DAC53204W [TI]

采用 Wafer Chip Scale Package 且具有 I²C、SPI 和高阻态输出的四通道、10 位、VOUT 和 IOUT 智能 DAC;
DAC53204W
型号: DAC53204W
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 Wafer Chip Scale Package 且具有 I²C、SPI 和高阻态输出的四通道、10 位、VOUT 和 IOUT 智能 DAC

文件: 总83页 (文件大小:2978K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
DACx3204W DSBGA 封装、带自动检测I2CSPI PMBus® 接口12 位  
10 位四路电压和电流输出智DAC  
1 特性  
2 应用  
• 具有灵活配置的可编程电压或电流输出:  
– 电压输出:  
光学模块  
标准笔记本电脑  
1LSB DNL  
1x1.5x2x3x 4x 增益  
– 电流输出:  
3 说明  
12 DAC63204W 10 DAC53204W  
(DACx3204W) 是引脚兼容系列四通道、缓冲型、电压  
输出和电流输出智能数模转换器 (DAC)。这些器件支  
持高阻态断电模式并在断电情况下支持高阻态输出。  
DAC 输出提供强制检测选项可用作可编程比较器和  
拉电流或灌电流。多功能 GPIO、函数生成和 NVM 使  
这些智能 DAC 适用于无处理器的应用和设计重复使  
用。这些器件自动检测 I2CSPI PMBus 接口并  
包含内部基准。  
1LSB INL DNL8 )  
±25μA±50μA±125μA±250μA 输出  
范围选项  
• 适合所有通道的可编程比较器模式  
VDD 关闭时提供高阻抗输出  
• 高阻抗和电阻下拉断电模式  
50MHz SPI 兼容型接口  
• 自动检I2CSPI PMBus® 接口  
这些功能集与微型封装和低功耗相结合使这些智能  
DAC 成为电压裕量和调节、偏置和校准用直流设定点  
以及波形生成等应用的理想选择。  
1.62V VIH (VDD = 5.5V)  
• 可配置为多种功能的通用输入/(GPIO)  
• 生成预定义的波形正弦波、三角形波、锯齿波  
• 用户可编程的非易失性存储(NVM)  
• 内部、外部或电源作为基准  
器件信息  
器件型号  
分辨率  
12 位  
10 位  
封装(1)  
• 宽工作电压范围:  
DAC63204W  
DAC53204W  
YBHDSBGA16)  
YBHDSBGA16)  
– 电源1.8V 5.5V  
– 温度范围-40˚C +125˚C  
• 微型封装16 DSBGA1.75mm × 1.75mm)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
CAP  
VREF  
VDD  
LDO  
Internal  
Reference  
Nonvolatile  
Memory  
MUX  
A0/SDI  
SCL/SYNC  
DAC  
Register  
DAC  
Buffer  
DAC  
R2  
+
OUT0-3  
FB0-3  
SDA/SCLK  
GPIO/SDO  
BUF  
-
Function Generation  
Channel 0-3  
R1  
AGND  
简化版方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLASF71  
 
 
 
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
内容  
6.18 Typical Characteristics: Current Output.................. 21  
6.19 Typical Characteristics: Comparator.......................25  
6.20 Typical Characteristics: General............................. 26  
7 详细说明.......................................................................... 27  
7.1 Overview...................................................................27  
7.2 Functional Block Diagram.........................................27  
7.3 特性说明....................................................................28  
7.4 器件功能模式............................................................ 30  
7.5 编程...........................................................................47  
7.6 Register Map.............................................................55  
8 应用和实现.......................................................................74  
8.1 Application Information............................................. 74  
8.2 Typical Application.................................................... 74  
8.3 Power Supply Recommendations.............................77  
8.4 布局...........................................................................77  
9 器件和文档支持............................................................... 78  
9.1 Documentation Support............................................ 78  
9.2 接收文档更新通知..................................................... 78  
9.3 支持资源....................................................................78  
9.4 商标...........................................................................78  
9.5 Electrostatic Discharge Caution................................78  
9.6 术语表....................................................................... 78  
10 机械、封装和可订购信息...............................................78  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 规格................................................................................... 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics: Voltage Output...................5  
6.6 Electrical Characteristics: Current Output...................7  
6.7 Electrical Characteristics: Comparator Mode..............9  
6.8 Electrical Characteristics: General............................10  
6.9 Timing Requirements: I2C Standard Mode............... 11  
6.10 Timing Requirements: I2C Fast Mode..................... 11  
6.11 Timing Requirements: I2C Fast Mode Plus............. 11  
6.12 Timing Requirements: SPI Write Operation............12  
6.13 Timing Requirements: SPI Read and Daisy  
Chain Operation (FSDO = 0).......................................12  
6.14 Timing Requirements: SPI Read and Daisy  
Chain Operation (FSDO = 1).......................................12  
6.15 Timing Requirements: GPIO...................................14  
6.16 Timing Diagrams.....................................................14  
6.17 Typical Characteristics: Voltage Output.................. 16  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
December 2022  
*
Initial Release  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
 
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
5 Pin Configuration and Functions  
1
2
3
4
A
B
C
D
VREF  
OUT3  
OUT2  
GPIO/SDO  
VDD  
AGND  
CAP  
FB3  
FB0  
FB2  
FB1  
SCL/SYNC  
A0/SDI  
OUT0  
OUT1  
SDA/SCLK  
Not to scale  
5-1. YBH Package, 16-pin DSBGA (Top View)  
5-1. Pin Functions  
PIN  
NAME  
TYPE  
DESCRIPTION  
NO.  
External reference input. Connect a capacitor (approximately 0.1 μF) between VREF and AGND.  
Use a pullup resistor to VDD when the external reference is not used. Do not ramp up this pin before  
VDD. In case an external reference is used, make sure the reference ramps up after VDD.  
A1  
VREF  
Power  
A2  
A3  
OUT3  
OUT2  
Output  
Output  
Analog output voltage from DAC channel 3.  
Analog output voltage from DAC channel 2.  
General-purpose input/output configurable as LDAC, PD, PROTECT, RESET, SDO, and STATUS.  
A4  
GPIO/SDO Input/Output For STATUS and SDO, connect the pin to the IO voltage with an external pullup resistor. If unused,  
connect the GPIO pin to VDD or AGND using an external resistor. This pin can ramp up before VDD.  
B1  
B2  
VDD  
FB3  
Power  
Input  
Supply voltage.  
Voltage feedback pin for channel 3. In voltage-output mode, connect to OUT3 for closed-loop amplifier  
output. In current-output mode, keep the FB3 pin unconnected to minimize leakage current.  
Voltage feedback pin for channel 2. In voltage-output mode, connect to OUT2 for closed-loop amplifier  
output. In current-output mode, keep the FB2 pin unconnected to minimize leakage current.  
B3  
FB2  
Input  
I2C serial interface clock or SPI chip select input. Connect this to the IO voltage using an external  
pullup resistor. This pin can ramp up before VDD.  
B4  
C1  
C2  
SCL/SYNC  
AGND  
Output  
Ground  
Input  
Ground reference point for all circuitry on the device.  
Voltage feedback pin for channel 0. In voltage-output mode, connect to OUT0 for closed-loop amplifier  
output. In current-output mode, keep the FB0 pin unconnected to minimize leakage current.  
FB0  
Voltage feedback pin for channel 1. In voltage-output mode, connect to OUT1 for closed-loop amplifier  
output. In current-output mode, keep the FB1 pin unconnected to minimize leakage current.  
C3  
C4  
D1  
FB1  
A0/SDI  
CAP  
Input  
Input  
Address configuration pin for I2C or serial data input for SPI.  
For A0, connect this pin to VDD, AGND, SDA, or SCL for address configuration (7.5.2.2.1).  
For SDI, this pin need not be pulled up or pulled down. This pin can ramp up before VDD.  
External bypass capacitor for the internal LDO. Connect a capacitor (approximately 1.5 μF) between  
CAP and AGND.  
Power  
D2  
D3  
OUT0  
OUT1  
Output  
Output  
Analog output voltage from DAC channel 0.  
Analog output voltage from DAC channel 1.  
Bidirectional I2C serial data bus or SPI clock input. Connect this pinto the IO voltage using an external  
pullup resistor in I2C mode. This pin can ramp up before VDD.  
D4  
SDA/SCLK Input/Output  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DAC53204W DAC63204W  
 
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
6 规格  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
10  
40  
65  
MAX  
6
UNIT  
V
VDD  
Supply voltage, VDD to AGND  
Digital inputs to AGND  
VDD + 0.3  
VDD + 0.3  
VDD + 0.3  
VDD + 0.3  
10  
V
VFBX to AGND  
V
VOUTX to AGND  
V
VREF  
External reference, VREF to AGND  
Current into any pin except the OUTx, VDD, and AGND pins  
Junction temperature  
V
mA  
°C  
°C  
TJ  
150  
Tstg  
Storage temperature  
150  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002, all pins(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.7  
NOM  
MAX UNIT  
VDD  
VREF  
VIH  
Positive supply voltage to ground (AGND)  
External reference to ground (AGND)  
Digital input high voltage, 1.7 V < VDD 5.5 V  
Digital input low voltage  
5.5  
V
V
1.7  
VDD  
1.62  
V
VIL  
0.4  
15  
V
CCAP  
TA  
External capacitor on CAP pin  
0.5  
μF  
°C  
Ambient temperature  
125  
40  
6.4 Thermal Information  
DACx3204W  
YBH (DSBGA)  
16 PINS  
81.2  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
0.3  
20.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.2  
20.3  
ΨJB  
(1) For information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
 
 
 
 
 
 
 
 
 
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
6.5 Electrical Characteristics: Voltage Output  
all minimum/maximum specifications at TA = 40°C to +125°C and typical specifications at TA = 25°C, 1.7 V VDD 5.5 V,  
DAC reference tied to VDD, gain = 1 ×, DAC output pin (OUT) loaded with resistive load (RL = 5 kΩto AGND) and capacitive  
load (CL = 200 pF to AGND), and digital inputs at VDD or AGND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
STATIC PERFORMANCE  
DAC63204W  
DAC53204W  
DAC63204W  
DAC53204W  
12  
10  
Resolution  
Bits  
5
1.25  
1
5  
INL Integral nonlinearity(1)  
LSB  
LSB  
1.25  
1  
DNL Differential nonlinearity(1)  
Code 0d into DAC, external reference, VDD = 5.5 V  
6
6
12  
Zero-code error(4)  
mV  
Code 0d into DAC, internal VREF, gain = 4 ×,  
VDD = 5.5 V  
15  
Zero-code error temperature  
coefficient(4)  
±10  
0.3  
µV/°C  
1.7 V VDD < 2.7 V, VFB pin shorted to VOUT, DAC  
code: 32d for 12-bit resolution  
0.75  
0.5  
0.75  
0.5  
Offset error(4) (6)  
%FSR  
2.7 V VDD 5.5 V, VFB pin shorted to VOUT  
,
0.25  
DAC code: 32d for 12-bit resolution  
Offset-error temperature  
coefficient(4)  
VFB pin shorted to VOUT, DAC code: 32d for 12-bit  
resolution, 8d for 10-bit resolution  
±0.0003  
0.25  
%FSR/°C  
%FSR  
Between end-point codes: 32d to 4064d for 12-bit  
resolution, 8d to 1016d for 10-bit resolution  
Gain error(4)  
0.5  
0.5  
Gain-error temperature  
coefficient(4)  
Between end-point codes: 32d to 4064d for 12-bit  
resolution, 8d to 1016d for 10-bit resolution  
±0.0008  
%FSR/°C  
1
1.7 V VDD < 2.7 V, DAC at full-scale  
2.7 V VDD 5.5 V, DAC at full-scale  
1  
Full-scale error(4) (6)  
%FSR  
0.5  
0.5  
Full-scale-error temperature  
coefficient(4)  
DAC at full-scale  
±0.0008  
%FSR/°C  
OUTPUT  
Output voltage  
Reference tied to VDD  
0
VDD  
200  
V
RL = infinite, phase margin = 30°  
Phase margin = 30°  
CL  
Capacitive load(2)  
pF  
1000  
VDD = 1.7 V, full-scale output shorted to AGND or  
zero-scale output shorted to VDD  
15  
50  
60  
VDD = 2.7 V, full-scale output shorted to AGND or  
zero-scale output shorted to VDD  
Short-circuit current  
mA  
V
VDD = 5.5 V, full-scale output shorted to AGND or  
zero-scale output shorted to VDD  
To VDD (DAC output unloaded, internal reference =  
1.21 V), VDD 1.21 V gain + 0.2 V  
0.2  
0.8  
To VDD and to AGND  
(DAC output unloaded, external reference at VDD (gain  
Output-voltage headroom(2)  
= 1 ×), the VREF pin is not shorted to VDD  
To VDD and to AGND (ILOAD = 10 mA at VDD = 5.5 V,  
ILOAD = 3 mA at VDD = 2.7 V, ILOAD = 1 mA at VDD  
1.8 V), external reference at VDD (gain = 1 ×), the VREF  
pin is not shorted to VDD  
)
%FSR  
=
10  
)
DAC output enabled, internal reference (gain = 1.5 ×  
or 2 ×) or external reference at VDD (gain = 1 ×), the  
VREF pin is not shorted to VDD  
400  
325  
500  
400  
600  
485  
ZO  
VFB dc output impedance(3)  
kΩ  
DAC output enabled, internal VREF, gain = 3 × or 4 ×  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DAC53204W DAC63204W  
 
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics: Voltage Output (continued)  
all minimum/maximum specifications at TA = 40°C to +125°C and typical specifications at TA = 25°C, 1.7 V VDD 5.5 V,  
DAC reference tied to VDD, gain = 1 ×, DAC output pin (OUT) loaded with resistive load (RL = 5 kΩto AGND) and capacitive  
load (CL = 200 pF to AGND), and digital inputs at VDD or AGND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Power supply rejection ratio  
(dc)  
Internal VREF, gain = 2 ×, DAC at midscale,  
VDD = 5 V ±10%  
0.25  
mV/V  
DYNAMIC PERFORMANCE  
1/4 to 3/4 scale and 3/4 to 1/4 scale settling to  
10%FSR, VDD = 5.5 V  
20  
25  
tsett Output voltage settling time  
µs  
1/4 to 3/4 scale and 3/4 to 1/4 scale settling to  
10%FSR, VDD = 5.5 V, internal VREF, gain = 4 ×  
Slew rate  
VDD = 5.5 V  
0.3  
75  
V/µs  
mV  
At startup (DAC output disabled)  
At startup (DAC output disabled), RL = 100 kΩ  
Power-on glitch magnitude  
200  
DAC output disabled to enabled (DAC registers at zero  
scale), RL = 100 kΩ  
Output-enable glitch  
magnitude  
250  
50  
mV  
f = 0.1 Hz to 10 Hz, DAC at midscale, VDD = 5.5 V  
Output noise voltage (peak to  
peak)  
Vn  
µVPP  
Internal VREF, gain = 4 ×, f = 0.1 Hz to 10 Hz,  
DAC at midscale, VDD = 5.5 V  
90  
f = 1 kHz, DAC at midscale, VDD = 5.5 V  
0.35  
0.9  
Output noise density  
µV/Hz  
Internal VREF, gain = 4 ×, f = 1 kHz, DAC at midscale,  
VDD = 5.5 V  
Internal VREF, gain = 4 ×, 200-mV 50-Hz or 60-Hz sine  
wave superimposed on power supply voltage, DAC at  
midscale  
Power supply rejection ratio  
(ac)(3)  
-68  
dB  
±1 LSB change around midscale (including  
feedthrough)  
Code change glitch impulse  
10  
15  
nV-s  
mV  
Code change glitch impulse  
magnitude  
±1 LSB change around midscale (including  
feedthrough)  
POWER  
Normal operation, DACs at full scale, digital pins static,  
IDD  
Current flowing into VDD(4) (5) external reference at VDD but the VREF pin is not  
150  
µA/ch  
shorted to VDD  
(1) Measured with DAC output unloaded. For external reference and internal reference VDD 1.21 × gain + 0.2 V, between end-point  
codes: 32d to 4064d for 12-bit resolution, 8d to 1016d for 10-bit resolution.  
(2) Specified by design and characterization, not production tested.  
(3) Specified with 200-mV headroom with respect to reference value when internal reference is used.  
(4) Measured with DAC output unloaded.  
(5) The total power consumption is calculated by IDD × (total number of channels powered on) + (sleep-mode current).  
(6) When a DAC channel is configured in IOUT mode for long term and then switched to VOUT mode, the VOUT mode can show  
parametric drift.  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
 
 
 
 
 
 
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
6.6 Electrical Characteristics: Current Output  
all minimum/maximum specifications at TA = 40°C to +125°C and typical specifications at TA = 25°C, 1.7 V VDD 5.5 V,  
±250µA output range, and digital inputs at VDD or AGND (unless otherwise noted)  
PARAMETER  
STATIC PERFORMANCE  
Resolution  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
8
1  
1  
Bits  
LSB  
LSB  
INL Integral nonlinearity  
DNL Differential nonlinearity  
DAC codes between 0d and 255d  
DAC codes between 0d and 255d  
1
1
DAC output ranges: ±25 µA, ±50 µA, ±125 µA, and  
±250 µA; DAC at midscale  
Offset error  
±1  
%FSR  
%FSR  
DAC output ranges: ±25 µA, ±50 µA, ±125 µA, and  
±250 µA; DAC codes between 0d and 255d  
Gain error  
OUTPUT  
±1.3  
DAC output ranges: ±25 µA, ±50 µA, ±125 µA, and  
±250 µA; to VDD and to AGND  
Output compliance voltage(1)  
400  
60  
mV  
MΩ  
ZO  
IOUT dc output impedance(2)  
DAC at midscale, DAC output kept at VDD/2  
Power supply rejection ratio  
(dc)  
DAC at midscale, all bipolar ranges, VDD changed from  
4.5V to 5.5V  
0.23  
60  
LSB/V  
DYNAMIC PERFORMANCE  
1/4 to 3/4 scale and 3/4 to 1/4 scale settling to 1 LSB  
at 8-bit resolution, VDD = 5.5 V, common-mode voltage  
at OUTx pin is VDD/2  
tsett Output current settling time  
µs  
Output noise current (peak to 0.1 Hz to 10 Hz, DAC at midscale,  
Vn  
150  
1
nAPP  
peak)  
VDD = 5.5 V, ±250-µA output range  
f = 1 kHz, DAC at midscale,  
VDD = 5.5 V, ±250-µA output range  
Output noise density  
nA/Hz  
±250 µA output range, 200-mV 50-Hz or 60-Hz sine  
wave superimposed on power-supply voltage, DAC at  
midscale  
Power supply rejection ratio  
(ac)(3)  
0.65  
LSB/V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DAC53204W DAC63204W  
 
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
6.6 Electrical Characteristics: Current Output (continued)  
all minimum/maximum specifications at TA = 40°C to +125°C and typical specifications at TA = 25°C, 1.7 V VDD 5.5 V,  
±250µA output range, and digital inputs at VDD or AGND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER  
Normal operation, DACs at full scale, ±25-µA output  
range, digital pins static  
42  
56  
50  
70  
Normal operation, DACs at full scale, ±50-µA output  
range, digital pins static  
IDD  
Current flowing into VDD(3) (4)  
µA/ch  
Normal operation, DACs at full scale, ±125-µA output  
range, digital pins static  
98  
120  
200  
Normal operation, DACs at full scale, ±250-µA output  
range, digital pins static  
167  
(1) Measured between DAC codes 0d and 255d.  
(2) Specified by design and characterization, not production tested.  
(3) The current flowing into VDD does not account for the load current sourced or sinked on the OUTx pins. The VREF pin is connected to  
VDD  
(4) The total power consumption is calculated by IDD × (total number of channels powered on) + (sleep-mode current).  
.
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
 
 
 
