_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-2  
1
RESERVED  
0h  
NCO_DITH_EN  
1h  
Setting this bit causes the NCO to use sub-LSB dither prior to  
rounding to smooth out the quantization noise. It may be useful to  
turn this off for certain frequencies where the quantization error is not  
a concern.  
0
NCO_MODE  
R/W  
0h  
0: NCOs operate independently  
1: NCOs are summed to create the final NCO output. If both DACA  
and DACB use the NCO source, they will both get the summed value  
in this mode.  
7.5.2.42 NCO_GAIN_A Register (Address = 332h) [reset = 0003h]  
NCO_GAIN_A is shown in 7-66 and described in 7-52.  
Return to the Summary Table.  
Gain backoff for NCO A (default: 0x0003)  
7-66. NCO_GAIN_A Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
NCO_GAIN_A  
R/W-3h  
4
3
NCO_GAIN_A  
R/W-3h  
Copyright © 2022 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-66. NCO_GAIN_A Register (continued)  
7-52. NCO_GAIN_A Register Field Descriptions  
Bit  
Field  
NCO_GAIN_A  
Type  
Reset  
Description  
15-0  
R/W  
3h  
This setting is the gain backoff for NCO A. This backoff is applied  
independent of NCO_MODE. The gain is equal to 1-(x/216).  
Note: Setting DITH_EN_A>0 automatically reduces the gain to  
prevent clipping from the NCO. The value programmed here is  
added to the required backoff for dither. The final gain will saturate at  
zero.  
Note: Setting this value below the default will result in saturation for  
some frequencies.  
Note: This register should only be changed when NCO_EN=0.  
7.5.2.43 NCO_GAIN_B Register (Address = 334h) [reset = 0003h]  
NCO_GAIN_B is shown in 7-67 and described in 7-53.  
Return to the Summary Table.  
Gain backoff for NCO B (default: 0x0003)  
7-67. NCO_GAIN_B Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
NCO_GAIN_B  
R/W-3h  
4
3
NCO_GAIN_B  
R/W-3h  
7-53. NCO_GAIN_B Register Field Descriptions  
Bit  
15-0  
Field  
NCO_GAIN_B  
Type  
Reset  
Description  
R/W  
3h  
This setting is the gain backoff for NCO B. This backoff is applied  
independent of NCO_MODE. The gain is equal to 1-(x/216).  
Note: Setting DITH_EN_B>0 automatically reduces the gain to  
prevent clipping from the NCO. The value programmed here is  
added to the required backoff for dither. The final gain will saturate at  
zero.  
Note: Setting this value below the default will result in saturation for  
some frequencies.  
Note: This register should only be changed when NCO_EN=0.  
7.5.2.44 FFH_FREQ_A[15:0] Register (Address = 400h) [reset = 0h]  
FFH_FREQ_A[15:0] is shown in 7-68 and described in 7-54.  
Return to the Summary Table.  
Frequency Word for Fast-Frequency Hopping (default: {16{0x00000000}}). The FFH setting for NCO_SEL_A=0  
will be at the lowest address, and then increment by 4*n for NCO_SEL_A = n.  
7-68. FFH_FREQ_A[15:0] Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
FFH_FREQ_A  
R/W-0h  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-54. FFH_FREQ_A[15:0] Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-0  
FFH_FREQ_A  
R/W  
0h  
The NCO frequency (FNCO) is:  
FNCO = FREQ_A * 2-32 * FDAC  
FDAC is the sample frequency of the DAC. FREQ_A is the integer  
value of this register. This register can be interpreted as signed or  
unsigned (both interpretations are valid).  
Use this equation to determine the value to program:  
FREQ_A = 232 * FNCO  
/
FDAC  
Note: Changing this register after the NCO has been synchronized  
will result in non-deterministic NCO phase. If deterministic phase is  
required, the NCO should be re-synchronized after changing this  
register.  
Note: This register should only be changed when NCO_EN=0 or  
NCO_CHG_BLK=1.  
7.5.2.45 FFH_FREQ_B[15:0] Register (Address = 440h) [reset = 0h]  
FFH_FREQ_B[15:0] is shown in 7-69 and described in 7-55.  
Return to the Summary Table.  
Frequency Word for Fast-Frequency Hopping (default: {16{0x00000000}}). The FFH setting for NCO_SEL_B=0  
will be at the lowest address, and then increment by 4*n for NCO_SEL_B = n.  
7-69. FFH_FREQ_B[15:0] Register  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
FFH_FREQ_B  
R/W-0h  
7-55. FFH_FREQ_B[15:0] Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31-0  
FFH_FREQ_B  
R/W  
0h  
The NCO frequency (FNCO) is:  
FNCO = FREQ_B * 2-32 * FDAC  
FDAC is the sample frequency of the DAC. FREQ_B is the integer  
value of this register. This register can be interpreted as signed or  
unsigned (both interpretations are valid).  
Use this equation to determine the value to program:  
FREQ_B = 232 * FNCO  
/
FDAC  
Note: Changing this register after the NCO has been synchronized  
will result in non-deterministic NCO phase. If deterministic phase is  
required, the NCO should be re-synchronized after changing this  
register.  
Note: This register should only be changed when NCO_EN=0 or  
NCO_CHG_BLK=1.  
7.5.2.46 FFH_PHASE_A[15:0] Register (Address = 480h) [reset = 0h]  
FFH_PHASE_A[15:0] is shown in 7-70 and described in 7-56.  
Return to the Summary Table.  
Phase Word for Fast-Frequency Hopping (default: {16{0x0000}}). The FFH setting for NCO_SEL_A=0 will be at  
the lowest address, and then increment by 2*n for NCO_SEL_A = n.  
7-70. FFH_PHASE_A[15:0] Register  
15  
14  
13  
12  
11  
10  
9
8
FFH_PHASE_A  
R/W-0h  
Copyright © 2022 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-70. FFH_PHASE_A[15:0] Register (continued)  
7
6
5
4
3
2
1
0
FFH_PHASE_A  
R/W-0h  
7-56. FFH_PHASE_A[15:0] Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
FFH_PHASE_A  
R/W  
0h  
Phase is added late so this register can be written during operation  
to change the phase without needing to reset the NCO.  
This value is left justified into a 32bit field and then added to the  
phase accumulator. The phase (in radians) is PHASE_A * 2-16 * 2π.  
This register can be interpreted as signed or unsigned.  
Note: This register should only be changed when NCO_EN=0 or  
NCO_CHG_BLK=1.  
7.5.2.47 FFH_PHASE_B[15:0] Register (Address = 4A0h) [reset = 0h]  
FFH_PHASE_B[15:0] is shown in 7-71 and described in 7-57.  
Return to the Summary Table.  
Phase Word for Fast-Frequency Hopping (default: {16{0x0000}}). The FFH setting for NCO_SEL_B=0 will be at  
the lowest address, and then increment by 2*n for NCO_SEL_B = n.  
7-71. FFH_PHASE_B[15:0] Register  
15  
14  
13  
12  
11  
10  
9
8
FFH_PHASE_B  
R/W-0h  
7
6
5
4
3
2
1
0
FFH_PHASE_B  
R/W-0h  
7-57. FFH_PHASE_B[15:0] Register Field Descriptions  
Bit  
15-0  
Field  
FFH_PHASE_B  
Type  
Reset  
Description  
R/W  
0h  
Phase is added late so this register can be written during operation  
to change the phase without needing to reset the NCO.  
This value is left justified into a 32bit field and then added to the  
phase accumulator. The phase (in radians) is PHASE_B * 2-16 * 2π.  
This register can be interpreted as signed or unsigned.  
Note: This register should only be changed when NCO_EN=0 or  
NCO_CHG_BLK=1.  
7.5.2.48 TS_TEMP Register (Address = 700h) [reset = 0h]  
TS_TEMP is shown in 7-72 and described in 7-58.  
Return to the Summary Table.  
Temperature Reading in Celsius (read-only)  
7-72. TS_TEMP Register  
7
6
5
4
3
2
1
0
TS_TEMP  