 
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
6.7 Electrical Characteristics: Comparator Mode  
all minimum/maximum specifications at TA = 40°C to +125°C and typical specifications at TA = 25°C, 1.7 V VDD 5.5 V,  
DAC reference tied to VDD, gain = 1 × in voltage output mode, DAC output pin (OUT) loaded with resistive load (RL = 5 kΩ  
to AGND) and capacitive load (CL = 200 pF to AGND), and digital inputs at VDD or AGND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
STATIC PERFORMANCE  
1.7 V VDD 5.5 V; DAC at midscale,  
comparator input at Hi-Z, and DAC operating  
with external reference.  
Offset error(1) (2)  
0
6
mV  
mV  
6  
VDD = 5.5 V, external reference, TA = 125°C, FB  
in Hi-Z mode, DAC at full scale and VFB at 0 V  
or DAC at zero scale and VFB at 1.84 V, drift  
specified for 10 years of continuous operation  
Offset error time drift(1)  
4
OUTPUT  
VREF connected to VDD, VFB resistor network  
connected to ground  
0
0
VDD  
Input voltage  
V
V
VREF connected to VDD, VFB resistor network  
disconnected from ground  
VDD × (1/3 1/100)  
VOL Logic low output voltage  
0.1  
10  
ILOAD = 100 μA, output in open-drain mode  
DYNAMIC PERFORMANCE  
DAC at midscale with 10-bit resolution, FB input  
at Hi-Z, and transition step at FB node is (VDAC  
2 LSB) to (VDAC + 2 LSB), transition time  
measured between 10% and 90% of  
tresp Output response time  
µs  
output, output current of 100 µA, comparator  
output configured in push-pull mode, load  
capacitor at DAC output is 25 pF  
(1) Specified by design and characterization, not production tested.  
(2) This specification does not include the total unadjusted error (TUE) of the DAC.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DAC53204W DAC63204W  
 
 
 
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
6.8 Electrical Characteristics: General  
all minimum/maximum specifications at TA = 40°C to +125°C and typical specifications at TA = 25°C, 1.7 V VDD 5.5 V,  
DAC reference tied to VDD, gain = 1 × in voltage output mode or ±250µA output range in current output mode, DAC output  
pin (OUT) loaded with resistive load (RL = 5 kΩto AGND) in voltage-output mode and capacitive load (CL = 200 pF to  
AGND), and digital inputs at VDD or AGND (unless otherwise noted)  
PARAMETER  
INTERNAL REFERENCE  
Initial accuracy  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TA = 25°C  
1.1979  
1.212  
1.224  
V
Reference output temperature  
50 ppm/°C  
coefficient(1) (2)  
EXTERNAL REFERENCE  
VREF input impedance(1) (3)  
EEPROM  
192  
kΩ-ch  
20000  
1000  
50  
40°C TA +85°C  
TA = 125°C  
Endurance(1)  
Cycles  
Years  
Data retention(1)  
TA = 25°C  
EEPROM programming write  
cycle time(1)  
200  
ms  
Time taken from power valid (VDD 1.7 V) to output  
valid state (output state as programmed in EEPROM),  
0.5-µF capacitor on the CAP pin  
Device boot-up time(1)  
5
ms  
DIGITAL INPUTS  
Voltage output mode, DAC output static at midscale,  
fast mode plus, SCL toggling  
Digital feedthrough  
20  
10  
nV-s  
pF  
Pin capacitance  
Per pin  
POWER-DOWN MODE  
DAC in sleep mode, internal reference powered down,  
external reference at 5.5 V  
IDD  
IDD  
Current flowing into VDD  
Current flowing into VDD(1)  
28  
µA  
µA  
DAC in sleep mode, internal reference  
enabled, additional current through internal reference  
10  
DAC channels enabled, internal reference enabled,  
additional current through internal reference per DAC  
channel in voltage-output mode  
IDD  
Current flowing into VDD(1)  
12.5  
µA  
HIGH-IMPEDANCE OUTPUT  
10  
nA  
nA  
DAC in Hi-Z output mode, 1.7 V VDD 5.5 V  
VDD = 0 V, VOUT 1.5 V, decoupling capacitor  
between VDD and AGND = 0.1 μF  
200  
Current flowing into VOUTX and  
VFBX  
ILEAK  
VDD = 0 V, 1.5 V < VOUT 5.5 V, decoupling capacitor  
between VDD and AGND = 0.1 μF  
500  
±2  
nA  
µA  
100 kΩbetween VDD and AGND, VOUT 1.25 V,  
series resistance of 10 kΩat OUT pin  
(1) Specified by design and characterization, not production tested.  
(2) Measured at 40°C and +125°C and calculated the slope.  
(3) Impedances for the DAC channels are connected in parallel.  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
 
 
 
 
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
6.9 Timing Requirements: I2C Standard Mode  
all input signals are timed from VIL to 70% of Vpull-up, 1.7 V VDD 5.5 V, 40°C TA +125°C, and 1.7 V Vpull-up  
VDD  
V
MIN  
NOM  
MAX  
UNIT  
kHz  
µs  
fSCL  
SCL frequency  
100  
tBUF  
Bus free time between stop and start conditions  
Hold time after repeated start  
Repeated start setup time  
4.7  
4
tHDSTA  
tSUSTA  
tSUSTO  
tHDDAT  
tSUDAT  
tLOW  
µs  
4.7  
4
µs  
Stop condition setup time  
µs  
Data hold time  
0
ns  
Data setup time  
250  
4700  
4000  
ns  
SCL clock low period  
ns  
tHIGH  
tF  
SCL clock high period  
ns  
Clock and data fall time  
300  
1000  
3.45  
3.45  
ns  
tR  
Clock and data rise time  
ns  
tVDDAT  
tVDACK  
µs  
Data valid time, R = 360 Ω, Ctrace = 23 pF, Cprobe = 10 pF  
Data valid acknowledge time, R = 360 Ω, Ctrace = 23 pF, Cprobe = 10 pF  
µs  
6.10 Timing Requirements: I2C Fast Mode  
all input signals are timed from VIL to 70% of Vpull-up, 1.7 V VDD 5.5 V, 40°C TA +125°C, and 1.7 V Vpull-up  
VDD  
V
MIN  
NOM  
MAX  
UNIT  
kHz  
µs  
fSCL  
SCL frequency  
400  
tBUF  
Bus free time between stop and start conditions  
Hold time after repeated start  
Repeated start setup time  
1.3  
0.6  
tHDSTA  
tSUSTA  
tSUSTO  
tHDDAT  
tSUDAT  
tLOW  
µs  
0.6  
µs  
Stop condition setup time  
0.6  
µs  
Data hold time  
0
ns  
Data setup time  
100  
1300  
600  
ns  
SCL clock low period  
ns  
tHIGH  
tF  
SCL clock high period  
ns  
Clock and data fall time  
300  
300  
0.9  
0.9  
ns  
tR  
Clock and data rise time  
ns  
tVDDAT  
tVDACK  
µs  
Data valid time, R = 360 Ω, Ctrace = 23 pF, Cprobe = 10 pF  
Data valid acknowledge time, R = 360 Ω, Ctrace = 23 pF, Cprobe = 10 pF  
µs  
6.11 Timing Requirements: I2C Fast Mode Plus  
all input signals are timed from VIL to 70% of Vpull-up, 1.7 V VDD 5.5 V, 40°C TA +125°C, and 1.7 V Vpull-up  
VDD  
V
MIN  
NOM  
MAX  
UNIT  
MHz  
µs  
fSCL  
SCL frequency  
1
tBUF  
Bus free time between stop and start conditions  
Hold time after repeated start  
Repeated start setup time  
Stop condition setup time  
Data hold time  
0.5  
0.26  
0.26  
0.26  
0
tHDSTA  
tSUSTA  
tSUSTO  
tHDDAT  
tSUDAT  
tLOW  
tHIGH  
tF  
µs  
µs  
µs  
ns  
Data setup time  
50  
ns  
SCL clock low period  
0.5  
µs  
SCL clock high period  
0.26  
µs  
Clock and data fall time  
120  
120  
ns  
tR  
Clock and data rise time  
ns  
tVDDAT  
0.45  
µs  
Data valid time, R = 360 Ω, Ctrace = 23 pF, Cprobe = 10 pF  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DAC53204W DAC63204W  
 
 
 
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
all input signals are timed from VIL to 70% of Vpull-up, 1.7 V VDD 5.5 V, 40°C TA +125°C, and 1.7 V Vpull-up  
VDD  
V
MIN  
NOM  
MAX  
UNIT  
tVDACK  
0.45  
µs  
Data valid acknowledge time, R = 360 Ω, Ctrace = 23 pF, Cprobe = 10 pF  
6.12 Timing Requirements: SPI Write Operation  
all input signals are specified with tr = tf = 1 V/ns (10% to 90% of VIO) and timed from a voltage level of (VIL + VIH) / 2,  
1.7 V VIO 5.5 V, 1.7 V VDD 5.5 V, and 40°C TA +125°C  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
fSCLK  
Serial clock frequency  
SCLK high time  
50  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
9
9
SCLK low time  
ns  
SDI setup time  
8
ns  
tSDIH  
SDI hold time  
8
ns  
tCSS  
CS to SCLK falling edge setup time  
SCLK falling edge to CS rising edge  
CS high time  
18  
10  
50  
ns  
tCSH  
ns  
tCSHIGH  
ns  
Sequential DAC update wait time (time between subsequenct LDAC falling  
edges) for same channel  
tDACWAIT  
2
2
µs  
µs  
Broadcast DAC update wait time (time between subsequent LDAC falling  
edges)  
tBCASTWAIT  
6.13 Timing Requirements: SPI Read and Daisy Chain Operation (FSDO = 0)  
all input signals are specified with tr = tf = 1 V/ns (10% to 90% of VIO) and timed from a voltage level of (VIL + VIH) / 2,  
1.7 V VIO 5.5 V, 1.7 V VDD 5.5 V, 40°C TA +125°C, and FSDO = 0  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
fSCLK  
Serial clock frequency  
1.25  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
SCLK high time  
350  
350  
8
SCLK low time  
ns  
SDI setup time  
ns  
tSDIH  
SDI hold time  
8
ns  
tCSS  
SYNC to SCLK falling edge setup time  
SCLK falling edge to SYNC rising edge  
SYNC high time  
400  
400  
1
ns  
tCSH  
ns  
tCSHIGH  
tSDODLY  
µs  
300  
ns  
SCLK rising edge to SDO falling edge, IOL 5 mA, CL = 20 pF.  
6.14 Timing Requirements: SPI Read and Daisy Chain Operation (FSDO = 1)  
all input signals are specified with tr = tf = 1 V/ns (10% to 90% of VIO) and timed from a voltage level of (VIL + VIH) / 2,  
1.7 V VIO 5.5 V, 1.7 V VDD 5.5 V, 40°C TA +125°C, and FSDO = 1  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
fSCLK  
Serial clock frequency  
SCLK high time  
2.5  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
175  
175  
8
SCLK low time  
ns  
SDI setup time  
ns  
tSDIH  
SDI hold time  
8
ns  
tCSS  
SYNC to SCLK falling edge setup time  
SCLK falling edge to SYNC rising edge  
SYNC high time  
300  
300  
1
ns  
tCSH  
ns  
tCSHIGH  
µs  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
 
 
 
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
all input signals are specified with tr = tf = 1 V/ns (10% to 90% of VIO) and timed from a voltage level of (VIL + VIH) / 2,  
1.7 V VIO 5.5 V, 1.7 V VDD 5.5 V, 40°C TA +125°C, and FSDO = 1  
MIN  
NOM  
MAX  
UNIT  
tSDODLY  
300  
ns  
SCLK rising edge to SDO falling edge, IOL 5 mA, CL = 20 pF.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DAC53204W DAC63204W  
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
6.15 Timing Requirements: GPIO  
all input signals are specified with tr = tf = 1 V/ns (10% to 90% of VIO) and timed from a voltage level of (VIL + VIH) / 2,  
1.7 V VIO 5.5 V, 1.7 V VDD 5.5 V, and 40°C TA +125°C  
MIN  
2
NOM  
MAX  
UNIT  
µs  
tGPIHIGH  
tGPILOW  
tGPAWGD  
tCS2LDAC  
tSTP2LDAC  
tLDACW  
GPI high time  
GPI low time  
2
µs  
LDAC falling edge to DAC update delay(1)  
SYNC rising edge to LDAC falling edge  
I2C stop bit rising edge to LDAC falling edge  
LDAC low time  
2
µs  
1
1
2
µs  
µs  
µs  
(1) The GPIOs can be configured as a channel-specific or global LDAC function.  
6.16 Timing Diagrams  
tF  
tR  
tSUDAT  
VIH  
VIL  
SDA  
SCL  
...  
...  
tR  
tHDDAT  
tF  
tHIGH  
tVDDAT  
VIH  
VIL  
tHDSTA  
S
9th clock pulse  
1 / fSCL  
1st clock cycle  
tLOW  
tBUF  
... SDA  
tSUSTA  
tHDSTA  
tVDACK  
tSUSTO  
... SCL  
9th clock pulse  
Sr  
P
S
GPIO/  
LDAC  
tSTP2LDAC  
tLDACW  
S: Start bit, Sr: Repeated start bit, P: Stop bit  
6-1. I2C Timing Diagram  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
 
 
 
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
tCSS  
tCSH  
tCSHIGH  
SYNC  
SCLK  
SDI  
tSCLKLOW  
tSCLKHIGH  
tSDIH  
tSDIS  
Bit 23  
Bit 1  
Bit 0  
GPIO/  
LDAC  
tCS2LDAC  
tLDACW  
6-2. SPI Write Timing Diagram  
tCSHIGH  
tCSS  
tCSH  
SYNC  
SCLK  
tSCLKLOW tSCLKHIGH  
FIRST READ COMMAND  
Bit 23  
ANY COMMAND  
Bit 1  
SDI  
Bit 22  
Bit 0  
Bit 23  
Bit 23  
Bit 0  
Bit 0  
tSDIS tSDIH  
SDO  
Bit 1  
FSDO = 0  
tSDODLY  
tSDODZ  
DATA FROM FIRST READ COMMAND  
SDO  
Bit 23  
Bit 1 Bit 0  
FSDO = 1  
tSDODLY  
DATA FROM FIRST READ COMMAND  
6-3. SPI Read Timing Diagram  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DAC53204W DAC63204W  
 
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
6.17 Typical Characteristics: Voltage Output  
at TA = 25°C, VDD = 5.5 V, external reference = 5.5 V, gain = 1 ×, 12-bit resolution, and DAC outputs unloaded (unless  
otherwise noted)  
5
4
5
4
3
3
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
Channel 0  
Channel 1  
Channel 2  
Channel 3  
Channel 0  
Channel 1  
Channel 2  
Channel 3  
32  
544  
1056 1568 2080 2592 3104 3616 4064  
Code  
32  
544  
1056 1568 2080 2592 3104 3616 4064  
Code  
Internal reference, gain = 4 ×  
6-4. Voltage Output INL vs Digital Input Code  
6-5. Voltage Output INL vs Digital Input Code  
5
4
5
4
3
3
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
CH0 MAX  
CH1 MAX  
CH2 MAX  
CH3 MAX  
CH0 MIN  
CH0 MAX  
CH1 MAX  
CH2 MAX  
CH3 MAX  
CH0 MIN  
CH1 MIN  
CH2 MIN  
CH3 MIN  
CH1 MIN  
CH2 MIN  
CH3 MIN  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
1.8  
2.725  
3.65  
Supply Voltage (V)  
4.575  
5.5  
6-6. Voltage Output INL vs Temperature  
Channel 0  
6-7. Voltage Output INL vs Supply Voltage  
1
1
0.8  
0.6  
0.4  
0.2  
0
Channel 0  
0.8  
0.6  
0.4  
0.2  
0
Channel 1  
Channel 2  
Channel 3  
Channel 1  
Channel 2  
Channel 3  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
32  
544  
1056 1568 2080 2592 3104 3616 4064  
Code  
32  
544  
1056 1568 2080 2592 3104 3616 4064  
Code  
Internal reference, gain = 4 ×  
6-8. Voltage Output DNL vs Digital Input Code  
6-9. Voltage Output DNL vs Digital Input Code  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
 
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
6.17 Typical Characteristics: Voltage Output (continued)  
at TA = 25°C, VDD = 5.5 V, external reference = 5.5 V, gain = 1 ×, 12-bit resolution, and DAC outputs unloaded (unless  
otherwise noted)  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
CH0 MAX  
CH1 MAX  
CH2 MAX  
CH3 MAX  
CH0 MIN  
CH1 MIN  
CH2 MIN  
CH3 MIN  
CH0 MAX  
CH1 MAX  
CH2 MAX  
CH3 MAX  
CH0 MIN  
CH1 MIN  
CH2 MIN  
CH3 MIN  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
1.8  
2.725  
3.65  
Supply Voltage (V)  
4.575  
5.5  
6-10. Voltage Output DNL vs Temperature  
6-11. Voltage Output DNL vs Supply Voltage  
1.5  
1.2  
0.9  
0.6  
0.3  
0
1.5  
1.2  
0.9  
0.6  
0.3  
0
-0.3  
-0.6  
-0.9  
-1.2  
-1.5  
-0.3  
-0.6  
-0.9  
-1.2  
-1.5  
Channel 0  
Channel 0  
Channel 1  
Channel 2  
Channel 3  
Channel 1  
Channel 2  
Channel 3  
0
512 1024 1536 2048 2560 3072 3584 4095  
Code  
0
512 1024 1536 2048 2560 3072 3584 4095  
Code  
Internal reference, gain = 4 ×  
6-12. Voltage Output TUE vs Digital Input Code  
1.5  
6-13. Voltage Output TUE vs Digital Input Code  
1.5  
1.2  
0.9  
0.6  
0.3  
0
1.2  
0.9  
0.6  
0.3  
0
-0.3  
-0.6  
-0.9  
-1.2  
-1.5  
-0.3  
-0.6  
-0.9  
-1.2  
-1.5  
Channel 0  
Channel 1  
Channel 2  
Channel 3  
Channel 0  
Channel 1  
Channel 2  
Channel 3  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
1.8  
2.725  
3.65  
4.575  
5.5  
Temperature (C)  
Supply Voltage (V)  
DAC channels at midscale  
6-14. Voltage Output TUE vs Temperature  
DAC channels at midscale  
6-15. Voltage Output TUE vs Supply Voltage  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DAC53204W DAC63204W  
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
6.17 Typical Characteristics: Voltage Output (continued)  
at TA = 25°C, VDD = 5.5 V, external reference = 5.5 V, gain = 1 ×, 12-bit resolution, and DAC outputs unloaded (unless  
otherwise noted)  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Channel 0  
Channel 1  
Channel 2  
Channel 3  
Channel 0  
Channel 1  
Channel 2  
Channel 3  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
Temperature (C)  
6-16. Voltage Output Offset Error vs Temperature  
6-17. Voltage Output Gain Error vs Temperature  
2.76  
2.758  
2.756  
2.754  
2.752  
2.75  
LDAC (1 V/div)  
VOUT (1 LSB/div)  
2.748  
2.746  
2.744  
Channel 0  
Channel 1  
Channel 2  
Channel 3  
2.742  
2.74  
-5  
-3.75 -2.5 -1.25  
0
1.25  
2.5  
3.75 5  
Load Current (mA)  
0
10  
20  
30  
40  
50  
Time (s)  
DAC channels at midscale  
6-19. Voltage Output Code-to-Code Glitch - Rising Edge  
6-18. Voltage Output vs Load Current  
LDAC (1 V/div)  
VOUT (1 LSB/div)  
Trigger (1 V/div)  
VOUT (1 V/div)  
Settling Band (+10% FSR)  
Settling Band (-10% FSR)  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
Time (s)  
Time (s)  
Zero scale to full scale swing  
6-21. Voltage Output Setting Time: Rising Edge  
6-20. Voltage Output Code-to-Code Glitch: Falling Edge  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
6.17 Typical Characteristics: Voltage Output (continued)  
at TA = 25°C, VDD = 5.5 V, external reference = 5.5 V, gain = 1 ×, 12-bit resolution, and DAC outputs unloaded (unless  
otherwise noted)  
Trigger (1 V/div)  
VOUT (1 V/div)  
Settling Band (+10% FSR)  
Settling Band (-10% FSR)  
VDD (1 V/div)  
VOUT (15 mV/div)  
0
200  
400  
600  
800 1000 1200 1400 1600  
Time (s)  
0
10  
20  
30  
40  
50  
Time (s)  
DAC in Hi-Z power-down mode  
6-23. Voltage Output Power-On Glitch  
Full scale to zero scale swing  
6-22. Voltage Output Setting Time: Falling Edge  
CH0 (1 V/div)  
CH1 (1 V/div)  
CH2 (1 mV/div)  
CH3 (1 V/div)  
VDD (1 V/div)  
VOUT (1 mV/div)  
0
5
10  
15  
20  
Time (s)  
25  
30  
35  
40  
0
200  
400  
600  
800 1000 1200 1400 1600  
Time (s)  
Channel 2 is resident, all other channels are interferers  
DAC at zero scale  
6-24. Voltage Output Power-Off Glitch  
6-25. Voltage Output Channel-to-Channel Crosstalk  
3
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
10 2030 50 100 200 5001000  
Frequency (Hz)  
10000  
100000  
10 2030 50 100 200 5001000  
Frequency (Hz)  
10000  
100000  
Internal reference, gain = 4 ×  
6-26. Voltage Output Noise Density  
6-27. Voltage Output Noise Density  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DAC53204W DAC63204W  
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
6.17 Typical Characteristics: Voltage Output (continued)  
at TA = 25°C, VDD = 5.5 V, external reference = 5.5 V, gain = 1 ×, 12-bit resolution, and DAC outputs unloaded (unless  
otherwise noted)  
35  
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
-5  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-10  
-15  
-20  
-25  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
Time (s)  
Time (s)  
Internal reference, gain = 4 ×, f = 0.1 Hz to 10 Hz  
f = 0.1 Hz to 10 Hz  
6-29. Voltage Output Flicker Noise  
6-28. Voltage Output Flicker Noise  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
10 2030 50 100 200 5001000  
Frequency (Hz)  
10000  
100000  
6-30. Voltage Output AC PSRR vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
6.18 Typical Characteristics: Current Output  
at TA = 25°C, VDD = 5.5 V, output range: ±250 μA (unless otherwise noted)  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
Channel 0  
Channel 1  
Channel 2  
Channel 3  
CH0 MAX  
CH1 MAX  
CH2 MAX  
CH3 MAX  
CH0 MIN  
CH1 MIN  
CH2 MIN  
CH3 MIN  
0
32  
64  
96  
128  
160  
192  
224  
255  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Code  
Temperature (C)  
6-31. Current Output INL vs Digital Input Code  
6-32. Current Output INL vs Temperature  
1
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
Channel 0  
CH0 MAX  
CH1 MAX  
CH2 MAX  
CH3 MAX  
CH0 MIN  
CH1 MIN  
CH2 MIN  
CH3 MIN  
Channel 1  
Channel 2  
Channel 3  
0
32  
64  
96  
128  
Code  
160  
192  
224  
255  
1.8  
2.725  
3.65  
Supply Voltage (V)  
4.575  
5.5  
6-34. Current Output DNL vs Digital Input Code  
6-33. Current Output INL vs Supply Voltage  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
CH0 MAX  
CH1 MAX  
CH2 MAX  
CH3 MAX  
CH0 MIN  
CH0 MAX  
CH1 MAX  
CH2 MAX  
CH3 MAX  
CH0 MIN  
CH1 MIN  
CH2 MIN  
CH3 MIN  
CH1 MIN  
CH2 MIN  
CH3 MIN  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
1.8  
2.725  
3.65  
Supply Voltage (V)  
4.575  
5.5  
6-35. Current Output DNL vs Temperature  
6-36. Current Output DNL vs Supply Voltage  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DAC53204W DAC63204W  
 
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
6.18 Typical Characteristics: Current Output (continued)  
at TA = 25°C, VDD = 5.5 V, output range: ±250 μA (unless otherwise noted)  
2
1.6  
1.2  
0.8  
0.4  
0
2
1.6  
1.2  
0.8  
0.4  
0
-0.4  
-0.8  
-1.2  
-1.6  
-2  
-0.4  
-0.8  
-1.2  
-1.6  
-2  
Channel 0  
Channel 1  
Channel 2  
Channel 3  
Channel 0  
Channel 1  
Channel 2  
Channel 3  
0
32  
64  
96  
128  
160  
192  
224  
255  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Code  
Temperature (C)  
DAC channels at midscale  
6-38. Current Output TUE vs Temperature  
6-37. Current Output TUE vs Digital Input Code  
2
1.5  
1.2  
0.9  
0.6  
0.3  
0
1.6  
1.2  
0.8  
0.4  
0
-0.3  
-0.6  
-0.9  
-1.2  
-1.5  
-0.4  
-0.8  
-1.2  
-1.6  
-2  
Channel 0  
Channel 0  
Channel 1  
Channel 2  
Channel 3  
Channel 1  
Channel 2  
Channel 3  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
1.8  
2.725  
3.65  
4.575  
5.5  
Temperature (C)  
Supply Voltage (V)  
DAC channels at midscale  
6-39. Current Output TUE vs Supply Voltage  
6-40. Current Output Offset Error vs Temperature  
1000  
800  
600  
400  
200  
0
1.5  
1.2  
0.9  
0.6  
0.3  
0
-200  
-400  
-0.3  
-0.6  
-0.9  
-1.2  
-1.5  
CH0, DAC Code = 0  
CH1, DAC Code = 0  
CH2, DAC Code = 0  
CH3, DAC Code = 0  
CH0, DAC Code = 255  
CH1, DAC Code = 255  
CH2, DAC Code = 255  
CH3, DAC Code = 255  
-600  
-800  
Channel 0  
Channel 1  
Channel 2  
Channel 3  
-1000  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Load Voltage (V)  
Temperature (C)  
6-42. Current Output vs Load Voltage  
6-41. Current Output Gain Error vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
6.18 Typical Characteristics: Current Output (continued)  
at TA = 25°C, VDD = 5.5 V, output range: ±250 μA (unless otherwise noted)  
Trigger (1 V/div)  
IOUT (Zoomed, 10A/div)  
Settling Band (1 LSB)  
Settling Band (+1 LSB)  
Trigger (1 V/div)  
IOUT (Zoomed, 10 A/div)  
Settling Band (1 LSB)  
Settling Band (+1 LSB)  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
Time (s)  
Time (s)  
6-43. Current Output Settling Time:  
6-44. Current Output Settling Time:  
Rising Edge (¼ to ¾ scale)  
Falling Edge (¾ to ¼ scale)  
VDD ( 1 V/div)  
IOUT (40 A/div)  
VDD (1 V/div)  
IOUT (20 A/div)  
0
500  
1000  
1500  
2000  
2500 3000  
0
500  
1000  
1500  
2000  
2500  
3000  
Time (s)  
Time (s)  
DAC at mid scale (0 μA) stored in EEPROM  
6-45. Current Output Power-On Glitch  
DAC at mid scale (0 μA)  
6-46. Current Output Power-Off Glitch  
500  
200  
100  
50  
20  
10  
5
2
1
Channel 1 (100 A/div)  
Channel 2 (100 A/div)  
Channel 3 (100 A/div)  
Channel 4 (0.4 A/div)  
0.5  
0.2  
10 20 30 50 100 200 500 10002000  
Frequency (Hz)  
10000 30000  
0
100 200 300 400 500 600 700 800 900 1000  
Time (S)  
Channel 4 is resident, all other channels are interferers  
6-48. Current Output AC PSRR vs Frequency  
6-47. Current Output Channel-to-Channel Crosstalk  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DAC53204W DAC63204W  
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
6.18 Typical Characteristics: Current Output (continued)  
at TA = 25°C, VDD = 5.5 V, output range: ±250 μA (unless otherwise noted)  
2
1.8  
1.6  
1.4  
1.2  
1
30  
25  
20  
15  
10  
5
0
0.8  
0.6  
0.4  
0.2  
0
-5  
-10  
-15  
-20  
-25  
10 2030 50 100 200 5001000  
Frequency (Hz)  
10000  
100000  
0
1
2
3
4
5
6
7
8
9
10  
Time (s)  
f = 0.1 Hz to 10 Hz  
6-50. Current Output Flicker Noise  
6-49. Current Output Noise Density  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
6.19 Typical Characteristics: Comparator  
at TA = 25°C, VDD = 5.5 V, external reference = 5.5 V, gain = 1x, 12-bit resolution, FBx pin in Hi-Z mode, and DAC outputs  
unloaded (unless otherwise noted)  
VOUT (1 V/div)  
VFB (1 LSB/div)  
VOUT (1 V/div)  
VFB (1 LSB/div)  
0
2
4
6
8
10  
0
2
4
6
8
10  
Time (s)  
Time (s)  
Comparator output in push-pull mode  
Comparator output in push-pull mode  
6-51. Comparator Response Time: LowtoHigh Transition  
6-52. Comparator Response Time: HightoLow Transition  
6
Channel 0  
Channel 1  
Channel 2  
Channel 3  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
6-53. Comparator Offset Error vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DAC53204W DAC63204W  
 
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
6.20 Typical Characteristics: General  
at TA = 25°C, VDD = 5.5 V, and DAC outputs unloaded (unless otherwise noted)  
1.2102  
1.210175  
1.21015  
1.210125  
1.2101  
1.217  
1.216  
1.215  
1.214  
1.213  
1.212  
1.211  
1.21  
1.210075  
1.21005  
1.210025  
1.21  
1.209  
1.208  
1.207  
1.209975  
1.20995  
1.8  
2.725  
3.65  
4.575  
5.5  
Supply Voltage (V)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
Internal reference  
Internal reference  
6-55. Internal Reference vs Supply Voltage  
6-54. Internal Reference vs Temperature  
5
4
3
2
1
0
30  
27  
24  
21  
18  
15  
12  
9
6
VDD = 1.8 V  
VDD = 3.3 V  
VDD = 5.5 V  
3
0
0.5  
3.5  
6.5  
9.5  
12.5  
15  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
External Capacitance on CAP Pin (F)  
Temperature (C)  
Sleep mode, internal reference disabled  
6-57. Boot-up Time vs Capacitance on CAP pin  
6-56. Power-Down Current vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
 
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
7 详细说明  
7.1 Overview  
The 12-bit DAC63204W and 10-bit DAC53204W (DACx3204W) are a pin-compatible family of quad-channel,  
buffered, voltage-output and current-output, smart digital-to-analog converters (DACs). The DAC channels are  
independently configurable as voltage or current output. The DAC outputs change to Hi-Z when VDD is off. This  
feature is useful in voltage-margining applications. These smart DACs contain nonvolatile memory (NVM), an  
internal reference, automatically detectable SPI or I2C interface, PMBus-compatibility in I2C mode, force-sense  
output, and a general-purpose input. These devices support Hi-Z power-down modes by default, which can be  
configured to 10 k-GND or 100 k-GND using the NVM. The DACx3204W have a power-on-reset (POR)  
circuit that makes sure all the registers start with default or user-programmed settings using NVM. The  
DACx3204W operate with either an internal reference, external reference, or with a power supply as the  
reference, and provide a full-scale output of 1.8 V to 5.5 V.  
The DACx3204W devices support I2C standard mode (100Kbps), fast mode (400Kbps), and fast mode plus  
(1Mbps). The I2C interface can be configured with four target addresses using the A0 pin. These devices also  
support specific PMBus commands such as turn on/off, margin high or low, and more. The SPI mode supports a  
three-wire interface by default with up to a 50-MHz SCLK input. The GPIO input can be configured as SDO in  
the NVM for SPI read capability. The GPIO input can alternatively be configured as the LDAC, PD, STATUS,  
FAULT-DUMP, RESET, or PROTECT function.  
The DACx3204W also include digital slew rate control, and support standard waveform generation such as sine  
and cosine, triangular, and sawtooth waveforms. These devices can generate pulse-width modulation (PWM)  
output with the combination of the triangular or sawtooth waveform and the FB pin. The force-sense outputs of  
the DAC channels can be used as programmable comparators. The comparator mode allows programmable  
hysteresis, latching comparator, window comparator, and fault-dump to the NVM. These features enable the  
DACx3204W to go beyond the limitations of a conventional DAC that depends on a processor to function. As a  
result of processor-less operation and the smart feature set, the DACx3204W are called smart DACs.  
7.2 Functional Block Diagram  
7-1. Functional Block Diagram  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DAC53204W DAC63204W  
 
 
 
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
7.3 特性说明  
7.3.1 智能数模转换(DAC) 架构  
DACx3204W 器件采用串式架构,每个通道均具有一个电压输出放大器,一个外部 FB 引脚和电压电流转换器。节  
7.2 显示了方框图中DAC 架构该架构采1.8V 5.5V 电源供电。DAC 的内部电压基准1.21V。有一个选  
项可以选择 VREF 引脚上的外部基准或以电源作为基准。电压输出模式使用这三个基准选项之一。电流输出模式  
使用内部带隙来生成电流输出。电压和电流输出模式均支持多个可编程输出范围。  
DACx3204W 器件在 VDD 关闭时支持高阻态输出能够在强制电压高达 1.25V 的条件下在输出引脚上保持极低  
的泄漏电流。默认情况下DAC 输出引脚也以高阻抗模式启动这使得这些器件非常适合电压裕量和调节应用。  
要将加电模式更改10kΩGND 100kΩGNDCOMMON-CONFIG 寄存器中相应VOUT-PDN-X 字段  
进行编程并将这些位加载到器NVM 中。  
DACx3204W 器件支持每个通道的独立比较器模式。相应FBx 引脚充当比较器的输入。DAC 架构支持使用寄存  
器设置反转比较器输出。比较器输出可以是推挽式或开漏式。比较器模式支持使用裕度高 裕度低 寄存器字段的  
可编程迟滞、锁存比较器和窗口比较器。比较器输出可由器件在内部访问。  
DACx3204W 器件包括一个功能集可实现无处理器运行和高度集成。NVM 支持可预测的启动。在没有处理  
器时或者处理器或软件出现故障时GPIO 在没I2C 接口的情况下触DAC 输出。集成功能FBx 引脚可为  
控制应用启用 PWM 输出。FBx 引脚使该器件能够用作可编程比较器。数字转换率控制和高阻态断电模式可实现  
轻松的电压裕量和调节功能。  
7.3.2 数字输入/输出  
DACx3204W 有四个数字 IO 引脚其中包括 I2CSPIPMBus GPIO 接口。这些器件会在加电后首次成功通  
信时自动检测 I2C SPI 协议然后连接到检测到的接口。连接接口协议后协议中的任何更改都将被忽略。I2C  
接口使用 A0 引脚从四个地址选项中进行选择。SPI 接口默认为 3 线接口。此模式下没有回读功能。GPIO 引脚可  
在寄存器映射中配置然后编程NVM 中作SDO 引脚。SPI 回读模式比写入模式慢。编程接口引脚为:  
I2CSCLSDAA0  
SPISCLKSDISYNCSDO/GPIO  
GPIO 可配置为 SDO 以外的多种功能。这些是 LDACPDSTATUSPROTECTFAULT-DUMP RESET。  
当用作输出时所有数字引脚都是开漏。因此必须使用外部电阻器将所有输出引脚上拉至所需IO 电压。  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
 
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
7.3.3 Nonvolatile Memory (NVM)  
The DACx3204W contain nonvolatile memory (NVM) bits. These memory bits are user programmable and  
erasable, and retain the set values in the absence of a power supply. All the register bits, as shown in the  
highlighted gray cells in the Register Map section, can be stored in the NVM by setting NVM-PROG = 1 in the  
COMMON-TRIGGER register. The NVM-PROG is an autoresetting bit. The default values for all the registers in  
the DACx3204W are loaded from NVM as soon as a POR event is issued.  
The DACx3204W also implement NVM-RELOAD bit in the COMMON-TRIGGER register. Set this bit to 1 for the  
device to start an NVM-reload operation. After completion, the device autoresets the NVM-RELOAD bit to 0.  
During the NVM write or reload operation, all read/write operations to the device are blocked. The Electrical  
Characteristics: General section provides the timing specification for the NVM write cycle. The processor must  
wait for the specified duration before resuming any read or write operation on the SPI or I2C interface.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DAC53204W DAC63204W  
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
7.4 器件功能模式  
7.4.1 电压输出模式  
通过在 COMMON-CONFIG 寄存器的 VOUT-PDN-X 字段中选择加电选项并使用同一寄存器中的 IOUT-PDN-X  
位同时为各个通道的电流输出选项断电可以进入每个 DAC 通道的电压输出模式。将相应通道的 OUTx FBx  
引脚从外部短接可以实现闭环放大器输出。FBx 引脚开路会使放大器输出饱和。要获得所需的电压输出请选择  
正确的基准选项为所需的输出范围选择放大器增益并在相应通道的 DAC-X-DATA 寄存器中对 DAC 代码进行  
编程。  
7.4.1.1 电压基准DAC 传递函数  
DACx3204W 可以支持以下三种电压基准选项内部基准、外部基准以及以电源作为基准7-2 所示。电  
压输出和比较器模式下DAC 传递函数会根据电压基准选择而变化。  
VDD  
VREF  
Digital  
IO  
EN-INT-REF  
Internal  
DIS-MODE-IN  
Reference  
IOUT-RANGE-X  
MUX  
VOUT-GAIN-X  
VOUT-PDN-X  
IOUT-PDN-X  
VOUT-PDN-X  
+
DAC Ladder  
OUTx  
FBx  
IOUT-PDN-X  
10k /100k  
Internal  
Bandgap  
R1  
R2  
CMP-X-HIZ-IN-DIS or  
VOUT-PDN-X (Hi-Z)  
AGND  
7-2. 电压基准选择与断电逻辑  
7.4.1.1.1 Internal Reference  
The DACx3204W contain an internal reference that is disabled by default. To enable the internal reference, write  
1 to bit EN-INT-REF in the COMMON-CONFIG register. The internal reference generates a fixed 1.21-V voltage  
(typical). Use the VOUT-GAIN-X bit in the DAC-X-VOUT-CMP-CONFIG register to achieve gains of 1.5 ×, 2 ×, 3  
×, or 4 × for the DAC output voltage (VOUT). 方程1 shows DAC transfer function using the internal reference.  
DAC_DATA  
V
=
× V  
× GAIN  
REF  
(1)  
OUT  
N
2
where:  
N is the resolution in bits, 10 (DAC53204W) or 12 (DAC63204W).  
DAC_DATA is the decimal equivalent of the binary code that is loaded to the DAC-X-DATA bit in the DAC-X-  
DATA register. DAC_DATA ranges from 0 to 2N 1.  
VREF is the internal reference voltage = 1.21 V (typical).  
GAIN = 1.5 ×, 2 ×, 3 ×, or 4 ×, based on VOUT-GAIN-X bits.  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
 
 
 
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
7.4.1.1.2 External Reference  
By default, the DACx3204W operate from an external reference input. The external reference option can also be  
selected by configuring the VOUT-GAIN-X field in the DAC-X-VOUT-CMP-CONFIG register appropriately. Write  
1 to the DIS-MODE-IN bit in the DEVICE-MODE-CONFIG register to minimize IDD. The external reference can  
be between 1.7 V and VDD. 方程式 2 shows DAC transfer function when the external reference is used. The  
gain at the output stage of the DAC is always 1 × in the external reference mode.  
备注  
The external reference must be less than VDD in both transient and steady-state conditions.  
Therefore, the external reference must ramp up after VDD and ramp down before VDD.  
DAC_DATA  
V
=
× V  
(2)  
OUT  
REF  
N
2
where:  
N is the resolution in bits, 10 (DAC53204W) or 12 (DAC63204W).  
DAC_DATA is the decimal equivalent of the binary code that is loaded to the DAC-X-DATA field in the DAC-  
X-DATA register. DAC_DATA ranges from 0 to 2N 1.  
VREF is the external reference voltage.  
7.4.1.1.3 Power-Supply as Reference  
The DACx3204W can operate with the power-supply pin (VDD) as a reference. 方程式 3 shows DAC transfer  
function when the power-supply pin is used as reference. The gain at the output stage is always 1x.  
DAC_DATA  
V
=
× V  
(3)  
OUT  
DD  
N
2
where:  
N is the resolution in bits, 10 (DAC53204W) or 12 (DAC63204W).  
DAC_DATA is the decimal equivalent of the binary code that is loaded to the DAC-X-DATA bit in the DAC-X-  
DATA register.  
DAC_DATA ranges from 0 to 2N 1.  
VDD is used as the DAC reference voltage.  
7.4.2 Current-Output Mode  
To enter current-output mode for each DAC channel, disable the respective IOUT-PDN-X bits in the COMMON-  
CONFIG register, and set the respective VOUT-PDN-X bits in the same register to Hi-Z power-down mode.  
Select the desired current-output range by writing to the IOUT-RANGE-X bit in the DAC-X-IOUT-MISC-CONFIG  
register. To minimize leakage in current-output mode, disconnect the FBx pin. For the best power-on glitch  
performance, program the NVM with IOUT mode using the smallest output range before powering on the output  
channel, and then immediately program the DAC code and desired output range. The transfer function of the  
output current is shown in the following equation:  
DAC_DATA × I  
I  
MIN  
MAX  
I
=
+ I  
(4)  
OUT  
MIN  
8
2
where:  
DAC_DATA is the decimal equivalent of the binary code that is loaded to the DAC-X-DATA bits specified in 节  
7.6.8 or the DAC-X-DATA-8BIT bits specified in 7.6.19. DAC_DATA ranges from 0 to 255.  
IMAX is the signed maximum current in the IOUT-RANGE-X setting specified in 7.6.5.  
IMIN is the signed minimum current in the IOUT-RANGE-X setting specified in 7.6.5.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DAC53204W DAC63204W  
 