R-0h  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: DAC12DL3200  
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-58. TS_TEMP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TS_TEMP  
R
0h  
Returns the temperature sensor reading in degrees Celsius. This is a  
signed value.  
Note: Reads of this register require slower SPI timing. See AC-Spec  
-> SPI Interface.  
Note: The temperature sensor cannot perform a reading unless  
SLEEP=0, MODE=0 and TS_SLEEP=0.  
7.5.2.49 TS_SLEEP Register (Address = 701h) [reset = 00h]  
TS_SLEEP is shown in 7-73 and described in 7-59.  
Return to the Summary Table.  
Temperature Sensor Sleep (default: 0x00)  
7-73. TS_SLEEP Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
TS_SLEEP  
R/W-0h  
7-59. TS_SLEEP Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-1  
0
RESERVED  
TS_SLEEP  
0h  
0h  
If temperature conversions are not needed, set this bit to sleep the  
temperature sensor.  
7.5.2.50 IOTEST_CFG Register (Address = 710h) [reset = 00h]  
IOTEST_CFG is shown in 7-74 and described in 7-60.  
Return to the Summary Table.  
IOTEST Configuration (default: 0x00)  
7-74. IOTEST_CFG Register  
7
6
5
4
3
2
1
0
IOTEST_EN[3:0]  
RESERVED  
R/W-0h  
IOTEST_STRB IOTEST_CONT  
_LOCK  
R/W-0h  
R/W-0h  
R/W-0h  
7-60. IOTEST_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
IOTEST_EN[3:0]  
R/W  
0h  
When set, IOTEST_EN[ i] enables IO testing for LVDS bank i  
(assuming that the LVDS bank is currently configured for operation).  
Note: When any bit of this register is set, no LVDS data is passed  
through to the output of the DAC.  
3-2  
1
RESERVED  
R/W  
R/W  
0h  
0h  
IOTEST_STRB_LOCK  
Setting this bit prevents the LVDS strobe from re-aligning the LVDS  
counters. (It does not prevent the strobe alignment alarms.) Use this  
to allow a pattern on the strobe pin that is different from the normal  
strobe pattern.  
Copyright © 2022 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-60. IOTEST_CFG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
IOTEST_CONT  
R/W  
0h  
0: IOTEST will stop when the first error is detected  
1: IOTEST will run until manually stopped  
7.5.2.51 IOTEST_CTRL Register (Address = 711h) [reset = 00h]  
IOTEST_CTRL is shown in 7-75 and described in 7-61.  
Return to the Summary Table.  
IOTEST Control (default: 0x00)  
7-75. IOTEST_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
IOTEST_TRIG  
R/W-0h  
7-61. IOTEST_CTRL Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-1  
0
RESERVED  
0h  
IOTEST_TRIG  
0h  
Writing 1to this register when it is 0will start the IOTEST at  
the beginning of the next frame and clear the IOTEST_STAT*  
registers. Writing 0to this register will stop the IOTEST if it is  
running. If this register is 1, use IOTEST_RUN to see if the test  
is actually running or has been stopped due to a captured failure.  
7.5.2.52 IOTEST_SUM Register (Address = 712h) [reset = 0h]  
IOTEST_SUM is shown in 7-76 and described in 7-62.  
Return to the Summary Table.  
IOTEST Status (read-only)  
7-76. IOTEST_SUM Register  
7
6
5
4
3
2
1
0
IOTEST_RUN[3:0]  
IOTEST_MISS3 IOTEST_MISS2 IOTEST_MISS1 IOTEST_MISS0  
_SUM  
_SUM  
_SUM  
_SUM  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
7-62. IOTEST_SUM Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
IOTEST_RUN[3:0]  
R
0h  
IOTEST_RUN[i] will be set any time the IOTEST is running on LVDS  
bank i.  
3
IOTEST_MISS3_SUM  
IOTEST_MISS2_SUM  
IOTEST_MISS1_SUM  
IOTEST_MISS0_SUM  
R
R
R
R
0h  
0h  
0h  
0h  
This bit will be set any time a failure is reported in IOTEST_MISS3.  
This bit is cleared by clearing the failures in IOTEST_MISS3.  
2
This bit will be set any time a failure is reported in IOTEST_MISS2.  
This bit is cleared by clearing the failures in IOTEST_MISS2.  
1
This bit will be set any time a failure is reported in IOTEST_MISS1.  
This bit is cleared by clearing the failures in IOTEST_MISS1.  
0
This bit will be set any time a failure is reported in IOTEST_MISS0.  
This bit is cleared by clearing the failures in IOTEST_MISS0.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.5.2.53 IOTEST_PAT[7:0] Register (Address = 720h) [reset = 0h]  
IOTEST_PAT[7:0] is shown in 7-77 and described in 7-63.  
Return to the Summary Table.  
IOTEST Pattern Memory (default: {8{0x0000}}).  
This is the 8-word pattern memory containing the 16-bit words for the LVDS IOTEST. The first sample of the  
frame should be at the lowest address.  
Each of the 8 words has this format:  
7-77. IOTEST_PAT[7:0] Register  
15  
7
14  
13  
5
12  
11  
10  
9
1
8
0
RESERVED  
R/W-0h  
IOTEST_DATA[12:8]  
R/W-0h  
6
4
3
2
IOTEST_DATA[7:0]  
R/W-0h  
7-63. IOTEST_PAT[7:0] Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
15-13  
12-0  
RESERVED  
0h  
IOTEST_DATA  
0h  
[12]: Defines the expected state of the strobe pin.  
[11:0]: Defines the expected state of the data pins.  
Note: The falling edge data for the strobe pin should always be set to  
zero.  
7.5.2.54 IOTEST_STAT0 Register (Address = 750h) [W1C, reset = NA]  
IOTEST_STAT0 is shown in 7-78 and described in 7-64.  
Return to the Summary Table.  
IOTEST Bank0 Failure Status  
7-78. IOTEST_STAT0 Register  
15  
7
14  
13  
5
12  
11  
10  
IOTEST_MISS0[12:8]  
W1C  
9
1
8
0
RESERVED  
R/W-0h  
6
4
3
2
IOTEST_MISS0[7:0]  
W1C  
7-64. IOTEST_STAT0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-13  
12-0  
RESERVED  
R/W  
0h  
IOTEST_MISS0  
W1C  
NA  
[12]: Failure on strobe pin  
[11:0]: Failure on indicated data pin  
7.5.2.55 IOTEST_STAT1 Register (Address = 752h) [W1C, reset = NA]  
IOTEST_STAT1 is shown in 7-79 and described in 7-65.  
Copyright © 2022 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
Return to the Summary Table.  
IOTEST Bank1 Failure Status  
7-79. IOTEST_STAT1 Register  
15  
14  
13  
5
12  
11  
10  
IOTEST_MISS1[12:8]  
W1C  
9
1
8
0
RESERVED  
R/W-0h  
7
6
4
3
2
IOTEST_MISS1[7:0]  
W1C  
7-65. IOTEST_STAT1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-13  
12-0  
RESERVED  
R/W  
0h  
IOTEST_MISS1  
W1C  
NA  
[12]: Failure on strobe pin  
[11:0]: Failure on indicated data pin  
7.5.2.56 IOTEST_STAT2 Register (Address = 754h) [W1C, reset = NA]  
IOTEST_STAT2 is shown in 7-80 and described in 7-66.  
Return to the Summary Table.  
IOTEST Bank2 Failure Status (write-to-clear)  
7-80. IOTEST_STAT2 Register  
15  
7
14  
13  
5
12  
11  
10  
IOTEST_MISS2[12:8]  
W1C  
9
1
8
0
RESERVED  
R/W-0h  
6
4
3
2
IOTEST_MISS2[7:0]  
W1C  
7-66. IOTEST_STAT2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-13  
12-0  
RESERVED  
R/W  
0h  
IOTEST_MISS2  
W1C  
NA  
[12]: Failure on strobe pin  
[11:0]: Failure on indicated data pin  
7.5.2.57 IOTEST_STAT3 Register (Address = 756h) [reset = 0h]  
IOTEST_STAT3 is shown in 7-81 and described in 7-67.  
Return to the Summary Table.  
IOTEST Bank3 Failure Status (write-to-clear)  
7-81. IOTEST_STAT3 Register  
15  
14  
13  
12  
11  
10  
IOTEST_MISS3[12:8]  
W1C  
9
8
RESERVED  
R/W-0h  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-81. IOTEST_STAT3 Register (continued)  
7
6
5
4
3
2
1
0
IOTEST_MISS3[7:0]  
W1C  
7-67. IOTEST_STAT3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-13  
12-0  
RESERVED  
R/W  
0h  
IOTEST_MISS3  
W1C  
NA  
[12]: Failure on strobe pin  
[11:0]: Failure on indicated data pin  
7.5.2.58 IOTEST_CAP0[7:0] Register (Address = 760h) [read only, reset = NA]  
IOTEST_CAP0[7:0] is shown in 7-82 and described in 7-68.  
Return to the Summary Table.  
IOTEST Bank0 Capture Memory (read-only)  
This is the 8-word capture memory containing the 13-bit captured words from the bank. If the test was run with  
IOTEST_CONT = 0 and IOTEST_MISS0 != 0, this memory will contain the captured frame with the error. Since it  
contains the entire frame, more than one error may be present. The first sample of the frame will be at the lowest  
address.  
Note: The capture memory should only be read while IOTEST_RUN[0] = 0.  
7-82. IOTEST_CAP0[7:0] Register  
15  
7
14  
13  
5
12  
11  
10  
IOTEST_CAP_DATA[12:8]  
R-0h  
9
1
8
0
RESERVED  
R-0h  
6
4
3
2
IOTEST_CAP_DATA[7:0]  
R-0h  
7-68. IOTEST_CAP0[7:0] Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-13  
12-0  
RESERVED  
R
0h  
IOTEST_CAP_DATA  
R
0h  
[12]: Captured data for strobe pin  
[11:0]: Captured data for indicated data pin  
7.5.2.59 IOTEST_CAP1[7:0] Register (Address = 770h) [reset = 0h]  
IOTEST_CAP1[7:0] is shown in 7-83 and described in 7-69.  
Return to the Summary Table.  
IOTEST Bank1 Capture Memory (read-only)  
This is the 8-word capture memory containing the 13-bit captured words from the bank. If the test was run with  
IOTEST_CONT = 0 and IOTEST_MISS0 != 0, this memory will contain the captured frame with the error. Since it  
contains the entire frame, more than one error may be present. The first sample of the frame will be at the lowest  
address.  
Note: The capture memory should only be read while IOTEST_RUN[1] = 0.  
Copyright © 2022 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-83. IOTEST_CAP1[7:0] Register  
15  
14  
13  
5
12  
11  
10  
IOTEST_CAP_DATA[12:8]  
R-0h  
9
1
8
0
RESERVED  
R-0h  
7
6
4
3
2
IOTEST_CAP_DATA[7:0]  
R-0h  
7-69. IOTEST_CAP1[7:0] Register Field Descriptions  
Bit  
Field  
RESERVED  
IOTEST_CAP_DATA  
Type  
Reset  
Description  
15-13  
12-0  
R
0h  
R
0h  
[12]: Captured data for strobe pin  
[11:0]: Captured data for indicated data pin  
7.5.2.60 IOTEST_CAP2[7:0] Register (Address = 780h) [reset = 0h]  
IOTEST_CAP2[7:0] is shown in 7-84 and described in 7-70.  
Return to the Summary Table.  
IOTEST Bank2 Capture Memory (read-only)  
This is the 8-word capture memory containing the 13-bit captured words from the bank. If the test was run with  
IOTEST_CONT = 0 and IOTEST_MISS2 != 0, this memory will contain the captured frame with the error. Since it  
contains the entire frame, more than one error may be present. The first sample of the frame will be at the lowest  
address.  
Note: The capture memory should only be read while IOTEST_RUN[2] = 0.  
7-84. IOTEST_CAP2[7:0] Register  
15  
7
14  
13  
5
12  
11  
10  
IOTEST_CAP_DATA[12:8]  
R-0h  
9
1
8
0
RESERVED  
R-0h  
6
4
3
2
IOTEST_CAP_DATA[7:0]  
R-0h  
7-70. IOTEST_CAP2[7:0] Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-13  
12-0  
RESERVED  
R
0h  
IOTEST_CAP_DATA  
R
0h  
[12]: Captured data for strobe pin  
[11:0]: Captured data for indicated data pin  
7.5.2.61 IOTEST_CAP3[7:0] Register (Address = 790h) [reset = 0h]  
IOTEST_CAP3[7:0] is shown in 7-85 and described in 7-71.  
Return to the Summary Table.  
IOTEST Bank3 Capture Memory (read-only)  
This is the 8-word capture memory containing the 13-bit captured words from the bank. If the test was run with  
IOTEST_CONT = 0 and IOTEST_MISS3 != 0, this memory will contain the captured frame with the error. Since it  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
contains the entire frame, more than one error may be present. The first sample of the frame will be at the lowest  
address.  
Note: The capture memory should only be read while IOTEST_RUN[3] = 0.  
7-85. IOTEST_CAP3[7:0] Register  
15  
7
14  
13  
5
12  
11  
10  
2
9
1
8
0
RESERVED  
R-0h  
:
:
R-0h  
R-0h  
6
4
3
IOTEST_CAP_DATA[7:0]  
R-0h  
7-71. IOTEST_CAP3[7:0] Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-13  
12-0  
RESERVED  
R
0h  
IOTEST_CAP_DATA  
R
0h  
[12]: Captured data for strobe pin  
[11:0]: Captured data for indicated data pin  
7.5.2.62 SYNC_STATUS Register (Address = 800h) [W1C, reset = NA]  
SYNC_STATUS is shown in 7-86 and described in 7-72.  
Return to the Summary Table.  
Synchronization Status (default: 0x00)  
7-86. SYNC_STATUS Register  
7
6
5
4
3
2
1
0
LVDS_STROBE_DET[3:0]  
W1C  
RESERVED  
R/W-0h  
SYSREF_DET  
W1C  
7-72. SYNC_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
LVDS_STROBE_DET[3:0] W1C  
NA  
[i]: Bit is set when a strobe is detected for LVDS bank i. Write 1 to  
clear the bit and allow it to be re-detected. These bits are also  
cleared on the rising edge of LVDS_STROBE_ALIGN.  
3-1  
0
RESERVED  
R/W  
0h  
SYSREF_DET  
W1C  
NA  
This bit is set when a SYSREF is detected. Write 1 to clear the bit  
and allow it to be re-detected. This bit is also cleared on the rising  
edge of SYSREF_ALIGN_EN.  
7.5.2.63 FIFO_ALM Register (Address = 820h) [W1C, reset = NA]  
FIFO_ALM is shown in 7-87 and described in 7-73.  
Note: These registers will only detect alarms on input data transitions. Constant input data will not produce  
alarms.  
Return to the Summary Table.  
FIFO Alarm Status (default: 0x00)  
7-87. FIFO_ALM Register  
7
6
5
4
3
2
1
0
Copyright © 2022 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-87. FIFO_ALM Register (continued)  
FIFO_EMPTY_ALM  
FIFO_FULL_ALM  
W1C  
W1C  
7-73. FIFO_ALM Register Field Descriptions  
Bit  
Field  
FIFO_EMPTY_ALM  
Type  
Reset  
Description  
7-4  
W1C  
0h  
FIFO_EMPTY_ALM[i] is set if the FIFO for bank i is almost empty.  
FIFOs that are not enabled will never generate an alarm. Write 1 to a  
bit to clear the alarm.  
3-0  
FIFO_FULL_ALM  
W1C  
0h  
FIFO_FULL_ALM[i] is set if the FIFO for bank i is almost full. FIFOs  
that are not enabled will never generate an alarm. Write 1 to a bit to  
clear the alarm.  
7.5.2.64 LVDS_ALM Register (Address = 821h) [W1C, reset = NA]  
LVDS_ALM is shown in 7-88 and described in 7-74.  
Return to the Summary Table.  
LVDS Strobe Alarm (default: 0x00)  
7-88. LVDS_ALM Register  
7
6
5
4
3
2
1
0
LVDS_CLK_ALM  
W1C  
STROBE_ALM  
W1C  
7-74. LVDS_ALM Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
LVDS_CLK_ALM  
W1C  
0h  
LVDS_CLK_ALM[i] is set if the respective LVDS bank is configured  
for use and the LVDS clock is not running. The LVDS clock must  
miss at least half of its edges within 8 LVDS periods to ensure  
detection. Write 1 to a bit to clear the alarm.  
3-0  
STROBE_ALM  
W1C  
0h  
STROBE_ALM[i] is set if the strobe for LVDS bank i arrives at an  
unexpected position. Unless IOTEST_STRB_LOCK was set when  
the error occured, this has caused the input side of the FIFO to re-  
align. Write 1 to a bit to clear the alarm.  
7.5.2.65 SYS_ALM Register (Address = 822h) [W1C, reset = NA]  
SYS_ALM is shown in 7-89 and described in 7-75.  
Return to the Summary Table.  
System Alarm Status (default: 0x00)  
7-89. SYS_ALM Register  
7
6
5
4
3
2
1
0
RESERVED  