 
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
7.4.3 比较器模式  
在电压输出模式下所有 DAC 通道均可配置为可编程比较器。要进入某个通道的比较器模式需向相应 DAC-X-  
VOUT-CMP-CONFIG 寄存器的 CMP-X-EN 位中写入 1。比较器输出可使用 CMP-X-OD-EN 位配置为推挽或开漏  
输出。要启用输出引脚上的比较器输出需向 CMP-X-OUT-EN 位写入 1。要反转比较器输出需向 CMP-X-INV-  
EN 位写入 1FBx 引脚具有有限阻抗。默认情况下FBx 引脚处于高阻抗模式。要禁用 FBx 引脚上的高阻抗,  
CMP-X-HIZ-IN-DIS 位写17-1 显示了不同位设置条件下该引脚上的比较器输出。  
备注  
在高阻态输入模式下比较器输入范围限制为:  
• 对GAIN = 1x1.5x 2xVFB (VREF × GAIN) / 3  
• 对GAIN = 3x 4xVFB (VREF × GAIN) / 6  
任何较高的输入电压都会被削波。  
7-1. 比较器输出配置  
CMP-X-EN  
CMP-X-OUT-EN  
CMP-X-OD-EN  
CMP-X-INV-EN  
CMPX-OUT PIN  
比较器未启用  
0
1
1
1
1
1
X
0
1
1
1
1
X
X
0
0
1
1
X
X
0
1
0
1
无输出  
推挽式输出  
推挽和反相输出  
开漏输出  
开漏和反相输出  
7-3 显示了所有 DAC 通道均配置为比较器时的接口电路。可编程比较器操作如7-4 所示。在无迟滞、带迟滞  
和窗口比较器模式下可以使用相应 DAC-X-CMP-MODE-CONFIG 寄存器中的 CMP-X-MODE 位来配置各个比  
较器通道7-2 所示。  
VDD  
10 k  
0.1 μF  
1.5 μF  
VDD  
CAP  
VREF  
+
-
+
-
CMP3  
CMP2  
CMP0  
CMP0-OUT  
CMP3-OUT  
FB3/AIN3  
FB0/AIN0  
(0 V to VFS/3 or 0 V to VFS  
(0 V to VFS/3 or 0 V to VFS  
)
)
+
-
+
-
CMP1  
CMP1-OUT  
CMP2-OUT  
FB2/AIN2  
FB1/AIN1  
(0 V to VFS/3 or 0 V to VFS  
)
(0 V to VFS/3 or 0 V to VFS  
)
AGND  
VIO  
10 k  
7-3. 比较器接口  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
 
 
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
DAC-X-DATA  
FBx/AINx  
OUT-X  
CMP-X-INV-EN = 0  
OUT-X  
CMP-X-INV-EN = 1  
7-4. 可编程比较器操作  
7-2. 比较器模式选择  
CMP-X-MODE 位字段  
比较器配置  
00  
01  
10  
11  
正常比较器模式。无迟滞或窗口操作。  
迟滞比较器模式。DAC-X-MARGIN-HIGH DAC-X-MARGIN-LOW 寄存器设置迟滞。  
窗口比较器模式。DAC-X-MARGIN-HIGH DAC-X-MARGIN-LOW 寄存器设置窗口边界。  
无效设置  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DAC53204W DAC63204W  
 
 
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
7.4.3.1 可编程迟滞比较器  
CMP-X-MODE 位设置为 01b 比较器模式提供迟滞7-2 所示。迟滞由 DAC-X-MARGIN-HIGH 和  
DAC-X-MARGIN-LOW 寄存器提供7-5 所示。  
DAC-X-MARGIN-HIGH 设置为全代码或 DAC-X-MARGIN-LOW 设置为零代码时比较器用作锁存比较器即  
在超过阈值后锁存输出。通过写入 COMMON DAC-TRIG 寄存器中相应的 RST-CMP-FLAG-X 可以复位锁存  
输出。7-6 显示了具有低电平有效输出的闭锁比较器的行为7-7 显示了具有高电平有效输出的闭锁比较  
器的行为。  
备注  
DAC-X-MARGIN-HIGH 寄存器的值必须大于 DAC-X-MARGIN-LOW 寄存器的值。迟滞模式下的比较器  
输出只能是同相的DAC-X-VOUT-CMP-CONFIG 寄存器中的 CMP-X-INV-EN 位必须设置为 0。在  
锁存模式下为了使复位生效输入电压必须在 DAC-X-MARGIN-HIGH DAC-X-MARGIN-LOW 范  
围内。  
DAC-X-MARGIN-HIGH  
Hysteresis  
FBx/AINx  
DAC-X-MARGIN-LOW  
OUT-X  
CMP-X-INV-EN = 0  
7-5. 不带锁存输出的可编程迟滞  
DAC-X-MARGIN-HIGH  
FBx/AINx  
DAC-X-MARGIN-LOW  
(ZERO-CODE)  
OUT-X  
CMP-X-INV-EN = 0  
RST-CMP-FLAG-X  
7-6. 具有低电平有效输出的闭锁比较器  
DAC-X-MARGIN-HIGH  
(FULL-CODE)  
FBx/AINx  
DAC-X-MARGIN-LOW  
OUT-X  
CMP-X-INV-EN = 0  
RST-CMP-FLAG-X  
7-7. 具有高电平有效输出的锁存比较器  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
 
 
 
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
7.4.3.2 Programmable Window Comparator  
Window comparator mode is enabled by setting the CMP-X-MODE bit to 10b, as shown in 7-2. The window  
bounds are set by the DAC-X-MARGIN-HIGH and the DAC-X-MARGIN-LOW registers, as shown in 7-8. The  
output of the window comparator for a given channel is indicated by the respective WIN-CMP-X bit in the CMP-  
STATUS register. The comparator output (WIN-CMP-X) can be latched by writing 1 to the WIN-LATCH-EN bit in  
the COMMON-CONFIG register. After being latched, the comparator output can be reset using the  
corresponding RST-CMP-FLAG-X bit in the COMMON-DAC-TRIG register. For the reset to take effect, the input  
must be within the window bounds.  
DAC-X-MARGIN-HIGH  
FBx/AINx  
DAC-X-MARGIN-LOW  
WIN-CMP-X  
WIN-LATCH-EN = 0  
WIN-CMP-X  
WIN-LATCH-EN = 1  
RST-CMP-FLAG-X  
7-8. Window Comparator Operation  
A single comparator is used per channel to check both the margin-high and margin-low limits of the window.  
Therefore, the window comparator function has a finite response time as specified in the Electrical  
Characteristics: Comparator Mode section. Also, the static behavior of the WIN-CMP-X bit is not reflected at the  
output pins. Set the CMP-X-OUT-EN bit to 0. The WIN-CMP-X bit must be read digitally using the  
communication interface. This bit can also be mapped to the GPIO pin, as shown in 7-19.  
备注  
The value of the DAC-X-MARGIN-HIGH register must be greater than that of the DAC-X-MARGIN-  
LOW register.  
Set the SLEW-RATE-X bit to 0000b (no-slew) and LOG-SLEW-EN-X bit to 0b in the DAC-X-FUNC-  
CONFIG register to get the best response time from the window comparator.  
The CMP-X-OUT-EN bit in the DAC-X-VOUT-CMP-CONFIG register can be set to 0b to eliminate  
undesired toggling of the OUT pin.  
7.4.4 故障转储模式  
DACx3204W 提供了一项功能可在 FAULT-DUMP 位触发时或映射到故障转储的 GPIO7-18 所示时将  
几个寄存器内容保存NVM 中。此功能在系统级故障管理中非常有用可用于捕获就在故障触发之前的器件或系  
统状态以便在故障发生后进行诊断。故障转储触发时保存的寄存器为:  
CMP-STATUS[7:0]  
DAC-0-DATA[15:8]  
DAC-1-DATA[15:8]  
DAC-2-DATA[15:8]  
DAC-3-DATA[15:8]  
备注  
在故障转储期间数据中的任何更改都会破坏最终结果。确保比较器和 DAC 代码在 NVM 写入周期期  
间保持稳定。  
7-3 显示NVM 中寄存器的存储格式。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: DAC53204W DAC63204W  
 
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
7-3. 故障转NVM 存储格式  
B31-B24  
B23-B16  
B15-B8  
B7-B0  
NVM 行  
1  
CMP-STATUS[7:0]  
DAC-0-DATA[15:8]  
不用考虑  
DAC-1-DATA[15:8]  
DAC-2-DATA[15:8]  
DAC-3-DATA[15:8]  
2  
故障转储后NVM 中捕获的数据可按特定顺序读取:  
1. COMMON-CONFIG 寄存器中EE-READ-ADDR 位设置0b以选NVM 1。  
2. 通过COMMON-TRIGGER 寄存器中READ-ONE-TRIG 1 来触发所NVM 行的读取该位会自动  
复位。此操作会将数据从选定NVM 行复制SRAM 0x9DLSB 16 位来NVM0x9EMSB 16  
位来NVM。  
3. 要读SRAM 数据需按照以下步骤操作:  
a. 0x009D SRAM-CONFIG 寄存器。  
b. SRAM-DATA 寄存器中读取数据以获LSB 16 位。  
c. 0x009E SRAM-CONFIG 寄存器。  
d. 再次SRAM-DATA 寄存器读取数据以获MSB 位。  
4. COMMON-CONFIG 寄存器中EE-READ-ADDR 位设置1b以选NVM 2。重复步2 3。  
7.4.5 应用特定模式  
本节详细介绍DACx3204W 中提供的各个应用特定功能模式。  
7.4.5.1 电压裕量和调节  
电压裕量和调节是 DACx3204W 的一种主要应用。本节介绍了可用于此类应用的具体功能例如高阻态输出、转  
换率控制、PROTECT 输入PMBus 兼容性。  
7.4.5.1.1 高阻抗输出PROTECT 输入  
VDD 关闭时所有 DAC 输出通道都保持高阻抗状态高阻态7-9 显示了在电压裕量调节应用中使用  
DACx3204W 的简化原理图。串联电阻RS 在电压输出模式下是必需的但在电流输出模式下是可选的。几乎所  
有线性稳压器和直流/直流转换器都具有 ≤ 1.25V 的反馈电压。对于 VFB 1.25V输出端保持低泄漏电流。因  
对于所有实际用途DAC VDD 在电压裕量和调节应用中处于关闭时DAC 输出显示为高阻态。此功能  
允许DACx3204W 无缝集成到系统中而无需DAC 进行额外的电源时序控制。  
VIN  
VREG  
VDD  
DAC  
R1  
Linear  
Regulator  
or  
DC/DC  
Converter  
ILEAK  
RS  
VFB  
PROTECT  
1.25 V  
R2  
ZOUT  
7-9. 高阻抗高阻态输出PROTECT 输入  
DAC 通道在启动时断电至高阻态。输出可以使用与直流/直流转换器或线性稳压器的标称输出相对应的预编程代码  
加电。此功能可实DAC 的平稳加电和断电而不影响直流/直流转换器或线性稳压器的反馈环路。  
DACx3204W GPIO 引脚可配置为 PROTECT 功能7-18 所示。PROTECT 通过转换或直接转换将 DAC  
输出变为可预测状态。在故障条件如欠压、子系统故障或软件崩溃要DAC 输出达到预定义状态而不涉及处  
理器的系统中此功能非常有用。检测到的事件可以馈送到配置为 PROTECT 输入的 GPIO 引脚。PROTECT 功  
能可以使用 COMMON-TRIGGER 寄存器中的 PROTECT 位来触发。PROTECT 功能的行为可以使用 DEVICE-  
MODE-CONFIG 寄存器PROTECT-CONFIG 字段配置7-4 所示。  
Copyright © 2023 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
 
 
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
备注  
PROTECT 功能触发后通信接口上的写入功能会被禁用直到该功能完成。  
PROTECT 功能触发时CMP-STATUS 寄存器中PROTECT-FLAG 位会设置1。该位可以  
通过读CMP-STATUS 寄存器来轮询。PROTECT 功能完成后CMP-STATUS 寄存器上的读  
取命令会PROTECT-FLAG 位复位。  
7-4. PROTECT 功能配置  
PROTECT-CONFIG 字段  
功能  
00  
01  
10  
11  
切换至高阻态断电模式无转换。  
切换到存储NVM DAC 代码无转换),然后切换到高阻态断电模式。  
转换为裕度低代码然后切换到高阻态断电模式。  
转换为裕度高代码然后切换到高阻态断电模式。  
7.4.5.1.2 Programmable Slew-Rate Control  
When the DAC data registers are written, the voltage on DAC output (VOUT) immediately transitions to the new  
code following the slew rate and settling time specified in the Electrical Characteristics.  
The slew rate control feature allows the user to control the rate at which the output voltage (VOUT) changes.  
When this feature is enabled (using the SLEW-RATE-X[3:0] bits), the DAC output changes from the current code  
to the code in the DAC-X-MARGIN-HIGH or DAC-X-MARGIN-LOW registers (when margin high or low  
commands are issued to the DAC) using the step size and time-period per step set in CODE-STEP-X and  
SLEW-RATE-X bits in the DAC-X-FUNC-CONFIG register:  
SLEW-RATE-X defines the time-period per step at which the digital slew updates.  
CODE-STEP-X defines the number of LSBs by which the output value changes at each update, for the  
corresponding channels.  
7-5 and 7-6 show different settings available for CODE-STEP-X and SLEW-RATE-X. With the default slew  
rate control setting of no-slew, the output changes immediately at a rate limited by the output drive circuitry and  
the attached load.  
When the slew rate control feature is used, the output changes happen at the programmed slew rate. This  
configuration results in a staircase formation at the output as shown in 7-10. Do not write to CODE-STEP-X,  
SLEW-RATE-X, or DAC-X-DATA during the output slew operation. 程式 5 provides the equation for the  
calculating the slew time (tSLEW).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: DAC53204W DAC63204W  
 
 
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
MARGIN-HIGH  
CODE-STEP  
MARGIN-LOW  
TIME PERIOD  
tSLEW  
7-10. Programmable Slew-Rate Control  
MARGIN_HIGH − MARGIN_LOW  
t
= SLEW_RATE × CEILING  
+ 1  
(5)  
SLEW  
CODE_STEP  
where:  
SLEW_RATE is the SLEW-RATE-X setting as specified in 7-6.  
CODE_STEP is the CODE-STEP-X setting as specified in 7-5.  
MARGIN_HIGH is the decimal value of the DAC-X-MAGIN-HIGH bits specified in the DAC-X-MARGIN-HIGH  
register.  
MARGIN_LOW is the decimal value of the DAC-X-MAGIN-LOW bits specified in the DAC-X-MARGIN-LOW  
register.  
7-5. Code Step  
REGISTER  
CODE-STEP-X[2]  
CODE-STEP-X[1]  
CODE-STEP-X[0]  
CODE STEP SIZE  
1 LSB (default)  
2 LSB  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
3 LSB  
4 LSB  
DAC-X-FUNC-CONFIG  
6 LSB  
8 LSB  
16 LSB  
32 LSB  
7-6. Slew Rate  
TIME PERIOD  
(PER STEP)  
REGISTER  
SLEW-RATE-X[3]  
SLEW-RATE-X[2]  
SLEW-RATE-X[1]  
SLEW-RATE-X[0]  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
No slew (default)  
4 µs  
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
8 µs  
12 µs  
18 µs  
27.04 µs  
40.48 µs  
60.72 µs  
91.12 µs  
136.72 µs  
239.2 µs  
418.64 µs  
732.56 µs  
1282 µs  
2563.96 µs  
5127.92 µs  
DAC-X-FUNC-CONFIG  
Copyright © 2023 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
 
 
 
 
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
7.4.5.1.3 PMBus Compatibility Mode  
The PMBus protocol is an I2C-based communication standard for power-supply management. PMBus contains  
standard command codes tailored to power supply applications. The DACx3204W implement some PMBus  
commands such as Turn Off, Turn On, Margin Low, Margin High, Communication Failure Alert Bit (CML), as well  
as PMBUS revision. 7-11 shows typical PMBus connections. The EN-PMBUS bit in the INTERFACE-CONFIG  
register must be set to 1 to enable the PMBus protocol.  
PMBus-compatible device #1  
ALERT  
CONTROL  
DATA  
CLOCK  
Alert signal  
PMBus-compatible device #2  
ALERT  
Control signal  
CONTROL  
Data  
DATA  
Clock  
CLOCK  
Optional  
Required  
PMBus-compatible device #3  
ALERT  
CONTROL  
DATA  
CLOCK  
7-11. PMBus Connections  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: DAC53204W DAC63204W  
 
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
Similar to I2C, PMBus is a variable length packet of 8-bit data bytes, each with a receiver acknowledge, wrapped  
between a start and stop bit. The first byte is always a 7-bit target address followed by a write bit, sometimes  
called the even address that identifies the intended receiver of the packet. The second byte is an 8-bit command  
byte, identifying the PMBus command being transmitted using the respective command code. After the  
command byte, the transmitter either sends data associated with the command to write to the receiver command  
register (from least significant byte to most significant byte, as shown in 7-7), or sends a new start bit  
indicating the desire to read the data associated with the command register from the receiver. Then the receiver  
transmits the data following the same least significant byte first format (see 7-8).  
7-7. PMBus Update Sequence  
MSB  
....  
LSB  
ACK  
MSB  
...  
LSB  
ACK  
MSB  
...  
LSB  
ACK  
MSB  
...  
LSB  
ACK  
Address (A) byte  
7.5.2.2.1  
Command byte  
7.5.2.2.2  
Data byte - MSDB  
(Optional)  
Data byte - LSDB  
DB [15:8]  
DB [31:24]  
DB [23:16]  
DB [7:0]  
7-8. PMBus Read Sequence  
R/W  
(0)  
R/W  
(1)  
S
MSB  
ACK  
MSB  
LSB  
ACK Sr MSB  
ACK  
MSB  
LSB  
ACK  
MSB  
LSB  
ACK  
ADDRESS BYTE  
7.5.2.2.1  
COMMAND BYTE  
ADDRESS BYTE  
7.5.2.2.1  
Sr  
LSDB  
MSDB (Optional)  
From Target  
7.5.2.2.2  
From Controller  
Target  
From Controller  
Target  
From Controller  
Target  
From Target  
Controller  
Controller  
The DACx3204W I2C interface implements some of the PMBus commands. 7-9 shows the supported PMBus  
commands that are implemented in DACx3204W. The DAC uses DAC-X-MARGIN-LOW, DAC-X-MARGIN-HIGH  
bits, SLEW-RATE-X, and CODE-STEP-X bits for PMBUS-OPERATION-CMD-X. To access multiple channels,  
write the PMBus page address as specified in the Register Names table in the Register Map section to the  
PMBUS-PAGE register first, followed by a write to the channel-specific register.  
7-9. PMBus Operation Commands  
REGISTER  
PMBUS-OPERATION-CMD-X[15:8]  
DESCRIPTION  
Turn off  
00h  
80h  
94h  
A4h  
Turn on  
PMBUS-OP-CMD-X  
Margin low  
Margin high  
The DACx3204W also implement PMBus features such as group command protocol and communication time-  
out failure. The CML bit in the PMBUS-CML register indicates a communication fault in the PMBus. This bit is  
reset by writing 1.  
To get the PMBus version, read the PMBUS-VERSION register.  
Copyright © 2023 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
 
 
 