TRIG_REALIG CLK_ALIGNME CLK_REALIGN  
NED_ALM  
NT_ALM  
ED_ALM  
R/W-0h  
W1C  
W1C  
W1C  
7-75. SYS_ALM Register Field Descriptions  
Bit  
7-3  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0h  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-75. SYS_ALM Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2
TRIG_REALIGNED_ALM W1C  
NA  
This bit is set if SYSREF re-aligns the trigger clock divider. This  
generally occurs if the SYSREF period is not correct. The SYSREF  
period must be an integer multiple of the Trigger Clock period. This is  
not intended to detect small changes in SYSREF alignment. The  
CLK_ALIGNMENT_ALM should be used for this purpose. Write 1 to  
clear the alarm.  
1
0
CLK_ALIGNMENT_ALM  
CLK_REALIGNED_ALM  
W1C  
W1C  
NA  
NA  
This bit is set if SYSREF_ALIGN_EN=0, and a SYSREF edge is  
detected at an incorrect alignment. Write 1 to clear the alarm.  
This bit is set if a detected SYSREF edge or LVDS strobe re-aligns  
the clocks. Write 1 to clear the alarm.  
7.5.2.66 ALM_MASK Register (Address = 823h) [reset = 00h]  
ALM_MASK is shown in 7-90 and described in 7-76.  
Return to the Summary Table.  
Alarm Mask (default: 0x00)  
7-90. ALM_MASK Register  
7
6
5
4
3
2
1
0
FIFO_ALM_MA LVDS_CLK_AL STROBE_ALM  
RESERVED  
R/W-0h  
TRIG_REALIG CLK_ALIGNME CLK_REALIGN  
NED_ALM_MA NT_ALM_MAS ED_ALM_MAS  
SK  
M_MASK  
_MASK  
SK  
K
K
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0b  
R/W-0b  
7-76. ALM_MASK Register Field Descriptions  
Bit  
Field  
FIFO_ALM_MASK  
Type  
Reset  
Description  
7
R/W  
0h  
When set, alarms from the FIFO_ALM registers are masked and will  
not impact the alarm output.  
6
5
LVDS_CLK_ALM_MASK R/W  
0h  
0h  
When set, alarms from the LVDS_CLK_ALM registers are masked  
and will not impact the alarm output.  
STROBE_ALM_MASK  
R/W  
R/W  
When set, alarms from the STROBE_ALM registers are masked and  
will not impact the alarm output.  
4-3  
2
RESERVED  
0h  
0b  
TRIG_REALIGNED_ALM_ R/W  
MASK  
When set, alarms from the TRIG_REALIGNED_ALM register are  
masked and will not impact the alarm output.  
1
0
CLK_ALIGNMENT_ALM_ R/W  
MASK  
0b  
0b  
When set, alarms from the CLK_ALIGNMENT_ALM register are  
masked and will not impact the alarm output.  
CLK_REALIGNED_ALM_ R/W  
MASK  
When set, alarms from the CLK_REALIGNED_ALM register are  
masked and will not impact the alarm output.  
7.5.2.67 MUTE_MASK Register (Address = 824h) [reset = 07h]  
MUTE_MASK is shown in 7-91 and described in 7-77.  
Return to the Summary Table.  
DAC Mute Mask (default: 0x07)  
7-91. MUTE_MASK Register  
7
6
5
4
3
2
1
0
FIFO_MUTE_M LVDS_CLK_MU STROBE_MUT  
ASK TE_MASK E_MASK  
RESERVED  
TRIG_REALIG CLK_ALIGNME CLK_REALIGN  
NED_MUTE_M NT_MUTE_MA ED_MUTE_MA  
ASK  
SK  
SK  
Copyright © 2022 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-91. MUTE_MASK Register (continued)  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-1b  
R/W-1b  
R/W-1b  
7-77. MUTE_MASK Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
FIFO_MUTE_MASK  
R/W  
0h  
Alarms from the FIFO_ALM registers will mute the DAC unless this  
bit is set.  
6
5
LVDS_CLK_MUTE_MASK R/W  
0h  
0h  
Alarms from the LVDS_CLK_ALM registers will mute the DAC unless  
this bit is set.  
STROBE_MUTE_MASK  
R/W  
R/W  
Alarms from the STROBE_ALM registers will mute the DAC unless  
this bit is set.  
4-3  
2
RESERVED  
0h  
1b  
TRIG_REALIGNED_MUT R/W  
E_MASK  
Alarms from the TRIG_REALIGNED_ALM register will mute the DAC  
unless this bit is set.  
1
0
CLK_ALIGNMENT_MUTE R/W  
_MASK  
1b  
1b  
Alarms from the CLK_ALIGNMENT_ALM register will mute the DAC  
unless this bit is set.  
CLK_REALIGNED_MUTE  
_MASK  
Alarms from the CLK_REALIGNED_ALM register will mute the DAC  
unless this bit is set.  
7.5.2.68 FUSE_STATUS Register (Address = 900h) [reset = 00h]  
FUSE_STATUS is shown in 7-92 and described in 7-78.  
Return to the Summary Table.  
Fuse Status (default: variable)  
7-92. FUSE_STATUS Register  
7
6
5
4
3
2
1
0
RESERVED  
R-00h  
FUSE_DONE  
R-0b  
7-78. FUSE_STATUS Register Field Descriptions  
Bit  
7-1  
Field  
RESERVED  
Type  
Reset  
01h  
0b  
Description  
R
RESERVED  
FUSE_DON Fuse Done  
E
R
Returns '1' when the fuse controller has finished loading registers  
from the FuseROM.  
7.5.2.69 SYSREF_PS_EN Register (Address = B02h) [reset = 0x00]  
SYSREF_PS_EN is shown in 7-93 and described in 7-79. This function is only available for  
CHIP_VERSION=2.  
Return to the Summary Table.  
SYSREF_PS_EN (default: 0x00)  
7-93. SYSREF_PS_EN Register  
7
6
5
4
3
2
1
0
RESERVED  
RESERVED - always write 0x0  
R/W-0h  
SYSREF_PS_E  
N
R/W-0h  
R/W-0b  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-79. SYSREF_PS_EN Register Field Descriptions  
Bit  
7-5  
4-1  
0
Field  
Type  
R/W  
R/W  
R/W  
Reset  
000b  
0x0  
Description  
RESERVED  
RESERVED  
SYSREF_PS_EN  
RESERVED  
RESERVED - always write 0x0  
0
When set, SYSREF_POS will contain 1s for all positions that have  
been detected as near the SYSREF edge since this bit was set.  
When cleared, SYSREF_POS will only contain 1s for the last  
SYSREF edge that was detected.  
Copyright © 2022 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Startup Procedure with LVDS Input  
The list below is the startup procedure when using the LVDS input:  
1. Start the DEVCLK  
2. Apply power per the order in the power sequence section  
3. Assert Reset  
4. De-assert Reset Fuse ROM load will automatically begin  
5. Program part configuration ( CH_CFG , DCM_EN , MXMODE_*, etc.)  
6. Wait for Fuse ROM load to complete ( FUSE_DONE =1)  
7. Apply LVDS signals (and SYSREF if used) to inputs. This may have been done at any earlier point if desired,  
but must be stable by here.  
8. Set DP_EN =1  
9. Clear LVDS_CLK_ALM & STROBE_ALM  
10. Synchronize the system  
a. If using LVDS Strobes for alignment:  
i. Set LVDS_STROBE_ALIGN =1  
ii. Wait for LVDS_STROBE_DET =1  
b. If using SYSREF for alignment:  
i. See SYSREF Windowing to enable and align synchronous SYSREF capturing.  
ii. Set SYSREF_ALIGN_EN =1  
iii. Wait for SYSREF_DET =1  
iv. Set SYSREF_ALIGN_EN =0  
11. Configure FIFO_DLY (this may be done early but should be complete by here)  
12. Clear all SYS_ALM bits  
13. Wait for 100 DACCLK cycles for corrupted data to be flushed.  
14. Enable Transmission using the TXENABLE pin or TXEN_A/B registers.  
8.1.2 Startup Procedure With NCO Operation  
The following list is the startup procedure in NCO only mode:  
1. Start the DEVCLK  
2. Apply power  
3. Assert Reset  
4. De-assert Reset Fuse ROM load will automatically begin  
5. Program part configuration ( CH_CFG , DCM_EN , MXMODE_* , etc.) including the desired NCO  
configuration. Programming frequency and phase settings does not require using NCO_CHG_BLK as long  
as NCO_EN =0.  
6. Wait for Fuse ROM load to complete ( FUSE_DONE =1)  
7. Apply SYSREF (if used) to inputs. This may have been done at any earlier point if desired, but must be  
stable by here.  
8. Set DP_EN  
9. If using LVDS inputs, clear LVDS_CLK_ALM & STROBE_ALM  
10. Synchronize the system  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: DAC12DL3200  
 
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
a. If using LVDS Strobes for alignment:  
i. Set LVDS_STROBE_ALIGN  
ii. Wait for LVDS_STROBE_DET =1  
b. If using SYSREF for alignment  
i. See SYSREF Windowing to enable and align synchronous SYSREF capturing.  
ii. Set SYSREF_ALIGN_EN  
iii. Wait for SYSREF_DET =1  
iv. Clear SYSREF_ALIGN_EN  
11. If using only the NCO, it is possible to continue without synchronization if no synchronization is desired.  
12. Configure FIFO_DLY (this may be done early but should be complete by here)  
13. Set NCO_EN  
14. Synchronize the NCO accumulators using the method selected in NCO_SYNC_SRC .  
15. Clear all SYS_ALM bits  
16. Wait for 100 DACCLK cycles for corrupted data to be flushed.  
17. Enable Transmission using the TXENABLE pin or TXEN_A/B registers.  
When operating only the NCO (no LVDS), the part will automatically run at some unknown alignment without  
aligning to SYSREF. If SYSREF alignment is desired, the user should align to SYSREF before setting NCO_EN  
= 1.  
Copyright © 2022 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
8.1.3 Interface Test Pattern and Timing Verification  
The device provides the ability for the user to provide a repeating 8-sample sequence on the LVDS inputs and  
verify that the data can be properly received. It also provides debug facilities to help the user determine where  
the failures are occurring.  
The test can be run both stop-on-fail (which allows the user to read the failing data frame to see what bits are  
failing and at what point in the pattern) or continue-on-fail (which allows the user to get a quick overview of which  
datalines are having problems).  
Individual LVDS banks can be masked allowing the user to capture failures on selected banks.  
1. Start the DEVCLK  
2. Apply power  
3. Assert Reset  
4. De-assert Reset Fuse ROM load will automatically begin  
5. Configure CH_CFG and DCM_EN according to the desired mode of operation. Only LVDS banks that are  
used in the selected mode will be tested.  
6. Start LVDS data into the part using the proper strobe period. Note that it is possible to use either the LSB  
strobe or the dedicated strobe pin. If using the LSB strobe, set SYNCB low (using either the pin or the  
register bit).  
7. Set DP_EN=1  
8. Synchronize the system  
a. If using LVDS Strobes for alignment:  
i. Set LVDS_STROBE_ALIGN=1  
ii. Wait for LVDS_STROBE_DET=1  
b. If using SYSREF for alignment  
i. See SYSREF Windowing to enable and align synchronous SYSREF capturing.  
ii. Set SYSREF_ALIGN_EN=1  
iii. Wait for SYSREF_DET=1  
iv. Set SYSREF_ALIGN_EN=0  
9. Check LVDS_STROBE_DET to ensure all the required LVDS strobes have been detected. Be sure to reset  
the bits before reading them. (Note that it is still possible to run the IOTEST if some strobes are not working.  
To do this, ensure that SYSREF is not being used so the FIFO does not corrupt the data. Then continue  
performing the test. The test will likely fail, but will provide visibility into what is occurring on the strobe line.)  
10. Configure FIFO_DLY (this may be done early but should be complete by here)  
11. Configure the IOTEST data patterns in IOTEST_PAT, and IOTEST_CONT.  
12. Set IOTEST_STRB_LOCK=1 (if desired).  
13. If using an LSB strobe and the pattern tests the LSb in data operation, set LSB_SYNC=0 and sync_n=1.  
14. Set IOTEST_EN=1  
15. Enable Transmission using txenable or TXEN_A/B.  
16. Start the test using IOTEST_TRIG.  
17. If IOTEST_CONT = 0, monitor IOTEST_RUN until the test stops and then inspect the results. If  
IOTEST_CONT = 1, monitor the faults using IOTEST_SUM or IOTEST_MISS* fields in registers  
IOTEST_STAT0 - IOTEST_STAT3.  
8.2 Typical Application  
The DAC12DL3200 can be used in a wide range of applications including radar, electronic warfare, satellite  
communications, test equipment (communications testers and arbitrary waveform generators) and software-  
defined radios (SDRs).  
The low latency of the DAC12DL3200, in combination with the low latency ADC12DL3200, make it particularly  
suitable for electronic warfare applications where a fast return of the pulse is important to as closely match the  
reflected pulse in time. 8-1 shows a block diagram for an electronic warfare digital radio. The received radio  
pulse (after amplification) is input to the ADC12DL3200, the digital signal transferred to the FPGA for digital  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: DAC12DL3200  
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
signal processing (for example frequency or delay shifting), and output by the DAC12DL3200 at the same  
frequency as the input to the ADC. The DAC and ADC are clocked by the LMK04828.  
8-1. System Block Diagram for a Electronics Warfare Digital Radio  
8.2.1 Design Requirements  
The system parameters for an example low latency digital radio is listed in 8-1.  
8-1. Digital Radio System Parameters  
Function  
Value  
# of Channels  
RF Frequency  
2
2.0 - 2.8 GHz  
3.2 GSPS  
3.2 GHz  
ADC/DAC sample rate  
ADC/DAC clock frequency  
DAC Output Mode  
RF Mode  
< 50 ns  
Total Latency  
(analog input to analog output)  
8.2.2 Detailed Design Procedure  
The design operates in 2nd Nyquist zone for the DAC and ADC with a sample rate of 3.2 GSPS (3.2 GHz clock).  
The DAC is used in RF mode to enhance 2nd Nyquist zone output power. A frequency range of 2.0 to 2.8 GHz is  
reasonable for design of the Nyquist filter at the ADC input.  
The ADC and DAC use the same LMK04828 clock source, which is important for cancellation of the clock phase  
noise between the ADC input and DAC output. A Xilinx XCKU060 Kintex® UltraScaleFPGA is used for the  
FPGA to loopback data from the ADC12DL3200 to DAC12DL3200. No signal processing is included in the  
FPGA firmware, as that is beyond the scope of this example.  
Copyright © 2022 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
8.2.3 Application Curves  
A linear frequency chirp signal with 200 MHz BW, 146.5 MHz/μs and 1.36 μs repetition rate centered at 2.4  
GHz was input to the ADC12DL3200. Analog input signal is shown in 8-2. The signal after loopback at the  
DAC12DL3200 output is shown in 8-3, and matches well the analog input.  
8-2. RF Signal at ADC Input  
8-3. RF Signal at DAC Output  
The DAC12DL3200 and ADC12DL3200 latency depend on mode and are 30.5 clock cycles for the DAC and 26  
clock cyles for the ADC. At 3.2 GHz, one clock period is 313 ps and therefore the total DAC and ADC latency is  
17.7 ns. The latency through the FPGA depends on the FPGA firmware. With significant optimization, a latency  
of < 20 ns (without signal processing) is possible. To demonstrate an optimized latency, the ADC MSB output  
was looped back to the DAC MSB input with an latency optimized FPGA firmware. 8-4 shows the ADC input  
to DAC output, with a latency of 32.6 ns, meeting the system design requirement.  
8-4. ADC Input to DAC Output Time for MSB loopback test.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: DAC12DL3200  
 