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
7.4.5.2 函数生成  
DACx3204W 实施了连续函数或波形生成功能。这些器件可以为每个通道独立生成三角波、锯齿波和正弦波。  
7.4.5.2.1 Triangular Waveform Generation  
7-12 shows that the triangular waveform uses the DAC-X-MARGIN-LOW (FUNCTION-MIN) and DAC-X-  
MARGIN-HIGH (FUNCTION-MAX) registers for minimum and maximum levels, respectively. The frequency of  
the waveform depends on the min and max levels, CODE-STEP and SLEW-RATE settings as shown in 方程式  
6. An external RC load with a time-constant larger than the slew-rate settings can be dominant over the internal  
frequency calculation. The CODE-STEP-X and SLEW-RATE-X settings are available in the DAC-X-FUNC-  
CONFIG register. Writing 0b000 to the FUNC-CONFIG-X bit field in the DAC-X-FUNC-CONFIG register selects  
triangular waveform.  
1
f
=
(6)  
TRIANGLE  
FUNCTION_MAX − FUNCTION_MIN  
CODE_STEP  
2 × TIME_STEP × CEILING  
where:  
TIME_STEP is the SLEW-RATE-X setting as specified in 7-6.  
CODE_STEP is the CODE-STEP-X setting as specified in 7-5.  
FUNCTION_MAX is the decimal value of DAC-X-MAGIN-HIGH bits specified in the DAC-X-MARGIN-HIGH  
register.  
FUNCTION_MIN is the decimal value of the DAC-X-MAGIN-LOW bits specified in the DAC-X-MARGIN-LOW  
register.  
FUNCTION-MAX  
TIME-STEP  
CODE-STEP  
FUNCTION-MIN  
7-12. Triangle Waveform  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: DAC53204W DAC63204W  
 
 
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
7.4.5.2.2 Sawtooth Waveform Generation  
7-13 shows the sawtooth and the inverse sawtooth waveforms use the DAC-X-MARGIN-LOW (FUNCTION-  
MIN) and DAC-X-MARGIN-HIGH (FUNCTION-MAX) registers for minimum and maximum levels, respectively.  
The frequency of the waveform depends on the min and max levels, CODE-STEP and SLEW-RATE settings as  
shown in 方程式 7. An external RC load with a time constant larger than the slew-rate settings can be dominant  
over the internal frequency calculation. The CODE-STEP-X and SLEW-RATE-X settings are available in the  
DAC-X-FUNC-CONFIG register. Write 0b001 to the FUNC-CONFIG-X bit field in the DAC-X-FUNC-CONFIG  
register to select sawtooth waveform, and write 0b010 to select inverse sawtooth waveform.  
1
f
=
(7)  
SAWTOOTH  
FUNCTION_MAX − FUNCTION_MIN  
CODE_STEP  
TIME_STEP × CEILING  
+ 1  
where:  
TIME_STEP is the SLEW-RATE-X setting as specified in 7-6.  
CODE_STEP is the CODE-STEP-X setting as specified in 7-5.  
FUNCTION_MAX is the decimal value of the DAC-X-MAGIN-HIGH bits specified in the DAC-X-MARGIN-  
HIGH register.  
FUNCTION_MIN is the decimal value of the DAC-X-MAGIN-LOW bits specified in the DAC-X-MARGIN-LOW.  
FUNCTION-MAX  
TIME-STEP  
CODE-STEP  
FUNCTION-MIN  
7-13. Sawtooth Waveform  
Copyright © 2023 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
 
 
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
7.4.5.2.3 Sine Waveform Generation  
The sine wave function uses 24 preprogrammed points per cycle. The frequency of the sine wave depends on  
the SLEW-RATE settings as shown in 方程8:  
1
f
=
(8)  
SINE_WAVE  
24 × SLEW_RATE  
where SLEW_RATE is the SLEW-RATE-X setting as specified in 7-6.  
An external RC load with a time constant larger than the slew-rate settings can be dominant over the internal  
frequency calculation. The SLEW-RATE-X setting is available in the DAC-X-FUNC-CONFIG register. Writing  
0b100 to the FUNC-CONFIG-X bit field in the DAC-X-FUNC-CONFIG register selects sine wave. The codes for  
the sine wave are fixed. Use the gain settings at the output amplifier for changing the full-scale output using the  
internal reference option. The gain settings are accessible through the VOUT-GAIN-X bits in the DAC-X-VOUT-  
CMP-CONFIG register. 7-10 shows the list of hard-coded discrete points for the sine wave with 12-bit  
resolution and 7-14 shows the pictorial representation of the sine wave. There are four phase settings  
available for the sine wave that are selected using the PHASE-SEL-X bit in the DAC-X-FUNC-CONFIG register.  
7-10. Sine Wave Data Points  
SEQUENCE  
0 (0° phase start)  
12-BIT VALUE  
SEQUENCE  
12-BIT VALUE  
0x800  
0x800  
12  
13  
14  
15  
1
0x9A8  
0x658  
2
0xB33  
0x4CD  
0x379  
3
0xC87  
0xD8B  
0xE2F  
0xE66  
4
16 (240° phase start)  
0x275  
5
17  
18  
19  
20  
21  
22  
23  
0x1D1  
0x19A  
0x1D1  
0x275  
6 (90° phase start)  
7
0xE2F  
0xD8B  
0xC87  
0xB33  
8 (120° phase start)  
9
0x379  
10  
11  
0x4CD  
0x658  
0x9A8  
6
5
7
4
8
3
9
2
10  
1
11  
TIME PERIOD  
0
12  
0
13  
23  
14  
22  
15  
21  
16  
20  
17  
19  
18  
7-14. Sine Wave Generation  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: DAC53204W DAC63204W  
 
 
 
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
7.4.6 器件复位和故障管理  
本节详细介绍DACx3204W 的上电复(POR)、软件复位以及其他诊断和故障管理功能。  
7.4.6.1 上电复(POR)  
DACx3204W 系列器件包含上电复位 (POR) 功能可在加电时控制输出电压。在建立 VDD 电源后便会发出  
POR 事件。POR 使所有寄存器初始化为默认值只有在 POR启动延迟之后与该器件的通信才有效。一旦  
POR 事件DACx3204W 中所有寄存器的默认值都将立即NVM 加载。  
该器件加电时POR 电路将器件设置为默认模式。POR 电路需要特定VDD 电平7-15 所示才能确保内  
部电容器在加电时放电并使器件复位。为了确保发生 PORVDD 小于 0.7V 的时间必须至少1msVDD 降至  
低于 1.65V 但仍高于 0.7V显示为未定义区域该器件在所有指定的温度和电源条件下可能会也可能不会复  
位。在这种情况下需启PORVDD 保持为大1.65V 不会发POR。  
VDD (V)  
5.5 V  
Specified supply  
voltage range  
No power-on reset  
1.71 V  
1.65 V  
Undefined  
0.7 V  
Power-on reset  
0 V  
7-15. VDD POR 电路的阈值电平  
7.4.6.2 External Reset  
An external reset to the device can be triggered through the GPIO pin or through the register map. To initiate a  
device software reset event, write the reserved code 1010b to the RESET field in the COMMON-TRIGGER  
register. A software reset initiates a POR event. The GPIO pin can be configured as a RESET pin as shown in 表  
7-18. This configuration must be programmed into the NVM so that the setting is not cleared after the device  
reset. The RESET input must be a low pulse. The device starts the boot-up sequence after the falling edge of  
the RESET input. The rising edge of the RESET input does not have any effect.  
7.4.6.3 Register-Map Lock  
The DACx3204W implement a register-map lock feature that prevents an accidental or unintended write to the  
DAC registers. The device locks all the registers when the DEV-LOCK bit in the COMMON-CONFIG register is  
set to 1. However, the software reset function through the COMMON-TRIGGER register is not blocked when  
using I2C interface. To bypass the DEV-LOCK setting, write 0101b to the DEV-UNLOCK bits in the COMMON-  
TRIGGER register.  
7.4.6.4 NVM 循环冗余校(CRC)  
DACx3204W NVM 实施循环冗余校验 (CRC) 功能以确保存储在 NVM 中的数据不被损坏。DACx3204W 中  
实现了两种类型CRC 报警位:  
NVM-CRC-FAIL-USER  
Copyright © 2023 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
 
 
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
NVM-CRC-FAIL-INT  
NVM-CRC-FAIL-USER 位指示用户可编程 NVM 位的状态NVM-CRC-FAIL-INT 位指示内部 NVM 位的状态。  
CRC 功能通过在每次执行 NVM 程序操作写入或重新加载时以及在器件启动期间存储 16 CRC  
(CRC-16-CCITT) 以及 NVM 数据来实现。器件会读取 NVM 数据并使用存储的 CRC 来验证数据。CRC 报警位  
GENERAL-STATUS 寄存器中的 NVM-CRC-FAIL-USER NVM-CRC-FAIL-INT报告从器件 NVM 读取数据  
后的任何错误。报警位仅在启动时设置。  
7.4.6.4.1 NVM-CRC-FAIL-USER 位  
NVM-CRC-FAIL-USER 位为逻1 表示用户可编程NVM 上数据已损坏。在这种情况下DAC 中的所有寄存器  
都会使用出厂复位值进行初始化并且任何 DAC 寄存器都可以写入或读取。要将报警位复位为 0需发出软件复  
请参阅7.4.6.2命令或对 DAC 执行循环通电。软件复位或执行循环通电也会重新加载用户可编程的 NVM  
位。如果故障仍然存在需重新NVM 进行编程。  
7.4.6.4.2 NVM-CRC-FAIL-INT 位  
NVM-CRC-FAIL-INT 位为逻辑 1 表示内部 NVM 数据已损坏。在这种情况下DAC 中的所有寄存器都会使用出厂  
复位值进行初始化并且任何 DAC 寄存器都可以写入或读取。在发生临时故障时要将报警位复位为 0需发出  
软件复位请参阅7.4.6.2命令或DAC 执行循环通电。NVM 中的永久故障会导致器件无法使用。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: DAC53204W DAC63204W  
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
7.4.7 Power-Down Mode  
The DACx3204W output amplifier and internal reference can be independently powered down through the EN-  
INT-REF, VOUT-PDN-X, and IOUT-PDN-X bits in the COMMON-CONFIG register, as shown in 7-2. At power  
up, the DAC output and the internal reference are disabled by default. In power-down mode, the DAC outputs  
(OUTx pins) are in a high-impedance state. To change this state to 10 k-AGND or 100 k-AGND in the  
voltage-output mode (at power up), use the VOUT-PDN-X bits. The power-down state for current-output mode is  
always high-impedance.  
The DAC power-up state can be programmed to any state (power-down or normal mode) using the NVM. 表  
7-11 shows the DAC power-down bits. The individual channel power-down bits or the global device power-down  
function can be mapped to the GPIO pin using the GPIO-CONFIG register.  
7-11. DAC Power-Down Bits  
REGISTER  
VOUT-PDN-X[1]  
VOUT-PDN-X[0]  
IOUT-PDN-X  
DESCRIPTION  
Power up VOUT-X.  
0
0
1
Power down VOUT-X with 10 kto AGND.  
0
1
1
1
1
0
1
1
1
1
1
0
Power down IOUT-X to Hi-Z.  
Power down VOUT-X with 100 kto AGND.  
Power down IOUT-X to Hi-Z.  
COMMON-CONFIG  
Power down VOUT-X to Hi-Z.  
Power down IOUT-X to Hi-Z (default).  
Power down VOUT-X to Hi-Z.  
Power up IOUT-X.  
Copyright © 2023 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
 
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
7.5 编程  
DACx3204W 3 线SPI 2 线I2C 接口进行编程。4 线SPI 模式通过GPIO 引脚映射SDO 来启用。SPI  
回读操作的 SCLK 低于标准 SPI 写入操作。接口类型根据器件加电后的第一个通信协议来确定。在确定接口类型  
器件会在器件开启时忽略类型的任何更改。接口类型可以在下电上电后更改。  
7.5.1 SPI 编程模式  
通过将 SYNC 引脚置于低电平可以启动 DACx3204W SPI 访问周期。串行时钟 SCLK 可以是连续时钟或选  
通时钟。SDI 数据在 SCLK 下降沿上传输。DACx3204W SPI 帧长度为 24 位。因此SYNC 引脚必须保持低  
电平至少 24 SCLK 下降沿。当 SYNC 引脚取消置位为高电平时访问周期结束。如果访问周期包含的时钟边  
沿小于最小值则通信将被忽略。默认情况下SDO 引脚未启用三线 SPI。在三线 SPI 模式下如果访问周  
期包含的时钟边沿大于最小值则器件仅使用前 24 位。当 SYNC 为高电平时SCLK SDI 信号会被阻止同  
SDO 变为高阻态以允许从总线上连接的其他器件回读数据。  
7-12 7-16 介绍了 24 SPI 访问周期的格式。SDI 的第一个字节输入是指令周期。指令周期将请求标识  
为读或写命令以及要访问7 位地址。周期中的最16 位构成数据周期。  
7-12. SPI /写访问周期  
字段  
说明  
23  
R/W  
将通信标识为地址寄存器的读或写命令R/W = 0 设置写入操作。R/W = 1 设置读取操作  
寄存器地址指定在读取或写入操作期间要访问的寄存器  
22-16  
15-0  
A[6:0]  
DI[15:0]  
数据周期位如果是写入命令则数据周期位是要写入地址A[6:0] 的寄存器的值。如果是读取命令则  
数据周期位为不用考值。  
SYNC  
1
8
9
24  
1
8
9
24  
SCLK  
Write command  
D16  
Any command  
D16  
D23  
D15  
D0  
D23  
D23  
D15  
D0  
D0  
SDI  
Write command echo  
D16 D15  
HiZ  
HiZ  
HiZ  
SDO  
7-16. SPI 写入周期  
读取操作要求首先通过设置 INTERFACE-CONFIG 寄存器中的 SDO-EN 位来启用 SDO 引脚。此配置称为四线  
SPI。读取操作通过发出读取命令访问周期来启动。读取命令后必须发出第二个访问周期来获取请求的数据。表  
7-13 7-17 显示了输出数据格式。根据 FSDO 数据通过 SDO 引脚在 SCLK 的下降沿或上升沿输出如  
6-3 所示。  
7-13. SDO 输出访问周期  
字段  
说明  
23  
R/W  
来自上一访问周期的回R/W  
来自上一访问周期的回波寄存器地址  
上一访问周期中请求的回读数据  
22-16  
15-0  
A[6:0]  
DI[15:0]  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: DAC53204W DAC63204W  
 
 
 
 
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
SYNC  
1
8
9
24  
1
8
9
24  
SCLK  
Read command  
D16  
Any command  
D16  
D23  
D15  
D0  
D23  
D23  
D15  
D15  
D0  
SDI  
Read Data  
HiZ  
HiZ  
HiZ  
SDO  
D16  
D0  
7-17. SPI 读取周期  
菊花链操作也通过 SDO 引脚启用。在菊花链模式下多个器件采用链式连接其中一个器件的 SDO 引脚连接到  
以下器件的 SDI 引脚7-18 所示。SPI 主机驱动链中第一个器件SDI 引脚。链中最后一个器件的 SDO 引  
脚连接到 SPI 主机的 POCI 引脚。在四线 SPI 模式下如果访问周期包含 24 个时钟边沿的倍数则链中的第一  
个器件仅使用最后 24 个位。如果访问周期包含的时钟边沿不是 24 的倍数则器件会忽略 SPI 数据包。7-19  
介绍了菊花链写入周期的数据包格式。  
VIO  
VIO  
VIO  
C
B
A
RPULL-UP  
RPULL-UP  
RPULL-UP  
TI SPI Device  
TI SPI Device  
TI SPI Device  
SDO  
SDO  
SDO  
SDI  
SDI  
SDI  
SCLK  
SYNC  
SCLK  
SCLK  
SYNC  
SYNC  
7-18. SPI 菊花链连接  
SYNC  
SCLK  
1
8
9
24  
25  
48  
49  
72  
Device A command  
D16 D15  
Device B command  
D23 – D1  
Device C command  
D23 – D1  
D23  
D0  
SDI-C  
D0  
D0  
SDO-C  
Device A command  
Device B command  
7-19. SPI 菊花链写入周期  
Copyright © 2023 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
 
 
 
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
7.5.2 I2C Programming Mode  
The DACx3204W devices have a 2-wire serial interface (SCL and SDA), and one address pin (A0), as shown in  
the pin diagram in the Pin Configuration and Functions section. The I2C bus consists of a data line (SDA) and a  
clock line (SCL) with pullup structures. When the bus is idle, both SDA and SCL lines are pulled high. All the I2C-  
compatible devices connect to the I2C bus through the open drain I/O pins, SDA and SCL.  
The I2C specification states that the device that controls communication is called a controller, and the devices  
that are controlled by the controller are called targets. The controller generates the SCL signal. The controller  
also generates special timing conditions (start condition, repeated start condition, and stop condition) on the bus  
to indicate the start or stop of a data transfer. Device addressing is completed by the controller. The controller on  
an I2C bus is typically a microcontroller or digital signal processor (DSP). The DACx3204W family operates as a  
target on the I2C bus. A target acknowledges controller commands, and upon controller control, receives or  
transmits data.  
Typically, the DACx3204W family operates as a target receiver. A controller writes to the DACx3204W, a target  
receiver. However, if a controller requires the DACx3204W internal register data, the DACx3204W operate as a  
target transmitter. In this case, the controller reads from the DACx3204W. According to I2C terminology, read  
and write refer to the controller.  
The DACx3204W family supports the following data transfer modes:  
Standard mode (100Kbps)  
Fast mode (400Kbps)  
Fast mode plus (1.0Mbps)  
The data transfer protocol for standard and fast modes is exactly the same; therefore, both modes are referred  
to as F/S-mode in this document. The fast mode plus protocol is supported in terms of data transfer speed, but  
not output current. The low-level output current is 3 mA; similar to the case of standard and fast modes. The  
DACx3204W family supports 7-bit addressing. The 10-bit addressing mode is not supported. The device  
supports the general call reset function. Sending the following sequence initiates a software reset within the  
device: start or repeated start, 0x00, 0x06, stop. The reset is asserted within the device on the rising edge of the  
ACK bit, following the second byte.  
Other than specific timing signals, the I2C interface works with serial bytes. At the end of each byte, a ninth clock  
cycle generates and detects an acknowledge signal. An acknowledge is when the SDA line is pulled low during  
the high period of the ninth clock cycle. A not-acknowledge is when the SDA line is left high during the high  
period of the ninth clock cycle, as shown in 7-20.  
Data output  
by transmitter  
Not acknowledge  
Data output  
by receiver  
Acknowledge  
2
9
1
8
SCL from  
controller  
S
Clock pulse for  
acknowledgement  
Start  
condition  
7-20. Acknowledge and Not Acknowledge on the I2C Bus  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: DAC53204W DAC63204W  
 
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
7.5.2.1 F/S 模式协议  
以下步骤说明F/S 模式下的完整事务。  
1. 控制器通过产生启动条件来启动数据传输。启动条件是SCL 为高电平时SDA 线上发生从高到低的转  
7-21 所示。所有I2C 兼容的器件都会识别启动条件。  
2. 控制器随后产SCL 脉冲SDA 线上发7 位地址和读取/写入方向(R/W)。在所有传输期间控制  
器确保数据有效。有效数据条件要SDA 线在时钟脉冲的整个高电平期间保持稳定7-22 所示。所有  
器件都识别控制器发送的地址并将其与相应内部固定地址进行比较。只有具有匹配地址的目标器件才会通过  
9 SCL 周期的整个高电平期间拉SDA 线来生成确认7-20 所示。当控制器检测到此确认时,  
则表示与目标的通信链路已建立。  
3. 控制器产生更多SCL 周期以便向目标器件发送R/W 0数据或接收R/W 1数据。在任一  
种情况下接收器都必须确认发送器发送的数据。因此确认信号可由控制器或目标器件生成具体取决于哪  
一方是接收器。9 位有效数据序列包8 个数据位1 个确认位并可根据需要继续。  
4. 为了用信号指示数据传输结束控制器通过SCL 线处于高电平期间SDA 线从高电平拉低来产生停止条  
7-21 所示。此操作将释放总线并停止与寻址的目标器件之间的通信链路。所有I2C 兼容的器件都  
会识别停止条件。在收到停止条件后将释放总线然后所有目标器件等待启动条件接着是匹配的地址。  
SDA  
SDA  
SCL  
SCL  
S
P
Start  
condition  
Stop  
condition  
Change of data  
allowed  
Data line stable  
Data valid  
7-21. 启动和停止条件  
7-22. I2C 总线上的位传输  
Copyright © 2023 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
 