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
8.3 Power Supply Recommendations  
The device requires three different power-supply voltages. 1.8 VDC is required for the VDDA18A, VDDA18B,  
VDDCLK18, VDDIO, and VDDSYS18 power buses, 1.0 VDC is required for the VDDCLK10, VDDDIG, VDDEA,  
VDDEB, VDDHAF, VDDL2A and VDDL2B power buses and -1.8 VDC is required for the VEEAM18 and  
VEEBM18 power buses.  
The recommended power-supply architecture uses high-efficiency switching converters to step down the voltage  
from a higher rail, followed by a second stage of regulation to provide switching noise reduction and improved  
voltage accuracy.  
TI WEBENCH® Power Designer can be used to select and design the individual power-supply elements needed:  
see the WEBENCH® Power Designer  
Recommended switching regulators for the first stage include the TPS82084 and similar devices.  
Recommended low dropout (LDO) linear regulators include the TPS7A91 and similar devices.  
Recommended dual positive and negative low dropout (LDO) linear regulator with an integral charge pump  
include the LM27762 and similar devices.  
The switcher output should use a filter designed with a notch frequency that aligns with the switching ripple  
frequency of the DC/DC converter. Make a note of the switching frequency reported from WEBENCH® and  
design the EMI filter and capacitor combination to have the notch frequency centered as needed.  
Do not share VDDDIG with the analog supply voltages in order to prevent digital switching noise from coupling  
into the analog signal chain. If some supplies are shared, apply careful power supply filtering to limit digital noise  
at the analog supply pins.  
Several power buses can be combined to use a common regulator when using some type of isolation.  
8.3.1 Power Up and Down Sequence  
At power up and down, the supplies (including the VOUTA+/- and VOUTB+/- bias voltages) can be applied in  
any order as long as the cumulative time in a state where only some supplies are active is less than one year.  
Copyright © 2022 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
8.4 Layout  
8.4.1 Layout Guidelines  
There are many critical signals that require specific care during board design:  
1. Analog output signals  
2. CLK and SYSREF  
3. LVDS data inputs at up to 1.6 Gbps  
4. Power connections  
5. Ground connections  
Items 1 and 2 must be routed for excellent signal quality at high frequencies. Use the following general practices  
for these signals:  
1. Route using loosely coupled 100-Ωdifferential traces. This routing minimizes impact of corners and length  
matching serpentines on pair impedance.  
2. Provide adequate pair-to-pair spacing to minimize crosstalk.  
3. Provide adequate ground plane pour spacing to minimize coupling with the high-speed traces.  
4. Use smoothly radiused corners. Avoid 45- or 90-degree bends.  
5. Incorporate ground plane cutouts at component landing pads to avoid impedance discontinuities at these  
locations. Cutout below the landing pads on one or multiple ground planes to achieve a pad size or stackup  
height that achieves the needed 50-Ω, single-ended impedance.  
6. Avoid routing traces near irregularities in the reference ground planes. Irregularities include ground plane  
clearances associated with power and signal vias and through-hole component leads.  
7. Provide symmetrically located ground tie vias adjacent to any high-speed signal vias.  
8. When high-speed signals must transition to another layer using vias, transition as far through the board as  
possible (top to bottom is best case) to minimize via stubs on top or bottom of the vias. If layer selection is  
not flexible, use back-drilled or buried, blind vias to eliminate stubs.  
The LVDS data inputs must be routed with sufficient signal quality using the following general practices:  
1. Route using tightly coupled 100-Ωdifferential traces to minimize the routing area and decrease crosstalk  
between adjacent data pairs.  
2. Use smoothly radiused corners or 45-degree bends. Avoid 90-degree bends.  
3. Avoid routing traces near irregularities in the reference ground planes. Irregularities include ground plane  
clearances associated with power and signal vias and through-hole component leads.  
4. Provide symmetrically located ground tie vias adjacent to any high-speed signal vias.  
5. Data, clock, and strobe pairs must be sufficiently delay matched to provide adequate timing margin at the  
receiver. If routing on multiple layers, trace lengths must be compensated for the delay mismatch introduced  
by the effective dielectric constant of each layer.  
In addition, TI recommends performing signal quality simulations of the critical signal traces before committing to  
fabrication. Perform insertion loss, return loss, and time domain reflectometry (TDR) evaluations. The power and  
ground connections for the device are also very important. These rules must be followed:  
1. Provide low-resistance connection paths to all power and ground pins.  
2. Use multiple power layers if necessary to access all pins.  
3. Avoid narrow isolated paths that increase connection resistance.  
4. Use a signal, ground, or power circuit board stackup to maximum coupling between the ground and power  
planes.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: DAC12DL3200  
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
8.4.2 Layout Example  
8-5 through 8-8 provide examples of the critical traces routed on the device evaluation module (EVM).  
8-5. Top (green traces) and Bottom (purple traces) Routing of DAC CLK and SYSREF  
Copyright © 2022 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
8-6. DAC Output Channels Routed on Top Layer  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
8-7. PCB cutouts under output transformers T3 and T4 on layers 2 thru 5.  
Copyright © 2022 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: DAC12DL3200  
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
8-8. LVDS input data routing on top and bottom layers  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: DAC12DL3200  
 