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
7.5.2.2 I2C 更新序列  
对于单次更新DACx3204W 需要一个开始条件、一个有效I2C 地址字节、一个命令字节以及两个数据字节,  
7-14 中所列。  
7-14. 更新序列  
MSB  
....  
LSB  
ACK  
MSB  
...  
LSB  
ACK  
MSB  
...  
LSB  
ACK  
MSB  
...  
LSB  
ACK  
(A) 字节  
7.5.2.2.1  
命令字节  
7.5.2.2.2  
数据字- MSDB  
数据字- LSDB  
DB [31:24]  
DB [23:16]  
DB [15:8]  
DB [7:0]  
收到每个字节后DACx3204W 系列通过在单个时钟脉冲的高电平期间拉低 SDA 线来确认该字节7-23 所  
示。这四个字节和确认周期构成了单次更新所需36 个时钟周期。一个有效I2C 地址字节选DACx3204W。  
Recognize  
START or  
REPEATED  
START  
condition  
Recognize  
STOP or  
REPEATED  
START  
Generate ACKNOWLEDGE  
signal  
condition  
P
SDA  
Sr  
MSB  
Acknowledgement  
signal from target  
Address  
R/W  
1
SCL  
1
7
8
9
2 - 8  
9
Sr  
or  
P
S
or  
Sr  
ACK  
ACK  
START or  
REPEATED  
START  
REPEATED  
START or  
STOP  
condition  
condition  
7-23. I2C 总线协议  
命令字节设置所选 DACx3204W 件的工作模式。如果要在通过该字节选择工作模式时进行数据更新,  
DACx3204W 件必须接收两个数据字节高有效数据字节 (MSDB) 最低有效数据字节 (LSDB)。  
DACx3204W 器件LSDB 之后的确认信号下降沿执行更新。  
使用快速模式= 400kHzDAC 更新速率限制10kSPS。使用超快速模式= 1MHz,  
DAC 更新速率限制25kSPS。收到停止条件后DACx3204W 器件将释I2C 总线并等待新的启动条件。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: DAC53204W DAC63204W  
 
 
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
7.5.2.2.1 地址字节  
地址字节7-15 所示是在启动条件之后从控制器器件接收的第一个字节。地址的前四位 (MSB) 出厂预设  
1001b。地址的接下来三位由 A0 引脚控制。A0 引脚输入可以连接到 VDDAGNDSCL SDA。在每个数  
据帧的第一个字节期间对 A0 引脚进行采样以确定地址。该器件会锁存地址引脚的值因此会根据7-16 响应该  
特定地址。  
7-15. 地址字节  
MSB  
LSB  
注释  
AD6  
1
AD5  
0
AD4  
0
AD3  
AD2  
1
AD1  
AD0  
1
R/W  
请参阅7-16  
目标地址列)  
1
0
0 1  
一般地址  
广播地址  
1
0
0
1
0
7-16. 地址格式  
A0 引脚  
AGND  
VDD  
目标地址  
000  
001  
010  
SDA  
011  
SCL  
DACx3204W 支持使用广播地址来同步更新或关闭多个 DACx3204W 器件。使用广播地址时无论地址引脚状态  
如何DACx3204W 都会进行响应。仅在写入模式下支持广播。  
7.5.2.2.2 Command Byte  
The Register Names table in the Register Map section lists the command byte in the ADDRESS column.  
Copyright © 2023 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
 
 
 
 
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
7.5.2.3 I2C 读取序列  
要读取任何寄存器必须使用以下命令序列:  
1. 发送启动或重复启动命令使用目标器件地址并R/W 位设置0 以进行写入。该器件将确认此事件。  
2. 针对要读取的寄存器发送一个命令字节。该器件将再次确认此事件。  
3. 发送重复启动命令使用目标器件地址并R/W 位设置1 以进行读取。该器件将确认此事件。  
4. 该器件将写入寻址到的寄存器MSDB 字节。控制器必须确认此字节。  
5. 最后该器件将写出寄存器LSDB。  
广播地址不能用于读取。  
7-17. 读取序列  
R/W  
(0)  
R/W  
(1)  
S
MSB  
ACK  
MSB  
LSB  
ACK Sr MSB  
ACK  
MSB  
LSB  
ACK  
MSB  
LSB  
ACK  
地址字节  
7.5.2.2.1  
命令字节  
7.5.2.2.2  
地址字节  
7.5.2.2.1  
Sr  
MSDB  
LSDB  
来自控制器  
目标  
来自控制器  
目标  
来自控制器  
目标  
来自目标器件  
控制器  
来自目标器件  
控制器  
7.5.3 通用输入/(GPIO) 模式  
借助 I2C SPIDACx3204W 还支持一个可在 NVM 中配置来提供多种功能的 GPIO。此引脚允许在不使用编程  
接口的情况下更新 DAC 输出通道和读取状态位从而实现无处理器运行。在 GPIO-CONFIG 寄存器中GPI-  
EN 位写入 1 以将 GPIO 引脚设置为输入或向 GPO-EN 位写入 1 以将该引脚设置为输出。GPIO 引脚上映射了  
全局功能和特定于通道的功能。对于特定于通道的功能需使用 GPIO-CONFIG 寄存器中的 GPI-CH-SEL 字段选  
择通道。7-18 列出了 GPIO 作为输入的可用功能选项7-19 列出了 GPIO 作为输出的功能选项。一些  
GP 输入操作在器件启动后由边沿触发。电源上升后器件会寄存 GPI 电平并执行相关命令。此功能让用户可以  
配置加电时的初始输出状态。默认情况下GPIO 引脚不映射到任何操作。当 GPIO 引脚映射到特定的输入功能  
相应的软件位功能会被禁用以避免出现竞态条件。当用RESET 输入时GPIO 引脚必须发送低电平有效  
脉冲来触发器件复位。这些功能的所有其他限制都应用于基GPIO 的触发器。  
备注  
未使用时GPIO 引脚拉至高电平或低电平。当 GPIO 引脚用作 RESET 必须将配置编程到  
NVM 中。否则该设置会在器件复位后被清除。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: DAC53204W DAC63204W  
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
7-18. 通用输入功能映射  
GPIO 边沿/电平  
寄存器  
位字段  
通道  
功能  
FAULT-DUMP  
下降沿  
上升沿  
下降沿  
上升沿  
0010  
全部  
没有影响  
IOUT 断电  
IOUT 加电  
0011  
0100  
GPI-CH-SEL 标准  
GPI-CH-SEL 标准  
VOUT 断电。根VOUT-PDN-X 设  
置的下拉电阻器  
下降沿  
VOUT 加电  
上升沿  
下降沿  
上升沿  
下降沿  
上升沿  
下降沿  
PROTECT 功能  
没有影响  
0101  
0111  
全部  
全部  
CLR 功能  
没有影响  
GPI-CH-SEL 标准。必须  
为每个通道配SYNC-  
CONFIG-X GPI-CH-SEL。  
LDAC 功能  
1000  
上升沿  
没有影响  
GPIO-CONFIG  
GPI-CONFIG  
下降沿  
上升沿  
下降沿  
上升沿  
停止函数生成  
开始函数生成  
触发裕度低  
触发裕度高  
1001  
1010  
GPI-CH-SEL 标准  
GPI-CH-SEL 标准  
触发器RESETRESET 配置必须  
编程NVM 中。  
低电平脉冲  
1011  
1100  
全部  
全部  
上升沿  
下降沿  
上升沿  
下降沿  
没有影响  
NVM 编程  
NVM 编程  
允许更新寄存器映射  
阻止寄存器映射写入但通I2C 或  
SPI DEV-UNLOCK 字段和通过  
I2C RESET 字段除外  
1101  
全部  
上升沿  
不适用  
其他  
不适用  
不可用  
7-19. 通用输(STATUS) 功能映射  
寄存器  
位字段  
功能  
0001  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
NVM-BUSY  
DAC-0-BUSY  
DAC-1-BUSY  
DAC-2-BUSY  
DAC-3-BUSY  
WIN-CMP-0  
WIN-CMP-1  
WIN-CMP-2  
WIN-CMP-3  
GPIO-CONFIG  
GPO-CONFIG  
其他  
不可用  
Copyright © 2023 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
 
 
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
7.6 Register Map  
7-20. Register Map  
MOST SIGNIFICANT DATA BYTE (MSDB)  
LEAST SIGNIFICANT DATA BYTE (LSDB)  
REGISTER(1) (2)  
BIT15  
BIT14  
BIT13  
BIT12  
BIT11  
BIT10  
BIT9  
BIT8  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
NOP  
NOP  
DAC-X-MARGIN-  
HIGH  
DAC-X-MARGIN-HIGH  
DAC-X-MARGIN-LOW  
X
X
DAC-X-MARGIN-  
LOW  
DAC-X-VOUT-  
CMP-CONFIG  
CMP-X-OD-  
EN  
CMP-X-  
OUT-EN  
CMP-X-HIZ- CMP-X-INV-  
IN-DIS EN  
X
X
VOUT-GAIN-X  
X
CMP-X-EN  
DAC-X-IOUT-MISC-  
CONFIG  
IOUT-X-RANGE  
X
DAC-X-CMP-  
MODE-CONFIG  
X
CMP-X-MODE  
VOUT-PDN-3  
X
DAC-X-FUNC-  
CLR-SEL-X  
CONFIG  
SYNC-  
CONFIG-X  
BRD-  
CONFIG-X  
FUNC-GEN-CONFIG-BLOCK-X  
DAC-X-DATA  
DAC-X-DATA  
IOUT-PDN-3  
X
COMMON-CONFIG  
WIN-  
LATCH-EN  
DEV-LOCK  
EE-READ- EN-INT-REF  
ADDR  
VOUT-PDN-2  
IOUT-PDN-2  
CLR  
VOUT-PDN-1  
IOUT-PDN-1  
VOUT-PDN-0  
IOUT-PDN-0  
COMMON-  
TRIGGER  
DEV-UNLOCK  
RESET  
LDAC  
X
FAULT-  
DUMP  
PROTECT READ-ONE- NVM-PROG  
TRIG  
NVM-  
RELOAD  
COMMON-DAC-  
TRIG  
RST-CMP- TRIG-MAR- TRIG-MAR-  
START-  
FUNC-0  
RST-CMP- TRIG-MAR- TRIG-MAR-  
START-  
FUNC-1  
RST-CMP- TRIG-MAR- TRIG-MAR-  
FLAG-2 LO-2 HI-2  
START-  
FUNC-2  
RST-CMP- TRIG-MAR- TRIG-MAR-  
START-  
FUNC-3  
FLAG-0  
LO-0  
HI-0  
FLAG-1  
LO-1  
HI-1  
FLAG-3  
LO-3  
HI-3  
GENERAL-STATUS NVM-CRC- NVM-CRC-  
X
DAC-  
DAC-  
DAC-  
DAC-  
NVM-BUSY  
DEVICE-ID  
FAIL-INT  
FAIL-USER  
BUSY-3  
BUSY-2  
BUSY-1  
BUSY-0  
CMP-STATUS  
X
PROTECT- WIN-CMP-3 WIN-CMP-2 WIN-CMP-1 WIN-CMP-0  
FLAG  
CMP-  
FLAG-3  
CMP-  
FLAG-2  
CMP-  
FLAG-1  
CMP-  
FLAG-0  
GPIO-CONFIG  
GF-EN  
X
GPO-EN  
GPO-CONFIG  
RESERVED  
GPI-CH-SEL  
GPI-CONFIG  
GPI-EN  
DEVICE-MODE-  
CONFIG  
RESERVED  
DIS-MODE-  
IN  
PROTECT-CONFIG  
RESERVED  
X
INTERFACE-  
CONFIG  
X
TIMEOUT-  
EN  
X
EN-PMBUS  
X
FSDO-EN  
X
SDO-EN  
SRAM-CONFIG  
SRAM-DATA  
X
SRAM-ADDR  
SRAM-DATA  
DAC-X-DATA-8BIT  
BRDCAST-DATA  
PMBUS-PAGE  
DAC-X-DATA-8BIT  
X
BRDCAST-DATA  
X
PMBUS-PAGE  
PMBUS-OPERATION-CMD-X  
X
NA  
NA  
NA  
NA  
PMBUS-OP-CMD  
PMBUS-CML  
CML  
X
PMBUS-VERSION  
PMBUS-VERSON  
(1) The highlighted gray cells indicate the register bits or fields that are stored in the NVM.  
(2) X = Don't care.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: DAC53204W DAC63204W  
 
 
 
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
7-21. Register Names  
PMBUS REGISTER  
ADDR  
I2C/SPI ADDRESS PMBUS PAGE ADDR  
REGISTER NAME  
SECTION  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Fh  
FFh  
00h  
00h  
FFh  
FFh  
FFh  
FFh  
01h  
01h  
FFh  
FFh  
FFh  
FFh  
02h  
02h  
FFh  
FFh  
FFh  
FFh  
03h  
03h  
FFh  
FFh  
FFh  
FFh  
00h  
01h  
02h  
03h  
FFh  
D0h  
25h  
26h  
D1h  
D2h  
D3h  
D4h  
25h  
26h  
D5h  
D6h  
D7h  
D8h  
25h  
26h  
D9h  
DAh  
DBh  
DCh  
25h  
26h  
DDh  
DEh  
DFh  
E0h  
21h  
21h  
21h  
21h  
E3h  
NOP  
7.6.1  
7.6.2  
7.6.3  
7.6.4  
7.6.5  
7.6.6  
7.6.7  
7.6.2  
7.6.3  
7.6.4  
7.6.5  
7.6.6  
7.6.7  
7.6.2  
7.6.3  
7.6.4  
7.6.5  
7.6.6  
7.6.7  
7.6.2  
7.6.3  
7.6.4  
7.6.5  
7.6.6  
7.6.7  
7.6.8  
7.6.8  
7.6.8  
7.6.8  
7.6.9  
DAC-0-MARGIN-HIGH  
DAC-0-MARGIN-LOW  
DAC-0-VOUT-CMP-CONFIG  
DAC-0-IOUT-MISC-CONFIG  
DAC-0-CMP-MODE-CONFIG  
DAC-0-FUNC-CONFIG  
DAC-1-MARGIN-HIGH  
DAC-1-MARGIN-LOW  
DAC-1-VOUT-CMP-CONFIG  
DAC-1-IOUT-MISC-CONFIG  
DAC-1-CMP-MODE-CONFIG  
DAC-1-FUNC-CONFIG  
DAC-2-MARGIN-HIGH  
DAC-2-MARGIN-LOW  
DAC-2-VOUT-CMP-CONFIG  
DAC-2-IOUT-MISC-CONFIG  
DAC-2-CMP-MODE-CONFIG  
DAC-2-FUNC-CONFIG  
DAC-3-MARGIN-HIGH  
DAC-3-MARGIN-LOW  
DAC-3-VOUT-CMP-CONFIG  
DAC-3-IOUT-MISC-CONFIG  
DAC-3-CMP-MODE-CONFIG  
DAC-3-FUNC-CONFIG  
DAC-0-DATA  
DAC-1-DATA  
DAC-2-DATA  
DAC-3-DATA  
COMMON-CONFIG  
Copyright © 2023 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
7-21. Register Names (continued)  
PMBUS REGISTER  
ADDR  
I2C/SPI ADDRESS PMBUS PAGE ADDR  
REGISTER NAME  
SECTION  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
2Bh  
2Ch  
40h  
41h  
42h  
43h  
50h  
NA  
FFh  
FFh  
E4h  
E5h  
E6h  
E7h  
E8h  
E9h  
EAh  
EFh  
F0h  
NA  
COMMON-TRIGGER  
COMMON-DAC-TRIG  
GENERAL-STATUS  
CMP-STATUS  
7.6.10  
7.6.11  
7.6.12  
7.6.13  
7.6.14  
7.6.15  
7.6.16  
7.6.17  
7.6.18  
7.6.19  
7.6.19  
7.6.19  
7.6.19  
7.6.20  
7.6.21  
7.6.22  
7.6.22  
7.6.22  
7.6.22  
7.6.23  
7.6.24  
FFh  
FFh  
FFh  
GPIO-CONFIG  
FFh  
DEVICE-MODE-CONFIG  
INTERFACE-CONFIG  
SRAM-CONFIG  
FFh  
FFh  
FFh  
SRAM-DATA  
NA  
DAC-0-DATA-8BIT  
DAC-1-DATA-8BIT  
DAC-2-DATA-8BIT  
DAC-3-DATA-8BIT  
BRDCAST-DATA  
PMBUS-PAGE  
NA  
NA  
NA  
NA  
NA  
NA  
FFh  
F1h  
00h  
01h  
01h  
01h  
01h  
78h  
98h  
All pages  
00h  
NA  
PMBIS-OP-CMD-0  
PMBUS-OP-CMD-1  
PMBUS-OP-CMD-2  
PMBUS-OP-CMD-3  
PMBUS-CML  
NA  
01h  
NA  
02h  
NA  
03h  
NA  
All pages  
All pages  
NA  
PMBUS-VERSION  
7-22. Access Type Codes  
Access Type  
Code  
Description  
X
X
Don't care  
Read Type  
R
R
Read  
Write  
Write Type  
W
W
Reset or Default Value  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: DAC53204W DAC63204W  
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
7-22. Access Type Codes (continued)  
Access Type  
Code  
Description  
-n  
Value after reset or the default value  
Copyright © 2023 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
7.6.1 NOP Register (address = 00h) [reset = 0000h]  
PMBus page address = FFh, PMBus register address = D0h  
7-24. NOP Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
NOP  
R-0h  
7-23. NOP Register Field Descriptions  
Bit  
15-0  
Field  
NOP  
Type  
Reset  
Description  
R
0000h  
No operation  
7.6.2 DAC-X-MARGIN-HIGH Register (address = 01h, 07h, 0Dh, 13h) [reset = 0000h]  
PMBus page address = 00h, 01h, 02h, 03h, PMBus register address = 25h  
7-25. DAC-X-MARGIN-HIGH Register (X = 0, 1, 2, 3)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DAC-X-MARGIN-HIGH[11:0]  
DAC-X-MARGIN-HIGH[9:0]  
DAC-X-MARGIN-HIGH[7:0]  
X
R/W-000h  
X-0h  
7-24. DAC-X-MARGIN-HIGH Register Field Descriptions  
Bit  
15-4  
Field  
Type  
Reset  
Description  
DAC-X-MARGIN-HIGH[11:0]  
DAC-X-MARGIN-HIGH[9:0]  
DAC-X-MARGIN-HIGH[7:0]  
R/W  
000h  
Margin-high code for DAC output  
Data are in straight-binary format. MSB left-aligned.  
Use the following bit-alignment:  
DAC63204W VOUT: {DAC-X-MARGIN-HIGH[11:0]}  
DAC53204W VOUT: {DAC-X-MARGIN-HIGH[9:0], X, X}  
IOUT: {DAC-X-MARGIN-HIGH[7:0], X, X, X, X}  
X = Don't care bits.  
Don't care  
3-0  
X
X
0
7.6.3 DAC-X-MARGIN-LOW Register (address = 02h, 08h, 0Eh, 14h) [reset = 0000h]  
PMBus page address = 00h, 01h, 02h, 03h, PMBus register address = 26h  
7-26. DAC-X-MARGIN-LOW Register (X = 0, 1, 2, 3)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DAC-X-MARGIN-LOW[11:0]  
DAC-X-MARGIN-LOW[9:0]  
DAC-X-MARGIN-LOW[7:0]  
X
R/W-000h  
X-0h  
7-25. DAC-X-MARGIN-LOW Register Field Descriptions  
Bit  
15-4  
Field  
Type  
Reset  
Description  
DAC-X-MARGIN-LOW[11:0]  
DAC-X-MARGIN-LOW[9:0]  
DAC-X-MARGIN-LOW[7:0]  
R/W  
000h  
Margin-low code for DAC output  
Data are in straight-binary format. MSB left-aligned.  
Use the following bit-alignment:  
DAC63204W VOUT: {DAC-X-MARGIN-LOW[11:0]}  
DAC53204W VOUT: {DAC-X-MARGIN-LOW[9:0], X, X}  
IOUT: {DAC-X-MARGIN-LOW[7:0], X, X, X, X}  
X = Don't care bits.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: DAC53204W DAC63204W  
 