DAC12DL3200  
ZHCSO96B JUNE 2021 REVISED JUNE 2022  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.3 Trademarks  
UltraScaleis a trademark of Xilinx.  
TI E2Eis a trademark of Texas Instruments.  
Kintex® is a registered trademark of Xilinx.  
所有商标均为其各自所有者的财产。  
9.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: DAC12DL3200  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC12DL3200ACF  
DAC12DL3200ALJ  
ACTIVE  
ACTIVE  
FCBGA  
FCBGA  
ACF  
ALJ  
256  
256  
1
1
RoHS & Green  
SNAGCU  
Level-3-260C-168 HR  
Call TI  
-40 to 85  
-40 to 85  
DAC12DL32  
Samples  
Samples  
Non-RoHS &  
Non-Green  
Call TI  
DAC12DL32  
PB  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
DAC12DL3200ACF  
DAC12DL3200ALJ  
ACF  
ALJ  
FCBGA  
FCBGA  
256  
256  
1
1
6 x 15  
6 x 15  
150  
150  
315 135.9 7620 19.5  
315 135.9 7620 19.5  
21  
21  
19.2  
19.2  
Pack Materials-Page 1  
PACKAGE OUTLINE  
ACF0256A  
FCBGA - 3.31 mm max height  
SCALE 0.900  
BALL GRID ARRAY  
17.2  
16.8  
A
B
BALL A1 CORNER  
PIN 1 ID  
(OPTIONAL)  
17.2  
16.8  
(
13)  
(
11)  
3.31  
2.85  
C
SEATING PLANE  
0.2 C  
0.7  
0.3  
BALL TYP  
TYP  
15 TYP  
SYMM  
1
TYP  
(1) TYP  
(1) TYP  
T
R
P
N
M
L
K
J
H
G
F
SYMM  
15  
TYP  
E
D
C
B
A
0.74  
0.54  
C A B  
C
256X  
0.25  
0.1  
1
2 3 4  
5
6 7 8 9 10 12 14 16  
11 13 15  
1
TYP  
4223888/C 05/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Pb-Free die bump and solder ball.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ACF0256A  
FCBGA - 3.31 mm max height  
BALL GRID ARRAY  
(1) TYP  
256X ( 0.5)  
3
5
6
7
10  
11  
12 13  
15  
14  
1
2
4
8
9
16  
A
(1) TYP  
B
C
D
E
F
G
H
J
SYMM  
K
L
M
N
P
R
T
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SNOWN  
SCALE:6X  
0.07 MAX  
0.07 MIN  
METAL UNDER  
SOLDER MASK  
(
0.5)  
METAL  
EXPOSED METAL  
(
0.5)  
SOLDER MASK  
OPENING  
EXPOSED METAL  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4223888/C 05/2022  
NOTES: (continued)  
4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SPRU811 (www.ti.com/lit/spru811).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ACF0256A  
FCBGA - 3.31 mm max height  
BALL GRID ARRAY  
(1) TYP  
256X ( 0.5)  
11  
3
5
6
7
10  
12 13  
15  
14  
1
2
4
8
9
16  
A
(1) TYP  
B
C
METAL  
TYP  
D
E
F
G
H
J
SYMM  
K
L
M
N
P
R
T
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.15 mm THICK STENCIL  
SCALE: 6X  
4223888/C 05/2022  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
PACKAGE OUTLINE  
ALJ0256A  
FCBGA - 3.31 mm max height  
SCALE 0.900  
BALL GRID ARRAY  
17.2  
16.8  
A
B
BALL A1 CORNER  
PIN 1 ID  
(OPTIONAL)  
17.2  
16.8  
(
13)  
(
11)  
3.31  
2.85  
C
SEATING PLANE  
0.2 C  
0.7  
0.3  
BALL TYP  
TYP  
15 TYP  
SYMM  
1
TYP  
(1) TYP  
(1) TYP  
T
R
P
N
M
L
K
J
H
G
F
SYMM  
15  
TYP  
E
D
C
B
A
0.74  
0.54  
C A B  
256X  
0.25  
0.1  
C
1
2 3 4  
5
6 7 8 9 10 12 14 16  
11 13 15  
1
TYP  
4225401/B 05/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ALJ0256A  
FCBGA - 3.31 mm max height  
BALL GRID ARRAY  
(1) TYP  
256X ( 0.5)  
3
5
6
7
10  
11  
12 13  
15  
14  
1
2
4
8
9
16  
A
(1) TYP  
B
C
D
E
F
G
H
J
SYMM  
K
L
M
N
P
R
T
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SNOWN  
SCALE:6X  
0.07 MAX  
0.07 MIN  
METAL UNDER  
SOLDER MASK  
(
0.5)  
METAL  
EXPOSED METAL  
(
0.5)  
SOLDER MASK  
OPENING  
EXPOSED METAL  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4225401/B 05/2022  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SPRU811 (www.ti.com/lit/spru811).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ALJ0256A  
FCBGA - 3.31 mm max height  
BALL GRID ARRAY  
(1) TYP  
256X 0.5  
11  
3
5
6
7
10  
12 13  
15  
14  
1
2
4
8
9
16  
A
(1) TYP  
B
C
METAL  
TYP  
D
E
F
G
H
J
SYMM  
K
L
M
N
P
R
T
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.15 mm THICK STENCIL  
SCALE: 6X  
4225401/B 05/2022  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DAC12DL3200ALJ