 
 
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
7-25. DAC-X-MARGIN-LOW Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-0  
X
X
0
Don't care  
7.6.4 DAC-X-VOUT-CMP-CONFIG Register (address = 03h, 09h, 0Fh, 15h) [reset = 0000h]  
PMBus page address = FFh, PMBus register address = D1h, D5h, D9h, DDh  
7-27. DAC-X-VOUT-CMP-CONFIG Register (X = 0, 1, 2, 3)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
X
VOUT-GAIN-X  
X
CMP- CMP- CMP-X- CMP- CMP-  
X-OD- X-OUT- HIZ-IN- X-INV- X-EN  
EN  
EN  
DIS  
EN  
X-0h  
R/W-0h  
X-0h  
R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h  
7-26. DAC-X-VOUT-CMP-CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-13  
12-10  
X
X
0h  
Don't care  
VOUT-GAIN-X  
R/W  
0h  
000: Gain = 1x, external reference on VREF pin  
001: Gain = 1x, VDD as reference  
010: Gain = 1.5x, internal reference  
011: Gain = 2x, internal reference  
100: Gain = 3x, internal reference  
101: Gain = 4x, internal reference  
Others: Invalid  
9-5  
4
X
X
0h  
0
Don't care  
CMP-X-OD-EN  
R/W  
0: Set OUTx pin as push-pull  
1: Set OUTx pin as open-drain in comparator mode (CMP-X-EN =  
1 and CMP-X-OUT-EN = 1)  
3
2
CMP-X-OUT-EN  
R/W  
R/W  
0
0
0: Generate comparator output but consume internally  
1: Bring comparator output to the respective OUTx pin  
CMP-X-HIZ-IN-DIS  
0: FBx input has high-impedance. Input voltage range is limited.  
1: FBx input is connected to resistor divider and has finite  
impedance. Input voltage range is same as full-scale.  
1
0
CMP-X-INV-EN  
CMP-X-EN  
R/W  
R/W  
0
0
0: Don't invert the comparator output  
1: Invert the comparator output  
0: Disable comparator mode  
1: Enable comparator mode. Current-output must be in power-  
down. Voltage-output mode must be enabled.  
Copyright © 2023 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
 
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
7.6.5 DAC-X-IOUT-MISC-CONFIG Register (address = 04h, 0Ah, 10h, 16h) [reset = 0000h]  
PMBus page address = FFh, PMBus register address = D2h, D6h, DAh, DEh  
7-28. DAC-X-IOUT-MISC-CONFIG Register (X = 0, 1, 2, 3)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
X
IOUT-RANGE-X  
R/W-0h  
X
X-0h  
X-0h  
7-27. DAC-X-IOUT-MISC-CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-13  
12-9  
X
X
0h  
Don't care  
IOUT-RANGE-X  
R/W  
0000  
1000: 25 μA to +25 μA  
1001: 50 μA to +50 μA  
1010: 125 μA to +125 μA  
1011: 250 μA to +250 μA  
Others: Invalid  
8-0  
X
X
000h  
Don't care  
7.6.6 DAC-X-CMP-MODE-CONFIG Register (address = 05h, 0Bh, 11h, 17h) [reset = 0000h]  
PMBus page address = FFh, PMBus register address = D3h, D7h, DBh, DFh  
7-29. DAC-X-CMP-MODE-CONFIG Register (X = 0, 1, 2, 3)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
X
CMP-X-MODE  
R/W-0h  
X
X-0h  
X-0h  
7-28. DAC-X-CMP-MODE-CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
00h  
00  
Description  
15-12  
11-10  
X
X
Don't care  
CMP-X-MODE  
R/W  
00: No hysteresis or window function  
01: Hysteresis provided using DAC-X-MARGIN-HIGH and DAC-  
X-MARGIN-LOW registers  
10: Window comparator mode with DAC-X-MARGIN-HIGH and  
DAC-X-MARGIN-LOW registers setting window bounds  
11: Invalid  
9-0  
X
X
000h  
Don't care  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: DAC53204W DAC63204W  
 
 
 
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
7.6.7 DAC-X-FUNC-CONFIG Register (address = 06h, 0Ch, 12h, 18h) [reset = 0000h]  
PMBus page address = FFh, PMBus register address = D4h, D8h, DCh, E0h  
7-30. DAC-X-FUNC-CONFIG Register (X = 0, 1, 2, 3)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CLR-SEL-X  
SYNC-  
BRD-  
FUNC-GEN-CONFIG-BLOCK  
CONFIG-X CONFIG-X  
R/W-0h  
R/W-0h R/W-0h  
R/W-000h  
7-29. DAC-X-FUNC-CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
CLR-SEL-X  
R/W  
0
0: Clear DAC-X to zero-scale  
1: Clear DAC-X to mid-scale  
14  
13  
SYNC-CONFIG-X  
R/W  
R/W  
0
0
0: DAC-X output updates immediately after a write command  
1: DAC-X output updates with LDAC pin falling-edge or when the  
LDAC bit in the COMMON-TRIGGER register is set to 1  
BRD-CONFIG-X  
0: Don't update DAC-X with broadcast command  
1: Update DAC-X with broadcast command  
7-30. Linear-Slew Mode: FUNC-GEN-CONFIG-BLOCK Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
12-11  
PHASE-SEL-X  
R/W  
0
00: 0°  
01: 120°  
10: 240°  
11: 90°  
10-8  
FUNC-CONFIG-X  
R/W  
0
000: Triangular wave  
001: Sawtooth wave  
010: Inverse sawtooth wave  
100: Sine wave  
111: Disable function generation  
Others: Invalid  
7
LOG-SLEW-EN-X  
CODE-STEP-X  
R/W  
R/W  
0
0
0: Enable linear slew  
6-4  
CODE-STEP for linear slew mode:  
000: 1-LSB  
001: 2-LSB  
010: 3-LSB  
011: 4-LSB  
100: 6-LSB  
101: 8-LSB  
110: 16-LSB  
111: 32-LSB  
3-0  
SLEW-RATE-X  
R/W  
0
SLEW-RATE for linear slew mode:  
0000: No slew for margin-high and margin-low. Invalid for  
waveform generation.  
0001: 4 µs/step  
0010: 8 µs/step  
0011: 12 µs/step  
0100: 18 µs/step  
0101: 27.04 µs/step  
0110: 40.48 µs/step  
0111: 60.72 µs/step  
1000: 91.12 µs/step  
1001: 136.72 µs/step  
1010: 239.2 µs/step  
1011: 418.64 µs/step  
1100: 732.56 µs/step  
1101: 1282 µs/step  
1110: 2563.96 µs/step  
1111: 5127.92 µs/step  
Copyright © 2023 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
 
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
7-31. Logarithmic-Slew Mode: FUNC-GEN-CONFIG-BLOCK Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
12-11  
PHASE-SEL-X  
R/W  
0
00: 0°  
01: 120°  
10: 240°  
11: 90°  
10 - 8  
FUNC-CONFIG-X  
R/W  
R/W  
0
0
000: Triangular wave  
001: Sawtooth wave  
010: Inverse sawtooth wave  
100: Sine wave  
111: Disable function generation  
Others: Invalid  
7
LOG-SLEW-EN-X  
1: Enable logarithmic slew.  
In logarithmic slew mode, the DAC output moves from the DAC-  
X-MARGIN-LOW code to the DAC-X-MARGIN-HIGH code, or  
vice versa, in 3.125% steps.  
When slewing in the positive direction, the next step is (1 +  
0.03125) times the current step.  
When slewing in the negative direction, the next step is (1 ‒  
0.03125) times the current step.  
When DAC-X-MARGIN-LOW is 0, the slew starts from code 1.  
The time interval for each step is defined by RISE-SLEW-X and  
FALL-SLEW-X.  
6-4  
3-1  
0
RISE-SLEW-X  
FALL-SLEW-X  
X
R/W  
R/W  
X
0
0
0
SLEW-RATE for logarithmic slew mode (DAC-X-MARGIN-LOW to  
DAC-X-MARGIN-HIGH):  
000: 4 µs/step  
001: 12 µs/step  
010: 27.04 µs/step  
011: 60.72 µs/step  
100: 136.72 µs/step  
101: 418.64 µs/step  
110: 1282 µs/step  
111: 5127.92 µs/step  
SLEW-RATE for logarithmic slew mode (DAC-X-MARGIN-HIGH  
to DAC-X-MARGIN-LOW):  
000: 4 µs/step  
001: 12 µs/step  
010: 27.04 µs/step  
011: 60.72 µs/step  
100: 136.72 µs/step  
101: 418.64 µs/step  
110: 1282 µs/step  
111: 5127.92 µs/step  
Don't care  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: DAC53204W DAC63204W  
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
7.6.8 DAC-X-DATA Register (address = 19h, 1Ah, 1Bh, 1Ch) [reset = 0000h]  
PMBus page address = 00h, 01h, 02h, 03h, PMBus register address = 21h  
7-31. DAC-X-DATA Register (X = 0, 1, 2, 3)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DAC-X-DATA[11:0]  
DAC-X-DATA[9:0]  
DAC-X-DATA[7:0]  
X
R/W-000h  
X-0h  
7-32. DAC-X-DATA Register Field Descriptions  
Bit  
15-4  
Field  
Type  
Reset  
Description  
DAC-X-DATA[11:0]  
DAC-X-DATA[9:0]  
DAC-X-DATA[7:0]  
R/W  
000h  
Data for DAC output  
Data are in straight-binary format. MSB left-aligned.  
Use the following bit-alignment:  
DAC63204W VOUT: {DAC-X-DATA[11:0]}  
DAC53204W VOUT: {DAC-X-DATA[9:0], X, X}  
IOUT: {DAC-X-DATA[7:0], X, X, X, X}  
X = Don't care bits.  
3-0  
X
X
0h  
Don't care  
7.6.9 COMMON-CONFIG Register (address = 1Fh) [reset = 0FFFh]  
PMBus page address = FFh, PMBus register address = E3h  
7-32. COMMON-CONFIG Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
WIN-  
LATCH- LOCK  
EN  
DEV-  
EE-READ-  
ADDR  
EN-INT-  
REF  
VOUT-PDN-3  
IOUT-  
PDN-3  
VOUT-PDN-2  
IOUT-  
PDN-2  
VOUT-PDN-1  
IOUT-  
PDN-1  
VOUT-PDN-0  
IOUT-  
PDN-0  
R/W-0h R/W-0h  
R/W-0h  
R/W-0h  
R/W-11b  
R/W-1b  
R/W-11b  
R/W-1b  
R/W-11b  
R/W-1b  
R/W-11b  
R/W-1b  
7-33. COMMON-CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
WIN-LATCH-EN  
R/W  
0
0: Non-latching window-comparator output  
1: Latching window-comparator output  
14  
DEV-LOCK  
R/W  
0
0: Device not locked.  
1: Device locked, the device locks all the registers. To set this bit  
back to 0 (unlock device), write to the unlock code to the DEV-  
UNLOCK field in the COMMON-TRIGGER register first, followed  
by a write to the DEV-LOCK bit as 0.  
13  
12  
EE-READ-ADDR  
EN-INT-REF  
R/W  
R/W  
0
0
0: Fault-dump read enable at address 0x00  
1: Fault-dump read enable at address 0x01  
0: Disable internal reference.  
1: Enable internal reference. This bit must be set before using  
internal reference gain settings.  
11-10, 8-7, VOUT-PDN-X  
5-4, 2-1  
R/W  
R/W  
11  
1
00: Power-up VOUT-X  
01: Power-down VOUT-X with 10 KΩto AGND  
10: Power-down VOUT-X with 100 KΩto AGND  
11: Power-down VOUT-X with Hi-Z to AGND  
9, 6, 3, 0 IOUT-PDN-X  
0: Power-up IOUT-X  
1: Power-down IOUT-X  
Copyright © 2023 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
 
 
 
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
7.6.10 COMMON-TRIGGER Register (address = 20h) [reset = 0000h]  
PMBus page address = FFh, PMBus register address = E4h  
7-33. COMMON-TRIGGER Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DEV-UNLOCK  
RESET  
LDAC  
CLR  
X
FAULT- PROTECT  
DUMP  
READ-  
ONE-  
TRIG  
NVM-  
PROG RELOAD  
NVM-  
R/W-0h  
R/W-0h  
R/W-0h R/W-0h X-0h R/W-0h  
R/W-0h  
R/W-0h R/W-0h R/W-0h  
7-34. COMMON-TRIGGER Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
DEV-UNLOCK  
R/W  
0000  
0101: Device unlocking password. To unlock device, write this  
unlock password first, followed by a write 0 to the DEV-LOCK bit  
in the COMMON-CONFIG register.  
Others: Don't care  
11 - 8  
7
RESET  
LDAC  
W
0000  
0
1010: POR reset triggered. This bit self-resets.  
Others: Don't care  
R/W  
0: LDAC operation not triggered  
1: LDAC operation triggered if the respective SYNC-CONFIG-X  
bit in the DAC-X-FUNC-CONFIG register is 1. This bit self-resets.  
6
CLR  
R/W  
0
0: DAC registers and outputs unaffected  
1: DAC registers and outputs set to zero-code or mid-code based  
on the respective CLR-SEL-X bit in the DAC-X-FUNC-CONFIG  
register. This bit self-resets.  
5
4
X
X
0
0
Don't care  
FAULT-DUMP  
R/W  
0: Fault-dump is not triggered  
1: Triggers fault-dump sequence. This bit self-resets.  
3
2
1
0
PROTECT  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0: PROTECT function not triggered  
1: Trigger PROTECT function. This bit is self-resetting.  
READ-ONE-TRIG  
NVM-PROG  
0: Fault-dump read not triggered  
1: Read one row of NVM for fault-dump. This bit self-resets.  
0: NVM write not triggered  
1: NVM write triggered. This bit self-resets.  
NVM-RELOAD  
0: NVM reload not triggered  
1: Reload data from NVM to register map. This bit self-resets.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: DAC53204W DAC63204W  
 
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
7.6.11 COMMON-DAC-TRIG Register (address = 21h) [reset = 0000h]  
PMBus page address = FFh, PMBus register address = E5h  
7-34. COMMON-DAC-TRIG Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESET-  
CMP-  
FLAG-0  
TRIG-  
MAR-  
LO-0  
TRIG-  
MAR-  
HI-0  
START- RESET- TRIG-  
TRIG- START- RESET- TRIG-  
TRIG- START- RESET- TRIG-  
TRIG- START-  
MAR- FUNC-3  
HI-3  
FUNC-0 CMP-  
FLAG-1  
MAR-  
LO-1  
MAR- FUNC-1 CMP-  
MAR-  
LO-2  
MAR- FUNC-2 CMP-  
MAR-  
LO-3  
HI-1  
FLAG-2  
HI-2  
FLAG-2  
W-0h  
W-0h  
W-0h  
R/W-0h  
W-0h  
W-0h  
W-0h  
R/W-0h  
W-0h  
W-0h  
W-0h  
R/W-0h  
W-0h  
W-0h  
W-0h R/W-0h  
7-35. COMMON-DAC-TRIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15, 11, 7, RESET-CMP-FLAG-X  
3
W
0
0: Latching-comparator output unaffected  
1: Reset latching-comparator and window-comparator output.  
This bit self-resets.  
14, 10, 6, TRIG-MAR-LO-X  
2
W
0
0
0
0: Don't care  
1: Trigger margin-low command. This bit self-resets.  
13, 9, 5, 1 TRIG-MAR-HI-X  
W
0: Don't care  
1: Trigger margin-high command. This bit self-resets.  
12, 8, 4, 0 START-FUNC-X  
R/W  
0: Stop function generation  
1: Start function generation as per FUNC-GEN-CONFIG-X in the  
DAC-X-FUNC-CONFIG register.  
Copyright © 2023 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
 
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
7.6.12 GENERAL-STATUS Register (address = 22h) [reset = 00h, DEVICE-ID, VERSION-ID]  
PMBus page address = FFh, PMBus register address = E6h  
7-35. GENERAL-STATUS Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
NVM-  
CRC-  
FAIL-INT  
NVM-  
CRC-  
FAIL-  
USER  
X
DAC-3- DAC-2- DAC-1- DAC-0-  
X
DEVICE-ID  
VERSION-ID  
BUSY  
R-0h  
BUSY  
R-0h  
BUSY  
R-0h  
BUSY  
R-0h  
R-0h  
R-0h  
R-0h  
X-0h  
R
R-0h  
7-36. GENERAL-STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
NVM-CRC-FAIL-INT  
R
0
0: No CRC error in OTP  
1: Indicates a failure in OTP loading. A software  
reset or power-cycle can bring the device out of  
this condition in case of temporary failure.  
14  
NVM-CRC-FAIL-USER  
R
0
0: No CRC error in NVM loading  
1: Indicates a failure in NVM loading. The register  
settings are corrupted. The device allows all  
operations during this error condition. Reprogram  
the NVM to get original state. A software reset  
brings the device out of this temporary error  
condition.  
13  
12  
X
R
R
0
0
Don't care  
DAC-3-BUSY  
0: DAC-3 channel can accept commands  
1: DAC-3 channel does not accept commands  
11  
10  
9
DAC-2-BUSY  
DAC-1-BUSY  
DAC-0-BUSY  
R
R
R
0
0
0
0
0: DAC-2 channel can accept commands  
1: DAC-2 channel does not accept commands  
0: DAC-1 channel can accept commands  
1: DAC-1 channel does not accept commands  
0: DAC-0 channel can accept commands  
1: DAC-0 channel does not accept commands  
8
X
R
R
Don't care  
7-2  
DEVICE-ID  
DAC53204W: 02h  
DAC63204W: 01h  
Device identifier.  
1-0  
VERSION-ID  
R
00  
Version identifier.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: DAC53204W DAC63204W  
 
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
7.6.13 CMP-STATUS 寄存器= 23h[= 0000h]  
PMBus 页面地= FFhPMBus 寄存器地= E7h  
7-36. CMP-STATUS 寄存器  
15  
14  
13  
12  
X
11  
10  
9
8
7
6
5
4
3
2
1
0
PROTECT- WIN- WIN- WIN- WIN- CMP- CMP- CMP- CMP-  
FLAG  
CMP-3 CMP-2 CMP-1 CMP-0 FLAG- FLAG- FLAG- FLAG-  
3
2
1
0
X-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
7-37. CMP-STATUS 寄存器字段说明  
字段  
类型  
复位  
说明  
15-9  
8
X
X
0
0
不用考虑  
PROTECT-FLAG  
R
0PROTECT 操作不会触发。  
1PROTECT 功能已完成或正在进行中。读取时该位复位0。  
WIN-CMP-X  
R
R
0
0
765、  
来自相应通道的窗口比较器输出。输出根COMMON-CONFIG  
寄存器中WINDOW-LATCH-EN 设置来锁存或取消锁存。  
4
CMP-FLAG-X  
321、  
来自相应通道的同步比较器输出。  
0
7.6.14 GPIO-CONFIG Register (address = 24h) [reset = 0000h]  
PMBus page address = FFh, PMBus register address = E8h  
7-37. GPIO-CONFIG Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
GF-EN  
R/W-0h  
X
GPO-EN  
R/W-0h  
GPO-CONFIG  
R/W-0h  
GPI-CH-SEL  
R/W-0h  
GPI-CONFIG  
R/W-0h  
GPI-EN  
R/W-0h  
X-0h  
7-38. GPIO-CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
GF-EN  
R/W  
0
0: Glitch filter disabled for GP input. This setting provides faster  
response.  
1: Glitch filter enabled for GPI. This setting introduces additional  
propagation delay but provides robustness.  
14  
13  
X
X
0
0
Don't care.  
GPO-EN  
R/W  
0: Disable output mode for GPIO pin.  
1: Enable output mode for GPIO pin.  
12 - 9  
GPO-CONFIG  
R/W  
0000  
STATUS function setting. The GPIO pin is mapped to the  
following register bits as output:  
0001: NVM-BUSY  
0100: DAC-0-BUSY  
0101: DAC-1-BUSY  
0110: DAC-2-BUSY  
0111: DAC-3-BUSY  
1000: WIN-CMP-0  
1001: WIN-CMP-1  
1010: WIN-CMP-2  
1011:WIN-CMP-3  
Others: NA  
Copyright © 2023 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
 