12 位、低延迟、双通道 3.2GSPS 或单通道 6.4GSPS 射频采样 DAC(LVDS 接口) | ALJ | 256 | -40 to 85
TI

DAC1325X

DAC1325X 1.2V 8BIT 80MSPS DAC|Data Sheet
ETC

DAC1326X

DAC1326X 1.2V 8BIT 2MSPS DAC|Data Sheet
ETC

DAC1329X

DAC1329X 3.3V 12BIT 80MSPS DAC|Data Sheet
ETC

DAC1330X

DAC1330X 3.3V 12BIT 2MSPS DAC|Data Sheet
ETC

DAC1331X

DAC1331X 10BIT 40MSPS DAC|Data Sheet
ETC

DAC1350X

DAC1350X 10BIT 75MSPS Quad-DAC|Data Sheet
ETC

DAC1353X

DAC1353X 1.2V 8BIT 2MSPS DAC|Data Sheet
ETC

DAC1391X

DAC1391X 2.5V 12BIT 80MSPS DAC|Data Sheet
ETC

DAC1401D125

Dual 14-bit DAC, up to 125 Msps
NXP

DAC1401D125HL

Dual 14-bit DAC, up to 125 Msps
NXP

DAC1401D125HL-C1

Dual 14-bit DAC, up to 125 Msps
IDT