 
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
7-38. GPIO-CONFIG Register Field Descriptions (continued)  
Bit  
Field  
GPI-CH-SEL  
Type  
Reset  
Description  
8 - 5  
R/W  
0000  
Each bit corresponds to a DAC channel. 0b is disabled and 1b is  
enabled.  
GPI-CH-SEL[0]: Channel 0  
GPI-CH-SEL[1]: Channel 1  
GPI-CH-SEL[2]: Channel 2  
GPI-CH-SEL[3]: Channel 3  
Example: when GPI-CH-SEL is 0101, both channel-0 and  
channel-2 are enabled and both channel-1 and channel-3 are  
disabled.  
4 - 1  
GPI-CONFIG  
R/W  
0000  
GPIO pin input configuration. Global settings act on the entire  
device. Channel-specific settings are dependent on the channel  
selection by the GPI-CH-SEL bits:  
0010: FAULT-DUMP (global). GPIO falling edge triggers fault  
dump, GPIO = 1 has no effect.  
0011: IOUT power up-down (channel-specific). GPIO falling edge  
triggers power down, GPIO rising edge triggers power up.  
0100: VOUT power up-down (channel-specific). The output load  
is as per the VOUT-PDN-X setting. GPIO falling edge triggers  
ECT input (global). GPIO falling edge asserts PROTECT function,  
GPIO = 1 has no effect.  
0111: CLR input (global). GPIO = 0 asserts CLR function, GPIO =  
1 has no effect.  
1000: LDAC input (channel-specific). GPIO falling edge asserts  
LDAC function, GPIO = 1 has no effect. Both the SYNC-CONFIG-  
X and the GPI-CH-SEL must be configured for every channel.  
1001: Start and stop function generation (channel-specific). GPIO  
falling edge stops function generation. GPIO rising edge starts  
function generation.  
1010: Trigger margin high-low (channel-specific). GPIO falling  
edge triggers margin low. GPIO rising edge triggers margin high.  
1011: RESET input (global). The falling edge of the GPIO pin  
asserts the RESET function. The RESET input must be a pulse.  
The GPIO rising edge brings the device out of reset. The RESET  
configuration must be programmed into the NVM. Otherwise the  
setting is cleared after the device reset.  
1100: NVM write protection (global). GPIO falling edge allows  
NVM programming. GPIO rising edge blocks NVM programming.  
1101: Register-map lock (global). GPIO falling edge allows  
update to the register map. GPIO rising edge blocks any register  
map update except a write to the DEV-UNLOCK field through I2C  
or SPI and to the RESET field through I2C.  
Others: Invalid  
0
GPI-EN  
R/W  
0
0: Disable input mode for GPIO pin.  
1: Enable input mode for GPIO pin.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: DAC53204W DAC63204W  
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
7.6.15 DEVICE-MODE-CONFIG Register (address = 25h) [reset = 0000h]  
PMBus page address = FFh, PMBus register address = E9h  
7-38. DEVICE-MODE-CONFIG Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
DIS-  
MODE-IN  
RESERVED  
PROTECT-  
CONFIG  
RESERVED  
X
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
X-0h  
7-39. DEVICE-MODE-CONFIG Register Field Descriptions  
Bit  
15-14  
13  
Field  
RESERVED  
Type  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
00  
0
Always write 0b00  
DIS-MODE-IN  
RESERVED  
Write 1 to this bit for low-power consumption.  
Always write 0b000  
12-10  
9-8  
0
PROTECT-CONFIG  
00  
00: Switch to Hi-Z power-down (no slew)  
01: Switch to DAC code stored in NVM (no slew) and then switch  
to Hi-Z power-down  
10: Slew to margin-low code and then switch to Hi-Z power-down  
11: Slew to margin-high code and then switch to Hi-Z power-down  
7-5  
4-0  
RESERVED  
X
R/W  
R/W  
0
Always write 0b000  
Don't care  
00h  
7.6.16 INTERFACE-CONFIG Register (address = 26h) [reset = 0000h]  
7-39. INTERFACE-CONFIG Register  
15  
14  
X
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TIMEOUT-  
EN  
X
EN-PMBUS  
X
FSDO-  
EN  
X
SDO-  
EN  
X-0h  
R/W-0h  
X-0h  
R/W-0h  
X-0h  
R/W-0h X-0h R/W-0h  
7-40. INTERFACE-CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-13  
12  
X
X
0h  
Don't care  
TIMEOUT-EN  
R/W  
0
0: I2C timeout disabled  
1: I2C timeout enabled  
11-9  
8
X
X
0h  
0
Don't care  
EN-PMBUS  
R/W  
0: PMBus disabled  
1: Enable PMBus  
7-3  
2
X
X
00h  
0
Don't care  
FSDO-EN  
R/W  
0: Fast SDO (FSDO) disabled  
1: Fast SDO enabled  
1
0
X
X
0
0
Don't care  
SDO-EN  
R/W  
0: SDO disabled  
1: SDO enabled on GPIO pin  
Copyright © 2023 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
 
 
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
7.6.17 SRAM-CONFIG Register (address = 2Bh) [reset = 0000h]  
PMBus page address = FFh, PMBus register address = EFh  
7-40. SRAM-CONFIG Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
X
SRAM-ADDR  
R/W-00h  
X-00h  
7-41. SRAM-CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
7-0  
X
X
00h  
Don't care  
SRAM-ADDR  
R/W  
00h  
8-bit SRAM address. Writing to this register field configures the  
SRAM address to be accessed next. This address automatically  
increments after a write to the SRAM.  
7.6.18 SRAM-DATA Register (address = 2Ch) [reset = 0000h]  
PMBus page address = FFh, PMBus register address = F0h  
7-41. SRAM-DATA Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SRAM-DATA  
R/W-0000h  
7-42. SRAM-DATA Register Field Descriptions  
Bit  
15-0  
Field  
SRAM-DATA  
Type  
Reset  
Description  
R/W  
0000h  
16-bit SRAM data. Data are written to or read from the address  
configured in the SRAM-CONFIG register.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: DAC53204W DAC63204W  
 
 
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
7.6.19 DAC-X-DATA-8BIT Register (address = 40h, 41h, 42h, 43h) [reset = 0000h]  
PMBus page address = Not applicable, PMBus register address = Not applicable  
7-42. DAC-X-DATA-8BIT Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DAC-X-DATA-8BIT[7:0]  
R/W-00h  
X
X-00h  
7-43. DAC-X-DATA-8BIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
DAC-X-DATA-8BIT[7:0]  
X
R/W  
00h  
8-bit data for current output. This register provides faster update  
rate in the I2C mode. Data are in straight-binary format.  
7-0  
X
00h  
Not applicable  
7.6.20 BRDCAST-DATA Register (address = 50h) [reset = 0000h]  
PMBus page address = FFh, PMBus register address = F1h  
7-43. BRDCAST-DATA Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
BRDCAST-DATA[11:0]  
BRDCAST-DATA[9:0]  
BRDCAST-DATA[7:0]  
X
R/W-000h  
X-0h  
7-44. BRDCAST-DATA Register Field Descriptions  
Bit  
15-4  
Field  
Type  
Reset  
Description  
BRDCAST-DATA[11:0]  
BRDCAST-DATA[9:0]  
BRDCAST-DATA[7:0]  
R/W  
000h  
Broadcast code for all DAC channels  
Data are in straight-binary format. MSB left-aligned.  
Use the following bit-alignment:  
DAC63204W VOUT: {BRDCAST-DATA[11:0]}  
DAC53204W VOUT: {BRDCAST-DATA[9:0], X, X}  
IOUT: {BRDCAST-DATA[7:0], X, X, X, X}  
X = Don't care bits.  
The BRD-CONFIG-X bit in the DAC-X-FUNC-CONFIG register  
must be enabled for the respective channels.  
3-0  
X
X
0h  
Don't care.  
7.6.21 PMBUS-PAGE Register [reset = 0300h]  
PMBus page address = X, PMBus register address = 00h  
7-44. PMBUS-PAGE Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PMBUS-PAGE  
R/W-03h  
X
X-00h  
7-45. PMBUS-PAGE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
PMBUS-PAGE  
R/W  
03h  
8-bit PMBus page address as specified in the Register Names  
table in the Register Map section.  
7-0  
X
X
00h  
Not applicable  
Copyright © 2023 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
 
 
 
 
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
7.6.22 PMBUS-OP-CMD-X Register [reset = 0000h]  
PMBus page address = 00h, 01h, 02h, 03h, PMBus register address = 01h  
7-45. PMBUS-OP-CMD-X Register (X = 0, 1, 2, 3)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PMBUS-OPERATION-CMD-X  
R/W-00h  
X
X-00h  
7-46. PMBUS-OP-CMD-X Register Field Descriptions  
Bit  
15-8  
Field  
Type  
Reset  
Description  
PMBUS-OPERATION-CMD-X  
R/W  
00h  
PMBus operation commands:  
00h: Turn off  
80h: Turn on  
A4h: Margin high, DAC output margins high to DAC-X-MARGIN-  
HIGH code  
94h: Margin low, DAC output margins low to DAC-X-MARGIN-  
LOW code  
7-0  
X
X
00h  
Not applicable  
7.6.23 PMBUS-CML Register [reset = 0000h]  
PMBus page address = X, PMBus register address = 78h  
7-46. PMBUS-CML Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
X
CML  
R/W-0h  
X
N/A  
X-00h  
X-0h  
X-00h  
7-47. PMBUS-CML Register Field Descriptions  
Bit  
Field  
Type  
Reset  
00h  
0
Description  
15-10  
9
X
X
Don't care  
CML  
R/W  
0: No communication fault  
1: PMBus communication fault for write with incorrect number of  
clocks, read before write command, invalid command address,  
and invalid or unsupported data value; reset this bit by writing 1.  
8
X
X
X
X
0h  
Don't care  
7-0  
00h  
Not applicable  
7.6.24 PMBUS-VERSION 寄存[= 2200h]  
PMBus 页面地= XPMBus 寄存器地= 98h  
7-47. PMBUS-VERSION 寄存器  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PMBUS-VERSION  
R-22h  
X
X-00h  
7-48. PMBUS-VERSION 寄存器字段说明  
字段  
类型  
复位  
说明  
15-8  
7-0  
PMBUS-VERSION  
X
R
22h  
PMBus 版本  
不可用  
X
00h  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: DAC53204W DAC63204W  
 
 
 
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
8 应用和实现  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The DACx3204W are quad-channel buffered, force-sense output, voltage-output and current-output smart DACs  
that include an NVM and internal reference, and are available in a tiny 1.75-mm × 1.75-mm DSBGA package.  
The external reference must not exceed VDD, either during transient or steady-state conditions. For the best Hi-Z  
output performance, use a pullup resistor on the VREF pin to VDD. In case the VDD pin remains floating during  
the off condition, place a 100-kΩ resistor to AGND for proper detection of the VDD pin off condition. All the  
digital outputs are open drain; use external pullup resistors on these pins. The interface protocol is detected at  
power-on, and the device locks to the protocol as long as VDD is on. In I2C mode, when allocating the I2C  
addresses in the system, also consider the broadcast address. I2C timeout can be enabled for robustness. SPI  
mode is three-wire by default. Configure the GPIO pin as SDO in the NVM for SPI readback capability. The SPI  
clock speed in readback mode is slower than in write mode. Power-down mode sets the DAC outputs in Hi-Z by  
default. Change the configuration appropriately for different power-down settings. The DAC channels can also  
power-up with a programmed DAC code in the NVM.  
8.2 Typical Application  
The DACx3204W can be used as a programmable current source using an external MOSFET for current values  
greater than 250 µA. The force-sense outputs of DACx3204W can be used to compensate for the gate-source  
voltage drop caused by temperature, drain current, and aging of the MOSFET. The GPIO pin can be used to  
switch the output current on or off without the need for run-time software. The slew between the on and off  
values can be programmed. 8-1 shows how the DACx3204W is used as a programmable current source. A  
resistor, RSET, connected to the source of the MOSFET sets the output current range. This circuit can be used in  
optical modules that require a high current output with a small size.  
1.5 F  
100nF  
VDD  
VDD  
10k  
15 VDD 16 VREF  
13 CAP  
IOUTx  
LDO  
Internal  
Reference  
NVM  
DAC  
BUF  
DAC  
REG  
11  
12  
OUT0  
FB0  
VSET  
8 SDA/SCLK  
7 A0/SDI  
DAC  
BUF  
DAC  
REG  
10  
9
OUT1  
FB1  
RSET  
6 SCL/SYNC  
5 GPIO/SDO  
DAC  
BUF  
DAC  
REG  
3
4
OUT2  
FB2  
HIGH  
DAC  
BUF  
DAC  
REG  
LOW  
2
1
OUT3  
FB3  
Output Configuration  
Logic  
14 AGND  
8-1. Current Source  
Copyright © 2023 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
 
 
 
 
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
8.2.1 Design Requirements  
8-1. Design Parameters  
PARAMETER  
VALUE  
0 mA to 200 mA  
0 V to 0.6 V  
3 Ω  
Current output range  
DAC range  
RSET  
8.2.2 Detailed Design Procedure  
VSET is controlled by the DACx3204W to adjust the current output. RSET sets the output range of the current  
source. Choose a small VSET so that the power dissipation across RSET is minimum. 方程9 calculates RSET  
.
V
SET  
R
=
(9)  
SET  
I
OUT  
A 0.6-V max VSET is used in this example. 方程式 10 shows that RSET is calculated to be 3 Ω. Choose an RSET  
with a power rating of at least 120 mW.  
0.6 V  
200 mA  
R
=
= 3 Ω  
(10)  
SET  
方程11 shows how to calculate the DAC code for a given output voltage, reference, and gain setting.  
N
V
× 2  
OUT  
DAC_DATA =  
(11)  
V
× GAIN  
REF  
方程式 12 calculates the DAC code for an output voltage, VSET, of 0.6V, the internal 1.21-V reference, and the  
1.5 × gain setting.  
12  
0.6 V × 2  
DAC_DATA =  
= 1354d  
(12)  
1.21 V × 1.5  
The GPIO pin can be configured as an input to trigger the DACx3x04W output to turn on and off, which turns the  
current source on and off. Configure the GPIO in the GPIO-CONFIG register. The GPI-EN bit enables the GPIO  
pin as an input. The GPI-CH-SEL field selects which channels are controlled by the GPI. The GPI-CONFIG field  
selects the GPI function. 7-18 defines the functions for the GPI-CONFIG field. Choose the trigger margin-high  
or margin-low function if programmable slew is needed, or VOUT power up or down if programmable slew is not  
needed.  
The programmable slew is configured by the CODE-STEP and SLEW-RATE fields in the DAC-X-FUNC-CONFIG  
Register. The programmable slew is only available when toggling between two values stored in the DAC-X-  
MARGIN-HIGH and DAC-X-MARGIN-LOW Registers. 7.4.5.1.2 discusses how to set the programmable slew.  
This application example uses a SLEW-RATE of 8 µV/s and a CODE-STEP of 8-LSB to achieve a 1.36-ms slew  
time.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: DAC53204W DAC63204W  
 
 
 
 
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
The pseudo code for this application example is as follows:  
//SYNTAX: WRITE <REGISTER NAME (Hex code)>, <MSB DATA>, <LSB DATA>  
//Set gain setting to 1.5x internal reference (1.8 V) (repeat for all channels)  
WRITE DAC-0-VOUT-CMP-CONFIG(0x3), 0x08, 0x00  
//Power-up voltage output on all channels and enable the internal reference  
WRITE COMMON-CONFIG(0x1F),0x12, 0x49  
//Configure GPI for Margin-High, Low trigger for all channels  
WRITE GPIO-CONFIG(0x24), 0x01, 0xF5  
//Set slew rate and code step (repeat for all channels)  
//CODE_STEP: 8 LSB, SLEW_RATE: 8 µs/step  
WRITE DAC-0-FUNC-CONFIG(0x06), 0x00, 0x52  
//Write DAC margin high code (repeat for all channels)  
//For a 1.8-V output range, the 12-bit hex code for 0.6 V is 0x54A. With 16-bit left alignment,  
this becomes 0x54A0  
WRITE DAC-0-MARGIN-HIGH(0x01), 0x54, 0xA0  
//Write DAC margin low code (repeat for all channels)  
//The 12-bit hex code for 0 V is 0x000. With 16-bit left alignment, this  
becomes 0x0000  
WRITE DAC-0-MARGIN-LOW(0x02), 0x00, 0x00  
//Save settings to NVM  
WRITE COMMON-TRIGGER(0x20), 0x00, 0x02  
8.2.3 Application Curve  
1
0.8  
0.6  
0.4  
0.2  
0
250  
200  
150  
100  
50  
VFB (V)  
IOUT (mA)  
0
0
1
2
3
4
5
6
7
8
Time (ms)  
8-2. IOUT and VFB On-to-Off Transition  
Copyright © 2023 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
DAC53204W, DAC63204W  
www.ti.com.cn  
ZHCSRA2 DECEMBER 2022  
8.3 Power Supply Recommendations  
The DACx3204W family of devices does not require specific power-supply sequencing. These devices require a  
single power supply, VDD. However, make sure the external voltage reference is applied after VDD. Use a 0.1-µF  
decoupling capacitor for the VDD pin. Use a bypass capacitor with a value approximately 1.5 µF for the CAP pin.  
8.4 布局  
8.4.1 布局指南  
DACx3204W 引脚配置将模拟、数字和电源引脚分开以实现优化布局。为了保证信号完整性需将数字和模拟走  
线分开并将去耦电容器放置在器件引脚附近。  
8.4.2 Layout Example  
VREF Pullup  
Resistor  
VDD  
OUT2  
OUT3  
GPIO/SDO  
VIO  
GND  
VREF Bypass  
Capacitor  
GND  
VDD  
A2  
B2  
C2  
D2  
A3  
B3  
C3  
D3  
A1  
B1  
C1  
A4  
B4  
C4  
D4  
SCL/SYNC  
VIO  
Decoupling  
Capacitor  
GND  
VIO  
A0/SDI  
LDO Bypass  
Capacitor  
D1  
VIO  
DACx3204W  
SDA/SCLK  
OUT0  
OUT1  
8-3. Layout Example  
Note: The ground and power planes have been omitted for clarity.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: DAC53204W DAC63204W  
 
 
DAC53204W, DAC63204W  
ZHCSRA2 DECEMBER 2022  
www.ti.com.cn  
9 器件和文档支持  
TI 提供大量的开发工具。下面列出了用于评估器件性能、生成代码和开发解决方案的工具和软件。  
9.1 Documentation Support  
备注  
TI is transitioning to use more inclusive terminology. Some language can be different than what is  
expected for certain technology areas.  
9.1.1 Related Documentation  
The following EVM user's guide is available: DAC63004 Evaluation Module user's guide  
9.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.4 商标  
TI E2Eis a trademark of Texas Instruments.  
PMBus® is a registered trademark of SMIF, Inc.  
所有商标均为其各自所有者的财产。  
9.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更恕不另行通知,  
且不会对此文档进行修订。如需获取此数据表的浏览器版本请查阅左侧的导航栏。  
Copyright © 2023 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: DAC53204W DAC63204W  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Dec-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC53204YBHR  
ACTIVE  
DSBGA  
YBH  
16  
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
-40 to 125  
DAC  
53204  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
YBH0016  
DSBGA - 0.4 mm max height  
SCALE 8.000  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
CORNER  
D
C
0.4 MAX  
SEATING PLANE  
0.05 C  
BALL TYP  
0.16  
0.10  
1.2 TYP  
SYMM  
D
C
1.2  
TYP  
SYMM  
D: Max = 1.748 mm, Min =1.687 mm  
E: Max = 1.748 mm, Min =1.687 mm  
B
A
0.4  
TYP  
2
1
3
4
0.225  
0.185  
16X  
0.015  
0.4 TYP  
C A B  
4225022/A 06/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YBH0016  
DSBGA - 0.4 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
3
16X ( 0.2)  
2
1
4
A
(0.4) TYP  
B
C
SYMM  
D
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 40X  
0.05 MIN  
0.05 MAX  
METAL UNDER  
SOLDER MASK  
(
0.2)  
METAL  
(
0.2)  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4225022/A 06/2019  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YBH0016  
DSBGA - 0.4 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
3
(R0.05) TYP  
4
16X ( 0.21)  
1
2
A
(0.4) TYP  
B
C
SYMM  
METAL  
TYP  
D
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.075 mm THICK STENCIL  
SCALE: 40X  
4225022/A 06/2019  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY